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a b s t r a c t

In this study, we acquired 72 (training data) and 30 (independent validation) high-spatial resolution (7 by
7 pixels per mm2) hyperspectral imaging data [240 spectral bands from 392 to 889 nm (spectral resolu-
tion = 2.1 nm)] from samples of field peas (Pisum sativum) with and without pea weevil (Bruchus pisorum)
infestation. The reflectance data were analyzed with linear discriminant analysis (LDA) or either reflec-
tance values only or of a combination of reflectance values and variogram parameters (derived from vari-
ogram analysis) from a single spectral band (782 nm). All examined classification models were assessed
based on sensitivity (ability to positively detect infestation), specificity (ability to positively detect non-
infestation), and accurate classification of 30 samples of independent validation data. Highest classifica-
tion performance was obtained with a combination of reflectance values in two spectral bands (641 nm
and 868 nm) and variogram parameters derived from 782 nm. This classification model was associated
with a sensitivity of 94.7% and a specificity of 100%. In addition, all 30 independent validation data were
accurately classified (100%). For comparison, traditional linear discriminant analyses of 108,351 reflec-
tance profiles from individual pixels in the 72 samples or average reflectance profiles from the 72 samples
classified the validation data with 84.0% and 83.3% accuracy, respectively. We are unaware of any reflec-
tance-based classification system, which – based on reflectance data acquired in only three channels
(spectral bands) – can provide this level of sensitivity and specificity and classification of independent
validation data of internal defects in food products. Accurate and reliable classification of food objects
based reflectance values in only a few spectral bands would likely imply low computer processing
requirements and rapid data analysis. Thus, we believe that the current classification method may be use-
ful for quality control systems of a wide range of food products.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Hyperspectral imaging technology has been used widely in
detection of food defects (Kong et al., 2004), assessment of food
quality (Ariana and Renfu, 2010; Fontaine et al., 2002; Lu and Peng,
2006; Martens and Martens, 1986; Okamoto and Lee, 2009), classi-
fication of near-isogenic crop genotypes (Nansen et al., 2008), and
in detection of surface contaminations (Lefcout and Kim, 2006;
Mehl et al., 2004; Park et al., 2006; Vargas et al., 2005). Compre-
hensive reviews of the use of imaging technology in detection of
traits in food products have been published (Gowen et al., 2007;
Wang and Paliwal, 2007). Despite a large bulk of research support-
ing the concept of using reflectance-based technologies in classifi-

cation of food products, there are important challenges, which
justify continued research into improved classification methods.
Many unprocessed food products (i.e. apples, potatoes, peaches,
nuts, and seeds) vary considerably both within each object and be-
tween objects (i.e. varieties) in terms of color, size and shape. This
physical variability in object characteristics (i.e. background color)
represents a considerable challenge, when the objective is to devel-
op reflectance-based classifiers to be used for accurate detection
and/or characterization of quality traits in food products (ElMasry
et al., 2008; Okamoto and Lee, 2009). We argue that classification
challenges imposed by physical variability in object characteristics
are exacerbated by the fact that most classification methods are
based on the fundamental assumption that reflectance values in
selected narrow spectral bands can be used to identify objects
(food items) with/without certain quality traits or with traits rang-
ing along a continuous gradient. That is, either through spectral
band ratios or coefficients, it is the relative relationship between
reflectance values in different spectral bands that determine
whether a pixel or the average reflectance profile of an object is
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classified as ‘‘a’’ or ‘‘b’’. Linear discriminant analysis (Fisher, 1936)
has been used successfully in many hyperspectral image based
classifications of food products (Park et al., 2007; Gcdmez-Sanchis
et al., 2008; Nansen et al., 2008; Gowen et al., 2009; Liu et al., 2010;
Kalkan et al., 2011; Shahin and Symons, 2011). An alternative clas-
sification approach is possible, when hyperspectral imaging data
are acquired, because each pixel is associated with a relative coor-
dinate (x and y) within the image cube (Nansen, 2012). Conse-
quently, it is possible to characterize the spatial structure of
reflectance values in a single spectral band (using variogram anal-
ysis) and determine to what extent a given quality trait of the tar-
get object is associated with a particular spatial data structure.
While use of variogram analysis is well-described in geosciences,
landscape ecology, oceanography, and other large-scale life science
applications, it is only recently that this approach has been applied
to high-resolution hyperspectral imaging data (Nansen, 2011,
2012; Nansen et al., 2010a; Nansen et al., 2009). The assumption
behind variogram-based analysis is that the spatial structure of
reflectance values in individual spectral bands can be described
by three fitted variogram parameters, and that these variogram
parameters vary significantly among classes of target objects. For
example, if food products possess: (1) surface residues (chemical
residues or other contaminations), (2) bruised or surface damaged
surfaces, or (3) internal defects that markedly alter the reflectance
in portions of a given food product – then it seems reasonable to
assume that the relationship between reflectance values in adja-
cent pixels (and therefore the spatial structure of reflectance val-
ues in individual spectral bands) changes.

