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1  | INTRODUC TION

Animals have evolved phenomenally diverse courtship traits, inspir-
ing numerous theoretical models to explain their evolution (Darwin, 
1871; Fisher, 1930; Lande, 1981; Kirkpatrick, 1987; Kirkpatrick & 
Ryan, 1991; Andersson, 1994; Kirkpatrick, 1996; Arnqvist & Rowe, 
2005; Fuller et al. 2005; Andersson & Simmons, 2006; Kokko, 
Jennions, & Brooks, 2006; Ryan & Cummings, 2013) and empirical 
tests of these models (Andersson, 1994; Arnqvist & Rowe, 2005; 
Cummings, 2007; Kirkpatrick, 1987; Kirkpatrick & Ryan, 1991; Kokko 
et al., 2006; Ryan & Cummings, 2013). A common feature of these 
theoretical models entails an increasing genetic correlation between 
a courtship signal and the signal preference, resulting in their cor-
related evolution (Fisher, 1930; Kirkpatrick, 1996; Kirkpatrick & 

Ryan, 1991; Lande, 1981). For example, in “good genes” models of 
sexual selection, nonrandom associations between a courtship trait 
and genes underlying good condition can select for alleles conferring 
preference for mates displaying so-called indicator traits reflecting 
high quality. Consequently, a genetic correlation arises between fe-
male preference for the male trait, the male signal, and the genes 
conferring higher fitness. These genes then jointly increase in fre-
quency due to natural selection. The resulting increase in frequency 
of female preference alleles produces stronger sexual selection on 
the courtship trait, further increasing the frequency of both the trait 
and preference (the “runaway” process; Fisher, 1930; Lande, 1981).

Previous work has reported genetic correlations between 
courtship signals and preferences in a number of species (Bakker, 
1993; Houde, 1994; Limousin et al., 2012; Rick, Mehlis, & Bakker, 
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Abstract
Theoretical models of sexual selection suggest that male courtship signals can evolve 
through the build-up of genetic correlations between the male signal and female 
preference. When preference is mediated via increased sensitivity of the signal char-
acteristics, correlations between male signal and perception/sensitivity are expected. 
When signal expression is limited to males, we would expect to find signal-sensitivity 
correlations in males. Here, we document such a correlation within a breeding popu-
lation of threespine stickleback mediated by differences in opsin expression. Males 
with redder nuptial coloration express more long-wavelength-sensitive (LWS) opsin, 
making them more sensitive to orange and red. This correlation is not an artifact of 
shared tuning to the optical microhabitat. Such correlations are an essential feature 
of many models of sexual selection, and our results highlight the potential impor-
tance of opsin expression variation as a substrate for signal-preference evolution. 
Finally, these results suggest a potential sensory mechanism that could drive nega-
tive frequency-dependent selection via male–male competition and thus maintain 
variation in male nuptial color.
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2011; Wiley & Shaw, 2010; Wilkinson & Reillo, 1994). For example, 
Bakker (1993) bred wild-caught threespine stickleback to reveal a 
genetic correlation between female preference for male red throat 
coloration and male red throat intensity. This association is partially 
mediated through an increased visual sensitivity to red in female off-
spring of redder males (Rick et al., 2011). However, the mechanism(s) 
responsible for this association between a males’ color and their fe-
male offspring’s visual sensitivity and preference remains unclear. 
One possibility is that male color may be genetically correlated with 
opsin expression, both of which vary within stickleback populations 
(Reimchen 1989; Boughman, 2001; Rennison, Owens, Heckman, 
Schluter, & Veen, 2016; Brock, Bolnick, & Cummings, 2017a; Veen, 
Brock, Rennison, & Bolnick, 2017), are heritable (Lewandowski & 
Boughman, 2008; Rennison et al., 2016; Malek, Boughman, Dworkin, 
& Peichel, 2012; but see Brock et al., 2017a; Brock, Bolnick, & 
Cummings, 2017b; Veen et al., 2017) and have been shown to co-
vary with color in other systems (Bloch, 2015; Price, 2017; Sandkam, 
Young, & Breden, 2015). We would then expect that signal and visual 
physiology would also be correlated within the males themselves. 
That is, redder male stickleback might express proportionately more 
of the orange-red-sensitive LWS opsin. Both traits may be inherited 
(genetically or otherwise) by all offspring, but only in male offspring 
(which alone express the signal) could we detect a signal-sensory 
correlation. Consequently, opsin expression variation would mediate 
covariance between the male signaling trait and female trait pref-
erence and serve as an important substrate for signal-preference 
evolution.

