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ABSTRACT OF THE DISSERTATION

Energy Saving in Data Centers through Traffic and Application Scheduling

by

Liang Zhou

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2020

Dr. Laxmi N. Bhuyan, Chairperson

Energy saving in data centers is challenging due to workload fluctuation and strict

application latency constraints. In this dissertation, we aim to develop a suite of practical

techniques to improve the energy efficiency of data centers, ensuring that they are effective,

scalable and responsive. We have studied this research topic from two perspectives: server

and network load consolidation and scheduling of latency-sensitive applications. All our

techniques have been experimentally shown to produce more energy savings compared to

state-of-the-art techniques.

It is known that servers consume maximum energy in a data center. We propose

Goldilocks, a resource provisioning system for optimizing both power and task comple-

tion time by allocating tasks to servers in groups. Tasks hosted in containers are grouped

together by running a graph partitioning algorithm that considers the frequency of commu-

nication between the containers. The groups are allocated to a subset of the servers near

to each other and all idle servers are turned off to save power. As a next step, we make the

data center network energy proportional by developing a distributed traffic consolidation
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scheme named DREAM. DREAM splits a TCP flow across multiple paths by adapting the

path selection probability for sending a flowlet. The unused switches and links are disabled

to save power.

Several techniques have been developed in the literature to save energy on servers

through Dynamic Voltage and Frequency Scaling (DVFS) and sleep-based schemes. We have

developed EPRONS to minimize the overall data center’s power consumption by trading-

off network slack in favor of providing additional slack by using DVFS. We design a two-

step DVFS scheme to save more power for latency-sensitive applications. Since accurate

estimation of the latency is difficult, we extend the two-step DVFS with a neural network

based predictor to judiciously boost the CPU frequency at the right time to catch-up to

the deadline. Finally, in addition to optimizations at the Index Serving Node (ISN), we

design a coordinated time budget assignment framework between the aggregator and ISNs

in a search engine to improve search quality and latency.
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Chapter 1

Introduction

Large data centers hosting tens of thousands of servers and networking devices

have increasingly become society’s core information infrastructure supporting a myriad of

latency-critical services, including the most widely used web search [98, 43, 32]. Typically,

data centers are over-provisioned so as to satisfy application’s Service Level Agreements

(SLAs) at peak loads. Servers in data centers usually operate at 20-30% utilization [74, 60,

69] and the network link utilizations are around 10% [93, 49]. Running servers and the Data

Center Network (DCN) at such low utilizations wastes power [49]. In 2014, data centers

in the U.S. consumed 70 billion kWh of energy, representing 1.8% of the U.S. electricity

consumption [106]. Data centers can be made energy proportional through two major

approaches: load (server and network) consolidation and application scheduling. Although

these two research directions have received a great deal of attentions in the recent past,

there still remain a number of major limitations in state-of-the-art energy management

approaches, with respect to effectiveness, scalability and responsiveness [131, 129].
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In this dissertation, we address the shortcomings of state-of-the-art schemes and

propose a suite of practical power management techniques for data centers. Our goal

is to make the data center energy efficient without introducing additional performance

overheads. In this research context, we first develop a graph-based task consolidation on

servers and distributed multi-path traffic consolidation in the DCN that outperform existing

load consolidation frameworks for energy saving and request latency reduction [129, 131].

We study this problem in the context of tasks running in containers, such as Docker or

Linux Containers. Second, this dissertation demonstrates that a holistic system perspective

is needed to take advantage of the latency slack offered by a high performance network to

utilize a Dynamic Voltage and Frequency Scaling (DVFS) scheme on servers. In addition

to trading-off the DCN energy saving and network slack, we show that it is critical to have

a two-step DVFS enhanced with neural network predictors for meeting the challenge of

inaccurate service time predictions. A coordinated time budget assignment framework is

also developed at the aggregator of distributed search engines to determine each request’s

deadline at ISNs, as well as the ISN cutoff. Specifically, this dissertation makes the following

contributions.

Contribution 1: Graph-based Container Placement on Servers. Servers

account for 70%-80% of a data center’s total energy consumption [49, 116]. Consolidat-

ing server resources to save energy in data centers has proved to be challenging due to

the variability in the workload [96] and having to meet strict SLAs [108]. Current server

consolidation schemes such as Borg [111] and RC-Informed [27] pack stand-alone tasks in

containers or Virtual Machines (VMs) into a few highly utilized servers without violating
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the resource constraints. They aim to improve either the power consumption [111, 27, 112]

or task completion time [8], but are unable to achieve improvements in both dimensions.

What is more important, a VM in data centers potentially communicates with a very large

number of other VMs. For example, in a representative trace from Microsoft for search,

the average number of distinct connections per VM is 45 [6]. The rich interactions between

VMs makes it difficult for the above frameworks to use locality-aware placement policies

[34, 127, 76]. A holistic approach wisely packing group of tasks is needed to strike a balance

between the power consumption and application’s performance.

In this dissertation, we present a graph-based approach, Goldilocks, to elegantly

solve the complex resource ‘right sizing’ problem in data centers to optimize both power

and task completion time. Goldilocks uses containers (as an example) to host tasks instead

of VMs as they are more light-weight and flexible [124, 30]. Unlike placing stand-alone

containers in prior works [102, 127, 111, 112, 8, 27], Goldilocks partitions groups of contain-

ers before assigning the container groups to the servers. By running the recursive graph

bipartitioning algorithm [77] with the min-cut objective function, containers with high com-

munication frequency are grouped together. We also leverage new findings on power con-

sumption of modern-day servers to ensure that their utilizations are in a range where they

are power-proportional. Both testbed implementation measurements and large-scale trace-

driven simulations prove that Goldilocks outperforms all the previous works on data center

power saving. Goldilocks saves power by 11.7%-26.2% depending on the workload, whereas

the best of the implemented alternatives, Borg, saves 8.9%-22.8%. The energy per request

for the Twitter content caching workload in Goldilocks is only 33% of RC-Informed. Fi-
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nally, the best alternative in terms of task completion time, E-PVM [8], has 1.17-3.29 times

higher task completion times than Goldilocks across different workloads.

Contribution 2: Distributed Traffic Consolidation in the DCN. With

energy efficient servers [60, 68, 108], the fraction of energy consumed by the networking

components can reach 50% in data centers [2], especially when the server utilizations are

low, at 15%. Hence, it is desirable to design practical techniques for the energy-proportional

DCNs. Traffic consolidation [49, 113, 109] proactively shifts all the traffic to a minimal

subset of network devices and completely turns off unused links and switches. State-of-the-

start traffic consolidation approaches, such as ElasticTree [49] and CARPO [113], perform

a centralized optimization periodically to decide the set of active switches and links based

on current traffic demands. Typically, they formulate the energy saving in DCNs as a linear

programming model, which usually has high computational complexity. For example, it

may take hours for the centralized linear programming model to find the minimal subset of

active switches and links in large DCNs [109, 49]. The high computational complexity of

centralized traffic consolidation results in energy inefficiency or link congestion, especially

when the traffic bursts occur. For improved responsiveness and thereby higher energy

savings, traffic consolidation in the DCN should be conducted in a distributed way.

In this research, we propose DREAM, a DistRibuted Energy-Aware traffic Man-

agement framework for data center networks, with improved responsiveness and better

energy savings than current centralized approaches [49, 113]. In DREAM, the distributed

agents and hosts work cooperatively to consolidate traffic to a portion (e.g., the left-most)

of the DCN. It reacts to traffic bursts at the Round Trip Time (RTT) time scale. The
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network monitoring is based on data plane of the hardware switch rather obtaining values

of flow counters of the forwarding plane through Openflow [73]. The distributed agents

are implemented as a shim layer, such as Open vSwitch [89]. DREAM requires no mod-

ification to the host protocol stack or the data center networking fabric. This makes our

design easy for deployment. Testbed evaluations using traces from Wikipedia web service

[107] and Facebook MapReduce traffic [19] prove that DREAM on average achieves at least

15.8% energy saving for the data center network, while state-of-the-art approaches such as

CARPO [113] and ElasticTree [49] produce 11.6% and 8.4% energy saving, respectively.

The packet drop ratio in DREAM is less than 0.01% while the best among the alternatives,

ElasticTree, has at least 0.19% drop ratio. DREAM also has 30% lower application-level

latency than state-of-the-art centralized traffic consolidation approaches.

Contribution 3: Joint Server and Network Energy Optimization. La-

tency critical applications in data centers follow a request/response model and usually ex-

hibit “ON/OFF” patterns [24]. Exploiting the latency slack of a request by slowing down its

processing is another major approach for saving energy in data centers. In this approach,

DVFS based frameworks such as Rubik [60] and Pegasus [69] run the CPU cores at the

minimum frequency that satisfies the request’s target deadline. Other sleep states based

schemes such as DynSleep [24] and SleepScale [68] postpone the servicing of requests and

cause a longer idle period so that servers can enter into their deepest sleep states. Neverthe-

less, prior DVFS or sleep states techniques [60, 69, 24, 68] make servers energy proportional

without considering power managements in the DCN. Traffic consolidation policies in the

DCN will affect the amount of network slack that can be used by server power manage-
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ment schemes. Power savings that are achieved by only optimizing the server slowing-down

technique or DCN traffic consolidation is considerably less than jointly solving both the

problems.

Such findings motivate a joint server and network energy saving framework for

latency-critical applications named EPRONS (i.e., Energy PROportional Network and

Server). In EPRONS, we minimize the overall data center’s power consumption with

latency-sensitive applications by trading-off network slack in favor of providing additional

slack for computations. We utilize the linear programming model to consolidate latency-

sensitive search queries and latency-tolerant background flows to a minimal subnet of the

topology by turning off unused switches and links without violating the application dead-

lines. Servers take advantage of the additional ‘network-provided’ slack to allow slowing

down request processing. For servers, we design a novel power saving technique using DVFS

based on the average tail latency of a request. If needed, we turn on a minimal number

of additional network links and switches to reduce network latency while still maximizing

entire data center’s power saving. Experimental results show that our scheme saves up to

31.25% of a data center’s total power budget.

Contribution 4: Neural Network based Two-Step DVFS Scheme. Web

search is one of most important latency-critical applications in data centers, which is critical

to the service provider’s revenue [12]. The service quality of web search is significantly

affected by the request processing latency at Index Serving Nodes (ISNs) [72], which store

the document index and retrieve matching results for a query. Power managements for

ISNs seek to estimate each request’s service time and then properly re-configure the current
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frequency scaling or sleep states setup. A common approach for service time prediction

[69, 108, 75, 23, 60] is to assume that each request’s CPU cycles can be estimated from the

same single distribution, based on offline profiling. By using the high percentile tail of this

service time distribution and then deriving the CPU frequency or sleep states, they seek to

achieve a low deadline violation rate while also slowing down search queries. However, search

requests’ latencies have both short and long term variation and a request’s computation

requirement (i.e., total CPU cycles) cannot be predicted accurately [60, 48]. This results in

either energy inefficiency or even worse, deadline violations. Hence, maintaining a balance

between energy savings while meeting deadlines on the ISN is necessary.

In this dissertation, we present Gemini, a novel power management framework for

latency-critical search engines. Gemini has two unique features to capture the per query

service time variation. First, at light loads without request queuing, a two-step DVFS is

used to manage the CPU power. Our two-step DVFS selects the initial CPU frequency

based on the query specific service time prediction and then judiciously boosts the initial

frequency at the right time to catch-up to the deadline. The determination of boosting time

further relies on estimating the error in the prediction of individual query’s service time.

At high loads, where there is request queuing, only the current request being executed and

the critical request in the queue adopt a two-step DVFS. All the other requests in-between

use the same frequency to reduce the frequency transition overhead. Second, we develop

two separate neural network models, one for predicting the service time and the other for

the error in the prediction. The combination of these two predictors significantly improves

the power saving and tail latency results of our two-step DVFS. Gemini is implemented on
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the Solr search engine. Evaluations on three representative query traces show that Gemini

saves 41% of CPU power, and is better than other state-of-the-art techniques.

Contribution 5: Coordinated Time Budget Assignment at the Aggre-

gator. Another important topic for power management in web search is determining each

request’s time budget [123, 53, 22], as it directly affects the available latency slack on ISNs

and thus the resulting power savings. In general, a request’s time budget is assigned by

the aggregator of distributed search engines [16, 11], and is broadcast with search query

to all the participating ISNs. With exhaustive search, the aggregator has to wait for all

ISN responses and return the top-K ranked results to the client [81]. This wastes system

resources [97, 65] and significantly degrades a search engine’s response time. To reduce the

tail latency, aggregation polices [123, 53, 22] such as FSL [123] rank the ISNs based on the

query’s response times and optimize the ISN cutoff parameters for a set of queries. They

assign the request’s time budget by assuming a stable request pattern during a short time

period and consider all the ISN responses during the period irrespective of their quality con-

tributions. What is worse, requests that can not be finished within their given time budgets

are still executed on ISNs, which waste server power. Selective search [104, 65, 97, 81],

on the other hand, improves the epoch-based aggregation polices with a query-specific ISN

cutoff based on its quality contribution. It leverages the individual query’s information and

a Central Sample Index (CSI) [97] at the aggregator to rank ISNs. However, it is difficult

to make an accurate prediction of the quality contribution based on a sample index, hence

it often results in a second cutoff prediction [81]. A large CSI produces a better quality pre-

diction, but incurs large additional delay for the search at the aggregator. What is needed
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is a coordinated decision between the ISNs and the aggregator to take advantage of local

predictions at the ISN combined with the overall time budget and ISN cut-off decision by

the aggregator.

This dissertation proposes Cottage (i.e., coordinated time budget assignment), a

coordinated framework between the aggregator and ISNs for latency and quality optimiza-

tion in web search. Cottage has two separate neural network models at each ISN to predict

the quality contribution and latency, respectively. Then, these prediction results are sent

back to the aggregator for latency and quality optimizations. The key task is integration

of the predictions at the aggregator in determining an optimal dynamic time budget for

identifying slow and low quality ISNs to improve latency and search efficiency. Cottage

accelerates slow ISNs with a high quality contribution for improved search quality. Our

experiments on the Solr search engine prove that Cottage can reduce the average query

latency by 54% while searching fewer ISNs and documents than state-of-the-art techniques.

It is shown that Cottage can still achieve a good P@10 search quality of 0.947, which is

much higher than the other techniques.

The rest of this dissertation is organized as follows. Chapter 2 summarizes the re-

lated works in different categories. Then, we introduce the graph-based container placement

in chapter 3. Chapter 4 presents our distributed traffic consolidation. In Chapter 5, we

propose the joint server and network energy optimization for latency-sensitive applications.

Chapter 6 focuses on the neural network based two-step DVFS on ISNs, followed by the

aggregator design of coordinated time budget assignment in chapter 7. Finally, chapter 8

concludes this dissertation.
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Chapter 2

Related Work

This chapter covers the literature related to the studies proposed in this thesis.

2.1 Resource Provisioning in Data Centers

There have been several studies [111, 27, 117, 30] focusing on the resource schedul-

ing in data centers to improve task completion time or energy efficiency. Most of them are

based on two techniques: the static VM placement [111, 27] or dynamic VM migration

[117, 30]. E-PVM [8] places VMs on a server with the lowest utilization to leave a large

headroom for load spikes and has good task completion time. Google’s Borg [111] achieves a

high cluster utilization by using the priority-based task scheduling, task preemption and task

packing. To increase the packing efficiency, Borg aims to reduce stranded resources [111]

when only some but not all resources on a machine are fully allocated. RC-Informed [27],

on the other hand, finds that VM behaviours are consistent over multiple lifetimes. It de-

signs a system that collects VM’s statistics offline and predicts its future resource demands
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online. The VM scheduler in RC-Informed divides a physical machine into multiple slots

and over-subscribes each VM slot’s CPU resources. Instead of increasing the packing effi-

ciency, the mPP algorithm in pMapper [112] places VMs on servers having the lowest power

increase per unit of utilization. The above approaches improve either power consumption

[111, 27, 112] or task completion time [8], but are unable to achieve improvements in both

dimensions. Besides server resource constraints, some other related works [127, 13, 120]

also factor the network bandwidth constraint when packing VMs. PowerNetS [127] puts

the source and destination VMs of a network flow together to improve the network latency

as well as server energy efficiency. Oktopus [13] considers the network bandwidth as the

primary constraint in resource allocation for tenants in the cloud. Subsequently, Proteus

[120] extends that work by adding time variability in network bandwidth reservation.

Live VM migration [26] is another important technique to improve the resource

utilization of data centers, whiling meeting performance constraints. Cloudward [46] designs

a sophisticated migration strategy for populating a service from an on-premise data center

to the public cloud. It aims to find the optimal partition for enterprise operations such

that important performance metrics are maximized. eTransform [99] is another VM mi-

gration framework for running enterprise infrastructure among different data centers. The

linear programming model in eTransform tries to optimize the operational cost of services

across multiple data centers. Cloudnet [117] and VMShadow [44] are pre-copy migration

techniques, seeking to migrate application state while trying to minimize application down-

time. In Remus [30], the post-copy technique is used for VM replication in failure recovery.

Post-copy only migrates the minimal working set of VMs and the incoming requests are
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transfered to the target server immediately. Container migration has been discussed re-

cently. It is challenging to manage the process tree checkpointing and restore. All of the

existing works use the CRIU project [28] for container migration. KUP [59], proposes to

use process checkpoint & restore for fast kernel updates. Several optimizations, such as

incremental checkpoint and on-demand restore are also implemented in KUP. Container

checkpoint & restore has also been used in the public cloud. Picocenter [124] checkpoints

only the long-lived user containers that are most-idle, checkpointing them into persistent

storage such as Amazon S3. These container images are restored when a packet arrives for

the application.

2.2 Traffic Consolidation in the DCN

Gupta et al. [45] first proposes a position paper exploring possible opportunities to

save Internet power. At the device level, idle components of a switch can be put into sleep.

At the network level, traffic can be rerouted to a few links while letting other idle switches go

to sleep. The following works [2] and [84] demonstrate that DCN can be energy-proportional

at the device level. GoogleP [2] combines the flattened butterfly topology and rate adaption

technique to dynamically change link speed and power consumption. Research [84] buffers

the network packets at edge switches for a little while to have longer traffic gaps. In such

a way, intermediate switches can have longer sleep time.

ElasticTree [49] proposes three centralized optimizers which consolidate traffic to

the minimal subnet of the network and turn off the unused switches. Traffic consolidation

in ElasticTree can have better power saving than device level frameworks. However, it is
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impractical in production data centers because of its high computation complexity. To im-

prove the scalability, GreenTE [125] proposes a heuristic algorithm to accelerate centralized

traffic consolidation. The distributed design is a promising approach to make the traffic

consolidation more responsive to traffic variation in the DCN. EATe [110] solves a complex

linear programming model at edge switches to consolidate traffic on pre-defined paths. Sim-

ilarly, DISCO [128] proposes the host level and link level distributed traffic consolidations.

But they still use the centralized controller to implement the distributed designs, modeled

as a number of sub-optimizers. Another distributed design, REsPoNse [109], requires the

full traffic history as prior knowledge to train their algorithm to derive the always-on path

offline, over which traffic is routed. But this depends on the assumption that the data

center traffic pattern doesn’t change significantly, which is not the case in real DCNs [14].

REsPoNse [109] relies on proactive link utilization feedback from routers to perform traf-

fic scheduling, which is also difficult in current hardware switches. So, REsPoNse is only

implemented in the CLICK software switch [64]. CARPO [113] considers traffic correlation

while consolidating traffic. However, it still uses the complex centralized optimizer. Finally,

FCTcon [126] designs the deadline aware traffic consolidation in the DCN with network

latency feedbacks.

2.3 Power Management with Latency Constraints

To improve the energy efficiency of data center servers, most of the existing work

on power management is based on DVFS or Sleep states techniques. PowerNap [74] dy-

namically switches the server state between a minimal power consumption “nap” state and
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a high performance active state, to accommodate workload variations. Based on Power-

Nap, DreamWeaver [75] coalesces requests across multiple cores so that some cores can

enter deeper sleep states. Instead of using request coalescing, DynSleep [24] procrastinates

the processing of requests at a single core while still avoiding deadline violations. By doing

this, the CPU core can enter the deepest sleep states to save more energy. KnightShift [115]

designs a heterogeneous server architecture by having a low power consumption “Knight”

node. When the server utilization is low, KnightShift puts the entire server into sleep

states, except for the Knight node. The low utilization workloads are served by the Knight

node when other server components go to sleep. SleepScale [68] provides a method to com-

bine different power management frameworks. On the other hand, Pegasus [69] proposes a

feedback based DVFS scheme to save server power. In Pegasus, it measures the request’s

latency periodically and selects the highest CPU frequency if a deadline violation happens.

When the measured latency is smaller than 65% of given time budget, the CPU frequency is

reduced. Similarly, TimeTrader [108] considers both network slack and server slack to save

power for latency-critical applications. When the ECN or RTO signals are not presented

in the DCN, its power management framework will add the full network latency budget to

the compute slack.

Rubik [60] observes that both the request service time and inter-arrival time have

high short-term variability. To capture the per request variability, Rubik develops an an-

alytical model for CPU frequency selection at the granularity of every request arrival and

departure. However, it only approximately estimates each request’s computation demand,

as every query’s CPU cycle need is derived from the same distribution. For latency con-
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straints, it conservatively uses the tail of service time distribution for each request’s latency

prediction, thereby potentially missing many energy saving opportunities. Similar to Rubik,

µDPM [23] proposes a power management scheme for applications with microsecond ser-

vice times. Its analytical model combines the request delaying, sleep states and frequency

scaling to save power on CPU cores. A few researchers have theoretically shown that a

step-wise DVFS [70] can produce better energy savings even though the actual service time

is unknown [70, 118]. While the two previous papers dealt with minimizing the energy

consumption of a single request, the work in [48] addresses multiple arrivals based on ad-

justments at a time epoch. All the above works [70, 48] utilize sampling of the distributions

to estimate the residual task time and then select the next step in the CPU frequency. The

profiled distributions have to be obtained offline as a prior knowledge. Another important

feature of some prior research [48, 118, 47] is that they need feedback signals to make the

control decision, with the same criteria to enter the next step of frequency.

2.4 Latency and Efficiency Optimization in Web Search

Aggregation policy [22, 123, 55, 53] of web search determines how long it waits for

the ISNs’ responses in attempting to reduce overall latency. FSL [123] categorizes the ISN’s

responses into three categorizes and only optimizes the search latency by cutting off the

stragglers, leaving the fast and long queries untouched. Its design utilizes an epoch-based

offline algorithm for threshold determination in order to have an acceptable search quality

for most of the queries. Unlike cutting off the responses but still executing them, TailCut

[22] drops the search request at the ISN to improve efficiency. It is still an epoch based
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design such that a second query has to be sent to all the ISNs whenever the measured search

quality is below a threshold.

Selective search [97, 104, 65, 62, 81] estimates the relevance of each ISN for a

specific query and only chooses the most promising ISNs to search. ReDDE [97] has a CSI

at the aggregator. On every request arrival, it is first looked up at the CSI to get the top-K

results. Then, ISNs are ranked according to their contributions to the top-K sample results.

Rank-S [65] also uses the CSI but ranks the ISNs in a different approach. Specifically, they

first utilize the matched documents from the CSI to form a tree structure. The matched

documents for a given query are leaves of the tree from left to right in descending order of

scores [65]. Every leaf node’s score is normalized by considering the original score as well

as its distance to the left-most leaf node in the tree. An ISN’s final quality estimation is

the summation of all its documents’ normalized scores. Kim et al. [62] proposes a shard

ranking algorithm considering each ISN server’s system load. While all these works focus

on the ISN ranking and have a fixed ISN dropping threshold, QR [81] develops a machine

learning based model to predict the cutoff assuming the existence of a perfect ISN ranking.

Additionally, it extends the resource selection algorithm to the search type of recall-driven.

One major drawback of the previous CSI based frameworks is their poor scalability. Taily

[7] proposes a distributed approach that assumes the score distribution on an ISN follows a

Gamma distribution [58]. It predicts the parameters of the Gamma distribution at runtime

based on static query term statistics. Although Taily improves the scalability, we find that

a query’s scores typically does not perfectly fit a Gamma distribution, thus resulting in

inaccurate ISN cutoffs. Also, the local prediction of quality at the ISN does not reflect
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the overall quality at the aggregator, which is based on the combined ranking of all the

responses from the ISNs.
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Chapter 3

Goldilocks: Graph based Container

Placement

3.1 Introduction

This chapter presents a graph-based approach, Goldilocks, to elegantly solve the

complex resource ‘right sizing’ problem in data centers to optimize both power and task

completion time. In Goldilocks, two kinds of graphs are considered in the partitioning

algorithm: a) a capacity graph, representing data center’s total resources and b) a container

graph with resource demands as the vertex weights and inter-container communication as

edge weights. By running the recursive graph bipartitioning algorithm in METIS [77]

with the min-cut objective function, containers with high communication frequency are

grouped together. The load for each container group is automatically balanced in the

algorithm. Goldilocks significantly improves the task completion time as containers with
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frequent communication are placed close together in the DCN topology. The power saving

is achieved by packing groups of containers into a minimal number of servers, so that unused

servers are turned off. We first solve the container group packing problem in symmetric Clos

topology. We then extend our algorithm to the asymmetric topology with heterogeneous

servers.

