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Abstract

Background: Clinical trials are increasingly using Bayesian methods for their design and 

analysis. Inference in Bayesian trials typically uses simulation-based approaches such as Markov 
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Chain Monte Carlo methods. Markov Chain Monte Carlo has high computational cost and can 

be complex to implement. The Integrated Nested Laplace Approximations algorithm provides 

approximate Bayesian inference without the need for computationally complex simulations, 

making it more efficient than Markov Chain Monte Carlo. The practical properties of Integrated 

Nested Laplace Approximations compared to Markov Chain Monte Carlo have not been 

considered for clinical trials. Using data from a published clinical trial, we aim to investigate 

whether Integrated Nested Laplace Approximations is a feasible and accurate alternative to 

Markov Chain Monte Carlo and provide practical guidance for trialists interested in Bayesian 

trial design.

Methods: Data from an international Bayesian multi-platform adaptive trial that compared 

therapeutic-dose anticoagulation with heparin to usual care in non-critically ill patients 

hospitalized for COVID-19 were used to fit Bayesian hierarchical generalized mixed models. 

Integrated Nested Laplace Approximations was compared to two Markov Chain Monte Carlo 

algorithms, implemented in the software JAGS and stan, using packages available in the statistical 

software R. Seven outcomes were analysed: organ-support free days (an ordinal outcome), five 

binary outcomes related to survival and length of hospital stay, and a time-to-event outcome. 

The posterior distributions for the treatment and sex effects and the variances for the hierarchical 

effects of age, site and time period were obtained. We summarized these posteriors by calculating 

the mean, standard deviations and the 95% equitailed credible intervals and presenting the results 

graphically. The computation time for each algorithm was recorded.

Results: The average overlap of the 95% credible interval for the treatment and sex effects 

estimated using Integrated Nested Laplace Approximations was 96% and 97.6% compared with 

stan, respectively. The graphical posterior densities for these effects overlapped for all three 

algorithms. The posterior mean for the variance of the hierarchical effects of age, site and time 

estimated using Integrated Nested Laplace Approximations are within the 95% credible interval 

estimated using Markov Chain Monte Carlo but the average overlap of the credible interval 

is lower, 77%, 85.6% and 91.3%, respectively, for Integrated Nested Laplace Approximations 

compared to stan. Integrated Nested Laplace Approximations and stan were easily implemented in 

clear, well-established packages in R, while JAGS required the direct specification of the model. 

Integrated Nested Laplace Approximations was between 85 and 269 times faster than stan and 26 

and 1852 times faster than JAGS.

Conclusion: Integrated Nested Laplace Approximations could reduce the computational 

complexity of Bayesian analysis in clinical trials as it is easy to implement in R, substantially 

faster than Markov Chain Monte Carlo methods implemented in JAGS and stan, and provides 

near identical approximations to the posterior distributions for the treatment effect. Integrated 

Nested Laplace Approximations was less accurate when estimating the posterior distribution for 

the variance of hierarchical effects, particularly for the proportional odds model, and future work 

should determine if the Integrated Nested Laplace Approximations algorithm can be adjusted to 

improve this estimation.

Keywords

Bayesian clinical trial analysis; proportional odds model; survival analysis; logistic regression; 
Integrated Nested Laplace Approximations; Markov chain Monte Carlo; JAGS; stan
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Introduction

Bayesian methods offer a framework for statistical inference1 and are increasingly employed 

in clinical trials.2–6 Bayesian methods have been used for adaptive trials,7 including 

for master protocol designs,8,9 adaptive randomization,10 sample size adjustment,11 and 

interim monitoring and stopping.12,13 Bayesian methods also allow historical and external 

information, that is, from previous or concurrent trials, to be incorporated into trial 

analysis.14 They can also easily integrate different levels of hierarchy to account for 

similarities between patients, that is, if patients are recruited at different hospitals within 

different countries. Finally, Bayesian analyses calculate the probability of specific events,15 

which can provide an intuitive interpretation of results.16–20

However, Bayesian methods are often computationally complex since the quantity of 

interest, the posterior distribution for the treatment effect, cannot be directly computed.21 

