
UC Berkeley
UC Berkeley Previously Published Works

Title

Windthrow characteristics and their regional association with rainfall, soil, and surface 
elevation in the Amazon

Permalink

https://escholarship.org/uc/item/1kf448qf

Journal

Environmental Research Letters, 18(1)

ISSN

1748-9318

Authors

Negron-Juarez, Robinson
Magnabosco-Marra, Daniel
Feng, Yanlei
et al.

Publication Date

2023

DOI

10.1088/1748-9326/acaf10

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1kf448qf
https://escholarship.org/uc/item/1kf448qf#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


LETTER • OPEN ACCESS

Windthrow characteristics and their regional
association with rainfall, soil, and surface elevation
in the Amazon
To cite this article: Robinson Negron-Juarez et al 2023 Environ. Res. Lett. 18 014030

 

View the article online for updates and enhancements.

You may also like
Quantifying long-term changes in carbon
stocks and forest structure from Amazon
forest degradation
Danielle I Rappaport, Douglas C Morton,
Marcos Longo et al.

-

Increased floodplain inundation in the
Amazon since 1980
Ayan S Fleischmann, Fabrice Papa,
Stephen K Hamilton et al.

-

Robust Amazon precipitation projections in
climate models that capture realistic
land–atmosphere interactions
J C A Baker, L Garcia-Carreras, W
Buermann et al.

-

This content was downloaded from IP address 104.186.254.98 on 23/05/2023 at 21:01

https://doi.org/10.1088/1748-9326/acaf10
/article/10.1088/1748-9326/aac331
/article/10.1088/1748-9326/aac331
/article/10.1088/1748-9326/aac331
/article/10.1088/1748-9326/acb9a7
/article/10.1088/1748-9326/acb9a7
/article/10.1088/1748-9326/abfb2e
/article/10.1088/1748-9326/abfb2e
/article/10.1088/1748-9326/abfb2e


Environ. Res. Lett. 18 (2023) 014030 https://doi.org/10.1088/1748-9326/acaf10

OPEN ACCESS

RECEIVED

23 May 2022

REVISED

20 December 2022

ACCEPTED FOR PUBLICATION

29 December 2022

PUBLISHED

11 January 2023

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Windthrow characteristics and their regional association with
rainfall, soil, and surface elevation in the Amazon
Robinson Negron-Juarez1,∗, Daniel Magnabosco-Marra2, Yanlei Feng3, Jose David Urquiza-Muñoz2,
William J Riley1 and Jeffrey Q Chambers1,4

1 Lawrence Berkeley National Laboratory, Climate and Ecosystem Science Division, 1 Cyclotron Road, Berkeley, CA 94720,
United States of America

2 Max Planck Institute for Biogeochemistry, Hans Knöll Str. 10, 07745 Jena, Germany
3 Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, United States of America
4 Department of Geography, University of California, Berkeley, CA, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: robinson.inj@lbl.gov

Keywords:windthrows, geospatial analysis, Amazon

Supplementary material for this article is available online

Abstract
Windthrows (trees uprooted and broken by winds) are common across the Amazon. They range in
size from single trees to large gaps that lead to changes in forest dynamics, composition, structure,
and carbon balance. Yet, the current understanding of the spatial variability of windthrows is
limited. By integrating remote sensing data and geospatial analysis, we present the first study to
examine the occurrence, area, and direction of windthrows and the control that environmental
variables exert on them across the whole Amazon. Windthrows are more frequent and larger in the
northwestern Amazon (Peru and Colombia), with the central Amazon (Brazil) being another hot
spot of windthrows. The predominant direction of windthrows is westward. Rainfall, surface
elevation, and soil characteristics explain the variability (20%–50%) of windthrows but their
effects vary regionally. A better understanding of the spatial dynamics of windthrows will improve
understanding of the functioning of Amazon forests.

