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ABSTRACT OF THE DISSERTATION 

 

Neurobehavioral Responses to Ambiguity and Exploratory Behaviors 

Following Early Life Adversity 

 

by 

 

Natalie Saragosa-Harris 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2024 

Professor Jennifer Ashley Silvers, Chair 

 

 Early life adversity (ELA) is a potent and common risk factor for a number of mental health 

challenges. ELA is thought to increase risk for psychopathology in part by sensitizing threat-

responsive neural circuitry and heightening vigilance to potential threat. This hypervigilance is 

thought to result in a tendency to overestimate threat in the face of ambiguity or uncertainty, a core 

feature of several internalizing disorders. However, few studies have examined how ELA shapes 

neural or behavioral responses to ambiguous and uncertain stimuli. Across three studies, this 

dissertation integrates neuroimaging, behavioral, and self-report data to examine how ELA shapes 

responses to ambiguity and uncertainty. We examine these associations in children, adolescents, 

and emerging adults with varying histories of caregiving adversity. In Study 1 and Study 2, we use 

representational similarity analysis to evaluate whether similarity in neural representations of 

ambiguity and threat varies depending on adversity history. In Study 1, we find that emerging 
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adults who experienced higher levels of abuse and neglect demonstrate greater representational 

similarity between ambiguous and threatening stimuli within threat-sensitive neurocircuitry. These 

results indicate that ELA may predispose an individual to represent ambiguity as threatening at the 

neural level. In Study 2, we sought to replicate these findings in a population of adopted youth 

who had experienced institutionalization in orphanage care, a rare and extreme form of caregiving 

adversity. However, we find that the degree of similarity in neural representations of ambiguity 

and threat does not significantly differ between previously institutionalized and control youth. In 

Study 3, we demonstrate that emerging adults who experienced higher levels of abuse and neglect 

exhibit less avoidance of uncertainty in an explore-exploit task. Together, these three studies 

provide novel insights into how ELA shapes neural and behavioral functioning in the face of the 

unknown and how these processes relate to wellbeing following caregiving adversity. 
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General Introduction. 

Background and significance. 

Exposure to early life adversity (ELA), including experiences of abuse, neglect, and 

institutional care, is a potent risk factor for impaired psychosocial functioning that is estimated to 

account for between 30 to 45% of psychopathologies worldwide (J. G. Green et al., 2010; Kessler 

et al., 2010; McLaughlin et al., 2012). The implications of ELA are wide-reaching, increasing the 

risk of delinquency (Ford et al., 2010; Turner et al., 2016), behavioral problems (Choi et al., 2019; 

Schroeder et al., 2020), social dysfunction (McCrory et al., 2022; Salzinger et al., 1993), and 

psychopathology (Baldwin et al., 2023; J. G. Green et al., 2010; Kessler et al., 2010; McLaughlin 

et al., 2012). Notably, studies suggest that responses to ambiguous and uncertain stimuli are linked 

to mental health (Carleton, 2016; Constans et al., 1999; Lissek et al., 2010) and may play a role in 

psychosocial functioning following adversity exposure (Hayward et al., 2020; Vantieghem et al., 

2017), although research in this area is limited. This dissertation leverages behavioral, 

neuroimaging, and self-report data to investigate how responses to ambiguous stimuli and 

engagement with uncertainty vary as a function of early life adversity. This research examines 

these processes in children, adolescents, and emerging adults from both community samples and 

in a sample specifically recruited based on exposure to extreme ELA in the form of institutional 

orphanage care. Additionally, these studies integrate multimethod analyses, including multivariate 

pattern analyses of neuroimaging data and statistical modeling of behavior, to capture how these 

processes manifest across neural and behavioral domains. Across three studies, this dissertation 

provides insight into how ELA shapes neural representations of ambiguity and behavior in the face 
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of the unknown and, crucially, how these neurobehavioral profiles relate to risk for 

psychopathology. 

Does early life adversity shape responses to ambiguity? 

ELA is hypothesized to disrupt healthy functioning in part by sensitizing neural circuitry 

to motivationally salient and threat-relevant cues (Callaghan & Tottenham, 2016; McLaughlin & 

Sheridan, 2016), resulting in heightened vigilance for potential threat (McLaughlin & Lambert, 

2017; Nusslock & Miller, 2016; Silvers et al., 2017). This sensitization may result in a tendency 

to overestimate threat in ambiguous situations (E. Chen & Matthews, 2001, 2003; Lange et al., 

2019; McLaughlin et al., 2019). Critically, in samples not selected for ELA exposure, the tendency 

to assume threat in the face of ambiguity has been linked to psychosocial challenges (Carleton, 

2016; J. T.-H. Chen & Lovibond, 2020; Dodge, 2006; Taghavi et al., 2000). Moreover, positive 

evaluations of ambiguity have been shown to mitigate risk for psychosocial challenges following 

ELA (Lange et al., 2019; Troller-Renfree et al., 2015, 2017; Vantieghem et al., 2017). Although 

an extensive literature has demonstrated ELA-based differences in neural responses to objectively 

negative cues (da Silva Ferreira et al., 2014; Doretto & Scivoletto, 2018; Herzberg & Gunnar, 

2020; Saarinen et al., 2021), few studies have examined neural responses to ambiguous stimuli as 

a function of adversity exposure. Notably, work in clinical populations suggests that responses to 

ambiguous stimuli are more predictive of psychosocial health than responses to explicitly 

threatening stimuli (Lissek et al., 2010). Examining how ELA shapes responses to ambiguity 

stands to transform our understanding of how early experiences contribute to psychosocial 

outcomes and to eventually identify modifiable protective factors in vulnerable populations. 

Prior behavioral studies suggest that ELA is associated with developmental differences in 

processing ambiguity. For instance, Bick et al. (2017) found that children with a history of 
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institutional orphanage care differed from age-matched comparisons in recognition accuracy for 

ambiguous, but not unambiguous, facial expressions (Bick et al., 2017). Further research has 

demonstrated that ELA-exposed youth tend to interpret ambiguity as threatening more often than 

age-matched peers (Dodge et al., 1990) (although see VanTieghem et al., 2017, which finds the 

opposite). For instance, Chen & Matthews (2001, 2003) demonstrated that low socioeconomic 

status (SES) youth were more likely than high SES youth to interpret ambiguous scenarios as 

threatening, whereas no group differences were observed when presented with explicitly 

threatening scenarios. Similarly, Pollak & Kistler (2002) found that, relative to comparison youth, 

abused children overidentified anger in morphed facial expressions. At present, little is known 

about how ELA exposure impacts ambiguity processing in adulthood, limiting our understanding 

of how enduring the effects of ELA are on interpretations of ambiguity. 

Although several studies suggest that, on average, ELA-exposed individuals overestimate 

threat when evaluating ambiguity, there is marked heterogeneity amongst ELA-exposed 

individuals. Such individual differences may be particularly important for psychosocial 

functioning in ELA-exposed individuals. For example, VanTieghem et al. (2017) found that the 

tendency to evaluate ambiguous facial expressions positively mitigated risk for internalizing 

symptoms in previously institutionalized (PI), but not comparison, youth, suggesting that a 

positivity bias may be a uniquely protective factor for ELA-exposed populations. Ambiguous 

stimuli may thus be useful for probing hypersensitivity to potential threats (Neta et al., 2017; Pollak 

& Kistler, 2002) and more broadly indexing individual differences relevant to psychosocial 

functioning (Lissek et al., 2010; Neta & Brock, 2021; Petro et al., 2021; Puccetti et al., 2020; 

Vantieghem et al., 2017). However, few studies have examined how evaluations of ambiguity 

relate to experiences of ELA or moderate associations between ELA and mental health. Study 1 
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and Study 2 of this dissertation assess whether responses to ambiguous stimuli vary as a function 

of adversity history, and Study 1 examines whether differences in appraisals of ambiguity 

moderate links between ELA and psychosocial wellbeing. 

Neural representations of ambiguity following early life adversity. 

The tendency to appraise ambiguity as threatening may stem in part from difficulty 

distinguishing between ambiguous and threatening stimuli. At the neural level, this may manifest 

in the brain representing ambiguous and threatening information similarly (Lecei & van Winkel, 

2020) — particularly within affective neural circuitry that responds to threatening and valenced 

stimuli. While this possibility has received theoretical support (Lecei & van Winkel, 2020), prior 

empirical work examining neural discrimination among affective cues following ELA has largely 

relied on univariate analyses to capture average BOLD responses to affective stimuli (S. A. Green 

et al., 2016; Tottenham et al., 2011; van Harmelen et al., 2013). While useful, univariate 

approaches rely on averaging brain activity over several units to distill a single index of activity. 

As a result, univariate analyses cannot capture more detailed, distributed patterns of 

representations of ambiguity — or, crucially, how similar these distributed patterns are to 

representations of threat. 

Multivariate tools offer a unique opportunity to examine more detailed, distributed patterns 

of neural activity. Such methods are particularly sensitive to subtle variations in social and 

affective stimuli (Weaverdyck et al., 2020). For example, representational similarity analysis 

(RSA) is a technique that assesses representational overlap between stimulus types (e.g., 

ambiguous versus threatening) based on distributed patterns of voxelwise neural activity 

(Dimsdale-Zucker & Ranganath, 2018; Kriegeskorte, 2008). Using RSA, studies in community 

samples demonstrate that multivariate representations within the amygdala track subtle variations 
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in perceived trustworthiness of ambiguous social stimuli (FeldmanHall et al., 2018; Tashjian et 

al., 2019). RSA may similarly provide insight into whether similarity between multivariate 

representations of ambiguity and threat differs as a function of adversity history. Study 1 and Study 

2 leverage RSA to examine whether individuals with a history of early caregiving adversity 

demonstrate greater similarity between representations of ambiguous and threatening affective 

cues within threat-sensitive neural circuitry. Study 1 (Saragosa-Harris et al., 2024) examines these 

processes in a community sample of emerging adults (ages 18 to 19) who provided retrospective 

reports of experiences of adversity during childhood. Study 2 builds upon Study 1 by employing 

a similar research methodology and analyses in data collected from youth (ages 9.99 to 22.90 

years; mean age = 16.33) with a history of extreme ELA in the form of orphanage care, in addition 

to a comparison group. 

Early life adversity and exploratory behaviors. 

While Study 1 and Study 2 examine how ELA shapes initial responses to ambiguity, Study 

3 seeks to understand the behavioral manifestations of such patterns. Study 3 employs a task in 

which participants actively choose whether to explore unfamiliar, novel options or exploit familiar, 

known options — what researchers refer to as the “explore-exploit dilemma” (Addicott et al., 

2017). By focusing on exploratory decision-making, Study 3 seeks to test whether in addition to 

negative responses to ambiguity — “here and now” situations characterized by vagueness or 

equivocality (the focus of Study 1 and Study 2) — individuals with a history of ELA may similarly 

exhibit negative responses to uncertainty — future-oriented scenarios involving unpredictability 

or obscurity (see Grenier et al., 2005, for discussion of ambiguity versus uncertainty). Given the 

association between exploratory behaviors and mental health (Addicott et al., 2017; Heller et al., 

2020; Saragosa-Harris et al., 2022), understanding how ELA shapes exploratory decision-making 
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has implications for functioning in ELA-exposed individuals, who are at heightened risk for 

developing psychopathology (Kessler et al., 2010). 

Although prior work has demonstrated differences in exploratory decision-making as a 

function of ELA (Humphreys, Lee, et al., 2015; Lloyd et al., 2022; Y. Xu et al., 2023), this work 

has relied on tasks that are unable to distinguish between two important components of exploratory 

decision-making: stimulus novelty and reward uncertainty. In the context of decision-making 

tasks, “novelty” refers to the extent to which a given choice option has been encountered 

previously, whereas “uncertainty” refers to the variance or unpredictability in the reward payout 

associated with that choice option. Given the structure of many decision-making tasks, these two 

attributes are often linked. A choice option that has not been selected previously has both high 

novelty and high uncertainty, as its reward structure is unknown. Selecting the same choice option 

over time minimizes both its novelty and the uncertainty, as one learns the structure of its reward 

payout over the course of many trials. Despite being positively linked — wherein highly novel 

stimuli tend to also have high uncertainty — novelty is generally conceptualized as an appetitive 

or rewarding property of a stimulus (Houillon et al., 2013; Krebs et al., 2009; Wittmann et al., 

2007, 2008) whereas uncertainty is often considered to be aversive (Blankenstein et al., 2016; de 

Berker et al., 2016; Herry et al., 2007). As a result, exploratory choices depend on a balance 

between novelty-seeking and uncertainty-avoidant tendencies (Cockburn et al., 2022; 

Nussenbaum et al., 2023). Although many commonly used tasks confound novelty and 

uncertainty, recent work suggests that these two components have unique effects on exploratory 

behaviors, underscoring the importance of decoupling these two motivators of behavior (Cockburn 

et al., 2022; Nussenbaum et al., 2023). 
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Prior work suggests that ELA could affect sensitivity to both novelty and uncertainty. 

Although research has demonstrated an association between ELA and novelty-seeking tendencies, 

the directionality of this association is inconsistent, even within studies (De Carvalho et al., 2015; 

Schouw et al., 2020). For instance, Schouw et al. (2020) found that while physical abuse predicted 

greater self-reported novelty-seeking, maternal rejection was associated with lower self-reported 

novelty-seeking. Similarly, de Carvalho et al. (2015) found that experiences of abuse, but not 

neglect, were associated with heightened self-reported novelty-seeking, suggesting that 

associations may depend on the type of adversity considered. Research has also demonstrated 

lower tolerance for uncertainty in individuals who experienced high levels of ELA (Hayward et 

al., 2020; Shen et al., 2024) and chronic stress (Raio et al., 2022). Results from Study 1 further 

suggest that individuals with a history of ELA may be more likely to evaluate uncertainty 

negatively. It is thus possible that ELA will be associated with a greater tendency to avoid highly 

uncertain choice options during exploratory decision-making. This pattern of results would align 

with a number of empirical studies (Humphreys, Lee, et al., 2015; Lloyd et al., 2022; Loman et 

al., 2014; Y. Xu et al., 2023) and theoretical models (Frankenhuis & Gopnik, 2023) linking ELA 

to decreased exploration. However, research in anxious individuals suggests that intolerance for 

uncertainty can actually increase engagement with uncertain options in explore-exploit tasks in an 

effort to reduce uncertainty (Aberg et al., 2021). Although prior work has examined the association 

between ELA and exploration, it remains unclear how ELA specifically shapes sensitivity to 

novelty and uncertainty during exploratory decision-making. Study 3 leverages a task that 

decomposes the unique effects of novelty and uncertainty in explore-exploit decision-making to 

examine how these distinct components relate to exploration following childhood adversity. 
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Examining how two distinct motivators of behavior, novelty and uncertainty, shape 

exploratory choices will provide integral insight into the mechanisms linking ELA to potentially 

suboptimal decision-making in adulthood. In addition to their unique effects on exploratory 

decision-making, sensitivity to novelty and uncertainty also have distinct associations with mental 

health challenges (Castellanos-Ryan et al., 2016; McEvoy & Mahoney, 2012). Understanding how 

these two components of exploratory decision-making differ as a function of ELA may also shed 

light on mechanisms linking ELA to psychopathology. 
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Specific Aims and Hypotheses. 

Study 1 aims. 

In a sample of 41 emerging adults (18 to 19-year-olds), Study 1 aims to examine whether 

ELA relates to neural representations of ambiguity within threat-sensitive regions and whether 

behavioral responses to ambiguity moderate links between ELA and wellbeing. 

Study 1 hypotheses. 

Hypothesis 1a. Individuals with higher ELA will demonstrate greater sensitivity to threat, 

indicated by greater similarity (i.e., less differentiation) in their representations of ambiguous and 

threatening images within the four regions of interest (the amygdala, nucleus accumbens, anterior 

insula, and vmPFC) but not in the tested control region (V1). 

Hypothesis 1b. Individuals exposed to greater levels of ELA will be more likely to 

appraise the ambiguous images negatively and will exhibit worse global functioning. 

Hypothesis 1c. Individual differences in behavioral responses to ambiguity processing will 

moderate links between ELA and global functioning, such that positive evaluations of ambiguity 

will mitigate the negative association between ELA and global functioning. 

Hypothesis 1d. Based on prior work demonstrating that taking longer to evaluate 

ambiguity is associated with more positive evaluations — potentially reflecting an adaptive 

regulatory process (Neta & Tong, 2016) — we hypothesize that longer response times to 

ambiguous images will mitigate the negative association between ELA and global functioning. 
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Study 2 aims. 

In a sample of 81 youth (ages 9.99 to 22.90 years; mean age = 16.33), Study 2 builds upon 

Study 1 by applying a similar analytical framework to a sample of youth who were exposed to 

extreme ELA in the form of orphanage care (N = 36) and comparison youth (N = 45). Based on 

Study 1, Study 2 tests four regions of interest (the amygdala, nucleus accumbens, anterior insula, 

and vmPFC) and one control region (V1). Study 2 tests two competing hypotheses regarding how 

similarity in neural representations of ambiguous and threatening cues may vary with ELA history 

and evaluates whether links between ELA and anxiety are moderated by neural responses to 

ambiguity. 

Study 2 hypotheses. 

Based on findings from Study 1 and previous literature, we expect to see group differences 

in neural representations of ambiguity between PI and control groups. However, contradicting 

findings from the few studies examining responses to ambiguity as a function of ELA suggest that 

these differences could unfold in several ways. Here, we consider two possibilities. 

Threat sensitivity hypothesis. Results from Study 1 suggest that ELA is associated with 

greater similarity (i.e., less differentiation) in neural representations of ambiguous and threatening 

images — potentially reflecting hypersensitivity to potential threat. Based on these results, the 

threat sensitivity hypothesis posits that, relative to the comparison group, the PI group will 

demonstrate greater similarity in representations of ambiguous and threatening stimuli within the 

regions of interest but not the control region. 

Accelerated maturation hypothesis. Behavioral work in PI youth, however, presents an 

alternative possibility. VanTieghem et al. (2017) found that, relative to comparison youth, six- to 

fourteen-year-old PI youth were more likely to interpret ambiguous cues positively (i.e., exhibit a 
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positive valence bias), a behavioral phenotype the authors consider to reflect more “adult-like” 

processing and potentially indicate accelerated development. Given the older age range of our 

sample (ages 9 to 22), group differences arising from putative differences in maturation will likely 

be more difficult to detect. That said, it is still possible that this observed tendency for PI youth to 

respond more positively to ambiguous cues may be similarly evident on the neural level even in 

our older sample. The accelerated maturation hypothesis therefore posits that, relative to the 

comparison group, the PI group will demonstrate greater similarity in representations of 

ambiguous and nonthreatening stimuli within the regions of interest but not the control region. 

Anxiety hypotheses. We hypothesize that individuals in the PI group will exhibit higher 

anxiety levels. Based on prior work (Lange et al., 2019), we also will test whether representational 

overlap between ambiguous and threatening, or ambiguous and nonthreatening, stimuli within the 

amygdala moderate the relationship between ELA group (PI or control) and anxiety levels. 

Study 3 aims. 

While Study 1 and Study 2 aim to examine immediate neural responses to ambiguous cues, 

Study 3 focuses on how ELA relates to exploratory behaviors. In a sample of 554 emerging adults 

(ages 18 to 25 years), this study investigates how novelty and uncertainty of choice options affect 

exploratory decision-making and tests whether the effects of novelty and uncertainty on 

exploratory choices differ as a function of caregiving adversity. 

Study 3 hypotheses. 

Hypothesis 3a. Individuals with higher cumulative ELA (indicated by total CTQ score) 

will demonstrate lower sensitivity to reward (i.e., their choices will be less value-driven) in an 

explore-exploit decision-making task. 
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Hypothesis 3b. Individuals with higher cumulative ELA will exhibit lower novelty-

seeking behavior (i.e., a lower tendency to explore novel options). 

Hypothesis 3c. Individuals with higher cumulative ELA will exhibit greater aversion to 

reward uncertainty (i.e., a greater tendency to avoid choice options associated with greater reward 

uncertainty). 

 Hypothesis 3d. In exploratory analyses, we hypothesize that the unique effects of novelty 

and reward uncertainty on exploration will differ based on the type of adversity experienced. In 

these analyses, we will consider the effects of childhood abuse, childhood neglect, and 

unpredictability in the caregiving environment. 
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Study 1: Neurobehavioral responses to ambiguity following early life adversity in emerging 

adults. 

Introduction.  

Exposure to early life adversity (ELA) is hypothesized to sensitize threat-responsive neural 

circuitry (Callaghan & Tottenham, 2016; Hein & Monk, 2017; McLaughlin & Sheridan, 2016; 

Nusslock & Miller, 2016). This may lead individuals to overestimate threat in the face of ambiguity 

(E. Chen & Matthews, 2001, 2003; Lange et al., 2019; McLaughlin et al., 2019), a cognitive-

behavioral phenotype linked to poor mental health (Carleton, 2016; Constans et al., 1999; Lissek 

et al., 2010). The tendency to process ambiguity as threatening may stem in part from difficulty 

distinguishing between ambiguous and threatening cues (Lecei & van Winkel, 2020). However, it 

is unknown how exposure to ELA relates to neural representations of ambiguous and threatening 

stimuli, or how processing of ambiguity following ELA relates to psychosocial functioning.  