Within-individual correlations between signal and sensitivity 
could also influence male–male competition. For example, posi-
tive covariance between red coloration and sensitivity to red in 
males could drive greater antagonism between red males, leading 
to negative frequency-dependent selection that could favor rare 
male color morphs and thus maintain variation in nuptial color 
(Djikstra, Seehausen, Gricar, Maan, & Groothuis, 2006; Djikstra, 
Seehausen, Pierotti, & Groothuis, 2006; Seehausen & Schluter, 
2004; Bolnick et al. 2016; Djikstra & Border 2018). Bolnick et al. 
(2016) provided evidence for negative frequency-dependent 
selection via male–male competition in two lake populations of 
stickleback that differ in male nuptial color. In lakes where native 
males are predominantly red-throated, red-throated models were 
attacked more frequently and with a higher intensity, while the 
opposite was the case for lakes with melanic males (Bolnick et al. 
2016; but see Tinghitella, Lehto, & Minter, 2015). These results 
were also modulated within lakes by depth, a proxy for optical en-
vironment (Bolnick et al. 2016; Brock et al., 2017a; Brock, Bolnick, 
& Cummings, 2017b). Threespine stickleback males display color 
polymorphism at multiple geographic scales (Reimchen 1989; 
Boughman, 2001; Scott, 2001; Brock et al., 2017a; Brock, Bolnick, 
& Cummings, 2017b; Marques, Lucek et al., 2017; Marques, 
Taylor et al., 2017). As these color phenotypes typically covary 
with features of the optical environment, sensory drive theory is 
commonly invoked to explain the maintenance of multiple color 
phenotypes (Reimchen 1989; Boughman, 2001; Scott, 2001; 

Brock et al., 2017a; Brock, Bolnick, & Cummings, 2017b; Marques, 
Lucek et al., 2017; Marques, Taylor et al., 2017). However, neg-
ative frequency-dependent selection via male–male competition 
could also facilitate the maintenance of color polymorphisms, 
possibly via interactions with the signaling environment (Bolnick 
et al. 2016; Djikstra & Border, 2018; Tinghitella et al., 2017).

Here, we document covariance between male color and male 
opsin expression within a single population of breeding threespine 
stickleback males. Specifically, we find that redder males express 
more of the long-wavelength-sensitive (LWS) opsin, and visual mod-
eling suggests this increased expression leads to greater sensitivity to 
orange and red. Furthermore, visual modeling results and path analy-
ses suggest that this correlation is not an artifact of shared tuning to 
the optical microhabitat, which varies with nest depth. These results 
provide further evidence for signal-preference/sensitivity correla-
tions, as well as highlight the potential importance of opsin expres-
sion variation as a substrate for both female preference evolution 
(Bakker, 1993; Bloch, 2015, 2016; Lind, Henze, & Osorio, 2017; Price, 
2017; Rick et al., 2011; Sandkam et al., 2015) and negative frequency-
dependent selection via male–male competition (Bolnick et al. 2016).

