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GÖDEL DIFFEOMORPHISMS

MATTHEW FOREMAN

Abstract. In 1932, von Neumann proposed classifying the statistical behavior of

differentiable systems. Joint work of B. Weiss and the author proved that the classification

problem is complete analytic. Based on techniques in that proof, one is able to show that the

collection of recursive diffeomorphisms of the 2-torus that are isomorphic to their inverses

is Π01-hard via a computable 1-1 reduction. As a corollary there is a diffeomorphism that is

isomorphic to its inverse if and only if the Riemann Hypothesis holds, a different one that is

isomorphic to its inverse if and only if Goldbach’s conjecture holds and so forth. Applying

the reduction to the Π01-sentence expressing “ZFC is consistent” gives a diffeomorphism T of

the 2-torus such that the question of whether T ∼= T –1 is independent of ZFC.

§1. The problem. The isomorphism problem in ergodic theory was
formulated by vonNeumann in 1932 in his pioneering paper [17].Motivated
by the idea that physical systems are frequently modeled by differential
equations and verified by empirical experiments, it proposes classifying
the statistical behavior of measure preserving diffeomorphisms of smooth
compact manifolds.
In modern language, a consequence of the Pointwise Ergodic Theorem
is that measure isomorphism captures statistical behavior. Thus von
Neumann’s program is usually stated:

Classify the Lebesgue measure preserving diffeomorphisms of compact
manifolds up to measure preserving isomorphism.

There is an extensive literature about this problem (see, e.g., the textbooks
[7, 8, 10, 13–16, 18, 19]).Much of the progress focused on invertible measure
preserving transformations of a fixed standardmeasure space (i.e., ([0,1),ë)).
The Polish group of Measure Preserving Transformations, MPT , acts on
itself by conjugacy and the associated equivalence relation is the same as
measure isomorphism.

Definition 1. A measure preserving system (X,B,ì,T ) is a standard
probability space with an invertible measure preserving transformation T.
T is ergodic if and only all T-invariant measurable sets either have measure
zero or one.
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There is a natural association between measure preserving trans-
formations of a standard measure space and invariant measures for
homeomorphisms of compact separable metric spaces. Given such a
homeomorphism, the set of invariant (probability) measures is compact
convex set (in the weak topology) and hence spanned by its extreme points.
The extreme points are exactly the ergodicmeasures. By Choquet’s theorem
every invariant measure is an integral of the ergodic measures. The upshot
is that the ergodic measures form the basic building blocks for invariant
measures. Halmos showed that the ergodic transformations are a dense Gä
set inMPT .
For these reasons, work on the classification theorem has been focussed
on the polish group action of MPT on the collection E of ergodic
transformations.

§2. Some history. There is a huge literature on this showing how certain
classes can be classified. For example, Ornstein showed that Kolmogorov’s
entropy is a complete invariant for Bernoulli shifts, and Halmos and von
Neumann showed that two ergodic translations of compact groups are
isomorphic if and only if the associated Koopman operators are unitarily
equivalent.
However, the general problem proved intractable. Hjorth [12] showed that
the equivalence relation of being conjugate in the groupMPT is not Borel.
Later Foreman et al. [3] extended this by showing that the equivalence
relation of isomorphism of ergodic measure preserving transformations is
complete analytic. Foreman andWeiss had earlier proved the action ofMPT
on E is turbulent (in the sense of Hjorth [11]) and Foreman showed that the
problem of Graph Isomorphism can be reduced to the isomorphism problem
of measure preserving transformations of [0,1].
These results can be summarized by saying that the isomorphism problem
for ergodic measure preserving transformations of [0,1] is complete analytic
and lies strictly above every S∞-action in the ordering of Borel reducibility.

§3. The results being announced. The results above do not answer von
Neumann’s original question, since the transformations involved are abstract
measure preserving transformations, not diffeomorphisms. Indeed in the
same paper von Neumann asked the following question, called the smooth
realization problem:

Is every measure preserving transformation of a standard measure
space isomorphic to a measure preserving diffeomorphism of a compact
manifold?

This question is still open, the only known limitation being that a measure
preserving diffeomorphism of a compactmanifold has to have finite entropy,
a result of Kushnirenko.
A final classical problem is to determine when “time running backwards”
is the same as “time running forwards.” When the acting group is Z, this is
the question of whether T ∼= T –1. Halmos and von Neumann conjectured
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that this was always true and it was not until 1951 thatAnzai gave an example
where it failed. (See [1, 9].)
Let Diff∞(T2,ë) be the space of C∞, invertible, measure-preserving
diffeomorphisms of the 2-torus endowed with the C∞-topology. Two
diffeomorphisms S,T are measure isomorphic or measure conjugate if and
only if there is an invertible measure preserving transformation φ mapping
from the two torus to itself such that φ ◦T = S ◦φ (a.e.). In this paper, we
write this equivalence relation as S ∼= T .
In a series of papers [4–6] Foreman and Weiss were able to prove:

Theorem 2. The collection:

{T : T ∼= T –1 and T is ergodic} ⊆Diff∞(T2,ë)

is a complete analytic set.