In addition to the graph partitioning algorithm, we re-examine the conventional

wisdom regarding power management [74, 49, 60]. A common sense strategy for energy

efficient data centers has been to run some servers close to 100% utilization (with a small

safety margin [49]), and turn off idle servers for maximal power savings [35, 96]. How-

ever, SLA violations for latency-sensitive applications [91] can be a major concern when

servers become over-loaded due to burstiness of the workload. In Goldilocks, we operate

servers at Peak Energy Efficiency (60-80% utilization) [116], which is defined as the point

to achieve the maximum number of operations completed per watt. Such a strategy saves

more total server power and leaves a much larger headroom to deal with instantaneous load

fluctuations.

To demonstrate the feasibility of Goldilocks, we implemented a seamless Docker

container migration framework on a 16-server testbed. For the Twitter content caching

application, Goldilocks saves 11.7% power, with the variation seen in Azure cloud trace

[27] and 22.7% power on the variability seen in Wikipedia trace [107]. Comparatively,

the best of alternatives (i.e., Borg) saves 8.9% and 21%, respectively. Although Borg and

Goldilocks have somewhat similar power saving results, the energy consumption per request

for Borg is 3.5 times that of Goldilocks. Because of the locality-focused partitioning and
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large headroom for load fluctuation, Goldilocks produces at least 2.56 times of better task

completion times, compared with any of the implemented alternatives. Our large scale trace

driven simulation, based on Microsoft traces [6], reiterates the significant power saving and

reduced task completion time of Goldilocks. Our major contributions include:

• We propose a holistic graph-based approach for resource provisioning in containerized

data centers. This approach places containers closely to minimize power consumption

and task completion time.

• A number of resources and performance considerations are taken into account, such

as CPU, memory, network, migration overheads and workload fluctuation.

• We propose to achieve Peak Energy Efficiency for servers that maximizes performance

for the energy consumed.

• We implement Goldilocks in a data center testbed, including seamless Docker con-

tainer migration between servers. We show results both from the implementation and

a large scale simulation based on a Microsoft Azure trace.

3.2 Peak Energy Efficiency

In energy efficient computing, the basic assumption is that server power increases

linearly as we increase the utilization [115, 68]. This linear power curve assumption is the

basis for a number of efforts [67, 91, 69] to consolidate server load, turn off idle servers and

thus save static server power. Usually, the servers are packed to 100% maximal utilization.

However, the latency of application might increase due to longer queuing time. The SLA
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Figure 3.1: The distribution of Peak Energy Efficiency utilization for the SPEC power
benchmark.

violation becomes a concern as there is little room to accommodate workload variation

[108].

We observed that the server power increases quickly beyond a point on the load

vs. power curve. Load means the quotient of current request rate and maximum possible

request rate on the server. In this chapter, we define Peak Energy Efficiency as achieving the

maximum number of operations per watt [116]. When servers operate at higher utilization

than the Peak Energy Efficiency, power increases faster than the load because of automatic

frequency boosting [130] and increase in temperature requiring higher fan speeds [91]. Fig.

3.1 (a) shows the normalized power of 2 recent servers, as we vary the load. The power

is normalized to maximum power consumption at 100% load, to avoid focusing on the

differences among systems from different vendors. The major take-away of this result is

that the power consumption vs. load was mostly linear until 2010, but not any more.

As also observed with the Dell-2018 curve, power increases much faster beyond the Peak

Energy Efficiency point [116]. For comparison, the dotted line shows what would be a linear

increase if it was strictly power proportional.
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The cubic power curve after Peak Energy Efficiency utilization in Fig. 3.1 (a) is due

to the DVFS [69, 115, 130, 60] on modern server. In DVFS, power P equals C∗V 2∗f , where

C is capacitance, V is voltage and f is frequency. At low loads, the voltage V does not scale

down further because it is already low. Only the frequency f scales down. This explains the

linear power curve below the Peak Energy Efficiency. At high loads, both voltage V and

frequency f will scale up, which results in the increase in power according to the cubic law.

Fig. 3.1 (b) shows the Peak Energy Efficiency utilization results of 419 servers subjected

to the SPEC request/response transaction workloads [103]. The Peak Energy Efficiency

utilization for each server is obtained by analyzing the SPEC power benchmark results

uploaded by vendors. This benchmark exercises the CPU, Cache, Memory, I/O as well as

the operating system. 100% load is defined as the maximum number of requests that can be

supported by the server. The Y-axis on Fig. 3.1 (b) is the share of each listed Peak Energy

Efficiency utilization (i.e., 100% to 60% load) for a specific year. Each color represents

one kind of Peak Energy Efficiency utilization. We can observe that most of the servers

in 2010 have the Peak Energy Efficiency at 100% server utilization. During recent years,

the Peak Energy Efficiency utilization of servers has already moved to the range of 60-80%

utilization.

Let us examine how running servers at Peak Energy Efficiency can be beneficial in

a data center context. There are two benefits: better power saving and higher tolerance for

workload fluctuation. Consider placing a group of containers in a cluster of 1000 servers.

Fig. 3.2 (a) shows that fewer servers are needed as we increase the load per server. The

corresponding total power consumption is depicted in Fig. 3.2 (b). Servers have the same
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Figure 3.2: Operating servers at the Peak Energy Efficiency utilization consumes the least
total server power.

power model as Dell-2018 in Fig. 3.1 (a), which has Peak Energy Efficiency at 70% utiliza-

tion. We can observe an obvious ‘U’ curve for total server power. The maximum power is

saved when servers are packed only up to 70% utilization.

Lowering the utilization allows us to tolerate burstiness of data center workloads

[14, 93, 27] and have shorter latency. Workloads across applications in a cloud data center

might also be correlated [25]. We calculated the Pearson correlation of 1500 VMs in the

Microsoft Azure trace [27]. 99.8% of time the Pearson correlation is between 0.6 and 0.8,

indicating (pair-wise) that VMs might ‘burst’ at the same time. Packing servers to the Peak

Energy Efficiency leaves sufficient headroom to accommodate burstiness in the workload.

Using just bin packing with a target of 100% server utilization [67, 91], tasks have to be

migrated when the server becomes overloaded to avoid violating the application’s SLA

requirement.

In the DCN, we turn off idle switches and links. Table 3.1 gives the configuration

of 3 different data centers such as Google’s Jupiter [98] and Microsoft’s VL2 [43]. Because

the power models are not given [98, 39, 43], we carefully select power models from the
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Table 3.1: The configuration of 3 different data centers.

# of Server # of Switch # of Link Power Model

Google [98] 98304
2048 ToR

3584 Fabric
147456

96W SoC server (Facebook 1S [85])

630W ToR/Fabric switch

(2 HPE Altoline 6940 [50])

Facebook [39] 184320
4608 ToR

576 Fabric
36864

96W SoC server (Facebook 1S),

282W ToR (Facebook Wedge [86]),

1400W Fabric (Facebook 6Pack [86])

VL2(96) [43] 46080
2304 ToR

144 Fabric
9216

250W Microsoft blade server [85],

282W ToR (Facebook Wedge),

1400W Fabric (Facebook 6 Pack)
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Figure 3.3: The power breakdowns on 3 different data centers.

Open Compute Project [85, 86] to match the switch’s port density and server’s network

bandwidth. For example, the Facebook’s DCN topology has 10G servers, 16X40G Top of

Rack (ToR) switch and 96X40G Fabric switch. So, they are mapped to Facebook 1S System

on Chip (SoC) server [85], Facebook Wedge ToR switch and Facebook 6 Pack Fabric switch

[86] accordingly.

Power breakdowns for the 3 different data centers are depicted in Fig. 3.3. At

the baseline, all the servers are uniformly loaded at 20% utilization [74] and link utilization

between ToR switch and next stage switch in the Clos topology [3] is 10% [93]. To ease the
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comparison, all the power results are normalized to baseline. The first take-away in Fig. 3.3

is that DCN only contributes around 20% of the total power for all the 3 data centers. The

results are in line with prior works [49, 109]. Next, we focus on the power saving results

of Traffic Packing in the network and Task Packing on servers. By saying Traffic Packing,

we mean moving all traffic to the fewest number of links and switches as long as they are

not overloaded. In Task Packing on servers, all the loads are packed into the fewest servers

as long as the total utilization of the server is below a threshold. The results are obtained

through mathematical analysis of bin packing [122]. The second take-away is that Traffic

Packing on average can only save 8% of the entire data center’s power, while Task Packing

saves as much as 53% of total power. Thus, we should better do the Task Packing on servers

to save most of the power.

3.3 Provisioning on Symmetric Topology

In prior works, each container is allocated to a server independently, ignoring

the affinity or dependency between containers. Goldilocks leverages a holistic graph-based

approach to solve the container placement problem, while minimizing power and task com-

pletion time. The algorithm is centered around the partitioning of two graphs: the capacity

graph and container graph. Goldilocks partitions the containers into different balanced

groups before assigning each container group to a subtree in the topology. The grouping is

achieved by running the recursive bipartitioning algorithm on the container graph. With

the min-cut objective function, the containers having high communication frequency are

grouped together and then placed closer together in the data center.
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Figure 3.4: Example for capacity graph and container graph.

3.3.1 Graph Construction

Capacity Graph: We construct a capacity graph, representing the total resource

capacity in the data center. The vertex weight is a 3 dimensional vector <CPU utilization,

Memory usage, Network bandwidth>. The edge weight is the length of the shortest path

(i.e., number of links) between server pairs in the topology. As an example in Fig. 3.4 (a),

we show a simple topology with 4 switches (circles) and 4 servers (rectangles). Its capacity

graph is shown in Fig. 3.4 (b). The vector <24*(100%), 256G, 1000Mbps> means that each

server has 24 CPU cores (with 100% utilization), 256GB memory and 1000Mbps network

bandwidth (we choose to not factor in the disk size for the moment, assuming it is not

likely to be a limiting factor). With the Clos topology allowing line rate communication

between any server pair [3], we set the Network bandwidth in vertex weight as the link

capacity of server’s Network Interface Card (NIC). We relax this assumption in section 3.4.

We set the edge weight as path length, because each substructure in the Clos topology

will automatically be grouped together during the graph partitioning for the max-cut, since

inter-substructure edges always have the largest edge weight.
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Table 3.2: Vertex weight and edge weight of 4 data center workloads.

CPU
(%)

Memory
(GB)

Network
(Mbps)

Flow
Count

Twitter Content Caching
(Memcached)

33 4 24 4944

Web Search (Apache Solr) 32 12 1 50

Naive Bayes Classifier
(Hadoop)

376 2 328 2

Media Streaming (Nginx) 54 57 320 25

(b) Vertex and Edge Weight Distribution(a) Container Graph (100)
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Figure 3.5: Vertex weight and edge weight distribution (part b) in the Microsoft search
trace graph (part a, 100 vertices snapshot).

Container Graph: Each vertex in the container graph corresponds to a container

in the workload. The vertex weight is the resource demand, in terms of CPU utilization,

memory usage and network bandwidth. The edge weight is the number of distinct flows

between the pair of containers. We aim to place together the containers with the most

frequent communication. An example of the container graph is given in Fig. 3.4 (c).

We present the characteristics of different containerized applications, deployed

in our testbed, in Table 3.2. Each application instance is hosted in a Docker container.

Columns 2-4 are the vertex weights and the last column is the edge weight. Next, we show

a part of the container graph for the Microsoft search trace [6] (which has 5488 vertices
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and 128538 edges) in Fig. 3.5 (a) for 100 vertices (IP range: 10.0.0.1 to 10.0.0.100 in the

trace). The vertex weight and edge weight distribution are plotted in Fig. 3.5 (b). All

the weights are normalized to the smallest value in the distribution. For example, the dot

on the Vertex-CPU line with the value of 1.2 on the X-axis means its CPU utilization is

1.2 times larger than the smallest CPU utilization in the trace. In the trace, all the nodes

performing the search indexing occupy 12GB memory for in-memory index accessing. So,

the vertex weight is 1 for memory usage, after normalization for all vertices.

3.3.2 Container Partitioning and Assignment

Goldilocks assigns a group of containers that have inter-dependencies together,

rather than assigning each stand-alone container. The group is assigned to a substructure

(a machine, a rack, a pod or a subtree) in the DCN topology. The substructure can be

automatically found by recursively bipartitioning the capacity graph, using the max-cut

objective function. The resource capacities of every server in the substructure are factored

as vertex weights in capacity graph. The group of containers are assigned to a substructure

only if the containers’ resource demands can be satisfied by the substructure.

Consider a container graph Gc = (V c, Ec), where V c are the vertices and Ec are

the edges. The number of vertices is given by m = |V c|. Ac is the vector representing the

resource demands of container vertex V c. Similarly, Gt = (V t, Et) is the capacity graph

with N vertices . Bt is the vector representing the resource capacity of server V t. The goal

of partitioning on the container graph is to find n partitions P1 to Pn such that:
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minimize
∑

1≤i<j≤n
|Ec

ij | (3.1)

∀ Pi,
∑
∀j∈Pi

Ac
j ≤ Bt

i , where 1 ≤ i ≤ n (3.2)

UP1 ≈ UP2 ≈ ... ≈ UPn (3.3)

n is determined at run-time of the partitioning algorithm rather than as a pre-

defined static parameter. UPi refers the utilization of server V t
i , where container group Pi

is hosted. In equation (2), the algorithm stops bipartitioning the container graphs until the

container group’s resource demands can be satisfied by the server’s resource capacity. At

the final step of the partitioning algorithm, the container groups are assigned to servers.

Equation (3) guarantees that the containers are uniformly distributed among n partitions.

Ec
ij is the set of edges between partition Pi and Pj in container graph Gc. |Ec

ij | refers the sum

of edge weights for Ec
ij . Equation (1) guarantees that the cut is minimized when partitioning

the container graph. Equation (2) guarantees the resource constraints are satisfied.

Fig. 3.6 shows the workflow for locality partitioning. G0 in Fig. 3.6 (a) is the initial

container graph and Fig. 3.6 (b) is the DCN topology. G0 is partitioned into G11 and G12.

In the next iteration, G11 and G12 are bipartitioned because their resource demands exceed

the server’s resource capacity. Because the graph partitioning algorithm in open-source

software, such as METIS [77], can tolerate some imbalances between container partitions,

the number of vertices or total resource demands in G0 does not need to be the power of 2.

For example, the partition G23 can not be assigned to a server without violating resource

constraints. But, its counter-part G24 is a little smaller than G23, as the parent partition

G12 cannot be ideally partitioned into two equally balanced partitions. Thus G24 can be
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Figure 3.6: Recursively bipartition the container graph until the resource demands of leaf
nodes (in part a) can be satisfied by the resource capacity of servers (in part b).

successfully allocated to a server. The partition G23 has to be bipartitioned again to obtain

G31 and G32.

Finally, the container groups to be assigned to the servers in Fig. 3.6 (b) are G21,

G22, G31, G32, G24. In addition to maximizing the intra-group locality, the partitions G21

and G22 that have the same parent partition are also assigned to the same rack in Fig. 3.6 (b)

to maximize inter-group locality as well. By using the bipartitioning algorithm recursively,

the inter-container communication is localized to a server, a rack, a pod or a subtree in the

topology.

The partitioning algorithm in Goldilocks is implemented by using METIS [77].

METIS produces the optimal balanced min-cut partitioning. The computation time is

reasonably small. For example, it just takes 285s to partition a graph with 1 million vertices.

That means the epoch length in Goldilocks from one execution of container placement to

the next can be short enough to quickly adapt to load changes in data centers. It is practical
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(a) Twitter Content Caching (b) Microsoft Search Trace

Figure 3.7: Partition results for the Twitter Content Caching with 224 containers (part a)
and Microsoft search trace with 100 vertices (part b).

to deploy the algorithm for a large topology with millions of containers. In Fig. 3.7, we

present two real partitioning results from our testbed experiment and also in the Microsoft

trace graph. In Fig. 3.7 (a), there are a total of 224 Memcached containers (to simulate the

Twitter content caching) which are represented by a cell. Each color in the results means

a unique partition. Similarly, for the Microsoft trace graph [6] in Fig. 3.5 (a), there are 5

different container partitions shown in Fig. 3.7 (b).

3.4 Provisioning on Asymmetric Topology

In section 3.3.2, we assumed a symmetric network topology with full bisection

bandwidth and homogeneous servers. Although symmetric topology is widely used [98, 93,

3, 49, 130, 113, 43, 122], switch and link failures can make the DCN topology asymmetric.

Thus, servers are not inter-changeable because of imbalanced network bandwidth in various

parts of the DCN [5]. The homogeneous server assumption might not hold as well [111, 31]

because of legacy equipment even in a data center with custom-built servers [98].
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In order to relax the symmetric topology and homogeneous server assumptions,

we have to overcome two problems. First, only checking the network bandwidth usage at

the server’s NIC is not enough to ensure that resource demands are met, as the full bi-

section bandwidth assumption doesn’t hold with an asymmetric DCN topology. Second,

Goldilocks partitions the containers into a few balanced groups and maps them to homoge-

neous servers in section 3.3.2. But now, each server has different computing and networking

capabilities.

We now solve the problem of allocating m containers to an asymmetric tree topol-

ogy without violating the resource constraints for each server and network link. The servers

have various CPU cores, memory capacity and NIC bandwidth. Containers are labeled with

a particular Group id for the sake of minimal power consumption and task completion time.

Containers with same Group id should be placed close to each other in the topology. This

is a NP-hard problem [37, 69]. So, we propose a heuristic algorithm in Goldilocks. In sec-

tion 3.4.1, the algorithm is first analyzed under the assumption that there is no inter-group

communications between containers. Subsequently, we consider the more realistic case that

container groups communicate with each other.

3.4.1 Assignment without Inter-Group Communication

The heuristic algorithm reuses the locality-focused partitioning in section 3.3.2.

The bipartitioning algorithm stops when the resource demands of every container group

can be satisfied by the average capacity of the heterogeneous servers. If m containers are

partitioned into n groups, the initial number of active servers to place the m containers

is n. Because the average capacity is used, the final number of active servers n′ might be
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Figure 3.8: In (a), each container group is abstracted as a Virtual Cluster. All the running
containers are represented by a 2-layer Virtual Cluster. When placing a virtual cluster of
containers on the DCN topology, any underlay physical link divides the virtual cluster into
2 components (part b).

larger than the initial value n after allocating all the m containers. The abstraction of a

Virtual Cluster, introduced in Oktopus [13] and Proteus [120] is leveraged by Goldilocks to

represent a container group.

In Fig. 3.8 (a), a total of m containers are partitioned into n groups. Containers

1 to m/n are grouped together into a Virtual Cluster, and these containers are connected

by a virtual switch. The virtual switch would represent a group of physical switches and

links of the DCN, and it is expected that it can support the communication requirements

among the containers in the Virtual Cluster. Consider the bandwidth requirement between

the virtual switch and container i as being Bi. Conservatively, Bi should be larger than

the sum of the intra-group container traffic and inter-group traffic for container i. To

successfully place a container group in the topology, we have to meet the container group’s

CPU and memory demands on the servers as well as the bandwidth requirements on every

underlay links of the Virtual Cluster. Validating the server side resource requirement is
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relatively straightforward. Therefore, we focus on the network link bandwidth reservation.

If we ignore the inter-group communications in Fig. 3.8 (a), the problem becomes

placing n independent container groups (i.e., Virtual Clusters) in the data center without

violating resource constraints. Considering a subtree structure Ti in the DCN topology as

shown in Fig. 3.8 (b), the bandwidth of outbound link(s) between Ti and the remaining data

center is the bisection bandwidth (for multiple paths) between Ti and the remaining data

center. Under the general assumption, some containers have already been placed on subtree

Ti. The pending container group to be placed on subtree Ti is group j (i.e., Virtual Cluster

V Cj). Because of resource constraints at subtree Ti, the maximum number of containers

that can be placed at subtree Ti is component a as shown in Fig. 3.8 (b). The component

b of V Cj has to be placed at the remaining part of the data center. The maximum size of

component a for V Cj is bounded by the residual bandwidth at the outbound link(s) [13].

If we know the residual bandwidth at the outbound link(s) of subtree Ti, we can calculate

the maximum size of component a for V Cj .

With the maximum component a for V Cj at subtree Ti, V Cj is placed at the

smallest left-most subtree that can support all m/n containers of group Gj . In such a way,

all the independent container groups are successfully placed. The subgraph of the DCN with

n active servers might not be able to support the demands of n Virtual Clusters, because

the average server capacity is fully used, or because we assumed full network bisection when

determining the number of groups n. Goldilocks increases the value of n by the size of one

pod when there are one or more Virtual Clusters that have to be placed. Because containers

with same Group id are placed in the smallest subtree, locality is assured.
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3.4.2 Assignment with Inter-Group Communication

Subsequently, we place the n container groups as a whole. The ignored inter-group

bandwidth BG1 to BGn in Fig. 3.8 (a) should be considered now. Suppose we try to place

a 2-layer Virtual Cluster with only 2 container groups (G1 and G2), similar to Fig. 3.8 (a).

Using the same example in Fig. 3.8 (b), the Group 1 has already been placed in the data

center with component a (G1a) in the subtree Ti and component b in the remaining data

center. The next step is to place container group G2 with component G2a in subtree Ti.

The containers of G2 that can not be placed at Ti because of resource constraints are called

component G2b. The problem we try to solve is deciding the maximum size of G2a based

on the residual bandwidth at outbound link(s) [13] of subtree Ti.

In the independent group placing, the size of G2a is only limited by the intra

communication between component G2a and G2b. But now we need to consider the inter-

group communication between G2a and G1b. Because G1b of group 1 is placed outside of

subtree Ti. The bidirectional bandwidth to be reserved on the outbound link(s) of subtree

Ti, to satisfy group G2, is given by RG2 :

RG2 = min (
∑
∀q∈G2a

Bq, (
∑
∀r∈G2b

Br +
∑
∀s∈G1b

Bs)) (3.4)

∑
∀q∈G2a

Bq is the sum of bandwidth for all the containers located in component G2a. The

required bandwidth at outbound link(s) to support G2 could never be larger than the

total bandwidth of component G2a.
∑
∀r∈G2b

Br is the intra-group communication between

G2a and G2b. The inter-group communication between G2a and G1b is represented by∑
∀s∈G1b

Bs. If the sum of communication to the outside of subtree Ti (i.e.,
∑
∀r∈G2b

Br +∑
∀s∈G1b

Bs) is smaller than the total bandwidth of component G2a, we should reserve
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∑
∀r∈G2b

Br +
∑
∀s∈G1b

Bs bandwidth at the outbound link(s). Otherwise, we should reserve∑
∀q∈G2a

Bq bandwidth.

Next, we consider the case with n container groups (G1 to Gn). If our algorithm

already placed G1 to Gk−1, the next one to be placed is the container group Gk. The total

bandwidth of component Gka and the intra-group communication for Gk are similar to the

terms at equation (4). Now, we focus on the inter-group communication to the outside of

subtree Ti, given by the following equation:

∑
1≤y≤k−1

∑
∀r∈Gyb

Br +
∑

k+1≤z≤n

∑
∀s∈Gz

Bs (3.5)

∑
1≤y≤k−1

∑
∀r∈Gyb

Br is the communication between component Gka and all the

component b of placed groups (G1 to Gk−1). For the pending container groups Gk+1 to

Gn, to be conservative, component b has all the containers in that group and the size of

component a is 0. So,
∑

k+1≤z≤n
∑
∀s∈Gz

Bs is the communication to all the unplaced

container groups. By knowing the required bandwidth at the outbound link(s), the 2-layer

virtual cluster can be assigned to the data center. Note that the bandwidth constraints on

any links l inside Ti has already been satisfied when placing container groups on the subtree

Tl inside tree Ti, as the container groups are first placed on the smallest tree in the topology

[13].

3.5 Implementation

Our testbed consists of 16 compute nodes and a management node. All the com-

pute nodes have a 32 core AMD Opteron 6272 CPU, 64G memory, 1G Ethernet NIC, 50G

SSD and 12TB shared RAID file system. All the servers run CentOS 7.2. In order to sup-
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port the Docker container migration, we customized the Linux kernel version 4.14.24 and

CONFIG CHECKPOINT RESTORE is enabled in the kernel. In the network, a leaf-spine

topology is achieved by using 3 HPE 3800 series switches with 48 1G ports each. One phys-

ical switch is divided into 8 virtual switches (distinct VLANs) to simulate the leaf switches.

Every pair of physical servers is connected to a leaf switch. Leaf switches are connected by

2 spine switches in a full mesh.

All the applications are hosted in Docker containers (version 17.09.1-CE). Docker

container migration is an essential function for the placement of containers from one execu-

tion to the next. At the end of each epoch, the containers are migrated to the new servers

based on the algorithms in section 3.3 and 3.4. Goldilocks leverages the process checkpoint

and restore technique [10, 66] to migrate containers between servers. The footprint of a

process is typically stored as a disk image and then restored in the destination server. This

process checkpoint & restore is a challenging task because a number of different pieces of

information: namespace, iptables, cgroup and memory pages have to be obtained from

the application’s process tree. In our implementation, we use the Checkpoint Restore In

Userspace (CRIU) [28] to achieve the Docker container checkpoint & restore.

The current CRIU has several limitations for container checkpointing. CRIU only

checkpoints the file descriptor and inode information. We need to copy disk files and

the Docker volume separately, for which we use rsync. Also, CRIU freezes the network

connection by using iptable rules. It is essential that the same application-specific IP

address exists at the destination server. In order to achieve seamless container migration,

we adopt a similar policy as in VL2 [43]. The location-specific IP address is in subnet
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192.168.0.0/16, but the application-specific IP address is in range 10.0.0.0/16. Node 16 in

the cluster functions as a Docker swarm manager to also maintain the mapping between

location-specific IP address and application-specific IP address. All the Docker containers

are attached to the same overlay network, with tunnelling achieved by using VxLAN.