2  | MATERIAL S

2.1 | Male collection and reflectance measurements

In 2014, snorkelers used dipnets to capture nesting male stick-
leback (n = 16) from Gosling Lake on Vancouver Island, British 
Columbia. This is the same red-throated lake population used in 
Bolnick et al. (2016). We recorded each males’ nest depth prior to 
capture. We sampled nesting males over three consecutive days 
to minimize temporal variance in male color. A darkened cooler 
with fresh lake water was used to transport males to shore for 
immediate collection of reflectance data (within 1–5 min after 
capture). This cooler was rinsed and refilled with lake water be-
tween males. For each male, spectral reflectance measurements 
were taken using an EPP200C UV-VIS spectrometer, SL-4 Xenon 
lamp, and a R400-7 reflectance probe for two body regions: 1) 
preoperculum and 2) abdomen. Reflectance data were collected 
from live, unanesthetized males suspended in an aquarium con-
structed by CDB with UV-transmissive material. All measure-
ments were taken while holding the probe flush with the side 
of the aquarium and perpendicular to the surface of the fish. 
Three replicate measurements were collected for each body re-
gion, removing and reapplying the probe between each replicate. 
Spectralon white standard measurements were taken between 
each fish to account for lamp drift. The aquarium was emp-
tied, rinsed, and refilled with fresh lake water between males. 
For our color metric, we calculated the ratio of the respective 
areas under the reflectance curve for the wavelength intervals 
of 301–400 nm (UV-blue), 401–500 nm (blue-green), 501–600 
(green-orange), and 601–700 (orange-red) for each body region. 
These four color proportions represent the raw color data we use 
for our analyses.
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2.2 | Opsin expression

Stickleback have four cone opsin genes: short-wavelength-sensitive 
1 (SWS1: λmax = 365–382 nm); short-wavelength-sensitive 2 (SWS2: 
λmax = 434–441 nm); middle-wavelength-sensitive (RH2: λmax = 514–

546 nm); and long-wavelength-sensitive (LWS: λmax = 566–638 nm) 

(Brock et al., 2017a; Flamarique, Cheng, Bergstrom, & Reimchen, 
2013; McClennan, 2007; Rennison et al., 2016; Rowe, Baube, Loew, 
& Phillips, 2004; Veen et al., 2017). We measured the relative abun-
dance of mRNAs for each of these four opsin genes for all 16 males, 
as described in Veen et al. (2017). Total RNA was extracted from a 
mixed homogenate from both left and right eyes and used to synthe-
size cDNA for RT-qPCR analysis. For each male, we summed the 
opsin gene expression across the four cone opsin genes and esti-
mated the proportion of total expression for each gene. This pro-
vides a measure of relative gene expression.

2.3 | Irradiance

We measured sidewelling and downwelling irradiance along a depth 
gradient (0–2.5 m) at 50-cm intervals. Irradiance data were col-
lected with an EPP200C UV-VIS spectrometer linked to a UV-NIR 
cosine receptor. Sidewelling irradiance was collected with the probe 
oriented horizontally toward the shore and represents the optical 
background against which a male stickleback is often viewed by 
conspecifics. Downwelling irradiance was measured with the probe 
directed vertically toward the water surface and represents the pri-
mary source of light for target reflection. Irradiance measurements 
(W/m2) were converted into μE m−2 s−1 using a LI-COR Optical 
Radiation Calibrator (model 1800-02) calibration lamp. Three rep-
licate measurements were taken at each depth, and these measure-
ments were dispersed throughout the nesting environment. We 
used the median value at each wavelength of these three replicates 
as our estimate of the ambient light at a given depth. As both the 
time of day and the time of year can impact irradiance measure-
ments, all irradiance data were collected between 9 and 10:30 a.m. 
on a single day. To control for ambient light conditions, we col-
lected measurements immediately above and below the water sur-
face for each replicate to allow for the normalization of irradiance 
(Normalized IrradianceDepth = IrradianceDepth/IrradianceSurface). As 
results were not impacted by irradiance normalization, we focus on 
the results using the raw (=non-normalized) irradiance data in the 
paper. A more detailed discussion of the collection of irradiance data 
is given in Veen et al. (2017).

2.4 | Stickleback visual model

To assess whether opsin expression differences influenced visual 
sensitivity we employed a stickleback visual model developed in 
Brock et al. (2017a). Specifically, we developed a photoreceptor 
noise-limited color discrimination model for stickleback fish using 
MSP-estimated peak cone sensitivities and employed the param-
eters outlined in reference Govardovskii, Fyhrquist, Reuter, Kuzmin, 

and Donner (2000) to calculate spectral sensitivity functions for the 
four stickleback cone receptors. The absolute quantum catch, Q, for 
each class of photoreceptor: 

where λ is the wavelength, Ac is the photoreceptor absorptance of 
cone class c, S(λ) is the target reflectance, and I(λ) is the environment 
irradiance. Quantum catch was adjusted for the adapting light envi-
ronment using von Kries transformations, so that qc = kcQc, and 

where Ib(λ) is the adapting background. The signal for each photore-
ceptor when viewing a target in a given background is proportional 
to the logarithm of their adjusted quantum catches such that con-
trast between the two is 

