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Purpose: Two-photon excitation fluorescence (2PEF) reveals information about tissue
function. Concerns for phototoxicity demand lower light exposure during imaging.
Reducing excitation light reduces the quality of the image by limiting fluorescence
emission. We applied deep learning (DL) super-resolution techniques to images
acquired from low light exposure to yield high-resolution images of retinal and skin
tissues.

Methods: We analyzed two methods: a method based on U-Net and a patch-based
regression method using paired images of skin (550) and retina (1200), each with low-
andhigh-resolutionpaired images. The retina datasetwas acquired at lowandhigh laser
powers from retinal organoids, and the skin dataset was obtained from averaging 7 to
15 frames or 70 frames. Mean squared error (MSE) and the structural similarity index
measure (SSIM) were outcome measures for DL algorithm performance.

Results: For the skin dataset, the patches method achieved a lower MSE (3.768)
compared with U-Net (4.032) and a high SSIM (0.824) compared with U-Net (0.783). For
the retinal dataset, the patches method achieved an average MSE of 27,611 compared
with 146,855 for the U-Net method and an average SSIM of 0.636 compared with 0.607
for the U-Net method. The patches method was slower (303 seconds) than the U-Net
method (<1 second).

Conclusions:DL can reduce excitation light exposure in 2PEF imagingwhile preserving
image quality metrics.

Translational Relevance:DLmethods will aid in translating 2PEF imaging from bench-
top systems to in vivo imaging of light-sensitive tissues such as the retina.
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Introduction

Traditional fluorescence microscopy, also known as
single-photon microscopy, illuminates a sample using
short-wavelength light to excite fluorescent molecules,
which then release the energy by fluorescing at a
longer wavelength.1 A computer-based imaging system
is used to collect the fluorescent light and reconstruct
the fluorescence image. Multiphoton microscopy, in
contrast, splits the energy required for fluorescence
excitation into two or three lower energy photons of
light (typically within the infrared spectrum). Two-
photon excitation fluorescence (2PEF) occurs with
simultaneous absorption of two photons by a molecu-
lar fluorophore and is a nonlinear process proportional
to the square of the instantaneous excitation light
intensity.2,3 The major benefits of 2PEF over single-
photon microscopy are twofold. First, 2PEF induces
fluorescence excitation in a small focal volume where
two photons interact simultaneously with the tissue, as
opposed to single photon techniques where the fluores-
cence occurs along the light path length, thus achieving
better spatial resolution. Second, 2PEF uses infrared
light to excite fluorescence, which allows deeper tissue
penetration and imaging than visible light.

Microscopic image resolution is determined by how
much focused light is detected by the imaging system.
Therefore, increasing light originating from a sample,
refining optical focus, and optimizing light detector
sensitivity can each improve image resolution. Scan
averaging and higher power fluorescence excitation
allow imaging systems to collect more light from a
sample to produce an image with higher resolution.
Acquiring many low-energy excitation images of a
sample and averaging the images into a single image
are equivalent to increased light originating from the
sample (Fig. 1i). Alternatively, sample fluorescence is
amplified by increasing excitation power so that fewer
scans are required to produce an image (Fig. 1ii).

Figure 1. Methods to increase image resolution by increasing light
originating from a sample. (i) Many low-power excitation scans are
acquired or (ii) few high-power scans are acquired and averaged to
produce a high-resolution image.

Safety is a primary concern for all optical technolo-
gies used to image human tissues, especially the
retina. Fortunately, all preclinical results in murine
eyes demonstrated no damage from 2PEF, as evalu-
ated using visual function testing, in vivo structural
imaging, ex vivo histology, and ex vivo biochemical
analysis.4

2PEF has been comprehensively evaluated in
rodents in vitro and in vivo and was shown to be
safe.4 Briefly, two-photon infrared light (1.2-mW laser
power, imaging duration of 130 seconds, 100 frames,
790 nm, 20-fs pulse duration, 80-MHz pulse frequency,
and total dose of 15.6 J/cm2) was compared with no
light and white light exposure. Structural imaging
(optical coherence tomography, confocal scanning
laser ophthalmoscopy, and autofluorescence), cellu-
lar electrophysiology (electroretinogram), and cellular
biochemistry (quantity of rhodopsin and 11-cis retinal)
showed no structural nor functional difference between
eyes exposed to no light and those exposed to the two-
photon infrared laser. However, all endpoints were
significantly diminished in eyes exposed to visible
white light. Schwarz et al.5 demonstrated in macaques
that infrared two-photon light exposure (0.5-mW laser
power, imaging duration of 40 seconds, 900 frames,
730 nm, 55-fs pulse duration, 80-MHz pulse frequency,
and total dose of 20.4 J/cm2) resulted in changes in
infrared autofluorescence immediately following light
exposure but no detectable functional changes. These
changes were noted to revert to normal over a period
of 22 weeks of observation. No other structural or
functional alterations were detected by other imaging
techniques for any of the lower dose exposures. Further
evaluation in macaques demonstrated that 856-J/cm2,
pulsed infrared two-photon light exposure (730 nm,
55-fs pulse, and 80-MHz repetition frequency) resulted
in changes in infrared adaptive optics findings in
one class of retinal photoreceptors (S cones, blue).6
However, they also demonstrated that this effect was
not seen with lower power laser energy doses ranging
from 214 to 489 J/cm2. Despite the safety profile of
2PEF in preclinical models, it is essential to reduce risks
of light toxicity to human tissues in every way possible.
Both novel biophotonic principles and optimal data
processingmethods can reduce light exposure, expedite
image acquisition, and optimize fluorescence image
quality. This work explores improving human tissue
imaging by applying deep learning (DL) to maximize
image quality while reducing fluorescence excitation
exposure.