In this study, we used RSA to investigate similarity in neural representations of ambiguous 

and threatening images as a function of ELA history. We chose to focus on the transition from 

adolescence to adulthood (i.e., “emerging adulthood”) (Arnett et al., 2014) based on prior work 

suggesting that individual differences in responses to ambiguity are particularly important for 

shaping wellbeing during this period of development (Bardi et al., 2009; Silvers & Peris, 2023). 

This developmental stage is characterized by a number of ambiguous challenges (e.g., moving to 

a new and unfamiliar city for college or a first job, choosing a career path, living independently 

for the first time). The uncertainties associated with emerging adulthood are thought to be 

especially stressful during the earliest stages of this transitional period, when these novel stressors 

are the most unfamiliar and ambiguous (Bardi et al., 2009). For this reason, we recruited freshmen 

college students in order to capture this initial transition period in which ambiguity is thought to 
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be most closely linked to wellbeing (Bardi et al., 2009). Our decision to focus on this 

developmental stage was additionally motivated by work demonstrating heightened risk for 

psychopathology during the transition to adulthood (Arnett et al., 2014), especially within 

populations with a history of caregiving adversity (van der Vegt et al., 2009). 

A sample of 41 emerging adults with varying levels of ELA exposure underwent fMRI 

while viewing ambiguous, threatening, and nonthreatening images. Outside of the scanner, 

participants rated the images. We hypothesized that individuals with higher ELA would 

demonstrate greater sensitivity to threat, indicated by greater similarity (i.e., less differentiation) 

in their representations of ambiguous and threatening images. We expected this pattern to be 

specific to ambiguity and threat — that is, we did not expect to see ELA-based differences in 

representational overlap between ambiguous and nonthreatening, or between threatening and 

nonthreatening, images. These hypotheses were tested in four a priori regions of interest, selected 

based on (1) their sensitivity to motivationally salient stimuli, especially ambiguous and potentially 

threatening signals, and (2) research demonstrating ELA-related differences in function within 

these regions: the amygdala (Fareri & Tottenham, 2016; FeldmanHall et al., 2018; Tashjian et al., 

2019; P. Xu et al., 2021), nucleus accumbens (Fareri & Tottenham, 2016; Gee et al., 2018; Ray et 

al., 2020; P. Xu et al., 2021), anterior insula (Hein & Monk, 2017; Menon & Uddin, 2010; Tanovic 

et al., 2018; P. Xu et al., 2021), and ventromedial prefrontal cortex (vmPFC) (Chavez & 

Heatherton, 2015; Cohodes et al., 2021; Hart et al., 2018; P. Xu et al., 2021). 

Given that ELA is associated with impairments across a broad range of domains, we also 

assessed global functioning, a construct that encapsulates mental health as well as other features 

of psychosocial functioning (Pirkis et al., 2005; Wing et al., 1998). We hypothesized that 

individuals exposed to greater levels of ELA would be more likely to appraise the ambiguous 
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images negatively and exhibit worse global functioning. While prior work has demonstrated robust 

effects of ELA on emotional outcomes, it has also revealed marked heterogeneity among ELA-

exposed groups (Callaghan et al., 2019; Gee, 2021; Lange et al., 2019; Silvers et al., 2017; Stevens 

et al., 2021). Thus, we also tested whether individual differences in behavioral responses to 

ambiguity processing moderated links between ELA and global functioning. Based on prior work, 

we hypothesized that positive evaluations of ambiguity would be associated with better global 

functioning in high ELA individuals (Lange et al., 2019; Troller-Renfree et al., 2015, 2017; 

Vantieghem et al., 2017). Lastly, prior work demonstrates that taking longer to evaluate ambiguity 

is associated with more positive evaluations — potentially reflecting an adaptive regulatory 

process (Neta & Tong, 2016). We sought to replicate this finding and determine whether ELA 

moderates links between time spent evaluating ambiguity and global functioning, which ostensibly 

encompasses aspects of self-regulation. 

 

Methods. 

Code availability. 

All task and analysis code for this study are available on GitHub 

(https://github.com/nsaragosaharris/earlylifeadversity_ambiguity_study). 

 

Participants. 

We recruited healthy participants via flyers and online recruitment. An a priori, planned 

sample size of 40 was selected based on prior neuroimaging studies that used similar multivariate 

modeling techniques to the planned analyses (Dimsdale-Zucker & Ranganath, 2018; FeldmanHall 

et al., 2018; Stolier & Freeman, 2016). In total, 41 participants completed neuroimaging and the 
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post-scan behavioral task (N = 29 females, age = 18 to 19 years old, 𝑋age = 18.34, SDage = 0.48). 

Three participants did not complete the questionnaire assessing global functioning (see 

Questionnaires). Sample demographics and summary statistics for questionnaire data can be found 

in Table 1. Participants provided written consent. All study procedures were completed in 

accordance with the University of California Los Angeles Institutional Review Board (IRB# 19-

001000). 

Participants completed questionnaires at an initial lab session and subsequently underwent 

fMRI testing within two weeks of their lab session. Immediately after fMRI testing, participants 

completed a behavioral task (described below). Participants were compensated for participation. 
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Table 1. Sample demographics and summary statistics for questionnaire data. 

 

Participant inclusion criteria. 

Data were collected as part of a larger study investigating mental health in individuals 

transitioning from adolescence to adulthood. Eligibility for inclusion in the study was based on the 
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following criteria and assessed via brief in-person interview and MRI screening form: (1) 

individuals in their freshman year of college who were at least 18 years old; (2) no medical or 

psychiatric conditions contraindicating study participation (e.g., psychosis); (3) no current use of 

a psychiatric medication; (4) no current treatment for anxiety or depression; (5) no presence of 

metal in the body; (6) no current report of pregnancy; (7) no pressing mental health concern 

requiring immediate follow up (e.g. psychosis); and (8) no fear of enclosed spaces 

(claustrophobia). 

 

Questionnaires. 

Early life adversity. Early life adversity was measured using the Childhood Trauma 

Questionnaire Short Form (CTQ-SF) (Bernstein et al., 2003), a 28-item scale that assays 

experiences of emotional abuse, emotional neglect, physical abuse, physical neglect, and sexual 

abuse before age fourteen. The CTQ-SF has been validated in clinical and non-clinical samples 

and corresponds well to therapists’ interview-based ratings of abuse and neglect (Bernstein et al., 

2003). For each item, participants rated on a scale of 1 to 5 (1 = never true, 5 = very often true) 

how much they agreed with various statements (e.g., “I believe that I was physically abused”). 

Responses were totaled across subtypes of abuse and neglect, with higher scores indicating greater 

experiences of childhood trauma. Total scores were log-transformed and then z-scored to meet the 

assumptions of the planned statistical tests (i.e., normality). 

Self-reported ambiguity tolerance. Self-reported ambiguity tolerance was measured using 

the Multiple Stimulus Types Ambiguity Tolerance Scale-II (MSTAT-II), a 13-item self-report 

questionnaire that has been validated in adults (McLain, 2009). The MSTAT-II assesses reactions 

to five types of ambiguous stimuli: generally ambiguous stimuli (“I prefer a situation in which 
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there is some ambiguity”), complex stimuli (“I enjoy tackling problems that are complex enough 

to be ambiguous”), uncertain stimuli (“I find it hard to make a choice when the outcome is 

uncertain” (reverse scored)), new/unfamiliar/novel stimuli (“I generally prefer novelty over 

familiarity”), and insoluble/illogical/irreducible/internally inconsistent stimuli (“I try to avoid 

problems that don’t seem to have only one ‘best’ solution” (reverse scored)). Participants rated 

their level of agreement with each statement on a five-point Likert scale (1 = strongly disagree, 5 

= strongly agree). Scores across all items were totaled, with greater scores indicating greater 

tolerance for ambiguity (McLain, 2009). 

Global functioning. Global functioning was measured by the self-rated version of the 

Health of the Nation Outcomes Scale for Children and Adolescents (HoNOSCA-SR) (Gowers et 

al., 2002), a 13-item measure based on the Health of the Nation Outcomes Scale (Wing et al., 

1998) that assesses functioning across four domains of symptoms and functioning: behavioral 

problems (aggressive/antisocial, overactivity/attention, self-harm, substance misuse), impairment 

(scholastic/language skills, physical disability), symptomatic problems (hallucinations and 

delusions, non-organic somatic symptoms, emotional and related symptoms), and social problems 

(peer relationships, self-care and independence, family life and relationships, poor school 

attendance) (Pirkis et al., 2005). The HoNOSCA-SR has been validated (Pirkis et al., 2005) and 

correlates with a number of other mental health scales (Gowers et al., 2002). For each item on the 

HoNOSCA, participants used a 5-point Likert scale to indicate the degree to which they were 

affected by a given symptom or experience (e.g., “Have you been troubled by your disruptive 

behavior, physical or verbal aggression?”) in the last two weeks (0 = “Not at all”, 1= 

“Insignificantly”, 2 = “Mild but definitely”, 3 = “Moderately”, 4 = “Severely”). Responses across 

the 13 items were totaled, with higher scores indicating poorer functioning. 
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fMRI task and analyses. 

fMRI paradigm. The fMRI task used an event-related design coded in PsychoPy2 (Peirce 

et al., 2019). Stimuli were drawn from the racially diverse affective expression (RADIATE) 

dataset (Conley et al., 2018). Participants viewed a set of faces with 99 unique actors from the 

RADIATE dataset while undergoing fMRI scanning. Actors in the selected images were 22% 

Asian, 32% Black/African American, 19% Hispanic or Latinx, and 26% White. 51% were female. 

Each of the 99 actors had three unique images, each with a different facial expression: angry, 

happy, and surprised. Based on prior work, angry, happy, and surprised faces were considered the 

threatening, nonthreatening, and ambiguous stimuli, respectively (Neta et al., 2017; Pine et al., 

2005; Pollak & Kistler, 2002; Vantieghem et al., 2017). 

Participants viewed a single image per trial. Within each run (three total), participants 

viewed 33 threatening (angry), 33 nonthreatening (happy), and 33 ambiguous (surprised) faces in 

addition to 9 blurred images (a composite of all face images), for a total of 108 trials per run and 

324 total trials (Figure 1A). Each stimulus was presented for 500 ms. Every actor was shown three 

times (once per run), each time with a different facial expression (threatening, nonthreatening, or 

ambiguous). Participants were asked to press the button box only when they saw the blurred image 

(attention check trials). Between trials, there was a jittered fixation cross. Jitter times were created 

in OptSeq2 (https://surfer.nmr.mgh.harvard.edu/optseq/; mean length = 3 seconds, range = 1.5 to 

8 seconds). Each run lasted 6 minutes and 36 seconds in total. Images within each of the three runs 

were shown in a randomized order and the order of runs was counterbalanced across participants. 

fMRI acquisition. Data were acquired on a 3T Siemens Magnetom Prisma scanner using a 

32-channel head coil. Functional data were acquired using the following parameters: voxel size = 

2.0 × 2.0 × 2.0 mm, slices = 60 (interleaved), slice thickness = 2.0 mm, repetition time (TR) = 
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1000 ms, echo time (TE) = 37 ms, flip angle = 60°, field of view = 208 mm, multiband 

acceleration = 6x. AutoAlign was used to position and align slices. Structural images were 

acquired using a high-resolution MPRAGE sequence (voxel size = 0.8 × 0.8 × 0.8 mm; TR = 2400 

ms, echo time = 2.22 ms, field of view = 256 mm, slice thickness = 0.8 mm, 208 slices). 

fMRI preprocessing. Processing of fMRI data was carried out using FEAT (FMRI Expert 

Analysis Tool) Version 6.00, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). 

Functional data was registered to participants’ high resolution structural images using boundary 

based registration (BBR) (Greve & Fischl, 2009). High resolution structural images were 

registered to standard space (MNI 2.0 x 2.0 x 2.0 mm stereotaxic space) with 12 degrees of freedom 

using FLIRT (FMRIB’s Linear Image Registration Tool) (Jenkinson et al., 2002; Jenkinson & 

Smith, 2001). Preprocessing included motion correction using MCFLIRT (Jenkinson et al., 2002) 

using 24 standard and extended regressors, non-brain extraction using BET (Brain Extraction 

Tool) (Smith, 2002), grand-mean intensity normalization, and high-pass temporal filtering 

(Gaussian-weighted least-squares straight line fitting, with sigma = 50.0s). Based on similar 

multivariate pattern analysis (MVPA) and RSA work (Glenn et al., 2020; Harry et al., 2013; Jin et 

al., 2015; Lee et al., 2020; Liang et al., 2017; Tashjian et al., 2019) and current recommendations 

(Dimsdale-Zucker & Ranganath, 2018; Misaki et al., 2013; Weaverdyck et al., 2020), in order to 

maintain fine-grained spatial details across voxels for RSA, we did not apply smoothing for 

multivariate analyses. For univariate analyses only, we used 3.5 mm full-width half maximum 

smoothing. Analyses were carried out using FILM (FMRIB’s Improved Linear Model) 

prewhitening with local autocorrelation correction (Woolrich et al., 2001). 

Our a priori, preregistered exclusion criteria required that (1) runs in which a participant 

responded to fewer than 5 of the 9 of the catch trials in the fMRI task (i.e., button presses in 
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response to blurred images) were to be excluded and (2) any participants with less than two usable 

runs (based on this response criterion) were to be excluded. However, no participants met 

exclusionary criteria for lack of responding. 

First level modeling. BOLD response patterns were modeled separately by trial expression 

type (threatening, nonthreatening, or ambiguous) in FSL using first level (i.e., within-participant, 

within-run) models, each of which included a regressor for each expression type. Blurred face 

trials (attention checks) were modeled but not further analyzed. Between-trial fixation crosses 

served as implicit baseline (i.e., were not explicitly modeled). This resulted in three general linear 

models (GLMs) per participant (one per run), each of which included BOLD estimates for 

threatening, nonthreatening, and ambiguous trials. Temporal derivatives for all regressors were 

included as covariates. Regressors were modeled using a double-gamma hemodynamic response 

function (HRF). To account for head motion, individual volumes with a framewise displacement 

greater than 0.9 mm were included as regressors (spike regressors created using 

‘fsl_motion_outliers’). Motion regressors and their derivatives were included as regressors of no 

interest. 

Regions of interest. Four regions of interest (ROIs; amygdala, nucleus accumbens, anterior 

insula, and vmPFC) were selected a priori based on (1) their hypothesized role in responding to 

motivationally salient stimuli, especially ambiguous and potentially threatening signals (Tanovic 

et al., 2018) and (2) research demonstrating ELA-related functional differences within these 

regions (Fareri & Tottenham, 2016). An additional region, V1, was tested as a control region 

expected to respond to the affective visual stimuli (Kragel et al., 2019) but not expected to differ 

in functional activity based on ELA. The amygdala and nucleus accumbens were defined based on 

FSL’s Harvard-Oxford atlas and were thresholded in MNI space using Harvard-Oxford’s 
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probabilistic masks, which specify the probability that a given voxel falls within the specified brain 

region. The amygdala was thresholded at p = 0.50 and the nucleus accumbens was thresholded at 

p = 0.25 based on prior work (Guassi Moreira et al., 2021; Tashjian et al., 2019) and visual 

inspection of anatomical alignment. V1 was defined based on FSL’s Juelich atlas (Amunts et al., 

2000) and thresholded at p = 0.75. For the anterior insula and vmPFC, which are less structurally 

defined than the amygdala and nucleus accumbens, masks from Xu et al. (2021), a meta-analysis 

of regions involved in processing facial expressions (including angry, happy, and surprised faces), 

were used. All masks were originally defined in MNI space and transformed into functional space 

in FSL for each participant prior to multivariate (RSA) analyses. Because masks were participant-

specific and in native functional space, there was variability in ROI size. In cases in which an ROI-

based statistical estimate was significant, we conducted sensitivity analyses in which we controlled 

for the number of voxels within the ROI to ensure that differences in ROI size across participants 

did not affect statistical estimates. Because the univariate analyses (Supplemental Figure 2) used 

the estimates from second level models, which are provided by FSL in MNI space, no additional 

transformations were applied for these analyses. 

Representational similarity analysis. The function ‘NiftiMasker’ in the Python package 

‘nilearn’(Abraham et al., 2014) was used to extract vectors of voxel-level coefficients within each 

ROI. All vectors were participant-specific, run-specific, ROI-specific, and condition-specific: 

Each vector corresponded to a regressor of interest (ambiguous, threatening, or nonthreatening) 

from the aforementioned GLMs for a given ROI per run (e.g., run 1 ambiguous vector, run 1 

threatening vector, run 1 nonthreatening vector). These vectors were used to compute three 

pairwise Pearson correlations (ambiguous/threatening, ambiguous/nonthreatening, 

threatening/nonthreatening) for each run. Next, these correlations were averaged across runs, 
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resulting in three correlations per ROI for a given participant (Figure 1B). Fisher’s r-to-z 

transformation was then applied to the averaged Pearson correlation values (Dimsdale-Zucker & 

Ranganath, 2018). These z-transformed values represent similarity in patterns of representations 

between (1) ambiguous and threatening, (2) ambiguous and nonthreatening, and (3) threatening 

and nonthreatening facial expressions within a given ROI, with greater values indicating relatively 

greater similarity in voxelwise patterns of activation. Parallel analyses were run in a control region 

(V1). We hypothesized that individuals with higher ELA would demonstrate greater similarity 

(“overlap”) in their representations of ambiguous and threatening images within the four ROIs (but 

not V1), and did not expect to see ELA-based differences in representational overlap between 

ambiguous and nonthreatening, or between threatening and nonthreatening, images. 
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Figure 1. Study 1 task and analysis design. During the MRI task (A), participants passively viewed 

threatening, nonthreatening, and ambiguous faces. Catch trials included a blurred image and 

required a button box response. In representational similarity analyses (B), each expression type 

was modeled to create three multivoxel, vectorized patterns (within participant, run, and ROI). 

Pairwise correlations (indicated by arrows) were computed to index relative similarity between 

patterns of responses. 

 

Post-scan categorization task. 

Paradigm. Participants completed a surprise, post-scan task in which they were shown a 

subset of images seen in the fMRI task. After completing six practice trials, participants were 

shown 200 images (100 ambiguous) over ten blocks (ten ambiguous, five threatening, and five 

nonthreatening faces per block). Block order was randomized and faces within each block task 

were shown in a randomized order. More ambiguous faces (N = 100) were shown because this was 
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the primary condition of interest for this study. On each trial, participants pressed a button to 

indicate whether the person in the image “feels good” or “feels bad” (Vantieghem et al., 2017) by 

pressing a button on the keyboard (1 or 0, counterbalanced across participants). Each face was 

presented for 500 ms, followed by a screen with text requesting their response, which lasted for 

1500 ms regardless of when they responded (Figure 2). Early responses (during the initial 500 ms 

presentation screen) were accepted and included in analyses. If participants made more than one 

response, their final appraisal was used in analysis to minimize the possibility of analyzing 

responses made in error. A 200ms fixation cross was included between trials (Figure 2). In 

between blocks, there was a ten second fixation screen. 

 

Figure 2. Study 1 post-scan behavioral categorization task. During the post-scan behavioral 

categorization task, participants categorized a subset of the previously seen threatening (angry), 

nonthreatening (happy), and ambiguous (surprised) faces as “feels good” or “feels bad” (0 or 1, 

counterbalanced across participants) outside of the scanner. The stimulus was presented for 500 

ms, followed by a screen with text requesting their response, which lasted for 1500 ms regardless 

of when they responded. 
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Behavioral data analysis. To index an individual’s propensity to interpret ambiguous faces 

negatively (“negativity bias”), we computed the percent of ambiguous trials in which participants 

selected the “feels bad” option. Based on prior work examining responses to ambiguity (Neta & 

Tong, 2016), we also computed average response times (RTs) by expression type (threatening, 

nonthreatening, ambiguous), as well as RT differences by expression type. 

Sensitivity analyses of post-scan behavioral task. One participant demonstrated a decline 

in performance partway through the post-scan task, which resulted in five blocks in which this 

participant had low accuracy on angry trials due to repeated button presses. To account for these 

blocks in which this participant appeared not to be engaging with the task, we conducted sensitivity 

analyses for all statistical models involving data from the post-scan task. In these analyses, we 

excluded this participant’s response data from the five blocks in which their accuracy on angry 

and happy trials was less than 80% (N = 100 usable trials). Unless otherwise stated, all reported 

results from behavioral analyses remained after excluding this participant’s low-accuracy blocks. 