Threespine stickleback are tetrachromats and thus have four 
cone classes: UV-sensitive (SWS1, abbreviated below as U), short-
wavelength-sensitive (SWS2 = S), medium-wavelength-sensitive 
(MWS = M), and long-wavelength-sensitive (LWS = L) cone recep-
tors. As such, the perceptual distance in terms of chromatic contrast, 
∆S, between the target and background was calculated for a tetrach-
romatic visual system as 

where ec is the signaling noise for a photoreceptor of class c and is 
given by the following: 

where ω is the Weber fraction, and ηc is relative density of photore-
ceptors of class c in the retina. A Weber fraction value of 0.05 was 
chosen as a conservative estimate.

Finally, it is advisable to incorporate the transmission spectra of 
the lens, ocular media, and intracone oil droplets (if present) when 
calculating target contrasts using visual models, as these can strongly 
influence spectral sensitivity in vertebrates, including fish (Bowmaker, 
2008; Bowmaker, Heath, Wilkie, & Hunt, 1997; Douglas & Jeffrey, 
2014; Lind, Mitkus, Olsson, & Kelber, 2014; Loew, Fleishman, Foster, 
& Provencio, 2002; Stavenga & Wilts, 2014). However, to our knowl-
edge, there are no available transmission data for the lens or ocular 
media of threespine stickleback (Rick, Bloemker, & Bakker, 2012 
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measure lens transmission, but their data are not publicly available; 
see also Flamarique, Bergstrom, Cheng, & Reimchen, 2013). Similarly, 
it is unknown whether oil droplets are present within the cones of 
threespine stickleback. As such, we were not able to include any of 
these components in our visual model calculations. While we recognize 
this is a limitation of our study, previous evidence from both optomo-
tor and behavioral studies indicate that stickleback are sensitive to a 
variety of colors, including those of both long (e.g., red) and short (e.g., 
ultraviolet) wavelengths (e.g., Rick & Bakker, 2008a,b,c;  Flamarique, 
Bergstrom et al., 2013; Flamarique, Cheng et al., 2013; Shao et al., 
2014). Consequently, these results strongly suggest the stickleback 
eye is at least partially transmissive to wavelengths between ~300 
and 700 nm. Additionally, the lens of a close relative, the fifteen-spine 
stickleback (Spinachia spinachia), is highly transmissive across the vis-
ible spectrum, including UV (Thorpe et al. 1993), which is consistent 
with the presence of similar lens properties in the threespine stick-
leback. Given these previous results, we feel the conclusions of our 
visual model analyses should be qualitatively robust to the exclusion of 
these components from our calculations of the quantum catch.

We combined our opsin expression estimates with this visual 
model to calculate normalized absorbance across the visible spectrum. 
Specifically, we adjusted the relative density of the photoreceptors in 
the retina (ηc) in our model to match our opsin expression profiles for 
each male. As the range of LWS peak sensitivity (see above) may vary 
based on the nature of the bound chromophore (11-cis retinal vs. 11-
cis 3,4 didehydroretinal, often designated by their precursor vitamins 
A1 and A2; Flamarique, Bergstrom et al., 2013; Flamarique, Cheng et al., 
2013; Enright et al., 2015), we conducted the analyses using the lower 
bound (566 nm), upper bound (638 nm), and the median (i.e., essentially 
averaging across chromophore types in the retina; see Rennison et al., 
2016 & Veen et al., 2017). From this, we then estimated visual sensitivity 
to orange-red (i.e., summed absorbance between 590 and 650 nm) and 
tested whether this estimate of orange-red sensitivity covaries with male 
coloration. Additionally, we employed this visual model to calculate chro-
matic contrast, ΔS (see above), to assess whether male color and opsin 
expression are matched to their local optical microhabitat. Specifically, 
we permuted opsin expression and color across males, and then calcu-
lated contrast for all opsin-color pairings at each nesting depth (i.e., an 
in silico transplant experiment). This allowed us to calculate each male’s 
contrast, as viewed by every possible opsin phenotype against every 
possible visual background. The average across all opsin-color pairings 
for a given nesting depth provides a null expectation for contrast. We 
then calculated each male’s observed contrast (using its own color and 
opsin profile at its actual nest depth). Next, we calculated each males’ 
deviation from the null expectation (ΔSempirical–ΔSnull). If males were 
more or less conspicuous than the null, this would suggest a nonrandom 
association between color, opsins, and optical microenvironment.

