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Abstract

Indoor environmental quality (IEQ) is a critical aspect of the built environment to ensure occupant health,
comfort, well-being and productivity. Existing IEQ monitoring approaches rely on sensor networks deployed
at selected locations to collect environmental measurements, and are limited in scale and adaptability due
to infrastructure cost and maintenance requirement. To enable high-granularity IEQ monitoring with agile
adaption to the dynamic indoor environment, we propose an “automated mobile sensing” system that dis-
patches a sensor-rich navigation-capable robot to actively survey the indoor space. Data collected in this
fashion is sparse in the joint temporal and spatial domain, and cannot be used directly for IEQ evaluation.
To deal with this special characteristics, we developed a spatio-temporal interpolation algorithm to capture
the global trend and local variation in order to use the data efficiently to reconstruct the IEQ dynamics.
We compared the performance of the automated mobile sensing with a dense sensor network in a laboratory
where we measured the air-change effectiveness (ASHRAE standard 129) for four different conditions. Re-
sults indicate that automated mobile sensing is able to accurately estimate the parameters with a minimal
sensor cost and calibration effort. Potential applications of this system include indoor thermal comfort,
lighting, indoor air quality and acoustic monitoring, pollutant source identification, and building commis-
sioning. We shared publicly the source codes for robot control, sensor setup, and interpolation algorithm to
encourage comparison study and further development.

Keywords: indoor environmental quality, mobile sensing, spatio-temporal interpolation, robotic sensing,
smart building, energy efficiency

1. Introduction

Smart buildings are cyber-physical energy systems (CPES) that integrate sensing, data analytics, and
control to provide essential services to the occupants. Buildings consume about 40% of primary energy in the
U.S. and there is a fundamental drive for buildings to be energy efficient [1, 2]. As people spend about 90%
of their time indoors, they should also be human-centric by focusing on improving human health, comfort,
well-being and productivity, and well-being [3, 4, 5, 6]. This could be achieved effectively by monitoring
and enhancing indoor environmental quality (IEQ), such as indoor air quality, thermal comfort, lighting
and acoustics [7, 8, 9]. IEQ monitoring has been recognized as one of the fundamental strategies to obtain
credits by various guidelines and rating systems, such as American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE)/Chartered Institution of Building Services Engineers (CIBSE)/U.S.
Green Building Council (USGBC) Performance Measurement Protocols for commercial buildings (PMP) [10]
and Leadership in Energy and Environmental Design (LEED) [11]. For instance, environmental parameters
(e.g., temperature, humidity) need to be continuously monitored when occupants take a “right-now” thermal
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comfort survey, according to AHSRAE/CIBSE/USGBC PMP [10]. LEED suggests CO2 monitoring in all
densely occupied spaces. In addition, IEQ assessment involves contaminants sampling in all occupied spaces,
such as volatile organic compound (VOC) and particulate matter (PM) [11]. Guidelines, standards and rating
systems recognize that more IEQ monitoring would be valuable but affordability constrain limits what is
suggested to be used.

Due to complex indoor structures and dynamic environment, IEQ parameter distributions are often
inhomogeneous, resulting in spatial variations in thermal environment and indoor contaminant exposure
[12, 13, 14]. Furthermore, applications of personalized heating/cooling devices, aiming to reduce building
energy use, augment such inhomogeneity [15, 16, 17, 18, 19, 20]. Consequently, spatio-temporal monitoring
of indoor environment can provide an comprehensive IEQ assessment.

Key challenges in the objective IEQ assessment of commercial buildings involve accurate, easy-to-use,
and scalable sensing systems [21]. An effective approach is to implement wireless sensor networks; however,
despite the continuous reduction in sensor cost and simplification in deployment, infrastructure investment
and maintenance might still remain a concern in the near future, especially when considering monitoring
numerous IEQ variables simultaneously. Moreover, many sensors that require a significant amount of power
(e.g., hot wire anemometer) can not easily become wireless. Additionally, buildings might undergo several
renovations in their life-cycle, so agility is essential to adapt to the changing environment.
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Figure 1: Automated mobile sensing system overview. The robotic platform can either work alone or with static sensor network
to actively estimate building context and facilitate building control.