 

Results. 

ELA, global functioning, and post-scan task behavior. 

 ELA and global functioning. As hypothesized, individuals with greater self-reported ELA 

reported poorer global functioning (i.e., higher HoNOS scores; β = 0.32, 95% CI [0.02, 0.63], t(35) 

= 2.19, p = 0.04). 

ELA and self-reported ambiguity tolerance. We expected ELA to predict decreased self-

reported ambiguity tolerance (i.e., lower MSTAT scores). Contrary to our hypothesis, we did not 

observe a significant association between ELA and self-reported ambiguity tolerance (β = -0.05; 

t(98) = -0.49; p = 0.63). 
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Post-scan task behavior. We conducted one-tailed t-tests to ensure that accuracy was 

significantly above chance performance (50%) on the threatening and non-threatening (i.e., 

unambiguous) trials in the post-scan task. These analyses were conducted in order to verify that 

participants understood the task instructions. Results confirmed that participants correctly rated 

angry facial expressions negatively (mean accuracy = 0.93; t(40) = 30.6; p < 0.001) and happy 

facial expressions positively (mean accuracy = 0.96; t(40) = 71.5; p < 0.001). This pattern of high 

accuracy and agreement in ratings also verified that the valences of these two types of images were 

indeed unambiguous. In line with prior work (Neta et al., 2009), participants took longer on 

average to evaluate surprised faces than angry (t(40) = 8.23, mean difference = 0.069 ms, 95% CI 

[0.05, 0.09], p < 0.001) or happy (t(40) = 9.85, mean difference = 0.097 ms; 95% CI [0.08, 0.12], 

p < 0.001) faces, supporting the idea that that surprised facial expressions are more ambiguously 

valenced. In line with prior work (Neta & Tong, 2016), across participants, surprised trials were 

interpreted negatively more often than positively (Figure 3C). 
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Figure 3. Distributions of questionnaire scores and behavioral data. (A) Distribution of Childhood 

Trauma Questionnaire (CTQ) total scores. (B) Distribution of Health of the Nation Outcomes 

Scale (HoNOS) total scores. Note that greater scores indicate greater impairment in global 

functioning.(C) Distribution of negativity biases, or percent of surprised trials (N = 100 total) 

interpreted negatively in the behavioral task. 
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 ELA, negativity biases, and global functioning. We next tested whether ELA or global 

functioning related to negativity biases (i.e., the percent of ambiguous trials categorized 

negatively). After controlling for global functioning, individuals with greater ELA scores 

demonstrated a greater negativity bias (categorized a greater number of ambiguous faces 

negatively; β = 0.34, 95% CI [0.002, 0.68], t(34) = 2.04, p = 0.049). After excluding one 

participant’s low-accuracy blocks in a sensitivity analysis (see Sensitivity analyses of post-scan 

behavioral task for description), this association was trending (β = 0.34, 95% CI [-0.005, 0.68], 

t(34) = 2.00, p = 0.05). Based on this sensitivity analysis and given that, on their own, neither ELA 

(Supplemental Table 1) nor global functioning (Supplemental Table 2) was associated with 

negativity biases, we caution against strong interpretation of this finding. Contrary to our 

hypothesis, ELA and negativity biases did not interact to predict psychosocial functioning (β = 

0.10, 95% CI [-0.20, 0.41], t(33) = 0.69, p = 0.50; Supplemental Table 3). 

Task reaction times and evaluations of ambiguous stimuli. We next examined the 

relationship between reaction time (RT) and evaluations of the stimuli. Between-subject average 

RTs to ambiguous images did not predict negativity biases (Supplemental Table 4). However, in 

line with prior work (Neta & Tong, 2016), longer within-subject, trial-level RTs predicted more 

positive ratings of ambiguous stimuli in a multilevel model (OR = 1.95; 95% CI [1.44, 2.65], z = 

4.29, p < 0.01). 

Based on prior work suggesting that taking time to evaluate ambiguity may engage emotion 

regulation processes (Neta et al., 2022), we sought to determine whether ELA moderated 

association between time spent evaluating ambiguous (relative to unambiguous) stimuli and global 

functioning. We observed an interaction between RT differences and ELA exposure, such that 

taking more time on average to evaluate ambiguous, relative to threatening (b = 5.88, 95% CI 
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[0.81, 10.95], t(33) = 2.36, p = 0.02; Figure 4A) and nonthreatening (b = 6.86, 95% CI [0.73, 

12.99], t(33) = 2.28, p = 0.03; Figure 4B), images was associated with better global functioning, 

specifically in individuals with lower ELA scores. 

 

 

Figure 4. ELA interacted with reaction time to ambiguous cues to predict global functioning. For 

individuals exposed to lower levels of ELA, taking more time on average to evaluate ambiguous, 

relative to threatening (A) and nonthreatening (B) images was associated with better global 

functioning. The simple slopes for the association between ambiguous vs. threatening reaction 

difference and global functioning (A) are b = 4.36 and b = -13.28 for high and low ELA, 

respectively. The simple slopes for the association between ambiguous vs. nonthreatening reaction 

difference and global functioning (B) are b = 7.58 and b = -13.01 for high and low ELA, 

respectively. ELA was measured continuously, but is plotted categorically, at high (z = 1.5, in 

green) and low (z = -1.5, in gray) levels for visualization purposes only. Shaded regions represent 

95% confidence intervals. 
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ELA and similarity in neural representations of nonthreatening, threatening, and ambiguous 

stimuli. 

Using RSA, we tested our hypothesis that individuals with higher self-reported ELA would 

demonstrate greater similarity (“overlap”) in representations of ambiguous and threatening stimuli 

within the regions of interest. We expected this association to be specific to ambiguous/threatening 

overlap — that is, we hypothesized no association between ELA and ambiguous/nonthreatening 

overlap or threatening/nonthreatening overlap. 

Representational overlap: Ambiguous and threatening stimuli. As hypothesized, 

individuals exposed to higher levels of ELA demonstrated greater similarity (“overlap”) in 

multivariate representations of ambiguous and threatening stimuli bilaterally within the amygdala, 

nucleus accumbens, anterior insula, and vmPFC, but not within the control region, V1 (Table 2; 

Figure 5). All associations remained significant after controlling for the number of voxels within 

a participant’s ROI and after adjusting for multiple comparisons across different ROIs by using 

false discovery rate (FDR)-corrected q values (Benjamini & Hochberg, 1995). 
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Region Standardized 

beta value 

95% CI t value p value q value Adjusted for ROI 

size 

Amygdala 

Right β = 0.05 [0.02, 

0.08] 

t(38) = 3.31 p < 0.01 q = 0.01 β = 0.05 [0.02, 

0.08], 

t(37) = 3.26, p < 

0.01 

Left β = 0.05 [0.02, 

0.08] 

t(38) = 3.07 p < 0.01 q = 0.01 β = 0.05 [0.02, 

0.08], 

t(37) = 3.00, p < 

0.01 

Nucleus accumbens     

Right β = 0.03 [0.01, 

0.06] 

t(38) = 2.44 p = 0.02 q = 0.04 β = 0.03 [0.01, 

0.06], 

t(37) = 2.43, p = 

0.02 

Left β = 0.04 [0.01, 

0.07] 

t(38) = 3.16 p < 0.01 q = 0.01 β = 0.04 [0.02, 

0.07], 

t(37) = 3.20, p < 

0.01 

Anterior insula 

Right β = 0.04 [0.01, 

0.07] 

t(38) = 2.78 p < 0.01 q = 0.02 β = 0.04 [0.01, 

0.07], 

t(37) = 2.52, p = 

0.02 

Left β = 0.04 [0.003, 

0.08] 

t(38) = 2.20 p = 0.03 q = 0.04 β = 0.04 [0.0003, 

0.08], 

t(37) = 2.04, p = 

0.049 

vmPFC 

Right β = 0.04 [0.01, 

0.07] 

t(38) = 2.36 p = 0.02 q = 0.04 β = 0.04 [0.01, 

0.08], 

t(37) = 2.38, p = 

0.02 

Left β = 0.04 [0.003, 

0.07] 

t(38) = 2.24 p = 0.03 q = 0.04 β = 0.03 [0.003, 

0.07], 

t(37) = 2.18, p = 

0.04 

V1 (control region) 
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Right β = -0.01 [-0.07, 

0.05] 

t(38) = -

0.27 

p = 0.79 q = 0.88 β = -0.01 [-0.07, 

0.05], 

t(37) = -0.24, p = 

0.81 

Left β = 0.005 [-0.06, 

0.07] 

t(38) = 0.15 p = 0.88 q = 0.88 β = 0.01 [-0.06, 

0.07], 

t(37) = 0.24, p = 

0.81 

 

Table 2. ELA was positively associated with greater similarity in multivariate representations of 

ambiguous and threatening stimuli in the four regions of interest. The same pattern was not evident 

in V1, the control region tested. Table includes the standardized beta coefficients and test statistics 

from a linear regression with z-scored log-transformed CTQ scores as the predictor and Fisher z-

transformed ambiguous/threatening RSA values as the outcome. Table includes false discovery 

rate (FDR)-corrected q values that adjust for multiple comparisons across different regions. 

Column on the right includes the same statistics after participant-specific ROI size was added as a 

covariate in the model. 
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Figure 5. ELA and representational overlap between ambiguous and threatening stimuli. As 

hypothesized, individuals exposed to higher levels of ELA demonstrated greater representational 

overlap between ambiguous and threatening stimuli bilaterally within the nucleus accumbens, 

amygdala, anterior insula, and vmPFC, but not within V1 (control region). 
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Representational overlap: Ambiguous and nonthreatening stimuli. We next tested whether 

ELA was associated with representational overlap between ambiguous and nonthreatening stimuli. 

Contrary to our hypothesis, we found that ELA was positively associated with greater similarity 

in multivariate representations of ambiguous and nonthreatening stimuli in the right amygdala (β 

= 0.03; 95% CI [0.01, 0.06]; t(38) = 2.56, p = 0.01), even after controlling for participant-specific 

number of voxels within the region (β = 0.03, 95% CI [0.01, 0.06], t(37) = 2.51, p = 0.02). 

However, this was no longer significant following FDR-corrected adjustments for multiple 

comparisons across different ROIs (FDR-adjusted q = 0.14; Supplemental Table 7). Although a 

similar pattern was observed in the right anterior insula, this association did not reach significance 

(β = 0.03; 95% CI [0.00, 0.06]; t(38) = 1.96, p = 0.06). This association was not evident within 

any of the other regions tested (Supplemental Table 6). 

Representational overlap: Threatening and nonthreatening stimuli. We next tested 

whether ELA was associated with representational overlap between threatening and 

nonthreatening stimuli. Contrary to our hypothesis, we found that individuals with higher ELA 

scores evidenced greater similarity in representations of threatening and nonthreatening stimuli 

within the right anterior insula (β = 0.03, 95% CI [0.003, 0.06], t(38) = 2.23, p = 0.03), even after 

controlling for the number of voxels within the region (β = 0.04, 95% CI [0.01, 0.06], t(37) = 2.51, 

p = 0.02). However, this was no longer significant following FDR-corrected adjustments for 

multiple comparisons across different ROIs (FDR-adjusted q = 0.22; Supplemental Table 9). This 

association was not evident in the left anterior insula or within any of the other regions tested 

(Supplemental Table 8). 
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Associations between brain, behavior, and global functioning. 

Representational overlap between ambiguous and threatening stimuli and global 

functioning. We hypothesized that greater representational overlap between ambiguous and 

threatening stimuli would be associated with poorer global functioning. However, we did not 

observe any significant associations between global functioning and representational similarity 

between ambiguous and threatening stimuli (Supplemental Table 10). 

Representational overlap between ambiguous and threatening stimuli and post-scan task 

behavior. We hypothesized that greater representational similarity between ambiguous and 

threatening stimuli would predict greater negativity biases in the post-scan task, but we did not 

observe this hypothesized association (Supplemental Table 11). 

 

Discussion. 

Exposure to ELA impacts the development of threat-sensitive neural circuitry (Fareri & 

Tottenham, 2016; Herzberg & Gunnar, 2020). Altered functioning within these networks may 

underlie hypersensitivity to potential threat in the face of ambiguity, potentiating risk for impaired 

psychosocial functioning (Lecei & van Winkel, 2020; Nusslock & Miller, 2016). Leveraging RSA 

to characterize multivariate representations of affective stimuli, we find that emerging adults 

exposed to ELA demonstrated greater similarity (“overlap”) in their representations of ambiguous 

and threatening images within affective and threat-sensitive circuitry. Notably, rather than a 

general effect in which individuals with a history of ELA simply exhibited general impairments in 

differentiating among affective cues, we found that ELA specifically related to attenuated 

discrimination between ambiguity and threat. These results were not evident in the tested control 

region (V1), suggesting specificity of the effect to threat-sensitive affective circuitry commonly 
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found to be affected by ELA exposure (Cohodes et al., 2021; Fareri & Tottenham, 2016; Hein & 

Monk, 2017). 

These results provide support for Lecei and van Winkel’s (2020) theoretical model, which 

stipulates that ELA results in impaired pattern separation (i.e., impaired differentiation, or greater 

similarity) of emotional information, specifically in the presence of negative or ambiguous stimuli. 

In turn, this impairment is hypothesized to result in increased fear generalization, threat 

anticipation, and psychopathological symptoms. Our behavioral findings suggest that individual 

differences in processing ambiguity relate to global functioning, and that this association varies as 

a function of ELA exposure. Crucially, we examined these processes in individuals experiencing 

the transition from adolescence to adulthood. During this developmental stage, risk for 

psychopathology is heightened (Solmi et al., 2022) — especially within populations with a history 

of caregiving adversity (van der Vegt et al., 2009) — and responses to ambiguity are believed to 

have an increased effect on mental health (Bardi et al., 2009; Silvers & Peris, 2023). Results from 

the current study have implications both for basic models regarding how ELA shapes neural 

representations of threat and ambiguity, as well as for the role that ambiguity processing may play 

in psychosocial functioning following early life adversity. 

  

Effects of ELA on representations of threat and ambiguity. 

The tendency to represent ambiguity similarly to threat following ELA may reflect an 

adaptive, learned response stemming from childhood experiences (Lecei & van Winkel, 2020). 

When repeatedly faced with threatening experiences, it is rational to infer threat when presented 

with an ambiguous scenario (Dunsmoor & Paz, 2015). Furthermore, having a low threshold for 

threat detection is an adaptive response that serves to protect an individual living in a high-threat 

environment from further harm (Boyce & Ellis, 2005; Chaby et al., 2015; Pollak & Kistler, 2002). 
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The observed pattern of results, in which ELA-exposed individuals demonstrate impaired neural 

differentiation between ambiguous and threatening social cues, could stem from hypersensitive 

threat detection mechanisms. Notably, associations with ELA were only robustly observed when 

comparing neural representations of ambiguous and threatening cues, suggesting that ELA-

exposed individuals do not simply exhibit general impairments in differentiating among affective 

cues. This specificity in observed results dovetails with existing theoretical models of 

hypersensitivity to threat (McLaughlin & Lambert, 2017), especially in the face of ambiguity 

(Lecei & van Winkel, 2020), following early life adversity. However, given that representational 

similarity did not predict subsequent appraisals of the ambiguous stimuli, it is possible that while 

rapid, initial responses to ambiguity are highly similar to responses to threat in ELA-exposed 

individuals, top-down compensatory mechanisms regulate responses in the decision-making 

phase. The role of potential regulatory mechanisms is especially important to consider given that 

participants were from a sample of college students with relatively healthy psychosocial 

functioning. Further research on how initial representations of ambiguity and regulatory processes 

interact to shape behavior is warranted. 

  

Ambiguity processing and psychosocial functioning after ELA exposure. 

Contrary to our hypothesis, we did not observe a robust association between ELA and 

negativity biases in interpretations of ambiguity. Replicating prior work (Neta & Tong, 2016), we 

found that taking longer to evaluate ambiguous, relative to unambiguous, stimuli predicted 

subsequent positive appraisals, lending support to the idea that positive evaluations of ambiguity 

may require top-down regulatory mechanisms (Neta et al., 2022; Neta & Tong, 2016). Based on 

research linking responses to ambiguous stimuli to psychosocial outcomes (Lissek et al., 2010; 

Williams et al., 2015), we tested whether behavioral responses to ambiguity related to global 
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functioning, and whether this differed as a function of ELA exposure. In line with the notion that 

slower responses to ambiguity reflect regulatory processes, taking longer to evaluate ambiguous 

relative to unambiguous images was associated with better global functioning, specifically in 

individuals with lower ELA levels. Research suggests that more deliberative and regulated 

responses are more advantageous in predictable environments (Kidd et al., 2013). In line with this 

reasoning, the observed interaction suggests that reliance on slower and ostensibly more calculated 

evaluations of ambiguity are associated with better functioning in individuals with low exposure 

to adversity. Investigation in a larger sample is needed to understand how this effect differs at 

various levels of ELA exposure and whether these group differences are driven by variations in 

self-regulation or other relevant mechanisms. 

  

Strengths and limitations. 

The current study offers novel insights into the associations between ELA and neural 

processing of emotional information by leveraging multivariate pattern analyses. Our analytic 

approach enabled us to examine distributed patterns of brain activity within affective circuitry and, 

crucially, test similarity between multivariate representations of ambiguity and threat. This study 

design also allowed us to demonstrate specificity in our findings in that we provide evidence that 

these effects primarily pertain to ambiguity and threat, and within putatively affective, threat-

sensitive circuitry. That said, given the limited sample size, the results from this study should be 

treated as provisional. Future studies replicating the current findings in a larger longitudinal sample 

could provide greater clarity into how ELA shapes representations of ambiguity. 

Prior research suggests that negative responses to ambiguity may reflect hypersensitivity 

in the affective processes that govern rapid threat detection (J. T.-H. Chen & Lovibond, 2016; 

Grupe & Nitschke, 2013; Mathews et al., 1997). Based on this work, we designed a task to probe 
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rapid, uninstructed representations of ambiguity while participants were in the scanner. To this 

end, we asked participants to simply view the images while in the scanner and measured explicit 

categorizations of the images during the post-scan task. An important next step for future research 

is to characterize neural representations during the interpretation stage in which participants 

explicitly evaluate the valence of ambiguous stimuli. Moreover, based on similar prior work 

(Vantieghem et al., 2017), and to avoid biasing responses, participants rated whether the person in 

the image “feels good” or “feels bad”. As a result, we did not capture explicit ratings of threat. 

Future work may benefit from a more precise measurement of the extent to which participants 

interpret the images as threatening. 

Lastly, we measured ELA by incorporating retrospective reports of abuse and neglect into 

a broader summary measure. Examining ELA continuously via CTQ scores enabled us to 

demonstrate a linear relationship between severity of adversity history and the degree of similarity 

in representations of ambiguity and threat. While we did not have adequate power to investigate 

how different dimensions of experiences (e.g., threat or unpredictability in the caregiving 

environment) may differentially shape representations of ambiguity, this is an important avenue 

for future research. 

  

Conclusion. 

Exposure to ELA, including experiences of abuse and neglect, is estimated to account for 

between 30 to 45% of psychopathologies worldwide (J. G. Green et al., 2010; Kessler et al., 2010; 

McLaughlin et al., 2012). Using multivariate pattern analysis, we provide novel insight into how 

ELA shapes threat-sensitive neural circuitry, evidencing reduced neural differentiation between 

ambiguous and threatening cues in ELA-exposed individuals, and link behavioral responses to 

ambiguity to psychosocial wellbeing during the transition to adulthood. Interventions that target 
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responses to ambiguity may be particularly powerful in mitigating the detrimental effects of 

adverse early experiences.  
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Study 2: Neurobehavioral responses to ambiguity following early life adversity in 

previously institutionalized youth. 

Introduction. 

In Study 1, we examined multivariate representations of threatening and ambiguous social 

cues in a community sample of 41 emerging adults (aged 18 to 19 years). Using representational 

similarity analysis, we assessed neural representations of ambiguous and threatening images 

within affective neural circuitry (amygdala, nucleus accumbens, anterior insula, and vmPFC) and 

tested whether similarity in these representations varied by early life adversity (ELA) exposure 

(self-reported abuse and neglect during childhood). Results from Study 1 suggest that emerging 

adults with greater ELA demonstrate greater similarity (“overlap”) in their representations of 

ambiguous and threatening images within affective and threat-sensitive circuitry. Study 2 built 

upon these findings by testing similar associations (within the same ROIs and control region) in a 

sample of youth specifically recruited based on history of extreme ELA in the form of 

institutionalized orphanage care. This study tested two competing hypotheses regarding how 

similarity in neural representations of ambiguous and threatening cues varies between previously 

institutionalized (PI) and comparison youth and evaluated whether links between ELA and anxiety 

are moderated by neural responses to ambiguity. 

