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Abstract

In recent years a number of empirical results indicate that hu-
mans tend to use mental models during the reasoning process.
This theory claims that humans represent and reason about spa-
tial information by constructing, inspecting, and generating al-
ternative models to check for a putative conclusion. New re-
sults about preferred models and local transformations made
it necessary to refine the classical theory. From a formal per-
spective, however, a number of technical questions w.r.t. the
explicit details of the theory are still unanswered. In this paper
we formally ground the preferred mental model theory with
the help of formal logic. This formalization allows to show
inherent differences between formal and human reasoning and
allows to identify a source of human errors in reasoning.

Keywords: Cognitive Modeling; Qualitative Reasoning

Introduction

Imagine a friend (at an airshow) tells' you:

(1) The red plane is north-west of the yellow plane.
The orange plane is east of the yellow plane.
The yellow plane is west of the green plane.

The green plane is west of the blue plane.

Can you (easily) infer if the blue plane must be (neces-
sarily) east of the orange plane? The question on how hu-
mans solve such deduction problems is at the core of qual-
itative reasoning. In other words, how do we infer new
knowledge (a conclusion)from given knowledge, and more-
over, what are the differences to formal approaches in artifi-
cial intelligence? Formally, there are two main approaches
in Al on how such reasoning problems can be solved: By
the application of (transitivity) rules or by the construction
and inspection of models. Principally, both approaches are
equivalent (Russell & Norvig, 2003), i.e. it is not possible
to derive more information with each of these methods. This
equivalence, however, makes it harder to distinguish which
method(s) is applied by humans while solving such problems.
Nonetheless, a number of empirical studies investigates this
research question by psychological means. The most promi-
nent and best supported theory with respect to the number
of effects that can be accounted for is the theory of men-
tal models (MMT) (Johnson-Laird & Byrne, 1991) (to name
only a few: the indeterminacy effect (Johnson-Laird & Byrne,
1991), the form of premises and the figural effect (Knauff,
Rauh, Schlieder, & Strube, 1998), the wording of conclusions
(Henst & Schaeken, 2007), etc.). According to the MMT,
linguistic processes are relevant to transfer information from
the premises into a spatial array and back again, but the rea-
soning process itself relies on model manipulation only. A

"We assume he uses the cardinal direction relations to describe
positions, i.e. N, NE, E, SE, S, SW, W, NW, EQ
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mental model is an internal representation of objects and re-
lations in spatial working memory, which matches the state of
affairs given in the premises. The semantic theory of mental
models is based on the mathematical definition of deduction,
i.e. a propositional statement ¢ is a consequence of a set of
premises P, written P = ¢, if in each model A of P, the
conclusion ¢ is true.

NW

Figure 1: The nine cardinal direction relations.

In recent years, however, more and more empirical inves-
tigations show gaps in this theory. For example, the clas-
sical theory is not able to explain the preference effect, i.e.
in multiple model cases (nearly always) one preferred model
is constructed from participants and used as a reference for
the deduction process (Rauh et al., 2005). Further findings
showed that during the validation phase alternative models
are constructed by small modifications to the initially con-
structed model. This was the reason why the mental model
theory was precised within the framework of preferred men-
tal models (Knauff, 2007).

In this paper we formally ground the theory of preferred
mental models. With the help of this formalization we
can work out consequences which can then be empirically
tested, and additionally, based on this, differences between
human and formal reasoning can be identified. This leads
to an explanation for a source of errors in human reasoning:
the “transformational distance” between the counter-example
and the preferred model.