Main contributions and objectives

Differentiated from existing approaches of deploying static sensors for indoor monitoring, we propose a
sensing paradigm of “automated mobile sensing” by leveraging a navigation-enabled sensing-capable mobile
robot (see Fig. 1 for the overall architecture). This represents a paradigm of “active inference”, where the
robot can plan its path to take representative measurement samples at locations of interests, as compared
to “passive inference” where the data collection is limited by the geolocations of static sensors.

From a data analytic perspective, unlike data from static sensors, the samples taken by the robot is
highly sparse in time and space, as illustrated in Fig. 3. While existing interpolation mainly focuses on
the spatial domain [22, 23], we propose a data-efficient spatio-temporal (ST) interpolation method that
extracts local and global trends and constructs an informative visualization of IEQ. Through experimental
evaluations of zone air distribution effectiveness (air-change effectiveness, ACE), automated mobile sensing
is compared with static sensing with a dense sensor network required by the ASHRAE standard 129 [24].
Note that the air-change effectiveness experiment is only used to demonstrate our novel platform, rather
than to investigate possible factors that influence its value, for which we refer the readers to more established
works [20, 25, 26, 27]. It is, therefore, the objective of this paper to describe the novel “automated mobile
sensing” system for indoor environmental quality monitoring, enabled by a sensor-rich navigation-capable
robot to actively survey the indoor space.
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2. Brief literature review

2.1. Indoor environmental quality assessment

IEQ assessment can be conducted using occupant surveys [5, 28, 29, 30], personal monitoring [31, 32, 33],
and sensor measurements [34, 35, 36]. Surveys provide subjective IEQ evaluation from occupant perspectives;
however, survey design requires systematic effort to avoid bias and confusion, and the results can not
be updated frequently due to user fatigue. Several online or mobile tools have been developed to allow
users to vote their thermal or lighting preferences in real time [28, 17]; however, the responses may reveal
only subjective perceptions, like “the air is stale”, but it rarely gives hints about the causes, such as
increased indoor pollution caused by low outdoor air flow rate or unpleasant thermal environment due to
malfunctioning mechanical systems.

Objective measurements, taken by static or mobile sensors during daily operation or performance com-
missioning, can accurately depict building environment and diagnose potential faults. Static sensors are
deployed in a space to continuously monitor environmental parameters [1]; nevertheless, limited by cost,
the deployment is often sparse in locations or absent, especially for expensive sensors like CO2. In addi-
tion, while indoor environment is often inhomogeneous and unpredictable, the stationary sensors may not
always be deployed in the optimal locations to reflect indoor environment. Personal monitoring systems,
such as using infrared thermography [31] and physiological measurements [32, 33, 37] can offer assessment
of individual comfort and inform building operation system of proper adjustments in real-time; however,
they require users to be equipped with special instruments or sensors and may involve privacy concerns. For
some IEQ parameters like indoor air quality, the effect on productivity and health may be long-term and
cannot be readily captured by physiological measurements.

Mobile carts, such as an instrumented chair-like cart [34] and the IEQ cart [35, 36] can hold multiple
sensors to take measurements simultaneously at a given location. While the results are comprehensive, the
carts often require considerable labor cost and manual navigation. Several studies exist to deploy robots for
monitoring and identifying pollutants both indoor and outdoor [38, 39, 40, 41]; however, the methods do
not distinguish the global trend of physical parameters from their local variations, which might lower the
estimation accuracy, and the results have not been validated against a ground truth, which requires a dense
sensor network for comparison.

2.2. Continuous interpolation from discrete measurements

Data from static or mobile sensor measurements is highly sparse and requires interpolation for infor-
mative visualization. Spatial interpolation is a well-studied topic in geostatistical analysis and image pro-
cessing communities, where methods like Kriging and Markov random field (MRF) are among the most
prominent [22, 23]. Kriging has also been combined with Gaussian MRF [42], Bayesian network [43], and
principle component analysis [44] to improve the computational efficiency. In practice, this means that the
algorithm can analyze a large amount of data within limited time span, thus enabling large-scale sensing.

Since Kriging is efficient with sparse data, it has been generalized to spatio-temporal interpolation
[22, 45]. Shape functions have also been introduced based on finite element mesh generation [46]. Variational
Gaussian-process factor analysis is proposed to model the dynamics of spatio-temporal data [47]. Prior
works assume multiple time series data from individual sensor stations, which requires continuity in time
at a specific location; but the data from mobile sensing robot poses the challenge of high sparsity and
non-continuity in time and space (Fig. 3).