Study 2 shares many similarities with Study 1 but diverges methodologically in several 

crucial ways. Firstly, Study 1 examined these processes in a sample of emerging adults (18- to 19-

year-olds) who retrospectively reported experiences of neglect and abuse during childhood (before 

the age of fourteen). Based on these retrospective accounts, cumulative ELA was examined as a 

continuous variable within this community sample. Study 2 expands this research by comparing 

representations of ambiguity and threat between a specialized sample of previously 
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institutionalized (PI) youth and a group of comparison youth, ranging from ages 9.99 to 22.90 

years (mean age = 16.33). In doing so, this work not only tests these processes in a unique sample 

with a specific history of ELA, but also expands the age range in question to include a broader 

range of adolescents and emerging adults. Secondly, whereas Study 1 operationalized threatening 

and ambiguous social cues as angry and surprised faces respectively, Study 2 uses fearful and 

neutral faces as the threatening and ambiguous cues. Prior work in PI samples has similarly used 

fearful and neutral faces to probe processing of threat-related and emotional cues (Silvers et al., 

2017; Tottenham et al., 2011). Moreover, prior work in developmental samples has compared 

reactions to surprised and neutral faces as ambiguous stimuli and found that, for both expression 

types, individuals vary in their interpretations (suggesting that these stimuli do have ambiguous 

properties), with a bias toward negative interpretations in children and adolescents (Tottenham et 

al., 2013). This suggests that both surprised and neutral facial expressions can be used to probe 

reactions to ambiguous stimuli in developmental samples (Tottenham et al., 2013). Therefore, 

unlike Study 1 (which used angry and surprised faces), in Study 2, fearful and neutral faces serve 

as the threatening and ambiguous cues. This difference in task design enabled us to examine 

whether the previously observed associations replicate in a task with similar, but distinct stimuli. 

If so, this would suggest that prior findings do not simply reflect an artifact of the visual properties 

of the previously used stimuli and are not specifically linked to the specific emotions portrayed 

(i.e., angry and surprised faces). In doing so, this would lend support for the hypothesis that the 

ambiguous nature of expressions with unclear valence (i.e., surprised or neutral faces), coupled 

with the threatening nature of negatively valenced stimuli (i.e., angry or fearful faces), are the 

central component linking ELA to differences in representational similarity — that is, rather than 

depending on a specific emotion type (such as anger), the observed effects more broadly reflect 
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neural representations of ambiguous and threatening cues. Lastly, although differences in 

ambiguity tolerance are linked to several forms of psychopathology (Boswell et al., 2013; Einstein, 

2014; McEvoy & Mahoney, 2012), negative interpretations of ambiguity are most consistently 

linked to anxiety disorders (J. Chen et al., 2020; Norr et al., 2013). Given the heightened risk for 

anxiety in PI youth (Silvers et al., 2017; Tottenham et al., 2010), Study 2 examined wellbeing in 

terms of anxiety, rather than the more general measure of global functioning examined in the Study 

1 sample. 

Given the unique experiences of the PI youth in this sample, a group exposed to a rare and 

extreme form of adversity, and the age differences between the two samples we expected that 

findings might differ from Study 1 findings. Based on Study 1 and previous literature, we expected 

to see group differences in neural representations of ambiguity between PI and control groups. 

However, contradicting findings from the few studies examining responses to ambiguity as a 

function of ELA suggest that these differences could unfold in several ways. Here, we consider 

two possibilities, which we refer to as the threat sensitivity hypothesis and the accelerated 

maturation hypothesis. Results from Study 1 suggest that ELA is associated with greater similarity 

in neural representations of ambiguous and threatening images — potentially reflecting 

hypersensitivity to potential threat. Based on these results, the threat sensitivity hypothesis posits 

that, relative to the comparison group, the PI group would demonstrate greater similarity in 

representations of ambiguous and threatening stimuli within the regions of interest but not the 

control region. Behavioral work in PI youth, however, presents an alternative possibility. 

VanTieghem et al. (2017) found that, relative to comparison youth, six-to fourteen-year-old PI 

youth were more likely to interpret ambiguous cues positively (i.e., exhibit a positive valence bias), 

a behavioral phenotype the authors consider to reflect more “adult-like” processing and potentially 
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indicate accelerated development. This could suggest that different forms of ELA elicit different 

developmental consequences with regards to ambiguity processing. Given the older age range of 

our sample (ages 9 to 22), group differences arising from putative differences in maturation will 

likely be more difficult to detect. That said, it is still possible that this observed tendency for PI 

youth to respond more positively to ambiguous cues may be similarly evident on the neural level 

even in our older sample. The accelerated maturation hypothesis therefore posits that, relative to 

the comparison group, the PI group would demonstrate greater similarity in representations of 

ambiguous and nonthreatening stimuli within the regions of interest but not the control region. 

Based on several studies demonstrating heightened anxiety in PI youth (Silvers et al., 2017; 

Tottenham et al., 2010), we hypothesized that individuals in the PI group would exhibit higher 

anxiety levels. We also tested whether representational overlap between ambiguous and 

threatening or ambiguous and nonthreatening stimuli within the amygdala moderated the 

relationship between group (PI vs. control) and anxiety levels. Based on prior work, we 

hypothesized that greater overlap between representations of ambiguous and nonthreatening 

stimuli within the amygdala would buffer anxiety (Saragosa-Harris et al., 2023), and that this 

buffering effect would be pronounced in the PI group (Lange et al., 2019). 

 

Methods. 

Participants. Data from this study are part of a larger longitudinal study examining brain 

development and mental health following early life adversity. The final sample size was 

determined by the number of participants with usable fMRI data who completed the task and did 

not exceed motion thresholds. Participants who had 20% or more of individual volumes across the 

task with a framewise displacement greater than 0.9 mm were excluded. After this criteria, 81 
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participants were included in analyses (N = 47 female; ages 9.99 to 22.90 years; mean age = 16.33). 

This sample includes previously institutionalized (PI) youth (N = 36 total; N = 25 female; mean 

age = 17.50) who were exposed to extreme ELA in the form of orphanage care and comparison 

youth (N = 45 total; N = 22 female; mean age = 15.38). The mean age of the PI group was 

significantly higher than the mean age of the control group (t(78.83) = 2.88, 95% CI [0.66, 3.59], 

p = 0.01). Participant demographics are included in Table 3 below. 

All study procedures were completed in accordance with the University of California Los 

Angeles Institutional Review Board (IRB 19-000001). Methods and analysis plans were 

preregistered on Open Science Framework prior to analyses (https://osf.io/2793f/). 

 

Table 3. Participant self-reported demographics. 

https://osf.io/2793f/
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Questionnaires. 

Self-reported anxiety. To assess self-reported anxiety symptomatology, participants ages 

18 and older (N = 30) were administered the State-Trait Anxiety Inventory (STAI) Form Y (C. 

Spielberger et al., 1983), which measures state and trait anxiety symptoms. For the 20 items on the 

state anxiety subscale, participants are asked to describe the extent to which they agree each 

statement indicates how they feel “right now, at this moment” using a four-point Likert scale (1 = 

not at all, 2 = somewhat, 3 = moderately so, 4 = very much so). Similarly, for the 20 items on the 

trait anxiety subscale, participants use the same Likert scale to rate the extent to which they agree 

each statement indicates how they generally feel. The STAI is a commonly used anxiety measure 

that has been validated in adults and the state and trait subscales have been shown to have high 

internal consistency (C.D. Spielberger et al., 1971). Scores for the trait subscale, which we 

analyzed in this study, have been shown to be stable over time (C.D. Spielberger et al., 1971). 

Scores are totaled within each subscale to indicate overall state and trait anxiety, with higher scores 

indicating higher anxiety. 

Participants younger than age 18 (N = 51) were administered the child version of the Screen 

for Child Anxiety Related Disorders (SCARED), a 41-item questionnaire assaying anxiety 

symptoms. Their parent or caregiver was also administered a version of the questionnaire in which 

they answered the questions about their child. For each item on the scale, participants are asked to 

rate the extent to which they agree each statement describes how they have (or their child has) felt 

in the last three months using a three point Likert scale (0 = not true or hardly ever true, 1 = 

somewhat true or sometimes true, 2 = very true or often true). The SCARED has been validated 

in children and adolescents (Birmaher et al., 1997, 1999; Monga et al., 2000) and corresponds well 

to the STAI trait subscale (Monga et al., 2000). The SCARED measures anxiety symptoms across 
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five factors: panic/somatic, generalized anxiety, separation anxiety, social anxiety, and significant 

school avoidance. Item responses yield scores for each of the five subscales. A total score is 

calculated by totaling responses across all items. 

In order to include child and adult self-reported anxiety scores in the same model, anxiety 

scores were normalized (z-scored) by age group (corresponding to which questionnaire they 

completed) in order to put the SCARED and STAI total scores on the same scale. 

 

fMRI task and analysis plan. 

fMRI paradigm. Participants completed an emotional go/no-go task (Hare et al., 2008) 

while undergoing fMRI imaging. In the task, participants were shown a series of neutral, fearful, 

and happy facial expressions from four female actors from the NimStim dataset (Tottenham et al., 

2009). Here, neutral faces are considered the ambiguous stimulus, fearful faces are considered the 

threatening stimulus, and happy faces are considered the nonthreatening stimulus. There were two 

runs in the task, each of which had 48 trials total. In both runs, there were 24 neutral image trials. 

One run had 24 fearful image trials and the other had 24 happy image trials (Figure 6). Run order 

was counterbalanced across participants. On each trial, participants were shown an image on the 

screen for 500 ms. A fixation cross was presented in between trials with a jitter between 300 to 

1000 ms. Participants were instructed to press the button box when they saw a neutral face. 
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Figure 6. Study 2 task design. Participants viewed ambiguous (neutral), threatening (fearful), and 

nonthreatening (happy) faces in the fMRI task and were instructed to press the button box when 

they saw a neutral face. Same actress shown here for illustrative purposes. 

 

fMRI acquisition. Data were acquired on a 3T Siemens Magnetom Prisma scanner using a 

32-channel head coil. Functional data were acquired using the following parameters: voxel size = 

3.0 x 3.0 x 4.0 mm, slices = 33 (interleaved), slice thickness = 4.0 mm, repetition time (TR) = 2000 

ms, echo time (TE) = 30 ms, flip angle = 75°, field of view = 192 mm. AutoAlign was used to 

position and align slices. Structural images were acquired using a high-resolution MPRAGE 

sequence (voxel size = 0.8 x 0.8 x 0.8 mm; TR = 2400 ms, echo time = 2.22 ms, field of view = 

256 mm, slice thickness = 0.8 mm, 208 slices). 



 51 

fMRI preprocessing. Processing of fMRI data was carried out using FEAT (FMRI Expert 

Analysis Tool) Version 6.00, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). 

Functional data were registered to participants’ high resolution structural images using boundary 

based registration (BBR) (Greve & Fischl, 2009). High resolution structural images were 

registered to standard space (MNI 2.0 x 2.0 x 2.0 mm stereotaxic space) with 12 degrees of freedom 

using FLIRT (FMRIB’s Linear Image Registration Tool) (Jenkinson et al., 2002; Jenkinson & 

Smith, 2001) and FNIRT nonlinear registration (J. Andersson et al., 2007; J. L. Andersson et al., 

2007). Preprocessing included motion correction using MCFLIRT (Jenkinson et al., 2002) using 

24 standard and extended regressors, non-brain extraction using BET (Brain Extraction Tool) 

(Smith, 2002), grand-mean intensity normalization, and high-pass temporal filtering (Gaussian-

weighted least-squares straight line fitting, with sigma = 50.0s). As in Study 1, we did not apply 

smoothing for multivariate analyses. For univariate analyses only (Supplemental Figure 4), we 

used 3.5 mm full-width half maximum smoothing. We used FILM (FMRIB’s Improved Linear 

Model) prewhitening with local autocorrelation correction (Woolrich et al., 2001) in analyses. 

First level modeling. As in Study 1, BOLD response patterns were modeled in FSL using 

first level (i.e., within-participant, within-run) models. There were two general linear models 

(GLMs) per participant (one per run). One run GLM included a regressor for threatening (fearful) 

and ambiguous (neutral) trials and the other included a regressor for nonthreatening (happy) and 

ambiguous (neutral) trials. Regressors were modeled using a double-gamma hemodynamic 

response function (HRF). Fixation crosses presented between trials were not explicitly modeled 

and served as implicit baseline. Temporal derivatives for all regressors were included as covariates. 

To account for head motion, individual volumes with a framewise displacement greater than 0.9 
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mm were included as regressors (spike regressors created using ‘fsl_motion_outliers’). Motion 

regressors and their derivatives were included as regressors of no interest. 

Regions of interest. We applied representational similarity analyses in the same four 

regions of interest (ROIs; amygdala, nucleus accumbens, anterior insula, and vmPFC) in Study 1, 

which were chosen based on (1) their hypothesized role in responding to motivationally salient 

stimuli, especially ambiguous and potentially threatening signals (Tanovic et al., 2018) and (2) 

research demonstrating ELA-related functional differences within these regions (Fareri & 

Tottenham, 2016). As in Study 1, we tested V1 as a control region expected to respond to the 

affective visual stimuli (Kragel et al., 2019). We used the same procedures as in Study 1 to define 

these five regions (see Regions of Interest in Study 1 for a detailed description). 

Representational similarity analysis. We used the same procedures as in Study 1 to conduct 

representational similarity analysis. The primary difference is that, while Study 1 had three runs 

of the task (and thus three first level models per participant), Study 2 only had two runs of the task 

(and thus two first level models per participant). As in Study 1, we used the function ‘NiftiMasker’ 

in the Python package ‘nilearn’ (Abraham et al., 2014) to extract vectors of voxel-level coefficients 

within each ROI. Each vector corresponded to a regressor of interest (ambiguous, threatening, or 

nonthreatening) from the aforementioned first level model for a given ROI per run. Thus, each 

vector was participant-specific, run-specific, ROI-specific, and condition-specific. We used these 

vectors to compute two pairwise Pearson correlations between stimulus conditions 

(ambiguous/threatening and ambiguous/nonthreatening), resulting in two correlations per ROI for 

a given participant. We then applied Fisher’s r-to-z transformation to the averaged Pearson 

correlation values (Dimsdale-Zucker & Ranganath, 2018) to represent ROI-specific similarity in 

patterns of representations between (1) ambiguous and threatening and (2) ambiguous and 
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nonthreatening facial expressions, with greater values indicating relatively greater similarity in 

voxelwise patterns of activation. 

 

Statistical analyses. 

To test the threat sensitivity hypothesis, we used a linear regression to test whether, after 

controlling for age, relative to the comparison group, the PI group demonstrates greater similarity 

in representations of ambiguous and threatening stimuli within the regions of interest but not the 

control region. To test the accelerated maturation hypothesis, we used a linear regression to test 

whether, after controlling for age, relative to the comparison group, the PI group demonstrates 

greater similarity in representations of ambiguous and nonthreatening stimuli within the regions 

of interest but not the control region. Given the significant difference in age between the PI and 

control group, we also performed sensitivity analyses in which we controlled for linear age when 

testing these associations. 

We used a linear regression to test whether there are group differences in anxiety levels. 

We hypothesized that individuals in the PI group would exhibit higher anxiety levels. Additionally, 

we tested interactions to determine whether representational overlap between ambiguous and 

nonthreatening, or ambiguous and nonthreatening, stimuli within the amygdala moderate the 

relationship between group (PI vs. control) and anxiety levels. 

 

Results. 

 ELA group and anxiety. Using a linear regression, we examined whether, after controlling 

for age group (child or adult), ELA group (PI or control) predicted z-scored self-reported anxiety 

scores. In order to include child and adult self-reported anxiety scores in the same model, anxiety 
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scores were normalized (z-scored) by age group in order to put the SCARED and STAI total scores 

on the same scale. Neither age group (b = 0.09, 95% CI [-0.387, 0.57], t(77) = 0.40, p = 0.69) nor 

ELA group (b = 0.35, 95% CI [-0.11, 0.81], t(77) = 1.53, p = 0.13) predicted self-reported anxiety 

scores. We then examined the relationship between ELA group and total anxiety scores separately 

by age group. Among participants 18 years or older, ELA group was not significantly associated 

with self-reported STAI anxiety scores (b = 0.42, 95% CI [-0.36, 1.20], t(27) = 1.10, p = 0.28). 

Among participants younger than 18 years old, ELA group was not significantly associated with 

self-reported SCARED anxiety scores (b = 0.31, 95% CI [-0.28, 0.90], t(49) = 1.07, p = 0.29). For 

participants younger than 18 years old, we also examined caregiver-reported SCARED total 

scores. Although caregiver-reported anxiety was higher on average in the PI group, there was not 

a significant group difference in scores (b = 0.51, 95% CI [-0.07, 1.08], t(47) = 1.77, p = 0.08). 

Thus, although the PI group demonstrated greater mean anxiety scores, there were no significant 

group differences in total self-reported anxiety scores between the PI and control groups (Figure 

7). 
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Figure 7. Anxiety by ELA group and age group. Adult participants (ages 18 and older) were 

administered the State-Trait Anxiety Inventory (STAI) Form Y, while child participants (younger 

than 18 years) were administered the self-report Screen for Child Anxiety Related Disorders 

(SCARED) questionnaire, and their caregivers were administered the caregiver-report SCARED 

questionnaire to answer on their behalf. Reporter for a given questionnaire is indicated in 

parentheses. For both the STAI and SCARED questionnaires, total scores were normalized (z-

scored) by age group in order to put the total scores from the separate questionnaires on the same 

scale. 

 

 Average representational similarity values. For descriptive purposes, we calculated the 

average representational overlap values (Fisher z-transformed correlations) between threatening 

(fearful) and ambiguous (neutral) images and between nonthreatening (happy) and ambiguous 

(neutral) images in the five regions of interest. Here, we report averages and standard deviations 

of the Fisher z-transformed correlations within each region across the entire sample. Average 

Fisher z scores corresponding to representational overlap between threatening and ambiguous 

representations were as follows: amygdala (μ = 0.86; sd = 0.07), nucleus accumbens (μ = 0.86; sd 
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= 0.06), anterior insula (μ = 0.85; sd = 0.06), vmPFC (μ = 0.85; sd = 0.05), and V1 (μ = 0.90; sd = 

0.07). Average Fisher z scores corresponding to representational overlap between nonthreatening 

and ambiguous representations were as follows: amygdala (μ = 0.84; sd = 0.06), nucleus 

accumbens (μ = 0.84; sd = 0.06), anterior insula (μ = 0.84; sd = 0.07), vmPFC (μ = 0.84; sd = 

0.07), and V1 (μ = 0.87; sd = 0.07). 

ELA group and representational similarity between threatening and ambiguous images. 

We next tested whether ELA group predicted representational overlap between threatening 

(fearful) and ambiguous (neutral) images in the five regions of interest. In these models, ELA 

group (PI or control) was the predictor variable and Fisher z-transformed correlations between 

angry and neutral images within a given region of interest (ROI) was the outcome variable. To 

account for between-participant differences in the size of a given ROI, participant-specific number 

of voxels within a given region was included as a control variable. Contrary to the threat sensitivity 

hypothesis, ELA group was not significantly associated with representational similarity between 

threatening and ambiguous images within the amygdala (b = -0.01, 95% CI [-0.05, 0.02], t(76) = 

-0.80, p = 0.43), nucleus accumbens (b = 0.01, 95% CI [-0.02, 0.03], t(76) = 0.50, p = 0.62), 

anterior insula (b = 0.02, 95% CI [-0.01, 0.04], t(76) = 1.17, p = 0.25), or vmPFC (b = -0.001, 95% 

CI [-0.03, 0.02], t(75) = -0.04, p = 0.97). There was also not a significant association between ELA 

group and representational similarity between threatening and ambiguous images within V1 (b = 

0.02, 95% CI [-0.01, 0.06], t(75) = 1.36, p = 0.18), the control region (Figure 8a). These 

associations remained nonsignificant after controlling for linear age (Supplemental Table 12). 

Average representational similarity values (i.e., Fisher z-transformed correlations) between 

threatening and ambiguous images by ELA group and region are provided in Table 4. 
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ELA group and representational similarity between nonthreatening and ambiguous 

images. We next tested whether ELA group predicted representational overlap between 

nonthreatening (happy) and ambiguous (neutral) images in the five regions of interest. In these 

models, ELA group (PI or control) was the predictor variable and Fisher z-transformed correlations 

between happy and neutral images within a given region of interest (ROI) was the outcome 

variable. Participant-specific number of voxels within a given region was included as a control 

variable. Contrary to the accelerated maturation hypothesis, ELA group was not significantly 

associated with representational similarity between nonthreatening and ambiguous images within 

the amygdala (b = 0.01, 95% CI [-0.02, 0.04], t(77) = 0.79, p = 0.43), nucleus accumbens (b = -

0.004, 95% CI [-0.03, 0.02], t(77) = -0.28, p = 0.78), anterior insula (b = -0.01, 95% CI [-0.04, 

0.02], t(77) = -0.49, p = 0.63), or vmPFC (b = 0.01, 95% CI [-0.02, 0.04], t(77) = 0.41, p = 0.68). 