2.5 | Statistical analyses

To test for an association between color and opsin expression, we 
used the “CCA” package (González & Déjean, 2012) in R to conduct 
canonical correlation analyses. We examined the preoperculum and 

abdomen separately, and estimated canonical correlations between 
the four color proportions (see Male collection and reflectance meas-
urements) and the relative expression levels of the four stickleback 
opsins. The significance of the canonical axes was assessed sequen-
tially with permutation tests and Wilk’s lambda as a test statistic, 
using the “CCP” package in R (Menzel, 2012). To test whether red 
males showed evidence for increased sensitivity to long wavelengths 
(orange-red wavelengths, 590–650 nm), we used linear regression of 
male color vs. long-wavelength absorbance.

To investigate whether empirical color-opsin pairings were non-
randomly associated with nest depth, we conducted a one-sample 
Student’s t test of the deviation of a male’s empirical contrast from 
the null expectation at the male’s nest depth (ΔSempirical–ΔSnull). 
Additionally, to account for the potential confounding effect of nest 
depth (Brock et al., 2017a; Brock, Bolnick, & Cummings, 2017b; 
Veen et al., 2017), we conducted a path analysis using the “sem” 
package (Fox, Nie, & Byrnes, 2017) in R. We calculated the direct 
correlation between color and opsins (using the first canonical vari-
ate scores for each data matrix) while accounting for their possible 
shared correlation with nest depth.

3  | RESULTS

The CCA confirmed a positive correlation between redder coloration 
(of both body regions) and relative expression of the long-wavelength-
sensitive LWS opsin (Figure 1). Permutation tests indicate that the first 
canonical correlation was significant for the abdomen alone (canonical 
correlation1; r2 = 0.982, p = 0.001; Figure 1). For this same axis, males 
with more UV-reflective abdomens expressed relatively less of UV-
sensitive SWS1 opsin (Figure 1b). Visual model analysis indicated that 
redder males had higher absorbance in orange-red range of the visible 
spectrum, suggesting an increased sensitivity to long wavelengths in 
these individuals (r2=0.38, p = 0.013; Figure 2). These results were con-
sistent across the different LWS λmax inputs, so we focus on the results 

using the median λmax that averages across chromophores (Figure 2).

Path analyses indicated that these signal-sensory correlations are 
not due to a shared correlation with depth, instead supporting a direct 
association that is significant for both the abdomen and preoperculum 
(Table 1). Likewise, the in silico “transplant experiment” indicated that 
at a given nest depth the resident males were not more visible, nor 
better able to see other males, compared with randomly transplanted 
males from other depths (preoperculum: t15 = −0.414, p = 0.684; ab-
domen: t15=−0.864, p = 0.402). As depth is strongly correlated with 
the ambient light environment (Brock et al., 2017a,b; Veen et al., 
2017), these results suggest that color-opsin covariance is not an inci-
dental result of each trait’s separate tuning to the local optical regime.

4  | DISCUSSION

We found that within a given male stickleback nuptial color was 
strongly correlated with opsin expression. Specifically, redder males 



7098  |     BROCK et al.

had elevated expression levels of long-wavelength-sensitive LWS 
opsin. Our visual modeling results suggest these redder males are 
more sensitive to orange-red. Higher UV-reflecting males expressed 
relatively less UV-sensitive SWS1. Despite previous studies finding 
correlations between nest depth and both male color and opsin ex-
pression (Brock et al., 2017a,b; Veen et al., 2017), in the present sam-
ple we found an effect of depth on opsins alone. Our visual model 
also provided no evidence that color and opsin expression were 
jointly tuned to the local optical microhabitat.