Differentiated from existing interpolation methods, our method can efficiently capture spatial and tem-
poral dynamics by constructing global and local trend estimators based on highly sparse data.

3. Methodology

3.1. Integrated system architecture

This section introduces the environmental sensing platform and the robotic base (Fig. 2) as the essential
components in the autonomous sensing system.
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Based on an Arduino microcontroller board, the environmental sensing platform (ESP) is designed on
a software-level to detect and report sensor faults automatically to alert users, and to work instantly once
powered on, relieving laborious configuration or setup (Fig. 2).

A comprehensive list of sensors are integrated in the ESP to monitor indoor environmental parameters,
including temperature and humidity, light level, PM2.5, CO2, and organic volatile compound (VOC) (Table
1). Data are sampled and uploaded to a server using a WiFi communication link at an interval of 10 s,
which are also pushed to a front-end visualization portal (hosted at dweet.io) for real-time monitoring. In
addition, all sensors are calibrated using automatic baseline correction (ABC) beforehand. In particular, we
calibrated the CO2 sensors (K-30) using an off-the-shelf HOBO MX1102 CO2 logger.
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Figure 2: (a) Snapshot of the environmental sensing platform. (b) Schematic of sensor integration and data communication.
Snapshots of (c) the robotic platform, (d) Augmented reality tag indoor positioning, and (e) camera-enabled simultaneous
localization and mapping (SLAM).

Programmed under the robot operating system (ROS), a collection of software frameworks for robot
software development, it runs mapping, positioning, and navigation algorithms autonomously. Mounted
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Table 1: Sensing modules of ESP.

Environmental
parameter

Module Performance Price

Temperature MCP9808
Accuracy: 0.25◦C typical precision over

-40◦C to 125◦C range
$4.68

Illuminance SI1145 Resolution: 100 mlx $9.95

CO2 K-30
Measurement range: 0 – 10000 ppm
Accuracy: ± 3 % of measurement

Response time: 20 seconds diffusion time
$85

PM2.5 SEN0177 Measuring pm range: 0∼500 µg/m3 $46.90

Organic volatile
compound

TGS2620
Typical detection range: 50 - 5000 ppm

Sensitivity: 0.3∼0.5 in ethano
$8.90

with ESP, the mobile robot (Turtlebot 2) can be controlled remotely or make decisions based on real-time
sensing data (Fig. 2).

Indoor positioning. In a new and dynamic environment, the robot can operate without a detailed floormap.
Based on the depth image from Kinect camera, the Simultaneous Localization and Mapping (SLAM) problem
is solved with particle filter by tracking the robot position relative to the surroundings [48] (Fig. 2e).

With the additional user-provided layout, a higher-precision location estimation is enabled by an aug-
mented reality tag system (Fig. 2d). Upon the initial positioning by SLAM, the estimate is updated by
reading the distance and direction to nearby reference points marked by augmented reality tags, which are
fiducial markers deployed in advance at locations indicated on the room layout. During the positioning pro-
cess, the relative distances and angles are processed by the triangulation algorithms to revise the location
estimate [49]. This also enables more robust estimation against dynamic changes in the room as long as the
augmented reality tags remain visible to the robot [49].

Navigation and collision avoidance. Given a set of goal points, the robot is navigated using a global planner
to set the shortest path based on the current knowledge about the space. However, when some moving
objects, like occupants, obstruct the planned path, a local planner is employed to avoid obstacles. Supported
by ROS, robot specs like velocity, angular speed, and goal tolerance can be set to accommodate specific
requirements.

3.2. Spatio-temporal interpolation algorithm

Compared to data collected by static sensor stations, measurements from mobile sensors cover the whole
space with higher granularity; however, for each location, the samples are conducted sequentially in multiple
locations (see Fig. 3 for an illustration). The problem is stated as below:

Given the mobile sensing data D = {(s1, t1, v1), ..., (sn, tn, vn)}, where si = (xi, yi) and ti are the spatial

coordinate and timestamp, and vi is the actual value, our goal is to find a function, f̂ : R2 ×R 7→ R, which
estimate values at unexplored locations at certain time.

A data-driven approach to spatio-temporal (ST) interpolation is adopted based on statistical decision
theory. The variation of an indoor environment exhibits both a global trend, as dominated by outdoor
weather, building envelope and Heating, Ventilation and Air Conditioning (HVAC) operation, as well as a
local trend, as influenced by occupants, inhomogeneous air turbulence, pollutant source, and furniture.