Apart from the 16 compute nodes, we have a distinct management node to im-

plement Goldilocks. The management node has an out-of-band connection to the switch

and in-band connection to all the compute nodes. Prior to mapping containers to servers,

the real-time server and network utilization have to be measured. The server utilization is

obtained by polling the Docker metric pseudo-files. Because packet encapsulation is used

in the VxLAN overlay network, the inter-container communication pattern is obtained by

using the IPTraf tool on servers to monitor the virtual Ethernet port for each container. We

developed a migration controller in python to enforce migration rules, defining messages to

orchestrate container checkpoint & restore. Servers can be remotely turned ON/OFF using

an additional IPMI port. We estimate network power savings by determining which of the

switches are idle.

3.6 Evaluation

We evaluate Goldilocks on a testbed implementation and compare it with a number

of alternatives published in the literature, viz., E-PVM [8], mPP [112], Borg [111] and RC-

Informed [27]. We also use large scale trace-driven simulation to further evaluate Goldilocks.

For E-PVM, containers are placed on the least utilized machines. In mPP, containers are

placed on servers in a First Fit Decreasing manner, where items are considered in decreasing
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order of resource demand size. If the resource constraints are satisfied, the container is

allocated to the server with least power increase per utilization unit. The difference between

mPP and Goldilocks is that Goldilocks stops packing containers to the server if we reach the

Peak Energy Efficiency (70% in the experiments), but mPP stops at the maximum server

utilization (95%).

Borg is a cluster scheduling system from Google, including the capabilities of

priority-based scheduling, task preemption, and task packing etc. [111]. In this chapter, we

only implement the task packing algorithm of Borg, meant to reduce stranded resources.

The last algorithm we compared is the bucket-based RC-Informed policy. In RC-Informed,

the CPU resource is oversubscribed because the allocated resource for containers are usually

not full utilized. Currently, the CPU resource is 125% oversubscribed in RC-Informed [27].

To be fair, only the placement algorithms in the alternatives are implemented on our Docker

container-based testbed, independent of whether it is a virtualization-based system (e.g.,

mPP and RC-Informed) or a Linux container-based system (e.g., Borg and E-PVM).

3.6.1 Testbed Results

Twitter Content Caching on Wikipedia Trace Pattern. We start with an

experiment using the Twitter content caching workload. We set up a fixed, total number

of 176 containers in the testbed, based on the goal of ensuring that the average server

utilization for E-PVM is 32%, in line with prior observations [74, 60, 69]. In this experiment,

the front-end container queries for a set of twitter terms from the Memcached container. If

there is a hit for the query in the memory, a success occurs for the get operation.
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Figure 3.9: Twitter content caching on the Wikipedia trace pattern.

Fig. 3.9 shows the time-varying results across the alternatives and Fig. 3.10 shows

the average values. The query pattern for the request per second (RPS) rate follows the

Wikipedia trace [107]. The RPS ranges from 44K to 440K across the entire testbed. In

Fig. 3.9 (a), all the servers are active in E-PVM. Most of the time, Goldilocks and the

bucket-based RC-Informed need 9 active servers, compared with 7 active servers in Borg

and mPP, because servers in Goldilocks are limited to a maximum of 70% utilization. All the

placement policies, except E-PVM, might need less active servers at low RPS, as the resource

demands per container decrease. Goldilocks in Fig. 3.9 (b) consumes the least amount of
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Figure 3.10: Average power saving, task completion time and energy per request results for
2 trace patterns.

power over the 60-mins experiment, because it seeks to achieve the Peak Energy Efficiency.

The average power savings of mPP, Borg, RC-Informed and Goldilocks, compared with E-

PVM on the Wiki pattern, are given in Fig. 3.10 (a). We can observe that Goldilocks saves

22.7% of the entire data center’s power and outperforms all the alternatives.

More importantly, task completion time of queries improves significantly with

Goldilocks in Fig. 3.9 (c). Goldilocks has the smallest task completion time during the

60-mins experiment. The average task completion time results are plotted in Fig. 3.10 (b),

with Goldilocks giving the lowest result of 3.67ms. Among the alternatives, RC-Informed

has the smallest task completion time of 9.44 ms. It is a bucket-based scheduling policy

and has the lowest server utilization, compared with Borg and mPP. The average task

completion time of Goldilocks is only 33% of RC-Informed, as we place the query generator

and responder closely in the testbed.

The next important consideration is the energy consumed per request. Because of

Peak Energy Efficiency (i.e., less power consumption) and locality-focused graph partition-

ing (i.e., shorter task completion time) in Goldilocks, it has the lowest energy per request
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results in Fig. 3.9 (d). We first take a look at the alternatives. On average, RC-Informed

has the best energy per request result of 0.06, as shown in Fig. 3.10 (c). The energy per

request result of Goldilocks is 3 times of better than RC-Informed, because of least power

consumption and shortest task completion time in Fig 3.9 (b) and (c).

Rich Mixture of Applications on Azure Trace Pattern. In the previous

experiments, we had a single Twitter workload and the number of containers was fixed at

176 and we vary the RPS from 44K to 440K. We now consider a rich mixture of applications,

as is typical in a cloud data center and reflected in workload trace from the Microsoft Azure

cloud [27]. We compare Goldilocks with the alternatives under this workload mix in terms

of total number of containers needed in the testbed. The RPS for the containers supporting

Twitter content caching is set at 2K for each connection. The total RPS for the entire

set of services depends on the number of containers in the data center. In addition to

the Twitter caching workload, we add 6 other background applications: the Apache Solr

Search Engine, a movie recommendation system on Spark, Hadoop, a page rank on Spark

and Cassandra database. The total number of containers ranges between 149 and 221,

following the pattern found in Microsoft Azure trace [27]. We achieved this by stopping

existing containers and launching new containers in the testbed. For the baseline E-PVM,

the average server utilization gets to be as high as 54%.

Fig. 3.11 (a) plots the number of active servers for E-PVM, mPP, Borg, RC-

Informed and Goldilocks. Because of the mix of applications, packing of containers does

result in higher fragmentation. Goldilocks needs 2 more active servers to serve the same

number of containers compared to Borg and mPP, because of 70% server utilization in
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Figure 3.11: Rich mixture of applications on the Azure trace pattern.

Goldilocks. In Fig. 3.11 (b), Goldilocks again consumes the lowest total data center power.

Compared with the baseline E-PVM, the power saving of Goldilocks increases from 6.6% to

18.8% when the total number of containers in the testbed decreases to 149. We observe that

mPP, Borg and RC-Informed consume similar amount of power as the baseline E-PVM, at

about 55% average server utilization. The reason is that these scheduling policies keep pack-

ing containers until reaching maximum server utilization, where the server power increases

non-linearly. At the same average server utilization, Goldilocks consumes 6.7% less power

compared with the base line E-PVM. Similarly, we plot the average power saving results

compared with E-PVM in Fig. 3.10 (a). On average, Goldilocks achieves 11.7% power

saving and the best one in alternatives (RC-Informed) has power saving of 8.9%. Fig. 3.11

(c) compares the task completion times. Goldilocks has the shortest task completion time,

by far, for Twitter queries. As shown in Fig. 3.10 (b), the average task completion time for

Goldilocks is 4.9 ms. The best, among the others compared is E-PVM, but even that has

2.5 times higher average task completion time.
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3.6.2 Simulation Results

In addition to the testbed implementation, we also performed a flow-level, large

scale simulation with a 28-ary fat tree topology, with a total of 5488 servers and 980 switches.

The power model we used for servers is Dell Power Edge R940 [103] and the power model

for switch is HPE Altoline 6940 [86]. The flow level simulation uses the processing time

distribution for search queries based on a micro-benchmark of measurements made in our

testbed. There are a total of 49392 containers in the topology, targeting a 20-30% server

utilization [74, 60, 69] for the baseline E-PVM. We then simulated Goldilocks, mPP, Borg

and RC-Informed to get the power savings and improvements in task completion time.

Since the trace [6] used for the simulation has only the flow level information,

we obtain the resource demands on the servers through experiments in our testbed with a

workload matching the trace’s network traffic pattern and then measured the server resource

utilization. In the trace, there are two kinds of traffic: search queries with flow sizes ranging

from 1.6KB to 2KB and background update traffic with 1MB to 50MB flow sizes. We assume

for the purposes of our simulation that the background traffic is Hadoop traffic because the

URL crawling in search is based on the Map-Reduce framework.

In Fig. 3.12 (a), we deploy the Apache Solr search engine in the testbed and vary

the search request rate. Since the maximum number of connections per ISN in the trace is

120, we increase the request rate up to 120 RPS. The memory usage stays at 12G through-

out. Fig. 3.12 (b) shows the background update traffic generated in our testbed deployed

as a 16-node Hadoop cluster running the Facebook job trace [20]. The aggregate traffic and

corresponding CPU utilization are then measured. Each color in the figure represents the
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Figure 3.12: Part (a), measured CPU utilization for Apache Solr search engine. Y axis
is defined as the sum of all CPU core’s utilization. Part (b), CPU utilization for varying
traffic rates, with 5 servers in a 16-node Hadoop cluster running Facebook trace.

data from one of the slave nodes in the Hadoop cluster. As shown in Fig. 3.12 (b), there

are multiple dots with the same network traffic rate (X-axis value). In the simulation, a

randomly chosen CPU utilization (Y-axis value) is chosen for a selected network traffic rate.

The resource demands on the servers is the result of the sum of these 2 applications.

Fig. 3.13 (a) shows the number of active servers over a period of 88 hours. Because

E-PVM always chooses the least utilized server, all of the 5488 servers in the topology are

active. Borg and mPP pack the containers to achieve 95% server utilization and both of

them have the least number of active servers. RC-Informed is a bucket-based scheduling

policy, and the number of active servers is constrained by the total reserved resources for

each container rather than the real-time resource utilization in the simulation. That is why

RC-Informed needs 2358 active servers most of the time. Although Goldilocks needs more

active servers compared with the other container packing policies, it consumes the least

amount of power, as shown in Fig. 3.13 (b). Goldilocks stops packing containers when the

server reaches its Peak Energy Efficiency (70% in this simulation). The baseline, E-PVM,
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Figure 3.13: Trace-driven simulation results.

consumes the highest data center power because of no saving in static server power. The

power consumption of mPP, Borg and RC-Informed are similar, within 150kw of each other.

Finally, we take a look at the task completion time of search queries in Fig. 3.13

(c). Goldilocks has the shortest task completion time because of large server headroom

and good locality. The average server load on E-PVM is around 26% to 40%. mPP, Borg

and RC-Informed target at 95% [27] server utilization. This high server load contributes

to their increased task completion time compared with E-PVM. In Fig. 3.13 (d), we see

the average values of active server, power consumption and task completion time. All the

values are normalized to the values of baseline E-PVM. Goldilocks has the lowest power

consumption (27% power saving compared with E-PVM) and shortest task completion
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time (0.85 of E-PVM). Compared with the best alternative for each performance metric,

Goldilocks consumes 5.2% less power than RC-Informed and achieves 15% shorter task

completion time than E-PVM.

47



Chapter 4

DREAM: Distributed Traffic

Consolidation in the DCN

4.1 Introduction

Traffic consolidation shifts network flows to a minimal number of active switches

and turns off idle switches and links to save power. State-of-the-art traffic consolidation

frameworks [49, 113, 125] are not responsive to traffic variation because of the long compu-

tation times involved with the optimization in a centralized manner and also depends on the

limited refresh rate for the flow-level statistics from network switches. Poor responsiveness

results in link congestion or packet drops in the network as well as poor adaptation in terms

of managing energy consumption. This motivates us to design a distributed energy-aware

traffic management framework for the DCN. The distributed design can quickly adapt to

traffic fluctuation in the DCN, and promises to fully take advantage of every energy saving
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opportunity when the network load ebbs. What is more, it also can move out traffic from

congested paths in a more timely manner. In such cases, it reduces the packet drop rate

and latency.

Our distributed design, DREAM, uses the existing primitives in hardware switches

such as Explicit Congestion Notification (ECN) marking [41, 6, 92] to report link conges-

tion to DREAM’s distributed agents in servers. The ECN marking in DREAM is also

beneficial for controlling latency for an application’s flow. The distributed agents moni-

toring ECN feedback reroute traffic when a path is congested, but at a flowlet granularity.

DREAM reacts before significant queuing or packet loss occurs.

The basic scheduling unit in DREAM is flowlet (i.e., a burst of packets) [5]. This

enables it to take advantage of the multiple active paths in the DCN without any modifi-

cation to the host protocol stack. Flowlet scheduling also reduces fragmenting of the link

capacity and allows for better energy savings. For each active path, a value representing the

probability of sending next flowlet on that path is maintained. The selection probability

value is increased additively after successfully sending a flowlet over an uncongested path,

and decreases substantially when observing ECN feedback indicating congestion on the

path. Increasing the selection probability of left-most path correspondingly reduces the se-

lection probability for the right-most path, thus eventually resulting in traffic consolidation.

Prior work [21] on proving that the equilibrium point for Additive Increase Multiplicative

Decrease (AIMD) can be re-used to show that its use in our design can result in a stable

operation.

Finally, we propose a packet encapsulation format in the Open vSwitch to achieve
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explicit path control. In prior works [49, 113, 125], the routing path is decided by the

centralized controller. DREAM has to enforce explicit routing path in a distributed manner.

Inspired by Xpath [52], we pre-install the forwarding rules based on a compressed path ID

at switches. At the traffic source, the distributed agent encapsulates packets and inserts

the path ID in an encapsulation header. Switches match on the path ID along with other

header fields to route the flows appropriately. To minimize encapsulation overheads, we

re-use primitives already in Open vSwitch.

DREAM is implemented in a testbed DCN with a leaf-spine topology. The testbed

evaluation uses the Wikipedia traffic trace [107] and more bursty Facebook MapReduce

traffic trace [19]. We show that DREAM on average achieves at least 15.8% DCN energy

saving, while CARPO and ElasticTree produces 11.6% and 8.4% energy saving, respectively.

The packet drop ratio in DREAM is less than 0.01% while the best among the alternatives,

ElasticTree [49], has 0.19% drop ratio on Facebook trace and 0.85% drop ratio on Wikipedia

trace. Finally, DREAM has at least 30% shorter application-level latency compared to the

alternatives. Our major contributions include:

• To improve responsiveness and scalability, we consolidate traffic to a subset of the

DCN in a distributed manner, to achieve energy saving. The distributed agent is

implemented in Open vSwitch without any modification to the host protocol stack or

the data center network switches.

• We propose to reroute traffic based on ECN feedback, with congestion information

obtained every RTT. The more frequent, accurate feedback of incipient congestion on

the precise path a flowlet traverses helps achieve much better network latency.
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• Network traffic is scheduled at the granularity of flowlet to take advantage of multiple

active paths in the DCN, without any host side modification. We propose a multi-path

flowlet scheduling algorithm for the energy efficient DCN.

• We propose a packet encapsulation format for explicit path control in the network.

• We demonstrate the effectiveness of DREAM in a testbed implementation with pro-

duction switches.

4.2 Background and Motivation

4.2.1 Energy Efficient Data Center Networks

Data centers host tens of thousands of servers and consume tens of Megawatts

of power [108]. Power management on servers is an important component, and the use of

techniques such as DVFS [69, 108, 130, 60] and VM migration [27, 112, 111] already seek

to save power. ElasticTree [49] and a number of other following works [113, 126, 125] seek

to make the data center network energy proportional as well, to complement the power

management on servers.

ElasticTree [49] converts the energy management of DCN into an augmented Multi

Commodity Flow (MCF) problem and then solves it by using Linear Programming (LP).

Typically, the LP program runs at the centralized Software Defined Network (SDN) [18]

controller. The SDN controller leverages the Openflow [73] protocol to fetch traffic statistics

from the hardware switches periodically. The future bit rate of flows is predicted based on

the traffic history in the last epoch, while providing for a safety margin [49]. Based on

51



0

50

100

150

200

250

0 50 100 150 200 250 300

Th
ro

ug
hp

ut
 (

M
bp

s)

Time (s)

Figure 4.1: Traffic in the DCN has high variation, as shown for an example from the
Microsoft search trace.

these traffic statistics, the centralized optimizer in the SDN controller runs every epoch to

determine which subset of the DCN should be active. The epoch length needs to be longer

than optimizer’s computation time and more importantly longer than the rate at which the

traffic statistics are reported by the hardware switches. The centralized optimizer outputs

the updated routing path for each flow to achieve optimal network energy savings, which is

enforced by the centralized SDN controller.

4.2.2 Traffic Variability and Responsiveness

Network traffic in data centers can be highly variable [14]. Some applications,

such as MapReduce [34], generate bursty traffic in a short time period, especially for the

data shuffle phase. In Fig. 4.1, we plot the traffic variation of Microsoft Search trace [6]

spanning a 5 min. interval. For example, the throughput at 34th second is 8.8Mbps but

bursts up to 183Mbps at the next second.
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Figure 4.2: Poor responsiveness to traffic variation incurs link congestion or energy ineffi-
ciency.

In the ideal case for an energy proportional DCN, the energy consumption should

adapt to the traffic variation. Otherwise, we suffer either link congestion or energy ineffi-

ciency. As we discussed in the previous subsection, the responsiveness of the energy saving

framework depends on the epoch length for traffic scheduling. In Fig. 4.2, we give an

example to show how the epoch length might impact energy saving as well as link conges-

tion. The blue line represents one network flow in the data center. Its throughput varies

over the 60 seconds shown. First, we set the epoch length for traffic consolidation at 10s.

The red line is the predicted throughput based on the 90th-percentile [113] throughput in

last epoch. Then, the centralized controller will reserve network bandwidth based on this

predicted traffic data rate. Due to prediction errors, the observed flow’s throughput might

be larger than the predicted value, as shown in the interval 15s - 20s. But the centralized

controller will reroute traffic only at the end of current epoch (i.e., at 20s). Packet drop and

TCP retransmission could occur. A shorter epoch length promises to achieve better energy
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Figure 4.3: Computation time of linear programming and greedy bin packing for various
network topology sizes.

savings. We also plot the predicted workload for 5s epoch length (green line). During the

interval 15s - 20s, when the rate of the flow decreases, the optimizer with 5s (smaller) epoch

length will capture this energy saving opportunity, which will be missed if a longer epoch

is used.

The epoch length is limited by two considerations: the computation time of the

optimizer and the measurement frequency to obtain the traffic statistics. Modeling the

traffic consolidation as a linear programming model has high computation complexity [109].

Although a heuristic algorithm has been proposed to accelerate this [125, 49], the compu-

tation time can still be high for large data center network topologies. Fig. 4.3 shows the

computation time of linear programming and heuristic greedy bin packing [49] for different

data center sizes. Greedy Bin Packing still takes more than 1000s for a medium size data

center. We realize that this can be speeded up with a faster server. However, the epoch

length is still constrained by measurement frequency of traffic statistics. In the centralized

design, the controller has to poll the hardware switches for traffic stats using protocols such
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as SNMP [100], sFlow [95] and Openflow. The measurement frequency cannot be very high

due to measurement overheads. For example, a hardware switch in our testbed only updates

the traffic metrics for Openflow [73] protocol every 20 seconds [51]. That means the epoch

length has to be 20 seconds or even more.

4.3 DREAM Design

DREAM is a distributed traffic consolidation framework operating at a flowlet-

level to achieve energy savings in data center networks. Its distributed and adaptive design

makes it responsive to latency-sensitive applications and rapidly adjusts to bursty network

traffic. The flowlet-level scheduling by agents at endpoints takes advantage of the multiple

paths potentially available in data center networks without any modifications to existing

data center infrastructures. Flowlet-level scheduling with the much shorter decision-making

epochs enables DREAM to fully utilize every energy saving opportunity, as the workload

varies. Finally, DREAM has lower packet drop ratio and application-level latency by adopt-

ing ECN for flowlet path selection.

4.3.1 Overview

The design of DREAM is shown in Fig. 4.4. Instead of using a centralized con-

troller to do data center wide traffic engineering [49, 125, 113], we use distributed agents

at each end-system to work cooperatively to achieve energy saving in the DCN. The dis-

tributed agent at the servers is a shim layer between the host’s protocol stack and the data

center networking fabric. We use the Open vSwitch [89] virtual switch as an example of
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Figure 4.4: The design overview of DREAM.

this shim layer, since it is widely used in virtualization environments for software-based

switching and forwarding and network automation. The distributed design in DREAM has

better scalability and is more responsive to bursty traffic. In addition, there is no need to

modify host applications or the switches in the DCN.

For example, consider Fig. 4.4 where there are 4 paths (P1 to P4) between Host

1 and Host 2. To save energy in the DCN, we seek to consolidate traffic to a minimal

number of paths, without violating performance (i.e., latency) requirements, and then turn

off idle switches and links (e.g., the switch and links along path P4). At a high level,

DREAM consolidates traffic to a part (e.g., ‘left-most’ for a Leaf-Spine topology) of the

DCN topology. By ‘left-most’, we mean the active switches of a single layer at the structured
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DCN topology are chosen from left to right [49]. To avoid potentially large wake up times

for OFF switches impacting flows, a few backup paths are reserved in the DCN topology,

thus slightly over-provisioning DCN capacity. Path P3 in Fig. 4.4 works as a backup path.

Reducing network delay is very important for latency-sensitive applications. Sim-

ilarly, avoiding packet drops is important to maintain TCP throughput [6, 5]. Hence, we

leverage the commonly used ECN feedback for congestion response. We also use ECN to

steer traffic to an alternate path when one is congested. Idle path such as P4 can be turned

off to save DCN energy. But, there are still 3 active paths between Host 1 and Host 2 in Fig

4.4. When the end-systems are not the bottleneck, the ability to use multiple paths between

a sender-receiver pair can improve throughput [114]. DREAM splits a flow across multiple

active paths in the DCN at the flowlet granularity. For example, we split the flow between

VM1 and VM3 among active paths P1 and P2. A flowlet is a burst of packets of a flow

[5], where the inter-flowlet time gap is much longer than the inter-arrival times of packets

within a flowlet. The traffic sent on each DCN path is a group of flowlets rather than a

larger flow. Thus, DREAM reduces the fragmenting of bandwidth capacity on each active

path, thus improving multiplexing efficiency on each path (i.e., ‘packing’ more traffic).

At each distributed agent, we maintain a probability for selecting each active path.

The path selection decision for an incoming flowlet is made based on the selection probabil-

ity for each path. We dynamically change the path selection probability for each active path

based on network conditions. For example, in a Leaf-Spine network, we indirectly consoli-

date traffic to the left-most paths by increasing the selection probability for the left-most

path and reducing the selection probability for the right-most path. When ECN marks are
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received for traffic on a particular path, the selection probability for that path is reduced

to mitigate congestion. Only a portion of flowlets are moved to different less-utilized path

(that has a higher selection probability), rather than moving the entire flow, as used in

prior distributed designs [109, 128]. This significantly reduces the oscillations [57] typically

observed in distributed designs for DCN energy reduction.

Unlike previous centralized designs that do not consider the new arrivals of flows

[49, 113, 125], DREAM explicitly deals with new arrivals of flows. DREAM first places a

new flow on the right-most path (i.e., P2 in Fig. 4.4) and then gradually moves traffic to

the left part of active DCN topology. This avoids congesting paths with existing flows and

only migrates the new flows to the favored left-most paths as network conditions warrant.

Previous works factor only existing flows as a variable in a linear programming formulation

and do not deal with online flow arrivals.

Finally, we use packet encapsulation by the distributed agents to achieve explicit

path control. In DREAM, the forwarding rules at hardware switches are set up by re-

utilizing the schemes described in Xpath [52], with highly compressed rules to save Ternary

Content-Addressable Memory (TCAM) resources in switches. The path IDs are inserted

into the outer packet header by the distributed agent. Hardware switches forward packets

accordingly, based on the path ID. For the sake of efficiency, we utilize the existing primitives

in Open vSwitch for the packet encapsulation.

4.3.2 Distributed Agents

In DREAM, the distributed agent is implemented at the shim layer between host’s

protocol stack and the DCN’s networking fabric, for the sake of easy deployment. Open
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vSwitch (OVS) has already implemented the Generic Routing Encapsulation (GRE) and

VxLAN packet encapsulation for tunneling, which we utilize in DREAM. As all the traffic

goes through the OVS data plane, it is an ideal place for the distributed agent of DREAM.

The basic scheduling unit in DREAM is a flowlet. Packet reordering is minimized if

the idle interval between flowlets is more than the maximum difference between the delays

across different paths [5]. Moreover, the TCP protocol stack has increasingly supported

packet reordering to support multi-path, and we take advantage of it, when it does occur

across flowlets.

In DREAM, we consolidate flowlets on a path until we observe ECN on that path.

While ECN is usually used for network congestion feedback [41, 6, 92], we leverage it to

steer packets to avoid congested paths in the DCN. ECN provides feedback of incipient

congestion and thus reduces packet drops and latency by having ECN-enabled TCP con-

nections respond to ECN marks. Hardware switches with ECN capability use an Active

Queue Management (AQM) at the interface level to mark the CE bit, which is reflected

back in the ECE bit of TCP ACK packets. Our distributed agent monitors the ECE bit

in the TCP header to sense path congestion, and moves flowlets from congested paths to

alternate under-utilized paths.