State of the Art

There are a number of different approaches of how humans
solve such problems in the literature. We will briefly intro-
duce three important ones:

Theory of Mental Logic

The central idea of this approach can be characterized as fol-
lows: “Reasoning consists in the application of mental in-
ference rules to the premises and conclusion of an argument.
The sequence of applied rules forms a mental proof or deriva-
tion of the conclusion from the premises, where these im-



1. West(z,y) & North(z,z) — West(z,y)

2. West(z,y) & North(z,y) — West(z, 2)

3. West(z,y) & West(y,z) — West(z, z)

4. West(z,y) « FEast(y,z)

5. (West(y,z) & West(z,x)) — (West(y, z) or West(z,y))

6. (West(y, z) or West(z,y)) & North(w,z) —
(West(y,w) or West(w,y))

Figure 2: Set of (incomplete) inference rules specified for
spatial reasoning adapted from Van der Henst (2002).

plicit proofs are analogous to the explicit proofs of elemen-
tary logic” (Rips, 1994, p. 40). Hagert (1984) defined a first
set of spatial inference rules (cf. Fig. 2). This set of rules has
been extended by two additional rules (cf. the rules 5 and 6 in
Fig. 2) to deal with indeterminacy by Van der Henst (2002).
The rules in Fig. 2 are successively applied to the premises of
a problem description.

Theory of Mental Models

The mental model theory assumes that the human reasoning
process consists of three distinct phases: The model gen-
eration phase, in which a first model is constructed out of
the premises, an inspection phase, in which the model is in-
spected to check if a putative conclusion is consistent with
the current model. In the validation phase, finally, alterna-
tive models are generated from the premises that refute this
putative conclusion. In our example presented above, the ex-
act relation between “Y” and “G” is not specified and leads
to multiple-model cases like R Y O GB,RY G O B, and
R Y G B O (by projecting R on the horizontal line). This in-
determinacy effect is mainly responsible for human difficulty
in reasoning (Johnson-Laird, 2001).

Theory of Preferred Mental Models

The classical MMT is not able to explain a phenomenon en-
countered in multiple-model cases, namely that humans gen-
erally tend to construct a preferred mental model (PMM).
Compared to all other possible models, the PMM is easier to
construct and easier to maintain in working memory (Knauff
et al., 1998). The principle of economicity is the determining
factor in explaining human preferences (Manktelow, 1999).
This principle also explains that a model is constructed in-
crementally from its premises. Such a model construction
process saves working memory capacities because each bit of
information is immediately processed and integrated into the
model (Johnson-Laird & Byrne, 1991). In the model variation
phase, this PMM is varied to find alternative interpretations
of the premises (Rauh et al., 2005). From a formal point of
view, however, this theory has not been formalized yet and is
therefore not fully specified in terms of necessary operations
to process such simple problems as were described above. In
other words, the use, construction, and inspection of mental
models have been handled in a rather implicit and vague way
(Johnson-Laird, 2001; Vandierendonck, Dierckx, & Vooght,
2004).
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A Formal Investigation

In this section we compare the rule-based approaches to the
mental model theory approaches (Ragni & Knauff, 2008).
Assume we want to derive for the above example that the blue
plane is necessarily to the eastern to the red plane. To solve
this problem it is sufficient to apply the third and the fourth
rule of Fig. 2 only (we interprete north-west as north & west,
and so on). Namely,

West(R,Y) & West(Y,G) — West(R,G)
we derive that the red plane (R) is west of the green plane (G)
West(R,G) & West(G,B) — West(R, B)
the red plane (R) is west of the blue plane (B), and finally
West(R,B) < FEast(B,R)

The blue plane is east of the red plane. In other words, a
minimal solution needs three inference steps. Throughout
the reasoning process a large number of relations have to be
stored, namely all premise information and all inferred rela-
tions, which can lead to a high load on the working mem-
ory. This is the first difference to reasoning with models. A
mental model is an integrated representation of relational in-
formation, i.e. the relation do not have to be stored but are
implicitly represented by the relation between the objects.

The second point is the high number of rules to be speci-
fied for each relation to infer new information. It is possible
to show that a relational system consisting of two natural re-
lations like adjacent left and distant left on a discrete struc-
ture is not closed under composition making an in-cognitive
high-number of rules necessary to prove all valid conclusions
(Ragni, 2003). In the mental model theory it is sufficient to
generate and alternate models — information about how to in-
fer new relational information is not necessary.