The proposed algorithm, therefore, has three key steps (Fig. 4):

1. ST binning: consider a 3D-space (xy and t axes represent space and time, respectively) divided into
3D cubes based on spatial and temporal resolutions. Data points are binned and aggregated to reduce
measurement errors.

2. Global trend extraction: a regression trend is fitted by, e.g., locally weighted scatterplot smoothing
(LOWESS) [50], to capture the global variation.
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Figure 3: Illustration of data characteristics in the spatial and temporal domains for (a) static stations, (b,c) automated mobile
sensing, where (c) depicts a situation of active exploration around the spot of critical event (star).

3. Local variation estimation: based on the residues from global trend, a local variation function is
approximated and applied on unknown points.
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Figure 4: Illustration of the ST interpolation algorithm, including ST binning for data smoothing, global trend extraction, and
local variation estimation. The outcome is an interpolation function f̂ that encodes a high-granularity interpolation map.

The high-granularity map that depicts the indoor environment evolution is embedded in the ST inter-
polation function, given by:

f̂(s, t) = f̂global(t) + f̂local(s, t), (1)

where f̂global(t) and f̂local(s, t) are the global and local trends, obtained as follows.
The global trend depicts the average evolution of the phenomenon independent of individual locations,

since data pooling provides sufficient samples for estimation. Based on the locally weighted scatterplot
smoothing (LOWESS) method [50], the global trend, f̂global(t), at time t ∈ [tc − h(tc), tc + h(tc)], is given
by:

f̂global(t) = β0 + β1(t− t0) +
1

2
β2(t− t0)2, t ∈ [tc − h(tc), tc + h(tc)] (2)

where tc is the center point, h(tc) is the smoothing span, and β0, β1, β2 are parameters given by:

(β0, β1, β2) = arg min
n∑

i=1

wi(tc)

(
vi −

(
β0 + β1(ti − tc) +

1

2
β2(ti − tc)2

))2

(3)

where wi(tc) = W
(

ti−tc
h(tc)

)
and W (u) =

{(
(1− |u|3

)3 |u| ≤ 1

0 |u| > 1
obtain the data point weights.

While the global trend function is applicable to all locations, the local function f̂local captures the spatial
variation, which is encoded in the residuals ri = vi − f̂global(ti). Based on the empirical risk minimization
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(ERM):

f̂local = arg min
f∈F

1

n

n∑
i=1

l(f(si, ti), ri) (4)

where F delineates the range of estimators, e.g., the class of linear regressors, and l : R×R→ R is the loss
function, which penalizes error in estimation, e.g., the squared loss l(a, b) = (a− b)2. Implicitly, we assume
that points close in space and time are also close in values, which is generally true for indoor environment.

A variety of algorithms to capture local variation have been implemented in our open toolset, such as
K-nearest neighbor (KNN), Lasso, support vector regression (SVR), adaptive boosting (AdaBoost), random
forest, and extra trees [50], which are trained by ERM with different loss functions. The implementation
code in Python is available (see the link in section 5.3).

4. Experiments

4.1. Environmental chamber

The experiment took place in a climate chamber in the Center for the Built Environment (CBE), which
can precisely control supply airflow rate, indoor temperature (±0.5 ◦C) and humidity (± 3%). The ventila-
tion system employs underfloor air distribution (UFAD), where air is supplied from one or two linear grille
diffusers on the floor (shown in Fig. 5). By providing cool air at a low momentum from the floor level and
utilizing buoyancy generated from indoor heat sources (e.g., occupants) to displace room air, UFAD often
achieves a thermally stratified air distribution. During the experiment, all supply air came from outside,
and there was not circulated air. We assumed that outdoor air CO2 concentration was 400 ppm. The supply
air flowrate during the experiments was maintained at 79±11 m3/hr.

As for heat sources, two sedentary thermal manikins, each with total sensible heat loss of 68.7 W (±5%)
were placed, representing female subjects for office work (Fig. 5). In addition, we placed one heater panel
(size: 0.5× 0.2 m; power: 200 W) under each table to investigate how personal heating device affected the
zone air distribution effectiveness and examined the robustness of the algorithms in the given experimental
setup.