This requires approximations, usually based on simulation approaches known as Monte 

Carlo Markov Chain (MCMC) methods.22 To exploit the theory that MCMC methods 

are asymptotically exact, they require extensive simulations, especially when the proposed 

analyses are complicated.23 Furthermore, they also often require knowledge of specialized 

software.24–26

A highly efficient alternative to MCMC, which does not use simulation, is the Integrated 

Nested Laplace Approximations (INLA) algorithm.27 The accuracy of INLA has been 

explored using simulation studies, demonstrating that INLA is computationally efficient 

and accurate for generalized linear mixed models as well as b-spline nonparametric 

regression.28,29 INLA has also been shown to be valid in complex spatial models.30,31 

However, there has been no comparison of INLA and MCMC methods using data from a 

clinical trial.

Thus, we aimed to determine whether INLA is an appropriate alternative to MCMC methods 

for clinical trials by analysing data from a Bayesian multi-platform adaptive trial that 

investigated if treatment with therapeutic-dose heparin improves a composite outcome 

of organ failure and death among hospitalized moderately ill COVID-19 patients.32 We 

compared INLA and two MCMC algorithms, a Gibbs sampler33 and Hamiltonian Monte 

Carlo,34 based on their accuracy, computational efficiency and ease of implementation. We 

evaluated these aspects by reproducing the analysis from the trial using three types of 

Bayesian hierarchical generalized models; ordinal proportional odds models, binary logistic 

regression models, and Cox proportional hazard models. We adjusted these models for key 

covariates including site and age. This article introduces the data from the trial and the 

Bayesian methods used for analysis. It then presents the results of our comparison and 

concludes that INLA offers an efficient, accurate alternative to MCMC in clinical trials.

Methods

The ATTACC and ACTIV-4a trials

We analysed data from an international, adaptive, multi-platform, randomized, controlled 

trial that compared the effect of therapeutic-dose anticoagulation, either unfractionated 
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or low-molecular-weight heparin, to usual-care pharmacologic thromboprophylaxis in 

patients hospitalized for COVID-19.32 Three clinical trial platforms contributed data to the 

original publication,32 (Antithrombotic Therapy to Ameliorate Complications of COVID-19 

(ATTACC), Accelerating COVID-19 Therapeutic Interventions and Vaccines 4 ACUTE 

(ACTIV-4A) and Randomized, Embedded, Multi-factorial, Adaptive Platform Trial for 

Community-Acquired Pneumonia (REMAP-CAP)). Our study restricts to data from the 

ATTACC and ACTIV-4A platforms as data from REMAP-CAP were not available.

Adult patients were enrolled in the trial if they were hospitalized with COVID-19 and 

not receiving intensive-care level organ support at the time of enrolment. Our initial data 

set included 2146 patients. We excluded participants if they withdrew from screening 

and randomization, or if their study record was missing values for age, site, date of 

randomization, sex, or treatment, leaving 1914 records for analysis. A detailed description 

of the trial design and data collection process including the inclusion/exclusion criteria is 

provided in the primary trial publication.32

Outcomes in the ATTACC/ACTIV-4A trials

We analysed seven outcomes using definitions and models from the trial protocol. The 

primary outcome was organ support-free days, a composite ordinal outcome that includes 

in-hospital death and the number of days free of cardiovascular or respiratory organ support. 

Ordinal values ranged from between −1 and 22. Patients who died during their index 

hospitalization or before day 21 were assigned the score of −1. Patients who survived and 

did not receive any organ support during hospitalization were assigned the outcome 22. 

Otherwise, organ support-free days is calculated as 21 minus the number of days on which 

the patient required organ support up to day 21 postrandomization. Figure 1 displays the 

organ support-free days distribution.

We also considered six secondary outcomes, five binary outcomes, and one time-to-event 

outcome. The binary outcomes, defined in the trial protocol, were survival to hospital 

discharge, survival without receipt of organ support, survival without receipt of invasive 

mechanical ventilation, survival without mechanical respiratory support, and whether the 

patient had a major thrombotic event or death.32 The time-to-event outcome was the length 

of hospital stay, defined as the difference between the date the patients were discharged from 

the hospital and the date that the patients were randomized into the trial. Patients who died 

during hospitalization were censored at the date they died. Figure 2 shows the distribution of 

the length of hospital stay.