Fig. 4.5 shows the implementation of DREAM in the data plane of Open vSwitch.

The probability of sending a flowlet on each possible path (columns) is maintained in a table

for each flow identified by the 5-tuple (protocol type, src.IP, dst.IP, src.port and dst.port

packet header fields). This selection probability is used to select the path ID which is stored

as the Selected Path ID in an additional column. The selected path ID is for the currently
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Figure 4.5: DREAM implementation in the data plane of Open vSwitch (OVS).

identified flowlet of the flow. Note that each cell in the Selection Probability Table is a

probability value but each cell in the column of Selected Path ID is an integer ID.

First, we introduce the workflow of the outgoing traffic from the host’s protocol

stack to the DCN. Based on the packet inter-arrival time, the Flowlet Detection module

will decide if we have found a new flowlet. The packets of an existing flowlet will be directly

encapsulated with path ID before sending it out on the wire. Upon finding a new flowlet,

the selection probability of previously completed flowlet has to be updated. The details on

how to change the selection probability are described in section 4.3.3. We then choose a

path for the new flowlet based on the path selection probability. As a last step, packets are

encapsulated.

Second, the processing of incoming traffic from the DCN is shown at the bottom

of Fig. 4.5. After decapsulating the packet, we check the ECN flags. If congestion has been
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detected on a path (indicated by the ECE bit of ACK packets), DREAM will update the

selection probability of that path and reroute the flowlet to an alternate under-utilized path

before forwarding the packet to the host’s protocol stack. Otherwise, the incoming traffic

is directly forwarded to the host’s protocol stack.

4.3.3 Scheduling Algorithm

Whenever we detect a flowlet in DREAM, the distributed agent makes a decision

to choose a path for this flowlet, with all the packets in the flowlet following the same path.

DREAM schedules the flowlet on a path based on the selection probability, fi for path i.

We seek to set the value of fi such that we don’t observe ECN on the active routing path.

In Fig. 4.6, we give the state machine for flowlet scheduling.

Over-utilized. We start our algorithm description with the system being in

equilibrium, where the traffic is consolidated onto a few active paths and none of the paths

see congestion (as observed with ECN). Traffic fluctuation is common in DCNs [14, 93].

When we sense that one of the active paths is congested, some traffic have to be moved to

another under-utilized path. Unlike prior works [49, 113, 125], that move the entire TCP

flow every time epoch, DREAM does this at the flowlet-level. This enables DREAM to be

more responsive and dramatically eliminate traffic oscillation. A subset of the flowlets on a

congested path are re-routed, thus alleviating congestion but also ensuring that there is no

traffic oscillation [57]. Traffic are routed on uncongested paths by adapting the probability

of sending the subsequent flowlets on those paths.

In DREAM, the moving average of ECN history is maintained for each path. enew

is the fraction of marked packets with ECN bits in the current time window. The ECN
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marking history e is smoothed using Exponentially Weighted Moving Average (EWMA) as

(1 − α) ∗ eold + α ∗ enew. α is the weight for new fraction of ECN markings. Thus, the

distributed agents can react to link congestion at RTT timescales. Since the RTT in data

center networks is usually a few microseconds [78], it enables DREAM to be very responsive.

When the agent detects ECN on path i, the selection probability fi is decreased by X%.

X% is defined as fi ∗ e/2.

Under-utilized. To save energy, we seek to consolidate traffic to one portion

(e.g., left-most active paths) in the DCN. Let us consider a TCP flow with 4 groups of

flowlets routing on 4 different active paths. The probability of sending the next flowlet

on each of the paths is f1, f2, f3 and f4, respectively. For each path i (=1, 2, 3, 4), we

increase the value of fi if the distributed agent successfully sends a flowlet on path i without

observing any congestion feedback signals. The probability increase follows the Additive

Increase rule, i.e., increase fi by a fixed amount (e.g., 1%). Since we guarantee that the sum

of f1, f2, f3 and f4 is 100%, we correspondingly decrease the value of right-most active path

(i.e., path 4) by 1%. In this design, flowlets are more likely to be routed on the left-most

available active paths. One major concern is that the Additive Increase of fi will finally

result in queue build-up on path i. Then, we will revert to the case of over-utilized paths, in

which we move a subset of flowlets to the under-utilized right most paths. The motivation

of this design is to take advantage of every energy saving opportunity during the period

when there is traffic variation and to react each traffic burst as well, just like TCP varies

the congestion window.
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Figure 4.6: The state machine for flowlet scheduling.

New Arrivals. Unlike ElasticTree [49] and CARPO [113], which are offline so-

lutions for a fixed set of flows, DREAM supports new flows for an online solution. Newly

arriving flows are initially routed over the right-most active path j, to avoid congesting the

heavily utilized left-most paths (1 to j−1) in the network. As the new flow’s flowlets gener-

ate traffic, they gradually move to the left-most active paths (1 to j − 1) at the probability

of 1%, as long as these paths are not congested. If we successfully send a flowlet on path i,

then we enter the under-utilized case for path i.

Finally, we show the state machine for our flowlet-level scheduling in Fig. 4.6. The

state machine starts with the arrival of a new flow. First, we place all the flowlets on the

right-most path j. The selection probability fj for right-most active path j is (100-j+1)%.

To gradually consolidate traffic to the left-most paths, we set f1 until fj−1 to 1%. For any

path i completing the transmission of one flowlet, we increase its probability value fi by

1%. Correspondingly, the selection probability value of right-most path j decreases by 1%.

When observing ECN feedback on path i, we enter state 3. Here, the distributed agent
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decreases the probability value fi by X% depending on the smoothed value of the ECN

feedback. After that, each probability value f except the right-most one fj recovers its

probability value to reach a dynamic balance.

4.3.4 Packet Encapsulation

In data centers, the switches locally decide the next hop using Equal Cost Multiple

Path (ECMP) or Valiant Load Balancing (VLB) [43]. In energy-proportional networks, we

need to route traffic over a minimal number of switches and links thus turning off idle

networking components. For this, explicit path control is essential.

There are many approaches such as Myrinet [83] and Multi Protocol Label Switch-

ing (MPLS) [82] to achieve the explicit path control. MPLS uses distributed protocols

such as CR-LDP [29] or RSVP-TE [94] to populate labels in the network to set policy-

based paths, but can be complex [52]. Previous centralized traffic consolidation frameworks

[49, 113] leverage the SDN controller to insert forwarding rules at the Openflow switches, but

the refresh rate on the Openflow TX/RX counters in hardware switches can be a limiting

factor for responsiveness.

Xpath [52] proposes an efficient way to do explicit path control in the DCN. It

uses a compressed hierarchical path ID to save TCAM space in the switch. A data center

operator pre-installs the forwarding rules at hardware switches based on this path ID. In our

design, we use packet encapsulation at DREAM’s distributed agents to achieve explicit path

control by making path selection decisions and putting the path ID in the encapsulation

header. Fig. 4.7 gives the packet format of our design. Similar to the existing encapsulation
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protocols such as GRE in Open vSwitch, DREAM’s encapsulating packet header comes

between the original IP header and the TCP/UDP header (shown as Inner TCP/UDP

header). We directly copy the fields in inner TCP/UDP header to the outer TCP/UDP

header, maintaining the rest of the layer 4 information, except for using the source port

number in the outer header to store the path ID. Existing hardware switches match on this

path ID, and require no modification. The original source port number is stored at inner

TCP/UDP packet header which will be used by the end-system protocol stack after packet

decapsulation at the destination server.

4.4 Implementation

DREAM is implemented on a testbed with 8 blade servers and 6 switches. The

servers and switches are hosted at two different racks. In the network, we create a 2-layer

leaf spine DCN topology. There are two types of switches in the network: HPE 3800
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J9574A leaf switches and Arista 7050X-72Q spine switches. A pair of 2 servers as a group

is connected to a leaf switch.

Each server has a 32 core AMD Opteron 6272 CPU, 64G memory, 1G Ethernet

Network Interface Card (NIC), 50G SSD and 12 TB shared RAID file system. The TCP

protocol on our CentOS 7.2 operating system is TCP Cubic. We also disable the Nagle

algorithm on the operating system to have more accurate latency results. ECN is enabled

in the Linux kernel. We take control of the host NIC by a modified version of Open

vSwitch 2.4, in which we implement the distributed agents of DREAM. For Open vSwitch,

most of codes of DREAM are implemented at the data plane module. We re-utilizes the

sk buffer primitives in Open vSwitch for efficient packet encapsulation and decapsulation.

At the endpoints, flows are generated by a Python-based traffic generator with TCP Cubic

connections.

On the switches, ECN is enabled. All the port queues share a memory of 12MB.

Each queue can have up to 6.9MB memory. We set the minimum queue length threshold as

20 TCP segments and maximum threshold as 500 TCP segments. When the queue length

is less than 20 TCP segments, no ECN bits are marked. When the queue length is between

20 segments and 500 segments, the ECN is marked probabilistically according to the queue

length. Switches mark ECN bits on all the packets when the average queue length is larger

than 500 TCP segments.

To implement the centralized approaches such as ElasticTree and CARPO, we use

the ONOS [87] SDN controller to control all the software and hardware switches. There are

2 VLANs in the testbed to avoid affecting the accuracy of our measurement results. All the
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Figure 4.8: We use the Wikipedia web service (part a and b) and Facebook MapReduce
(part c and d) trace to evaluate DREAM.

data traffic is routed over VLAN 20 and all the Openflow control messages are routed over

VLAN 1. The Openflow protocol version we used is 1.3. The power consumption of switch

is measured by using Watts Up power meter with a granularity of 0.01 watt.

We use two application workloads that are typical of those observed in current

data centers: Web service like Wikipedia and MapReduce as seen in Facebook to evaluate

the benefit of DREAM.
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Wikipedia Trace. The Wikipedia trace [107] contains about 280 Billion HTML

page requests to Wikipedia database servers. As in [113], we extract all the requests to the

English Wiki pages and group the requests into different prefix folders. For example, the

URL https://en.wikipedia.org/wiki/American is grouped into folder A. Thus we have 61

folders (A-Z, a-z and 1-9). We assume that each folder is served by one database server.

Thus, we have 61 flows in the virtual network. Three of them are shown on Fig. 4.8 (a)

and (b). Fig. 4.8 (a) is the trace for 6 days and Fig. 4.8 (b) is the results for 60 seconds.

The Wikipedia trace exhibits diurnal and day-of-week pattern over the 6 days.

Facebook MapReduce Trace. We use a MapReduce trace obtained from a

2009 Hadoop log file of a Facebook cluster [19]. The SWIM [19] benchmark allows us to

replay jobs from the Hadoop log file and submit these jobs to actual clusters of machines.

To get the traffic matrix, we set up a 8 virtual machine cluster on a host with 64 cores and

64G memory. Each virtual machine has 2 CPU cores, 2G memory, a 140G hard disk and

runs Ubuntu 14.04. In this cluster, we log the task information. Then we regenerate these

tasks on our testbed using Python. The generated network traffic depends on the topology

and environment we implement.

Fig. 4.8 (c) and (d) show the features of our MapReduce trace. The incoming and

outgoing traffic at each slave node is negligible (about 4 Kbps) most of the time. However,

as seen in Fig. 4.8 (c), there are very short time-scale spikes in the traffic. The burst in

link throughput peaks for a few seconds, going up to 400Mbps. The burstiness of the trace

comes from the shuffle phase in MapReduce framework. In Fig. 4.8 (d), we find that there

is traffic between each pair of servers in the cluster.

68



4.5 Evaluation Results

In this section, we evaluate DREAM on the testbed described in last section.

The Wikipedia web service [107] and the more bursty Facebook MapReduce trace [19] are

used. For comparison, we also implement the baseline ECMP, as well as ElasticTree [49]

and CARPO [113] designs. Baseline ECMP is implemented on a centralized ONOS [87]

SDN controller. Both CARPO and ElasticTree are centralized approaches that periodically

run a linear programming model to decide the routing paths for flows. We use GLPK

programming language [42] to implement the linear programming model. The scheduling

granularity for ElasticTree and CARPO is the single TCP flow-level.

Due to the refresh rate of hardware stats in our testbed, which is 20 seconds, we

set the epoch length for ElasticTree and CARPO at 25 seconds. CARPO considers the

correlation between flows and avoids placing positively-correlated flows together compared

to ElasticTree. Another major difference is that CARPO uses the 90th%tile of the last

epoch to predict the flow’s bit rate at the next epoch, while ElasticTree uses the peak value

in the last epoch. In contrast, the epoch length for DREAM is at most one RTT as the

hardware switch can mark ECN on each packet. Finally, we obtain the energy savings by

using a Watts up power meter with granularity of 0.01 watt. The packet drop ratio is

calculated by using the TX/RX drop counters at the switches and latency is measured at

the application-level.
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Figure 4.9: Because of good responsiveness and flowlet-level traffic scheduling, DREAM
saves more DCN energy compared with CARPO and ElasticTree on both Wikipedia and
Facebook trace.

4.5.1 Energy Saving

We first compare DREAM with CARPO and ElasticTree with regard to the energy

saving. All the energy saving results are normalized to the energy consumed with ECMP. In

the first experiment, we evaluate DREAM and the other alternatives using the Wikipedia

web service workload. Each server has 8 consistent flows to other servers in the testbed. Half

of them are sent to the servers within the same Top of Rack (ToR) switch. The destination of
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remaining 4 flows are randomly selected outside the ToR switch. We use a traffic generator

to generate the Wikipedia web service flows with TCP connections implemented on Linux.

As the original Wikipedia trace has a low data rate for flows, we scale up its rate in our

experiments, and utilize more than the Minimum Spanning Tree (MST) topology in the

DCN.

The energy saving results on Wikipedia trace, as it varies over time (up to 60

minutes) is given on Fig. 4.9 (a) and the average results are shown on Fig. 4.9 (b).

Among all the 3 frameworks, DREAM has the highest energy saving results throughout

the experiment, except for 6 sample points. On average, the energy saving of DREAM is

15.9%. The improved energy saving with DREAM is due to it being more responsive to

traffic variation because of its distributed design. When the traffic load ebbs, it immediately

reconfigures the routing of flowlets and thus leaves more idle switches and links. On the

other hand, the centralized CARPO and ElasticTree have longer 25 seconds epoch length.

They miss a large number of opportunities to save energy as the traffic load decreases. The

longer epoch length of the centralized approaches is constrained by the running time for

the optimization and the refresh rate of TX/RX stats from the switches.

Of the alternatives, CARPO has better energy saving results compared to Elastic-

Tree, because of its more aggressive data rate prediction and that it reserves less network

bandwidth for future traffic variations. But this sacrifices congestion, reflected in packet

drop rate and delay. On average, CARPO and ElasticTree save 11.6% and 8.6% DCN’s

energy, respectively. Only at a few time instants (note the six peaks), CARPO saves

more energy compared to DREAM in Fig. 4.9 (a). Because the distributed agents in
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DREAM reroute flowlets to alternative paths while we observed ECN feedback as the flow’s

data rate increases. On the other hand, CARPO has to wait until the end of current epoch

and wakes up an alternative path in next epoch. That is why CARPO saves more energy

at those six peaks. When the traffic ebbs at next epoch, CARPO reserves bandwidth based

on large data rate predicted at last epoch, thus resulting in switches and links being left

active and under-utilized.

The second experiment is to evaluate the schemes based on the more bursty Face-

book MapReduce trace. In the MapReduce framework, the network throughput bursts only

when the data shuffle phase occurs. Most of the time, traffic in the network are just the

heartbeats between master and slave nodes. This is just a few Kbps in our trace. In order

to have more traffic variability, we add the Wikipedia trace as background traffic in the

second experiment. The energy saving results on the Facebook MapReduce trace is shown

in Fig. 4.9 (c). Once again, DREAM saves the most DCN energy all the time. The average

energy saving over 60 mins is 18.4%, which is 26% better than CARPO and ElasticTree.

The average energy saving for CARPO and ElasticTree are similar, around 14%. Most of

this is because of their poor responsiveness to bursty traffic.

4.5.2 Packet Drop

One major performance concern in traffic consolidation is that some links are

heavily utilized while others are idle, to save energy. Higher link utilization increases the

probability of packet drops and delay. Mitigating this requires scheduling schemes such

as CARPO and ElasticTree to be able to reroute the flows quickly, especially for traffic

bursts. Nevertheless, being responsive to bursty traffic is still challenging for CARPO and
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ElasticTree because of their long epoch length. In DREAM, we observe that queue build-up

at switches mainly contributes to the high packet drop and delay. The ECN signal in our

design detects the queuing at switches early and notifies the distributed agents before the

queue at switches is full. At high link utilization, DREAM can reroute the bursty traffic

in a timely manner to reduce packet drop and delay. Also, path redundancy in a DCN is

exploited as we transmit the flowlets of one TCP connection across multiple active paths.

In this section, we compare DREAM, CARPO and ElasticTree, in terms of packet drop

rates. Then, we show the application-level latency results in the next section.

The average packet drop ratios are given on Fig. 4.10 (a). On both the Wikipedia

web service and Facebook MapReduce trace, the packet drop ratio of DREAM is less than

0.01%, mainly because it adapts the flowlet transmission based on queue build-up informa-

tion obtained from ECN feedback. In DREAM, traffic will be moved from a path if the

queue length at switches on the path exceeds the threshold. On the Wikipedia web service

workload, the packet drop probability for CARPO and ElasticTree is 1.23% and 0.85%, re-

spectively. Compared with DREAM, they are much worse due to their poor responsiveness

to traffic variation. CARPO has 44% worse packet drop ratio than ElasticTree because of

its more aggressive data rate prediction for a flow. It uses the 90th-percentile data rate

in last epoch to predict the rate rather than the peak value used in ElasticTree. On the

Facebook MapReduce trace results, the packet drop ratio for CARPO and ElasticTree is

around 0.2%. Although the average packet drop ratio results for CARPO and ElasticTree

are lower compared with those on the Wikipedia trace, the packet drop ratio can be as

high as 6.2% when the data shuffle phase in MapReduce happens. Because there is only

73



(a) Packet Drop Ratio (b) Latency Distribution for Wikipedia Trace

(c) Average Latency   
(d) Latency Distribution for 
MapReduce Shuffle Traffic

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

C
D

F

Latency (ms)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

C
D

F

Latency (ms)

ECMPECMP DREAMDREAM CARPO ElasticTreeElasticTreeCARPO ElasticTreeECMP DREAM CARPO ElasticTree

0

0.2

0.4

0.6

0.8

1

1.2

Web Service on
Wikipedia

MapReduce on
Facebook

Pa
ck

et
 D

ro
p 

Ra
tio

 (%
)

DREAM
(0.01%)

0

5

10

15

20

25

30

35

Wikipedia Web
Service

Facebook
MapReduce

La
te

nc
y 

(m
s)

Figure 4.10: DREAM has the least average packet drop ratio on both Wikipedia web
service trace and Facebook MapReduce trace. Part (b), (c) and (d) plot the application-
level latency results. DREAM achieves the shortest latency among all the alternatives.

heartbeat traffic in the network most of time. Packet drops don’t occur for those heart-

beats. The average packet drop ratio on Facebook MapReduce trace is lower (which is

somewhat misleading), but the larger number of drops during the MapReduce data shuffle

phase significantly impacts the application’s performance.
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4.5.3 Application-Level Latency

Finally, we show the application-level latency results in Fig. 4.10 (b), (c) and (d).

In the experiments, we put the time stamp in the payload of packets originating from the

sender of TCP flows. On the receiver side, our program echos the inserted time stamp

without any additional processing or delay. Then the application-level perceived latency

can be calculated simply as (timenew − timestampold)/2.

Fig. 4.10 (b) is the CDF for application-level latency on Wikipedia web service

trace. The average values are given on Fig. 4.10 (c). The latency in DCN mainly comes from

the queuing time at switches. The baseline ECMP has the shortest latency results, with an

average of 19.12 ms. Because of traffic consolidation in DREAM, CARPO and ElasticTree,

all of them have longer latency than ECMP. The average latency for ElasticTree is 30.5 ms.

CARPO has larger average latency result of 31.5 ms due to its aggressiveness. CARPO

reserves a much smaller headroom bandwidth. In DREAM (which has an average of 21.6

ms), we have early reaction to queue build-up by using ECN feedback. So, DREAM has

29% shorter average latency compared with ElasticTree.

The application-level latency results for the Facebook MapReduce trace are shown

in Fig. 4.10 (c) and (d). As there is only a small amount of heartbeat traffic in the

network most of time and all the schemes have the same active topology (i.e., the Minimum

Spanning Tree), the average latency for ECMP, DREAM, CARPO and ElasticTree are

almost the same in Fig. 4.10 (c). However, when the shuffle phase in Mapreduce happens,

we observe the latency differences among the traffic consolidation alternatives. So, we

focus on the CDF of the latency for MapReduce only during the shuffle phase in Fig. 4.10
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(d). For bursty traffic, DREAM achieves at least 39% shorter latency compared to the

other traffic consolidation schemes. Overall, the responsiveness and flowlet scheduling in

DREAM produces much higher energy savings. The early reaction to queue build-up at

switches by using ECN feedback reduces packet drops and application-level latency.
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Chapter 5

Joint Server and Network Energy

Optimization

5.1 Introduction

Existing server and DCN energy proportional techniques [49, 113, 125, 109, 74,

60, 24, 108] sometimes do not cooperatively reduce power as they lack the entire system

view. TimeTrader [108] is one example that does borrow the network slack to provide an

additional budget for computation. It only monitors the ECN bits or the RTO signal in the

TCP protocol, assumes the DCN provides load balancing, and the lack of a queue build-up

is treated simplistically by adding the full network latency budget to the compute slack.

However, traffic consolidation invalidates this assumption and a subnet of the topology may

be congested, resulting in TimeTrader becoming overly conservative in not providing any

slack to the servers.
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In this chapter, we address the aforementioned problem by developing a joint

energy optimization framework for the entire data center, named EPRONS (i.e., Energy

PROportional Network and Server). EPRONS dynamically adjusts the amount of network

slack that is provided to servers by selecting different consolidation policies based on the

current demand. For the servers, we find that previous DVFS-based techniques [60, 108, 69]

have strict latency constraints in which the maximum frequency is selected to guarantee

every request’s server-side deadline. This constrains saving power. However, only the

application-level SLA primarily matters to users. The network can compensate for slower

server response, while still meeting application-level SLAs, guaranteeing service quality and

increasing the amount of power saved. Based on this observation, we propose EPRONS-

Server, a novel dynamic power management scheme that changes CPU frequency to ensure

that the average tail latency meets the latency constraints. This enables more requests to

complete service closer to their deadlines. At the DCNs, we develop a linear programming

model to consolidate the traffic with latency constraints. The model chooses the best

subset of active network devices and corresponding path for flows to maximize the entire

data center’s power saving. We also utilize heuristic algorithm to accelerate finding the

solution.

To evaluate EPRONS, we implement it on the MiniNet emulator and POX [90]

controller. Experimental results show that the server power saving of EPRONS-Server

outperforms state-of-the-art energy proportional techniques. EPRONS can save as much as

31.25% of a data center’s total power budget at low loads. In summary, this chapter makes

the following contributions:
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• We consolidate latency-tolerant background flows and latency-sensitive queries to save

DCN power while controlling latency.

• We propose EPRONS-Server, a power management scheme on servers that dynam-

ically adjusts frequency to enable the average tail latency of services to still meet

latency constraints.

• We jointly optimize the power consumption of latency-sensitive applications by devel-

oping a new linear programming model as well as a heuristic approach.

5.2 Latency-Aware Traffic Consolidation

The primary metric targeted in current traffic consolidation techniques is the band-

width demand. In addition to available bandwidth, another important performance metric

for latency-sensitive applications in a DCN is the network latency. Previous traffic consoli-

dation techniques [49, 113, 125, 109] only guarantee the available bandwidth for flows, but

may schedule flows on highly utilized links. Thus, latency-sensitive requests or replies may

miss their deadlines. On our platform, we measure the average latency of search queries

under different link utilizations, and obtain the utilization-latency curve on Fig. 5.1. The

results show that the network latency is well behaved at low link utilization (e.g. 20%).

Moving a flow from a lightly utilized link to a link with medium utilization does not result in

a substantial increase in latency. However, going beyond a utilization threshold the latency

increases substantially (the ‘knee’ of the utilization-latency curve) due to queuing. For ex-

ample, the latency grows quickly from 139 µs to 11.981 ms beyond this threshold. Thus, we

observe that we can continue to consolidate the traffic to a smaller subset of the switches
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Figure 5.1: Illustration of latency knee for link utilization vs network latency.

and links in the network until we are close to the knee of the curve, thus maximizing the

power savings in the DCN. Beyond this, we run the risk of missing flow deadlines, and at

which point we also start taking away the benefit of adding slack to the server ‘layer’.

In EPRONS-Network, we leverage an idea similar to FCTcon [126] to control

the request and reply latency. We reserve additional bandwidth for requests or replies,

compared to their predicted future bandwidth requirement. For example, for a request

R with bandwidth requirement of B, the latency-aware traffic consolidation denotes its

bandwidth requirement as K ∗ B. By changing the scale factor K, we can adjust the

available bandwidth on the path assigned to request R. A larger available bandwidth

on the path reduces the network latency. Latency-aware traffic consolidation dynamically

adjusts the scale factor K to control the network latency.

