
UC Irvine
UC Irvine Previously Published Works

Title
Online Few-Shot Gesture Learning on a Neuromorphic Processor

Permalink
https://escholarship.org/uc/item/1kf9v21p

Journal
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 10(4)

ISSN
2156-3357

Authors
Stewart, Kenneth
Orchard, Garrick
Shrestha, Sumit Bam
et al.

Publication Date
2020-12-01

DOI
10.1109/jetcas.2020.3032058

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1kf9v21p
https://escholarship.org/uc/item/1kf9v21p#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


1

Online Few-shot Gesture Learning on a
Neuromorphic Processor

Kenneth Stewart Department of Computer Science
UC, Irvine

Irvine, CA 92697-2625 USA
kennetms@uci.edu

Garrick Orchard Intel Labs
Intel Corporation

Santa Clara, California
garrick.orchard@intel.com

Sumit Bam Shrestha Institute for Infocomm Research
A*STAR

Singapore 138632
Sumit Bam@i2r.a-star.edu.sg

Emre Neftci Department of Cognitive Sciences,
Department of Computer Science

UC, Irvine
Irvine, CA 92697-2625 USA

eneftci@uci.edu

Abstract—We present the Surrogate-gradient Online Error-
triggered Learning (SOEL) system for online few-shot learning
on neuromorphic processors. The SOEL learning system uses
a combination of transfer learning and principles of computa-
tional neuroscience and deep learning. We show that partially
trained deep Spiking Neural Networks (SNNs) implemented on
neuromorphic hardware can rapidly adapt online to new classes
of data within a domain. SOEL updates trigger when an error
occurs, enabling faster learning with fewer updates. Using gesture
recognition as a case study, we show SOEL can be used for online
few-shot learning of new classes of pre-recorded gesture data and
rapid online learning of new gestures from data streamed live
from a Dynamic Active-pixel Vision Sensor to an Intel Loihi
neuromorphic research processor.

Keywords— neuromorphic computing, spiking neural
networks, on-chip learning, few-shot learning, online learn-
ing

I. INTRODUCTION

The current generation of Artificial Neural Networks
(ANNs) achieve state of the art performance in applications
ranging from image classification and object recognition, to
object tracking, signal processing, natural language processing,
self driving cars, health care diagnostics, and many more [1].
ANNs mainly rely on the backpropagation of errors as the key
to their learning prowess, but they require large amounts of
data and memory for training. Training these networks relies
on GPUs and thousands of iterations over the data sampled
in an i.i.d. fashion. To achieve the high throughput necessary
to quickly train the networks, GPUs rely on high volumes of
data movement and tensor-based computations, both of which

consume large amounts of energy [2], [3], making GPU less
than ideal for implementation at scale in mobile systems.

Neuromorphic computing platforms offer an energy-
efficient alternative to perform training and inference in neural
networks while being suitable for power-constrained applica-
tions in mobile systems [4]. Neuromorphic systems mimic
the brain’s event-driven dynamics, distributed architecture and
massive parallelism to overcome the limitations of conven-
tional von Neumann computing architectures [5]. Neuromor-
phic hardware equipped with synaptic plasticity capability can
perform training and inference online, using local information
[6], [7], making them particularly interesting for problems re-
quiring fast adaptation to new data. Despite the many technical
advances in neuromorphic learning hardware, the practical role
of learning and synaptic plasticity in neuromorphic hardware
has remained elusive. This is because gradient-based learning
is notoriously slow, requiring many iterations to achieve an
acceptable generalization. Furthermore, synaptic plasticity is
inherently online and local, but learning online using streaming
data breaks the i.i.d. assumptions required for convergence of
the neural network.

In this paper, we take a realistic and practical approach
to learning in neuromorphic hardware by combining the
best of conventional and neuromorphic hardware: we pre-
train networks on GPUs on a class of tasks and adapt the
key layers on the neuromorphic hardware. The result is a
system that moves the non-local and energy-intensive phases
of learning to a cloud or mainframe, and deploys on the
neuromorphic hardware the data sensitive portions of the
learning. This approach is realized by using recent theories
that combine machine learning theory with SNNs and few-

ar
X

iv
:2

00
8.

01
15

1v
2 

 [
cs

.N
E

] 
 1

4 
O

ct
 2

02
0



2

shot/transfer learning. We demonstrate our approach on fast
online learning of streaming, real-world visual patterns on
a neuromorphic processor. The pre-training is carried out
using a functional model of an Intel Loihi neuromorphic
processor. During deployment, the model is then fine-tuned
on the processor using local synaptic plasticity rules. The key
contribution of this work is few-shot Surrogate-gradient Online
Error-Triggered Learning (SOEL), a plasticity rule compatible
with neuromorphic hardware derived from gradient-descent on
SNNs and its efficient implementation using signals local to
the neuromorphic cores.

A. Surrogate-gradient Online Error-Triggered Learning
(SOEL)

While gradient Back-Propagation (BP) is the workhorse
for training nearly all deep neural network architectures, it
is generally incompatible with non Von Neumann computers,
including brains and neuromorphic hardware. By identifying
SNNs as a type of Recurrent Neural Network (RNN), recent
studies showed two reasons for this incompatibility [8]. Firstly,
the spiking neuron has a non-differentiable activation func-
tion, which prevents the gradients from flowing across the
network. Secondly, the computation of local errors requires
the evaluation of a global loss function, which is a spatially
and temporally non-local computation.

These problems are addressed using Surrogate Gradient
(SG) learning [8]. SG methods define a differentiable surrogate
network to calculate weight updates in a local fashion, and
formulate the updates as three-factor synaptic plasticity rules.
The SG method reveals from first principles the mathematical
nature of the three factors, and a learning dynamic that is
temporally continuous and compatible with synaptic plasticity.
The three factor rules include a pre-synaptic factor, a post-
synaptic factor and an external error signal. In comparison,
Spike Time Dependent Plasticity (STDP), a common synaptic
plasticity model in neuroscience, contains only two factors
and lacks the external signal [9]. The third factor drastically
improves learning by projecting task-specific errors to the
neurons [10]. In short, the SG bridges the worlds of ANNs
and SNNs without simplifying assumptions on the latter.

SG methods pave the road towards neuromorphic learning
machines with performances similar to deep-learning [11],
while being able to learn online, with input streams, spike
timing and potentially using a fraction of the energy compared
to conventional computers.