Ten (10) ESPs were deployed in the occupied zone, which measured CO2 concentrations at 10 locations
and provided the standard assessment of air-change effectiveness according to the ASHRAE standard 129.
The sensors were placed at a height of 1.5 m, where detailed locations are shown in Fig. 5.

4.2. Description of air-change effectiveness

According to the ASHRAE standard 129 [24] the air-change effectiveness (ACE) is “a measure of the
effectiveness of outdoor air distribution to the breathing level within the ventilated space”. It is also known
as “zone air distribution effectiveness” [51]. ACE is calculated from the age of air. The age of air is the
“average time elapsed since molecules of air in a given volume of air entered the building from outside”, in
other words, the age of air at a specific location in a building refers to the time for a bulk of outdoor air
to reach the position after entering the building. A “younger” age of air represents that the air is fresher,
which is often located around supply diffusers. An indoor space with a smaller age of air on average often
has a higher ventilation efficiency and air quality.

According to ASHRAE standard 129, the age of air can be estimated using a tracer gas step-up or
decay procedure (described in Section 4.3), which often uses non-toxic, non-flammable, and environmentally
friendly gases like CO2 as the tracer gas [24]. The ISO 16000 standard also describes the use of a single
tracer gas to determine the local mean age of air by using concentration decay or homogeneous constant
emission [52]. According to the decay procedure, the air age A(s) at location s is given by:

A(s) = (tstop − tstart)
Cavg(s)

C(s, tstart)
, (5)

where tstart is the time at the beginning of the decay, tstop is the time when the procedure ends, C(s, t) is
the tracer gas concentration at location s at time t, and Cavg(s) is the time-averaged concentration between
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tstart and tstop. Since the samples are usually discrete in time, the time-averaged concentration Cavg(s)
can be estimated by 1

n

∑n
i=1 C(s, tstart + i∆t), where ∆t is the sampling interval, and n is the number of

samples between tstart and tstop.
Based on the air age measurement, the ACE E(s) is given by [24]:

E(s) =
A(sex)

A(s)
, (6)

where A(sex) indicates the age of air at the exhaust vent. By definition, this metric describes an air
distribution system’s capacity to deliver ventilated air to an indoor space. The local ACE represents the
effectiveness of outdoor air delivery to one specific point in a space.

The ACE is typically 1.0 for a well mixing ventilation system in cooling and equal or higher than 1.2
for displacement ventilation [51]. In general, a space with a higher ACE is associated with a better air
distribution system.
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Figure 5: Left: testbed floorplan, showing the air inlet diffusers, heaters, tables, CO2 sensor and source locations, and thermal
manikins. The sensors are placed at a uniform height of 1.5 m. Right: testbed snapshot, showing the static sensor stations
(1–4), thermal manikins to model realistic heat sources (5,6), robot (7), floor heaters (8,9), and CO2 source (10).

4.3. Experimental procedure

The experimental procedure was designed according to the standard tracer-gas decay process by ASHRAE
standard 129, as follows:

1. First, beverage-grade CO2 was injected into the chamber with a ceiling fan and a standing fan well
mixing the injected CO2 throughout the chamber. It was assumed that CO2 was well mixed in the
chamber short after the injection period [53].

2. When indoor CO2 concentration was elevated to approximately 3000 ppm, we turned off the CO2

injection and ceiling fans. The injection period took roughly 5 min.

3. After the ceiling fans were off, the indoor airflow pattern was re-established after 5 min [54].

4. The automobile platform measured CO2 concentration from the start location and moved to the next
one. Fig. 6 illustrates the moving route of the platform that stayed at each location for 45 s for CO2

sampling. The platform moved at a speed of 2 m/s to the next location until the completion of CO2

recording at all locations. The moving speed was optimized so that airflow pattern was disturbed at
a minimum level and CO2 decay at 10 locations can be captured in roughly 8 minutes.

We compared ACE at various air distribution conditions measured by the mobile sensing with that
obtained according to ASHRAE standard 129 to validate the performance of the automobile platform.
Table 2 describes the investigated scenarios by altering the intensities of supply air momentum and heat
sources, which influences zone air distribution effectiveness as represented by ACE. It is worth noting that
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Figure 6: (a) Spatio-temporal trace of mobile measurements. (b) Plane view of the visiting trace of the robot.

the main goal for varying indoor configurations was to validate the reliability of the platform rather than
thoroughly examining how ACE could be influenced accordingly. In addition, we repeated one scenario twice
(Exp B &C) to assess the repeatability of the indoor air evaluation and the robustness of mobile sensing.
Supply airflow rate remained constant for all the scenarios.