Our results suggest a plausible mechanism for the previously 
reported genetic correlation between male sticklebacks’ red color, 
and their daughters’ sensitivity to and preference for red mates (Rick 

et al., 2011). Stickleback nuptial color and opsin expression are both 
reported to be heritable (Lewandowski & Boughman, 2008; Malek 
et al., 2012; Rennison et al., 2016) and evidence suggests the lat-
ter is not sex-biased (Veen et al., 2017). Thus, it is reasonable to 
hypothesize that redder males with more LWS expression should 
tend to have female offspring who also express relatively more 
LWS opsin. Consequently, these females may be more prone to de-
tect and choose red mates (Bakker, 1993; Rick et al., 2011), poten-
tially increasing genetic covariance between signal and preference. 
However, as we did not directly assess the trait heritability in this 
focal population, nor have we yet directly tested for effects on fe-
male preference, this remains a hypothesis in need of further inves-
tigation. Consistent with this hypothesis, recent work in stickleback 
and cichlids suggests relative LWS opsin(s) expression influences op-
tomotor thresholds (Shao et al., 2014; Smith, Ma, Soares, & Carleton, 
2012) and correlates with mate preference across populations of 
guppies (Sandkam et al., 2015), and future assays in stickleback 
could assess whether opsin expression predicts visual sensitivity, as 
our visual modeling suggests, and mate preference. Additionally, fu-
ture studies can employ breeding experiments to further assess the 
heritability of color and opsin expression profiles (i.e., relative pro-
portions of each opsin expressed) in offspring of both sexes (sensu 
Flamarique, Bergstrom et al., 2013; Flamarique, Cheng et al., 2013; 

F IGURE  1 Males that reflect more 
red display higher relative expression of 
the red-sensitive LWS opsin. (a) Plot of 
the first canonical variate for color and 
opsin expression and the first canonical 
correlation between these variates for 
the abdomen. (b) Helioplot showing 
the canonical loadings along the first 
canonical variate axes for male reflectance 
and opsin expression. Solid bars indicate 
positive loadings, and clear bars indicate 
negative loadings
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TABLE  1 Path analyses provide evidence for a direct association 
between male color and opsin expression for both the abdomen 
and the preoperculum. Bold values indicate statistically significant 
associations (p < 0.05)

Preoperculum Estimate SE z-value p-value

Depth → Opsins 0.423 0.437 0.967 0.333

Depth → Color 0.097 0.451 0.215 0.829

Opsins ↔ Color 0.892* 0.351 2.537 0.011

Abdomen Estimate SE z-value p-value

Depth → Opsins −0.866* 0.388 −2.232 0.026

Depth → Color −0.706 0.411 −1.721 0.085

Opsins ↔ Color 0.768* 0.293 2.625 0.008

λmax
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Rennison et al., 2016), as well as directly measure genetic correla-
tions between these traits (sensu Bakker, 1993). Finally, as diet is one 
potential mechanism for mediating covariance between color and 
opsin expression (see below), it is worth highlighting that parent–off-
spring correlations between color and opsin expression could result 
from less direct genetic (i.e., heritability in diet or trophic morphol-
ogy influencing rate of carotenoid intake) or nongenetic mechanisms 
(learned dietary preferences).

Color-opsin correlations within individual males could also in-
fluence male–male competition and may help explain previous evi-
dence for depth-mediated negative frequency-dependent selection 
in stickleback (Bolnick et al. 2016). Negative frequency-dependent 
selection favors rare phenotypes, thus maintaining phenotypic 
variation within populations (Bolnick, 2004; Seehausen & Schluter, 
2004; Kopp & Hermisson, 2006; Nosil, 2006; Olendorf et al., 2006; 
Rueffler, VanDooren, Leimar, & Abrams, 2006; Djikstra, Seehausen, 
Gricar, et al., 2006; Djikstra, Seehausen, Pierotti, et al., 2006; 
Bolnick et al. 2016; Djikstra & Border, 2018), and previous empirical 
work suggests negative frequency-dependent selection can main-
tain male color polymorphism in natural populations (Seehausen & 
Schluter, 2004; Nosil, 2006; Djikstra, Seehausen, Gricar, et al., 2006; 
Djikstra, Seehausen, Pierotti, et al., 2006; Bolnick et al. 2016; But 
see Gray et al., 2008).