1. Introduction

Amazon forests absorb and store large amounts of
atmospheric CO2, thereby mitigating the warming
effects of this greenhouse gas [1–3]. Tree mortality
in the Amazon has increased [4, 5], and is expected
to increase in a warming environment [6]. Drivers of
tree mortality include, among others, deforestation
[7–9], fires [10, 11], droughts [12–14] and severe
storms [15–19], and these drivers are expected to
become more frequent and intense [12, 20, 21].
Increases in tree mortality raise concerns due to the
associated changes in carbon storage, forest struc-
ture, floristic composition and functioning of forest
ecosystems [14, 22–24] and their legacies including
loss of ecosystem resilience [18, 25]. This mortality
has already shifted some areas to be sources of CO2

in the Amazon [7, 26]. Drivers of natural tree mortal-
ity in the Amazon are poorly studied and represent a

key missing component of the overall tree mortality
trend found in the Amazon [5].

Extreme rainfall events are a distinctive charac-
teristic of the Amazon. These events are produced by
mesoscale convective systems (MCSs) [27, 28]. Asso-
ciated with MCSs are downdrafts [17, 18, 29], which
are strong winds that descend from these systems [30]
that can produce windthrows (trees uprooted and
broken by winds [31]) when they reach the forest
[30].Windthrows in the Amazon are a recurrent form
of tree mortality, ranging in size from single trees
[14, 32, 33] to large gaps of uprooted and broken trees
that can reach thousands of hectares [16, 18, 34–36].
Lightning is another driver of tree mortality associ-
ated with extreme rainfall that produces gaps from
3 to 11 down trees [37, 38]. Previous studies have
shown that soil type, soil organic carbon (SOC) and
soil nutrients have a positive association with forest
gaps [37, 39, 40]. On the other hand, the effect of
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topography on gaps of dead trees has contradictory
effects, related not only to the type of disturbance
but to the spatial scale of the analysis [40–42]. These
studies suggest that controls of windthrows across the
Amazon remain poorly quantified.

Changes in extreme rainfall events have the
potential to alter the frequency and intensity of wind-
throws and related treemortality. Despite the import-
ance of windthrows in forest dynamics and carbon
storage of the Amazon, few studies have focused on
windthrow characteristics across the whole Amazon.
By using Landsat images and geospatial analysis, here
we present the first study of windthrow characterist-
ics across the whole Amazon and identify (a) spatial
patterns of the occurrence and size of windthrows,
(b) direction of windthrows, (c) regional differences
of windthrows, and (d) effects of environmental vari-
ables on the occurrence of windthrows.

2. Method and data

2.1. Study area and windthrows detection, size and
direction
The study area is the Amazon rainforest
(5.65 × 106 km2) [18]. We used 392 Landsat 8
images (each image covering ∼3.4 × 104 km2, and
30 m × 30 m of spatial resolution) with low cloud
cover (<20%) from 2018 and 2019 (see supple-
mentary figure S1). Windthrows were identified
by their spectral characteristics [17] and distinct-
ive fan-shape diverging from a central area [35]. To
identify windthrows, spectral mixture analysis (SMA)
[43] was applied to bands 2–7 in Landsat 8 images.
SMA quantifies the per pixel fraction of endmem-
bers which sums to match the full pixel spectrum
of the image [43]. Image-derived endmembers of
photosynthetic vegetation (PV), non-photosynthetic
vegetation (NPV), and shade were used. One set of
endmembers was used to identify windthrows across
the whole Amazon (figure S2). The fractions of PV
and NPV were then normalized without shade as
PV/(PV + NPV) and NPV/(PV + NPV) [44]. The
normalized NPV and PV images were used to identify
new and old windthrows, respectively. Each identi-
fied windthrow was verified using historical Landsat
images dating back to 1984. Windthrows were visu-
ally verified for their fan-shape (diverging from a
central area with small pixels scattered at the tail).
For this task we used a band combination RGB as
shortwave infrared (1.57–1.65 µm), near infrared
(0.85–0.88 µm) and red (0.64–0.67 µm). In this band
composition, old windthrows look bright green (due
to the presence of pioneers that reflect more near
infrared [45]) and new windthrows (<1 year old)
look red (due to high shortwave infrared reflectance
from exposed bare wood) (figure S3). The 2018–2019
Landsat images used encompass new windthrows as
well as old windthrows in the Amazon for a period

of ∼30 years since the Landsat reflectance recover
to pre-disturbance conditions in about 40 years in
the central Amazon [45, 46] and about 20 years in
the western Amazon [47]. We only considered wind-
throws that were further than 5 km from human
settled areas. In total we identified 1116 windthrows.