The third point ist the way human reasoning difficulty
is explained: According to rule-based theories it depends
mainly on two things: On the number of rules that are ap-
plied to derive a conclusion and on the sort of inference rules.
If we assume that the rules are equally difficult, then the main
difficulty depends on the number of rules that are to be ap-
plied. That is, the more inference steps are necessary the
more difficult is a conclusion (Johnson-Laird & Byrne, 1991;
Henst, 2002). This idea, however, implicitly assumes that
humans use some kind of search procedure which involves
necessarily an optimal search strategy. A search strategy is
called optimal if it always finds the minimal solution for a
problem. For instance, breadth-search is an optimal search
strategy while depth-first is not (Russell & Norvig, 2003).
Obviously, the search strategy is an important factor in de-
termining the complexity of a problem, but there is, so far,
no data that indicates which kind of search procedure is ap-
plied by humans. To make this point more precise: Assume
a set of premise P and two conclusions ¢, and ¢, are given,
where the inference of ¢ from P takes 4 steps and to infer ¢



from P takes 5 steps. If it cannot be generally assumed that
reasoners necessarily choose the minimal derivation steps to
derive a putative conclusion, then (P, ¢1) is not always eas-
ier than (P, ¢3). Otherwise, the reasoner would always have
to know which inference has been drawn in the next step—a
property normally assumed with nondeterministic rather than
deterministic systems.

Nonetheless, from a formal perspective both theories—the
theory of mental logic and of mental models—have the same
explanatory power (Russell & Norvig, 2003). That is why
both theories must be distinguished by analyzing empirical
data of behavioral experiments.

The fourth point is the number of models vs. the number of
rules: One of the very first experiments conducted (Johnson-
Laird & Byrne, 1991) investigated determinate and indeter-
minate problems. A determinate variant (only one model is
consistent) of the indeterminate problem can be achieved if
the third premise is replaced with “The green plane is east of
the orange plane”. If we apply the rules 1-4 of Fig. 2 to the
determinate and indeterminate problem description, the con-
clusion can be derived in the same number of steps (Henst,
2002). So from a pure rule-based perspective, both prob-
lems have the same difficulty. Nonetheless, empirical stud-
ies show that determinate problems are significantly easier to
solve than indeterminate problems (Johnson-Laird & Byrne,
1991). Van der Henst (2002) argues to extend the rules with
the rules 5 and 6. But these rules are in some sense artifi-
cial and do not necessarily derive the conclusion. Therefore
it seems to be a post-hoc alteration of the specified set of rules
to explain the data (Goodwin & Johnson-Laird, 2005). The
mental model theory explains this phenomenon by the help of
the model relation. To check if the putative conclusion “R is
to the west of G” can be derived, all consistent models have
to be checked. Since in the one-model case there is only one
model consistent, the effort to check the conclusion is smaller
than for checking two models.

The fifth point is the existence of preferred mental mod-
els: Recent experiments also supply arguments in favor of
the mental model theory as they show that humans generally
tend to construct in multiple model cases a preferred mental
model (Knauff, 2007) and tend to vary this model according
to the principle of local transformations (Rauh et al., 2005).
The principles for constructing the preferred models adhere to
reorientation and transposition operations, which are purely
model based operations. These preference strategies are not
limited to Allen’s Interval Calculus but also hold for other
calculi (Ragni, Tseden, & Knauff, 2007). This shows that the
rule-based theories are so far incomplete, since they cannot
explain the relations that are finally preferred by participants.
It is even more remarkable that these relations adhere to very
general and model-based principles.

