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Procedural Variety

Richard Catrambone Keith J. Holyoak
University of Michigan University of California at Los Angeles
Transfer in Problem Solving as a Function of the Procedural Variety of Training Examples
Abstract

Students often have difficulty solving homework assignments in quantitative courses such as
physics, algebra, programming, and statistics. We hypothesize that typical example problems
done in class teach students a series of mathematical operations for solving certain types of
problems but fail to teach the underlying subgoals and methods which remain implicit in the
examples. In the studies reported here, students in probability classes studied example problems
that dealt with the Poisson distribution. In Experiment 1, the four examples all used the same
solution method, although for one group the examples were superficially more dissimilar than for
tne other group. All subjects did well on the Near Transfer target problem that used the same
subgoals and methods as the training examples. However, most did poorly on two Far Transfer
target problems that had different subgoal orders and different methods. These results suggest
that subjects typically learn solutions as a series of non-meaningful mathematical operations
rather than conceptual methods in a subgoal hierarchy. In Experiment 2, one group studied
problems that demonstrated two different subgoal orders using different methods while the other
group received superficially different problems which had identical subgoal orders and methods.
Both groups still had difficulty with the Far Transfer problems. Subjects who received examples
with varied subgoal orders and methods seemed to isolate the subgoals, however, but not the
methods. This result suggests that goals and methods may be useful ways of characterizing
training problems. However, students may require explicit instruction on subgoals and methods in
order to successfully solve novel problems.

Introduction

A relatively consistent finding in the analogical reasoning and transfer literature is that
subjects do not seem to make use of prior information to solve new problems if the new problems
differ from training examples in more than minor ways (Gick & Holyoak, 1980, 1983: Reed,
Dempster, & Ettinger, 1985; Spencer & Weisberg, 1986). If similarities between training
examples and target problems are pointed out to subjects or if they are encouraged to consider
similarities between problems or domains, then subjects have somewhat more success at noticing
and applying analogies or transferring information (Gentner & Gentner, 1983; Gick & Holyoak,
1983; Tenney & Gentner, 1984).

Card, Moran, and Newell (1983) proposed the GOMS model to account for the text-editing
behavior of experts performing routine tasks. In this model, the expert knowledge representation
consists of four components: Goals, Operators, Methods, and Selection rules. We would like to
propose that in quantitative domains such as mathematics and physics, students acquire, or
should acquire, goals, methods, and selection rules for solving problems as a function of the
examples they study. Operators are simple mathematical procedures which college students
typically already possess, such as calculating an average. Goals are initially quite general: solve
the problem. After studying several examples, a student’s goal may be more refined so that it is
something like “get an answer that looks like the examples™ answers.” This type of goal is
especially likely if the examples solve for the same unknown using the same procedure. In this
case, students may simply learn that in order to achieve the goal they need to string together a
series of operations. However, if the examples are varied in their givens and ultimate goal (the
unknown being solved for), then students are less likely simply to string together a series of
operations. Rather, they may recognize and develop subgoals which correspond to the steps in the
examples. In addition, students will perceive that these subgoals can be reached by particular
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methods, which develop after students see a set of operations used together several times to
achieve some subgoal. That is, students will compartmentalize the problems into subgoals which
call on particular methods to satisfy them. A method will consist of a series of mathematical
operations connected together conceptually. With experience, students may develop different
methods for achieving the same subgoal. The particular method chosen will depend on the
particular givens in the problem. Different problems will evoke different subgoals which will in
turn evoke different methods. Students will develop selection rules for choosing which method to
use. If students had only studied one type of example, then they would only have one method for
solving problems in that domain. In fact, the method may really be a series of operations with no
clear organizing feature except order of application. Thus, varied examples may be necessary in
order to demonstrate how a series of operations can be grouped as a particular method for
achieving a particular subgoal.

Reed et al. (1985) conducted several experiments using college students taking an algebra
course. Subjects studied word problems dealing with traditional topics like distance, mixture, and
work and then solved target problems. Reed et al. manipulated the superficial similarity of the
target problems to the training problems. Their general finding was that subjects exhibited little
transfer of the concepts from the training problems to the target problems except in those cases
where the target problems were essentially identical in solution procedure to the examples. Reed
et al. (1985) concluded that subjects were relying on a syntactic approach to the problems. This
suggests that in general the subjects did not understand the goals and methods being
demonstrated in the problems but rather had learned a series of operations for solving the
problems.