To determine windthrow area, the main gap of
eachwindthrowwasmanually delineated by a triangle
with one vertex in the beginning of the fan-shaped
windthrow and the other vertices at the extreme ends
of the fan (figure S3). The area of the windthrow
was determined by the area of its respective triangle.
The selection of Landsat 8 images (Landsat 8 Col-
lection 2 Tier 1 calibrated top-of-atmosphere, TOA,
reflectance) with less than 20% of cloud cover, the
SMA analysis, the delineation of the windthrows area,
and the calculation of their area with their respective
centroidwere done in theGoogle Earth Engine (GEE)
platform [48] that provides tools and algorithms for
these tasks. Only windthrows larger than 5 ha were
used in our analysis. The direction of the windthrow
was determined from the vertex (tail) representing the
beginning of the fan-shapedwindthrow to themiddle
of the side connecting the other vertices (figure S3).
We used the geographic convention of true north as
0◦ with the angle increasing clockwise.

2.2. Environmental data
2.2.1. Rainfall data
We used the Tropical Rainfall Measuring Mission
(TRMM) Multi-Satellite Precipitation (TMPA) rain-
fall Level 3 V7 0.25◦ × 0.25◦ 3 h (3B42) and monthly
(3B43) data [49] from 1 January 1998 to 31December
2018, available at https://disc.gsfc.nasa.gov/datasets/.
TRMM data compare well with observations in trop-
ical forests [50, 51]. The TRMM satellite stopped
collecting data in 2015. TRMM-like data were pro-
cessed using the successor satellite, the Global Precip-
itation Measurement [49, 52] until 2019. The mean
annual number of extreme rainfall rate events (MAN-
ERR) per pixel was calculated using TRMM 3B42 by
adding the number of rainfall rate events⩾6mmh−1

(extreme rainfall produced by MCSs [28]) per pixel
and dividing this total by the number of years used.
TRMM 3B43 was used to calculate the mean annual
rainfall (MAR) as the average of total annuals. Dry
season length was calculated from TRMM 3B43 data
by computing the mean monthly rainfall and from
there the number of months with rainfall ⩽100 mm
per month [53].

2.2.2. Soil classification
Variations of physical and chemical properties of soil
strongly affect trees and root growth [54, 55], and
therefore might affect the response of trees to winds.
TheHarmonizedWorld Soil Database (HWSD) v1.21
[56] was used to determine the soil classification. The
HWSD is a 30 arc second (∼1 km) resolution dataset
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that combines current regional and national-level soil
data from around the world. The data are available at
www.fao.org/soils-portal/data-hub/soil-maps-and-
databases/harmonized-world-soil-database-v12/en/.

2.2.3. Soil properties
The SOC pool is driven by the rates of organic inputs
[54, 57] of decomposition that in turn facilitate nutri-
ent availability such as nitrogen and phosphorous.
Disturbances can result in a dramatic increase in
organic matter inputs into soils [58, 59] with associ-
ated effects on soil nutrients. Previous studies have
shown that soil carbon and nutrients decay exponen-
tially with depth in the Amazon, with the upper 15 cm
having the highest values [54]. Therefore, we used
SOC and soil organic nitrogen (SON) from these lay-
ers. SOC and SON were obtained from SoilGrids 2.0
which is a global digital soil mapping database with
a spatial resolution of 250 m and multiple depths
[60]. These data are available in GEE (https://git.wur.
nl/isric/soilgrids/soilgrids.notebooks/-/blob/master/
markdown/access_on_gee.md).

2.2.4. Elevation
Tree mortality varies inversely with surface elevation
[61, 62]. Soil elevation data is from Advanced Land
Observing Satellite (ALOS) World 3D (AW3D30)
Version 3.2 which is a global digital surface model
(DSM) with a horizontal resolution of 30 m
(1 arcsec) [63]. The Japan Aerospace Explora-
tion Agency (JAXA) generated these global digital
elevation/surface model (DEM/DSM) and orthorec-
tified images using the archived data of the Panchro-
matic Remote-sensing Instrument for Stereo Map-
ping onboard ALOS. These data are available in GEE
(ee.ImageCollection(“JAXA/ALOS/AW3D30/V3_2”)).