Finally, participants received in another experiment
(Ragni, Fangmeier, Webber, & Knauff, 2006) indeterminate
premises and questions of different relational complexity
(Halford, Wilson, & Phillips, 1998) of the form: Is D as near
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to C as E is near to A? The participants had to decide if the
query is consistent or not. The results show that binary rela-
tions are easier to process than ternary and quaternary rela-
tions. This may be explained in the relation procesing than
with the model based reasoning. But even more remarkable,
participants received a model description with right, front,
etc., but were able to solve a question with the relation near.
In other words, participants received description of relations
different to the relations they were asked about. It is not only
remarkable that they had to translate one kind of relation into
another, but that they were even able to give an answer requir-
ing positional information. Typical transitivity rules maintain
the relation of the premises, i.e. the relation of the condition
is used in the consequence (cf. Fig. 2). Instead of using clas-
sical rules, it is possible to describe the “nearness” by using
some kind of default logic rules. However, it is much sim-
pler to explain such phenomena on a basis of a model-based
approach.

Formalization

In this section we ground the intuitively used theories for-
mally (and mathematically) and analyze them with respect to
their reasoning power.

A relational structure is a tuple (D, (R;)cr)) consisting
of a domain D (sometimes called discourse universe) and a
set of (usually binary) relations R; (Russell & Norvig, 2003).
For example, geographic knowledge like New York is north-
east of Washington can be expressed by cardinal direction re-
lations N, NE, E,SE, ... over the domain of cities. More
complex expressions can be formed by using connectives
like conjunctions (New York is north-east of Washington and
New York is in the U.S.) and disjunctions (...or ...). By al-
lowing negations, we have a propositional relational language
L over cardinal direction relations. Such relational structures
can be used to describe knowledge representation. But how
can new information be derived? The theory of mental logic
(Rips, 1994) assumes that we use (transitivity) rules to draw
conclusions, whereas the classical model theory argues that
we use models for this inference process. The classical men-
tal model theory (Byrne & Johnson-Laird, 1989) claims that
in multiple model cases (i.e. more than one model is consis-
tent with the premises) other models are inspected (but not
which of them). A model A is called consistent with a set
of premises ® over a relational language £ (mathematically
A [= @) if all expressions of ® are true in .4. Then a conclu-
sion ¥ can be derived from the premise set & (mathematically
® |= U, whereby = is called the consequence relation) if

® =¥ <& All models of & are models of W.
< There is no model A with A = ® and
A -0,

A model A with the property A = ® and A = -V is called
counter-example. It follows if there is a counter-example to
® and ¥ then ® = U cannot hold.

This classical (mathematical) consequence relation, how-
ever, does not explain how initial mental models are con-



structed and varied (Rauh et al., 2005). Since there is a huge
empirical evidence supporting the preferred mental model
theory for different calculi (Rauh et al., 2005; Ragni, Fang-
meier, Webber, & Knauff, 2007; Ragni, Tseden, & Knauff,
2007) it seems worth to ground this theory mathematically.

Preferred Models & Local Transformations

Before we are able to define the consequence relation for the
preferred mental model theory, we introduce some notions
and concepts. The empirical found preferred model PMM
for a premise set ® is written as PMM(®). The preferred
mental model theory assumes (Rauh et al., 2005) that alter-
native models are generated by applying local transforma-
tions (Rauh, Hagen, Schlieder, Strube, & Knauff, 2000) on
the model at hand. These transformations can be in general
described by the application of a mathematical operator (e.g.
exchanging adjacent objects (Ragni, Fangmeier, et al., 2007))
or moving one or two objects according to a continuous trans-
formation concept (Ragni, Tseden, & Knauff, 2007). The set
of applicable operators O is domain specific since topolog-
ical objects like regions have other characteristics then pure
point based representation. Common to all operators, how-
ever, is that they change the relation of one object to another
object w.r.t. local transformations: Such continuous trans-
formations can be conceptualized by transitions in so-called
generalized neighborhood graphs (Ragni & Wolfl, 2005). We
assume all operators in the following adhere to such neigh-
borhood changes. The image of a model 4 w.r.t. an operator
application o is

imgo(A) = {B | B = o(A)}.