There was also not a significant association between ELA group and representational similarity 

between nonthreatening and ambiguous images within V1 (b = 0.005, 95% CI [-0.03, 0.04], t(76) 

= 0.28, p = 0.78), the control region (Figure 8b). These associations remained nonsignificant after 

controlling for linear age (Supplemental Table 13). Average representational similarity values (i.e., 

Fisher z-transformed correlations) between nonthreatening and ambiguous images by ELA group 

and region are provided in Table 4. 
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(A) 

 
(B) 

 
Figure 8. Representational similarity by ELA group. Representational similarity (i.e., overlap), 

corresponding to Fisher z-transformed correlations, between (A) threatening and ambiguous 

images and (B) nonthreatening and ambiguous images by ELA group and region. 
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Table 4. Average and standard deviation of representational similarity (i.e., overlap), 

corresponding to Fisher z-transformed correlations, between threatening and ambiguous images 

and nonthreatening and ambiguous images by ELA group and region. 

 

Interactions between ELA group and representational similarity in the amygdala in 

predicting anxiety. In a previous study (Saragosa-Harris et al., 2023), we found that greater 

representational overlap between nonthreatening and ambiguous images within the amygdala 

buffered anxiety symptoms in emerging adults. We tested interactions to evaluate whether ELA 

group and representational similarity between threatening and ambiguous images (Supplemental 

Table 14), or nonthreatening and ambiguous images (Supplemental Table 15), within the amygdala 

interact to predict anxiety symptoms. Age group, which corresponded to which anxiety 

questionnaire participants completed, was included as a control variable. Contrary to our 

hypotheses, we did not observe a significant interaction between ELA group and representational 

overlap between threatening and ambiguous images (b = 0.15, 95% CI [-6.17, 6.48], t(73) = 0.05, 

p = 0.96) or between ELA group and representational overlap between nonthreatening and 

ambiguous images (b = -2.32, 95% CI [-9.41, 4.76], t(74) = -0.65, p = 0.52) in predicting self-

reported anxiety. 
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Discussion. 

 Early life adversity is estimated to affect approximately over 60% of American youth 

(Merrick et al., 2018). Institutionalization in orphanage care, however, is an exceedingly rare and 

extreme form of adversity. Individuals adopted from orphanages represent an incredibly unique 

group: These youth not only had the rare experience of institutional rearing during infancy, but 

they also experienced an uncommon and significant shift in their caregiving environment early in 

development in the form of adoption to a stable home. Prior work in PI youth has linked this form 

of caregiving deprivation to a number of psychopathologies (Humphreys, Gleason, et al., 2015; 

Tottenham et al., 2010; Wiik et al., 2011; Zeanah et al., 2009), as well as broader difficulties with 

attention (Gunnar et al., 2007) and emotion regulation (Tottenham et al., 2010). Research within 

this population offers key insights into how severe caregiving deprivation — specifically during 

infancy and early toddlerhood — has persistent effects on mental health into adulthood. In Study 

2, we examined how previous institutionalization shapes multivariate neural representations of 

ambiguity and threat. Using representational similarity analysis (RSA), we compared similarity in 

neural representations of ambiguous and threatening, and ambiguous and nonthreatening, images 

in previously institutionalized (PI) and comparison youth. Contrary to our hypotheses, 

representational similarity did not significantly differ by ELA group. Moreover, neural similarity 

patterns did not relate to anxiety symptomatology. Although these patterns do not mirror those 

observed in Study 1, there are notable differences in study design between the two studies that may 

account for differences in observed results. 

 Prior work suggests that neurobehavioral responses to ambiguity are predictive of mental 

health challenges (Carleton, 2016; Taghavi et al., 2000). Given the robust links between previous 

institutionalization and mental health challenges (Humphreys, Gleason, et al., 2015; Tottenham et 
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al., 2010; Wiik et al., 2011; Zeanah et al., 2009), Study 2 aimed to characterize representations of 

ambiguity in this unique population to test whether this might form a mechanistic link between 

experiences and risk for psychopathology. In Study 1, we found that individuals with greater ELA 

history demonstrated greater similarity in representations of ambiguity and threat, patterns that 

could reflect hypervigilance to potential threat. Based on these findings and other work linking 

ELA to threat hypervigilance (Pollak & Kistler, 2002), the threat sensitivity hypothesis posited 

that relative to the comparison group, the PI group would demonstrate greater similarity in 

representations of ambiguous and threatening stimuli. However, we did not observe any significant 

group differences in representational similarity between ambiguous and threatening images within 

any of the regions of interest. 

Although some studies link ELA to more negative or threatening evaluations of ambiguous 

social cues (i.e., decreased ambiguity tolerance), others evidence seemingly opposite patterns. For 

instance, prior research has demonstrated unusually trusting behavior toward unfamiliar adults in 

youth who have experienced caregiving adversity, patterns that could suggest greater tolerance for 

ambiguous social cues. Specifically, prior work has noted high levels of “indiscriminate 

friendliness” in PI youth (Chisholm, 1998) and maltreated foster youth (Pears et al., 2010). In these 

cases, children exhibit affectionate or friendly behavior toward unfamiliar adults, including 

strangers, without exhibiting the fearful or cautious behaviors considered typical for their 

developmental stage. The tendency to respond to strangers as though they are a trusted adult rather 

than exhibiting a fear response typical for their developmental stage could reflect more optimistic 

evaluations of ambiguous social cues. In line with this work, VanTieghem et al. (2017) found that 

PI youth were more likely than comparison youth to interpret ambiguous facial expressions 

positively. VanTieghem et al. (2017) considered this pattern to reflect more “adult-like” processing 
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and potentially indicate accelerated development in the PI group. Although our sample included 

an older age range of participants — making it difficult to assess whether between-group 

differences indicate accelerated development — it is still possible that this observed tendency for 

PI youth to respond more positively to ambiguous cues could be similarly evident on the neural 

level in older samples. Based on this reasoning, the accelerated maturation hypothesis posited 

that, relative to the comparison group, the PI group would demonstrate greater similarity in 

representations of ambiguous and nonthreatening stimuli. I describe this prior work to illustrate 

the conflicting evidence in the literature for how ELA shapes representations of ambiguity but 

underscore that we do not find evidence in the present study for ELA altering representations of 

ambiguity in one way or another. 

There are a number of methodological differences between the tasks used in Study 1 and 

Study 2 that may account for the differences in observed results. The stimuli used in the two studies 

differed in multiple ways. While Study 1 used angry faces as the threatening stimulus and surprised 

faces as the ambiguous stimulus, Study 2 used fearful faces as the threatening stimulus and neutral 

faces as the ambiguous stimulus. Moreover, Study 1 used 99 unique actors, each shown once per 

expression type, while Study 2 showed only four unique actors. By averaging responses from trials 

using a greater number of unique actors, patterns from Study 1 may have provided more reliable 

or generalized estimates for representations of each image type (threatening, nonthreatening, or 

ambiguous). The actors in Study 1 were diverse in race and gender identity, while in Study 2, the 

four actors were all female with similar skin color, features, and hair color. These visual similarities 

could in part explain why the average representational overlap values in Study 2 (Figure 8; Table 

4) were higher than those in Study 1 (Supplemental Figure 1) within the regions of interest. In 

Study 2, subtle differences in multivariate responses to the emotions expressed across the different 
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images may have been overshadowed by the many visual similarities shared across the images. It 

is also worth noting that the MRI sequences differed between the two studies. Study 1 used a 

multiband sequence whereas Study 2 did not. While functional images in Study 1 were collected 

at 2.0 × 2.0 × 2.0 mm voxel resolution, Study 2 data were collected at 3.0 x 3.0 x 4.0 mm voxel 

resolution. Greater spatial resolution may have enabled heightened sensitivity to subtle variations 

in patterns of voxelwise activity in Study 1, compared to Study 2 (note, however, that smaller 

voxel sizes introduce concerns about noise) (Wall, 2023). 

In addition to task design differences, differences between the populations studied may 

have contributed to discrepancies in results. While Study 1 included a community sample of young 

adults with a restricted age range (18-to 19-year-olds) with ranging ELA experiences, Study 2 

included a wider age range (9-to 22-year-olds) of youth specifically recruited based on a history 

of one type of adversity. It is possible that the effect observed in Study 1 — wherein individuals 

with a greater history of ELA demonstrate greater overlap in representations of ambiguity and 

threat — is simply not evident in PI youth. Given how specific and extreme institutionalization is 

as a form of early adversity, it is not surprising that this group would not exhibit the same patterns 

observed in a community sample with a range of adverse experiences. Moreover, in Study 1 we 

examined ELA linearly, accounting for varied experiences of abuse and neglect across the sample. 

In Study 2, we operationalized ELA categorically based on group (PI or control). Other than this 

binary distinction, we did not assay other measures of ELA in either group. This design enabled 

us to isolate the effects of a specific adversity type rather than general adversity. However, it is 

also possible that within-group heterogeneity in the PI sample (due to pre-or post-adoption 

experiences, genetic variance, or other individual differences) or in the control sample (due to 

other forms of ELA experiences) contributed to the lack of statistical differences between the 
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groups in MRI analyses. This could also in part explain why the anticipated group differences in 

anxiety, though in the expected direction, were not statistically significant. Future work would 

benefit from examining these processes in larger samples and incorporating measures of 

continuous ELA as well as categorical, specific adverse experiences. Lastly, it is possible that age 

of exposure to ELA is an important factor to consider. In our sample, PI youth were typically 

adopted by the age of two. It will be important for future research to account for age of adoption 

or age of adversity exposure when examining representations of ambiguity. 

A number of studies have examined emotion processing and valence biases in PI youth. To 

our knowledge, this was the first study to compare neural representations of ambiguity to those of 

threat in this specialized population of youth. Future research is needed to understand how this 

specific type of adversity shapes processing of ambiguity, and how this confers risk or resilience 

for psychopathology. 
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Study 3: Early life adversity and exploratory behaviors in emerging adults. 

Introduction. 

While Study 1 and Study 2 primarily examine rapid neural responses to ambiguous stimuli, 

Study 3 focuses on behavior in the presence of uncertain or unfamiliar stimuli. Results from Study 

1 suggest that early life adversity (ELA) is associated with a heightened tendency to respond to 

ambiguous cues in the environment as though they are threatening. In line with this reasoning, 

individuals with a history of ELA may overrepresent likelihood of negative outcomes in 

ambiguous situations and consequently may be less likely to engage with situations in which the 

future outcomes are unknown. Recent work provides support for this possibility by demonstrating 

a negative association between ELA and exploration of novel, unfamiliar environments in a 

computerized foraging task (Lloyd et al., 2022). Both theoretical (Spear, 2000) and empirical 

accounts (Heller et al., 2020; Saragosa-Harris et al., 2022) suggest that exploratory behaviors are 

linked to emotional wellbeing in everyday life. Moreover, research highlights the potential for 

interventions that target learning mechanisms, including those subserving exploratory decision-

making, to promote healthy outcomes in youth with a history of caregiving adversity (McLaughlin 

et al., 2019). Identifying how early experiences shape exploratory behaviors thus has the potential 

to provide integral insight for clinical work in high-risk youth. 

Recent work highlights the importance of distinguishing the unique effects of stimulus 

novelty and reward uncertainty on exploratory decision-making, particularly when examining 

group or individual differences in exploration (Cockburn et al., 2022; Nussenbaum et al., 2023). 

Although prior work has demonstrated an association between ELA and attenuated exploration 

(Humphreys, Lee, et al., 2015; Lloyd et al., 2022; Loman et al., 2014; Y. Xu et al., 2023), it remains 

unclear whether these two distinct motivators of exploratory behavior differentially shape 
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exploratory decision-making following early adversity. Study 3 seeks to elucidate whether ELA 

affects sensitivity to novelty and uncertainty in the context of exploratory decision-making. 

Importantly, this study examines these processes in a sample of emerging adults. Prior work 

suggests that real-world exploratory behaviors increase during the transition from adolescence to 

adulthood (Saragosa-Harris et al., 2022). Exploratory and novelty-seeking behaviors may be 

particularly adaptive during this transitional period of development in which individuals transition 

toward independence and navigate novel environments (Spear, 2000). Moreover, given the 

heightened risk for psychopathology during this stage (Arnett et al., 2014), especially in high ELA 

groups (van der Vegt et al., 2009), understanding how ELA relates to healthy exploration during 

the transition to adulthood has important clinical implications. 

In addition to examining the unique role of novelty and uncertainty in ELA-related 

exploratory behaviors, a secondary goal of the study is to examine whether these patterns differ 

based on the type of adversity experienced. Although prior work has showcased a general 

association between ELA and attenuated exploration (Lloyd et al., 2022), it remains unclear how 

specific types of adversities shape exploratory behaviors. The broad construct of “early life 

adversity” often functions as a catch-all term that encapsulates many disparate adverse 

experiences, ranging from extreme poverty to parental incarceration to emotional abuse (Bellis et 

al., 2019; Felitti et al., 1998; McLaughlin et al., 2014; McLaughlin & Sheridan, 2016; Spinhoven 

et al., 2014). Given the high cooccurrence of these lifetime experiences (Felitti et al., 1998), a 

general construct of ELA is sometimes warranted as it captures the complex nature of lifetime 

adversity. However, distinguishing among different types of early life adversity is important for 

investigating mechanisms and tailoring interventions based on individual experiences (Cohodes et 

al., 2021; McLaughlin & Sheridan, 2016). It is possible that effects of novelty and uncertainty 
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differentially affect exploratory behaviors depending on the specific dimension of adversity 

considered. One recent theoretical framework, the threat-deprivation model, suggests that ELA 

may be classified in terms of threat (e.g., abuse) and deprivation (e.g., neglect) and that different 

types of adversities have distinct effects on neural and behavioral development (McLaughlin et al., 

2014; McLaughlin & Sheridan, 2016). Other models highlight the importance of unpredictability 

of the early caregiving environment in shaping later behavior (Baram et al., 2012; Ellis et al., 2009, 

2022). We thus examine whether abuse, neglect, and caregiving unpredictability differentially 

relate to the effects of novelty and uncertainty on exploratory decision-making. 

 

Methods. 

Participants. 

Recruitment. We recruited two samples of 18-to 25-year-olds (N = 600 total). One sample 

was recruited using Prolific (N = 300) and one sample was recruited using the University of 

California Los Angeles Sona Subject Pool (N = 300). All participants completed the study online. 

Participants completed a series of questionnaires on Qualtrics and a behavioral task on Pavlovia, 

a platform for hosting behavioral tasks online. Prolific participants received monetary 

compensation and Sona participants received course credit. All study procedures were completed 

in accordance with the University of California Los Angeles Institutional Review Board (IRB 23-

000386). 

Inclusion criteria. Participants were required to be between the ages of 18 and 25, be fluent 

in English, and reside in the United States to enroll in the study. Participants whose Qualtrics 

location or browser time zone data indicated they were located outside of the United States were 

excluded from analyses. We included several attention check questions within Qualtrics to assess 
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participant attention and filter potential bots. Additional attention checks were added for the 

Prolific participants given concerns with bots or server farms (Simone et al., 2023). Participants 

who answered two or more attention checks incorrectly were excluded from all analyses. After 

applying these inclusion criteria, a total of 554 participants (N = 267 Sona participants and N = 

287 Prolific participants) completed the questionnaires and the exploration task. 

For analyses of a given questionnaire, only participants who answered every item of that 

questionnaire were included in analyses. For analyses of the exploration task, choice trials in which 

participants did not respond or respond faster than 200 ms were excluded from task analyses 

(Nussenbaum et al., 2023). After excluding trials with no responses and trials with reaction times 

200 milliseconds or faster, participants needed to have at least 120 remaining trials to be included 

in task analyses. The final sample of participants included in task analyses consisted of 270 Prolific 

participants and 248 Sona participants (N = 518 total participants). 

Participant demographics. Participants recruited through Prolific ranged from 18 to 25 

years old (mean age = 21.61 years) and participants recruited through Sona ranged from 18 to 24 

years old (mean age = 20.27 years). Within the Prolific sample, gender identity was 47% female, 

46% male, 5% non-binary/gender non-conforming (N = 4 participants chose “other” or “prefer not 

to say”). Within the Sona sample, gender identity was 75% female, 24% male, and 1% other. 

Participants in the Prolific sample self-reported their racial identity as 17% Asian, 15% Black or 

African American, 50% Caucasian or White, <1% Native Hawaiian or other Pacific Islander, 12% 

multiracial, and 5% other, with 21% identifying as Hispanic or Latinx. Participants in the Sona 

sample self-reported their racial identity as 1% American Indian or Alaska Native, 39% Asian, 3% 

Black or African American, 35% Caucasian or White, <1% Native Hawaiian or other Pacific 

Islander, 10% multiracial, and 11% other, with 24% identifying as Hispanic or Latinx. 
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Questionnaires. 

Early life adversity. Early life adversity was measured using the Childhood Trauma 

Questionnaire Short Form (CTQ-SF) (Bernstein et al., 2003), a 28-item scale that assays 

retrospective accounts of experiences of emotional abuse, emotional neglect, physical abuse, 

physical neglect, and sexual abuse before age fourteen. The CTQ-SF has been validated in clinical 

and non-clinical samples and corresponds well to therapists’ interview-based ratings of abuse and 

neglect (Bernstein et al., 2003). For each item, participants rate on a scale of 1 to 5 (1 = never true, 

5 = very often true) how much they agree with various statements (e.g., “I believe that I was 

physically abused”). Responses to items regarding emotional, physical, and sexual abuse are added 

together into an abuse subscale score, while items regarding emotional and physical neglect are 

added together into a neglect subscale score. Additionally, responses across all items are added to 

create a total CTQ score, with higher scores indicating greater cumulative experiences of 

childhood trauma. Prior to inclusion in regression models, abuse subscale scores, neglect subscales 

scores, and total scores were log-transformed and then z-scored to meet the assumptions of the 

planned statistical tests (i.e., normality). 

Unpredictability of early caregiving environment. Unpredictability of the early caregiving 

environment was measured using the Questionnaire of Unpredictability in Childhood (QUIC), a 

38-item questionnaire that assays five subscales of unpredictability in early caregiving 

environments: parental involvement, parental predictability, parental environment, physical 

environment, and safety and security (Glynn et al., 2019). The QUIC has been validated in adults 

and shown to have high internal and test-retest reliability. For each item, participants respond “yes” 

or “no” to indicate whether a statement applies to their experiences. For some items, participants 

are asked to reflect on their experiences before the age of twelve. On other items, participants are 
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asked to answer based on their experiences before the age of eighteen. Example items include “I 

experienced changes in my custody arrangement” and “I had a bedtime routine (e.g., my parents 

tucked me in, my parents read me a book, I took a bath)”. Scores on the QUIC can range from 0 

to 38, with higher scores indicating greater exposure to unpredictability in the environment during 

childhood. 

Anxiety. Self-reported anxiety was measured using the Screen for Adult Anxiety Related 

Disorders (Angulo et al., 2017). In this questionnaire, participants rate how well 44 statements 

describe them now or within the past three months (“not true or hardly ever true”, “somewhat true 

or sometimes true”, or “very true or often true”). Example items include “I worry about being as 

good as other people” and “I am a worrier”. The questions assess experiences of panic disorder or 

significant somatic symptoms, generalized anxiety, separation anxiety, and social phobia. Total 

scores, summed across these four subscales, indicate overall anxiety symptoms. Higher total scores 

indicate greater anxiety. 

Self-reported ambiguity tolerance. Self-reported ambiguity tolerance was measured using 

the Multiple Stimulus Types Ambiguity Tolerance Scale-II (MSTAT-II), a 13-item self-report 

questionnaire that has been validated in adults (McLain, 2009). The MSTAT-II assesses reactions 

to five types of ambiguous stimuli: generally ambiguous stimuli (“I prefer a situation in which 

there is some ambiguity”), complex stimuli (“I enjoy tackling problems that are complex enough 

to be ambiguous”), uncertain stimuli (“I find it hard to make a choice when the outcome is 

uncertain” (reverse scored)), new/unfamiliar/novel stimuli (“I generally prefer novelty over 

familiarity”), and insoluble/illogical/irreducible/internally inconsistent stimuli (“I try to avoid 

problems that don’t seem to have only one ‘best’ solution” (reverse scored)). Participants rated 

their level of agreement with each statement on a five-point Likert scale (1 = strongly disagree, 5 
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= strongly agree). Scores across all items were totaled, with greater scores indicating greater 

tolerance for ambiguity (McLain, 2009). 