Bayesian modelling

We used generalized linear models with different error functions for each outcome type. 

For organ support-free days, we used a cumulative proportional odds model. For the binary 

outcomes, we used binary logistic regression and the time-to-event outcome was modelled 

using a Cox proportional hazards model. We adjusted all models for age, ⩽ 39, 40 – 49, 50 

– 59, 60 – 69, 70 – 79 and ⩾80, sex, trial site, and enrolment period, in 2-week intervals.32 

Bayesian hierarchical models were used for the age, site, and enrolment period effects.35
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Primary outcome model: organ support free days.—Organ support-free days 

was modelled using a cumulative proportional odds model.36 For y = − 1, … , 22 the 

probability that organ support-free days for patients i = 1, … , 1914 is less than or equal 

to y, πi
y = P Y ⩽ y , is

log πi
y

1 − πi
y = αy + β1sexi + β2treatmenti

+ Usite = sitei + V age = agei + W time = timei,

(1)

where αy relates to the cumulative probability of observing each category for organ 

support-free days, β1 is the effect of sex and β2 is the treatment effect of the 

therapeutic anticoagulation compared to usual care. We assume that Usite ∼ N 0, σsite
2

for site = 1, … , 83, V age ∼ N 0, σage
2  for age = 1, … , 6  and W time ∼ N 0, σtime

2  for 

time = 1, … , 21.

Organ-support or ventilator-free days are commonly used in critical care trials37–39 as they 

combine mortality and the time survivors receive organ support or ventilation. This outcome 

provides higher statistical power to detect a treatment effect compared to mortality alone.40 

While many methods have been proposed to analyse this outcome, a standard method is not 

available.41 Thus, used the proportional odds model to mimic the trial analysis.32

Secondary outcomes.—The binary secondary outcomes are analysed with logistic 

regression such that the probability of experiencing the event of interest for patient 

i, i = 1, … , 1914, πi = P Zi = 1 , is

log πi
1 − πi

= δ + γ1sexi + γ2treatmenti

+ Usite = sitei + V age = agei + W time = timei

(2)

where δ is related to the baseline probability of the event, γ1 and γ2 are the log-odds ratios 

of being female and receiving therapeutic anticoagulation, respectively. The distributions for 

Usite, V age and W time are normally distributed.

Finally, the length of hospital stay was modelled using a Cox proportional hazard 

model.42 Let λi t  be the hazard of leaving hospital for patient i = 1, … , 1914. The Cox 

proportional hazard model can be written as

λi(t) = λ0(t)eθ1sexi + θ2treatmenti + Usite = sitei + V age = agei + W time = timei

(3)

where λ0 t  is the baseline hazard rate, θ1 and θ2 are the log hazard ratios for the sex and 

treatment effects, and Usite, V age and W time are normally distributed.
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Defining the prior distributions.—Bayesian inference represents parameter uncertainty 

using probability distributions.43 To achieve this, the uncertainty in the parameters before 

observing the data must be encoded in a prior distribution,44 which is then updated 

by the data to determine the posterior distribution. The posterior distribution provides a 

complete summary of all the parameter information and is proportional to the product of the 

likelihood and the prior distribution. Once the posterior distribution is available, it can be 

summarized by, for example, calculating the posterior mean and 95% credible intervals (CI).

As in the original publication, we specified minimally informative prior distributions for 

each parameter to minimize their impact on the results.44 We used normal priors with mean 

zero and precision 0.1 for the sex and treatment effects and the intercept terms for the 

proportional odds model and logistic regression models, except for the proportional odds 

model in INLA. In INLA, these intercept terms are reparameterized allowing a Dirichlet 

prior distribution with scale parameter 3 to be used. For the variance of the hierarchical 

effects, σsite
2 , σage

2  and σtime
2 , we used half-t prior distributions with 3 degrees of freedom and a 

scale parameter of 2.5.45

Practical Bayesian inference

Except in a small number of cases, which are not applicable for the proposed analysis, it 

is not possible to obtain the posterior distribution analytically,46,47 and it must be must be 

approximated. In this article, we compare two MCMC algorithms and the INLA algorithm 

for obtaining these approximations.