We set Transf'(PMM(®),0,®) = {B | B E & and
B = img,(A)}. That is the set of all models (of ®)
which can be derived by applying operator o at model .A.
Transf*(PMM(®), 0, ®) describes the sequence of k appli-
cations of the operator o at model ®. It is now possible to
formally define the preferred consequence relation:

Definition 1 For a set of premises ®, a set of operators O
and preferred model PMM(®):

o=,V < PMM(®) =Y and for each B |= @ with
B € Transf*(PMM(®), O) holds B = ¥
=, ¥V & PMM(®) = ¥ and for each B |= © with

B € Transf*(PMM(®),0) holds B = ¥

The restricted consequence relation =y, reflects that hu-
mans might apply only a fixed number of operations and gen-
erate only a restricted number of alternative models. We ana-
lyze now the expressibility and deductive power of these no-
tions.

Consequence Relation

It can be shown that for the case of one-dimensional non-
negated problem descriptions (without disjunction) the equiv-
alence

PV <= D, T
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holds. In the following, we show that the equivalence does
not hold for two dimensional problems by constructing a
counter-example, i.e. ® =, U holds but not & = ¥. For
finite relational vocabulary (like cardinal directions) holds:

~aW b+ a{N,NE,E,SE,S,SW,NW,EQ} b.

that is: if a is not west of b then it can be north-east or east or

south-east or south, and so on. This disjunction is (as com-

mon) abbreviated by {N, NE, E,SE,S,SW,NW,EQ}. A

premise set of the form:
(2) bisnorth of c.

a is not south of b.

a is not north of c.

can then be written as a {SE,E,NE, N, NW,W} b and
a {NE,E,SE,S,SW,W,NW?} c. There are several con-
sistent models, for instance, a model where object a is east of
b and c (cf. Fig. 3). Then there is no transformation (by small
movements of a) such that a can be west of b and ¢, because a
cannot surround b northerly and c southerly at the same time
(since b is north of ¢). This is called gate.

©
5O

Figure 3: A gate. The premises of task (2) form an impassable
gate band cfora (i.e. b N c,a {SE,E,NE,N, NW,W} b,
anda {NE,E,SE,S, SW,W,NW} ¢), since b N c allows
no movement of b or ¢ and a cannot be at the same time
norther of ¢ and south of b.

Impassable gates (Fig. 3) are only possible by using
negated (or disjunctive) expressions. How can gates be used
to show that there are differences in reasoning with the conse-
quence relations |= and =,? This is now demonstrated by a
task (consisting of a set of premises ¢ and a putative conclu-
sion ¥) where the PMM(®) and the counter-example are sep-
arated by a gate (in the transformation process). This shows
then that there is no continuous transformation of PMM(®)
to a counter-example (due to the gate).

(3) aiswestof g.
fiswestof g.

b is north-west of f.
d is south-west of f.
b is north of d.

b is north of h.

d is south-east of h.
a is not south of b.

a is not north of d.
Does a is east of h follows?

The preferred mental model is constructed by the succes-
sive processing of the first two premises via the so-called first-



Figure 4: The consequence relations = and |=, lead to dif-
ferent conclusions. The model is the PMM to (3). The
objects b and d form a gate for a. There is no contin-
uous transformation of the actual position of a, such that
a {NW, W, SW} h could hold, so in all reachable models of
the PMM holds a {NO, O, SO} h and according to the defi-
nition ® =, a {NO, O, SO} h and since there is a counter-
example ® = a {NO, O, SO} h holds.

¥
® W O
©

Figure 5: A consistent model to task (3) where ® [~
a {NO, O, SO} hholds.

free-fit-principle (fff) (Ragni, Fangmeier, et al., 2007). After
the processing of the first two premises we get the PMM(®)

GNONO

The negated two premises lead to an impassable gate for a
(cf. Fig. 3). This task shows that in all “reachable” mod-
els (of the PMM(®)) only the disjunction a {NO, O, SO} h
holds (cf. Fig. 4). According to the definition of the con-
sequence relation holds ® =, a {NO,O,SO} h. Since
there is a counter-example in the classical consequence re-
lation consistent with the premises (cf. Fig. 5). From that
follows that the preferred and classical consequence relations
are not equivalent. But since certain models cannot be gen-
erated, and, whenever there is no continuous transformation
from the preferred model to a counter-example, a wrong con-
clusion is drawn (by |=,). So we get the