In this study, we tested the hypothesis that fitted variogram
parameters derived from reflectance data of field peas (Pisum sati-
vum) can be used effectively in combination with average reflec-
tance values to accurately detect pea weevil infestation (Bruchus
pisorum). The 24 (12 varieties with/without pea weevil infestation)
field pea samples included in this study represented a wide range
of background colors ranging across golden, red, and dark brown
(Fig. 1), so this data set was considered very suitable for the chal-
lenge of detecting a consistent reflectance response to pea weevil
infestation. In addition to developing accurate classification meth-
ods, it is also important that classification models have low com-
puter processing requirements, as that increases classification
speed and reduces costs of implementing image based classifica-
tion systems in the food industry and elsewhere.

2. Materials and methods

2.1. Hyperspectral imaging data

The pea samples were produced by Byrne et al. (2008) and ad-
vanced further by (Aryamanesh et al., 2012). Seven pea weevil
resistance field pea backcross lines (BC1F6), introgressed from P.
fulvum into cultivated field pea through backcrossing were se-
lected. Five field pea cultivars, mainly for human food, including
Pennant, Dunwa, Kaspa, Yarrum and Helena were also included
in this experiment. Recently, Aryamanesh et al. (2012) developed
a quick and reliable method to screen pea weevil infestation under
field trial conditions, using a density separation selection method
with caesium chloride (CsCl). However, field peas subjected to
CsCl-based evaluation of pea weevil infestation are not available
for human consumption due to health concerns associated with
CsCl residues. Individual peas were selected based on careful visual
inspection and a novel CsCl based density separation method to
differentiate field peas with or without pea weevil infestation
(Aryamanesh et al., 2012). Field peas were divided into infested
and non-infested classes. For each of the 24 classes (12 pea sam-
ples with/without weevil infestation), 3–10 individual peas were

imaged with three replications for each class (new peas each time)
(Fig. 1). Thus, a total of 72 hyperspectral images comprised the
training data set. For independent validation of the proposed clas-
sification model, additional hyperspectral images were acquired
from five (Pennant, Dunwa, Helena, Kaspa, and Yarrum) of the used
field pea samples (5 samples �with/without pea weevil infesta-
tion � 3 replications, N = 30) on a separate day. The variation in
number of individual field peas was due to scarcity of field peas
in some of the classes, but they were included to increase the
diversity of background colors.

Similar to methodology used in previously published studies
(Nansen et al., 2010a; Nansen et al., 2010b), we used a hyperspec-
tral spectral camera (PIKA II, Resonon Inc., Bozeman, MT) mounted
40 cm above target objects (field peas). The main specifications of
the spectral camera are as follows: interface, Firewire (IEEE
1394b); output, digital (12 bit); 240 bands from 392 to 889 nm
(spectral resolution = 2.1 nm) (spectral) by 640 pixels (spatial);
angular field of view of 7�. The objective lens had a 35 mm focal
length (maximum aperture of F1.4), optimized for the near-infra-
red and visible near-infrared spectra. Hyperspectral images were
collected with artificial lighting from 15 W, two 12 V LED light
bulbs mounted on either side of the lens in a room with 19–
22 �C temperature and 30–40% relative humidity. Reflectance data
were acquired with the spatial resolution of 7 by 7 pixels per mm2.
A piece of white Teflon (K-Mac Plastics, MI, USA) was used for
white calibration, and ‘‘relative reflectance’’ was referred to pro-
portional reflectance compared to reflectance obtained from Tef-
lon. Each hyperspectral image cube consisted of 100 frames
(64,000 pixels), and relative reflectance values ranged between 0
and 1. Colored plastic cards (green, yellow, and red) were imaged
at imaging event and average reflectance profiles from these cards
were used to confirm high consistency of hyperspectral image
acquisition conditions (less than 2% variance in individual spectral
bands).