Monte Carlo Markov chain methods.—MCMC methods are a class of algorithms 

that simulate from probability distributions in settings where samples cannot be easily 

drawn.48 For practical Bayesian analysis two MCMC methods are most commonly used,49 

the Metropolis-Hastings algorithm combined with Gibbs sampling (Metropolis-Hastings 

within Gibbs) and Hamiltonian Monte Carlo. To facilitate the use of MCMC methods, a 

range of different software has been developed.24–26,50,51

Gibbs sampling simulates from multivariate distributions by simulating each parameter from 

a univariate distribution conditional on the values of the other parameters.33 In Bayesian 

analysis, the posterior distribution is not known so Gibbs sampling simulates from a 

distribution that approximates the posterior distribution, known as a proposal distribution. 

The ‘proposed’ parameter values are then either rejected or accepted based on the relative 

‘likelihood’† of the current parameter values and the proposed parameter values. This is 

the Metropolis-Hastings step, which draws simulations from an unknown distribution.53 The 

Metropolis-Hastings within Gibbs algorithm is fast when (a) the conditional distributions 

are easy to sample from and (b) the proposal distribution is close to the true posterior 

distribution. Thus, Metropolis-Hastings within Gibbs can encounter significant challenges in 

complex, hierarchical models.54

†The word likelihood is not used in the true statistical sense but the exact form the rejection step is outside the scope of this paper. For 
more information, please see.52
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Hamiltonian Monte Carlo is more efficient than Metropolis-Hastings within Gibbs for 

complex models.34 Hamiltonian Monte Carlo also uses the Metropolis-Hastings algorithm to 

reject proposed parameter simulations but it uses derivatives to generate ‘better’ parameter 

proposals for the posterior distribution.55 Essentially, Hamiltonian Monte Carlo identifies 

parameter values that are ‘far away’ from the current parameter value, which reduces 

the correlation between the successive simulations.56 This requires fewer simulations to 

approximate the posterior distribution but by requiring derivatives, Hamiltonian Monte Carlo 

can be slower for simple models where the proposal distribution for the Gibbs sampler 

provides a good approximation of the posterior distribution.57

Both these MCMC methods are asymptotically exact, that is, they simulate from the true 

posterior distribution with an infinite number of samples.58 Thus, to approach an infinite 

number of simulations, MCMC methods require a large number of simulations to be 

accurate.59

Integrated nested Laplace approximation.

INLA is a fast alternative to MCMC that approximates the posterior distributions for a class 

of models known as latent Gaussian models.47 All common outcome models in clinical 

trials, including generalized linear models and survival models, can be specified as latent 

Gaussian models, making INLA a suitable tool for analysis in clinical trials.60 Latent 

Gaussian models require a hierarchical structure with three layers. The highest level of the 

hierarchy should include a small number of parameters (ideally less than 6) but has very few 

restrictions on the distribution. The middle layer must then follow a Gaussian distribution 

conditional on the top layer parameters. Crucially, the parameters in this layer must also 

have a specific correlation structure that allows for efficient computation. Finally, the data 

are modelled in the bottom layer conditional on the model parameters and can have a 

wide range of error distributions.27 INLA uses a Laplace approximation to approximate the 

posterior distribution for the top layer parameters and then approximates the middle layer 

parameters at a grid of values from the posterior of the top layer parameters using another 

nested Laplace approximation. This process approximates the marginal distributions for all 

the parameters in the statistical model.27 In contrast to MCMC, INLA does not simulate 

from the posterior distribution. INLA simply a numerical approximation for the posterior, 

which is compututationally efficient but will always approximate the true distribution.

