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Review

A role for monoglyceride lipase in 2-arachidonoylglycerol
inactivation
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b Institute for Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
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Abstract

2-Arachidonoylglycerol (2-AG) is a naturally occurring monoglyceride that activates cannabinoid receptors and

meets several key requisites of an endogenous cannabinoid substance. It is present in the brain (where its levels are 170-

folds higher than those of anandamide), is produced by neurons in an activity- and calcium-dependent manner, and is

rapidly eliminated. The mechanism of 2-AG inactivation is not completely understood, but is thought to involve

carrier-mediated transport into cells followed by enzymatic hydrolysis. We examined the possible role of the serine

hydrolase, monoglyceride lipase (MGL), in brain 2-AG inactivation. We identified by homology screening a cDNA

sequence encoding for a 303-amino acid protein, which conferred MGL activity upon transfection to COS-7 cells.

Northern blot and in situ hybridization analyses revealed that MGL mRNA is unevenly present in the rat brain, with

highest levels in regions where CB1 cannabinoid receptors are also expressed (hippocampus, cortex, anterior thalamus

and cerebellum). Immunohistochemical studies in the hippocampus showed that MGL distribution has striking laminar

specificity, suggesting a presynaptic localization of the enzyme. Adenovirus-mediated transfer of MGL cDNA into rat

cortical neurons increased the degradation of endogenously produced 2-AG in these cells, whereas no such effect was

observed on anandamide degradation. These results indicate that hydrolysis via MGL may be a primary route of 2-AG

inactivation in intact neuronal cells.

# 2002 Published by Elsevier Science Ireland Ltd.
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1. Introduction

The life cycles of the endocannabinoids 2-

arachidonoylglycerol (2-AG) and anandamide

are similar in that they are both produced by

neurons when need arises, act near their site of

synthesis, and are rapidly eliminated to terminate

their biological actions (Di Marzo et al., 1994;

Stella et al., 1997; Piomelli et al., 1999; Beltramo

Abbreviations: 2-AG, 2-arachidonoylglycerol; FAAH, fatty

acid amide hydrolase; MGL, monoglyceride lipase; NMDA, N -

methyl-D-aspartate.
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and Piomelli, 2000). These properties, which
distinguish 2-AG and anandamide from classical

or peptide neurotransmitters, reflect the suggested

role of these bioactive lipids as activity-dependent,

short-range modulators of synaptic function. Neu-

rochemical and electrophysiological data directly

support such a role. For example, microdialysis

experiments in the rat striatum indicate that

locally released anandamide may serve as a
negative feedback signal regulating dopaminergic

activity (Giuffrida et al., 1999; Beltramo et al.,

2000). In addition, electrophysiological experi-

ments suggest that anandamide or 2-AG may act

as transsynaptic messengers to modulate neuro-

transmitter release (Katona et al., 1999; Kreitzer

and Regehr, 2001; Ohno-Shosaku et al., 2001;

Wilson and Nicoll, 2001) and synaptic plasticity
(Carlson et al., 2002; Gerdeman et al., 2002;

Marsicano et al., 2002; Robbe et al., 2002) in

neurons.

Despite these broad analogies, the specific

routes by which 2-AG and anandamide are

produced and inactivated appear to be quite

different. Anandamide is thought to be generated

from the hydrolysis of an N -acylated species of
phosphatidylethanolamine (PE), N -arachidonoyl-

PE, which requires the activity of an unknown

phospholipase D (Di Marzo et al., 1994; Cadas et

al., 1996; Sugiura et al., 1996; Cadas et al., 1997).

By contrast, 2-AG synthesis may involve the same

enzymatic cascade that catalyzes the formation of

the second messengers inositol-(1,4,5)-trispho-

sphate and 1,2-diacylglycerol (DAG). Phospholi-
pase C (PLC) acting on membrane

phosphoinositides generates DAG, which is then

converted to 2-AG by a DAG-lipase activity

(Stella et al., 1997).