While temporal continuity is a plausible property in the
brain, updating a large number of weights continuously is both
energetically expensive and prone to dynamical instabilities.
A recent development of SG learning in spiking neurons
suggested that updating at every timestep is not necessary
if weight updates are triggered by task errors [12]. In such
error-triggered learning, weight updates are made only when
an error threshold is crossed. Consequently, the number of
updates can be drastically reduced with a small penalty in
final accuracy.

However, even the fewer error-triggered learning updates is
incompatible with online learning as it can lead to catastrophic

forgetting. Catastrophic forgetting occurs when the data gener-
ating process for training the neural network is non i.i.d. This
problem can be generally solved by increasing the complexity
of the neuron and synapses [13], [14], experience replays [15],
or meta-learning and the related few-shot learning [16].

Here, we focus on the latter approach for the following
reasons: Firstly, the ability to solve difficult recognition tasks
using few samples is a key capability of the brain [17]. Few-
shot learning is a subset of deep learning concerned with such
fast adaptation in situations where prior knowledge of the task
domain is available. Bringing such capability to neuromorphic
hardware is a top priority for local learning and adaptation on
mobile systems, such as the learning of human gestures for
device control or adapting to a user’s voice.

In our approach, few-shot learning consists of first pre-
training a model on the class of problems of interest, and then
making (presumably) few error-triggered updates to learn new
but related tasks.

To achieve the error-triggered learning in neuromorphic
hardware, we implement the SOEL algorithm, an extension of
SG and error-triggered learning for rapid, few-shot learning.
We demonstrate SOEL on the Intel Loihi Neuromorphic
research chip, and capitalized on its specialized local plasticity
processors to carry out the updates. SOEL is an extension of
the Surrogate Gradient learning algorithm designed that fix
issues of a previous implementation [18].

II. RELATED WORK

Previous work has shown that the first layers of neural
networks learn general features and learn increasingly task
specific features the deeper within the network the layer is
[19]. The general features learned by the first layers of a
network can be transferred to other networks for task-specific
training of later layers, referred to as transfer learning.

The first layers of a network are trained on one dataset
to learn general features that can be transferred to a second
network trained on a target task. Using the transferred features
yields better generalization of the target task than without
transferring the general lower layer features [19]. Transfer
learning is useful for few-shot learning, i.e. when the target
task only has a small amount of data available for training,
but a similar task with a larger dataset is available. The goal
of few-shot learning is to train a model to generalize from as
few examples as possible [20]. Transfer learning can be used
to assist the training of few-shot learning models allowing for
greater generalization on a target domain from few examples
for both ANNs and deep SNNs [21], [22], [18].

As discussed earlier, training deep SNNs is challenging
due to a spatiotemporal credit assignment problem and non-
differentiabilities. Previous work overcame the learning prob-
lem in multiple layers of SNNs with methods such as feedback
alignment [23], [24], backpropagation-through-time (BPTT)
[25], [26], [27], and spike-based backpropagation [28], [29].
The successful gradient-based training of deep SNNs usually
approximate the spiking function’s derivative using a surrogate
activation function [8]. By being able to train deep SNNs, the
ingredients of deep learning that make ANNs successful such



3

as dropout, batch normalization, convolutions, pooling etc. can
be applied to SNNs, in addition to SNNs being compatible
with neuromorphic hardware. BPTT is shown to achieve state-
of-the-art accuracy on certain target domains such as NM-
NIST and gesture recognition. However, BPTT is inherently
offline as it propagates error through the unrolled network and
therefore is not suited for applications where online adaptation
is desired. Rather than backpropagating through the network,
SOEL computes local errors between pre- and post-synaptic
neurons by propagating gradients forward in time [8].

While previous work has shown increasing success in
training SNNs using spike-based gradient descent on a variety
of tasks, they are trained and tested offline just like ANNs and
do not demonstrate online on-chip learning on neuromorphic
hardware. [30] demonstrated rapid online on-chip learning
using the Intel Loihi neuromorphic research chip but did
not use spike-based gradient descent. To our knowledge this
work is the first to demonstrate online, on-chip gradient-based
learning on a neuromorphic processor. Using gestures as a
case study we show the success of rapid online learning using
SOEL which can be used for applications that require online
adaptation.

III. BACKGROUND

A. Dynamic Vision Sensor

The datasets used in this work are obtained using neu-
romorphic sensors, namely the DVS and DAVIS cameras.
Each pixel of Dynamic Vision Sensors (DVSs) quantize local
relative intensity changes to generate spike events [31]. In our
experiments we use data from a DVS 128, and a DAVIS 240C
[32]. The IBM DvsGesture dataset used here for pre-training
consists of recordings of 29 different individuals performing
10 different actions such as clapping and an unspecified
gesture for a total of 11 classes. The actions are recorded
using a DVS camera, an event-based neuromorphic sensor,
under three different lighting conditions. The task is to classify
an action sequence video. Samples from the first 23 subjects
were used for training and the last 6 subjects were used for
testing. The training set contains 1078 samples and the test set
contains 264 samples. Each sample consists of the first 1.45
seconds of the gesture performed.

B. Neural Network Model

The neural network model follows leaky, Integrate & Fire
(I&F) dynamics. The dynamics of the membrane potential
Ui of a neuron i is governed by the following differential
equations:

Ui(t) =Vi(t)− UthRi(t) + bi,

τmem
d

dt
Vi(t) =− Vi(t) + Ii(t),

τref
d

dt
Ri(t) =−Ri(t) + Si(t),

(1)

with Si(t) =
∑
f δ(t − tfi ) representing the spike train of

neuron i spiking at times tfi , where δ is the Dirac delta. A spike
is emitted when the membrane potential reaches a threshold
Uth.

The constant bi represents the intrinsic excitability of the
neuron. The reset mechanism is captured with the dynamics
of Ri. The factors τmem and τref are time constants of the
membrane and reset dynamics, respectively. Ii denotes the
total synaptic current of neuron i, expressed as:

τsyn
d

dt
Ii(t) =− Ii(t) +

∑
j∈pre

WijSj(t), (2)

where Wij is the synaptic weights between pre-synaptic neu-
ron j and post-synaptic neuron i. Because Vi and Ii are linear
with respect to the weights Wij , the dynamics of Vi can be
rewritten as:

Vi(t) =
∑
j∈pre

WijPj(t),

τmem
d

dt
Pj(t) =− Pj(t) +Qj(t),

τsyn
d

dt
Qj(t) =−Qj(t) + Sj(t).