Self-reported intolerance of uncertainty. Self-reported intolerance of uncertainty was 

measured using the Intolerance of Uncertainty Scale (Buhr & Dugas, 2002), a 27-item scale that 

measures an individual’s opinions and feelings about uncertainty. Example items include 

“Uncertainty makes me uneasy, anxious, or stressed” and “It frustrates me not having all the 

information I need”. Participants rate items on a five-point Likert scale (1 = not at all characteristic 

of me, 5 = entirely characteristic of me). Items are totaled in a single score, with higher scores 

indicating greater intolerance (i.e., lower tolerance) for uncertainty. 

Self-reported novelty-seeking tendencies. Self-reported novelty-seeking tendencies were 

measured using the novelty subscale from the Personal Expansion Questionnaire (Gordon & Luo, 

2011). The novelty subscale of this questionnaire consists of 5 statements regarding novelty-

seeking behaviors and feelings about novelty. Participants are asked to respond to using a five-

point Likert scale (1 = strongly disagree, 5 = strongly agree). Example items include “I usually 

seek out new opportunities or experiences” and “Trying new things is important for me to stay 

happy”. The novelty subscale of this questionnaire has been validated and shown to relate to other 

psychological constructs including personality traits and positive affectivity (Gordon & Luo, 

2011). 

 

Explore-exploit task. 

 We used an explore-exploit task designed by Nussenbaum, Martin et al. (2023), which was 

adapted from Cockburn et al. (2022). We translated the original task from MATLAB to PsychoPy 

version 2022.2.5 (Peirce et al., 2019) in order to host the task on Pavlovia (pavlovia.org) for online 
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data collection. The PsychoPy task is available on GitLab 

(https://gitlab.pavlovia.org/nsaragosaharris/enchanted-world-task-public). In the task, participants 

are told that they are collecting coins from different territories of an enchanted world. Each 

territory is owned by its own magical creature who hides coins in three different hiding spots 

within that territory. Each block of the task corresponds to a different territory (N = 10). At the 

beginning of each block, participants are told that they have entered a new territory in which a new 

creature has hidden coins. On each trial (N = 15 per block), participants are shown two hiding 

places and are given four seconds to select one of the hiding places in order to search for coins 

(Figure 9). After a screen highlighting their response (500 ms), a screen indicating whether or not 

a coin was found in the chosen location is shown for 1.5 seconds. 

 

 

Figure 9. Study 3 task design. Figure from Nussenbaum, Martin et al. (2023). The task has 10 

blocks and 15 trials in each block. Throughout a given block, the current territory is indicated by 

the background image, and the creature owning that territory is pictured in the corner of the screen. 
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 Each territory (block) has three hiding spots. Two hiding spots are shown on each trial. All 

three hiding spots shown within the first block of the task are novel as the participant has not 

encountered them previously. For each subsequent block, two hiding spots are familiar (i.e., seen 

in a previous block) and one is novel. Familiar hiding spots are randomly selected from all hiding 

spots the participant encountered in any previous block. Given this randomization, some hiding 

spots are presented more often than others across blocks. Therefore, in addition to having one 

completely novel hiding spot in each block, the novelty of the two familiar options (i.e., how many 

times the hiding spot had been encountered in previous blocks) can also vary. 

In “easy” blocks (N = 5), the three possible hiding spots reveal a coin on 20%, 50%, and 

80% of trials. In “hard” blocks (N = 5), the three possible hiding spots reveal a coin on 30%, 50%, 

and 70% of trials. Participants were not told these reward probabilities and had to learn through 

trial and error which options most often yielded a reward. Difficulty of each block (i.e., territory) 

is randomly assigned. Within each block, hiding spots are randomly assigned a reward probability. 

Thus, the payout structure of each hiding spot is independent of previous blocks. That is, familiar 

hiding spots do not necessarily have the same payout structure across different territories, so 

participants must learn the unique payout structure of each option for every new territory visited. 

With this design, the task separates stimulus novelty from reward uncertainty; at the beginning of 

each block, all hiding spots have high reward uncertainty but varying novelty. In the instructions 

for the task, participants are told that reward probabilities of each hiding spot were reset on each 

block (“Every region is owned by a magical creature that has its own favorite spots to hide coins”; 

“You will [..] have to choose which hiding spot the creature likes best”). 
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Analyses. 

We used R version 4.3.3 (2024) for statistical analyses (R Core Team, 2024). In analyses 

of self-report data, we used Spearman rank correlations to examine whether cumulative ELA (total 

CTQ scores) or childhood unpredictability scores (total QUIC scores) related to self-reported 

ambiguity tolerance, self-reported intolerance of uncertainty, or self-reported novelty-seeking 

tendencies. In these analyses, we used the ‘DescTools’ (Signorell et al., 2024) and ‘stats’ (R Core 

Team, 2024) R packages. We used the R packages ‘lme4’ (Bates et al., 2024) and ‘afex’ (Singmann 

et al., 2024) for multilevel models and ‘sjPlot’ (Lüdecke et al., 2024) and ‘ggplot2’ (Wickham et 

al., 2024) for plots. Methods and analysis plans were preregistered on Open Science Framework 

prior to data collection (https://osf.io/237fx). 

ELA and choice behavior: Logistic regression. Following the analyses in Nussenbaum, 

Martin et al. (2023) and Cockburn et al. (2022), we calculated the expected value, reward 

uncertainty, and stimulus novelty of each option (hiding spot) for every trial, as well as differences 

in these values between the right and left choice option for each trial. Expected value was 

calculated as the mean of a beta distribution defined by Beta [𝛼,𝛽], where 𝛼 = number of wins 

from that choice option (in the current block) + 1 and 𝛽 = number of losses from that choice option 

(in the current block) + 1. Reward uncertainty for each choice option was calculated as the variance 

of the same beta distribution. Stimulus novelty was calculated as the variance of a beta distribution 

Beta [𝛼,𝛽], where 𝛼 = the number of times the participant had previously seen the given option 

(hiding spot) + 1 and 𝛽 = 1. In the primary model of interest, we used a multilevel logistic 

regression to model the probability participant j chose the left option on a given trial i (see 

statistical model below). This model included random intercepts for each participant, with trials 

nested within participant. The differences in expected value (EV), reward uncertainty (RU), and 
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stimulus novelty (SN) between the left and right choice option for trial i were included as fixed 

and random effects in the model. Additionally, this model tested how these differences interact 

with ELA (total CTQ score) in predicting choice behavior. In doing so, this model tested whether 

the extent to which expected value, reward uncertainty, and stimulus novelty affect choice 

behavior differs as a function of early life adversity.  

 

𝑌𝑖𝑗 = 𝑏0𝑗  +  𝑏1𝑗((𝑙𝑒𝑓𝑡 𝐸𝑉 −  𝑟𝑖𝑔ℎ𝑡 𝐸𝑉)𝑖𝑗)  +  

 𝑏2𝑗((𝑙𝑒𝑓𝑡 𝑅𝑈 −  𝑟𝑖𝑔ℎ𝑡 𝑅𝑈)𝑖𝑗)  + 

 𝑏3𝑗((𝑙𝑒𝑓𝑡 𝑆𝑁 −  𝑟𝑖𝑔ℎ𝑡 𝑆𝑁)𝑖𝑗)  + 

𝑏4((𝑙𝑒𝑓𝑡 𝐸𝑉 −  𝑟𝑖𝑔ℎ𝑡 𝐸𝑉)𝑖𝑗)(𝐸𝐿𝐴𝑗)  + 

 𝑏5((𝑙𝑒𝑓𝑡 𝑅𝑈 −  𝑟𝑖𝑔ℎ𝑡 𝑅𝑈)𝑖𝑗)(𝐸𝐿𝐴𝑗)  + 

 𝑏6((𝑙𝑒𝑓𝑡 𝑆𝑁 −  𝑟𝑖𝑔ℎ𝑡 𝑆𝑁)𝑖𝑗)(𝐸𝐿𝐴𝑗) + 𝜀𝑖𝑗 

 

In addition to this statistical model, in exploratory analyses we also fit participant data with 

three computational models to formalize the mental processes supporting trial-level decisions (see 

Supplemental Text). 

 

Results. 

ELA and questionnaires. As hypothesized, Spearman rank correlations demonstrated that 

cumulative experiences of ELA (CTQ total scores) were positively correlated with self-reported 

experiences of unpredictability in childhood (QUIC scores; rs(552) = 0.74, 95% CI [0.70, 0.78], p 

< 0.001). Relations among ELA and self-reported anxiety, tolerance of uncertainty and ambiguity, 
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and novelty-seeking behaviors were all in the hypothesized direction. On average, individuals who 

reported greater ELA indicated more anxiety symptoms (rs(552) = 0.4, 95% CI [0.33, 0.47], p < 

0.001), lower tolerance of uncertainty (greater Intolerance of Uncertainty Scale scores; rs(550) = 

0.35, 95% CI [0.28, 0.42], p < 0.001) and ambiguity (lower MSTAT scores; rs(551) = -0.18, 95% 

CI [-0.26, -0.10], p < 0.001), and fewer novelty-seeking tendencies (rs(552) = -0.17, 95% CI [-

0.25, -0.08], p < 0.001). In line with these patterns, individuals who experienced greater 

unpredictability during childhood reported higher anxiety (rs(552) = 0.42, 95% CI [0.35, 0.48], p 

< 0.001), lower tolerance of uncertainty (rs(550) = 0.33, 95% CI [0.25, 0.40], p < 0.001) and 

ambiguity (rs(551) = -0.17, 95% CI [-0.25, -0.09], p < 0.001), and fewer novelty-seeking 

tendencies (rs(552) = -0.13, 95% CI [-0.20, -0.04], p = 0.003). Relations among anxiety, 

intolerance of uncertainty, tolerance of ambiguity, and novelty-seeking tendencies can be found in 

the correlation matrix (Figure 10). These same associations with the abuse and neglect subscales 

of the CTQ separated can be found in Supplemental Figure 13. 
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Figure 10. Correlation matrix summarizing Spearman rank correlations (rho values) among all 

questionnaires. Color indicates direction of association and shading indicates strength of 

association. All associations are significant (p < 0.01). 

 

 

Overall task behavior. 

 Overall task performance. To model performance across blocks of the task, we used a 

multilevel linear model that predicted the total number of coins won within a block based on block 

number and block difficulty. Controlling for block difficulty, block number was negatively 

associated with total coins won (b = -0.14, 95% CI [-0.16, -0.12], t(4660) = -15.31, p < 0.001), 

suggesting that performance slightly decreased over the course of the task. Somewhat surprisingly, 

controlling for block number, participants performed better on more difficult blocks (b = 0.21, 

95% CI [0.11, 0.31], t(4660) = 4.06, p < 0.001). When interpreted in terms of total coins won, 

however, both of these effects were small (an estimated 0.14 fewer coins won per increase in block 
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number and an estimated difference of 0.21 coins won in difficult versus easy blocks). Using a 

multilevel logistic regression, we analyzed whether, controlling for block number and block 

difficulty, within-block trial number predicted trial-level binary coin outcomes (i.e., coin won or 

not won). As expected, participants were more likely to win a coin on later trials within a block, 

after controlling for block number and block difficulty (OR = 1.02, 95% CI [1.01, 1.04], z(75940) 

= 2.97, p = 0.003). This pattern suggests that participants were effectively learning the reward 

probabilities for the block-specific hiding spots, and were more likely to make optimal choices as 

the trials progressed within each block. 

 Trial-level choice behavior as a function of expected value, reward uncertainty, and 

stimulus novelty. We next designed a model to analyze how differences in expected value, reward 

uncertainty, and stimulus novelty between the right and left choice options predicted trial-level 

choice behavior in the task. We used a multilevel logistic regression to model the probability that 

a participant chose the left option on a given trial, with trial-level differences in expected value, 

reward uncertainty, and stimulus novelty between the left and right choice options included as 

fixed and random effects in the model. The outcome was a binary variable indicating whether or 

not the participant chose the left option on a given trial. As expected, participants were more likely 

to choose the option with a higher expected value (OR = 3.00, 95% CI [2.08, 3.19], z(75940) = 

34.90, p < 0.001). The effects of reward uncertainty and stimulus novelty also supported our 

hypotheses: Participants were less likely to choose the option with greater reward uncertainty (OR 

= 0.76, 95% CI [0.73, 0.79], z(75940) = -15.00, p < 0.001), and more likely to choose the option 

with higher stimulus novelty (OR = 1.26, 95% CI [1.24, 1.29], z(75940) = 22.30, p < 0.001). A 

summary of choice behavior at different levels of expected value, uncertainty, and novelty is 

provided in Figure 11 (plotted as proportions for visualization purposes). 
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Figure 11. Summary of choice behavior. Proportion of trials in which participants chose the (A) 

left option, (B) more uncertain option, and (C) more novel option at different levels of the expected 

value difference between the (A) left vs. right option, (B) more uncertain vs. less uncertain option, 

and (C) more novel vs. less novel option. 

 

ELA and task behavior. 

 ELA and task performance. We used a linear regression to test whether ELA was associated 

with overall task performance, indicated by total coins won in the task. As expected, ELA was 

negatively associated with overall performance, with individuals with higher CTQ scores 

obtaining fewer total coins on average in the task (b = -0.87, 95% CI [-1.43, -0.31], t(516) = 3.05, 

p = 0.002). This association remained after controlling for which sample (Sona or Prolific) 

participants were in (b = -0.97, 95% CI [-1.53, -0.41], t(515) = -3.38, p < 0.001). 

 ELA and overall task behavior. We next tested whether ELA related to broad patterns of 

behavior throughout the task. In three separate Spearman rank correlations, we examined whether 

ELA related to the overall proportion of trials in which individuals choose the more valuable, more 
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uncertain, or more novel option. In line with the task performance results, higher CTQ scores were 

negatively correlated with the proportion of trials in which participants chose the more valuable 

option, although this did not reach significance (rs(516) = -0.08, 95% CI [-0.16, 0.01], p = 0.08). 

Higher CTQ scores were positively correlated with the proportion of trials in which participants 

chose the more uncertain option, though this effect was trending (rs(516) = 0.09, 95% CI [-0.0001, 

0.17], p = 0.05). We did not observe a significant correlation between CTQ scores and the 

proportion of trials in which participants chose the more novel option (rs(516) = -0.009, 95% CI [-

0.10, 0.08], p = 0.84). Because these were separate correlations examining average behavior across 

the task, they did not capture how reward, novelty, and uncertainty shaped decisions at the trial 

level or account for their shared variance. We next conducted trial-level analyses that accounted 

for shared variance across these features in order to more accurately model how these features 

differentially shaped exploratory decision-making on each trial. 

 Trial-level interactive effects between ELA history and expected value, reward uncertainty, 

and stimulus novelty on choice. We next examined whether the trial-level effects of expected value, 

reward uncertainty, and stimulus novelty varied as a function of ELA history. This model included 

differences in expected value, reward uncertainty, and stimulus novelty between the left and right 

choice option as fixed and random effects. Interactions between CTQ and differences in expected 

value, reward uncertainty, and stimulus novelty were included as three interactive terms (Figure 

12). The effect of expected value on choice behavior did not significantly interact with CTQ scores 

(OR = 0.97, 95% CI [0.91, 1.03], z(75940) = -1.14, p = 0.255). Although the effects of stimulus 

novelty appeared to vary based on ELA history, such that individuals with higher CTQ scores were 

more novelty-seeking, this interaction did not reach statistical significance (OR = 1.02, 95% CI 

[0.998, 1.04], z(75940) = 1.77, p = 0.08). We observed a significant interaction between CTQ 
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scores and reward uncertainty, suggesting that individuals with higher CTQ scores were less 

avoidant of stimuli with higher reward uncertainty than those with lower CTQ scores (OR = 1.04, 

95% CI [1.002, 1.08], z(75940) = 2.06, p = 0.04; Figure 13). 

 

 

 

Figure 12. Conditional effects of expected value, uncertainty, novelty, and ELA history (CTQ 

scores), and interactions between CTQ scores and expected value, reward uncertainty, and 

stimulus novelty in predicting trial-level choice behaviors. Odds ratios for each effect are plotted. 
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Figure 13. Model predicted effect of reward uncertainty on choice behavior based on ELA history. 

Model predicted effect of reward uncertainty (z-scored difference in reward uncertainty between 

the two choice options) on choice behavior based on ELA history (CTQ scores) after accounting 

for other coefficients in the model. Estimated from multilevel logistic regression. Plotted at CTQ 

log z scores of -1, 0, and 1 (corresponding to relatively low, average, and high ELA history) for 

visualization. 

 

 The observed interaction between CTQ scores and reward uncertainty raised the question 

of whether individuals with higher CTQ scores actually preferred more uncertain options (i.e., 

were uncertainty-seeking), whether they were simply less averse to uncertainty than individuals 

with low CTQ scores (but still averse to uncertainty overall), or whether their choices were 

unaffected by reward uncertainty. To better understand the observed pattern of results, we 

conducted an additional analysis in which we fit the original model with fixed effects of expected 
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value, reward uncertainty, and stimulus novelty (without interactive terms) separately for high and 

low CTQ groups. For this analysis, we divided participants into categorical groups corresponding 

to high (N = 252) or low ELA (N = 266), based on median-split CTQ total scores. Results from 

the model fit to the high ELA group demonstrated that participants were more likely to choose the 

left option as its expected value relative to the right option increased (OR = 2.95, 95% CI [2.71, 

3.21], z(36831) = 24.71, p < 0.001), an effect that also seen in the low ELA group model (OR = 

3.06, 95% CI [2.80, 3.34], z(39081) = 24.68, p < 0.001). Additionally, the high ELA group model 

demonstrated that participants were more likely to choose options as their relative novelty 

increased (OR = 1.29, 95% CI [1.25, 1.33], z(36831) = 16.41, p < 0.001), a pattern also observed 

in the low ELA group (OR = 1.24, 95% CI [1.21, 1.27], z(39081) = 15.17, p < 0.001). Lastly, the 

results from the high ELA group model verified that high ELA individuals were also averse to 

uncertainty (i.e., were less likely to choose options as their relative uncertainty increased; OR = 

0.77, 95% CI [0.74, 0.81], z(36831) = -10.48, p < 0.001), similar to the pattern observed in the low 

ELA group (OR = 0.75, 95% CI [0.71, 0.79], z(39081) = -10.8, p < 0.001). In tandem with the 

interactive model, these patterns suggest that high and low ELA groups are both more likely to 

choose options with higher expected value and higher novelty, and less likely to choose options 

with higher uncertainty, but demonstrate small differences in the extent to which uncertainty 

shapes their behavior (Figure 13). 

 Trial-level interactive effects between ELA history and expected value, reward uncertainty, 

and stimulus novelty on reaction time. We next analyzed how expected value, reward uncertainty, 

and stimulus novelty of the chosen option interacted with ELA in predicting log-transformed 

reaction times. Results from this linear mixed-effects model demonstrated that participants 

responded faster when selecting options with higher value (b = -0.02, 95% CI [-0.02, -0.01], 
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t(537.54) = -6.14, p < 0.001), and more slowly when selecting options with greater uncertainty (b 

= 0.05, 95% CI [0.04, 0.05], t(644.60) = 18.05, p < 0.001) and novelty (b = 0.05, 95% CI [0.05, 

0.06], t(614.82) = 22.99, p < 0.001). CTQ scores did not significantly interact with the expected 

value (b = 0.0001, 95% CI [-0.005, 0.006], t(536.26) = 0.03, p = 0.976) or novelty (b = 0.003, 95% 

CI [-0.001, 0.007], t(615.13) = 1.39, p = 0.164) of the chosen option in predicting reaction time. 

In contrast, CTQ scores significantly interacted with the uncertainty of the chosen option (b = -

0.006, 95% CI [-0.01, -0.001], t(642.13) = -2.46, p = 0.01), such that the slowing effect of 

uncertainty on reaction time was attenuated in individuals with higher CTQ scores (Figure 14). 

 

 

Figure 14. Interaction between ELA and reward uncertainty on reaction time. Model predicted 

log-transformed reaction times based on the uncertainty of chosen option (z-scored) at different 

levels of ELA (CTQ log z scores) after accounting for other coefficients in the model. Estimated 

from multilevel linear regression. 
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ELA and task behavior based on adversity type. 