We might suppose that if students were exposed to training examples that used different
solution procedures, they would be more likely to learn the underlying subgoals and methods
illustrated by the examples. This might happen because they would attempt to determine the
similarities (such as the goal structure) between different series of operations which produce a
value for the same final goal. A resolution process could lead to the identification of subgoals,
methods, and generalizations of the methods (Anderson, 1983; VanLehn, 1985). However, if the
series of operations from example to example are too different, students will fail to identify
subgoals or to isolate a series of operations as a method (VanLehn, 1985). Each example will be
perceived as unique.

Overview of Current Studies

We suspect that the difficulty students have in grasping subgoals and methods is due to the
default reasoning of students who are still relatively unsophisticated in a particular domain. By
default, students focus on superficial features of problems and the operations used to achieve an
end goal because the features and operations are easier to isolate than the underlying subgoals
and methods (Larkin, McDermott, Simon, & Simon, 1980; Schoenfeld & Herrmann, 1982).
Students have a great deal of experience with the real world objects such as decks of cards and
blocks of wood which populate the world of quantitative problems. Students in quantitative
courses are also quite experienced with mathematical operations such as multiplication and
addition as well as somewhat more “compiled” operations such as calculating means. Thus, it is
not surprising that these students would tend to focus their attention and organize their problem
solving skills around the mathematical operations with which they are most familiar (Greeno,
Riley, & Gelman, 1984; Hayes, Waterman, & Robinson, 1977). We would like to begin to
investigate what qualities of examples can help students go beyond their default focus and help
them isolate subgoals and methods in a particular domain.

We solicited paid volunteers from three upper-level probability courses at the University of
Michigan. The courses are quite similar for the first third of the semester. All students learn
about counting rules (e.g., ordered and unordered sampling) and are then introduced to the notion
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of a random variable. Then students learn about certain basic discrete probability distributions
such as the binomial, Poisson, and geometric. The courses introduce the binomial distribution
first, followed by the Poisson distribution. Students participated in the present experiments, which
dealt with the Poisson distribution, after learning the binomial distribution but before learning the
Poisson distribution.

The Poisson Distribution and Some Examples

The Poisson distribution is often used to approximate binomial probabilities for events that
occur in time or space with some small probability p. The Poisson equation is:

P(X=x)=[e- 7t(7\)1‘]4’::!. It can be used to calculate probabilities for various values of X, Then the
predicted frequencies of various values of X can be calculated by multiplying the probabilities by
the total number of events. These steps are illustrated in Figure 1.

The example in Figure 1 deals with an event occurring randomly in time. The Poisson
distribution is also used to model events occurring randomly in space. For example, one could
reasonably fit a Poisson distribution to the number of fossils found in each section of a partitioned
quarry. This problem is presented in Figure 2. It can be solved by the same procedure as the
first problem.

It seems intuitively clear that a person could learn to solve problems of this type by
memorizing the series of operations without understanding the meaning of the output from the
operations. Nevertheless, the two examples do differ on the surface: one is about events in time
and the other is about events in space. Thus, it is possible that students who study these
examples may notice that the units in the operations are different and they may be induced to
consider how the units were derived and to form a generaiization about the operations. On the
other hand, subgoals and methods can be identified more directly by comparing procedural
differences in problems. Thus it is debatable whether superficial differences are sufficient to
induce students to recognize these “deeper” aspects.

The subgoals and methods (in parentheses) for the two problems described above could be
listed as follows:

1) find A (calculate X as a weighted average)
2) find the expected probabilities for each X (plug X=x into the Poisson equation)

3) find the expected frequencies for each X (multiply each P(X=x) by the total observed
frequency)
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A physicist observed a radioactive substance during 2608 time intervals (each 7.5 seconds long).
She recorded the number of particles reaching a geiger counter for each period. Let x be the
number of particles observed in each time period. Fit a Poisson distribution to x, that is, give the
expected frequencies for the different values of x based on the Poisson model.

Number of Particles Observed Observed Frequency

57
203
383
525
532
408
273
139

45

27

10 10
11 or more 6
Total 2608

QW10 e W= O

Solution:

EX)=[0(57)+1(203)+2(383)+ 3(525)+ 4(532) + 5(408)+6(273)+ 7(139)+
8(45)+9(27)+10(10)+11(6))/2608 = 10092/2608 = 3.87 = A

=average number of particles that reached geiger counter each period

3

PX=x) = (e~ >87)3.87%Vx! = [(021)(3.87) Vx!