2.2.5. Landform classification
Landform classification data is from height above the
nearest drainage (HAND) and provides the vertical
distance from hillslope to nearest stream [64, 65].
HAND could be an indicator of whether windthrows
aremore or less likely in areas of low or high elevation.
The HAND data used a one arc-second (∼30 m) res-
olution version of Shuttle Radar TopographyMission
[66]. The data are available in GEE (users/gena/
global-hand/hand-100).

2.2.6 Temperature
Trees respond to their climate. The association
between tree gaps and temperature is investig-
ated through the mean annual temperature (MAT)
(1998–2018).MATdata is from the Climatic Research
Unit Version 4, CRU v4 which has a spatial res-
olution of 0.5◦ and is derived from the interpol-
ation of monthly data from an extensive network

of weather stations [67]. The data are available at
https://crudata.uea.acuk/cru/data/temperature/.

2.2.7. Canopy height
The proportion of trees exposed to wind is related
to their height. We used data derived from global
spaceborne lidar available at a spatial resolution of
1 km using 2005 data from the Geoscience Laser Alti-
meter System aboard Ice, Cloud, and land Elevation
Satellite [68]. The data is available in GEE (ee.Image
(“NASA/JPL/global_forest_canopy_height_2005”)).

2.2.8. Wind speed
Horizontal wind speed data are from ERA5
(European Centre for Medium-Range Weather Fore-
casts Reanalysis v5) which has a detailed record
of atmospheric, land surface and ocean meas-
urements from 1950 onward at a horizontal res-
olution of 0.1◦ [69]. We used the average land
monthly data of the 10 m u- and v-wind com-
ponents (in ms−1) for the period 1998–2018. u
is the component of wind parallel to the x-axis
and v is the component of wind parallel to the y-
axis. The u and v wind components were averaged
separately to obtain the mean annual component
where the annual average wind speed was calculated

(wind speed =
√
u2average + v2average). Data is available

at www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era5.

Table S1 summarize the data used. Figure S4
shows the suite of environmental data in our study
area.

2.3. Procedures
2.3.1. Density of windthrow occurrence and size
Our study focuses on the regional variation of wind-
throws over the entire Amazon, therefore we used
a spatial resolution of 0.1◦ to capture the variation
across different regions in the Amazon, a desirable
characteristic when choosing spatial resolution [70].
Using 0.1◦ resolution, we found that 934 individual
windthrows were inside one grid cell, in 81 cases
two windthrows coincided in one cell, and in 7 cases
three windthrows. When windthrows coincided in
the same grid cell then only one windthrows was
randomly selected. After this procedure we had one
windthrows per cell, totaling 1022. The density of the
occurrence of windthrows and their sizes were cal-
culated by applying a kernel density estimator [71]
using the System for Automated Geoscientific Ana-
lyses geospatial library available in Quantum Geo-
graphic Information System (QGIS, version 3.10 that
is freely available at https://qgis.org) using a quartic
kernel with 1◦ radius and resampled to 0.1◦.
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2.4. Windthrows and environmental data
The environmental data were resampled to 0.1◦, to
match the windthrow density resolution. The res-
ampling used the cubic spline resampling method
on all datasets except for the Soil Classification data
which was resampled using the nearest neighbor
method, a common practice for categorical data [70].
The resampling was done in QGIS. The spline res-
ampling method produces reliable resampling res-
ults for climate [72] and topographic [73] data. The
environmental data used here are the best data cur-
rently available for the Amazon and properly rep-
resent the climatic, edaphic, topographic, and forest
structural characteristics observed in the Amazon
[74]. The availability and continuous improvement of
these data are key to understanding the dynamics of
this ecosystem.

2.4.1. Spatial autocorrelation, regionalization, and
spatial regression
Each windthrow was used to locate the associated
density and respective environmental variables. We
used Moran’s I [75] to measure the global spa-
tial autocorrelation of the data. Windthrows are
multivariate processes because they are affected by
numerous factors. In order to analytically identify
spatial patterns of windthrows and their environ-
mental variables, we used regionalization. Region-
alization uses unsupervised learning methods to
identify spatial structures of multivariate processes
and aggregates areas into contiguous regions that
have internal homogenous characteristics with all
regions being statistically different among them
[76–78]. Prior to regionalization, the data were stand-
ardized using a robust scaling method, where each
variable has the median subtracted and divided by
the interquartile range (the difference between the
75th and 25th percentiles) [79]. The spatial criterion
is structured by spatial weight. We used two spa-
tial weights matrices, the queen contiguity matrix
(Queen) where observations are connected to neigh-
bors they touch, and the k-nearest neighbor mat-
rix (KNN) where observations are connected to their
fourth nearest observations. For the regionalization
we used the Ward’s hierarchical method, an agglom-
erative hierarchical clusteringmethod that minimizes
the total within-cluster variance [80]. We used the
Calinski-Harabasz score (CH) [81] to assess the good-
ness of fit for the regions obtained. Higher CH values
indicate better fits [81].