(3)

The states P and Q describe the traces of the membrane and
the current-based synapse, respectively. For each incoming
spike, each trace undergoes a jump of height 1 and otherwise
decays exponentially with a time constant τmem (for P ) and
τsyn (for Q). Weighting the trace Pj with the synaptic weight
Wij results in the Post–Synaptic Potentials (PSPs) of neuron
i caused by input neuron j.

Discrete Spike Response Model of the Neuron and Synapse
Dynamics: In a digital system, the continuous dynamics
above are simulated in discrete time, with time step ∆t. The
dynamical equations in Eq. (1) and Eq. (3) are expressed in
discrete time as:

Ui[t] =
∑
j

WijPj [t]− UthRi[t] + bi,

Si[t] = Θ(Ui[t]),

Pj [t+ ∆t] = αPj [t] + (1− α)Qj [t],

Qj [t+ ∆t] = βQj [t] + (1− β)Sj [t]

(4)

where the constants α = exp(− ∆t
τmem

) and β = exp(− ∆t
τsyn

)
reflect the decay dynamics of the membrane potential U and
the synaptic state I during a ∆t timestep. Θ(Ui[t]) is the unit
step function, where Θ(Ui) = 0 if Ui < Uth, otherwise 1.
Note that Eq. (4) is equivalent to a discrete-time version of
the Spike Response Model (SRM0) with linear filters [33].

C. Gradient-based Training of SNNs

A number of recent methods for training SNNs using
gradient descent have recently emerged. The mathematical
principle of gradient descent lies on incrementally updating
the parameters in the direction opposite to the gradient of a
loss function. As mentioned in the introduction, difficulties of
training SNNs arise due to the spatiotemporal credit assign-
ment problem and the non-differentiability of the activation
function. The spatial credit assignment problem arises when
the parameters of neurons with no direct target are trained.
The temporal credit assignment arises organically due to the
temporal dependencies (dynamics) of spiking neurons. For
example, the effect of an input spike at a particular time affects



4

the membrane potential of a spiking neuron in the future. The
magnitude of the effect is determined by the normalized post-
synaptic response of the synapse, i.e. the P traces in Eq. (4).
As a consequence, during learning, the credit of the error at
a given point of time must be assigned to the input synapse
at some point in the past. One factor to the magnitude of this
temporal credit assignment is proportional to the normalized
post-synaptic response, reversed in time. An illustration of this
temporal credit assignment policy is shown in Fig. 1.

Forward Propagation:

spike

PSP

Back Propagation:

error

temporal error
credit assignment

Fig. 1. Temporal credit assignment of an error at a point in time during
SLAYER backpropagation.

L
oi

hi
Fu

nc
tio

na
l

Si
m

ul
at

io
n

G
ra

di
en

ts

Loihi Parameters

Shadow Weight

Sin[t]
Synaptic
Weight

Quantize

W

Spike
Response Spike

Loihi Neuron

Neuron Parameters

S[t]
WQS[t]

U [t]

WQ

∂L(SN )
∂S[t]surrogate gradienttemporal credit

assignment

∂L(SN )
∂Sin[t]

∂L(SN )
∂W

Fig. 2. Computational blocks for offline pre-training of SNN for Loihi using
SLAYER. The SNN is modeled with a functional Loihi simulator and the
normalized post-synaptic response is used for temporal credit assignment.
Since Loihi uses integer weights full precision shadow weights are quantized
and used during the forward inference phase.

Assuming a global cost function L(SN ) defined on the
spikes SN of the top layer and targets Y , the gradients with
respect to the weights in layer l are:

∇Wij
L(SN ) =

∂L(SN )

∂Si

∂Si
∂Ui

∂Ui
∂Wij

. (5)

We discuss below the three factor above. For didactic reasons,
we proceed first with the middle term, then the first term, then
the third. The middle term is the derivative of the activation
function Θ of the spiking neuron which is non-differentiable.
As discussed earlier, the SG approach consists in using a
smooth surrogate function in place of the non-differentiable
step function, such as the boxcar function [23], [11]. The first
term on the right-hand side describes how the loss changes
as the spiking states in the network, Si, change. If the loss
function is the mean-squared error and the network consists
of only one layer, the first term becomes the task error
(Yi−SNi ). Computing ∂L(SN )

∂Si
for hidden layers is non-trivial

and equivalent to solving a spatiotemporal credit assignment
problem. Two methods exist to solve this problem: (1) it
can be computed offline using gradient backpropagation on

the time-unfolded graph (i.e. Back-Propagation-Through-Time
(BPTT)), or online by using local loss functions [11]. This
work uses a combination of offline and online SNN learning,
namely SLAYER and SOEL for pre-training hidden layers
and online three-factor rules for learning in output layers,
respectively. In the following paragraphs, we provide further
detail about these two learning methods.

1) Surrogate-gradient Online Error-Triggered Learning
(SOEL) Online training for Loihi: Online training on physical
substrate requires all the information necessary for computing
the gradient to be available at the synaptic plasticity processor.
The first two terms of Eq. (5) discussed above are errors and
postsynaptic states. The last term in Eq. (5) can be computed
from Eq. (1–3) (or Eq. (4) in the discrete case). The derivative
of the reset term introduces the full history of the spiking
neuron, which cannot be computed locally in time. However,
in low firing rate regimes, the error in omitting this term in
the gradient calculation is small. By omitting the reset process,
the third term becomes simply the trace Pj . Finally, we are
left with the following three factors:

∇Wij
L(S) = −(Yi − Si)σ′(Ui)Pj . (6)

Provided that pre-synaptic traces, membrane potential and
errors are available at the synapse, learning can be performed
locally as a synaptic plasticity rule. In computational neuro-
sciences, rules of this type are referred to as three-factor rules
[34]. Three-factor rules are consistent with biological synapse
dynamics and constitute a normative theory of learning in the
brain.