Theorem 1 For ® € L(CD) holds:
PEV 4=, U

That is, if humans reason according to the theory of preferred
mental models (with local transformations), then certain er-
rors are inescapable. Since the number of models are re-
stricted for =, as for the classical |= and by using this prin-
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ciple the number of models for = kp 1S even more restricted,
we get a hierarchy of the consequence relations:

F S B & Fm

That is: The more limited the preference relation is, the more
(incorrect) conclusions are drawn. An important question is
if we can determine the number & (the number of models we
inspect during the reasoning process). This purely cognitive
question is investigated in the next section.

Transformation Distance, Complexity, and
other Empirical Data

In this section the performance of this framework is very
briefly compared to some experimental findings with human
subjects. First, the preferred consequence relation is able to
reconstruct the manipulation of models (Rauh et al., 2000)
by the principle of local transformation (Schlieder, 1998).
Many studies could show that participants inspect the model
at hand and neglect certain models (which cannot be con-
tinuously generated from the preferred model) (Rauh et al.,
2000). This is exactly what can be explained by the preferred
consequence relation (f=,) (which is based on the general-
ized neighborhood graph). Another well-known effect is that
indeterminate problems are more difficult than determinate
ones (Byrne & Johnson-Laird, 1989). This is reflected by the
difference between the consequence relations =, =gy, =p.

More empirical evidence comes from a study by Ragni,
Fangmeier, et al. (2007). In this study, we directly tested the
acceptance of different models against each other. Twenty-
two students of the University of Freiburg served as paid par-
ticipants. The reasoning problems consisted of four premises
each that referred to horizontal one-dimensional layouts of
four objects. The premises were consistent with three dif-
ferent arrangements. The problems were displayed on the
computer screen, and the presentation was self-paced. Each
trial began with the successive presentation of each premises.
When participants pressed the space-key, the next premise
replaced the current premise. After the presentation of the
premises, a consistent or inconsistent representation appeared
together with a prompt “’Is this representation consistent with
the premises?”. The participants had to respond with yes or
no with one of the response keys. The results of this study
clearly support the continuous model variation and that they
make only one alternation that is that they use }=p; as a con-
sequence relation. That is, participants typically construct the
preferred model and make one alternation (by local transfor-
mations). If they have not found a counter-example (to a
premise set and a putative conclusion) in the neighborhood
of the PMM they accept it (and make a wrong deduction).

General Discussion

The formalization of the preferred mental model theory by
a consequence relation allows to make precise predictions
about which kind of conclusion(s) are drawn (from a given
set of premises) and which are neglected. Additionally, only



by a formalization it is possible to compare human reasoning
to approaches in Al. This also shows the limits of the human
reasoning process. What are the limits of this formalization?
One could object that the consequence relation cannot model
that humans tend tend to forget objects during reasoning. This
is true, but would make an embedding in a cognitive architec-
ture like ACT-R necessary. Nonetheless, this approach is able
to explain that if even humans were able to have a total recall
of all objects (which is for a small domain still true) then there
are inherent difficulties and differences to a formal reason-
ing process. Moreover, the “transformation distance” allows
to explain why, for instance, experts are better in reasoning
about their expert domain than novices (their search-process
is more goal oriented). What are the differences to existing
computational models for (spatial) reasoning? Our formaliza-
tion is in some sense more abstract than for instance the UNI-
CORE model developed by Bara, Bucciarelli, and Lombardo
(2001) and is in some sense better suited for modelling “inde-
terminacy”, i.e. if several models are consistent. This formal-
ization also allows to model transitive and intransitive rela-
tions, as well as topological and point-based representations.
In this sense it is a lot more “universal” than others. And
contrary to the SRM-model (Ragni & Steffenhagen, 2007) it
explains difficulty on models and not on operations and is—in
this sense—completely in the spirit of the mental model theory.
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