After release, anandamide may be accumulated

back into neurons and glial cells by means of an

energy- and Na�-independent transport system

(Di Marzo et al., 1994; Beltramo et al., 1997), and
may be broken down intracellularly to arachidonic

acid and ethanolamine by fatty acid amide hydro-

lase (FAAH) or other amidase enzymes (Schmid et

al., 1985; Cravatt et al., 1996; Ueda et al., 2001).

There is evidence suggesting that 2-AG may be

transported into cells through a mechanism similar

to that of anandamide. For example, in human

astrocytoma and other cell types, [3H]anandamide
and [3H]2-AG transport have similar kinetic

properties (Piomelli et al., 1999; Bisogno et al.,

2001). Moreover, anandamide and 2-AG can

prevent each other’s transport (Beltramo and

Piomelli, 2000; Bisogno et al., 2001). Finally, the

accumulation of both endocannabinoids is

blocked by the anandamide analog 4-(hydroxy-

phenyl)-arachidonamide (AM404) (Beltramo and
Piomelli, 2000; Bisogno et al., 2001). Yet, signifi-

cant differences between anandamide and 2-AG

transport also have been documented. [3H]2-AG

uptake by astrocytoma cells is inhibited by arachi-

donic acid, whereas [3H]anandamide accumulation

is not (Beltramo and Piomelli, 2000). This dis-

crepancy may be explained in two alternative

ways. Arachidonic acid may directly interfere
with a 2-AG carrier distinct from anandamide’s;

or the fatty acid may indirectly prevent the

facilitated diffusion of 2-AG by inhibiting its

enzymatic conversion to arachidonic acid. If the

latter explanation is correct, agents that interfere

with the incorporation of arachidonic acid into

phospholipids, such as triacsin C (an inhibitor of

acyl�/coenzyme A synthesis), also should decrease
[3H]2-AG uptake. This is indeed the case in

astrocytoma cells (Beltramo and Piomelli, 2000).

Thus, while anandamide and 2-AG may be inter-

nalized through similar transport mechanisms, or

even share a common one, they appear to differ in

how their intracellular breakdown can affect the

rate of transport into cells.

The fact that FAAH catalyzes the hydrolysis of
both 2-AG and anandamide in vitro has led to the

suggestion that this enzyme may be responsible for

the elimination of both endocannabinoids. This

hypothesis is contradicted, however, by several

observations. Synthetic 2-AG is rapidly degraded

in mouse blood whereas anandamide is stable

under the same conditions (Jarai et al., 2000). In

addition, inhibitors of FAAH activity have no
effect on 2-AG hydrolysis at concentrations that

completely block anandamide degradation (Bel-

tramo and Piomelli, 2000). Furthermore, 2-AG

hydrolysis is preserved in mutant FAAH�/� mice,

which cannot dispose of either endogenous or

exogenous anandamide (Lichtman et al., 2002). In

agreement with these results, a 2-AG-hydrolase
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activity distinct from FAAH has been partially
purified from porcine brain (Goparaju et al.,

1999b). This activity may correspond to mono-

acylglycerol lipase (MGL), a cytosolic serine

hydrolase that converts 2- and 1-monoglycerides

to fatty acid and glycerol (Karlsson et al., 1997).

To test this hypothesis, we have cloned and

characterized rat brain MGL (Dinh et al., 2002).

2. Results

2.1. Cloning of rat brain MGL

We used a 1 kilobase (kb) fragment of mouse

adipocyte MGL cDNA to screen a rat brain

cDNA library by low-stringency hybridization.
Upon initial screening of 2.5�/105 phage plaques,

we identified 40 positive clones, which we purified

and subjected to secondary and tertiary screenings

to ensure homogeneity. After phage purification,

we transformed plasmids into competent bacteria

and conducted restriction analysis to identify

positive clones. We selected for sequencing five

random inserts that were greater than 1 kb in size.
The inserts overlapped and together represented

the entire open reading frame of MGL.

The nucleotide and predicted amino acid se-

quence of rat brain MGL are depicted in Fig. 1.