Eq. (6) prescribes updates at every timestep. While this
is consistent with biological dynamics, it is not efficient
in hardware. Updates can instead be made when the error
(Yi − SNi ) crosses a threshold, thus forming a binary “error
event” [12]. This is reminiscent of STDP, where updates are
triggered when pre-synaptic or post-synaptic neurons events
occur [9]. Here, updates are instead triggered by error events.
Error-triggered learning allows the conditional activation of the
plasticity operations, which can drastically reduce the footprint
of online learning. Recent work showed that the number of
updates can be reduced by 20 fold for a small loss in accuracy
[12]. Using a piecewise SG function, Bi = σ′(Ui) becomes a
box function where Bi ∈ {0, 1}. Then, the SOEL rule can be
written in the following compact, three-factor form:

∇Wij
L(SN ) ∝ −EiBiPj . (7)

where Ei is a integer error event for neuron i.
2) SLAYER Offline Training for Loihi: SLAYER is a gra-

dient computation method for training deep SNNs directly in
the spiking domain [25]. It treats the inputs and outputs of
the SNN as temporal signals and backpropagates the error
at the output layer accordingly. There are two basic guiding
principles in SLAYER: Temporal error credit assignment, and
the surrogate gradient. Temporal credit assignment is done by
unfolding the temporal dynamics in time and backpropagating
through the unfolded graph. Further, it is typical for the
normalized post-synaptic response to decay to practically zero
after some time. Therefore, it is sufficient in practice to apply



5

temporal error credit assignment only up to a finite point in
history. SLAYER uses a proxy function as an approximation
of spike function derivative, similar to the surrogate gradient
learning described in Section III-C. These principles form the
essential link in the computational graph used to calculate the
gradients of the weights of the SNN and train it using standard
deep learning optimization methods.

SLAYER PyTorch1 also supports training an SNN with the
CUBA leaky integrate and fire neuron model compatible with
the Loihi chip. For one-to-one mapping of the trained network
in Loihi hardware, the SNN is modeled with a functional Loihi
simulator and the normalized post-synaptic response is used
for temporal error credit assignment during backpropagation.
In addition, since Loihi only supports integer weights, a
strategy of full precision shadow weights [35], [36] is used,
which are quantized during the forward inference phase only.
The computational blocks for SLAYER-Loihi training are
shown in Fig. 2.

D. Intel Loihi

The Intel Loihi is a neuromorphic processor that integrates
a wide range of features such as hierarchical connectivity,
dendritic compartments, synaptic delays, and programmable
synaptic learning rules [7]. Each Loihi chip is composed of a
many core mesh comprising of 128 neuromorphic cores with
each core implementing 1024 primitive spiking neural units,
three embedded x86 processor cores, with an asynchronous
network-on-chip (NoC) for between core communication.
Loihi offers a variety of local information for programmable
synaptic learning processes such as spike traces with config-
urable time constants that can have different time constants.

1) Plasticity Processor: Synaptic weights can be updated
via a learning rule expressed as a finite-difference equation
with respect to a synaptic state variable that follows a sum-
of-products form as follows [7]:

Wij [t+ 1] = Wij [t] +
∑
k

Ck
∏
l

Fkl[t], (8)

where Wij is the synaptic weight variable defined for the
destination-source neuron pair being updated; Ck is a scaling
constant; and Fkl[t] may be programmed to represent various
state variables, including pre-synaptic spikes or traces, post-
synaptic spikes or traces, where traces are represented as first-
order linear filters. The weights are stochastically rounded
according to the programmed weight precision. Traces are
stochastically rounded to 7-bits of precision.

IV. METHODS

We present a system for online learning of gestures from
DVS data using only a few shots. Our workflow consist of a
pre-training phase, followed by a deployment phase. The pre-
training phase uses SLAYER and its functional Loihi simulator
to train a Loihi compatible convolutional network on a GPU.
For our targeted human gesture recognition application, we
use the event-based IBM DVS Gestures dataset to pre-train

1https://github.com/bamsumit/slayerPytorch

this network. The trained network and quantized parameters
are then transferred to the Loihi cores. During deployment on
Loihi, few-shot learning of new gestures is performed on the
top layer on-chip with SOEL. The system is shown in figure 3
and its components are detailed in the following subsections.

A. Dataset and gesture sampling

Visual input to the model was recorded with either a DVS
128 in the case of the IBM DVSGesture2 dataset [37] or with
a DAVIS 240C [32] in the case of real-world gestures. The
network was pre-trained data recorded with a DVS 128, which
has a smaller resolution compared to the more recent DAVIS
240C. During experiments involving input live-streamed from
a DAVIS 240C to an Intel Kapoho Bay, data was scaled
down to the same dimensions as the DVS 128 before being
input into the network. Data was taken by one subject under
three different lighting conditions, natural light from the sun,
incandescent light, and fluorescent light which is shown in
Fig. 5.

B. Neural Network Model and Offline pre-training using
SLAYER for Loihi

TABLE I
NETWORK ARCHITECTURE.

Layer Kernel Output Training Method
input 128×128×2 DVS128/DAVIS240C (Sensor)

1 4a 32×32×2

SLAYER (BPTT)

2 16c5z 32×32×16
3 2a 16×16×16
4 32c3z 16×16×32
5 2a 8×8×32
6 - 512

output - N SOEL

Notation: Ya represents YxY sum pooling, XcYz represents X convolution filters (YxY)
with zero padding. N is the number of classes, which is task-dependent.

We trained a spiking CNN using SLAYER for Loihi (c.f.
Section III-C2) on the DVS Gesture dataset [37]. It has eleven
output gestures, out of which six (the even classes) were used
for offline training using SLAYER. The input is a 128× 128
spatial event with two polarities (ON and OFF). The spiking
CNN architecture shown in table I consisted of 7 layers. The
input spikes are OR’ed in 1 ms time bins and then fed to
the network. N refers to the number of output classes, which
depend on the experimental conditions.

The threshold for all the neurons were set to 80 × 26 and
the current decay and voltage decay were set to 1024 (time
constant of 32ms) and 128 (time constant of 4ms) respectively.
The weights of the network were trained to be in the set
{−256,−254, · · · , 254} i.e. 8 bit signed weights with step
of 2.

The network was pre-trained for 2000 epochs. For better
generalization performance, the input was augmented during
training: x-y jitter of up to 8 pixels, rotation jitter of up
to 10◦, and random sampling of 1450ms spike sequence.