Bolnick et al. (2016) demonstrated that male–male antagonistic 
interactions were frequency-dependent among lake populations 
of threespine stickleback (Gosling Lake and Blackwater Lake). 
Gosling Lake males, which are typically red-throated, attacked red-
throated models more often and with a greater intensity than me-
lanic models, while the opposite pattern was the case for melanic 
males in Blackwater Lake. These results were also modulated by 
depth, a proxy for optical environment, which can influence male 
signal contrast to a specific perceiver, that is, a male competitor 
(reviewed in Ryan & Cummings, 2013; Brock et al., 2017a). Red-
throated males attacked red models even more frequently in shal-
low environments, while melanic males attacked melanic models 
more frequently in deep environments. Covariance between color 
and opsin expression within individuals males may provide a viable 
mechanism to explain these patterns. Lakes with red males should, 
on average, have higher levels of LWS expression, increasing their 
sensitivity to redder males. Consequently, this increased sensi-
tivity could drive more frequent and intense aggression toward 
redder males. Furthermore, opsin expression profiles show a sig-
nificant depth gradient in Gosling Lake male stickleback (Table 1; 
Veen et al., 2017), with higher LWS expression in shallow environ-
ments (Table 1; Figure 1b; Veen et al., 2017). As our visual mod-
eling results suggest, shallow males with higher LWS expression 
would have elevated sensitivity to orange-red reflectance, and this 
again could drive greater aggression toward red males. While this 
pattern could reflect elevated contrast of redder males, our visual 
modeling analyses suggest that local males were not more conspic-
uous in their home environments when viewed by a local perceiver. 
Thus, redder males were not more conspicuous in shallow environ-
ments to local males (i.e., those with elevated expression of LWS). 

These results are consistent with previous work in Gosling Lake 
that found red-throated males were actually less conspicuous than 
null expectations in their native shallow environments, suggesting 
that something other than (or in addition to) signal contrast is driv-
ing depth gradients in male color (Brock et al., 2017a). Thus, while 
covariance between color and opsins is a potential mechanism that 
could drive negative frequency dependence of male–male antago-
nism at both geographic scales, it seems unlikely that this is medi-
ated through increased conspicuousness alone. Future work could 
replicate the study design of Bolnick et al. (2016) while additionally 
collecting opsin data from focal males to assess whether opsin pro-
files 1) covary with male color between lakes and 2) predict male 
antagonism to color models.

The proximate mechanism responsible for this color-opsin 
correlation remains unknown. One possibility entails variance in 
carotenoid consumption and/or allocation. The red coloration of 
breeding male stickleback is partly based on diet-derived carot-
enoids (Pike, Blount, Lindstrom, & Metcalfe, 2010; Wedekind, 
Meyer, Frischknecht, Niggli, & Pfander, 1998). Carotenoids may 
also influence opsin expression, and recent experimental work 
in guppies demonstrated that increased consumption of carot-
enoids led to increased expression of LWS opsins (Sandkam et al., 
2016). Thus, diet variation among individuals (heritable or learned) 
(Snowberg & Bolnick, 2012) could lead to variation in carotenoid 
availability that jointly affects male color and opsin expression. 
While future work is needed to investigate the mechanism and 
genetics of this color-vision correlation, our results present a clear 
example of covariance between nuptial signal and the capacity 
to perceive that signal. Trait correlations such as these are an es-
sential feature of many models of sexual selection and signal evo-
lution and can help explain the apparent concerted evolution of 
signal and preference in nature. Our results highlight the potential 
importance of opsin expression variation as a substrate for female 
preference evolution (Bloch, 2015, 2016; Lind et al., 2017; Price, 
2017; Sandkam et al., 2015). Finally, these results suggest a poten-
tial sensory mechanism that could facilitate the maintenance of 
variation in male nuptial color via negative frequency-dependent 
selection (Bolnick et al. 2016).
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