Based on the deduced amino acid sequence, rat

brain MGL comprises 303 amino acids with a

calculated molecular weight of 33 367 Da. Align-

ment between rat brain and mouse adipocyte
MGL revealed that the two nucleotide sequences

are 92% identical. The residues composing the

catalytic triad are conserved, as are the GSXSG

and HG dipeptide motifs commonly found in

lipases (Karlsson et al., 1997). Consistent with

this homology, transient expression in COS-7 cells

showed that rat MGL cDNA encodes for a

functionally active enzyme (Fig. 2). Primary se-
quence analysis of rat MGL did not reveal any

homology with FAAH or any member of the

‘amidase signature’ family of enzymes. Further-

more, the analysis did not identify any obvious

post-translational motif in MGL, though it did

disclose several consensus sequences for phosphor-

ylation by protein kinases, including Ca2�/calmo-

dulin kinase II and protein kinases A and C.

Northern blot analyses of total RNA from

various regions of the rat brain showed a single

transcript of :/4 kb, a size that corresponds to

that of mouse MGL (Karlsson et al., 1997; Fig.

3a). MGL mRNA was present throughout the

brain, but its expression varied among regions,

with high levels in cerebellum, cortex and hippo-

campus; intermediate levels in thalamus and

striatum; and lower levels in brainstem and

hypothalamus (Fig. 3a). Densitometric measure-

ments of representative Northern blots provided

the following average optical density values (in

arbitrary units): cortex, 7.5; hippocampus, 6.8;

cerebellum, 6.1; thalamus, 5.4; striatum, 4.6;

hypothalamus, 1.2; brainstem, 1.0. Western blot

analyses confirmed the presence of MGL protein

in brain tissue. Using an immunopurified poly-

Fig. 1. Nucleotide and deduced amino acid sequence of rat

brain MGL cDNA. Closed circles mark amino acid residues

comprising the putative catalytic triad. The HG dipeptide motif

often found in lipases is boxed.
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clonal antibody to the N-terminal sequence of rat

MGL, we observed two protein bands migrating at

�/35 and �/37 kDa on SDS-polyacrylamide gels

(Fig. 3b). Both bands were abolished by adsorp-

tion with the immunizing peptide (data not

shown), an indication that they represent closely

related MGL isoforms. These could arise from

either alternative splicing (Karlsson et al., 2001) or

as-yet-unidentified post-translational modifica-

tion(s).

2.2. Brain localization of MGL

As MGL is generally thought to serve ‘house-

keeping’ functions in lipid metabolism, we were

surprised by the uneven distribution of MGL

expression revealed by our Northern blot analyses

(Fig. 3). We set out, therefore, to investigate in

greater detail the brain distribution of MGL by

using two complementary approaches: in situ

hybridization and immunohistochemistry.

In situ hybridization analyses showed that MGL

mRNA is highly expressed throughout the rat

brain cortex, with the transcript mainly concen-

trated in layers IV, deep V and VI (Fig. 4a�/c), in

the hippocampus, where it was abundant in the

CA3 field (Fig. 3c and e), and in the cerebellum

(Fig. 4b). MGL mRNA expression was also

remarkably high in the anterior thalamus, parti-

cularly in the anterodorsal nucleus (Fig. 4b), but

not in other thalamic areas (Fig. 4b and c).

Moderate amounts of MGL mRNA were detected

in the nucleus accumbens shell (Fig. 4a), in the

islands of Calleja and in the pontine nuclei (data

not shown). We observed no specific signal in

tissue sections hybridized with a sense probe (Fig.

4d).

We conducted light microscopic immunostain-

ing studies in the rat hippocampus with the

immunopurified polyclonal antibody used for our

Western blot analyses (Fig. 3b). These studies

show a distinct laminar pattern of MGL staining

in the hippocampus and a profound difference in

staining intensity between the stratum radiatum

Fig. 2. Heterologous expression of MGL in COS-7 cells. Five

mg of MGL cDNA was transfected into COS-7 cells by calcium

phosphate precipitation. 48 h post-transfection cells were

harvested, lysed and centrifuged. The supernatant fraction (50

mg protein) was incubated in 50 mM sodium phosphate (pH

8.0) with either [3H]2-AG or [3H]anandamide (5000 cpm for

both). MGL activity in vector-transfected (open bars) and

MGL-transfected (closed bars) cells; results are from three

experiments performed in triplicate. �, P B/0.05, Student’s t -

test.