2The DVS Gesture dataset is used under a Creative Commons Attribution
4.0 license.

https://github.com/bamsumit/slayerPytorch


6

Fig. 3. Experimental setup. During a pre-training phase, the Loihi compatible convolutional network is trained on a computer using an event-based gestures
dataset, the functional simulator, and SLAYER/BPTT. In this work, the pre-training dataset consisted of the IBM DVS Gestures dataset recorded using a
DVS128 camera. The entire network along with quantized parameters of the functional simulation are then transferred on to the Loihi cores. During deployment,
new gestures recorded using a DAVIS are streamed to an Intel Kapoho Bay. Few-shot learning is performed on the final layer using on-chip SOEL. The
deployed network, including inference and training dynamics are performed on the Loihi chips. Dashed orange arrows indicate the extent of the spatial credit
assignment, and thus which layers are trained in each of the two phases.

The Nadam[38] optimizer was used with a learning rate of
0.003 and default β = (0.9, 0.999). The network without the
final fully connected output layer (layers 1–6), is the feature
extraction network which is subsequently used in our on-chip
learning experiments described below.

C. Online few-shot learning using Surrogate-gradient Online
Error-Triggered Learning (SOEL) plasticity for Loihi

SOEL requires the pre-synaptic trace P to be a second-
order linear filter. Second-order kernels can be implemented
as a subtraction of two first-order kernels [39]. This subtraction
is enabled by the sum-of-products formulation of the plasticity
rule (8). The error, erri, is computed with the post-synaptic
neuron using the following:

erri[t] = Y − S̄i[t] (9)

where Y is the target, S̄i =
∑T
t−T Si[t] is defined here as the

number of post-synaptic spikes by neuron i in the previous
T timesteps. T is a constant number of timesteps that is a
fraction of the total presentation time of the sample. This
number determines the rate at which errors are computed.
Using a spike-count instead of spike states is an approximation
because the update will be subsequently made using the states
in the final timestep, i.e. Pj [t]. However, for T smaller than the
neuron and synaptic time constants, Pj [t] will not vary much
during this time window, and the approximation will remain
close to the exact case.

Since the post-synaptic trace is not necessary for the SG
rule, SOEL writes the error on the same register used for the
post-synaptic trace. This enables the error value to be available
in the plasticity processor for learning. On the chip, post-
traces can only be positive but errors can be both positive
and negative. This problem is solved by offsetting the weight
updates with a constant term C.

Ei[t] =

{
C + erri[t], if erri > θ or < −θ
C, otherwise

(10)

where θ is an error threshold.
Intuitively, SOEL can be interpreted as follows. If err is

higher than θ, meaning the neuron is spiking at too high a
frequency, then there is a positive error and the weight of the
synapse will be penalized. Conversely if err is below −θ then
the weight of the synapse weight will be increased. The term
σ′ (the “second factor” in Eq. (6)) cannot be implemented
directly on the Loihi because the membrane state is not
available at the plasticity processor. Since only the final layer
N is trained, setting this term to 1 regardless of the membrane
value only has the effect of continued learning even after
the neuron output saturates in either direction. This strategy,
referred to straight-through estimator in the machine learning
field, has the disadvantage of yielding biased estimated of the
gradients, but the advantage of faster learning since every error
leads to an update. Since our goal is to perform fast, one-
shot learning, SOEL implemented here uses a straight-through
estimator. The full learning rule can then be expressed as:

Wij = Wij + η(Ei − C)P, (11)

where Wij is the synapse from pre-synaptic neuron j to
post-synaptic neuron i, η is the learning rate, Ei is the error,
and Pj is the pre-synaptic trace. The learning rule can be
implemented in Intel Loihi as:

X1
j [t+ 1] = α1X1

j [t] + S1
j ,

X2
j [t+ 1] = α2X2

j [t] + S2
j ,

Yi[t] = Ei[t],

∆Wij = η(X2
j [t]−X1

j [t])(Yi[t]− C).

(12)



7

Algorithm 1: SOEL
Result: Error-triggered Synaptic Plasticity
θ = 0;
if neuron i is learning then

S̄i ← S̄i + Si;
erri ← Y − S̄i;
if erri > θ or erri < −θ then

Ei ← C + erri
Wij ←Wij − η(Ei − C)Pj ;
increase θ by constant;
S̄i ← 0;

else
decrease θ by constant;

end
end

Here, X2 and X1 are pre-synaptic trace variables available in
the Loihi whose subtraction in the third equation yields the
second order kernel equivalent to Pj in Eq. (3).

Pj [t] ∝ (X2
j [t]−X1

j [t]). (13)

A Loihi Lakemont core computes the spike count S̄ and
evaluates erri at regular intervals T . If the error exceeds
the threshold θ, the post-synaptic trace value in the plasticity
processor, Y , is written with the error Ei and a plasticity
operation is initiated. As in Eq. (10), C is a constant bias
term to account for negative error because traces cannot be
negative.

D. System Specifications For Measurement 3

SNN offline pre-training was performed with Ubuntu
16.04.6, SLAYER PyTorch commit id 598fc44, and PyTorch
1.4.0. The machine consists of an Intel Xeon E5-2630 CPU
with 128GB RAM and Nvidia GeForce RTX 2080Ti GPU.

Loihi time and energy measurements were made using
Ubuntu 16.04.6 with Nx SDK 0.95 and a Nahuku 32 board
running on the Intel Neuromorphic Research Community
(INRC) cloud. The machine consists of an Intel Xeon E5-2650
CPU with 4GB RAM.

Live gesture learning used a Kapoho Bay Loihi system
connected to an IniVation DAVIS240C sensor. The host ma-
chine was an Intel Core i7-7700HQ CPU with 16GB of RAM
running Ubuntu 16.04.6 and Nx SDK 0.95.

V. EXPERIMENTS

We used SOEL to train and test the last layer of the neural
network pre-trained with SLAYER on 6 of the 11 gestures
from the DVSGesture dataset, training the last layer with only
a few-shots of the remaining 5 gestures of the dataset for a
few-shot 6+5 way gesture classification task. The 6 refers to
the 6 gestures the network is pre-trained to classify using
SLAYER, and the 5 refers to the 5 new gestures we are
training the last layer of models on using only a few-shots.