5. Results and discussion

We conducted the experiments listed in Table 2 with the robot, where the stationary sensors were used
as the standard results for comparison. For each experiment, the robot collected a dataset, D, which was
used to train both the global and local trend estimators in (1).

Table 2: Experimental conditions for vents and heater status.

Experiment i.d. Exp A Exp B, C Exp D Exp E

Supply diffusers Diffuser 1 Diffuser 1 & 2 Diffuser 1 Diffuser 1 & 2

Floor heater status Off Off On On
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5.1. Age of air

Firstly, we demonstrate that the mobile sensing captures the actual dynamics of CO2 concentration in
the space. Since the measurements from the mobile robot change in both space and time, we visualize CO2

concentrations of mobile sensors and compare them with the stationary data, shown in Fig. 7. While the
mobile data reveals the overall decay trend, it also effectively differentiate the spatial distribution of CO2 at
different locations, which is helpful to build the local trend estimator (Section 3.2). Indeed, by comparing
the robot measurements with the station data collected at the same time and location, we can see that they
are almost identical (right plot of Fig. 7).

0 10 20 30 40 50 60
Time (min)

1000

2000

3000

CO
2 (

pp
m

) Static sensor
Mobile sensor

1000 2000 3000
Station CO2 (ppm)

1000

2000

3000

Ro
bo

t C
O 2

 (p
pm

)  R-squared: 0.99 
 RMSE: 81

Figure 7: Left: collocation of the sensor measurements from the static station S5 (lines) and the mobile robot (crosses). Right:
comparison of station and robot measurements at the same location and time. This indicates that the robot measurements are
representative of the spatial temporal concentrations.

To evaluate the accuracy of different interpolation algorithms outlined in Section 3.2, we compare the
age of air (see Equ. 5) estimated by the robot to the estimation by static sensors, as is shown in Fig. 8.
The baseline method, denoted as “Mean”, conducts the global trend estimation (Equ. (2)) but disregards the
local variation (Equ. (4)), thus creating a uniform estimation across the space. On the contrary, methods
based on KNN, random forests, and extra trees distinguish the spatial distributions and produce estimation
very close to the static measurements (Fig. 7). Furthermore, for the same ventilation setups, the robot
estimation exhibits little variation in the repeated experiments (Exp B and C), comparable to the station
performance (Fig. 9), implying that the influence of robot movement on CO2 distribution is negligible.
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Figure 8: Plot of air age estimation by static stations and mobile robot with different local variation methods in Exp B.
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Figure 9: Comparison of air age estimation given by the stations (blue) and robot (red) at 7 distinct locations in the repeated
experiments (Exp B and C). The box indicates the min/max range of estimation across two experiments.

Table 3: Comparison results of RMSE for ACE estimation and the corresponding Pearson correlation coefficients (reported in
brackets) between the static stations and robot estimation. Mean: baseline estimation. Other algorithms represent different
local variation estimators.

Mean OLS Ridge AdaBoost SVR KNN RandForest ExtraTrees

Exp A .077 [.00] .074 [.73] .074 [.73] .058 [.81] .071 [.82] .076 [.63] .072 [.74] .070 [.76]

Exp B .061 [.00] .027 [.96] .027 [.96] .038 [.77] .039 [.97] .031 [.99] .033 [.91] .030 [.98]

Exp C .089 [.00] .078 [.79] .078 [.79] .072 [.82] .066 [.88] .074 [.82] .068 [.85] .071 [.88]

Exp D .043 [.00] .036 [.62] .036 [.62] .031 [.76] .041 [.84] .029 [.81] .031 [.84] .029 [.81]

Exp E .044 [.00] .044 [.80] .044 [.80] .050 [.79] .039 [.77] .045 [.82] .044 [.73] .047 [.73]