Fitted Poisson Distribution:

% Expected Frequency
0 .021 x 2608 = 55
1 .081 x 2608 = 211
2 .157 x 2608 = 409
3 .203 x 2608 = 529
4 .196 x 2608 = 511
5 .152 x 2608 = 396
6 .098 x 2608 = 256
7 .054 x 2608 = 141
8 .026 x 2608 = 68
9 .0113 x 2608 = 29
10 .0044 x 2608 = 11
11 or more .00153 x 2608 = 4

Figure 1: Example problem for event occurring in time.

39



Procedural Variety

A horizontal quarry surface was divided into 30 squares about 1 meter on a side. In each square
the number of specimens of the extinct mammal Ditolestes motissimus was counted. The results
are given in the table below. Fit a Poisson distribution to x, that is, give the expected frequencies
for the different values of x based on the Poisson model.

Number of Specimens per Square Observed Frequency
0 16
1 9
2 3
3 1
4 or more 1
Total 30

Figure 2: Example problem for event occurring in space.

Experiment 1 explores how well students learn methods and subgoals from examples that
differ only in the superficial ways shown above. If students studied problems like those above,
they should be able to solve other superficially different problems that involve the same set of
operations. It is less clear would happen if they tried to solve problems that had a different
subgoal order and used modified methods. Consider the problem below.

Suppose you were making a batch of raisin cookies and you did not want more than one cookie out
of 100 to be without a raisin. How many raisins will a cookie contain on the average in order to
achieve this result? Use the Poisson distribution to find your answer,

Solution (not presented to subject):

PX=0) = .01 = [ Na%y0!

01 = e_k
n(.01) = Ine™ M
—4.6 = =)

4.6 = A\ = average number of raisins per cookie

Figure 3: Cookie problem.

This “cookie” problem literally looks different than the prior ones. In this problem the
student must realize that he or she is provided with the following piece of information: P(X=0) =
.01 (i.e., only one cookie out of 100 should have zero raisins). He or she must also realize that the
goal is to find A—the expected value of the random variable which in this case is the average
number of raisins that a cookie receives. If they recognize these two facts then the problem
simply becomes a matter of inserting P(X=0) = .01 into the Poisson equation and solving for A.
It is unclear, however, how these realizations would follow from the types of practice problems to
which the students have thus far been exposed. Students would only have learned a series of
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operations. They would not have learned that the calculation of A is a subgoal which can be
carried out by several different methods depending on the givens. One way to calculate A is to
find a weighted average as was done in the example problems. Another way is to find values for
the other unknown in the Poisson equation (i.e., a value for some P(X=x)) and then solve for A.

The subgoals and methods for this problem are listed below:
1) find the known value for some P(X=x) (divide 1 by 100 to get P(X=0))

2) find A (plug P(X=0) into Poisson equation and solve for \)

Consider another problem:

Suppose you took a random sample of 500 people and found out their birthdays. A “success” is
recorded each time a person’s birthday turns out to be January 1st. Assume there are 365 days
in a year, each equally likely to be a randomly chosen person’s birthday. Fit a Poisson

distribution to x (the number of people born on January 1st) and find the predicted likelihood that
exactly 3 people from the sample are born on January 1st.

Solution (not presented to subject):
A = 500/365 = 1.37 = average number of people born on any given day

Px=3) = (¢~ ¥") 137331

[(.254)(2.57))/6

.109

=likelihood of exactly three people being born on

January 1st (or any other given day)

Figure 4: Birthday problem.

The birthday problem requires that the student realize that A can be calculated simply by
dividing the number of days by the number of people (as opposed to being calculated as a weighted
average from an observed frequency table). It also requires that the subject realize he or she was
being asked to solve only for P(X=23) and not to produce an expected frequency table.

The subgoals and methods for this problem are:

1) find A (divide the number of events [birthdays] by the number of slots [days of the year])

2) find P(X=3) (plug X=3 into the Poisson equation)

Both the cookie and birthday problems have different or modified methods compared to the
training examples, yet they still have either the same subgoals (in a different order) or fewer
subgoals. Students’ performance on the cookie and birthday problems should indicate whether
they isolated subgoals and methods during training or whether they simply learned a series of
operations to achieve the single goal of producing an expected frequency table.