2.2. Data processing and analysis

A customized software package was used to spatially average
(in 5 � 5 pixel grids) reflectance profiles and convert hyperspectral
image files in BIL-format into txt-files. All data processing and
analysis were subsequently conducted in PC-SAS 9.3 (SAS Institute,
NC). With three replicated images of each of the 24 field pea clas-
ses, a training data based on reflectance data from 72 hyperspectral
images was used to develop a classification model. The first step in
the analysis consisted of reducing the amount of input data and
also reduce within class variation by excluding pixels (reflectance
profiles), which were considered to represent noise (i.e. white
background, shadows, and reflectance data from pea weevil exit
holes in individual field peas). These pixels were excluded by
applying a radiometric filter (Eq. (1)), so that reflectance profiles
(pixels) were only included, if the relative reflection values in three
spectral bands (R430, R480, and R800) were:

R430 < 0:15 and R480 < 0:35 and R800 > 0:30 ð1Þ

After this spatial data reduction, the training data set from the
72 field pea samples consisted of 108,351 reflectance profiles.
The second step in the analysis consisted of spectral data reduction
by identifying the 20 spectral bands with highest contribution to
the classification of reflectance profiles from weevil infested
(INF = 1) and non-infested (INF = 0) field peas. Linear discriminant
analysis (LDA) (Fisher, 1936) has been used widely in classifica-
tions of food products based on hyperspectral imaging (Park
et al., 2007; Gcdmez-Sanchis et al., 2008; Nansen et al., 2008; Go-
wen et al., 2009; Liu et al., 2010; Kalkan et al., 2011; Shahin and
Symons, 2011; Baranowski et al., 2012). Consequently, stepwise
LDA (PROC STEPDISC) was used to select the ‘‘best’’ 20 spectral
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bands. Only these 20 spectral bands (out of 240 spectral bands)
were considered further. Subsequently, we conducted two tradi-
tional linear LDAs (PROC DISCRIM option = crossvalidate) of: (1)
all included pixels from field pea samples (N = 108,351 reflectance
profiles), and (2) average reflectance profiles from each of the field
pea samples (N = 72 reflectance profiles). In addition, we con-
ducted two LDAs, in which variogram parameters (see below) de-
rived from a single spectral band (782 nm) were used either
alone or in combination with average reflectance values as explan-
atory variables. The spectral band at 782 nm was chosen, as the ini-
tial stepwise LDA indicated that it was the spectral band which
contributed the most to the separation of infested and non-in-
fested pea samples.

Spatial structure analysis based on geostatistics (variogram
analysis) is considered one of the most powerful and robust ap-
proaches to spatial data analysis (Isaaks and Srivastava, 1989),
and recent studies have shown how variogram parameters derived
from high-resolution reflectance data can be used to detect differ-
ent traits in a range of target objects (Nansen, 2011, 2012; Nansen
et al., 2010a; Nansen et al., 2010b; Nansen et al., 2009; Nansen
et al., 2010c). In the variogram analysis (PROC VARIOGRAM) of
reflectance data at 782 nm, we used the following variogram set-
tings: (1) lag distances = 1, and (2) number of lag intervals = 10.
The following regression fit (PROC NLIN) was used to generate vari-
ogram coefficients for each of the 72 hyperspectral images:

FðDÞ ¼ aþ b 1� eð�c�DÞ� �
ð2Þ

In which a, b, and c are fitted coefficients and D denotes the lag dis-
tance and F(D) is the semi-variance at lag distance, D. Although
other regression fits are typically used (Nansen, 2012), an important
advantage of the regression fit in Eq. (2) is a very high level of
regression convergence. That is, regression fits to variogram data
are quite sensitive to the quality of the input data and will either
not generate parameter coefficients or generate quite extreme coef-
ficients (Isaaks and Srivastava, 1989). However using Eq. (2), it was
possible to generate parameter coefficients for all 72 training data

sets and 30 validation data sets included in this study. Analysis of
variance (PROC MIXED) was used to compare average variogram
coefficients (a, b, and c) derived from the spectral band at 782 nm
of non-infested and infested field pea samples.