Fig. 3. MGL is expressed in the rat brain. (A) Representative Northern blot of MGL mRNA from various regions of the rat brain;

glyceraldehyde-3-phosphate-dehydrogenase (GADPH) mRNA was used as a loading control. (B) Representative Western blot of

supernatant fraction from the rat brain.
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(where glutamatergic terminals from hippocampal

CA3 pyramidal neurons terminate) and the stra-

tum lacunosum-moleculare (where glutamatergic

terminals from the entorhinal cortex terminate)

(Fig. 5a and b). In the stratum pyramidale, the

somata of pyramidal cells were not stained by the

MGL antibody, but were surrounded by MGL-

positive terminals of g-aminobutyric acid

(GABA)-ergic interneurons (basket cell) (Fig. 5c).

In the CA3 field, the glutamatergic mossy fiber

terminals in stratum lucidum were strongly stained

and clearly discernible within the MGL-positive

background (Fig. 5c). Mossy fiber collaterals and

GABA-ergic basket cell axons surrounded somata

and proximal dendrites also in the hilus of the

dentate gyrus. Granule cell bodies were MGL-

negative and surrounded by positive basket axons.

In sections prepared by osmium treatment, the

immuno-negative apical dendrites of pyramidal

cells could be readily traced through the densely

stained neuropil of stratum radiatum, indicating

that this neuropil staining derived mostly, if not

entirely, from MGL localized in axon terminals

(Fig. 5d). Control sections in which the antibody

was pre-adsorbed with the immunizing peptide

showed no specific staining (data not shown).

Fig. 4. Distribution of MGL mRNA in the rat brain. Coronal (A and C) and horizontal (B) sections hybridized with an MGL

antisense riboprobe labeled with [35S]UTP. (D) Horizontal section hybridized with a sense probe. (E) Dark field micrograph of MGL-

positive cells in the hippocampus. Abbreviations: AcB, nucleus accumbens; AdN, anterodorsal nucleus of the thalamus; Cb cerebellum;

CdP, caudate�/putamen; Ctx, cortex; DG, dentate gyrus; Thl, thalamus. Scales: A, 3 mm; B, 4 mm; E, 500 mm.
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2.3. 2-AG, not anandamide, is a substrate for MGL

Since FAAH hydrolyzes anandamide and 2-AG

at comparable rates in vitro (Goparaju et al.,

1999a; Patricelli and Cravatt, 1999), we examined

whether rat brain MGL also utilizes anandamide

and other fatty acid ethanolamides as substrates.

To this aim, we generated an adenoviral vector

containing MGL cDNA to allow for the over-

expression of MGL in neurons and other mam-

malian cells.

Infection with MGL-bearing adenovirus con-

ferred high levels of MGL immunoreactivity to

HeLa cells (Fig. 6a), which normally do not

express this protein (Fig. 6b). The immunoreactiv-

ity was associated with both cell cytosol and

plasma membranes (Fig. 6a). MGL activity was

also markedly elevated in MGL-infected HeLa

cells (Fig. 6c) and was similarly distributed be-

tween cytosol and membranes: after ultracentrifu-

gation, MGL activity was recovered both in

supernatant and particulate fractions (in pmol/

min per mg protein; supernatant: 0.28; particulate,

0.14; n�/3).

Various serine hydrolase inhibitors that were

previously shown to block FAAH also inhibited

MGL activity, including methyl arachidonylfluor-

ophosphonate (half-maximal inhibitory concentra-

tion, IC50, 0.89/0.05 mM; n�/3) and arachidonyl

trifluoromethylketone (IC50, 2.59/0.04 mM) (Fig.