Trial-level interactive effects between ELA history and expected value, reward uncertainty, 

and stimulus novelty on choice by adversity type (abuse or neglect). We next tested whether the 

interactive effects between ELA and expected value, uncertainty, and novelty on choice behavior 

differed depending on the type of adversity considered (abuse or neglect). In two models, rather 

than modeling the effects of cumulative ELA exposure (CTQ total scores) we examined the CTQ 

subscales for abuse and neglect separately. We analyzed how abuse history interacted with 

expected value, uncertainty, and novelty in predicting choice in a model that controlled for 

experiences of neglect. In a separate model, we analyzed how neglect history interacted with 

expected value, uncertainty, and novelty in predicting choice while controlling for experiences of 

abuse. Results from these two models indicate differences in the way in which abuse and neglect 

interact with uncertainty to shape decisions. After controlling for experiences of neglect, abuse 

subscale scores did not significantly interact with expected value (OR = 0.95, 95% CI [0.89, 1.01], 

z(75921) = -1.71, p = 0.09) or novelty (OR = 1.02 , 95% CI [0.997, 1.04], z(75921) = 1.64, p = 

0.10) in predicting trial-level choice. In line with the cumulative ELA model, abuse subscale scores 

significantly interacted with reward uncertainty, such that aversion to reward uncertainty was 

attenuated in individuals who experienced higher levels of abuse (OR = 1.05, 95% CI [1.01, 1.08], 

z(75921) = 2.50, p = 0.01). Conversely, after controlling for experiences of abuse, neglect subscale 

scores did not interact with expected value (OR = 0.99, 95% CI [0.93, 1.05], z(75921) = -0.29, p 

= 0.77), novelty (OR = 1.02, 95% CI [0.998, 1.04], z(75921) = 1.77, p = 0.08), or uncertainty (OR 

= 1.02, 95% CI [0.99, 1.06], z(75921) = 1.19, p = 0.24) in predicting choice behavior. This pattern 

of results suggests that the previously observed effect, in which aversion to reward uncertainty was 
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attenuated in individuals who experienced higher cumulative ELA (total CTQ scores), may stem 

primarily from experiences of abuse. 

Trial-level interactive effects between childhood unpredictability and expected value, 

reward uncertainty, and stimulus novelty on choice. In addition to exploring the separable effects 

of cumulative ELA, abuse, and neglect (all measured by the CTQ) on choice behavior, we also 

examined whether unpredictability in the caregiving environment during childhood (measured by 

the QUIC) interacted with expected value, reward uncertainty, and stimulus novelty in shaping 

exploratory decision-making (Figure 15). Caregiving unpredictability did not significantly interact 

with expected value (OR = 0.995, 95% CI [0.94 , 1.06], z(75922) = -0.15, p = 0.89) or uncertainty 

(OR = 1.03, 95% CI [0.99, 1.07], z(75922) = 1.55, p = 0.12) in predicting choice behavior. 

However, we did observe a significant association between caregiving unpredictability and 

novelty, such that individuals with greater unpredictability in their caregiving environments during 

childhood were more novelty-seeking in their choice behavior (OR = 1.03, 95% CI [1.01, 1.06], 

z(75922) = 3.22, p = 0.001; Figure 16). 
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Figure 15. Conditional effects of expected value, uncertainty, novelty, and unpredictability in the 

caregiving environment (QUIC scores), and interactions between QUIC scores and expected value, 

reward uncertainty, and stimulus novelty in predicting trial-level choice behaviors. Odds ratios for 

each effect are plotted. 
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Figure 16. Model predicted effect of stimulus novelty (z-scored difference in stimulus novelty 

between the two choice options) on choice behavior based on unpredictability in the caregiving 

environment (QUIC scores) after accounting for other coefficients in the model. Estimated from 

multilevel logistic regression. Plotted at QUIC total z scores of -1, 0, and 1 (corresponding to 

relatively low, medium, and high childhood unpredictability) for visualization. 

 

 

Discussion. 

Exploratory behaviors are thought to promote wellbeing by facilitating learning about the 

environment and promoting interactions with novel, rewarding experiences (Heller et al., 2020; 

Krebs et al., 2009; Saragosa-Harris et al., 2022). In explore-exploit paradigms, participants choose 

between exploiting a familiar option with a known reward probability or exploring an unfamiliar, 

potentially better option. These paradigms provide a useful framework for measuring how 
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individuals adaptively update their exploratory behavior in response to environmental 

uncertainties (Cohen et al., 2007). Studies utilizing these paradigms have linked alterations in 

exploratory decision-making processes to early life adversity (Humphreys, Lee, et al., 2015; Lloyd 

et al., 2022; Loman et al., 2014; Y. Xu et al., 2023) and to psychopathology risk (Addicott et al., 

2017). Recent work suggests that sensitivity to uncertainty and sensitivity to novelty have distinct 

effects on exploratory decision-making which may, in part, explain individual differences in 

exploration (Cockburn et al., 2022; Nussenbaum et al., 2023). In this study, we set out to 

understand how these two motivators of exploratory behavior differ based on early life 

experiences. We found that reward uncertainty, but not expected value or stimulus novelty, 

significantly interacted with cumulative ELA scores (combined experiences of abuse and neglect) 

to predict trial-level choice behavior. Individuals with a history of greater cumulative ELA were 

less averse to reward uncertainty, an effect that appeared to stem primarily from experiences of 

childhood abuse. In contrast, higher levels of unpredictability in the caregiving environment 

predicted greater novelty-seeking tendencies in the task. 

 

Cumulative ELA is associated with lowered avoidance of uncertain stimuli. 

Adaptive exploration requires a balance between the motivation to avoid uncertainty and 

the desire to experience novel, potentially more rewarding experiences. However, in many 

explore-exploit paradigms, stimuli that are novel are also inherently uncertain, making it difficult 

to determine the extent to which the novelty versus uncertainty of choice options guide behavior. 

Here, we used a task adapted from Cockburn et al. (2022) and Nussenbaum, Martin et al. (2023) 

designed to distinguish the unique effects of expected value, stimulus novelty, and reward 

uncertainty on trial-by-trial choices. We did not observe significant differences in the effects of 
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expected value or novelty on trial-level choices based on cumulative ELA history (Childhood 

Trauma Questionnaire, or CTQ, total scores). However, in contrast to our hypothesis, we found 

that individuals who reported experiencing greater levels of cumulative ELA were seemingly less 

averse to reward uncertainty in the task (i.e., avoided stimuli with relatively higher reward 

uncertainty to a lesser extent). That is, although individuals with high and low ELA scores both 

avoided stimuli with high reward uncertainty on average, these effects were dampened in 

individuals with higher cumulative ELA scores. These patterns were also reflected in reaction time 

analyses, which revealed that the slowing effect of reward uncertainty on reaction time was 

attenuated in individuals with higher cumulative ELA scores. Together, these suggest that 

avoidance of uncertainty in the task was present, but dampened, in individuals with higher 

cumulative ELA scores. Given that in questionnaire data, higher cumulative ELA was associated 

with greater self-reported intolerance of uncertainty, these findings are puzzling at first glance. 

Here, we offer two potential interpretations of this pattern of results: these results could reflect 

“younger” decision-making processes in individuals exposed to higher degrees of ELA, or they 

could stem from differences in trait anxiety. 

The task used in the present study was originally designed by Nussenbaum, Martin et al. 

(2023) to assess age-related differences in the effects of novelty and uncertainty on exploration. In 

an examination of participants ages 8 to 27 years old, they found that younger participants 

evidenced similar novelty-seeking biases but less aversion to reward uncertainty than older 

participants. Similar to the patterns observed in individuals with a history of high ELA, the slowing 

effect of reward uncertainty on reaction time was weakened in younger participants. Additionally, 

like individuals with high ELA scores, younger participants demonstrated decreased overall 

performance on the task, obtaining fewer coins. Thus, when considering behavior in the face of 
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uncertainty and overall performance, adults in our sample who experienced higher levels of ELA 

behave similarly to children and adolescents from the prior study. These parallel patterns could 

indicate that childhood trauma disrupts the normative developmental process in which exploratory 

behaviors decrease with age (Gopnik, 2020). It is also possible that individuals with higher ELA 

experiences experience adult levels of uncertainty aversion but have difficulty translating this into 

goal-aligned behavior. Given the development of goal-directed behavior (Raab & Hartley, 2018), 

this could also indicate “younger” decision-making. This account, in which individuals with 

greater ELA history demonstrate seemingly “younger” choice patterns, would counter a recent 

theoretical perspective arguing that early adversity accelerates the developmental shift from 

exploration to exploitation (Frankenhuis & Gopnik, 2023). Given the restricted age range of our 

sample, we were not able to interrogate developmental trajectories or their relation to ELA in the 

current study. Future work in developmental samples with a wider age range and range of ELA 

experiences is needed to determine how these developmental processes vary based on ELA history. 

Our results suggest that blunted aversion to uncertainty in the task following ELA may stem 

specifically from experiences of childhood abuse. Thus, future work that specifically investigates 

how abuse alters these developmental trajectories of uncertainty aversion and exploration is 

needed. 

Another possibility is that more frequent sampling of uncertain stimuli stems from 

heightened anxiety in individuals who experienced childhood adversity. In the current study, 

individuals with greater childhood trauma self-reported higher intolerance of uncertainty. Based 

on these patterns, it would be reasonable to hypothesize that individuals with higher ELA scores 

would demonstrate heightened avoidance of uncertain stimuli in the task. However, we found that 

individuals with greater ELA scores were seemingly less avoidant of uncertainty in the task. 
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Similarly counterintuitive patterns have been observed in studies examining exploratory behaviors 

in anxious individuals. Although anxiety has consistently been associated with higher intolerance 

of uncertainty (Gentes & Ruscio, 2011; Norr et al., 2013; Osmanağaoğlu et al., 2018) — a pattern 

also observed in our self-report data — some studies find that anxious individuals demonstrate a 

heightened tendency to select uncertain stimuli in exploration tasks. In these scenarios, highly 

anxious individuals appear to sample more uncertain stimuli as a means to reduce their relative 

uncertainty (i.e., evidence heightened “directed exploration”) (Aberg et al., 2021; Chou et al., 

2024). These effects are aligned with patterns observed outside of the laboratory: Anxious 

individuals exhibit maladaptive attempts to reduce uncertainty, such as checking and reassurance 

seeking (Kobori & Salkovskis, 2013; Schut et al., 2001). Given the association between ELA and 

anxiety in our sample, it is thus possible that the lowered avoidance of uncertain stimuli in the task 

is indicative of an anxious phenotype in individuals with high ELA scores. More generally, these 

patterns could reflect a motivation to sample highly uncertain stimuli in order to better learn their 

reward contingencies and reduce their uncertainty. Uncertainty-reducing biases could indicate an 

adaptive response to early caregiving environments. Information-seeking behavior, particularly 

when it reduces uncertainty regarding potential threat or danger, could be an effective way to 

protect an individual from harm. That these patterns appear specific to experiences of abuse 

suggests that these uncertainty-reducing behaviors may be particularly important in highly 

threatening environments. Future work would benefit from examining how the valence of the 

uncertain outcome shapes uncertainty-reducing tendencies. While we examined the effects of an 

uncertain reward, it is possible that uncertainty-reducing behaviors following ELA, and abuse in 

particular, would be especially heightened in the face of an uncertain threat. 
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Greater unpredictability in the caregiving environment is associated with heightened novelty-

seeking. 

Converging evidence from animal models and humans suggests that unpredictable 

caregiving is a unique dimension of caregiving adversity that shapes brain development and risk 

for psychopathology (Glynn & Baram, 2019). Thus, in addition to the cumulative effects of abuse 

and neglect, we examined how unpredictability of the early caregiving environment shaped the 

effects of expected value, reward uncertainty, and stimulus novelty on exploratory decision-

making. Prior research suggests that early caregiving unpredictability alters the development of 

reward circuitry (Glynn & Baram, 2019) and is associated with heightened anhedonia in adulthood 

(Spadoni et al., 2022). Based on these patterns, we expected that individuals who experienced 

greater unpredictability in their early caregiving environments (i.e., higher total QUIC scores) 

would demonstrate lower sensitivity to expected value and lower novelty-seeking behaviors in the 

task. Contrary to our hypothesis, we did not observe an interaction between childhood 

unpredictability and sensitivity to expected value in the task. This may be because the main effects 

of expected value were so large that any subtle differences as a function of ELA were difficult to 

detect.  

Also in contrast to our hypothesis, we found that individuals who experienced greater 

childhood unpredictability appeared to have heightened novelty-seeking behaviors in the task. 

That is, the extent to which stimulus novelty motivated choice was increased in individuals who 

self-reported greater childhood unpredictability. Though unexpected, studies of addiction and 

substance use suggest that blunted reward sensitivity can lead to heightened novelty-seeking and 

sensation-seeking behaviors (Blum et al., 2000). To the extent that caregiving unpredictability 

leads to dampened reward sensitivity, the observed results could suggest a similar pattern. 
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However, this account is complicated in light of the questionnaire results, wherein individuals who 

experienced greater unpredictability self-reported lower (but only slightly so) novelty-seeking 

tendencies. Future research is thus needed to understand how unpredictable caregiving shapes 

novelty-seeking behaviors into adulthood. We also note that a similar interactive effect was 

observed when examining the interaction between CTQ scores and task novelty-seeking, with 

higher CTQ scores predicting slightly greater novelty-seeking in the task, but this did not reach 

significance. This suggests that the novelty-seeking effect might be highest when modeling the 

effects of caregiving unpredictability, but is likely not specific to this type of adversity. 

 

Conclusion. 

The transition from adolescence to adulthood is a formative stage of development in which 

exploratory behaviors are thought to increase and support healthy development as individuals gain 

autonomy (Saragosa-Harris et al., 2022; Spear, 2000). The current study examined how 

experiences of abuse, neglect, and caregiving unpredictability shape exploratory decision-making 

during this developmental stage. We found that ELA is associated with differences in responses to 

uncertainty and novelty, and that these effects may differ based on the type of adversity 

experienced. In contrast to prior work linking ELA to decreased exploration (Humphreys, Lee, et 

al., 2015; Lloyd et al., 2022; Y. Xu et al., 2023), the lowered aversion to uncertainty and heightened 

novelty-seeking observed in the current study suggest heightened exploration in individuals with 

a history of caregiving adversity. Future work is needed to better understand the contexts in which 

ELA promotes versus undermines exploratory behaviors. Together, these findings suggest that 

early caregiving adversity shapes learning and decision-making processes, which may have lasting 

effects on mental health into adulthood. 
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General Discussion. 

Early life adversity (ELA) is estimated to affect over 60% of American youth (Merrick et 

al., 2018). Individuals who have experienced ELA are at heightened risk for a number of mental 

health challenges, including mood, anxiety, behavior, and substance use disorders (Kessler et al., 

2010). Heightened risk for psychopathology following ELA may stem, in part, from altered 

development of threat-responsive neural circuitry (Callaghan & Tottenham, 2016; McLaughlin & 

Sheridan, 2016). ELA is hypothesized to increase vigilance for potential threat by sensitizing 

neural threat-detection mechanisms (McLaughlin & Lambert, 2017; Nusslock & Miller, 2016; 

Silvers et al., 2017), potentially resulting in overestimations of threat in ambiguous or uncertain 

situations (Lange et al., 2019). Notably, intolerance of ambiguity and uncertainty is a common 

feature among a number of internalizing disorders (Hirsch et al., 2016; McEvoy & Mahoney, 

2011). However, few studies have examined how exposure to ELA relates to neural representations 

of ambiguity or how this putative intolerance of uncertainty shapes decision-making following 

caregiving adversity. 

In this dissertation, we integrated self-report, neuroimaging, and behavioral data from 

individuals with ranging experiences of ELA to comprehensively examine how ELA relates to 

neurobehavioral responses to ambiguity and uncertainty. In Study 1 and Study 2, we leveraged 

representational similarity analysis to examine neural multivariate representations of ambiguity 

and threat. In Study 1, we found that ELA is associated with reduced neural differentiation between 

ambiguous and threatening stimuli within affective neural circuitry. These patterns may indicate 

low thresholds for threat detection, an adaptive response that serves to protect an individual living 

in a high-threat environment from further harm. However, these patterns were not evident in Study 

2 when comparing previously institutionalized (PI) youth to a control group. In Study 3, we found 
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that ELA was associated with less avoidance of uncertainty in an explore-exploit task and that 

greater childhood unpredictability was associated with heightened novelty-seeking behaviors in 

the task. Across three studies, this research provides insight into how ELA shapes neural and 

behavioral functioning in the face of the unknown and how these processes relate to mental health. 

In this discussion, I contextualize these findings in the broader literature and offer suggestions for 

future research. 

Does early life adversity shape neural or behavioral responses to ambiguity or uncertainty? 

This dissertation evaluated responses to ambiguity and uncertainty following different 

forms of early life adversity. Though ambiguity and uncertainty are similar, there are subtle 

differences in these two concepts. Here, we define ambiguity as “here and now” situations 

characterized by vagueness or equivocality, whereas we define uncertainty as future-oriented 

scenarios involving unpredictability or obscurity (Grenier et al., 2005).1 Results from Study 1 and 

Study 3 suggest that ELA is associated with differences in responses to both ambiguity and 

uncertainty. 

Results from Study 1 suggest that cumulative experiences of abuse and neglect are 

associated with less differentiation between representations of ambiguity and threat within threat-

sensitive neural circuitry. Lowered differentiation between ambiguity and threat may indicate 

hypersensitivity to potential threat following childhood adversity. This suggests that individuals 

who experienced higher cumulative ELA evidence lower tolerance for ambiguity (specifically, a 

tendency to respond to ambiguity as threatening) at the neural level. Hypersensitive threat 

 
1Note that alternative definitions of ambiguity and uncertainty exist. For instance, some distinguish between 

uncertainty, in which the probabilities of a given outcome are known (e.g., a gamble with 25% chance of winning), 

and ambiguity, in which the probability structure is not known (Kahn & Sarin, 1988). 
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detection mechanisms are likely adaptive in adverse environments, protecting an individual by 

enabling rapid detection of threat. In line with these neuroimaging findings, analyses of 

questionnaire data from Study 3 revealed that higher cumulative ELA is associated with lower 

self-reported tolerance of ambiguity and lower self-reported tolerance of uncertainty. Together, 

results from the neuroimaging and self-report data suggest that initial negative neural 

representations of ambiguity are reflected in everyday attitudes about ambiguity and uncertainty. 

The extent to which these initial negative responses to ambiguity translate into behavioral 

aversion to ambiguity, however, is unclear. In Study 1 we found that, as hypothesized, individuals 

with higher cumulative ELA exhibited a greater tendency to evaluate ambiguous expressions 

negatively (i.e., heightened negativity biases). However, this effect was only evident after 

controlling for global functioning scores and was trending after excluding one participant’s low-

accuracy blocks in a sensitivity analysis. Moreover, representational similarity between ambiguous 

and threatening images did not predict negativity biases. Differences between the fMRI and post-

scan tasks may, in part, explain why associations with ELA were more robustly observed in the 

fMRI data than behavioral data. The fMRI task probed rapid, uninstructed neural responses to 

ambiguous images in the absence of any explicit evaluations of the stimuli. In contrast, the post-

scan task prompted participants to make judgments about the facial expressions by rating whether 

the expression was positive or negative. Prior work suggests that positive evaluations of ambiguity 

require top-down regulatory mechanisms (Neta et al., 2022; Neta & Tong, 2016). In line with this 

idea, longer trial-level reaction times predicted more positive ratings of ambiguous stimuli. Thus, 

although the neuroimaging results suggest greater intolerance for ambiguity following ELA, the 

behavioral findings indicate that initially negative responses to ambiguity may be attenuated at the 

decision-making stage, potentially due to regulatory mechanisms. Understanding the extent to 
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which these regulatory processes differ as a function of ELA is an important avenue for future 

work. 

While the Study 1 behavioral task measured valence judgments about ambiguous stimuli, 

the behavioral task in Study 3 was designed to measure participants’ propensity to interact with 

uncertain stimuli in the context of an exploration task. Results from analyses of self-report and 

behavioral data in Study 3 are somewhat contradictory: Participants who experienced greater 

cumulative ELA self-reported greater intolerance of uncertainty, but exhibited less avoidance of 

uncertainty in the exploration task. It is possible that heightened sampling of uncertain stimuli 

reflects directed exploration, in which individuals select uncertain stimuli in reward tasks in order 

to learn from their outcomes and reduce their uncertainty (Cockburn et al., 2022). Information-

seeking actions that decrease uncertainty may be prioritized by individuals who find uncertainty 

more aversive. In line with this reasoning, similar patterns have been demonstrated in individuals 

with anxiety (Aberg et al., 2021). Interestingly, prior work has found that ELA is associated with 

less strategic information seeking in the context of exploration (Y. Xu et al., 2023). In our task, we 

found that ELA was associated with fewer coins won overall. It is therefore possible that a 

tendency to oversample more uncertain options — potentially stemming from a motivation to 

reduce their uncertainty — lowered task performance, lending support to the idea that ELA may 

lead to less strategic information-seeking behaviors. 

Future neuroimaging work may shed light onto the mechanisms linking ELA to uncertainty 

biases in the context of exploratory decision-making. Cockburn et al. (2022) found that individuals 

tracked the prospective value of information offered by uncertain stimuli in an explore-exploit 

task, and that this was reflected in ventromedial prefrontal cortex (vmPFC) functional activity. 

Aberg et al. (2021) found that anxious individuals, who were more likely to select uncertain stimuli 
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in order to reduce their uncertainty, exhibited heightened coupling between outcome uncertainty 

and activity within the anterior insula. Notably, in our Study 1 results, participants who 

experienced higher ELA demonstrated greater representational overlap between ambiguity and 

threat within both of these neural regions. Future work examining functional activity within the 

anterior insula and vmPFC during exploratory decision-making might clarify how ELA shapes 

representations of uncertainty and how this affects exploratory behaviors. 