Each of the LDAs was assessed based on its sensitivity (ability to
accurately detect infestation), specificity (ability to accurately de-
tect non-infestation), and the classification accuracy of the 30 inde-
pendent validation data sets. The validation data were acquired
with the same settings as for the training data set (64,000 pixels
per hyperspectral image) and subjected to radiometric filtering
(Eq. (1)) prior to independent validation analysis.

3. Results and discussion

The background color variability across the examined spectral
range is represented by average reflectance profiles from the 24
field pea samples (Fig. 2a). The background color range (average
maximum/average minimum) among non-infested field pea sam-
ples exceeded 3.5 in some spectral bands, and it was above 1.5 be-
tween 400 and 750 nm. It was within this considerable variability
in background colors that we intended to determine whether it
would be possible to detect a consistent reflectance response to
pea weevil infestation. Each of the 72 hyperspectral images used
to develop the classification model consisted of 2560 pixels or
reflectance profiles (N = 184320). After deploying Eq. (1), the input
data set consisted of 108351 reflectance profiles. Based on step-
wise discriminant analysis, we demonstrated that about 42% of
the variance could be explained by a single spectral band, R782
(reflectance at 782 nm), and that the 20 spectral bands with high-
est contribution to the classification of field peas with/without pea
weevil infestation all contributed up to 1% in terms of partial R2-
values (Fig. 2a). These 20 narrow spectral bands were used as
explanatory variables in a LDA of the 108351 reflectance profiles,
which were classified with a sensitivity of 84.5% and specificity
of 83.7% (Table 1). This classification model was applied to the
30 independent validation data sets, which were classified with

Fig. 1. Photos of the 12 field pea samples included in this study with non-infested in top and weevil infested in bottom rows.
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84.0% accuracy. We conducted the same linear discriminant analy-
sis but used average reflectance in three spectral bands (694 nm,
877 nm, and 879 nm, which were selected from a stepwise LDA)
as explanatory variables. Thus, the number of samples to be classi-
fied was reduced from 108351 to 72, and the sensitivity and spec-
ificity were 90.9% and 84.6%, respectively. In addition, the
independent validation data were classified with 83.3% accuracy.

The 20 narrow spectral bands selected from the stepwise linear
discriminnat analysis were also used to conduct a principal compo-
nent analysis (PCA), and average PCA scores were generated for
each pea sample (Fig. 2b). The main purpose of conducting an
unsupervised classification, like PCA, was to visualize inherent
trends in the data set, and such trends can subsequently be used
to develop accurate supervised classification methods. Pennant
field peas were considerably lighter than the other field pea sam-
ples (‘‘B’’ in Fig. 1), so they were also located quite far from the
other pea samples within the two-dimensional space delineated
by the two principal components (PCA1 and PCA2) (Fig. 2b). De-
spite the marked background color variability among pea samples,
it was seen that pea weevil infestation caused a consistent change
in reflectance profiles, as all pea samples showed a consistent shift
in upwards-left direction in response to weevil infestation. Impor-
tantly, about 90% of the total variance was explained by the two
principal components. Consequently, despite marked variability
in background color of field peas, there was a consistent response

to pea weevil infestation, and it was well characterized by the two
principal components. However, the PCA also showed that some of
the non-infested pea samples (B6_1, B11_2, B8_2, B10_2, and Yar-
rum) and infested pea samples (B2_4 and Kaspa) were located in a
‘‘transition zone’’ with poor separation between non-infested and
infested field pea samples. These, pea samples would likely be dif-
ficult to accurately classify as either infested or non-infested, un-
less their relative background color (and therefore the relative
shift in down-left direction) was somehow incorporated into the
classification.