3All performance results are based on testing as of June 2020 and may not
reflect all publicly available security updates. No product can be absolutely
secure.

Fig. 4. Dynamics of one learning neuron when learning a new gesture. Only
a subset of the synaptic weights W are shown. The weights only change when
P0 is non-zero during a learning epoch. The current I, and membrane potential
U of the learning neuron are shown over the duration of the sample. Spikes
are shown as grey vertical lines overlaying the membrane potential plot.

“Train” refers to classification accuracy on training samples
using saved weights with plasticity disabled. “Test” is the
classification accuracy on the samples held out of the training
procedure. Models were trained on one, five, or twenty shots of
data and then tested on 100 held out samples. The results are
obtained from performing a 5-fold cross-validation. A gesture
is considered correctly classified if the desired neurons spike
frequency is highest during the presentation time. We compare
the accuracy of the model using SOEL to two other models,
one whose last layer is trained using vanilla SGD used in
[18] and another whose last layer is trained using SLAYER.
Each model was trained on samples from the DVSGesture
test dataset, and tested on samples from the test dataset not
seen during training. Table II shows the accuracy comparisons
of the different models trained on the few-shot 6+5-way
gesture classification task. The results show the SOEL trained
network is overall better than the vanilla SGD method from
[18], achieving on average significantly better results at test
time after seeing only one shot of training data, and better
generalization. However while SOEL does better at training
time on 1 shot experiments than the pure SLAYER network,
SLAYER is better at generalizing than SOEL. This could
be due to the SOEL model tending to over-fit on samples
presented and the straight-through estimator. For similar rea-
sons, we speculate that the accuracy of the SOEL model is
more variable than SLAYER. When overfitting, samples that
deviate too much from those samples will be more likely to



8

TABLE II
6+5-WAY FEW-SHOT CLASSIFICATION ON THE DVSGESTURE DATASET

Dataset Learning Method Shots Train Test

DVSGesture

SOEL
1 96±4% 64.7±4.6%
5 88±5.2% 65.1±5.1%

20 87.7±2.3% 80.2±4.3%

SGD [18]
1 40% 40%
5 60% 43.3%

20 73.5% 56.2%

SLAYER
1 78.5±2.6% 83.5±2.32%
5 95.9±1% 83.5±2.9%

20 99.7±.3% 91.2±1.9%

TABLE III
COMPARISON OF TIME AND ENERGY TAKEN FOR LEARNING ONE GESTURE

Measurement SOEL SGD [18] % Diff
Learning Time (s) .037 .31 -87.71%
Learning Energy (mJ) 167.58 37.04 358.46%
Learning Power (mW) 6.18 11.48 -46.17%
Total Time (s) 1.04 1.21 -14.23%
Total Energy (mJ) 481.98 323.2 49.13%
Total Power (mW) 511.65 391.07 30.83%

be classified incorrectly, but all experiments show SOEL to be
significantly better than our previous implementation [18]. We
also compare the time taken and energy consumption needed
for SOEL and [18] to train each gesture shown in table III.
The results indicate that SOEL uses more energy but takes less
time to train and achieves higher accuracy than [18]. Because
the Intel Kapoho Bay does not support energy probing, energy
and time measurements were taken with an Intel Nahuku board
consisting of 32 Loihi chips.

A. Real-World Gesture Learning

In addition to the few-shot 6+5 way classification we also
tested SOEL in a real-world gesture learning and recognition
setting. To demonstrate rapid online gesture learning in a real-
world setting we streamed gesture data in real time from
a DAVIS 240C sensor connected to an Intel Kapoho Bay.
For the experiment we tested one subject in a single lighting
condition where the subject was under fluorescent light. The
neural network model on the Kapoho Bay was pre-trained on
all 11 gestures of the DVSGesture dataset using SLAYER,
but the last layer is reset, made plastic, and trained using
SOEL. The task was to train the network to classify 10
predetermined gestures outside of the DVSGesture dataset
using as few shots as possible. Figure 5 shows an example of
the learning and inference of the gestures. After being shown
a gesture for a one second presentation, the network is able to
classify other samples of the gesture. Additionally, training
other gestures does not interfere with the networks ability
to classify previously learned gestures. However, performance
can degrade if the learned gestures spatially overlap because
unique gestures within the same space may be seen as the
same gesture.

The results of which some are shown in figure 5 demonstrate
the capability of the SOEL learning rule to perform rapid few-
shot learning on a neuromorphic processor from real-world
data. A link to a video showing a live demonstration of the

rapid learning of 10 new gestures is added as supplemental
information.

Fig. 5. Rapid online learning of gestures using data streamed from a
DAVIS240C to an Intel Kapoho Bay. The upper part of the figure shows a
person performing a gesture in front of a DAVIS240C, and the corresponding
DAVIS240C output events shown in blue. The histogram shows the spiking
frequency of each neurons response to the presented gesture after learning.
After only a single one second presentation of each gesture the network can
correctly classify the gestures it trained on.

VI. DISCUSSION AND FUTURE WORK

We presented SOEL, a new surrogate gradient based learn-
ing algorithm for few-shot online learning on an Intel Loihi
neuromorphic processor using gesture recognition as a case
study. To accomplish this we first pre-trained an Intel Loihi
compatible SNN on a GPU using the current state-of-the-art
SLAYER method, and then deployed the network on an Intel
Kapoho Bay and retrained the last layer on few-shots of data
using SOEL. We found that like ANNs, using a pre-trained
network for transfer learning with SNNs significantly boosts
few-shot learning accuracy. While we have achieved real-time
online gesture learning using SOEL, there are limitations to
our method. Currently, SOEL only supports training the last
layer of the network. Being a local learning rule, SOEL only
has information from pre- and post-synaptic neurons within
its layer. Therefore training other layers will incur the spatial
credit assignment because the neurons will not have a direct
target to train on outside of the last layer. Consequently, if
the signal is not separable in the penultimate layer then the
last layer cannot learn. This can be potentially solved using
layer wise local loss functions [11] and is beyond the scope of