In summary, analyses of neuroimaging, behavioral, and self-report data from Study 1 and 

Study 3 suggest that heightened cumulative ELA (specifically, combined experiences of abuse and 

neglect) is generally associated with differences in neural and behavioral responses to ambiguity 

and uncertainty, but the ways in which these differences are expressed may depend on context. 

Do responses to ambiguity and uncertainty differ depending on the type of adversity experienced? 

 A notable strength of this dissertation is the incorporation of multiple measures of 

caregiving adversity. Study 1 and Study 3 both examined the effects of cumulative ELA via total 

scores on the Childhood Trauma Questionnaire, which combines reports of emotional abuse, 

physical abuse, sexual abuse, physical neglect, and emotional neglect into a broad measure of 

adversity exposure (Bernstein et al., 2003). Given the large sample size of Study 3, we were also 

able to interrogate the unique effects of abuse and neglect separately in that sample using the same 

questionnaire. Within this sample, we additionally examined the effects of unpredictability in the 

caregiving environment across five domains (parental involvement, parental predictability, 

parental environment, physical environment, and safety and security). While Study 1 and Study 3 

employed continuous, retrospective measures of ELA in community samples, Study 2 focused on 

the lasting effects of a specific and severe form of ELA, previous institutionalization in orphanage 

care. By interrogating the distinct effects of abuse, neglect, caregiving unpredictability, and 
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institutionalization, this dissertation offers novel insights into how distinct forms of caregiving 

adversity uniquely shape responses to ambiguity and uncertainty. 

 Results from Study 1 suggest that cumulative experiences of abuse and neglect are 

associated with lowered differentiation between representations of ambiguity and threat at the 

neural level. However, in Study 2 we did not observe significant group differences between 

previously institutionalized (PI) youth and control youth in representational similarity between 

ambiguous and threatening images. Although there are many methodological differences in the 

tasks used in Study 1 and Study 2 that could explain this discrepancy in results (see Study 2 

Discussion), it is also possible that the disparity in results stem from the different forms of 

adversity assessed in the two studies (cumulative experiences of abuse and neglect versus previous 

orphanage care). Institutionalization in orphanage care is a rare and extreme form of adversity. 

With this in mind, it is not surprising that the neural responses evident in a community sample of 

individuals with varying experiences of cumulative ELA differ from those observed in PI youth. 

It is possible that this specific form of ELA is not associated with differences in ambiguity 

tolerance. That said, given that the task used in Study 2 was not originally designed to assess 

valence biases or ambiguity tolerance, future research specifically examining the propensity to 

respond to ambiguity as threatening in PI youth is merited. 

 Given the large sample size of Study 3, we were able to more comprehensively examine 

how different forms of adversity shaped behavioral responses to uncertainty and novelty. We 

found that higher cumulative experiences of abuse and neglect predicted less avoidance of 

uncertainty in the exploration task. When abuse and neglect were considered separately, this effect 

appeared specific to experiences of abuse. This pattern of results offers empirical support for the 

threat-deprivation framework, which posits that caregiving experiences characterized by threat 
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(e.g., abuse) and deprivation (e.g., neglect) have distinct effects on neurodevelopment 

(McLaughlin et al., 2014). In particular, abuse is thought to alter development of threat-sensitive 

neural circuitry (McLaughlin et al., 2014), including regions sensitive to uncertainty (Hein & 

Monk, 2017). Together, this could suggest that this form of adversity in particular is associated 

with differences in processing uncertainty. In contrast, we found that a different dimension of 

adversity, unpredictability of the caregiving environment, predicted greater novelty-seeking 

behaviors in the task. However, a similar, though not statistically significant, effect was observed 

when modeling the cumulative effects of abuse and neglect. Thus, it is difficult to determine 

whether altered novelty-seeking behaviors were specific to one dimension of adversity. Together, 

the behavioral modeling results from Study 3 suggest some degree of specificity in how different 

forms of adversity shape behavior, and in particular responses to uncertainty. 

Do responses to ambiguity and uncertainty depend on the age or chronicity of caregiving 

adversity? 

 One question that this dissertation is unable to answer is the degree to which associations 

between ELA and ambiguity processing differ depending on the age at which an individual 

experiences caregiving adversity. It is also unclear whether adverse experiences that are more 

chronic have larger effects on ambiguity or uncertainty tolerance. The Childhood Trauma 

Questionnaire, the primary measure used to index ELA in Study 1 and Study 3, assesses 

experiences of abuse and neglect before the age of fourteen. We did not assess the specific age at 

which a given adversity was experienced or how long the adversity lasted. We know from prior 

work that timing of adversity exposure is an important factor to consider when evaluating the 

effects of ELA on neurodevelopment (Cohodes et al., 2021; Gee & Casey, 2015). Given the 

development of frontolimbic circuitry across childhood and adolescence, the consequences of 
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adversity likely differ depending on the developmental stage in which they occur, especially if 

they coincide with sensitive periods of development (Cohodes et al., 2021; Gee & Casey, 2015). 

Given that PI youth in Study 2 were adopted before the age of two, this study offers a more focused 

examination of how ELA experienced during a discrete stage of life shapes later outcomes. That 

said, it is important to acknowledge the heterogeneity in ages of adoption in our sample. Given the 

rapid brain development that occurs during the first two years of life (Huang et al., 2015), 

differences in adoption timing, even during this relatively narrow window of time, has lasting 

implications for developmental outcomes (Gunnar et al., 2000; Rutter, 1998; Tottenham et al., 

2010). Although we did not have sufficient statistical power to evaluate the effects of age of 

adoption on ambiguity processing, this is an important area for future research. 

Clinical considerations. 

 In this dissertation, we provide evidence that ELA is associated with differences in 

processing of ambiguity and uncertainty. Neuroimaging results from Study 1 suggest that these 

patterns may stem from hypersensitivity to potential threat. In an environment characterized by a 

high prevalence of threat, it is rational to infer threat when presented with an ambiguous scenario 

(Dunsmoor & Paz, 2015). For individuals raised in threatening environments, such as those who 

experienced maltreatment, having a low threshold for threat detection is likely adaptive, protecting 

an individual by enabling rapid detection of threat. However, in safer contexts, these biases for 

assuming threat may become maladaptive. For instance, intolerance of uncertainty has been shown 

to mediate the relationship between childhood maltreatment and obsessive-compulsive personality 

traits (Gray et al., 2024) and nonsuicidal self injury (Ghaderi et al., 2020). Moreover, theoretical 

work posits that impaired pattern separation following ELA leads to overgeneralization of fear and 

can increase risk for anxiety, depressive and psychotic symptoms, and general psychopathology 
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(Lecei & van Winkel, 2020). Results from Study 1 suggest that people who experienced ELA show 

reduced differentiation between ambiguous and negative stimuli within threat-sensitive neural 

circuitry. An important avenue for future research will be to examine how difficulties 

distinguishing between ambiguous and negative stimuli at the neural level shape memory 

processes and risk for alexithymia and depression. In addition to potential mental health 

consequences, neural hypersensitivity to potential threat is thought to promote chronic low-grade 

inflammation, linking ELA to risk for physical health challenges (Nusslock & Miller, 2016). These 

findings underscore the importance of clinical interventions designed to treat threat generalization 

and intolerance of uncertainty following caregiving adversity. 

 Prior clinical intervention work in samples not recruited based on ELA demonstrates the 

promise of interventions that target intolerance of uncertainty. For example, following one 

cognitive behavioral intervention designed to reduce intolerance of uncertainty, in which therapists 

helped patients correct erroneous beliefs about worry, practice problem orientation, and practice 

cognitive exposure, 77% of participants no longer met criteria for generalized anxiety disorder 

(Ladouceur et al., 2000). This suggests that responses to uncertainty may be malleable and that 

interventions focused on addressing uncertainty biases can benefit mental health. In Study 1, we 

found that taking longer to evaluate ambiguous images — presumably reflecting a top-down 

regulatory mechanism (Neta et al., 2022; Neta & Tong, 2016) — was associated with better global 

functioning. However, this effect was dampened in individuals who experienced greater adversity. 

Future work is needed to determine whether interventions that target responses to uncertainty and 

ambiguity need to be tailored based on adversity history. Interventions may be most effective 

during the transition to adulthood, a pivotal period in which risk for psychopathology is heightened 

(Solmi et al., 2022), particularly for those who have experienced caregiving adversity (van der 
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Vegt et al., 2009), and responses to ambiguity are believed to have an increased effect on mental 

health (Bardi et al., 2009; Silvers & Peris, 2023). Prevention and intervention efforts focused on 

behavior in the face of ambiguity and uncertainty have the potential to promote wellbeing in 

populations with a history of caregiving adversity.  
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Appendix: Supplementary Materials. 

Supplemental Text. 

Study 3. 

Methods. 

 

Computational modeling. 

In addition to the logistic regression described (see Study 3 Methods), we fit participant 

data with three different reinforcement learning models previously formalized in Cockburn et al. 

(2022) and Nussenbaum, Martin et al. (2023). In these models, the probability of choosing a given 

option is expressed as a choice probability that takes into account the subjective utility of the option 

(V(si)) and a softmax function with an inverse temperature parameter, 𝛽𝑠𝑚, which serves as a 

weight for how much the subjective utility (V(si)) guided choices. Higher values of 𝛽𝑠𝑚 reflect 

greater sensitivity to value while lower values of 𝛽𝑠𝑚 indicate greater choice stochasticity. The 

probability of ct, the choice they made on trial t is modeled as: 

 

𝑝(𝑐𝑡 =  1)  =  
1

1 + 𝑒𝛽𝑠𝑚 ∗ (𝑉(𝑠𝑟𝑖𝑔ℎ𝑡) − 𝑉(𝑠𝑙𝑒𝑓𝑡)) 
 

 

This same formula was used for all models tested (baseline, novelty initialization, 

familiarity gate). The calculation of the subjective utility (V(si)) — specifically, in how uncertainty 

or novelty of the choice options affected V(si)) — differed depending on the model. After fitting 

participant data with each model, we then tested which model best characterized participant 

choices. 
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Baseline model: Expected value only. In a baseline model, the subjective utility (V) of each 

option (si) is predicted by its expected value (Q). In line with Cockburn et al. (2022) and 

Nussenbaum (2022), we modeled participant learning as that of a ‘forgetful Bayesian learner’. In 

this formalization, the expected value (Q) of each choice option is calculated as the mean of a beta 

distribution Beta [𝛼,𝛽], where 𝛼 and 𝛽 capture recency-weighted history of wins and losses 

respectively for a given option (see equation below). The uncertainty of each choice option (U) is 

defined as the variance of that same distribution, but this value was not included in the baseline 

model. That is, V(si) = Q(si) in a baseline model that does not account for uncertainty or novelty 

biases. A learning rate free parameter (η) reflects recency weighting, with higher values reflecting 

greater weight placed on more recent outcomes. 

 

 

𝛼𝑖 = 1 + ∑ 𝜂𝑇−𝑡

𝑇−1

𝑡=0

 ×  𝑂𝑡
𝑤 

𝛽𝑖 = 1 + ∑ 𝜂𝑇−𝑡

𝑇−1

𝑡=0

 ×  𝑂𝑡
𝐿 

 

𝑇 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑟𝑖𝑎𝑙 

𝑂𝑡
𝑊  = 𝑏𝑖𝑛𝑎𝑟𝑦 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 (1 𝑜𝑟 0) 𝑜𝑓 𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑜𝑛 𝑡𝑟𝑖𝑎𝑙 𝑡 𝑤𝑎𝑠 𝑎 𝑤𝑖𝑛  

𝑂𝑡
𝐿  = 𝑏𝑖𝑛𝑎𝑟𝑦 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 (1 𝑜𝑟 0) 𝑜𝑓 𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑜𝑛 𝑡𝑟𝑖𝑎𝑙 𝑡 𝑤𝑎𝑠 𝑎 𝑙𝑜𝑠𝑠  

𝜂 =  𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑓𝑟𝑒𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑤ℎ𝑒𝑟𝑒 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 

𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑛 𝑚𝑜𝑟𝑒 𝑟𝑒𝑐𝑒𝑛𝑡 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 

 



 107 

Novelty initialization model. In this model, we added a novelty bias (free parameter N) to 

the baseline model by inflating either 𝛼 or 𝛽 for each option on its first appearance in the task. 

This parameter either inflates 𝛼 (optimistic initialization, indicative of novelty-seeking) or 𝛽 

(pessimistic initialization, indicative of novelty aversion). This model also included an uncertainty 

bias, where each option’s utility is the sum of its expected value (Q) and a weighted uncertainty 

value (rather than simply its expected value). A free parameter 𝑤𝑈 weights the uncertainty value 

(U) for each option. As described previously, U is equal to the variance of beta distribution Beta 

[𝛼,𝛽] as previously defined. A negative 𝑤𝑈 would represent uncertainty aversion (i.e., decreasing 

expected value by the uncertainty value) whereas a positive 𝑤𝑈 would represent uncertainty 

seeking (i.e., increasing expected value by the uncertainty value). In this model, V(si) = QN(si) + 

𝑤𝑈U(si), where QN represents the optimistically initialized expected value and 𝑤𝑈U(si) represents 

the stimulus uncertainty weighted by the uncertainty bias. 

Familiarity gate model. While the novelty initialization model includes separable novelty 

and uncertainty biases, the familiarity gate model captures the possibility that novelty and 

uncertainty interact to affect the subjective utility of choice options. This model included a 

“familiarity gate”, wherein uncertainty affected subjective utility more for less novel (more 

familiar) options. In doing so, this model reflects the hypothesis that aversion to uncertainty may 

be buffered in the presence of novelty. In this model, option familiarity (F) was defined as F = 1 – 

option novelty, where novelty was novelty was calculated as the variance of a beta distribution 

Beta [𝛼,𝛽], with 𝛼 = 1 + the number of times the participant had previously seen the given option 

and 𝛽 = 1 (in line with model-free analyses). The stimulus uncertainty (U(si)) was then multiplied 

by the uncertainty bias (𝑤𝑈) and the option familiarity (Fi), such that V(si) = Q(si) + 𝐹𝑖 ∗ 𝑤𝑈*U(si). 
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We used a random-effects Bayesian model selection procedure using the Computational 

Behavioral Modeling (CBM) toolkit (Piray et al., 2019) to determine which of the three models fit 

the data best. We then tested whether the parameters from the best-fitting model differed as a 

function of ELA scores. 

 

Results. 

Computational modeling of trial-level choices. 

We used a random-effects Bayesian model selection procedure with simultaneous 

hierarchical parameter estimation to determine which of the three computational models (baseline 

expected value, novelty initialization, or familiarity gate; see Study 3 Methods for description) fit 

the data best. We assessed protected exceedance probabilities (PXPs), which indicate the 

likelihood that a particular model in a comparison set is the best-fitting model across participants, 

accounting for variations in model frequencies that could occur by chance. In line with Cockburn 

et al. (2022) and Nussenbaum et al. (2023), the familiarity gate model was the best-fitting model 

across participants (Supplemental Figure 14). This model accounts for interactions between 

novelty and uncertainty, such that aversion to uncertainty is lower for more novel options. We then 

used Spearman rank correlations to test whether participants’ estimated parameters from this best-

fitting model (using the first-level, nonhierarchical model fits) differed as a function of ELA 

history (total CTQ scores). CTQ scores were not significantly associated with the extent to which 

decisions were value-driven (softmax inverse temperature parameter 𝛽𝑠𝑚; rs(516) = -0.03, 95% 

CI [-0.11, 0.06], p = 0.51). Contrary to our hypotheses, CTQ scores were not significantly 

associated with uncertainty biases (parameter 𝑤𝑈; rs(516) = -0.03, 95% CI [-0.11, 0.06], p = 0.52). 

CTQ scores were significantly associated with the extent to which more recent outcomes guided 

https://www.zotero.org/google-docs/?broken=Zy60yB
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decisions (the learning rate parameter η), such that individuals with higher CTQ scores placed 

greater weight on more recent outcomes (rs(516) = 0.10, 95% CI [0.01, 0.18], p = 0.03; 

Supplemental Figure 15). 
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Supplemental Tables. 

Study 1. 

 

Supplemental Table 1. Relationship between ELA and negativity biases (the number of 

ambiguous faces interpreted negatively). 

 

 

 

 

 

 

Supplemental Table 2. Relationship between global functioning and negativity biases (the 

number of ambiguous faces interpreted negatively). 

 

  



 111 

 

Supplemental Table 3. Interaction between ELA and negativity biases in predicting global 

functioning. 

 

 

 

Supplemental Table 4. Relationship between average reaction time to ambiguous images and 

negativity biases (the number of ambiguous faces interpreted negatively). 

 

 

 

Supplemental Table 5. Average and standard deviation of representational similarity by region and 

hemisphere. 
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Supplemental Table 6. ELA and ambiguous/nonthreatening overlap. 
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Supplemental Table 7. ELA and ambiguous/nonthreatening overlap, with false discovery rate 

corrected q-values. 
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Supplemental Table 8. ELA and threatening/nonthreatening overlap. 
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Supplemental Table 9. ELA and threatening/nonthreatening overlap, with false discovery rate 

corrected q-values. 
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Supplemental Table 10. Relationship between ambiguous/threatening overlap and global 

functioning. 
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Supplemental Table 11. Relationship between ambiguous/threatening overlap and negativity 

biases (number of ambiguous faces interpreted negatively). 
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Study 2. 
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Supplemental Table 12. Relationship between ELA group (PI or control) and representational 

overlap between threatening and ambiguous images, controlling for linear age. 
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Supplemental Table 13. Relationship between ELA group (PI or control) and representational 

overlap between nonthreatening and ambiguous images, controlling for linear age. 
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Supplemental Table 14. Interaction: ELA group (PI or control) and representational overlap 

between threatening and ambiguous images within the amygdala in predicting anxiety. 

 

 

 

 

 

Supplemental Table 15. Interaction: ELA group (PI or control) and representational overlap 

between nonthreatening and ambiguous images within the amygdala in predicting anxiety. 
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Supplemental Figures. 

 

Study 1. 

 

 

Supplemental Figure 1. Fisher z-transformed correlation values from RSA by condition pair within 

each region of interest. 
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Supplemental Figure 2. Average univariate values (z statistics) by condition within each region. 

 

 

Supplemental Figure 3. Accuracy for threatening (angry) and nonthreatening (happy) trials in the 

post-scan task.  



 132 

Study 2. 

 

(A) 

 

(B) 
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(C)  

 

Supplemental Figure 4. Average univariate values (z statistics) for the (A) fearful, (B) neutral, and 

(C) happy conditions within each region. 
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Study 3. 

 

 

Supplemental Figure 5. Distribution and mean of Childhood Trauma Questionnaire (CTQ) total 

scores by sample. Higher scores indicate greater cumulative experiences of childhood trauma, 

including abuse and neglect. 
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Supplemental Figure 6. Distribution and mean of Childhood Trauma Questionnaire (CTQ) abuse 

subscale scores (sum of emotional abuse, physical abuse, and sexual abuse) by sample. 
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Supplemental Figure 7. Distribution and mean of Childhood Trauma Questionnaire (CTQ) neglect 

subscale scores (sum of emotional neglect and physical neglect) by sample. 
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Supplemental Figure 8. Distribution and mean of Questionnaire of Unpredictability in Childhood 

(QUIC) scores by sample. Higher scores indicate greater exposure to unpredictability in the 

caregiving environment during childhood. 
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Supplemental Figure 9. Distribution and mean of Intolerance of Uncertainty Scale scores by 

sample. Higher scores indicate greater intolerance (i.e., lower tolerance) for uncertainty. 
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Supplemental Figure 10. Distribution and mean of Multiple Stimulus Types Ambiguity Tolerance 

Scale-II (MSTAT) scores by sample. Higher scores indicate greater tolerance for ambiguity. 
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Supplemental Figure 11. Distribution and mean of anxiety scores from the Screen for Adult 

Anxiety Related Disorders questionnaire by sample. Higher scores indicate greater anxiety 

symptomatology. 
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Supplemental Figure 12. Distribution and mean of self-reported novelty-seeking tendencies, 

measured by the novelty subscale from the Personal Expansion Questionnaire, by sample. Greater 

scores indicate more novelty-seeking tendencies. 
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Supplemental Figure 13. Correlation matrix summarizing Spearman rank correlations (rho values) 

among all questionnaires, with the abuse and neglect subscales from the Childhood Trauma 

Questionnaire separated. Color indicates direction of association and shading indicates strength of 

association. All associations are significant (p < 0.05). 
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Supplemental Figure 14. Bayesian model comparison for the three computational models tested. 
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Supplemental Figure 15. CTQ scores were significantly associated with learning rate free 

parameter η, such that individuals with higher CTQ scores placed greater weight on more recent 

outcomes. 
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