Implementing Bayesian analysis in practice.—We have implemented these 

algorithms using three popular Bayesian software tools. We selected these tools as they 

integrate with R.61 There are two widely used softwares for implementing Metropolis-

Hastings within Gibbs, BUGS24 and JAGS.25 We chose JAGS, implemented through the 

package R2jags,62 as it is actively maintained. R2jags is only an interface to run JAGS, 

meaning that the software JAGS was downloaded and installed separately. We implemented 

Hamiltonian Monte Carlo using the stan software26 through the brms63 package. stan was 

directly installed in R through the Rstan package. Finally, we implemented INLA using 

the INLA64 package, which does not require additional installations. However, the INLA 

package is not available on the CRAN repository and must be installed following the 

instructions at https://www.r-inla.org/download-install.
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To fit a Bayesian model in R2jags, the user must use the JAGS syntax to specify the 

likelihood for the data and the prior distributions. We also found that we frequently 

needed to specify a reasonable set of starting values for the Metropolis-Hastings within 

Gibbs algorithm. Survival models were also complex to fit in JAGS as the data had to be 

restructured to fit the model.65 In contrast, fitting Bayesian models using brms and INLA 

packages uses similar syntax to fitting a generalized linear model in the widely used glm 

function in R. Thus, the user can fit different types of models by specifying the ‘family’ 

of the model. This makes the syntax for brms and INLA very similar across our seven 

examples as the same covariates are used to adjust each models. Thus, compared to R2jags, 

brms andINLA were easier to implement. To support implementation of these methods, we 

provide our code in the Supplementary Material.

One key issue with the INLA package is that a maximum of 10 ordinal categories are 

permitted for the proportional odds model. Therefore, we regrouped the 24 organ-support 

free days categories into 10 categories in this comparison. Theoretically, this should not 

affect the value of the treatment effect but can affect the precision.66 To minimize the 

variation in the estimated treatment effect, we created separate categories for −1, in-hospital 

death, and 22, surviving to hospital discharge without receipt of organ support, and then 

combined the remaining 21 categories to create groups that were as even possible in terms of 

their number of patients.

Finally, to compare INLA to the MCMC algorithms, we simulated from the marginals 

estimated by INLA using the inla.posterior.sample function for the second layer parameters, 

for example, the treatment effect, and the inla.hyperpar.sample function for the top layer 

parameters, for example, the variances of the hierarchical effects.

Comparing the algorithms

To assess the alignment and feasibility of INLA compared to two MCMC methods, we 

obtained the posterior distributions for model parameters using our three algorithms for the 

seven outcomes of interest. For the MCMC methods, we undertook 12,000 simulations with 

four chains and a burn-in of 2000, thinned to a simulation size of 2000. We computed 

the posterior mean, standard deviation, and 95% equitailed CI for the treatment and sex 

effects and the hierarchical model variances. We also computed the deciles of the posterior 

distributions (see Supplementary Material). We plotted the posterior density of the treatment 

and sex effects and the hierarchical model variances and computed the posterior probability 

of a ‘positive’ effect of treatment, defined separately for each outcome. Finally, we recorded 

computation time. All analyses were performed in R version 4.1.3. As all methods are 

approximations, it is unknown which method is ‘accurate’ when differences occur. However, 

we consider stan to be the ‘true’ result due to its ability to model complicated distributions 

and its theoretical accuracy with many simulations.
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Results

Data summary

The baseline characteristics are summarized in the Supplementary Material. Approximately 

60% of patients were from the ATTACC platform and 40% from ACTIV-4A with 53.4% 

receiving therapeutic-dose anticoagulation, due to the response adaptive randomization. 

9.5% of patients who received therapeutic-dose anticoagulation died compared to 9.3% who 

received usual care. The proportion of males was 60.1%, as a greater proportion of men 

were hospitalized for COVID-19 globally, and the mean age was around 61.