Corollary 3. The measure isomorphism relation on ergodic members of
Diff∞(T2,ë) is a complete analytic equivalence relation.

The previous result that Graph Isomorphism is reducible to the isomor-
phism relation on abstract measure preserving transformations carries over
to diffeomorphisms, nearly verbatim. However it is an open problem at this
time whether the equivalence relation “isomorphism for diffeomorphisms”
is strictly above every S∞-action.
Proving Theorem 2 required building a reduction of ill-founded trees to
the smooth transformations isomorphic to their inverse. The techniques are
general enough to settle other open problems dating to the 1960’s. In a
forthcoming paper Foreman and Weiss prove:

• There are measure-distal diffeomorphisms of the 2-torus of height 3. In
fact there are measures-distal homeomorphisms of arbitrary countable
ordinal height.

• For all (compact) Choquet simplices K there is a Lebesgue measure
preserving diffeomorphism of the 2-torus having K as its simplex of
invariant measures.

Conversations with M. Magidor, J. Steel, T. Carlson, H. Towsner, J.
Avigad, T. Slaman, and a helpful question from S. Friedman led to the
following result [2].

Theorem 4. There is a computable function

F : {Codes for Π01 – sentences}

→ {Codes for computable diffeomorphisms of T2}

such that:

1. For a code m for a Π01 sentence, m is the code for a true sentence if
and only if F (m) is the code for a computable T, where T is measure
theoretically conjugate to T –1; and

2. For m 6= n, F (m) is not conjugate to F (n).
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The diffeomorphisms in the range of F are ergodic.1

Thus there is a systematic way of associating to each problem P that can
be expressed as a Π01-statement an ergodic computable diffeomorphism TP
of the 2-torus so that:

1. P is true if and only if TP ∼= T –1P

and

2. for P 6= P′, TP is not conjugate to TP′ .

It is known that many classical problems, such as the Riemann
Hypothesis and Goldbach’s Conjecture as well as “Con (T )” for recursively
axiomatizable T be stated in a Π01-way. Hence by varying the Π

0
1 statements

we get corresponding corollaries (among others):

Corollary 5. There are nonconjugate computable diffeomorphisms of the
2-torus TRH ,TGC ,TZFC , Tsc cardinal such that:

Riemann Hypothesis: TRH ∼= T –1RH if and only if the Riemann Hypoth-
esis is true.
Goldbach’s Conjecture: TGC ∼= T –1GC if and only if Goldbach’s
Conjecture is true.
ZFC: The statement “TZFC ∼= T –1ZFC ” is independent of ZFC (assuming
ZFC is consistent).
ZFC + there is a supercompact cardinal: The statement

Tsc cardinal
∼= T –1sc cardinal

is independent of “ZFC + there is a supercompact cardinal” (assuming
that theory is consistent).

§4. Isn’t this a triviality? A skeptic might object: “Suppose T0 and T1 are
measure preserving diffeomorphisms and T0 ∼= T –10 but T1 6

∼= T –11 . Why not
simply define

TRH (x) =

{

T0(x) if Riemann Hypothesis is true,

T1(x) if Riemann Hypothesis is false.

Then TRH is equal to either T0 or T1 depending on the truth of the Riemann
Hypothesis. Hence it satisfies Corollary 5.”
Theorem 4 precludes this “cheating” for two reasons. One is that the
association of a computable diffeomorphism T to a code for a Π01-statement
φ is itself computable. Thus there is a computer program that takes the
code for φ and produces an algorithm that computes Tφ. The theorem
provides a deterministic computer program that computes TRH ; it is not
diffeomorphism chosen arbitrarily according to an unknown truth value.

1By code for a Π01-sentence we mean its Goedel number. A code for a computable
diffeomorphism is the c.e. code for the algorithm computing it.
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The second reason is item 2: we are assigning nonisomorphic diffeomor-
phisms to different Π01-statements. So TRH 6∼= TGC .

§5. How hard is the proof? The reductions built in the proof of Theorem 2
are extremely concrete. Indeed in [4] it was shown that in the context of
Theorem 4 the reduction F is primitive recursive. Gaebler showed that the
definition and proof that F is indeed a reduction can be done in ACA0.
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