A spatial regression was performed using the
density of windthrows occurrence (hereafter referred
to as windthrow density) as the independent vari-
able (predictant). We used a spatial regression model
based on ordinary least squares to compute the
regression coefficients. To assess the spatial depend-
ence, we used the Lagrange multiplier (LM) (lag and

error) statistics. If Lagrange statistics were not signi-
ficant then we used Robust LM (lag and error) stat-
istics. If Robust lag was significant and Robust error
was not, then a spatial error model was used, in the
opposite case a spatial lag model was used. In the case
that statistics were significant then the statistic with
highest value was used. Details of the statistical flow
used in this study are found in Anselin and Rey [82].
The regionalization and spatial regression were done
using the Python Library of Spatial Analytical Meth-
ods, PySAL [83].

3. Results

3.1. Windthrows characteristics
The highest windthrow density (figure 1(A)) was
observed in the northwestern (Peru and Colombia)
and central (Brazil) Amazon, and regions with lower
occurrencewere observed in the northern (Venezuela,
Guyana, Suriname and French Guiana), eastern
(Brazil) and southern (Peru, Bolivia and Brazil)
Amazon. The largest windthrows were observed in
the northwestern Amazon followed by the central
Amazon (figure 1(B)). We found that most wind-
throws (81% of cases) have a westward component
(figure 1(C)). Amap with the direction of each wind-
throw is shown in figure S5.

3.2. Regions of windthrows
Using regionalization analysis, we found the highest
CH score (table S2) was using windthrow density,
Elevation, SOC stock from 0–5 cm depth, and MAR
(figure 2). The Moran’s I value was >0.7 (p = 0.001)
for these variables suggesting clear spatial structures
with non-random distributions.

The Queen weighting method yielded the best
regionalization results (table S2). The four Regions
obtained using thismethod are shown in figure 3 (res-
ults using the KNNmethod are in figure S6). The dis-
tribution profile of each variable for each Region is
shown in figure S7. The number of windthrows con-
tained in Regions 1, 2, 3, and 4 were 390, 291, 297,
and 44, respectively. Using 5 regions we obtained CH
scores of 256 and 277 using the Queen weighting and
KNN methods, respectively.

3.3. Explanatory variables
Using the results from our regionalization analysis,
we determined an association between windthrow
density, the predictant, and predictors (Elevation,
SOC stock from 0–5 cm, and MAR). No multi-
collinearity was observed in the models (table S3).
The F-statistic showed that all models were signi-
ficant and have predictive capabilities (probability
< 0.05), except for Region 4 (probability = 0.5)
(figure 4). The errors from the models with respect to
observations were normally distributed around zero

4



Environ. Res. Lett. 18 (2023) 014030 R Negron-Juarez et al

Figure 1. Characteristics of windthrows in the Amazon.
The Amazon region is represented by the green contour
line. Kernel density map for (A) windthrow occurrence and
(B) windthrow area. (C) Direction in which windthrows are
pointing according to the observed windthrows.
Windthrow density map used a kernel of 1◦ radius and was
resampled at 0.1◦. Black dots in (A) and (B) represent the
observed windthrows.

(figure S8), indicating no critical under- and over-
estimates. The results showed that windthrows are
positively correlated with MAR (except in Region 2),
but vary inversely with Elevation (except in Region
4) and SOC. Overall, MAR and Elevation contrib-
ute the most (largest magnitude) in the prediction of

windthrows. Across the whole Amazon the predictors
explained 11% of windthrows density (figure 4(E)).