Model results

Primary outcome. Table 1 shows the posterior mean, standard deviation, and 95% equitailed 

CI for the key parameters in the model for organ support-free days β1, β2, Usite, V age, W time . For 

the sex and treatment effects, the estimates of the posterior mean are similar for all three 

algorithms, with the JAGS estimate slightly higher than the stan and INLA estimates, with 

the same standard deviation. The 95% CI from stan and INLA are almost identical, with a 

wider interval for JAGS. Thus, INLA accurately estimated the posterior distribution for the 

fixed effects, while JAGS struggled with the proportional odds model. However, the estimate 

of the posterior mean for the variance of the effects for age, site and time do not match 

between INLA and the MCMC methods. This is confirmed in Figure 3 where the density 

curves of the posterior distributions overlap for the effects of sex and treatment but not for 

the variance of the age, site and time effects.

Secondary outcomes.—Table 1 shows the posterior mean, standard deviation, and 95% 

CI of the parameters of interest for the secondary outcomes. The posterior means and 

the 95% CI estimated using all three algorithms almost completely overlap for all model 

parameters. The average overlap of the 95% CI for the treatment and sex effects estimated 

using INLA was 96% and 97.6% compared with stan and JAGS, respectively. The posterior 

mean for the variance of the age, site, and time effects, estimated using INLA, are within 

the 95% CI estimated using MCMC. However, the average overlap of the 95% CIs estimated 

using stan is 77%, 85.6%, and 91.3%, respectively. Figure 3 displays the density plots for 

the five parameters for two secondary outcomes (other outcomes are in the Supplementary 

Material). These figures confirm the numerical results. Crucially, differences also exist 

between stan and JAGS as well as stan and INLA.

Decision-making using JAGS, stan, and INLA.—Table 2 reports the posterior 

probability that the treatment provides a positive effect, adjusted for whether each outcome 

is positive or negative. There are minimal differences between these probabilities, with 

a largest difference of 6% for the length of hospital stay. The original trial stopped for 

treatment superiority when the posterior probability of a positive treatment effect for the 

primary outcome exceeded 99%. Thus, with this decision criteria, all three methods would 

provide the same trial conclusion.

Runtime.—Table 3 shows the computation time of the three algorithms. INLA required 

between 4.2 and 31.28 s, which is between 85 and 269 times faster than stan and 26 and 
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1852 times faster than JAGS. The computational efficiency of INLA is more pronounced 

for more complex models (proportional odds and survival models) where JAGS and stan 

required minutes or hours and INLA required less than a minute. As expected, stan is more 

efficient than JAGS for complex models while JAGS is more efficient for the simpler binary 

logistic regression.

Discussion

We evaluated the efficiency, feasibility and accuracy of INLA and MCMC methods for 

Bayesian clinical trial analysis. First, INLA substantially reduces computational time 

compared to MCMC. Second, the R packages INLA and brms package facilitate the 

implementation of INLA and Hamiltonian Monte Carlo, while JAGS is more complex. 

Furthermore, the posterior distributions for the treatment and sex effects were similar across 

all three algorithms. Thus, INLA can accurately estimate the treatment effect, which is the 

main interest in clinical trials, while also being computationally efficient and simple to 

implement in R.

There are limitations to applying INLA in practice. First, INLA could only fit up to 10 

categories for the ordinal outcome using the proportional odds model, which could lead to 

reduced precision in the posterior distribution.66 However, we did compare the 10-category 

INLA model with the 24-category model fit using MCMC and found minimal differences. 

We found that including additional categories did lead to an increase in the computational 

time for all algorithms, more pronounced for MCMC. Thus, if INLA could be implemented 

with the 24-category outcome, it would likely still represent a significant computational 

saving.

Second, INLA was unable to accurately approximate the posterior distributions of the 

hierarchical variances for the proportional odds model. This is because the INLA algorithm 

is designed for less than six parameters in the top layer of the model. However, in the 

proportional model, INLA treats each of the intercepts as a top-layer parameter, alongside 

the hierarchical variances, leading to 13 parameters. We suspect that we could improve the 

estimation of the hierarchical variances by reducing the number of categories for the ordinal 

outcome. However, this would affect the precision of the sex and treatment effects, and it is 

uncertain how the organ support-free days outcome should be recategorized.