5.2. Air-change effectiveness

As for the ACE evaluation, results indicate that the proposed interpolation methods significantly outper-
form the baseline model (Table 3 lists the mean squared error for all the experiments, and Fig. 10 illustrates
the average performance). Since the typical values of ACE are around 1, the reduction of RMSE from 0.063
(Mean) to 0.049 (ExtraTrees) in Fig. 10 is significant from a practical point of view, which also enables
more accurate depiction of the spatial differences of ACE. The Pearson correlation coefficients are close to
one for the list of algorithms, indicating that the ACE estimation from interpolated robotic measurements
follow the same trend as the station estimation. However, some algorithms like Ridge had relatively low
correlation coefficient of 0.62 for Exp D, which was outperformed by Random Forest with coefficient of 0.84.
This indicates that Random Forest had a better generalization capability than Ridge for interpolation at
unknown points. In addition, it can be observed that the correlation coefficients of Random Forest are
relatively low for Exp A and E as compared to the others, since the spatial variation of ACE in these two
experiments was not substantial as indicated by the static sensor measurements in Fig. 11. Note that the
correlation for Mean method is 0 because the prediction from Mean is a constant, which fails to capture the
spatial variation of ACE across the chamber.

The ACE measurements shows the ventilation effectiveness of the different system configurations. In Fig.
11, ACE results for the static and the robot case are shown. For the robot data the interpolation is done using
KNN to produce a high-granularity ACE mapping. The visualization indicates that ACE improves with
reducing mixing effects with more supply vents (Exp B, C, E) and adding heating sources (Exp D and E)for
the given indoor configuration in this study. The results are expected. The air distribution system with two
supply diffusers reduces supply air momentum and mixing effects, resulting in a higher thermal stratification
in the room. In addition, the heaters under the tables also increase thermal stratification, while minimizing
the potential disruption in terms of thermal plumes to room airflow. The increased thermal stratification
helps generate displacement ventilation in the room and improve ACE.
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Figure 10: Average estimation error of ACE for different methods, where Mean is the baseline method. The RMSE of Mean
reflects the standard deviation of ACE across the space. The reduced RMSE enables accurate differentiation of ACE at different
locations.

ACE

Figure 11: Visualization of spatial distribution of ACE parameters estimated by the static sensors (top plots) and the robotic
platform (bottom plots). The five experimental conditions are listed in Table 2.
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5.3. Potential applications

The proposed method is able to capture indoor environmental parameters both spatially and temporally.
The approach can significantly reduce the sensing infrastructure cost.1 It could be applied to assess indoor
environmental quality and for continuous commissioning. In the future deployment, the robot can rover
around a space to continuously monitor indoor IEQ, and can meanwhile interact with users and facilitate
automatic building control, which allows for active inference and decision making in real-time building
operation. Since the robot can move at a speed of about 2 m/s, one single robot is needed to cover a typical
office building floor, though it cannot yet climb the stairs or navigate between floors.

It has capacities to navigate across large indoor spaces to search locations where local environment is
unacceptable. Pollutant sources (e.g., particles from occupants or penetrated through open windows) may
be hard to capture using a limited number of stationary sensors. This platform can access an indoor space
extensively and it could be modified to identify pollutant sources through active sampling (see Fig. 3c).

Building system commissioning could also employ the platform to diagnose the efficacy of HVAC and
lighting systems. For instance, non-uniformity of air temperature in the underfloor air distribution (UFAD)
plenum indicates an ineffective system design or implementation. The platform can map the temperature
distribution inside the plenum which is often not easily accessible for traditional temperature monitoring
(e.g., thermistor probe deployment). Moreover, low ventilation effectiveness in terms of supply air short-
circuit is not uncommon for HVAC operated at heating mode [55]. The proposed system could assess indoor
ACE without deploying dozens of trace gas sensors [24]. Nevertheless, the platform may not be suitable
in residential houses where compact furniture and stairs may limit the moving range of the platform. The
source codes for robot control, sensor setup, and ST algorithm are made available at http://www.jinming.
tech/software/ to encourage comparison study and further development in this area.

6. Conclusion

This study proposed the “automated mobile sensing” paradigm for high-granularity, agile and scalable
indoor environmental quality monitoring. The integrated sensing system consists of a mobile base and an
environmental sensing platform which is capable of measuring a range of environmental parameters. To
derive actionable insights from the collected data that are sparse in both spatial and temporal domains, we
developed a spatio-temporal interpolation algorithm that leverages a hierarchical approach to reconstruct
continuous mapping of the indoor environment. We demonstrated the mobile platform in a laboratory
experiment of measuring air-change effectiveness. By comparing the measurements from the mobile platform
and those from a standard dense sensor network, we showed that the automated mobile sensing approach
was able to determine the air-change effectiveness with high spatial granularity and accuracy.
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