9

this article. Another limitation stems from the approximations
made with the SOEL algorithm. First, the algorithm assumes
that states do not change across the time window in which
the error is calculated. This is beneficial to speed up training
and can be adjusted to match the error dynamics. Second, due
to limitations of the plasticity processor, the second term of
the three factor rule cannot be implemented exactly and is
instead ignored (set to one). These two approximations are
likely to reduce the accuracy of the final result. The few-
shot learning experiments using SOEL on gesture data with
the Intel Loihi neuromorphic processor are slightly worse
compared to training the last layer using GPU SLAYER. This
discrepancy is expected since SOEL yields biased estimates
of the gradients. The bias in the estimates is caused mainly
by the straight-through estimator, and the approximate spike
count loss which is computing using the neural states of the
last time step. Furthermore, the discretization of neural and
synaptic states, and limited range of effective learning rates
further widen the gap between GPU simulations and Loihi
simulations. However, in the regime of interest, e.g. between
one shot and five shots, the discrepancy remains acceptable.
Furthermore, they are a major improvement from our previous
work. Unlike vanilla SGD, which learns at every timestep,
SOEL only learns when there is sufficient error to trigger
learning. This error-triggered learning helps prevent weight
saturation and catastrophic forgetting leading to increased
accuracy. However the increased accuracy comes with an
increase in power consumption when compared to vanilla
SGD. We speculate that the power consumption for gesture
recognition using SLAYER with a GPU is at least an order
of magnitude higher than using SOEL with the Intel Loihi.
Additionally we also showed SOEL is capable of few-shot
learning from real world data. These experiments also showed
SOEL was able to adapt to the differences of data taken from
both a DAVIS 240 and a DVS 128 and was able to learn using
data from both.

ACKNOWLEDGEMENTS

The preliminary experiments of this research were con-
ducted at the Telluride Neuromorphic Cognition Engineering
workshop, years 2018 and 2019 (all authors). This research
was supported by the Intel Corporation (KS, EN), the National
Science Foundation under grant 1652159 (EN), and partially
supported by Programmatic grant no. A1687b0033 from the
Singapore government’s Research, Innovation and Enterprise
2020 plan (Advanced Manufacturing and Engineering domain)
(SBS).

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[2] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka,
“Statistical power modeling of gpu kernels using performance counters,”
in International Conference on Green Computing, 2010, pp. 115–122.

[3] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Quantifying the
energy cost of data movement in scientific applications,” in 2013 IEEE
International Symposium on Workload Characterization (IISWC), 2013,
pp. 56–65.

[4] T. Hwu, J. Krichmar, and X. Zou, “A complete neuromorphic solution
to outdoor navigation and path planning,” in 2017 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2017, pp. 1–4.

[5] G. Indiveri, B. Linares-Barranco, T. Hamilton, A. van Schaik,
R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger,
S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna,
F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang,
and K. Boahen, “Neuromorphic silicon neuron circuits,” Frontiers in
Neuroscience, vol. 5, pp. 1–23, 2011.

[6] E. Chicca, F. Stefanini, and G. Indiveri, “Neuromorphic electronic
circuits for building autonomous cognitive systems,” Proceedings of
IEEE, 2013.

[7] M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, P. Joshi, A. Lines,
A. Wild, and H. Wang, “Loihi: A neuromorphic manycore processor
with on-chip learning,” IEEE Micro, vol. PP, no. 99, pp. 1–1, 2018.

[8] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based opti-
mization to spiking neural networks,” IEEE Signal Processing Magazine,
vol. 36, no. 6, pp. 51–63, Nov 2019.

[9] G.-Q. Bi and M.-M. Poo, “Synaptic modifications in cultured hip-
pocampal neurons: Dependence on spike timing, synaptic strength, and
postsynaptic cell type,” J. Neurosci., vol. 18, no. 24, pp. 10 464–10 472,
1998.

[10] P. Baldi, P. Sadowski, and Z. Lu, “Learning in the machine: The
symmetries of the deep learning channel,” Neural Networks, vol. 95,
pp. 110–133, 2017.

[11] J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity for deep
continuous local learning,” Frontiers in Neuroscience, Apr 2020.
[Online]. Available: https://arxiv.org/abs/1811.10766

[12] M. Payvand, M. E. Fouda, F. Kurdahi, A. Eltawil, and E. O. Neftci,
“Error-triggered three-factor learning dynamics for crossbar arrays,”
in 2020 2nd IEEE International Conference on Artificial Intelligence
Circuits and Systems (AICAS), Aug 2020, pp. 218–222. [Online].
Available: http://arxiv.org/pdf/1910.06152

[13] F. Zenke, B. Poole, and S. Ganguli, “Improved multitask learning
through synaptic intelligence,” arXiv preprint arXiv:1703.04200, 2017.

[14] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, p. 201611835, 2017.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[16] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, and N. de Freitas, “Learning to learn by gradient descent
by gradient descent,” in Advances in Neural Information Processing
Systems, 2016, pp. 3981–3989.

[17] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level
concept learning through probabilistic program induction,” Science, vol.
350, no. 6266, pp. 1332–1338, 2015.

[18] K. Stewart, G. Orchard, S. B. Shrestha, and E. Neftci, “On-chip
few-shot learning with surrogate gradient descent on a neuromorphic
processor,” in 2020 2nd IEEE International Conference on Artificial
Intelligence Circuits and Systems (AICAS). IEEE, Sep 2020, pp.
223–227. [Online]. Available: http://arxiv.org/pdf/1910.04972

[19] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Advances in neural information
processing systems, 2014, pp. 3320–3328.

[20] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wier-
stra, “Matching networks for one shot learning,” arXiv preprint
arXiv:1606.04080, 2016.

[21] S. Qiao, C. Liu, W. Shen, and A. L. Yuille, “Few-shot image recognition
by predicting parameters from activations,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

https://arxiv.org/abs/1811.10766
http://arxiv.org/pdf/1910.06152
http://arxiv.org/pdf/1910.04972


10

[22] T. Scott, K. Ridgeway, and M. C. Mozer, “Adapted deep
embeddings: A synthesis of methods for k-shot inductive
transfer learning,” in Advances in Neural Information Processing
Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates,
Inc., 2018, pp. 76–85. [Online]. Available: http://papers.nips.cc/
paper/7293-adapted-deep-embeddings-a-synthesis-of-methods-for-\
k-shot-inductive-transfer-learning.pdf

[23] E. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-driven
random back-propagation: Enabling neuromorphic deep learning ma-
chines,” Frontiers in Neuroscience, vol. 11, p. 324, Jun 2017.