41



Procedural Variety

Experiment 1
Method

Subjects. Seventy-one students from three probability classes were recruited and were paid
$7 for their participation.

Materials and Procedure. Subjects were given a booklet to study. The cover page contained
a description of the relationship between the binomial and Poisson distributions and provided the
Poisson equation. The next four pages contained four worked out Poisson distribution problems
isomorphic to the radioactive particle and quarry problems. Subjects were told to study the
problems carefully since after studying them they would be asked to solve three problems. They
were also told they could refer back to the cover page but not to the examples. This was done to
increase the likelihood that subjects would pay attention to the examples and how they were
solved.

Subjects were randomly divided into two groups. The SAME group studied four examples
which dealt with the same class of events: either four space problems or four time problems. The
DIFFERENT group received problems from both classes of events: two space problems and two
time problems. All problems were solved using the same procedure, which was identical to the
radioactive particle and quarry problems discussed above. The example problems were picked
from a pool of four space and four time problems. There was no effect in subjects’ performance on
the target problems as a result of the specific space or time probiems a subject received, and all
reported results are collapsed over this factor.

After studying the examples subjects worked on the three target problems. The first target
problem is labeled the “Detroit Tiger” problem and is presented below. This problem will be
called a Near Transfer problem since it embodies the same subgoals (and same subgoal order) and
methods as the training examples.

In a 162-game baseball season, the Detroit Tiger infield made a total of 107 errors. The table
below gives the number of games in which x errors were made. Fit a Poisson distribution to x,
that is, give the expected frequencies for the different values of x based on the Poisson model.

Number of Errors x made in a game Observed Frequency
0 85
1 52
2 20
3 or more 5
Total 162

Figure 5: Detroit Tiger Problem

The second and third target problems were the cookie and birthday problems, respectively.
They will be referred to as Far Transfer problems because they involve different subgoal orders
and methods than the training examples. The order of the target problems was the same for all
subjects. Subjects worked at their own pace for the entire experiment. In general, subjects took
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about 35 minutes to complete the experiment. Subjects were asked to show all their work but
could use a calculator for the basic arithmetic. The solution and error frequencies were analysed

using the likelihood ratio chi-square test {92) which is a test of equality of proportions between
rows or columns.

Results

Subjects’ answers to the transfer problems were first scored as correct/incorrect. Both
groups did well on the Detroit Tiger (Near Transfer) problem: 91% and 94% correct for the Same
and Different groups, respectively. On the cookie problem (Far Transfer) the DIFFERENT group

did somewhat better than the SAME group: 42% versus 23%, G (1) = 2.9,p <.09. The
DIFFERENT group also did better on the birthday problem (Far Transfer), 33% versus 23%, but

this difference did not approach conventional significance levels, G (1) = .97, p > .3. Overall,
32% of the subjects solved the cookie problem and 28% solved the birthday problem.

Subjects errors were analysed separately for the cookie and birthday problems. The first
type of error for the cookie problem (called ULAMBDA in Table 1) is a failure to recognize the
goal of the problem, to solve for A. That is, the subject does not realize that the average number
of raisins per cookie is A. The second error type (PX0) is a failure to recognize that P(X=0) =
is provided in the problem. The third category (FREQ1) is whether a subject attempted to make
up a frequency table as a way of solving the problem (i.e., they generated hypothetical data). If a
subject made up a frequency table, this would indicate that he or she was most likely trying to
make the target problem appear like the examples in order to use the familiar procedure. This
approach is an error since there is no way to create a useful frequency table with the information
given.

There are also three error categories for the birthday problem. The first category
(SLAMBDA) is a failure to recognize that A is the average number of people that are born on any
given day. This value is simply the number of people (500) divided by the number of days in the
year. (A priori it seemed unlikely that a subject would understand that A\ would be the average
number of people born on a given day but fail to realize that this value would be 500/365. This
assumption was supported by the protocols.) The second category (PX3) is a failure to realize that
the problem’s goal was to solve for P(X=23) rather than to create a frequency table or to find only
the expected value of X. The third category (FREQZ2) is identical to the third category for the
cookie problem:; it counts how often subjects tried to make up a frequency table as an aid to
solving the problem. Again, this approach will not help to solve the problem.