We also observed that the posterior distribution curves for the hierarchical variance effects 

using INLA did not completely agree with Hamiltonian Monte Carlo. However, we also 

observed differences between Hamiltonian Monte Carlo and Metropolis-Hastings within 

Gibbs. Thus, it is likely that INLA is as accurate as the MCMC methods with the number 

of simulations we used. A key difference is that the MCMC methods could be improved by 

increasing the simulations, while the INLA approximation is fixed. This would, however, 

lead to increases in computation time. Note that we used thinning in the MCMC sampling, 

which is commonly used but has also been criticized as it can increase computational time 

without improving accuracy.67 Thus, the MCMC methods could potentially be improved 

without adding significantly to the computational cost.
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A limitation of this study is that we only used data from one multi-platform trial to compare 

INLA to the MCMC methods, meaning that the conclusions may not be transferable. To 

mitigate this concern, we tested the performance of INLA across a range of outcomes, 

analysed using commonly used models in clinical trials. We also aimed to challenge 

INLA using data from a complex Bayesian adaptive trial, which adjusted for multiple 

covariates. Nevertheless, data from other trials could also have been considered and the 

range of outcome types extended. INLA could also be compared to MCMC methods using 

observational data to offer more confidence in the method, although we expect these results 

to hold for different origins of data. Nonetheless, comparisons using data from other trials 

and data sets would provide practitioners with further confidence in INLA.

Another limitation is that, to replicate exact analysis in the original clinical trial, we did 

not perform any sensitivity analyses. In practice, in addition to modelling the outcomes, 

the assumptions of the analysis should also be investigated and suitable sensitivity analyses 

should be run. This includes understanding whether the model assumptions are valid and 

the impact of the choice of priors. In our setting, the amount of data should overwhelm 

the priors meaning they have limited impact on the results but they should be investigated. 

Note, however, that running these sensitivity analyses requires that alternative posterior 

distributions are obtained. Thus, these additional analyses would add computational 

complexity, making the use of INLA potentially more efficient.

Finally, this comparison only tested three Bayesian software packages and restricted to 

software that integrates within R. Alternative Bayesian software, such as pyMC50 in Python 

or LaplaceDemon51 in R are available. However, they still rely on MCMC methods and are, 

thus, unlikely to outperform INLA in terms of computational time.

Conclusion

This study assessed the accuracy, computational time, and feasibility of INLA, compared 

to MCMC methods, in the analysis of data from an international, Bayesian adaptive 

platform clinical trial. We demonstrated that INLA provides accurate estimates of the 

treatment effect, identical decisions to MCMC methods, efficient computation, and feasible 

implementation. Thus, INLA is an important tool to facilitate the use of Bayesian methods 

in clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The observed distribution of organ support free days, the primary outcome, from the 

combined data from the ATTACC/ACTIV-4A trials.
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Figure 2. 
The observed distribution of length of hospital stay, a key secondary outcome, from the 

combined data from the ATTACC/ACTIV-4A trials.
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Figure 3. 
Posterior density curves for five parameters of interest (from left to right), (1) the effect of 

sex and (2) treatment with therapeutic anti-coagulation on the outcome and the hierarchical 

variance for the effect of (3) age, (4) site and (5) time period. These are estimated for three 

outcomes, (a) Organ Support Free Days, (b) survival with no organ support, and (c) length of 

hospital stay. The posterior distributions are estimated with INLA, JAGS, and stan.
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Table 2.

The posterior probabilities that there exists a positive treatment effect for the model analysing the seven 

outcomes considered in this analysis, (1) Organ Support Free Days, (2) survival with no organ support, (3) 

survival with no invasive mechanical ventilation (IMV), (4) survival with no mechanical respiratory support 

(MRS), (5) survival until hospital discharge, (6) major thrombotic event (TE) or death and (7) length of 

hospital stay for JAGS, stan and INLA.

JAGS stan INLA

Organ support-free days 83% 86% 86%

Length of Hospital Stay 57% 57% 63%

Survival with No IMV 52% 53% 53%

Survival with No MRS 84% 84% 83%

Survival with No Organ Support 87% 86% 88%

Major Thrombotic Event or Death 63% 64% 67%

Survival Until Hospital Discharge 56% 55% 59%
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