Fig. 5.2 gives an example to show how the scale factor K can affect network

latency and the number of active switches. In the Fat-tree topology, all the links have a

capacity of 1Gbps. The algorithm provides a 50Mbps safety margin, limiting the maximum

available link bandwidth to 950Mbps. There are 3 flows in the DCN. The red flow with

900Mbps data rate is a latency-tolerant ‘elephant’ flow, while the two latency-sensitive flows

80



f1: 900Mbps

f2: 20Mbps

f3: 20Mbps

S1 S2 S3 S4

(a) K=1

f1: 900Mbps
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(c) K=3

Figure 5.2: Fat-tree topology, 1Gbps link capacity and 50Mbps safety margin. A latency-
tolerant flow (red) and 2 latency-sensitive flows (green and blue).

(blue and green) have a requirement of 20 Mbps each. In Fig. 5.2(a), the 2 latency-sensitive

flows share the same path with the elephant flow when we set the scale factor K to 1. With

K = 1, the number of active switches is at a minimum and the DCN consumes the least

amount of power. But the 2 latency-sensitive flows are likely to suffer a higher latency

because many of the inter-switch links are almost fully utilized. In Fig. 5.2(b), we change

the scale factor K to 2. This results in moving either the green or blue flow to a new path

because of bandwidth constraints. More switches have to be turned on, but we decrease the

latency for flows on those links. When we further increase the scale factor K to 3 in Fig.

5.2(c), both the blue flow and the green flow are scheduled on different paths, thus further

reducing the network latency.
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5.3 Dynamic Power Management on Servers

A common technique to save energy in latency-sensitive applications is to exploit

latency slack by slowing down request processing so that the target tail latency is just

satisfied [60, 69, 68, 24]. Intuitively, the processor should run at the minimum frequency

that satisfies the request’s deadline. However, this is difficult as frequency selection also

affects the latency of subsequent requests due to request queuing. In TimeTrader [108],

frequency settings are periodically updated based on the monitored tail latency. While

effective with smooth diurnal traffic variation, these prior techniques result in unacceptable

latency constraint violations as they lack responsiveness, which is crucial with fast-varying

bursty traffic patterns that is common in latency-sensitive applications[54, 60, 24].

To address this problem, [60, 24] use per-request latency distribution to compute

the slowdown/delay for each request, and find the configuration that satisfies all queued

requests. The frequency setting is then determined by the request with the least latency

slack. While satisfying latency constraint, this conservative frequency selection does not

fully exploit the energy saving opportunities of latency slack, since the requests other than

the limiting request will have their tail latency shorter than the constraint.

These prior techniques all assume a fixed request deadline [60, 69, 68, 24]. However,

when coordinating server power management with network power management, the request

deadline is extended with a random value taking advantage of additional network slack,

which varies per request. Therefore, the latency variation behavior of the DCN should

be considered. In this section, we design the EPRONS-Server under a more generalized

assumption, with variable request deadlines. EPRON-Server is a slack variation-aware
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Figure 5.3: High level idea of EPRONS-Server.

power management scheme that determines the request processing speed based on the per-

request server and network slack.

5.3.1 Details on EPRONS-Server

In prior work, the frequency selected is based on the highest frequency required to

process a queued request just-in-time to meet its deadline. This results in a single request

meeting tail latency constraints just-in-time, but with all other requests finishing before the

deadline. This is illustrated in Fig. 5.3. There are 4 requests in the queue (R1, R2, R3 and

R4). The latency constraint is given as L.

Li is the tail latency of request Ri under the frequency determined by the scheduler.

In the previous work, the scheduler determines the frequency for each request so that Li

is smaller than L, as a result, all the queued requests can meet their deadlines. Due

to this policy, power savings become worse with the latency slack variation introduced

by network power management. To account for latency slack variation, the main insight

behind EPRONS-Server is that we can slow down request processing so that some queued

requests will exceed the tail latency constraint. We only need the overall tail latency of the
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queued requests to satisfy the constraint. One motivation behind sacrificing some queued

requests’ miss rate for better energy saving is that the ‘additional delay’ due to lower selected

frequency can be compensated by the slack for the reply. However, it is not factored in prior

work [60, 108, 69]. Thus, the ‘additional delay’ for some queued requests on servers has

limited impact on the performance and brings better energy saving.

The challenge in designing EPRONS-Server lies in determining the tail latency of

each request under different frequencies. To account for the queuing effect and short-term

variation, EPRONS-Server uses a performance model based on the request’s probability

density function (PDF), similar to [60, 24]. In our experiments, the PDF is obtained

through measuring the service time distribution of Apache Solr search engine [40]. When

we dynamically change the frequency setting, the request service time can be calculated

accordingly. Based on the model, we derive the violation possibility (VP) for each frequency

setting, and the new frequency is then determined based on the average VP for all the queued

requests at every request arrival and departure instance. The goal is to select an average

VP that will not violate the tail latency constraint.

To illustrate this, take the following example. Assume we have three requests (R1,

R2, R3) in the queue. In order for the requests to finish just-in-time, they would require

to run at 1GHz, 1.2GHz, and 1.1GHz. Prior works would set the processor at 1.2GHz for

R2, ensuring that the latency constraint would be met. If the SLA is set at the 95th %tile

latency, it allows for a violation probability of 5%. Even if we set the processor at 1.2GHz,

R2 has a 5% chance of exceeding the deadline, while R1 and R3 would have less due to

running at a higher frequency. This results in some lost energy savings potential for R1 and
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Figure 5.4: Energy saving opportunities with average tail latency.

R3. The goal of EPRONS-Server is to select a frequency where the violation probability of

all three requests combined is 5%. In order to achieve this, we simply need the average VP

of all three queued requests to be 5%.

Fig. 5.4 gives an example of how EPRONS-Server chooses the operating frequency.

Assume, at time t = 0, the core finishes a request and is ready for the next. Requests

R1 and R2 arrived previously and are queued in the buffer, with deadline D1 and D2,

respectively. In previous work, finding the processing frequency for R1 is equivalent to

finding the maximum frequency that satisfies both request R1 with start time t = 0 and

deadline D1, and a request R2e = R1 +R2 with start time t = 0 and deadline D2. We call

R2e the equivalent request of R2, which is defined as the convolution of a given request, and

all requests ahead of it in the queue. R2e is a convolution of the amount of work required

for both R1 and R2, as R2 can only complete after R1 completes.

Fig. 5.4 plots the deadline violation probability for request R1 and R2e under

different operating frequency (X-axis). The horizontal dotted line represents deadline miss

rate constraint of 5%. The frequency f1 and f2 will satisfy the deadlines for request R1 and
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R2e, respectively. Since f2 is the minimum frequency that satisfies the miss rate constraint

for both R1 and R2e, the core will process R1 at frequency f2. While guaranteeing meeting

the deadline miss rate constraint, this conservative frequency selection leads to unnecessarily

high request processing speed for R1. As we can see, under frequency f2, R1 will have it’s

VP (1.8%) far lower than the required miss rate (5%), which results in inefficient energy

consumption.

In EPRONS-Server, instead of choosing the maximum frequency required for all

requests, we select the frequency based on the average VP. As plotted in the Fig. 5.4, the

average VP falls between the VP of R1 and R2e. Thus, we can run at frequency fnew,

which significantly reduces the frequency and saves more energy. Although it leads to the

miss rate constraint violation of R2e, the high miss rate of R2e is compensated by the low

miss rate for R1, hence the overall miss rate constraint is still satisfied.

5.3.2 Violation probability

The following model is used for determining the processing frequency at the request

departure instance. For a request in the queue, the amount of work that can be done under

frequency f until the deadline D is

ω(D) = f × (D − Tstart) (5.1)

where Tstart is the time the request starts to be processed. The violation prob-

ability distribution for ω(D) can be found by computing the complementary cumulative

distribution function (CCDF) from the request’s equivalent distribution. Fig. 5.5 shows the

violation probability distribution for three equivalent requests: R1e, R2e, and R3e. Find-
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Figure 5.5: Violation probability of three requests under different ω(D).

ing the VP is simply finding the corresponding “y” on a line given the “x”. By combining

the request’s equivalent distribution with equation (5.1), we can get the VP for different

frequencies and deadlines.

The above model is used for determining the processing frequency at the request

departure instance. It can also be applied at the request arrival instance with a minor

modification. Consider a situation when a request arrives at time t = A and finds that the

core is processing a request, R0. It is equivalent to the scheme that the core just starts

processing a request R0e with the distribution equal to the distribution of the work left of

request R0, during time t = 0 ∼ A. The equivalent distribution of the queued requests will

then be R1e = R0e+R1, R2e = R0e+R1 +R2 and so on.

5.3.3 Reducing computation overhead

The most computational intensive portion of our proposed scheme lies in finding

the equivalent distribution for the queued requests. For the nth queued request, it needs

n − 1 convolution operations. With the use of Fast Fourier Transform (FFT), computing
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one convolution requires 20µs in our machine. To further reduce the computation overhead,

we take the assumption that the request distribution will be similar within a period of time.

Thus, the equivalent distributions can be reused once it is computed. However, at the

request arrival instance, since the conditional probability is unknown beforehand, we have

to perform n convolutions. This overhead is considered while determining the frequency by

replacing D in equation (5.1) with D′ = D − overhead.

Once we have the equivalent distributions, the time it takes to determine the

operating frequency is shortened by applying binary search on the average VP. In our

experiments, it takes less than 30µs and can be safely ignored, since the request processing

time usually falls in the millisecond range.

5.4 Joint Power Management

5.4.1 Latency and Power Analysis

In joint server-network power management, the scale factor K is the key to control-

ling the entire data center’s power consumption while satisfying all the latency constraints.

It can be utilized to trade-off the DCN power and DCN latency. As mentioned in section

5.2, the network latency will decrease if the flow is routed along less utilized links. This can

be achieved by enlarging the scale factor K and thus allocating more free bandwidth on

the assigned path. Accordingly, the larger K will result in higher DCN power consumption

because additional links and switches are activated. In real deployments, it would be hard

to predict network latency based on current network conditions, as it is highly workload

dependent. In EPRONS, we use a portion of the application queries to train our model and
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then use this model, assuming that the workload features don’t change significantly for the

same application. Then, we measure the average tail latency of search queries for different

scale factors K and use this information for determining network resource allocation.

On servers, power consumption is affected by server utilization and tail latency

constraints (i.e., server time budget). Prior works [60, 69, 74] assume that every request

of latency-sensitive applications has the same fixed tail latency constraint. If the server

layer borrows some slack from the network layer and use it to increase the server time

budget, we can make the processing on servers slower and thus save more power, assuming

that the server utilization doesn’t change. Because the scale factor K can control network

latency/slack, it will indirectly affect the server processing time budget and thus the server

power consumption. Similarly, we measure the server power consumption for different

utilizations and tail latency constraints that may then be used to parameterize our model.

5.4.2 Optimization Model

The design motivation behind EPRONS is to jointly optimize the entire data cen-

ter’s power consumption without violating both network and server tail latency constraints.

We formalize this optimization problem as a linear programming model, in which the ob-

jective function minimizes the total system power by searching for the optimal scale factor

K. Our model is as follows:

Objective function:

minimize
∑

(u,v)∈E

Xu,v ∗ l(u, v) +
∑
u∈V

Yu ∗ s(u)

+N ∗ Pserver

(5.2)
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Constraints:

1 ≤ K ≤ Kmax (5.3)

∀(u, v) ∈ E,
j∑

i=1

fi(u, v) ≤ Xu,v ∗ c(u, v) (5.4)

∀(u, v) ∈ E, fi(u, v) = −fi(v, u) (5.5)

∀i,∀u ∈ V,
∑
h∈Hu

fi(u, h) =



K ∗ di u = si

−K ∗ di u = ti

0 otherwise

(5.6)

∀u ∈ V,∀h ∈ Hu, Xu,h = Xh,u ≤ Yu (5.7)

∀u ∈ V, Yu ≤
∑
h∈Hu

Xu,h (5.8)

∀i,∀(u, v) ∈ E, fi(u, v) = K ∗ di ∗ Zi(u, v) (5.9)

Given the network topology G =< V,E >, we use X and Y to indicate the ON

or OFF states for the links and switches respectively. l(u, v) is the power consumption of

link (u, v) and s(u) is the power consumption of switch u. N is the total number of servers

and Pserver is the power consumption of each individual server. The objective function

minimizes aggregate power consumption of all the switches and servers. Equations (5.4),

(5.5), (5.6) are the well-known constraints in network flow problems. The only difference is

that we use a scale factor K to multiply the original flow bandwidth demand. c(u, v) is the

capacity of link (u, v) and fi(u, v) is the size of flow on link (u, v) for flow i. Every flow has

source si, destination ti and bandwidth demand di. Equations (5.7) and (5.8) guarantee

that the switch will go to sleep state if all the directly connected links are off. Zi(u, v)
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means that if flow i will use link (u, v). With equation (5.9), we avoid splitting flows to

avoid packet reordering. Our optimization model is independent of the network topology.

Similar to [49, 113, 109, 127], we run the optimization every 10 mins. This is a reasonable

time in practice, but can be changed depending on the network’s characteristics. By solving

this linear programming model with CPLEX, we can find the best flow assignments and

active switches. This model is only used to find the best flow assignments. EPRONS-Server

will utilize the actual monitored network slack to extend the server time budget.

Although the linear programming model can be solved in polynomial time [49], it

takes a long time to find the optimal solution for a large DCN topology, unacceptable with

bursty data center traffic. For example, the computation time of the linear programming

model can be more than 42 min. on our platform, with 3000 flows in a 4-ary Fat-tree

topology. In real deployment, we design the heuristic algorithm (similar to the greedy

bin-packing algorithm in [49]) to accelerate the latency-aware traffic consolidation. In the

current design, we ignore the switch ON/OFF transition overheads because we use a soft-

ware switch. However, our measurement on a HPE switch show that the power-on time

is about 72.52 sec. We can avoid the transition overheads by having ‘backup’ paths, as

described in [109] or a novel hardware design with sleep states [49].

5.4.3 Framework of EPRONS

Fig. 5.6 gives an overview of our framework. The system includes two distinct

parts: the EPRONS-Server module on every server and the Optimizer (EPRONS-Network)

in the centralized SDN controller. On servers, we assume that each server has the same
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Figure 5.6: Framework overview of EPRONS.

service time distribution. The latency monitor module measures each request’s network

latency. To be more conservative, we only use the request slack. The EPRONS-Server

module adds the different network slack of each search request to its compute budget. Then

we dynamically decide the CPU core frequency to guarantee that the average tail latency of

requests to meet the tail latency constraints. In the centralized SDN controller, we gather

both the utilization at servers and the traffic matrix inside the DCNs. This information

is periodically fed to the Optimizer to find the best active subgraph of the topology and

corresponding flow assignments. The Path & Power controller is responsible for inserting

new forwarding rules and turning off idle switches.
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5.5 Implementation

MiniNet. We use a 64-core machine with 2GHz CPUs and 64G memory to build

a virtual network using the MiniNet emulator that includes virtual hosts, virtual network

interfaces, software switches (Open vSwitch) and software SDN controller. Each host in

MiniNet is a shell process that runs the actual program. In our implementation, we create

a 4-ary Fat-tree topology with 16 servers.

POX. We use POX [90] as our SDN controller. The POX controller fetches flow

statistics and link utilization every 2s with an openflow message. Then, the optimizer in

POX runs periodically (every 10 mins.) to find flow paths which minimizes the entire data

center’s power consumption with latency constraints.

Server. The performance of virtual host is limited in single machine MiniNet

setup. We attempted to run the Apache Solr search engine inside Containers [40]. But it

was difficult to launch 16 Docker Containers and 20 Open vSwitch instances on a single

machine because of the limited number of cores and memory. In the future work, the

MiniNet network could be extended to a cluster of servers.

To mimic the partition-aggregation behavior, we built a search engine simulator in

the MiniNet. Instead of running real query processing, our simulator generates the service

time of a query based on the service time distribution, and uses an empirical model to scale

the service time for different operating frequencies. We acquire the servers’ service time

distribution through real machine experiments with the open-source Xapian distributed

search engine [119]. We built indexes of the Wikipedia’s English XML export [107], which

contains all the Wikipedia articles/pages. These document indexes are then partitioned and
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Figure 5.7: Switch (HPE E3800 J9574A) power for varying link utilizations.

distributed across 16 Xapian index nodes. We randomly generate 100K search queries, run

and log their processing time on the ISNs. In our simulator, we randomly choose a server

to be the aggregator, while the other 15 servers will then be the ISNs for each user query.

The aggregator will broadcast sub-queries to all ISNs. Each ISN serves the sub-queries and

executes EPRONS-Server to save server power.

Power Evaluation. To acquire the power consumption, our server simulator

records the processing time for each frequency setting. The average power consumption is

calculated based on the time and power consumption under each frequency setting. We

set the frequency range between 1.2-2.7GHz in 100 MHz steps. We measure the power

consumption under different frequency settings on a 12-core Xeon E5-2997 v2 CPU. The

measured power consumption under maximum and minimum frequency setting is 4.4W and

1.4W for a CPU core, respectively. In our simulator, each server has a CPU with 12 cores.

Moreover, we also consider the power consumption of other components (motherboard,
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main memory, etc.) of the system. Based on the ratio between dynamic power and static

power for a Huawei XH320 V2 server, the static power is set to be 20W.

To investigate how link utilization affects switch power, we measure the power

consumption of a HPE switch (E3800 J9574A) as we gradually increase the link utilization.

The switch idle power is 97.5W. Fig. 5.7 shows that the increased power consumption

(0.59W) is negligible when we change the link utilization from 0 to 100%, independent of

whether we activate 2 or 4 ports. That is only 0.6% of the idle power. So, we assume the

switch power remains the same when the utilized network bandwidth changes. Since the

power consumption doesn’t increase, there is no increase in the temperature of the switch.

Both of the above observations are in line with prior work [49, 113, 109]. For network

power consumption, we use the measurement result of a 4-port switch in [121]. The power

consumption of the active switch is 36W. These power models are selected to be a closer

match to our implementation platform.

5.6 Results

In EPRONS, we optimize the entire data center’s power consumption while satis-

fying the latency constraints. Although there are many parameters in our model, the scale

factor K is the only parameter to be tuned for optimization. In this section, we investigate

the interplay of all these parameters and evaluate the power saving of EPRONS on different

configurations. Then, we compare EPRONS with other energy-proportional techniques.
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Figure 5.9: Network latency under different degrees of aggregation.

5.6.1 Network Power Management

In DCNs, the traffic aggregation policy has a significant impact on the network

latency. Fig. 5.8 shows all the possible aggregation policies in the 4-ary Fat-tree topology.

From Aggregation 0 to Aggregation 3, we gradually turn off the core-level switches and the

corresponding aggregation-level switches.

The network latencies of search queries are shown in Fig. 5.9. Apart from the
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Figure 5.10: Network sensitivity results.

aggregation policy, the background traffic has an impact on the network latency as well.

So, we first fix the network background traffic at 20% of link capacity in Fig. 5.9(a). The

network latency (especially 99th %tile) increases considerably when we consolidate traffic

to a smaller portion of the topology. From aggregation 0 to aggregation 3, the 99th %tile

latency increases from 5.64ms. to 25.74ms. Fig. 5.9(b) plots the impact of the aggregation

policy on the 95th %tile tail latency for various background traffic. The 95th %tile tail

latency follows a similar increasing trend under different network utilizations.
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In Fig. 5.10, we show that the scale factor K is a good parameter to trade-

off between network tail latency and network power consumption. Fig. 5.10(a) and Fig.

5.10(b) compare the variance of tail network latency and # of active switches when we

increase the scale factor K. Each line represents one possible background traffic, in terms

of link utilization. Larger K results in smaller network tail latency. Accordingly, more

switches are activated. For example, the network tail latency with 50% background traffic

(black line) decreases to 4.75ms if the K is set to 4. The reason is shown on Fig. 5.10(b).

We observe that 6 more switches are turned on. Fig. 5.10(c) plots the # of active switches

vs. the tail network latency. Each point on the line represents one value of K. The optimal

scale factor K is the point that is closest to origin (0, 0). We observe that K can effectively

trade-off between # of active switches and tail network latency.

5.6.2 Server Power Management

Fig. 5.11 gives the power consumption with only the EPRONS-Server. In these

experiments, we do not apply any network power management, and the background traffic

is set to achieve 20% network utilization [108, 49]. To show the effectiveness of EPRONS-

Server, we also implement and compare our results with two state-of-the-art server power

management techniques: Rubik [60] and TimeTrader [108]. Since Rubik does not consider

network latency/slack, for a fair comparison, we also implement a network aware version of

Rubik (Rubik+), which monitors and uses the network slack.

Fig. 5.11(a) shows the CPU power consumption for different server utilizations.

In these experiments, we set the request’s tail latency constraint to be 30ms (25ms server
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Figure 5.11: Server sensitivity results.

budget and 5ms network budget). We can see that Rubik consumes the most power across all

load levels. Since Rubik does not consider network latency, it does not fully exploit the slack

in the request’s latency. Moreover, except at very low loads (10%), Rubik+ and EPRONS-

Server consistently outperform TimeTrader. TimeTrader uses feedback to select the CPU

frequency to meet the request tail latency constraint. The simple control algorithm in

TimeTrader changes the CPU frequency every 5 seconds [108], and is unable to fully exploit

99



power saving opportunities. But Rubik+ and EPRONS-Server adjust the CPU frequency

based on a statistical performance model at a per-request granularity. Finally, EPRONS-

Server outperforms all other schemes across the entire utilization range. Compared with

Rubik+, EPRONS-Server reorders requests based on their deadlines and uses the average

VP, instead of the maximum, to determine the request processing frequency. By doing so,

EPRONS-Server can better utilize the network aware slack in compute budget and achieve

lower power consumption.

In Fig. 5.11(b), we vary the server budget from 5 to 35ms while fixing the network

latency budget at 5ms. The search load is set so as to have the server utilization at 30%

[74]. First, no scheme is able to meet a request’s tail latency constraint smaller than

18ms. Second, in the range of 18-19 ms, TimeTrader is able to meet the request tail latency

constraint and save power. But, for a request tail latency constraint at 19 ms or greater than

18ms, EPRONS-Server consistently outperforms all other schemes because of its efficient

utilization of the request slack.

Fig. 5.11(c) shows the power consumption of EPRONS-Server with different la-

tency constraints and search loads. Each line in the figure represents a server utilization

ranging from 10% to 50%. As we see in the figure, the CPU power consumption decreases

significantly for all server utilization levels as the request latency constraint increases at the

smaller values. This justifies the approach of EPRONS to give the additional slack from

network budget to the server to achieve a significant reduction of CPU power consumption.
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Figure 5.12: Total system power under different degree of network consolidations. This
result is scaled based on the result of our MiniNet experiments with 30% server utilization.

5.6.3 Joint Power Management

We now show the compelling benefit of combining appropriately the optimization

of server and network power while meeting application latency constraints. In one experi-

ment (Fig. 5.12), the server utilization is set at 30% [74]. We then change parameters such

as request tail latency constraint, network aggregation policy and background traffic to see

their impact on total system power consumption. When the background traffic is negligible

(1%, Fig. 5.12(a)), the 4 different aggregation policies can nearly meet all the tail latency
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constraints. Aggregation 3 consumes the least total system power. As we increase the tail

latency constraint, the data center consumes less power, particularly because we can have

longer idle times at servers. We then add more background traffic (20%), as seen in Fig.

5.12(b). The total system power has a similar trend, except that aggregation 3 cannot

support a tail latency constraint less than 29ms.

Between a tail latency constraint of 29ms and 31ms, one interesting result is that

EPRONS can save more power if we deliberately turn on a switch. From aggregation 3

to aggregation 2, more switches are activated and thus we have larger network slack. The

benefits of this network slack is amplified in our EPRONS-Server technique which can more

than compensate for the increased power consumption in the network. The goal of EPRONS

is to properly trade-off network slack and server slack to minimize total system power, not

just simply combining them. Finally, as we increase the background traffic to 50%, Fig.

5.12(c) shows that aggregation 3 is not feasible, and even aggregation 2 requires a latency

constraint greater than 31 ms.

In the next experiment, we use the Wikipedia trace [107] to evaluate EPRONS.

Both the search load and background traffic span one 24 hour period and follow a diurnal

pattern. Prior traffic consolidation techniques [49, 113, 109] don’t guarantee network latency

constraints, and energy proportional server techniques [60, 74, 69] don’t save DCN power.

We compare EPRONS with TimeTrader [108], which is a cross-layer energy-proportional

technique and meets both network and server latency constraints.

Fig. 5.13 gives the power saving results. On average, the total system power

saving of EPRONS is a factor of more than 2 better than TimeTrader. EPRONS saves
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Figure 5.13: Total system power consumption with the varying search load and background
traffic.

as much as 25% of the total system power, compared with only 8% in TimeTrader. Since

EPRONS-Server is a more responsive per-request technique compared with the feedback-

based TimeTrader, even our server-side power saving outperforms TimeTrader by 2%. The

detailed total system power over the 24 hour interval is shown in Fig. 5.13, with a 1 min.

granularity. We observe that the DCN power consumption of EPRONS follows the diurnal

pattern. On the other hand, TimeTrader doesn’t save any DCN power. For the total data

center power consumption, EPRONS can save up to a maximum of 31.25%, measured over

one minute intervals, of total system power. This occurs during the night, because of the

lower workload intensity. The maximum power saving in TimeTrader is only 12.5%. We

conclude that jointly optimizing power consumption on both DCN and servers (EPRONS)

can make the entire data center more energy efficient.
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Chapter 6

Gemini: Neural Network based

Two-Step DVFS for ISNs

6.1 Introduction

Chapter 5 indicates that existing DVFS schemes for search applications exploit the

latency slack on ISNs by slowing down request processing and finishing the job just-in-time.