Sixty-eight percent (48 out of 71) of the subjects failed to solve the cookie problem and 72%
(51 out of 71) failed to solve the birthday problem. Table 1 indicates the error types and their
frequencies for the two far transfer problems. It also presents the frequencies collapsed across the
group dimension since analyses indicated there were no differences between the groups (for
subjects who got a problem wrong) with respect to the frequency of different error types.
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Table 1

Percentage of Subjects Who Made Particular Types of Errors (Experiment 1)

Group
Transfer Problem Error Type
SAME DIFFERENT Total
Cookie Problem
n=27 n=21 n=48
ULAMBDA 85 (23) 67 (14) 77(37)
PX1 96 (26) 86 (18) 92(44)
FREQ1 41 (11) 62 (13) 50(24)
Birthday Problem
n=27 n=24 n=51
SLAMBDA 96 (26) 100 (24) 98(50)
PX3 67 (18) 62 (15) 65(33)
FREQ2 15 (4) 21 (5) 18(9)

Note. Frequencies are given in parentheses. Percentages are based on the number of subjects
who made a particular error divided by the number of subjects in each group who got the problem
wrong (given at the top of each column for each of the transfer problems), not the total of number
of subjects in the group.

Discussion

It was intuitively plausible to expect both groups of subjects to solve the Detroit Tiger
problem equally well since it used the same series of operations as the examples. However, both
groups were expected to do equally poorly on the far transfer problems because we suspected that
the manipulation of SAME versus superficially DIFFERENT training examples to be unrelated to
whether or not subjects learned the underlying subgoals and methods in the training examples.
These expectations were largely confirmed.

It seems clear that subjects who had difficulty with the far transfer problems had difficulty
because they had primarily learned a series of operations for solving problems of the training type
and had not learned the underlying subgoals or formed generalizations of the methods. Sixty-eight
percent of the subjects could not solve the cookie problem and for 92% of those subjects the reason
seemed to be that they did not realize that they were given a piece of useful information, namely
that P(X=0) = .01, and thus they could not figure out how to solve for A. In addition, the fact
that 77% of these unsuccessful subjects did not even realize they were solving for \ indicates that
they did not recognize solving for A as a subgoal, but rather were looking to apply the operations
from the examples. This claim is further supported by the fact that half of the subjects tried to
make up an observed frequency table from which to calculate \. However, most of these subjects
still went on to calculate an expected frequency table. This suggests that they did not make up
the observed frequency table to calculate A per se, but rather the table was created to help them
apply the stereotyped operations so they could reach the only goal they seemed to know: to create
an expected frequency table.

Experiment 2
Experiment 1 indicated that manipulations of superficial problem characteristics were not
sufficient to induce subjects to isolate subgoals and methods. In Experiment 2 we manipulated the

subgoals and methods used in the training problems.
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Subjects were given four problems to study. The ONE-PROCEDURE group was just like
the DIFFERENT group in Experiment 1: the problems used the same procedure but were
different superficially. The TWO-PROCEDURE group received two problems using the same
procedure as the Detroit Tiger problem and two problems using the same procedure as the cookie
problem. It would not be surprising if the TWO-PROCEDURE subjects could solve the cookie
problem successfully. However, the more interesting issue is whether they learned anything more
than two sets of operations for solving two types of problems. That is, did they simply learn that
frequency table problems require one approach and non-frequency table problems require a
different approach (i.e., they learned a superficial selection rule and did not learn subgoals or
methods), or did they learn that problems can have different goals, subgoal orders, and methods
for obtaining those subgoals?

Subjects then attempted to solve two instances of a new problem type (the birthday
problem and one isomorphic to it, the “football” problem —not illustrated here) in addition to
problems whose solution procedures were already familiar to them (i.e., the Detroit Tiger problem
and/or the cookie problem). Subjects’ answers and errors were examined for indications that they
were simply trying to apply one of two series of operations or whether they had recognized that
particular subgoals existed (finding A, then finding P(X =x)) and that new methods would be
needed.

Method

Subjects. Fifty students from a probability class were recruited and paid $7 for their
participation.