[24] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Ran-
dom synaptic feedback weights support error backpropagation for deep
learning,” Nature Communications, vol. 7, 2016.

[25] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment
in time,” in Advances in Neural Information Processing Systems, 2018,
pp. 1412–1421.

[26] B. Yin, F. Corradi, and S. M. Bohté, “Effective and efficient computation
with multiple-timescale spiking recurrent neural networks,” 2020.

[27] D. Huh and T. J. Sejnowski, “Gradient descent for spiking neural
networks,” arXiv preprint arXiv:1706.04698, 2017.

[28] J. C. Thiele, O. Bichler, and A. Dupret, “Spikegrad: An ann-equivalent
computation model for implementing backpropagation with spikes,”
arXiv preprint arXiv:1906.00851, 2019.

[29] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy,
“Enabling spike-based backpropagation for training deep neural
network architectures,” Frontiers in neuroscience, vol. 14, pp. 119–
119, Feb 2020, pMC7059737[pmcid]. [Online]. Available: https:
//pubmed.ncbi.nlm.nih.gov/32180697

[30] N. Imam and T. A. Cleland, “Rapid online learning and robust recall
in a neuromorphic olfactory circuit,” Nature Machine Intelligence,
vol. 2, no. 3, pp. 181–191, Mar 2020. [Online]. Available:
https://doi.org/10.1038/s42256-020-0159-4

[31] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x128 120 dB 15
us latency asynchronous temporal contrast vision sensor,” Solid-State
Circuits, IEEE Journal of, vol. 43, no. 2, pp. 566–576, Feb. 2008.

[32] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240×
180 130 db 3 µs latency global shutter spatiotemporal vision sensor,”
IEEE Journal of Solid-State Circuits, vol. 49, no. 10, pp. 2333–2341,
2014.

[33] W. Gerstner and W. Kistler, Spiking Neuron Models. Single Neurons,
Populations, Plasticity. Cambridge University Press, 2002.

[34] W. Gerstner, M. Lehmann, V. Liakoni, D. Corneil, and J. Brea, “Eligibil-
ity traces and plasticity on behavioral time scales: experimental support
of neohebbian three-factor learning rules,” Frontiers in neural circuits,
vol. 12, p. 53, 2018.

[35] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[36] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in neural information processing systems, 2015, pp. 3123–
3131.

[37] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo,
T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza et al., “A low
power, fully event-based gesture recognition system,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 7243–7252.

[38] T. Dozat, “Incorporating nesterov momentum into Adam,” in ICLR
Workshop, 2016.

[39] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal
dynamics: From single neurons to networks and models of cognition.
Cambridge University Press, 2014.

Kenneth Stewart is a Ph.D. student at the Uni-
versity of California Irvine. His current research
focuses on developing learning algorithms for neu-
romorphic hardware and their application to areas
such as computer vision and robotics. His research
interests include neuromorphic computing, online
learning, robotics, artificial intelligence, and appli-
cations thereof.

Garrick Orchard received his Ph.D. from Johns
Hopkins University in 2012 before joining the newly
formed Singapore Institute for Neurotechnology
(SINAPSE) at the National University of Singapore
as a research scientist. In 2015 he was awarded the
Temasek Research Fellowship from the Singapore
Ministry of Defence and in 2019 he joined Intel’s
Neuromorphic Computing Lab as a senior researcher
focusing on sensing and perception.

Sumit Bam Shrestha received his Ph.D. from
School of Electrical and Electronic Engineering,
at Nanyang Technological University, Singapore,
under SINGA scholarship. Currently, he is a Re-
search Scientist at the Institute for Infocomm Re-
search (I2R) at the Agency of Science Technology
and Research (A*STAR) Singapore where he co-
leads the algorithm development for Neuromorphic
Computing Programme. His research is mainly fo-
cused on Deep Spiking Neural Networks and also
includes Neuromorphic Computing, Neuromorphic

Vision, Neural Networks, and Machine Learning.

Emre Neftci Dr. Emre Neftci received his M.Sc.
degree in physics from Ecole Polytechnique Federale
de Lausanne, Switzerland, and his Ph.D. in 2010 at
the Institute of Neuroinformatics at the University
of Zurich and ETH Zurich. Currently, he is an
assistant professor in the Department of Cognitive
Sciences and Computer Science at the University of
California, Irvine. His current research explores the
bridges between neuroscience and machine learning,
with a focus on the theoretical and computational
modeling of learning algorithms that are best suited

to neuromorphic hardware and non-von Neumann computing architectures.

http://papers.nips.cc/paper/ 7293-adapted-deep-embeddings-a-synthesis-of-methods-for- \ k-shot-inductive-transfer-learning.pdf
http://papers.nips.cc/paper/ 7293-adapted-deep-embeddings-a-synthesis-of-methods-for- \ k-shot-inductive-transfer-learning.pdf
http://papers.nips.cc/paper/ 7293-adapted-deep-embeddings-a-synthesis-of-methods-for- \ k-shot-inductive-transfer-learning.pdf
https://pubmed.ncbi.nlm.nih.gov/32180697
https://pubmed.ncbi.nlm.nih.gov/32180697
https://doi.org/10.1038/s42256-020-0159-4

	I Introduction
	I-A Surrogate-gradient Online Error-Triggered Learning (SOEL)

	II Related Work
	III Background
	III-A Dynamic Vision Sensor
	III-B Neural Network Model
	III-C Gradient-based Training of SNN
	III-C1 Surrogate-gradient Online Error-Triggered Learning (SOEL) Online training for Loihi
	III-C2 SLAYER Offline Training for Loihi

	III-D Intel Loihi
	III-D1 Plasticity Processor


	IV Methods
	IV-A Dataset and gesture sampling
	IV-B Neural Network Model and Offline pre-training using SLAYER for Loihi
	IV-C Online few-shot learning using Surrogate-gradient Online Error-Triggered Learning (SOEL) plasticity for Loihi 
	IV-D System Specifications For Measurement All performance results are based on testing as of June 2020 and may not reflect all publicly available security updates. No product can be absolutely secure.

	V Experiments
	V-A Real-World Gesture Learning

	VI Discussion and Future Work
	References
	Biographies
	Kenneth Stewart
	Garrick Orchard
	Sumit Bam Shrestha
	Emre Neftci