They seek to estimate each request’s service time and then properly re-configure the current

power management setup. The main challenge lies in the fact that search requests’ latencies

have both short and long term variation and a request’s computation requirement (i.e., total

CPU cycles) cannot be predicted accurately [60, 48]. To overcome the above challenge, we

present Gemini, a fine grained two-step DVFS scheme with accurate per-query service time

prediction. Our major goal is to properly schedule the various clock domains in DVFS [118]

for optimal power saving and achieving a very limited deadline violation rate.
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In the first step upon a request arrival, Gemini selects an initial CPU frequency

according to the predicted service time based on a Neural Network (NN) model. In the

second step, depending on the query progress at a particular time, Gemini judiciously

boosts the CPU frequency, to catch up with the request’s deadline, if the request processing

is lagging. The boosted frequency is set to the maximum core frequency, but the boosting

time must be determined accurately. In our model, this time is calculated based on a

second NN error predictor for the latency estimation. Based on these two separate NN

predictors, Gemini automatically adjusts a request’s initial frequency and boosting time to

accommodate the query specific variations.

Initial estimation of the frequency is very important to satisfy the deadline con-

straint of a request. We base our estimation on the real operation of an ISN server in a

search engine. A working thread on an ISN server has to score the documents of a query’s

posting list [32] one by one to retrieve the top-K relevant results [36, 11]. This provides

an opportunity to precisely estimate a request’s service time. Although some documents

on a query’s posting list might be skipped due to pruning techniques [38, 9], an advanced

prediction model with multiple features can be developed to improve accuracy [72]. We

propose a NN-based model that incurs only 0.79% additional delay on our platform, which

is less than the centralized control overhead in Pegasus [69] or similar to the control theo-

retic circuit in [48]. Query specific latency prediction has been proven useful to significantly

reduce the 99.99th percentile tail latency on Microsoft Bing [61]. Even then, this prediction

is likely to have some errors. Therefore, in Gemini, we use a second NN model to predict

the error. The sum of predicted latency and error estimate for a query is used to determine
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the correct frequency boosting time for the two-step DVFS scheme.

For medium and high server loads with request queuing, we boost the current

CPU frequency whenever a critical request arrives at the queue. A critical request is the

one for which the target latency is violated if we adhere to the current DVFS setting. In the

general case with more than one request in the queue, they all will use two-step DVFS until

a critical request arrives. All the other requests in between execute at the current frequency,

to minimize the frequency transition overheads. Requests using the same frequency have

already met their latency constraints before the critical request arrives, and we observe that

only 1.65% of requests have wrong estimations for latency plus error. The arrival of critical

request results in a higher current frequency. Thus, requests in-between will finish their

tasks before the deadline.

To validate our design, Gemini is implemented in the commercial Solr search engine

[101], which is deployed on a 24-core platform with user-space per-core DVFS control and

power management. Experimental results on three different query traces prove that Gemini

saves 41% of CPU power, which is 1.53 times better than Rubik [60] and 2.05 times better

than Pegasus [69]. At the same time, Gemini produces the minimum deadline violation rate

compared to Pegasus and Rubik. Our major contributions are the following:

• A novel heuristic two-step DVFS is proposed, which properly boosts the CPU fre-

quency to catch-up to deadlines, on a per-query basis. The frequency steps are

adjusted at the arrival and departure of a critical request when there are multiple

requests in the queue.

• A low overhead NN model is developed to precisely predict the service time at a
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Figure 6.1: Search workload exhibits high variations. In part (b), the top figure presents
the diurnal and day-of-week pattern for the normalized RPS; the bottom figure shows the
arrival variations in a short term.

per-query granularity based on realistic features in query processing. Additionally, a

separate error prediction model is utilized to determine the exact time for boosting

the frequency in our two-step DVFS design.

• Finally, Gemini is implemented on a real platform using the commonly used Solr

search engine in production. Three representative query traces are evaluated for

energy saving and compared with previous techniques.

6.2 Search Workload Characteristics

As shown in Fig. 6.1 (a), a search engine typically employs a partition-aggregate

architecture. Data collections in a search engine often contains billions of documents [56, 32],

which are partitioned into a number of shards. Typically, one shard of documents is served

by an ISN server. The ISN organizes its local documents as an inverted index [132] (similar

to hash-map), in which each key in the query term dictionary is linked with a list of matched
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documents (i.e., the query term’s posting list). Whenever the aggregator receives a search

request from a client, it will broadcast the request to all the ISNs. Every ISN then searches

its local index performing a scoring of documents in the posting list. As there are millions

of documents in an index shard, only the top-K scored documents are sent back to the

aggregator. Finally, the aggregator merges and ranks all the responses from the ISNs before

sending the search results to the client. The overall latency for a search result is limited

by the slowest response arriving from the ISNs. Thus, it is critical to meet the strict tail

latency constraint at the ISN servers, for good search latency and quality. The stragglers

will by ignored by the aggregator of the responses.

Fig. 6.1 (b) shows that the incoming request rate to a search engine can exhibit

high variation over both long and short time intervals. The top sub-figure plots the RPS

rate for a Wikipedia query trace [107] over a period of 150 hours. All the data points

are normalized to the smallest observed RPS. The RPS of search queries follows a diurnal

and day-of-week pattern. For power management, a coarse granularity epoch based latency

prediction can capture this workload variability [69]. However, results on the bottom sub-

figure shows that the Wikipedia query trace also has a high per second granularity RPS

variability, in addition to the longer term variability. This suggests that it is necessary to

have a per query basis design for the search engine power management.

To account for the variation of incoming requests, prior works [60, 23] adopt an

analytical model, which considers the queuing, for power management, upon every request

arrival and departure. To estimate the per request equivalent latency (i.e., service time

plus queuing time), they assume that each request’s service time can be derived from the
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same distribution. Nevertheless, the results in Fig. 6.1 (c) invalidate this assumption.

The top sub-figure presents the measured request service times on a search engine with

16-ISNs which is deployed on our testbed platform. We find that the service times for three

consecutive queries (i.e., Canada, Bobby and Tokyo) vary a lot on the same ISN server. For

example, the service time of query “Cananda” is 14 times longer than query “Tokyo” on

ISN-1. The CDF of service time in the bottom figure confirms that this kind of variability

exists across a wide range of 20K requests we measured. Although their analytical model

can capture the arrival variation, it can not fully utilize the per query service time variation.

Our experimental results indicate that each query’s service time depends on the particular

query’s features and the posting list at the particular ISN, which itself can vary quite widely.

6.3 Two-Step DVFS

In our power management scheme, some requests will leverage a two-step DVFS

method to catch-up to the deadline through boosting at the second step. To make the

analysis easy to understand, we first describe our design with the assumption that there

is always one request in the queue. Then, we extend it to two requests, and finally to the

general case of N requests.

6.3.1 Single Request Without Queuing

Fig. 6.2 shows a two-step DVFS control for a single request. In Fig. 6.2 (a),

request R1 arrives at time A1 and has to finish its work before its deadline D1. Fig. 6.2 (b)

shows that the frequency is boosted to the maximum frequency at time T1 in order to catch
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Figure 6.2: Example of Two-Step DVFS Control for single request in the queue.

up the query execution so as to finish at D1. Suppose the CPU is running at frequency

fdefault before R1 enters the queue. For power management, we predict request R1’s service

time with our NN model. The predicted service time S∗1 is:

S∗1 = PredictNN (Q1, I|fdefault) (6.1)

where Q1 is the request’s query and I is an ISN’s index. Given Q1 and I, we can obtain

request R1’s query features. All the predicted service times are conditioned by the default

CPU frequency fdefault. Previous works [60, 23, 69] assume that a search request’s service

time S is inversely proportional to the CPU frequency. Specifically, Chou et al. in [23]

reports that a request’s total work W = Mf + C, where C is the CPU cycles and M

is the memory access time. Therefore, W/f = M + C/f where f is frequency. Since

we focus on the CPU management, we omit the memory access time M , treating it as

a constant, as in prior work [23] and [60]. For simplicity, we use the service time S to

refer to C/f . Then, the aforementioned equation becomes S = C/f . To validate this

equation, we measured a particular search query’s latency at various CPU frequencies on

our experimental platform. In Fig. 6.3, we see that the request’s latency increases from

40ms to 97ms when the CPU frequency is slowed down from the fastest 2.7GHz to the
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Figure 6.3: Search query processing is CPU-intensive: service time is inversely proportional
to CPU’s frequency.

slowest 1.2GHz frequency. Additionally, we fit a latency trending line on the same figure.

Almost all the < frequency, latency > sample points are exactly on this linear trending line,

confirming that the compute-intensive search query processing time has a linear dependence

to CPU frequency. The time delay for the CPU to transition from one frequency to another

with the CPU stalls, is a constant, Tdvfs. Tdvfs is typically around 10 microseconds in the

kernel and 30 microseconds in user-space [4]. This time is relatively small compared to

the tens of milliseconds for the service time. If the predicted service time S∗1 equals R1’s

actual service time S1 with 100% prediction accuracy, the frequency set during the time

interval A1 to D1 should be constant [70] (i.e., the dotted line in Fig. 6.2 (b)). This optimal

frequency f1 can be calculated as follows:

W1 = W ∗1 = S∗1 ∗ fdefault (6.2)

f1 = W ∗1 /(D1 −A1 − Tdvfs) (6.3)

111



where W1 is request R1’s total work and W ∗1 is the predicted value. However, a prediction

is likely to not be 100% accurate. Accounting for this, we have the following:

S∗1 = S1 + E1 (6.4)

where E1 is the prediction error. With unknown S1 during runtime, a step-wise DVFS

control can produce better power savings [70, 118]. To minimize the DVFS transition

overhead, we limit our scheme to be a two-step design. For a two-step DVFS, shown in Fig.

6.2 (b), we have to solve three problems: 1.) select the initial frequency f1a 2.) determine

the time T1 for frequency boosting and 3.) choose the boosted frequency f1b. In Gemini,

we fix the boosted frequency at maximum for the CPU core and use the predicted service

time S∗1 to select the f1a. Then, f1a is:

f1a = S∗1 ∗ fdefault/(D1 −A1) (6.5)

In the following analysis, we focus on the case when S∗1 is shorter than S1, as a

deadline violation is more serious than energy inefficiency. If the prediction of S∗1 is accurate,

the line of f1a in Fig. 6.2 (b) would be straight (to D1). Nevertheless, the shaded area

reflects period we have to boost to f1b to accommodate for prediction errors so that we

meet the latency requirement.

To find the correct value of T1, we choose f1b to be equal to fdefault since we want

the CPU frequency to stay at the lower f1a for as long as possible. Since we do not know S1

precisely during the runtime, we design a separate error predictor to help us in this process.

The output of our error predictor E∗1 for request R1 and predicted service time S∗1 are used

to approximate the actual service time S1. E
∗
1 can be obtained by the following equation:

E∗1 = PredictError(Q1, I|fdefault) (6.6)
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Intuitively speaking, we leave a little latency slack for prediction errors. Then, the following

equation holds.

f1a ∗ (T1 −A1) + f1b ∗ (D1 − T1 − Tdvfs) = (S∗1 + E∗1) ∗ fdefault (6.7)

Notice that we execute at frequency f1b for a time interval D1 − T1 − Tdvfs, since

the CPU will stall for Tdvfs whenever we change the frequency. By combining equations 6.5

and 6.7, T1 can be calculated. Generally, there is a trade-off between power and deadline

violations. However, our violation rate can be fixed at a much lower value because of the

accurate error predictor. In the worst case, T1 will be at the beginning, A1, where we

have to boost the frequency right away to meet the deadline. If T1 is equal to A1 and

request R1 still cannot finish its work W1 before the deadline D1, our DVFS scheme will

directly drop request R1 to save energy. Dropping this kind of request will not impact the

search quality seen by the client [123], as this response would be dropped by the aggregator

anyway [123, 16]. The accuracy of the service time prediction is very important to the

power saving achieved with our two-step DVFS. In equations 6.5 and 6.7, f1a will be closer

to optimal frequency f1, and boosting time T1 will be closer to deadline D1, if the service

time prediction error is smaller. When the prediction error E∗1 is zero, we have f1a == f1b

(i.e., use a constant frequency).

6.3.2 Two Requests With Queuing

The scenario when two requests might stay in the queue is more complicated

as we need to re-configure current CPU frequency to guarantee the request R2’s latency

requirement. Fig. 6.4 (Case 1a) depicts the arrival of the second request R2 at time A2
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Figure 6.4: Two requests in the queue. Example of Critical Request and Non-Critical
Request.

after R1 started processing at time A1. The deadlines for the two requests are D1 and D2,

respectively. When the inter-arrival time, A2 − A1, is large enough as in Fig. 6.4 (Case

1b), such that request R2 can finish its job within the interval D1 to D2, we call request R2

non-critical. When a non-critical request arrives at the queue, we don’t need to re-configure

the current setup and request R2 still uses a two-step DVFS to save power. On the other

hand, request R2 in Fig. 6.4 (Case 2a) will violate its deadline when the interval between

D1 to D2 is too short. In Case 2b, request R2 is considered to be a critical request when

the following happens:

(D2 −D1) ∗ f2b < (S∗2 + E∗2) ∗ fdefault (6.8)
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W
′
2 = (S∗2 + E∗2) ∗ fdefault is the total amount of work predicted for request R2, including

prediction errors. When request R1 finishes, we skip step one for request R2 and directly

boost the CPU frequency to f2b (i.e., fdefault). With that being the case, the maximum

amount of work that can be done within the residual time D2−D1 is (D2−D1)∗f2b. Request

R2 is critical when (D2 −D1) ∗ f2b is smaller than W
′
2. In order to guarantee R2’s latency

constraint in Fig. 6.4 (Case 3b), we have to boost the current frequency immediately and

re-configure the second step frequency f1b (green line) to f ′1b (blue line), in order to finish

R1 early. Then, request R2 (i.e., orange shaded area in Case 3b) can begin to execute even

before D1. Notice that we can boost the frequency earlier only when the arrival time A2 of

request R2 is earlier than the initial boosting time T1. Otherwise, nothing can be adjusted

as frequency f1b in Case 3b is already fdefault, when A2 is between the initial value of T1

and D1. To minimize the transition overhead, we select the same frequency for f ′1b and f2a.

If a combination of < f2a, T2, f2b > can make request R2 meet its deadline D2, then request

R1 will definitely complete before the deadline D1. So, we now focus on the calculation of

< f2a, T2, f2b > for request R2. Before selecting the frequencies and boosting time for R2,

we define its predicted equivalent CPU cycles eW ∗2 as follows:

eW ∗2 = (S∗1 + E∗1) ∗ fdefault − (A2 −A1) ∗ f1a + S∗2 ∗ fdefault (6.9)

where (S∗1 +E∗1)∗fdefault− (A2−A1)∗f1a is request R1’s residual work and the S∗2 ∗fdefault

is request R2’s predicted work. With equivalent total work eW ∗2 , the initial frequency f2a

for request R2 becomes:

f2a = eW ∗2 /(D2 −A2 − Tdvfs) (6.10)
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Similar to the single request design, we let f2b be fdefault. In order to obtain the boosting

time T2, we have the following equation:

f2a ∗ (T2 −A2 − Tdvfs) + f2b ∗ (D2 − T1 − Tdvfs)

= eW ∗2 + E∗2 ∗ fdefault

(6.11)

where we must finish the total work for the two requests before deadline D2. By combining

equation 6.10 and 6.11, the boosting time T2 can be calculated. A special scenario of Case 3b

is when an incoming request R2 cannot finish its work even if we boost the CPU frequency

to fdefault immediately after it arrives. In such a case, it is safe to just directly drop request

R2, in the interest of saving more energy.

6.3.3 General Case with N Requests

We now address the general case. There are N − 1 requests in the queue when

critical request RN arrives. If request RN is non-critical, no action needs to be taken. In

Fig. 6.5 (Case 1a), we give an example with N = 3. Request R1 currently uses a two-step

DVFS to save power and the next request R2 is non-critical. When the critical request

R3 arrives at the queue in Case 1a, we have to boost request R1’s initial frequency f1a to

f ′1b as in Fig. 6.5 (Case 1b). Similar to equation 6.9, request R3’s equivalent total work

eW ∗3 considering R2’s work has to be calculated before making the new frequency plan. In

general, request RN ’s equivalent total work eW ∗N is:

eW ∗N = W residual
1 +

∑
1<i<N

(S∗i + E∗i ) ∗ fdefault + S∗N ∗ fdefault (6.12)

where request R1’s residual work W residual
1 means:

W residual
1 = (S∗1 + E∗1) ∗ fdefault − (AN −A1) ∗ f1a (6.13)
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Figure 6.5: Example of N (=3) requests in the queue. In Case 2a, request R3 and R4 can
finish before their deadlines if we use f3a as the current CPU frequency. After R3 leaves, R5

suffers the deadline violation if R4 adopts a two-step DVFS without considering the later
request R5.

The new frequency f ′1b=f2a=...=fNa can be calculated using the same method described in

the case of Two Requests. Thus, we have the following equation:

f ′1b = fNa = eW ∗N/(DN −AN − Tdvfs) (6.14)

In this design, all the requests in between current request R1 and critical request RN adopt

the same frequency to minimize the frequency transition overhead. Before the critical

request RN arrives, the current frequency plan has already guaranteed that the existing

N − 1 requests in the queue can meet their deadlines. Due to the arrival of critical request,

we have to boost the current frequency. So, request R1 to RN−1 will finish before their

deadlines. It is safe to use the same frequency for them to reduce transition overhead.

After determining fNa from equation 6.14, we use the following equation to get TN , with

117



fNb to be fdefault.

fNa ∗ (TN −AN − Tdvfs) + fNb ∗ (DN − TN − Tdvfs)

= eW ∗N + E∗N ∗ fdefault

(6.15)

Fig. 6.5 (Case 2a) shows the scenario when request R1 and R2 depart from the

queue. Currently, request R3 is still critical and new arrivals of request R4 and R5 are

non-critical. In Fig. 6.5 (Case 2b), the non-critical request R4 might adopt a two-step

DVFS (green line) to save its power. However, request R5 in Case 2a suffers a deadline

violation if R4 only considers its own computation demand. In Gemini with N requests in

the queue, we plan the CPU frequency in groups. For example, we find the next critical

request (R5) in Case 2a after the current critical request R3 departures. Then, our design

uses the method in Case 1 for selecting the frequencies such that we can meet the deadlines

and reduce transition overheads.

6.4 Latency and Error Predictors

For power managements, inaccurate service time estimation can result in deadline

violations, when we attempt to finish the requests just-in-time [60, 23]. Gemini employs

two NNs to estimate the query specific service time and prediction error, respectively. As

described in last section, the predicted service time S∗ is used in the initial frequency

selection in our two-step DVFS, and the error predictor is for determining the boosting

time T .
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Table 6.1: Features for the Service Time Prediction

Query
Time
(ms)

AMean
Score

GMean
Score

HMean
Score

Max
Score

Estimated
MaxScore

Score
Variance

Toyota 13 9.34 9.05 8.68 14.81 1131 5.99

Federal 29 7.11 7.1 7.1 7.9 1311 0.05

United Kingdom
(Max )

21 6.9 6.9 6.89 7.42 2144 0.02

Query
Time
(ms)

# of
Postings

# of Local
Maxima

Local Maxima
above AMean

# of
MaxScore

Toyota 13 20742 3084 2639 1

Federal 29 497081 3135 2506 1

United Kingdom
(Max )

21 2369024 2834 2373 1

Query
Time
(ms)

Docs in 5%
Max Score

IDF
Docs in 5%
Kth Score

Docs ever
in Top-K

Query
Length

Toyota 13 199 6.81 322 85 1

Federal 29 608 3.64 805 72 1

United Kingdom
(Max )

21 6357 3.41 9946 81 2

6.4.1 Latency Prediction

Recent research [55, 61, 72] in the Information Retrieval area reports that with

the adoption of Selective Pruning [15, 36] in search engines such as Facebook Unicorn [32]

and Microsoft Bing [55], a simple Linear Model [80] is inadequate to get a precise per

query service time prediction. Linear Classifier utilizes a linear combination of features

to make predictions, and therefore has poor accuracy. A few researchers have developed

sophisticated machine learning models to predict the query latency [55, 61, 72]. We consider

many features in query processing and limit our selection to a few important ones. Table

6.1 shows, across the different columns, all the features used in our prediction model. We

have chosen to illustrate these features with example term queries (Toyota, Federal) and

phrase queries (e.g., United Kingdom). The service time in column 2 is the prediction label
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in our model. All the other columns are prediction features. AMean score is a query term’s

arithmetic average score of all documents in the posting list. Similarly, the GMean score

is the geometric mean score and HMean is harmonic mean. Estimated MaxScore is an

approximation of the max score based on the algorithm in [71]. In a query term’s score

distribution, there might exist local maxima. The # of Local Maxima, and Local Maxima

above AMean, capture these score distribution features. Additionally, we quantify the

number of documents that fall within 5% of max score and 5% of the Kth score, where K is

the size of result sets. Finally, the feature “Docs ever in Top-K” is the number of documents

that are fully scored by the selective pruning algorithm. For those phrase queries having

more than one term, the maximum of query terms’ feature values is used.

In Gemini, we use a NN model with only 5 hidden layers to make the latency

prediction, because it achieves a good balance between prediction accuracy and inference

overheads, on our platform. Each hidden layer has 128 neurons and uses the relu activation

function. Our classification model is trained by the Adam optimization algorithm [63] with

sparse categorical cross-entropy loss function. For service time scaling in Gemini DVFS,

our NN model predicts each query’s service time using the default CPU frequency. Next,

we evaluate the feature importance on NN model. In this experiment, we first develop a

NN model with # of Postings as the only feature. Then, more features are added to this

NN model in the order of top to bottom as shown by the Y-axis of Fig. 6.6. All the features

listed on the Y-axis of Fig. 6.6 are from Table 6.1. In Fig. 6.6, we can observe that the

NN model with single feature (i.e., # of Postings) only yields a prediction accuracy of 23%.

When having more features, the prediction accuracy improves. Finally, the model with all
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Figure 6.6: The prediction accuracy when we keep adding new features. Red bars are query
features that will adversely impact the prediction accuracy.

the query features at the bottom of Fig. 6.6 achieves 89% prediction accuracy. Red bars in

the figure, such as Local Maxima above Amean, # of MaxScore and Doc in 5% KthScore,

are query features that will degrade the prediction accuracy. In Gemini, we carefully select

the features for a search engine system such that our NN model achieves the maximum

prediction accuracy.

6.4.2 Model Comparison

We now compare the prediction error and overhead results for the NN classifier,

NN regressor and a simple linear classifier on the Wikipedia query trace and index. All

the models are using the same query features. During the experiment, we observe that

the prediction error will reduce if we train the models over more iterations. The detailed

comparison results are given in Fig. 6.7. In Fig. 6.7 (a), each model’s X-axis value is its
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Figure 6.7: (a) Prediction error and overhead for the NN models and the linear model. (b)
Prediction overhead and average request service time.

prediction error and the Y-axis value is its prediction overhead. For the NN regressor with

the MSE loss function, we train it by using the RMSprop optimization algorithm. Due to

the selection of a MSE loss function, we define that a prediction error happens when the

absolute value of true service time minus the predicted service time is larger than 4ms.

On the other hand, the threshold for the (NN and linear) classifier models is 1ms as the

output neuron of our classification model is at per millisecond granularity. Although the

simple linear classifier has the smallest overhead of 64 µs, its worst prediction error of 73%

prevent us to use it. Next, the NN regressor has a better prediction error of 24% with

similar prediction overhead (66 µs). However, the 24% prediction error is still too high

for the search request processing with strict latency constraints. Finally, the selected NN-

classifier in Gemini has the smallest prediction error of only 11%. The 79 µs of prediction

overhead in our NN classifier is relatively small compared with a search request’s total

service time. In Fig. 6.7 (b), we plot the average request service time on both our platform

and Microsoft Bing [55]. On our platform, the average request service time is around 10000

µs (i.e., 10ms). Microsoft reports that the average service time for Bing search is 13470 µs
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(i.e., 13.47ms) due to the large index [61, 17]. The average request service time is 127 times

of the prediction overhead for our NN classifier.

6.4.3 Design of an Error Predictor

Finally, we investigate the prediction error E of our NN model. In Gemini, the

prediction error E is defined as f(Xi) − yi, where we derive the predicted service time as

f(Xi), given the feature vector Xi and yi is the measured query service time, for query

i. Prediction results show that 89% of requests have accurate service time prediction.

However, around 5.5% of requests have positive prediction errors and the remaining 5.5%

requests see negative prediction errors.

The impact of this kind of prediction errors is discussed in Fig. 6.8 (a). The X-axis

on Fig. 6.8 (a) is the prediction error and the Y-axis is a request’s predicted latency. If the

prediction error is negligible, a long request (red circle) may violate the SLA requirement

while a short request (orange square) may be slowed down for power saving and still not

violate the SLA. However, even for such a short request, if the prediction error is negative
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and large (shown with black dashes), this will result in the predicted service time f(Xi) being

much shorter than yi, causing us to select a much lower CPU frequency than appropriate

and result in a violation of the SLA. Similarly, large positive prediction errors (yellow plus

sign) will result in energy inefficiency because we will select too high a frequency. In order to

solve this problem, Gemini uses an additional predictor to estimate a request’s service time

prediction error [61]. For the predicting the error, we use the same query features as listed

in Table 6.1. To train another NN model for error prediction, the label E = f(Xi)− yi can

be easily obtained in training set since we can keep track of the measured request latencies

in the past. Fig. 6.8 (b) shows the prediction accuracy for errors is 85%.