7a). Interestingly, hexadecylsulphonylfluoride

(AM374), which is potent at inhibiting FAAH

activity (IC50 for FAAH, 10.29/0.1 nM), only

weakly inhibited MGL activity (IC50 for MGL,

Fig. 5. Distribution of MGL protein in the rat brain. (A) Light micrograph of a hippocampal section immunostained for MGL. At

higher magnification (B�/D), cell bodies of principal cells in all subfields are not stained by the antibody, but are surrounded by MGL-

positive axon terminals (arrowheads in C), which may represent boutons of GABA-ergic interneurons (basket cells). Mossy fiber

terminals in CA3 stratum lucidum (arrows in C) are densely immunostained. (D) Light micrograph of an osmium-treated section from

CA1, showing that pyramidal dendrites in stratum radiatum (arrows) appear as negative images in the heavily stained neuropil.

Abbreviations: DG, dentate gyrus; h., hilus; s.g., stratum granulosum; s.l., s. lucidum; s.l.m., s. lacunosum-moleculare; s.m., s.

moleculare; s.o., s. oriens; s.p., s. pyramidale; s.r., s. radiatum. Scales: A, 500 mm; B�/D, 100 mm.

T.P. Dinh et al. / Chemistry and Physics of Lipids 121 (2002) 149�/158154



6.29/0.1mM) (Fig. 7b). MGL hydrolyzed 2-

[3H]AG and 2-[3H]oleoylglycerol, not [3H]ananda-

mide, [3H]palmitoylethanolamide or [3H]oleoy-

lethanolamide (Fig. 6 and data not shown),

indicating that the enzyme preferentially recog-

nizes 2-monoglycerides over fatty acid ethanola-

mides.

2.4. MGL degrades endogenously produced 2-AG

in intact neurons

Previous work has shown that the concomitant

activation of glutamate NMDA-type receptors

and cholinergic receptors stimulates the produc-

tion of both 2-AG and anandamide in rat cortical

neurons (Stella and Piomelli, 2001). We reasoned

that if MGL selectively mediates 2-AG inactiva-
tion, changes in this enzyme activity should affect

2-AG accumulation while leaving anandamide’s

unchanged. To test this prediction, we overex-

pressed MGL in neurons by means of adenoviral

transfer. Compared with vector-infected neurons

(Fig. 8a and b), neurons infected with MGL-

containing adenovirus expressed substantially lar-

ger amounts of MGL mRNA (Fig. 8a) and protein
(Fig. 8b). As expected, the main transcript in

MGL-overexpressing neurons corresponded to

the 1.2 kb coding sequence of MGL (Fig. 8a).

In control neurons labeled by incubation with

[3H]arachidonic acid, co-activation of N -methyl-

(D)-aspartate (NMDA) and cholinergic receptors

with a combination of NMDA and carbachol

produced a rapid increase in [3H]2-AG levels
(Fig. 8d), which was significantly reduced in

MGL-overexpressing neurons (Fig. 8d). Control

experiments indicated that this reduction likely

reflects increased 2-AG breakdown, rather than

decreased 2-AG synthesis. Formation of 2-AG

occurs via enzymatic hydrolysis of DAG, which is

generated through Ca2�-dependent cleavage of

phosphoinositides by PLC (Stella et al., 1997).
Neither of these reactions was affected by MGL

overexpression: vector- and MGL-infected neu-

rons had equivalent levels of stimulated DAG

production (in cpm per dish; vector: 67009/385;

MGL: 63709/440; n�/8) and [Ca2�]i rises (as-

sessed by Fura-2 imaging; data not shown). Thus,

MGL overexpression may enhance 2-AG inactiva-

tion without changing receptor-dependent 2-AG
formation. Is this enhancement selective for 2-AG?

To answer this question, we concurrently quanti-

fied 2-AG and anandamide by using an isotope-

dilution HPLC/MS method. In vector-infected

neurons, the levels of both endocannabinoids

significantly increased after a 2.5 min stimulation

with NMDA/carbachol (Fig. 8e). By contrast, in

Fig. 6. MGL overexpression in HeLa cells. Confocal micro-

scopy images of cells infected with MGL-bearing (A) or control

(B) adenovirus. MGL immunoreactivity is shown in green; cell

nuclei in red. (C) MGL activity in vector- (open bars) or MGL-

infected (closed bar) cells. [3H]2-OG, 2-oleoyl-[3H]glycerol;

[3H]AEA, [3H]anandamide. Results are expressed as the

mean9/S.E.M. of three experiments performed in triplicate.