4. Discussions and conclusions

4.1. Windthrows characteristics
Windthrows were common from the rainy northw-
est to the dry southeast Amazon. The high occur-
rence of windthrows in the central Amazon is con-
sistent with a recent study of small forest gaps in
this region [40] and was not identified in previous
studies [35, 36] that used a threshold windthrow size
of 30 ha which might have underestimated the occur-
rence of windthrows. Only one study has focused on
the spatial-temporal variability of windthrows in the
central Amazon for the period 1998–2010 [84]. That
study did not find an increase of windthrows, suggest-
ing that if an increase has occurred it has happened
after 2010. Nevertheless, an increase in windthrows
would be consistent with the observed increase in tree
mortality found in inventory plots across the Amazon
[5] and could provide insights into the mechanisms
underlying this trend. An increase in the frequency
of windthrows in the central Amazon could promote
changes in the regional floristic composition as shown
in Negron-Juarez et al [18]. Our study included only
windthrows>5 ha but windthrows cover a large spec-
trum of disturbances including single downed trees.
Integration of field and remote sensing data (e.g.
LiDAR, Landsat, etc), is needed in order to determine
the fraction of tree mortality associated with winds
in the Amazon. Such integration will provide a bet-
ter understanding of the Amazon. For instance, by
including wind induced tree mortality, we found that
the forest dynamics associatedwith these events prop-
erly represent the values of biomass in the central
Amazon [16]. Our results also showed a low num-
ber ofMANERR in the northeasternAmazon (1.5◦ N,
53◦ W) (figure S4), an area where recent studies have
found trees taller than 80 m [85].

Our study showed that windthrows in the
Amazon have a preferential east to west direction
(figure 1(C)). This direction coincides with the dom-
inant direction of MCSs in the Amazon [27]. On
the other hand, windthrows with an easterly direc-
tion are less frequent and can be related to the lower
frequency of easterly MCSs [84]. These results sug-
gest that MCSs are key drivers of windthrows and
complement previous studies that found squall lines
(i.e. aligned bands of MCSs) [86] to be the drivers of
windthrows [17, 29, 84], despite the fact that squall
lines are not common in the northwestern Amazon
[86], a region where we found a large amount of
windthrows.

4.2. Regionalization
Regions 1 and 3 were characterized by eleva-
tions < 300 meters above sea level and a lower
number of extreme rainfall events than the western

5
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Figure 2. Environmental variables used to explain windthrow density in the Amazon. (A) Mean annual rainfall (MAR),
(B) surface elevation, and (C) soil organic carbon (SOC) in the 0–5 cm soil layer.

Figure 3.Windthrow regions in the amazon determined by a regionalization analysis. The regionalization analysis used the queen
weighting method. The number of windthrows in regions 1–4 are 390, 291, 297, and 44, respectively.

Figure 4. Comparison of observed versus modeled windthrow density for the four Regions determined through regionalization
(figure 3), and the whole Amazon. All regressions were statistically significant (p< 0.05), except for Region 4 and the whole
Amazon. Statistical details for all regions are shown in table S3.

Amazon (figure 2(B)). These Regions appear to have
the most severe storms across the Amazon as sugges-
ted by the high values of convective available poten-
tial energy [87], and more frequent lightning [88].
Observational studies have shown that during the
wet season, rainfall occurs independent of elevation;
however, differences on the order of 100 m in sur-
face elevation could provide the forcing for cloud
formation during the dry season [89]. Regions 2 and
4 are located in the northwest part of the Amazon,
an area characterized by higher elevations, due to

its proximity to the Andes. These two Regions had
the largest values of MAR (and MANERR) because
higher elevation favors higher rainfall. This is due to
the subsidence of thermal heating which allows an
increase in convection that organizes intoMCSs [90].
However, the closer a region is to the Andes, the lower
the rainfall, as rainfall decreases with elevation [91].
The patterns we report here require further investiga-
tion spanning temporal scales since trends in extreme
rainfall have been observed across the Amazon due to
deforestation and climate variability [92].
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Table 1. Coefficients of environmental variables obtained from OLS regression. Full statistics results are shown in table S3.
Non-significant F-statistics given in italics.