6.5 Gemini Implementation

Gemini is implemented on the Solr search engine. The high level architecture of

Solr search engine is shown in Fig. 6.9. When a client’s search request arrives, a SearchHan-

dler inside the Solr search engine will forward the request to the IndexSearcher component,

which calls the Apache Lucene APIs for retrieving the relevant documents. The entire Solr

search engine is written in Java. To implement Gemini, we wrap the IndexSearcher and

Lucene Index Searching in Fig. 6.9 as a Java Callable task. The reason for doing this is

that the Java Executor framework can automatically handle Callable tasks in a Blocking

Queue and provide mechanisms for thread management. When a search request arrives, we

submit its task to the Blocking Queue and wait for an idle working thread to process its

query. Currently, our implementation only has one working thread as we focus on single

core power management. With multiple CPU cores, we can maintain a separate queue for
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Figure 6.9: Gemini implementation overview.

each core and have a global broker to distribute the incoming requests to each core, as

suggested in [72]. Each core will manage its power consumption independently by using

Gemini’s DVFS scheme. This is work we plan for the near future. Finally, we conduct the

ISN power management upon the arrival and departure of every task.

We use the TensorFlow [1] to achieve Gemini’s NN prediction model. The inference

time for prediction is only 73 - 83 microseconds, compared with tens of milliseconds for

the query’s service time. As Gemini is implemented as a part of the ISN, we need user-

space DVFS control. Gemini leverages the Advanced Configuration and Power Interface

(ACPI) to update the CPU core’s frequency at runtime. To reduce transition overheads,

our frequency enforcement is achieved by manipulating each core’s “scaling setspeed” file.

When this device file is changed, Linux triggers a group of system calls that take only 40

microseconds totally to update the CPU core’s frequency. The extra latency overheads from

the Gemini implementation are negligible.

Our experimental setup has two machines connected by a 1G Ethernet link: one
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as the client and the other as the search engine server. The server machine is a 24 core Intel

Xeon E5-2697 CPU, 128G memory running CentOS 7 operating system. Three represen-

tative query traces are used in our experiments: the Wikipedia [107], the Lucene nightly

benchmark [48] and the TREC Million Query Track (MQT) [81]. On the server side, we

deploy a 12 ISNs Solr search engine. In the search engine, we index the complete dump of

entire English Wikipedia web pages on December 1st, 2018. This 65GB index has a total

of 34 millions documents. The search engine machine supports per core frequency scaling.

The CPU frequency can be selected in the range of 1.2 GHz to 2.7 GHz. The default CPU

frequency is 2.7 GHz. For power measurement, our CPU has sensors to monitor per socket’s

energy consumption. The accumulated energy consumption of a CPU socket is stored in a

Machine Specific Register (MSR). By writing a energy measurement daemon which reads

the MSR register every 1 second through the Running Average Power Limit (RAPL) in-

terface, we can obtain a CPU socket’s power consumption. As the measured CPU energy

per second is the socket package energy, we deploy 12 single-working-thread ISNs on the

12-core CPU chip. Then, each ISN is bound to one core of the CPU chip. The 12 ISNs

receive the same search queries from our Solr aggregator but schedule their core’s frequency

independently.

6.6 Evaluation

Gemini is first evaluated with a range of server loads, in terms of RPS, to show the

significant CPU power savings while still achieving the latency constraints. We also perform

trace-driven experiments using three different query traces to characterize Gemini’s power
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Figure 6.10: The CPU package power results for various RPS. Time budget uses the tail
latency at high load.

management under realistic workloads. Finally, we disable each component of Gemini in

turn, to show the underlying reasons for the increased power savings of Gemini.

6.6.1 Power Saving

In this experiment, we implement four different frameworks for comparison. As

shown in Fig. 6.10, the baseline doesn’t have any power management and always uses the

default 2.7 GHz CPU frequency. The first is Rubik [60], an analytical power management

framework which adjusts the CPU frequency on every request arrival and departure ac-

cording to the tail (95th percentile) of the service time distribution. Second, we compare

with Pegasus [69], which is a feedback based power management scheme. It measures the

request’s latency periodically and selects the highest CPU frequency if a deadline violation

happens. To match the search load we use over 1000 seconds, we scale Pegasus’s 5 seconds

epoch length (over a 12-hour period for the load) to 125 milliseconds in our experiment, so
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as to have the same ratio between epoch length and load length. Apart from the complete

design of Gemini, we also implement another version of our scheme called Gemini-α, in

which we don’t use the second NN model for error prediction. Instead, we use the moving

average of errors in the past 60 request arrivals to estimate the current request’s latency

prediction error. By doing this, we quantify the benefit of having the second predictor for

the error in our design on CPU power saving and request tail latency.

To compare across the different power management frameworks, we use the same

query workload (the Wikipedia trace) on the Solr search engine. The results are shown in

Fig. 6.10. Each request rate (in RPS) is maintained for 120 seconds to obtain the corre-

sponding average CPU power consumed at that server load. Fig. 6.10 (a) shows the CPU

package powers for RPS varying from 20 to 100. In our experiment, the measured CPU

package power includes the power consumed by CPU cores, caches and other components

on the chip. The results show that CPU package power increases for all the frameworks,

as we increase the request intensity. For example, the CPU package power for the baseline

case increases from 34W to 36.5W when the RPS value goes up from 20 to 100. Higher

server load results in more request queuing. Thus, the latency slack that power manage-

ment frameworks used to slow down requests is reduced. Among all the power management

alternatives, Pegasus consumes the highest CPU package power, because of its epoch based

design. Rubik performs better than Pegasus, but still consumes more CPU package power

than our Gemini variants. The results in Fig. 6.10 (a) shows that the complete design of

Gemini uses the least CPU package power and outperforms the Gemini-α which doesn’t in-

clude a second error predictor. The reason is that the inaccurate moving average prediction
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in Gemini-α makes our two-step DVFS enter the second frequency step too early in its goal

of meeting the latency constraint. So, Gemini-α consumes more CPU power than Gemini

across the entire range of loads. The second error predictor in Gemini is clearly beneficial

in reducing CPU power consumption.

Fig. 6.10 (b) presents the package power saving in percentage compared to the

baseline. Although the actual power consumption increases linearly in 6.10 (a) for each

technique, the percentage power savings remains same for each technique compared to the

baseline. As the relative differences across frameworks are similar for the range of RPS,

we focus on the high server load of 100 RPS, where power savings are more challenging to

achieve. At this high server load, Pegasus saves 9.23% of CPU package power while Rubik

achieves 16.8% power saving compared to the baseline. The power savings for Gemini-α is

32.7%, which is 1.95 times better than Rubik. The complete design of Gemini performs the

best, with 37.9% CPU package power saving compared to the baseline. This is 2.25 times

better than Rubik, and is even better when compared to Pegasus.

6.6.2 Tail Latency

For the same experiment as above, the 95th percentile latency for different RPSs

is shown in Fig. 6.11. In Fig. 6.11 (a), we observe that the tail latency for the baseline,

with a fixed 2.7 GHz frequency, increases with load, due to request queuing. For example,

the request’s tail latency is 12.3 ms at 100 RPS, compared with the 7.05 ms at 20 RPS.

To utilize the latency slack, and save CPU power, power management frameworks such

as Rubik and our Gemini will slow down the request’s processing time to be close to the
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Figure 6.11: Tail latency results for different RPS. Part (b) is the tail latency with 37-43ms
scale for part (a).

40 ms latency bound. Fig. 6.11 (a) shows that all the compared frameworks can roughly

achieve this performance constraint. We look into the tail latency at a finer granularity

(in the 37-43ms range) under the different frameworks, Fig. 6.11 (b), with the red bar in

the figure being the time budget given. At 100 RPS, the tail latency of Rubik is 39.36ms

and the others are similar, across the range of RPS. Because Pegasus has a feedback based

controller to select CPU frequency, it has a higher tail latency variations across the range of

loads. Pegasus violates the 95th tail latency constraint by achieving 41.67ms at 100 RPS.

Due to the inaccurate error estimation in Gemini-α, which uses a simple moving average

from recently processed queries, Gemini-α sometime has a higher 95th tail latency than the

target time budget of 40 ms. Finally, the complete Gemini along with the error predictor

consistently meets the 40ms tail latency constraint all the time. Compared with Rubik

and Pegasus, Gemini meets the deadline requirement but still achieves higher CPU power

savings, as shown in Fig. 6.10. This is because we accurately “reshape” the request’s latency

distribution, so that more of the requests have their latency closer to the time budget.
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Figure 6.12: Power consumption results for the Wikipedia, Lucene and TREC traces.

6.6.3 Trace-Driven Characterization

For the next experiment, we evaluate Gemini with a constant RPS trace-driven

workload, for sensitivity analysis. We compare Gemini with Rubik and Pegasus through a

1000 seconds trace-driven experiment. Fig. 6.12 (a) and (b) present the CPU package power

for the Wikipedia and Lucene nightly benchmark traces, respectively. Similar to prior works

[81, 33, 65], we also show the comparison results for the TREC query traces (widely used

in the information retrieval area), in Fig. 6.12 (c). For these three query traces, we still use

40ms as the target tail latency. With all the traces, power consumption of the baseline is in

the range of 29.1W to 38.2W as the server load varies over time. Pegasus still consumes the
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most CPU power among the alternative frameworks for power saving, primarily because

of its epoch based design. Rubik outperforms Pegasus most of the time. On the other

hand, Gemini leverages a two-step DVFS equipped with a NN based latency predictor for

the initial frequency selection and a second predictor for the boosting time determination

to improve the CPU power savings. The results in Fig. 6.12 (a), (b) and (c) show that

Gemini consumes the least amount of CPU power, across all three traces. We show the

average power savings in Fig. 6.12 (d). Rubik achieves around 23.7%-27.8% CPU power

savings with the three traces. The average power saving for Pegasus on the three traces

is in the range of 20.07% to 24.72%. The best power management among these, Gemini,

achieves up to 42.15% power saving on Lucene trace which is 1.53 times better than Rubik

and outperforms Pegasus by 70.5%.

In addition to the power savings, the request latency distribution for each scheme

on the Wikipedia trace is shown in Fig. 6.13 (a). Rubik, Pegasus and Gemini save CPU

power because they can shift the “knee” of latency distribution to the right, towards the

deadline. Although the tails of their latency are similar in Fig. 6.13 (a), Gemini is able to

slow down more requests, such that they are closer to the deadline. This allows Gemini to

have better energy savings. The detailed tail latency and deadline violation rates for this

trace-driven experiment are presented in Fig. 6.13 (b). On the top sub-figure, the baseline

has the smallest 95th tail latency with 13.8 ms (much smaller compared to our 40ms time

budget). Rubik utilizes this latency slack to shift the tail to 37.9 ms, completing just before

the deadline, to save energy. The 95th tail latency on Gemini is 39.3 ms. However, Pegasus

has 95th tail latency of 44.2 ms, thereby resulting in more than 5.8% (highest) of the requests
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Figure 6.13: Gemini achieves the smallest tail latency and lowest deadline violation rate.

having deadline violations as seen in the bottom sub-figure. Rubik always uses the 95th

percentile on the service time distribution for frequency selection. Thus, Rubik’s deadline

violation rate is lower, at 4.7%. But, by having a precise per query service time prediction

and using a second error predictor to reduce the deadline violation, Gemini achieves a 2.4%

deadline violation rate which is less than half of that for Pegasus. Thus, Gemini achieves a

much better balance between the CPU power saving and deadline violation rate than the

alternatives we compare.

6.6.4 Breakdown of Power Saving

In Gemini, our two-step DVFS (for limiting the frequency transition overheads)

initially selects a low CPU frequency to save power, but incorporates mechanisms to make

sure that the initial selected frequency is not too low to miss the deadline. Then, our

two-step DVFS boosts the initial frequency at just the right time, such that the deadline

is met. In fact, PACE [70] theoretically proves that a step-wise DVFS scheme produces
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(a) Wiki Trace

(d) Avg. Power Saving

(b) Lucene Trace

(c) TREC Trace
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Figure 6.14: Comparing Gemini, Gemini-α, and Gemini-95th.

the optimal CPU power saving when a task’s total work is unknown. Both synthetic and

trace driven experiments show a significant power saving for Gemini. To further enhance

the power management, we develop two separate latency and error predictors with high

accuracy. The latency predictor enables a suitable initial frequency selection in our two-

step DVFS and the error predictor enables our scheme to boost the initial frequency at the

correct time.

In this experiment, we examine the reasons behind the significant power savings of

Gemini on three different query traces. We develop two variants of Gemini. In particular,

we seek to determine the impact of our NN-based predictors. First, Gemini-α described
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in the previous experiments is reused. Gemini-α doesn’t use the second error predictor

of Gemini at all. Building on Gemini-α, “Gemini-95th” also removes its latency predictor.

Instead, similar to Rubik, we use the 95th percentile of service time distribution to estimate

a query’s latency in Gemini-95th. In Fig. 6.14 (a), (b) and (c), we report the CPU power

variation with time for the Wikipedia, Lucene and TREC traces. For all the traces, the

power consumption of Gemini-α is slightly higher than Gemini. This is because the moving

average in Gemini-α is unable to provide a measure of each request’s precise residual work.

Thus, the two-step DVFS has to boost the CPU frequency earlier to achieve a lower deadline

violation rate. When we further disable the latency predictor and use the 95th percentile of

the service time distribution for frequency selection, Gemini-95th consumes even more CPU

power than both Gemini-α and Gemini. The average power saving results are shown in Fig.

6.14 (d). When comparing Gemini with Gemini-α, we find that the use of second error

predictor brings us around 6.53% more power savings on the Lucene trace. On the other

hand, the power saving improvement contributed by our service time predictor in Gemini is

10.8% on the Lucene trace. On the TREC trace, the average power saving of Gemini is

36.09%. Breaking this down, when only the two-step DVFS (without the predictors) is used,

as in Gemini-95th, the power saving is 58% of Gemini. By having the latency predictor

but not the error predictor in Gemini-α, we achieve 86% of the complete design’s power

saving. Thus, we conclude that it is important to have both the two-step DVFS and the

two predictors in Gemini for significant power savings.
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Chapter 7

Coordinated Time Budget

Assignment at the Aggregator

7.1 Introduction

The primary goal of this chapter is to reduce a search system’s tail latency and

resource consumption with negligible quality loss. To achieve this goal at the granularity

of an individual query, we propose Cottage (i.e., coordinated time budget assignment), a

coordinated framework integrating the prediction and decision making at both the aggre-

gator and the ISNs. An ISN’s quality and latency estimations are conducted independently

at each ISN server, where there is more complete information of the sharded index. An

ISN’s quality means the number of documents it contributes to the top-K client-side search

results, whereas its latency means the time taken to process the query at the particular ISN

including local queuing. Having each ISN predict its quality and latency concurrently leads
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to a much more scalable design. But we recognize that the overall query latency and quality

determination needs a global view of the responses from all the ISNs. Thus, we gather the

ISN prediction results at the aggregator and design a centralized optimization algorithm to

determine the time budget (cutoff time) for the query. The distributed decision making we

perform here has little impact on the request’s service time as the network latency in data

centers is typically at the microsecond granularity [79].

Two separate NN models with distinct query features are developed at the ISN for

quality and latency prediction. Unlike Taily [7], which assumes a Gamma score distribution

for all requests, our NN model adapts to each query’s unique score distribution and doesn’t

need to predict a global Kth maximal score. All our query features are based on the term

statistics [72], which are calculated during the indexing phase. The prediction accuracy of

our quality model is 95.7% while only taking 80 microseconds for the inference. Similarly,

the latency prediction has a high accuracy of 87% with negligible overheads.

In our framework, we incorporate a frequency boosting technique to accommodate

slow ISNs that contribute highly to the overall quality. The time budget determination

algorithm uses four different predictions from each ISN: the quality for top-K, the quality

for top-K/2, the latency estimate at the current frequency at an ISN and the latency using

the highest (boosted) frequency. With these predictions, the aggregator first ranks the

ISNs based on their predicted quality for top-K results and cuts off those ISNs with zero

contribution to the top-K results. In order to consider high quality slow ISNs, the remaining

ISNs are re-ranked with their boosted latencies using the highest CPU frequency. With this,

the time budget is determined by the ISN with the longest boosted latency (the last response
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the aggregator waits for), but with a high quality contribution to the top-K/2 results. We

select its boosted latency as our search query’s deadline. The aggregator’s ability to find

the right balance between quality and latency (because it has the visibility across all ISNs)

enables us to find a far superior, coordinated decision compared to previous work. The

evaluation results on our platform show that the integration between aggregator and ISNs

bring 37.35% more latency improvement while achieving a similar search quality.

The entire framework of Cottage is implemented on the well-known Solr [101]

search engine. Experimental results on two representative query traces prove that Cot-

tage yields a 2.41 times shorter average query latency when searching 2.67 times fewer

documents than exhaustive search. At the same time, we achieve a good P@10 search qual-

ity of 0.947 (out of 1). Both these results are much superior compared to CSI based Rank-S

[65] or Taily [7]. Our major contributions in this chapter are the following:

• We propose a coordinated framework between the aggregator and ISNs to improve the

search engine’s query-specific latency and quality while improving the search efficiency.

• Two separate neural network models with distinct query features are developed to

predict each ISN’s quality and latency.

• We design an algorithm at the aggregator to assign a dynamic time budget for each

search query, considering both the quality and latency predictions by the individual

ISNs.

• The Cottage framework is implemented in a real testbed using representative query

traces to prove the superiority of our technique.
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(a) Exhaustive Search 
(Precision = 1.0)

(b) Aggregation Policy 
(Precision = 0.8)

(c) Selective Search 
(Precision = 1.0)

(d) Cottage 
(Precision = 1.0)
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Figure 7.1: The policy comparison between exhaustive search, aggregation policy, selective
search and Cottage.

7.2 Motivation

We first consider the case of exhaustive search. In Fig. 7.1 (a), we plot the quality

(bar with left hand side Y-axis) and latency (line with right hand side Y-axis) results for

the query “Canada” on a Solr search engine with 16 ISNs. In exhaustive search, with 100%

P@10 precision [56] the time budget for the search request has to be at least 28ms such

that the slowest ISN-1 can return its results before the deadline. Epoch-based aggregation

policies [22, 123] find a cutoff parameter that produces an optimal latency reduction for

most of the requests with an acceptable search quality. However, they consider cutting off
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long-tail servers irrespective of their quality contribution. The results after applying the

aggregation policy are shown in Fig. 7.1 (b), in which the stragglers (the grey ISN-1, 7, 13)

on Fig. 7.1 (a) are removed. In Fig. 7.1 (b), we assume that a time budget of 12ms yields

the best latency improvement for most of the queries in an epoch. If we remove ISNs-1,

13, they provide the two top-10 search results. Excluding them will deteriorate the search

quality by 20% (i.e., yielding a P@10=0.8).

Let us now look at selective search frameworks [97, 104, 65], which only gather

responses from a subset of ISNs to reduce the resource usage of a distributed search engine.

A query’s response time from an ISN is generally not considered, when selecting ISNs to

use in the search. For the same example, ISN-4, 5, 7, 9, 10, 11, 12, 14, 15 in Fig. 7.1 (c) will

be excluded when selective search is used. However, the overall latency of query “Canada”

is not optimized even if we cutoff some low quality ISNs. Thus, it is essential to consider

both the latency and quality when assigning a query’s time budget at the aggregator. This

motivate us to have the design of Cottage as shown in Fig. 7.1 (d). When determining

the time budget, the ISN with a long latency and a high quality contribution should be

retained, instead of directly dropping them off in the aggregation policy. There are many

approaches such as pruning [105] or parallelization [55] on an ISN to accelerate the request

processing. In this chapter, we propose the CPU frequency scaling to speed up the search

request, as it doesn’t hurt the search quality.
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Figure 7.2: The Cottage framework needs the coordination between aggregator and ISN
servers for quality prediction, latency prediction and time budget determination.

7.3 Cottage Design

7.3.1 Overview

Fig. 7.2 provides the design overview of our framework Cottage. Whenever a

search request arrives at the aggregator, Cottage will first broadcast the request to all the

ISNs (i.e., step 1 in the figure) as in an exhaustive search. At step 2, Cottage predicts

an ISN’s quality contribution to the P@10 result for a given query, based on a NN model

described in section 7.3.2. Apart from the quality prediction, Cottage also needs to predict

each query’s service time at step 2 as both quality and latency have to be considered when

determining a query-specific time budget. We use the same method descried in chapter 6

to precisely estimate each query’s service time. These query-specific quality and latency

predictions at the ISN are sent back to the aggregator in step 3 of Fig. 7.2. Then, Cottage
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uses a centralized optimizer for latency and quality optimization (in step 4). The key point

of our optimization is to assign a dynamic time budget (i.e., deadline) for each query.

The process of determining the time budget is further described in section 7.3.3. In

step 5 of Fig. 7.2, the dynamic time budget for a query is sent back to all the ISNs. With the

assigned time budget, the ISN will process the query accordingly in step 6. Finally, the ISN

sends its responses to the aggregator in step 7. The responses from ISNs after the deadline

are ignored by the aggregator. For example, in Fig. 7.2, only ISN-2 and ISN-3 will send

their responses to the aggregator, since ISN-1 and ISN-4 have a low quality contribution or

an excessively large predicted latency. Thus, the tail latency for the parallel request across

the ISNs are reduced. The communication between the aggregator and ISN doesn’t incur

significant latency overhead, as the data center network round trip time can be kept low

(typically a few micro seconds) [79], compared to the tens of milliseconds of service time

for the search application.

7.3.2 Quality Prediction

State-of-the-art shard ranking algorithms [104, 65, 97] are centralized designs at

the aggregator. The only distributed scheme we are aware of in the literature, Taily [7],

assumes a Gamma distribution for a query’s scores against all the relevant documents at an

ISN. Instead, we develop a novel NN model with carefully selected features to predict each

query’s quality contribution on an ISN. With better prediction accuracy, Cottage avoids

falsely dropping an ISN’s response that will eventually contribute to the final P@10 result

to a client.
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Kth Score

Figure 7.3: Histogram of query scores and its fitted Gamma distribution.

Let us assume that the aggregator of a search engine sends the top-K final results

to the client. Then, an ISN’s quality is defined by the number of documents it reports that

will be included in the final top-K results. If we can infer a search query’s dynamic score

histogram, it is then easy to predict an ISN’s quality on a per-query basis. In Fig. 7.3, we

present the histogram (i.e., blue bars) of relevant scores for a specific query on ISN-1. The

documents without any relevant query terms are ignored. This observation motivates the

design of Taily [7] to dynamically predict a query’s score distribution by assuming that the

score distribution follows a Gamma distribution [58, 7]. During runtime, they predict the

parameters of the Gamma distribution according to static query term statistics which are

obtained during the indexing phase. However, a query’s scores typically do not perfectly fit

a Gamma distribution, thus resulting in an inaccurate ISN cutoff. In Fig. 7.3, we also plot

the fitted Gamma distribution (i.e., red line). We can observe that the P (X > Kth) from

the Gamma distribution is not quite the same as the distribution shown in the histogram.

If we improperly cutoff some ISNs that will significantly contribute to the top-K results,

search quality will suffer.
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Table 7.1: Features for Quality Prediction

Feature Name Example for “Tokyo”

First quartile score 2.46

Arithmetic average score 4.88

Median score 7.16

Geometric average score 3.91

Harmonic average score 2.2

Third quartile score 4.72

Kth score 11.08

Max score 14.46

Score variance 8.22

Posting list length 5975

Cottage proposes a NN model to predict each query’s quality contribution. The

output of our NN model is the number of documents at an ISN that will be included in the

corresponding top-K results. In Table 7.1, we list all the features used in our NN model.

Our design is based on the premise that we can utilize the query’s aggregated statistics,

such as the arithmetic average score and max. score, to capture the score distribution. By

training the model with a large amount of observed samples from the past, we can accurately

predict a query’s quality when observing similar score distributions. The different score

percentiles, as listed in Table 7.1 row 2 to 10, can be easily obtained from index term

statistics [72, 61, 55]. Although two queries might have the same score distribution, their

quality contribution might be different as the number of documents they have to search are

different. Thus, the posting list length (i.e., document count) becomes our last, but very

important, query feature in Table 7.1.

For model training, we select a NN model with 5-hidden layers as it maintains

a good balance between accuracy and inference time. Each hidden layer has 128 neurons

and uses the ReLU activation function. The model is trained by the Adam optimization
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Figure 7.4: The prediction accuracy and inference time for quality prediction.

algorithm [63] with sparse categorical cross-entropy loss function. In Fig. 7.4, we present

the prediction accuracy and inference time of our quality predictor. Based on the query

features listed in Table 7.1, we show that the accuracy of quality prediction (left-hand side

Y-axis of Fig. 7.4 (a)) improves when we train the model over more iterations to reduce the

value of loss function (right hand side Y-axis of the same figure). The prediction accuracy

of our model can be up to 95.7%. We reach a point of diminishing improvement after 600

training iterations. Next, we compare the quality predictor’s accuracy and inference time

on various ISNs. Each ISN has a separate NN model trained with its own index data. In

Fig. 7.4 (b), our quality predictor achieves an average of 94.71% accuracy (left-hand side

Y-axis) across ISNs. In addition to the prediction accuracy, the inference time for each

query is another important performance metric. The inference time overhead is shown by

the right hand side Y-axis of the same figure. Our quality predictors only incur at most

41 microseconds of inference time, compared with tens of milliseconds query’s service time

[55].
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Figure 7.5: An example (with K = 20) for time budget determination in Cottage.