Materials and Procedure. The procedure was identical to the one in Experiment 1. The
only difference was the materials. There were three groups of subjects in this experiment. The
TIGER group studied four training problems that used the same solution procedure as the Detroit
Tiger target problem. The COOKIE group studied four training problems which used the same
solution procedure as the cookie target problem. The TWO-PROCEDURE group studied two
problems which used the Detroit Tiger problem procedure and two problems which used the cookie
problem procedure. All subjects then received four target problems to solve: the Detroit Tiger
prohlem, the cookie problem, the birthday problem, and the football problem.

Results and Discussion

For some of the analyses reported below, the comparisons are between the three groups:
TIGER, COOKIE, and TWO-PROCEDURE. For other analyses the TIGER and COOKIE groups
are collapsed into a ONE-PROCEDURE group and thus the comparison will be between ONE-
PROCEDURE and TWO-PROCEDURE subjects. In addition, the terms “near” and “far” transfer
can not be used as they were in Experiment 1 since, for the COOKIE group, the cookie problem is
now a near transfer problem and the Detroit Tiger problem is a far transfer problem. Thus, the
target problems will be referred to by their names. Table 2 summarizes the type of transfer
problem the target problems represent for each group.

45



Procedural Variety

Table 2

Degree of Transfer Required in Target Problems as a Function of Subject Group

Group Near Transfer: Far Transfer:

TIGER Detroit Tiger cookie, birthday, football
COOKIE cookie Detroit Tiger, birthday, football
TWO-PROCEDURE Detroit Tiger, cookie birthday, football

While all of the TIGER and TWO-PROCEDURE subjects solved the Detroit Tiger problem

correctly, only 13% of the COOKIE subjects did. This difference is, of course, significant, g2{2) =
45.5, p < .0001. Similarly, while most of the COOKIE and TWO-PROCEDURE subjects solved
the cookie problem correctly (87% and 86%, respectively), a much lower percentage (31%) of the

TIGER subjects did, 92(2) = 13.9, p < .001. There is no difference in solution rates among the
three groups for the birthday or football problems which are far transfer problems for all subjects.
Overall, 52% of the subjects solved the birthday problem and 50% solved the football problem. It
should be noted that the 52% solution rate for the birthday problem is significantly greater than
the 28% solution rate for that problem for subjects in Experiment 1,z = 2.7, p < .007.

Of the nine TIGER subjects who failed to solve the cookie problem, 78% failed to realize that
the goal was to solve for A, 100% did not realize that P(X=0) = .01 was provided in the problem,
and 33% tried to make up a frequency table as an aid to solve the problem. These frequencies are
similar to the ones obtained in Experiment 1.

Of the 13 COOKIE subjects who failed to solve the Detroit Tiger problem, 12 of them tried
to calculate A by taking an observed frequency for some X and plugging that into the Poisson
equation and solving for A. For those subjects who chose X =0, they would get an equation such

as PX=0) = 85/162 = [ ™")/0!. This reduces to .52 = e\, which yields A = .65. Given
that the A generated by the frequency table method is .66, this “cookie” approach works quite
well, but in other situations it could be quite poor in comparison with the frequency table method
(since it would ignore available frequency data). In addition, for the 12 subjects who took this
“cookie” approach, eight of them stopped after solving for A and did not generate the predicted
frequency table. This suggests that they were performing a series of operations rather than
solving for the goal of the problem. Four of the other subjects used the observed frequencies of
each X in turn to solve for A. It becomes quite messy to solve for A when an X other than 0 is
used and these subjects would set up the equations and then stop. The remaining subject who got
the problem wrong calculated A using the frequency table approach, but did not go on to generate
predicted frequencies for the various values of X.

The types of errors made by subjects who were unsuccessful in solving the birthday or the
football problems are presented in Table 3. The errors are presented as a function of whether
subjects received examples illustrating one procedure or two (i.e., the TIGER and COOKIE groups
are collapsed into the ONE-PROCEDURE group).
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Table 3

Percentage of Subjects Who Made Particular Types of Errors (Experiment 2)

Group
Transfer Problem Error Type Total
One Two
Procedure Procedure
Birthday
n=14 n=10 n=24
SLAMBDA 93 (13) 100 (10) 96 (23)
PX3 50 (7) 10 (1) 33 (8)
FREQ 7(1) 20 (2) 12 (3)
Football
n=14 n=11 n=25
SLAMBDA 93 (13) 100 (11) 96 (24)
PX1 43 (6) 9(1) 28 (7)
FREQ 14 (2) 0 (0) 8 (2)

Note. Frequencies are given in parentheses. Percentages are based on the number of subjects
who made a particular error divided by the number of subjects in each group who got the problem
wrong (given at the top of each column for each of the transfer problems), not the total of number
of subjects in the group.