3.1. Linear discriminant analysis based on average reflectance and
variogram parameters

The spectral band at 782 nm (R782) was chosen for variogram
analysis, as it had the highest contribution to the separation of pix-
els acquired from non-infested and infested field peas. All three
variogram parameters changed significantly in response to pea
weevil infestation, especially a and c (Fig. 3a). Fig. 3b shows the
change in spatial data structure (variograms) in three of the pea
weevil samples in response to pea weevil infestation. These three
examples were representative for the data included in this study
and showed consistent increases in all three variogram parame-
ters. Thus, it was highlighted that the three derived variogram
parameters could be used as indicators of pea weevil infestation,
and this is consistent with other studies, in which analyses of var-
iance of individual variogram parameters have shown that these
parameters can be used as indicators of biotic stress in plants (Nan-
sen et al., 2010c). A LDA with the three variogram parameters as
explanatory variables classified the 72 field pea samples with a
sensitivity of 74.3% and a specificity of 73.0%, but the classification
accuracy of independent validation samples was only 43.3% (Ta-
ble 1). As indicated in the principal component analysis (Fig. 2b),
it was believed that the mis-classification of some field pea sam-
ples was due to partial ‘‘classification overlap’’ due to the marked
variability in background colors of field pea samples. Thus a second
LDA was conducted, in which we included average reflectance val-
ues in two spectral bands (641 nm and 868 nm). The logic behind
this approach was that reflectance values in these two spectral
bands had been found to successfully capture the variability in
background colors. Using the combination of these two spectral
bands (representing the relative background color of field pea sam-
ples) and the three variogram parameters (a, b, and c), the 72 field
pea samples were classified with a sensitivity of 94.7% and a spec-
ificity of 100.0% (Table 1). Consequently, the following linear dis-
criminant functions are proposed for accurate classification of
field pea samples:

Fig. 2. Average reflectance profiles (a) and principal component analysis (b) of 12 field pea samples with/without pea weevil infestation. Letters A–L refer to the 12 field pea
samples (see Fig. 1). Dots (a) represent the 20 spectral bands selected through stepwise linear discriminant analysis.

Table 1
Classification results from linear discriminant analyses of reflectance data from field
peas.

Assigned category

Actual category Non-infested Infested

Analysis of all 108,351 reflectance profiles
Non-infested 43332 (82.3%) 9328 (17.7%)
Infested 7923 (14.2%) 47768 (85.8%)

Analysis of all 72 average reflectance profiles
Non-infested 30 (83.3%) 6 (16.7%)
Infested 3 (8.33%) 33 (91.7%)

Only variogram parameters derived from R782 (72 samples)
Non-infested 26 (72.2%) 10 (27.8%)
Infested 9 (25.0%) 27 (75.0%)

Variogram parameters from R782 and average reflectance (R641 and R868) (72
samples)

Non-infested 36 (100.0%) 0 (0.0%)
Infested 2 (5.6%) 34 (94.4%)

Classification results from four linear discriminant analyses with number and
percentage of samples allocated to each of the two categories. Correctly classified
samples are highlighted in bold.

20 C. Nansen et al. / Journal of Food Engineering 123 (2014) 17–22
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Non-infested : �406:16� R641� 236:25þ 44277� aþ 9769� bþ 180:12� c

Infested : �328:19� R641� 202:37þ 47086 � aþ 12;199� bþ 191:37� c

The linear discriminant functions derived from the training data
set from the 72 field pea samples was validated with reflectance
data acquired from 30 independent hyperspectral images of field
peas, and all 30 independent validation data sets were correctly
classified (100.0%).

4. Concluding remarks

Although reflectance-based technologies are widely and suc-
cessfully used in both research and commercial production sys-
tems as part of product quality control and/or characterization of
certain features in target objects, the performance of classification
models is often severely reduced, when target objects vary consid-
erably both within each object and between objects (i.e. varieties)
in terms of color, size and shape. We believe that variability in
physical characteristics of target objects represents one of the main
challenges in future improvement of current trait classifiers based
on reflectance data. Most analytical approaches address this chal-
lenge by developing classification methods that rely on high spec-
tral resolution and/or fairly sophisticated (and computer-
intensive) data processing and analysis. Such an approach with
emphasis on sophistication means that classifications become
comparatively expensive and also challenging to conduct in a
timely manner. In this study, we demonstrated that LDA based
on reflectance values in 20 narrow spectral bands provided higher
classification accuracy (sensitivity and specificity) as classification
based on three variogram parameters from a single spectral band.
Thus, spatial information (quantitative information about the spa-
tial structure) embedded in imaging data should be considered of
considerable importance when developing reflectance based clas-
sifiers. Including two additional variables [the background color
represented by average reflectance in two spectral bands
(641 nm and 868 nm)] was associated with a sensitivity of 94.7%
and a specificity of 100% and 100% accurate classification of inde-
pendent validation data. Due to the accuracy and low amount of
spectral data required to conduct the classification, we believe
the combination of variogram parameters and average reflectance
as explanatory variables is of considerable relevance to commercial
quality control systems of a wide range of food products, in which
data processing and analysis are required under significant time
restrictions (i.e. when large amount of food items are moving on
a conveyor belt).
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