7.3.3 Time Budget Determination

The optimizer for time budget determination in Cottage needs two predictors: the

quality contribution prediction and the latency prediction. As shown in Fig. 7.5, both the

Quality-K (black bar) and Quality-K/2 (blue bar), (both with left-hand side Y-axis) are

used by our algorithm. The Quality-K/2 prediction means the number of documents that

an ISN will contribute to the top-K/2 client-side results. Similarly, Cottage obtains each

ISN’s predicted latency under the current CPU frequency f (yellow line) and the highest

CPU frequency (green line), (both with right-hand side Y-axis). The boosted latency

is the shortest time that an ISN server can finish a request through frequency boosting.

With the aforementioned quality and latency predictions, our algorithm dynamically assigns

a minimal time budget to the parallel search requests such that the latency and search

efficiency are optimized with negligible quality loss.

The details of the time budget determination algorithm is shown in Algorithm 1. I
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Algorithm 1: Time Budget Determination

1 I: set of ISNs associated with quality and latency predictions

< QK , QK/2, Lcurrent, Lboosted >

2 T : time budget

3 j = 0, N = I.size()

4 while j < N do

5 if Ij .Q
K equals 0 then

6 drop ISN Ij

7 remove Ij from I

8 end

9 j=j+1

10 end

11 DescSort(I, Lboosted)

12 T = I0.L
boosted, j = 0, N = I.size()

13 while j < N do

14 if Ij .Q
K/2 6= 0 then

15 T = Ij .L
boosted

16 break

17 end

18 j=j+1

19 end
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is the set of ISNs for a search engine. Each ISN Ij has four prediction results: the quality-K

QK , quality-K/2 QK/2, latency under current frequency Lcurrent and latency under highest

frequency Lboosted. In the first stage of the algorithm (line 3-10), all the ISNs are ranked by

the Quality-K predictions. To improve the search efficiency, the ISNs with zero Quality-K

are cut off and removed from the ISN set I. Specifically, the ISN-4, 9, 12, 14 on the example

of Fig. 7.5 are cut off. In line 11 of Algorithm 1, Cottage re-ranks the remaining ISNs by

the descending order of boosted latency because we want to find the shortest time budget

to meet quality constraints. In Fig. 7.5, the re-sorted ISN list is <7, 1, 13, 2, 6, 5, 15,

16, 3, 8, 10, 11>. Then, the lines 12-19 of Algorithm 1 try every ISN’s boosted latency as

the time budget from the beginning to the end of ISN set I, until an ISN j has a quality

contribution to the top-K/2 results. We select ISN j’s boosted latency as the final time

budget T .

To make it clear, an example is given in Fig. 7.5. First, the initial time budget is

determined by ISN-7’s boosted latency of 18 milliseconds. However, most of the remaining

ISN’s current latency and boosted latency are far below the 18 milliseconds time budget.

We notice that the ISN-7 doesn’t contribute any documents to the most important top-K/2

results [56]. It is reasonable to trade off a little bit of the bottom K/2 result’s quality for

reduced response time. Thus, Cottage will choose a shorter time budget and drop ISN-7.

Next, we try ISN-1’s boosted latency of 16 milliseconds. As ISN-1 contributes one document

to the most important top-K/2 results, we have to retain the response of this ISN and select

a time budget of 16 milliseconds. Finally, the time budget line in Fig. 7.5 will stop moving

towards the X-axis due to the quality constraint of ISN-1.
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Compared with the previous selective search schemes [104, 65, 81] which only con-

sider the quality contributions, the Cottage algorithm reduces the tail latency to 16 ms,

compared to 28 ms achieved with the selective search. On the other hand, existing aggre-

gation polices [123, 22, 53] cut off ISN-1 because of its higher search latency, thus ignoring

its significant quality contribution. Our algorithm achieves a proper balance between the

search quality and latency. After determining the time budget, ISN-1 and ISN-13 will boost

their current CPU frequency as their predicted latency at the current frequency is longer

than the given time budget.

7.4 Implementation

Cottage is implemented on the well known Solr search engine [101]. In Solr, the

application instance can work as the aggregator or an ISN server. On a search request

arrival, if there are multiple destination shards, the Solr instance works as an aggregator

and handles the search request as a distributed request to multiple ISNs. Our centralized

optimizer is implemented after the aggregator broadcasts the distributed request to all its

destinations. As the Solr search engine already has multiple rounds of communications

between the aggregator and ISNs which are achieved by the concept of query component,

the gathering of quality and latency predictions in Cottage is implemented by adding an

additional query component as part of minimizing the overhead. If a search request’s

destination matches a Solr instance’s ID, then it is viewed as a local request and the Solr

instance works as an ISN server. At the ISN, our logic in Cottage is implemented before

the ISN begins to process the query. In Cottage, we use the Keras API of TensorFlow [1] to
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achieve the NN prediction models. For the request boosting, the Advanced Configuration

and Power Interface (ACPI) is utilized to update the CPU core’s frequency at runtime.

Our experimental setup has two machines connected by a 1G Ethernet link: one as the

client and the other as the search engine server. The server machine is a 24 core Intel Xeon

E5-2697 CPU, 128G memory running CentOS 7 operating system. On the client side, we

wrote a Python program to replay our real search query traces. Two representative query

traces are used in our experiments: the Wikipedia [107] and the Lucene nightly benchmark

[48]. On the server side, we deploy a 16 ISNs Solr search engine. In the search engine, we

index the complete dump of entire English Wikipedia web pages on December 1st, 2018.

This 65GB index has a total of 34 millions documents. The search engine machine supports

per core frequency scaling. The CPU frequency can be selected in the range of 1.2 GHz to

2.7 GHz.

7.5 Evaluation Results

We compare Cottage with the baseline policy of exhaustive search as well as the

state-of-the-art schemes such as Rank-S [65] and Taily [7]. For the baseline, a search request

will be executed on every ISN of the distributed search engine. In exhaustive search, the

aggregator sends search responses to the client only when it receives the response from

the slowest ISN. Rank-S is a centralized design in which each ISN’s quality contribution is

estimated by using a CSI. In our experiments, every ISN’s index is sampled by 1% to form

the CSI at the aggregator. Rank-S uses the fixed threshold for all requests to cutoff low

quality ISNs. Cottage is also compared with a distributed design, Taily. The major feature
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Figure 7.6: On both query traces, Cottage reduces the average client-side latency by 54%.

of Taily is that it uses a Gamma distribution for the scores to infer each ISN’s quality

contribution.

7.5.1 Overall Latency

Fig. 7.6 shows the overall latency for requests from the Wikipedia and Lucene

query traces run for 1000 seconds. In Fig. 7.6 (a) for the Wikipedia trace, the requests’

overall latency (black line) using exhaustive search varies in the range of 4ms to 65ms. For

Taily (red dot), its overall latency in Fig. 7.6 (a) is similar to exhaustive search most of the

time. This is because it only excludes the ISNs that have zero contribution to the P@10
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results, without considering the dimension of latency. Sometimes, a low quality ISNs may

happen to have a long latency (e.g., the query made around the 780th second). In such

a case, Taily can improve a search request’s overall latency. We plot the corresponding

average and 95th tail latencies in Fig. 7.6 (b). As shown in Fig. 7.6 (b), Taily improves

the average request latency of exhaustive search only by 1.16% and reduces the 95th tail

latency by 1.2%.

Rank-S (blue line) performs better than Taily in Fig. 7.6 (a) and (b). On average,

it reduces the request’s overall latency by 11.12%, from 17.26ms in exhaustive search to

15.34ms. The improvement of 95th tail latency is similar. Due to the sampling design

in Rank-S, we only know the relative importance between ISNs without any knowledge

regarding their contributions to the P@10 results. Rank-S may wrongly cutoff more ISNs

and thus produce a better overall latency, but at the cost of quality. Finally, our design

Cottage results in the shortest request latency in Fig. 7.6 (a) and (b). In Fig. 7.6 (a),

Cottage (green line) outperforms the baseline exhaustive search and the other frameworks

compared all the time. As presented in Fig. 7.6 (b), the average latency of requests on the

Wikipedia trace is reduced by 54% compared with the exhaustive search. What is more,

we improve the request’s 95th tail latency by 2.6 times, from 39ms in exhaustive search

to 15ms. In Fig. 7.6 (c) and (d), we plot the latency results on the Lucene query trace.

Similarly, Cottage has a 2.29 times better average latency and 2.74 times better 95th tail

latency than exhaustive search, respectively. The major reason for our latency reduction is

due to cutting off the latency tail when it has no quality contribution and accelerating the

ISNs that have a long latency but have a high quality contribution.
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Figure 7.7: The average P@10 search quality results on Wikipedia and Lucene query traces.

7.5.2 P@10 Quality

Besides the request’s latency, the P@10 quality is another very important per-

formance metric for a search engine. Under the same experiment setup, we measure the

search requests’ P@10 quality for both the Wikipedia and Lucene traces. The average P@10

quality results for 1000 seconds are reported in Fig. 7.7. With exhaustive search, the pre-

cision of the search results is always 1, as every document in the entire data collection will

be retrieved. With an accurate per query quality prediction, Cottage achieves an average

of 0.947 P@10 search quality on the Wikipedia trace as shown in Fig. 7.7. Similarly, the

P@10 quality on the Lucene trace is 0.955. We sacrifice the P@10 search quality a little

bit because Cottage drops the ISNs with low quality contributions but having an extremely

long latency for improved search response times. It is reasonable to trade-off around 5%

of the search quality for at least 2.17 times improvement in search latency. On the same

figure, Taily has a search quality of 0.887 on the Wikipedia trace and 0.878 P@10 quality

on the Lucene trace. The P@10 quality results of Cottage are at least 6% better than that

on Taily. As Taily utilizes a Gamma distribution to infer each ISN’s quality contribution,
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Figure 7.8: Latency and quality distribution of Cottage in Wikipedia trace.

it is difficult for it to have a perfect prediction and thus a good search quality.

Across all the frameworks compared, Rank-S has the worst search quality due

to its sampling design at the aggregator. In Rank-S, we only have the relative rankings

between ISNs based on the centralized index samples. It is inevitable that cutoff of an ISN

can be imperfect. The average P@10 quality of Rank-S is at most 0.709 in Fig. 7.7, which

is 25.13% worse than Cottage on the same trace. Next, we plot the latency and P@10

quality results together in Fig. 7.8. Every dot in the two figures represent one query from

the Wikipedia query trace. In Fig. 7.7 (a) and (b), we observe that most of the queries on

Cottage (green dots) stay at the top-left of the figure, which means that Cottage keeps a

good search quality while keeping the overall latency small. However, the queries of Taily

(red dots) in Fig. 7.8 (a) and the queries of Rank-S (blue dots) in Fig. 7.8 (b) scatter across

the entire range of quality. Their optimizations are at the cost of poorer search quality.
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Figure 7.9: The average number of selected ISNs for a query.

7.5.3 Active ISNs

We now evaluate the number of active ISNs for a query after cutting off the slow

ISNs and those not contributing to the query’s search quality. Fewer active ISNs means

better resource usage and search efficiency. Fig. 7.9 shows the average number of ISNs

selected for a search request using 1000 seconds of the Wikipedia and Lucene traces. Since

exhaustive search doesn’t cut off any ISNs, its selected number of ISNs is always 16 (i.e.,

all the ISNs in our experimental setup). On both query traces, Cottage only needs at most

6.81 out of 16 ISNs in Fig. 7.9 to achieve a search quality of 0.947 as shown in Fig. 7.7.

Our scheme enables the search engine to use a minimal number of ISNs for a high quality

search result. As a comparison, Taily retrieves results from an average of 13 ISNs. Our

scheme, Cottage, only needs results from almost 7 fewer ISNs than Taily (Fig. 7.9), but

has 8% better P@10 quality than Taily, as seen in Fig. 7.7. This is because of the more

accurate neural network based quality prediction. Similarly, the number of selected ISNs

on Rank-S is around 11 on both query traces, which is 61% larger than that of Cottage.
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Figure 7.10: The number of searched documents for exhaustive search, Taily, Rank-S and
our Cottage.

7.5.4 Document Efficiency

Similar to previous research [65, 81, 7], we utilize the performance metric of CRES

[7] to quantify the efficiency of a search engine. CRES is the number of documents across all

the used ISNs to search for the top-10 results for a given query (fewer the better). Rank-S

also considers the number of scored documents in the CSI. In Fig. 7.10 (a), the number of

searched documents (i.e., CRES) with exhaustive search (black line) varies between 2K to

5.4M across different Wikipedia search queries. The corresponding average value of CRES

is given in Fig. 7.10 (c). By cutting off the low quality ISNs, Taily (red dots) in Fig. 7.10

(a) reduces the number of searched documents only on a limited number of data points
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Figure 7.11: The resource reductions in Taily and Rank-S are at the cost of worse search
qualities.

(e.g., the 740th second). Accordingly, its average value of CRES (0.26M) in Fig. 7.10 (c)

doesn’t improve too much compared with the exhaustive search (0.299M). The performance

of Rank-S (blue line) is similar to Taily in Fig. 7.10 (a). On average, the number of searched

documents in Rank-S is 0.2M for the Wikipedia trace. Finally, Cottage has the smallest

value of CRES most of time, as in Fig. 7.10 (a). In Fig. 7.10 (c), Cottage retrieves an

average of 0.11M documents for the queries using the Wikipedia trace, which is 2.67 times

less than the baseline exhaustive search, and 1.8 times better than Rank-S. As shown in

Fig. 7.10 (b), the comparison results of CRES are similar with the Lucene trace. We improve

a search engine’s efficiency (in terms of RRES) by 265% on the Lucene trace, compared with

exhaustive search. Additionally, the average CRES of Cottage is just 54.5% of Rank-S on

the same Lucene trace.

In Fig. 7.11, we show the trade-off between CRES and the search quality. In each

sub-figure, each dot is one query from the Wikipedia trace with its CRES value shown by the

X-axis and the P@10 quality is in the Y-axis. The queries for Cottage (green triangles at

top-left of each figure) retrieve a smaller number of documents with a good search quality.
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Figure 7.12: Average power consumption on the Wiki and Lucene traces.

On the other hand, frameworks such as Taily in Fig. 7.11 (a) and Rank-S in Fig. 7.11

(b) have many dots with a low search quality, even though they search more documents.

Cottage achieves a good balance between search efficiency and search quality.

7.5.5 Energy Efficiency

With fewer ISNs and documents searched, the power consumption of the entire

search engine per query will reduce. Fig. 7.12 compares the power consumption of the

different approaches, as well as the case when the search engine is idle. As all the 16

ISNs of our Solr search engine are deployed on the same physical server, we measure the

CPU chip’s package power (including the L1 cache) on different ISN selection schemes to

compare their energy efficiency. The CPU power is measured by using the Intel Running

Average Power Limit (RAPL) interface, which reads the counters on the CPU sensor. As

shown in Fig. 7.12, the power consumption of exhaustive search is around 36W for both

traces, as all the ISNs are active throughout the 1000 second experiment. Taily reduces the

CPU power to around 25W because it cuts off some low quality ISNs. On average, it saves

a search engine’s power consumption by 31.12% compared with the baseline exhaustive
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search. Similarly, Rank-S has an average of 24W CPU power consumption which is around

66% of exhaustive search. Finally, we can observe that Cottage consumes the least amount

of CPU power among all the compared approaches. It has an average of only 21W power

consumption. The power saving of our approach compared with exhaustive search is 41.3%,

a significant reduction because the platform’s idle power is already 14.53W. This is mainly

because Cottage needs the least number of active ISNs and the fewest searched documents

for a good quality result.

7.5.6 Impact of Different Components

We now show how the accurate predictions and coordinated design (between the

aggregator and ISNs) in Cottage contribute to its significant improvement in search latency,

quality and efficiency. To achieve this goal, two variants of Cottage are implemented. The

first variant, Cottage-without ML, utilizes the Gamma distribution based prediction of Taily

to estimate each ISN’s quality contribution, instead of using the Machine Learning (ML)

model. By doing this, the importance of accurate quality prediction can be quantified.

Then, the second variant Cottage-ISN removes the integration of the aggregator and ISNs.

In Cottage-ISN, we let each ISN make the optimization decision independently, without the

global visibility from the aggregator. Comparing Cottage-ISN with the complete Cottage,

the impact of our coordinated design between the aggregator and ISNs can be evaluated.

With the same Wikipedia and Lucene query traces, we plot the latency, quality,

active ISNs and searched document comparison results in Fig. 7.13. Besides the Cot-

tage variants, the results for exhaustive search and Taily are also presented on the same
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Figure 7.13: The impacts of Machine Learning (ML) based predictions and coordinated
design in Cottage.

figure. As shown in Fig. 7.13 (a), the average query latencies are reduced to 12-13ms

for Cottage-ISN compared with the 15-17ms average latencies for the baseline exhaustive

search. Although the average latency of Cottage-ISN is better than that of Taily, it has 1.9

times longer latency than the complete design of Cottage which exploits the coordination

between the aggregator and ISNs. This proves that the coordinated design in Cottage sig-

nificantly reduces a search query’s latency. By comparing Cottage with Cottage-without

ML, we find that the more accurate quality prediction in Cottage also contributes slightly

to the latency improvement, as it reduces the latency further by about 0.8ms compared

with the Cottage-without ML.

160



Next, we show the P@10 quality results in Fig. 7.13 (b). Having a precise quality

prediction, the P@10 qualities in Cottage and Cottage-ISN are as high as 0.947-0.967.

However, the search quality deteriorates to around 0.85 if we use an inaccurate distribution-

based prediction for the quality contribution, as in Cottage-without ML. It is essential to

have an accurate neural network model for quality predictions when improving a search

engine’s efficiency. Finally, we compare the resource usage of different schemes, in terms of

the active ISNs (Fig. 7.13 (c)) and searched documents (Fig. 7.13 (d)). In Cottage-without

ML and Taily, the number of selected ISNs for a query is around 13 and the corresponding

searched documents are 0.25-0.27M. When we have a ML model in Cottage and Cottage-

ISN for better predictions, the resource usage for a query significantly reduces. Fig. 7.10

(c) and (d) show that the accurate quality prediction in Cottage produces 43% additional

reduction in active ISNs, as well as a 48% smaller value for CRES .
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Chapter 8

Conclusion and Future Work

Data centers consume significant amounts of energy, costing the data center op-

erator millions of dollars per year. Recent studies have demonstrated that a significant

portion of that energy consumption can be saved by using load consolidation and appli-

cation scheduling techniques. However, state-of-the-art power management frameworks for

data centers have poor responsiveness to traffic variations and produce high deadline vio-

lations for latency critical applications. In this dissertation, we overcome the shortcomings

of existing frameworks by proposing novel techniques to improve the energy efficiency of a

data center, while reducing both latency and violation rate.

First, we find that tasks in data centers should be better allocated to servers

in groups due to the complicated inter-task communications. In chapter 3, we propose

Goldilocks, a holistic framework that solves the complex ‘right sizing’ provisioning prob-

lem in containerized data centers. A novel graph-based locality aware container placement

scheme is developed, yielding minimal power consumption and task completion time. We
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found that current servers are more power efficient when operating at the peak energy effi-

ciency point. That leaves adequate headroom for burstiness in the workload. Our testbed

implementation on the Twitter content caching workload proves that Goldilocks saves up

to 22.7% of the entire data center’s power. The energy per request in Goldilocks is 3 times

better than RC-Informed, which consumes the least energy per request among the alterna-

tives. Because of Goldilocks’s locality aware placement and large headroom for load spikes,

it has at least 2.56 times better task completion time than others. Simulations of a large

scale data center environment also shows that our power and performance improvements

are still achieved at scale.

Then, in chapter 4, we considered traffic consolidation in DCNs. State-of-the-art

centralized traffic consolidation approaches have poor responsiveness to traffic variation in

a DCN, especially for bursty traffic. The poor responsiveness results in much poorer energy

savings, as well as higher packet drop rates and packet delays. We designed a distributed

energy-aware traffic management framework, DREAM, that consolidates traffic to a minimal

portion of DCN at the flowlet granularity. Flowlet scheduling produces less fragmenting of

the link capacity and allows for better energy savings. The distributed agent is implemented

in Open vSwitch and utilizes ECN to sense the queue build-up at the intermediate switches.

Testbed results using the Wikipedia trace and the Facebook MapReduce trace prove that

DREAM on average saves at least 15.8% DCN energy, compared to existing schemes such as

CARPO which saves only 11.6% and ElasticTree which saves 8.4% energy. The packet drop

ratio in DREAM is less than 0.01% while the best among the alternatives, ElasticTree,

has 0.19% drop ratio on Facebook trace and 0.85% drop ratio on Wikipedia trace. For
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application-level latency, DREAM achieves at least 30% shorter latency compared to the

alternatives.

In chapter 5, we design EPRONS, a novel joint energy proportional technique for

the entire data center, including both servers and the DCN. Prior DVFS or sleep states tech-

niques concentrated on power saving in the servers without considering the DCN. EPRONS

minimizes the entire data center’s power consumption through dynamically searching the

optimal parameter K in our linear programming model while guaranteeing the latency con-

straints at both DCNs and servers. Furthermore, the server part of EPRONS outperforms

the existing state-of-the-art energy proportional techniques. EPRONS can save as much as

31.25% at the peak, and 25% on average, for the data center’s total power budget for search

workloads.

Next, in chapter 6, we concentrate on the most latency critical search application

and develop a DVFS technique to improve its performance. We notice that it is difficult

to predict a search request’s latency perfectly that results in lower power savings and high

violation rates. To save power and meet strict latency constraints, we present Gemini that

employs a two-step DVFS policy for CPU frequency control. Our two-step DVFS utilizes a

request’s service time to initially slow down the query processing based on a precise neural

network latency predictor. In the second step of our DVFS scheme, we boost the CPU

frequency at a particular time to meet a request’s deadline. A separate error predictor is

developed in Gemini to determine the correct time for frequency boosting. We have shown

that the overhead due to neural network based predictors is negligible. After implementing

Gemini in the well known Solr search engine, experimental results on the Wikipedia, Lucene
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nightly benchmark and TREC query traces all show that our framework can achieve up to

41% CPU power saving and outperform other state-of-the-art schemes, while reducing the

deadline violation rates.

Finally, we present Cottage in chapter 7, which is a coordinated framework be-

tween the aggregator and ISNs for latency and quality optimization in distributed search.

The major feature of our design is the proper partitioning of the optimization between the

individual ISNs with full index information and the aggregator which has a global visibil-

ity. Cottage employs two separate neural network models with high prediction accuracy to

further enhance the benefits of the aggregator and ISN coordination. With these prediction

results, our optimization algorithm considers each ISN’s quality contribution and latency,

while achieving a good balance between the search latency, quality and efficiency. Imple-

mentation results with real query traces show that Cottage can reduce the average query

latency by 54% while searching nearly 2.67 times fewer documents than exhaustive search,

and still achieve a good P@10 search quality of 0.947. The results are also compared with

two state-of-the-art techniques to show Cottage reduces the latency by 58% while improving

the quality by 6.76%.

8.1 Future Work

Some potential future research directions are as follows:

• Failure Resilience Aware Container Placement. In a data center, there are different

fault domains for the sake of service surveillance. Individual micro service of an appli-

cation might be unavailable because of server failure, switch failure or power supply
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failure. The faulty situation is usually handled through providing replicas of servers

or database that can be called to service. To extend Goldilocks described in chapter 3,

we will place the replicas of the same service on different fault domains by giving neg-

ative edge weights for replica-replica or replica-primary edges in the container graph.

Using the min-cut graph partition algorithm, where the communication between ver-

tices are positive in the container graph, the replicas with negative edge weights are

thus partitioned into different container groups. Different container groups with the

replicas are assigned to different fault domains in the DCN.

• Minimizing Migration Costs via Incremental Graph Partitioning. The placement of

containers from one execution to the next should be stable because of concerns on

migration costs such as application freeze time, migration traffic and the task startup

latency. Goldilocks in chapter 3 is an epoch based scheduling system. The number of

container migrations is the ‘difference’ between prior container grouping results and

the current grouping results. In order to reduce the migration cost, we can leverage

the incremental graph partitioning algorithm [88] to trade off the partitioning quality

and the number of vertice migrations needed from old partition to the new partition.

• Distributed Deadline Aware Traffic Consolidation. The current distributed agents in

DREAM consolidate traffic to the left-most part of a DCN topology without con-

sidering each network flow’s deadline. For the urgent network flow, we can meet its

deadline by dynamically increasing the path selection probability of the right-most

path. Then, more flowlets of the urgent flow will be routed along the least utilized

path with shorter network delays.
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• Neural Network based DVFS for Multicore Processors. In chapter 6, we develop a

neural network based two-step DVFS for the single core CPU. With multiple CPU

cores, we can maintain a separate queue for each core and have a global broker to

distribute the incoming requests to each core, as suggested in [72]. Each core will

manage its power consumption independently by using Gemini’s DVFS scheme. In

addition to that, we can extend the two-step DVFS for single core to a multiple-step

design for improved energy savings.
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