��, P B/0.01, Student’s t -test.
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MGL-overexpressing cells, 2-AG accumulation

was greatly reduced after the stimulation, whereas

anandamide levels increased to the same extent as

they did in vector-infected neurons (Fig. 8e).

3. Discussion

Two findings of this study are relevant to a role

of MGL in 2-AG inactivation. The first is that

Fig. 7. Pharmacological inhibition of MGL and FAAH activity by serine hydrolase inhibitors. (a) MGL activity inhibition in MGL-

overexpressing HeLa cells by arachidonyltrifluoromethylketone (ATMK), methyl arachidonylfluorophosphonate (MAFP) and

hexadecylsulphonylfluoride (AM374). (b) Inhibition of rat brain MGL and FAAH activities by AM374.

Fig. 8. MGL overexpression curtails receptor-dependent 2-AG accumulation in rat cortical neurons. Expression of MGL mRNA (A)

and protein (B) in vector- and MGL-infected neurons. Confocal microscopy images of vector- (B) and MGL-infected (C) neurons.

Vector-infected cells contain low, but detectable levels of endogenous MGL. MGL immunoreactivity is shown in green; cell nuclei in

red. (D) Time course of [3H]2-AG accumulation following concomitant stimulation of NMDA and cholinergic receptors in vector-

(open bars) and MGL-infected (filled bars) neurons. Results are from one experiment, representative of four. (E) HPLC/MS

quantification of 2-AG and anandamide accumulation in neurons. Open bars, unstimulated vector-infected neurons; filled bars,

stimulated vector-infected neurons; shaded bars, stimulated MGL-infected neurons. Left panel, anandamide (AEA) levels; right panel,

T.P. Dinh et al. / Chemistry and Physics of Lipids 121 (2002) 149�/158156



adenovirus-mediated overexpression of MGL in
cortical neurons attenuated the receptor-depen-

dent accumulation of endogenous 2-AG, but had

no effect on either 2-AG synthesis or anandamide

hydrolysis. A plausible interpretation of these

results is that hydrolysis by means of MGL may

be a primary route of 2-AG elimination in intact

neurons. The second finding is that, unlike FAAH

(Thomas et al., 1997; Tsou et al., 1998b; Romero
et al., 2002), MGL was discretely distributed

throughout the central nervous system. We ob-

served high levels of MGL mRNA in relatively few

areas of the brain, which include the hippocampus,

cerebellum, anterodorsal nucleus of the thalamus

and the cortex. These brain regions also contain

CB1 cannabinoid receptors (Herkenham et al.,

1991; Tsou et al., 1998a), supporting a function for
MGL in terminating the effects of 2-AG at these

receptors.

What are the physiological roles of MGL, if

any, and what interest may this enzyme have as a

target for therapeutic drugs? This question can be

adequately answered only with the development of

selective MGL inhibitors and the generation of

mutant mice lacking a functional MGL gene. But
our findings may shed some light on at least one

possible role of MGL. In the hippocampus,

electrical stimulation of the Schaffer collaterals, a

glutamatergic fiber tract that projects from CA3 to

CA1 neurons, enhances 2-AG synthesis (Stella et

al., 1997). Newly generated 2-AG may in turn

inhibit GABA release, via CB1 receptors on basket

cell terminals (Wilson and Nicoll, 2001), and
glutamate release, via as-yet-unidentified CB1-

like receptors on Schaffer terminals (Hajos et al.,

2001). Our results, showing that MGL is highly

expressed in the termination zones of Schaffer

collaterals, suggest a presynaptic localization of

this enzyme and provide an anatomical locus for 2-

AG deactivation at hippocampal synapses.
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