MAR Elevation SOC 0–5 cm r2 F-statistic

Region 1 0.1 −0.6 −0.1 0.5 87.7
Region 2 −0.13 −0.04 −0.04 0.2 19.7
Region 3 0.17 −0.23 −0.02 0.2 37.5
Region 4 0.17 0.07 −0.1 0.06 0.88
Amazon 0.06 −0.18 −0.11 0.1 50.6

4.3. Regressions
Windthrow correlated positively with MAR. In gen-
eral, rainfall can promote saturated soils that in turn
limit the anchoring of trees making them more sens-
itive to winds [18]. Regions 2 and 4 have a high fre-
quency of extreme rainfall events (figure S4), and
a high occurrence of windthrows. Coincidently, in
these Regions studies have shown a low tree resid-
ence time (high tree mortality) [22]. On the other
hand Regions 1 and 3 appear to have the most severe
storms [88] which might help to explain the high
occurrence of windthrows in these Regions. In Region
2, maximum MAR values were observed in an area
with low elevation in the border between Colombia,
Brazil and Venezuela where the relief shape and con-
cavity of the Andes promote air convergence and high
rainfall [93, 94]. Associated with this high rainfall is
cloud cover (figure S1) thatmight have influenced the
low number of identified windthrows along the bor-
der between these countries.

Windthrows vary inversely with elevation. A
decrease in tree mortality with elevation was found in
the tropical forest of Borneo [95]. A decrease in tree
mortality with elevation was also found in inventory
plots in other tropical forests [42, 96]. Furthermore,
observational studies have shown that wood density
increases with elevation [95, 97–99], and therefore
these trees are less vulnerable to winds [99, 100]. Sim-
ilarly, trees in plateaus have deeper root systems [101,
102] resulting in stronger tree anchoring. These stud-
ies suggest that, apart from tree-soil interactions and
differential exposure to wind gusts, variations in tree
mortality across topography are likely to reflect the
vertical heterogeneity of the forest canopy, as well as
interactions among trees, lianas, and epiphytes, which
can influence the mechanical stability and anchor-
ing efficiency. In Region 4 windthrows vary positively
with elevation but this effect is very small and was
not significant. Our results corroborate the import-
ant and complex role of elevation on the occurrence
of windthrows.

Windthrows vary inversely with SOC. The occur-
rence of windthrows implies the presence of dead
trees and therefore SOC [59, 103] and nutrient
availability [104] dependencies. Studies have shown
that large amounts of rainfall promote accumulation
of SOC [105, 106], explaining the large amounts of

SOC in the northwestern Amazon (figure 2(C)). A
decrease in SOC is observed from Regions 2 and 4,
in contrast to the increases in windthrows in those
regions (figure 1(B)). Similarly, an increase in SOC
is observed from east to west in Regions 1 and 3
(figure 2(C)), in contrast to a high density of wind-
throws in the eastern-central part of the Amazon
(figure 1(A)). These patterns explain the negative
association between windthrows and SOC (table 1).
Previous studies suggest that SOC, nitrogen (N) and
phosphorous (P), are related [39, 107], suggesting
that the effect of N and P on windthrows might be
similar to that of SOC.

Windthrows have the potential to change forest
composition in the Amazon [18]. Forest composition
influences the climate feedback from cloud forma-
tion and rain to carbon uptake [108–111]. Since rain-
fall has a direct effect on the occurrence of wind-
throws, we suggest that Earth system models should
include the effects ofwindthrows to reduce uncertain-
ties on the projected functionality of the Amazon in
the future.

4.4. Final remarks
Intrinsic to windthrows is the fact that forested sur-
faces facing the direction of the storms have the most
windthrown trees as shown in our previous studies
[17, 18, 112, 113]. Westward MCSs will have a lar-
ger impact on surfaces with an eastern aspect, and
eastward MCSs will affect largely western-facing sur-
faces. Thus, it has been suggested that aspect (the dir-
ection that a terrain surface faces) is not an explan-
atory variable, but rather a factor [114]. Aspect in
the Amazon is a local characteristic that can produce
misleading results after upscaling since several aspect
values will be averaged together, muting their effect
[115]. We estimate that about 10%–15% of all wind-
throws identified did not have a clear fan shape, and
were not included in the total number of windthrows
identified (1116). A more comprehensive regression
ormachine learning analysis should explore the effect
of endogenous variables as well as different regimes in
each of the selected regions. Regimes analysis implies
that in each Region the regression model changes
due to the spatial heterogeneity of the data [82]. We
found that windthrows in the Amazon have regional
characteristics of occurrence and size, and further
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analyses are needed to understand the causes of these
characteristics.
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