Both ONE-PROCEDURE and TWO-PROCEDURE subjects solved the birthday and football
problems about 50% of the time. These are far transfer problems for both groups. We had
expected the TWO-PROCEDURE subjects to do better since we hypothesized they would have
been likely to isolate subgoals such as A and P(X=x) and generalize the methods for finding them.
Nevertheless, one difference did emerge in both problems. Of the ONE-PROCEDURE subjects
who failed to solve the birthday problem, only 50% realized they were to solve for P(X =3) while

90% of the TWO-PROCEDURE subjects realized this. This difference is significant, 92(1) = 4.64,
p < .04. Similarly, 50% of the ONE-PROCEDURE subjects realized they were to solve for
P(X=1) in the football problem while 91% of the TWO-PROCEDURE subjects realized this.

Again, the diiference is significant, _92(1) = 3.82, p = .05. This result suggests that TWO-
PROCEDURE subjects may have at least isolated subgoals, but were unable to apply the correct
method to the birthday and football problems. Most subjects did calculate A in the birthday and
football problems, but they tended to use nonsensical values such as 365/500 or 3/500 for the
birthday problem. TWO-PROCEDURE subjects did not seem to learn anything about examining A
for its reasonableness, yet they did adapt to the new goal constraint (i.e., finding only a particular
P(X=x)) while ONE-PROCEDURE subjects did not.

General Discussion
The difficulties that subjects in both experiments had with the far transfer problems suggest
that procedural variety plus explicit pointing out of subgoals and methods may be required to
teach students how to solve problems which have different subgoal orders and modified methods

compared to training problems.

Procedural variety may mean that students should be exposed to problems that provide
different givens, have different appearances, and/or which require solving for different unknowns.
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These variations would presumably induce students to isolate different methods for achieving
certain subgoals and to realize that there can be different goals and subgoals for solving problems
in the same domain (Owen & Sweller, 1985). This induction could also be facilitated by presenting
examples which give the data in different forms (such as giving A directly rather than having it
calculated from a table). The need for having students see examples which solve for different
unknowns is suggested by the large number of subjects in Experiment 1 who failed to realize that
they were solving for something new, namely A, in the cookie problem. The importance of
presenting similar information in different forms (e.g., tables versus text, ready-to-use values
versus “low-level” values which require additional calculations before they can be used in
equations) seems reasonable in light of the fact that A was a quite simple thing to calculate in the
birthday problem, yet students failed to see it or to calculate it correctly. In fact, students in
Experiment 1 often used the more laborious method of making up a frequency table in order to
(incorrectly) calculate . This problem is similar to the error Reed et al.’s (1985, Experiment 4)
subjects made when they tried to use the more complex solution methods from the training
examples on the simpler target problems. Both our results and Reed et al.’s indicate that students
were learning series of operations rather than, or more easily than, subgoals and methods for
solving problems.

We have tried to suggest that an important component of the “power” of examples is the
variation that is provided in a sequence of examples. Winston’s (1973) arch perceiver could only
learn concepts when the examples it was presented with were given in a particular order.
Negative instances of a concept were just as important (and sometimes more important) than
positive instances. Failure-driven memory is an important component of Schank’s (1982) model of
learning. So too here, negative examples (in the form of training problems that have different
subgoals and methods) are important. If a student sees several problems that are dealt with in
different ways, he or she may be more likely to isolate the subgoals and methods rather than
viewing the problems as a series of operations which ultimately produce some output. He or she
may also form generalizations of methods. However, the student may need guidance to help him
or her focus on the subgoals and methods, at least initially (Lewis & Anderson, 1985). We are
currently conducting a transfer experiment using materials which provide subjects with
explanatory information highlighting the subgoals and methods that are present in each training
example.

It may be possible to develop a methodology for constructing examples for textbooks in
quantitative domains. This methodology would involve first identifying the subgoals and methods
that students need to learn (Kieras, in press; Kieras & Bovair, 1986). Then example problems
and explanatory materials which highlight these subgoals and methods can be constructed. The
careful procedural variation might allow students to see beyond the superficial features of
examples.
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