Deep learning is a branch of machine learning
based on artificial neural networks. Taking advantage
of computing power with graphics processing units,
these DL approaches are currently the method of
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Figure 2. Training and implementing deepmachine learning algorithms. (a) Training convolutional neural networks using paired datasets
composed of (i) images produced frommultiple or few scans or (ii) high-resolution scans acquired at high or low laser excitation power. (b)
Imaging data were acquired as follows: (i) a few scans at low resolution were processed by a scan number compensation algorithm, or (ii) a
low-power scan was processed by a power compensation algorithm to produce a high-resolution solution.

choice in artificial intelligence andmachine learning for
computer vision applied to biomedical imaging.7–9 In
image analysis, DL algorithms distinguish themselves
from other approaches because they do not require
manually entering a list of features. DL algorithms,
in contrast, learn relevant features directly from train-
ing data and use them for classification, regression,
and other tasks. In ophthalmology, for example, DL
has been applied to diabetic retinopathy, age-related
macular degeneration,10,11 and glaucoma screening.12
Recently, DL has enabled superresolution microscopy
applied to fluorescence microscopy techniques13 and
mobile phone microscopes.14 Within our group, DL
has been used in many biomedical imaging tasks,
such as identifying gastrointestinal polyps,15 classify-
ing geneticmutations in gliomas,16 detecting cardiovas-
cular diseases,17 detecting spinal metastasis,18 counting
hair follicles,19 identifying fingerprints,20 and analyzing
vascularization images.21

With the goal of reducing excitation light exposure
and expediting imaging time, we explored two strate-
gies to enhance 2PEF imaging in human stem cell–

derived retinal organoids22 and human skin.3 First, we
trained a convolutional neural network using paired
datasets from multiple image samples acquired by
averaging many scans or few scans (Fig. 2ai). Second,
we trained a convolutional neural network using
paired images acquired at low and higher scan powers
(Fig. 2aii). We then finally evaluated the performance
of two DL algorithms to produce high-resolution
images based on few input scans (Fig. 2bi) or a single
low-power scan (Fig. 2aii).

Methods

Ex Vivo Imaging of Human Skin

De-identified institutional review board–exempt
human skin was obtained from the University of
California, Irvine, Dermatology Clinic and consisted
of excess normal tissue discarded duringwound closure
procedures. The specimens were imaged fresh, immedi-
ately upon collection.
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Images were taken with a home-built fast, large area
multiphoton exoscope (FLAME), a device based on
laser scanning multiphoton microscopy and optimized
for rapid, depth-resolved imaging of large skin
tissue areas with submicron resolution.23–25 Briefly,
a frequency-doubled, ytterbium-doped, 780-nm, 90-
fs, 80-MHz amplified fiber laser (Carmel X-series;
Calmar Laser, Palo Alto, CA) was used to excite
endogenous skin components such as keratin, melanin,
NAD(P)H, collagen, and elastin. Laser power was set
to 45 mW at the focus of a 1.05-NA, 25× objec-
tive lens (XLPL25XWMP; Olympus, Tokyo, Japan)
for all measurements. Emission was separated from
excitation with a 705-nm shortpass dichroic mirror
(FF705-Di01; Semrock, Rochester, NY) and further
filtered with a 620-nm shortpass filter and a 535-
nm centered bandpass filter (FF01-620/SP and FF01-
535/150, respectively; Semrock). To detect the signal,
we employed a sensitive photomultiplier tube (R9880-
20; Hamamatsu Photonics, Hamamatsu, Japan) in
photon counting mode. A resonant scanner and
galvonometric mirror pair were used to raster scan
the excitation beam over the sample. Image frames
were taken at 1024 × 1024 pixels (900 × 900 μm2)
with an 88-ns dwell time per pixel and consecutively
averaged.High signal-to-noise ratio ground-truth (GT)
images were acquired by averaging 70 frames (∼10
seconds), and lower resolution input images for train-
ing the neural network were acquired by averaging the
first seven and 15 frames (∼1 and 2 seconds, respec-
tively) of the same video stack. Images were acquired
to train DL algorithms from eight excisions includ-
ing pigmented and nonpigmented skin at different
depths within viable epidermis. Among the 713 images
acquired at both frame counts, 641 images were used
for neural net training, and 72 images were held out for
testing the neural net. Images used for neural net testing
were selected randomly.

In Vitro Imaging of Human Retinal Organoids

A genetically modified registered embryonic line
(WA01 line expressing CRX-GFP26) was used for
retinal organoid generation in this study; the retinal
organoids were produced by the force aggregation
method27 and differentiated as described previously.28

Images were taken with a Zeiss LSM 510 micro-
scope (Carl ZeissMeditec, Jena, Germany) with a Zeiss
EC Plan Neofluar 20×/0.5 Ph2 objective. The imaging
sample included eight retinal organoids on day 61 of
differentiation; each organoid was imaged at different
depths and sections to obtain unique images of differ-
ent cross-sections. The excitation wavelength was 740
nm, produced by a Chameleon laser source (COHER-

ENTMRUX1, coupled with a cooling system, Neslab
Refrigerated Recirculator; Thermo Fisher Scientific,
Waltham, MA). The laser power values used were 300
mW (high power) and 50 mW (low power); laser pulse
frequency was about 518.84 Hz as measured using a
light power meter (PM100D; Thorlabs, Newton, NJ).
Except for laser power, other imaging parameters were
held constant. The scan mode was planar, 12 bits, with
frame size of 512 × 512 (450 μm × 450 μm); pixel
dwell time was 1.61 μs. The laser passed through a Zeiss
HFT KP 650 dichroic beam splitter, mirror, and Zeiss
NFT 490 beam splitters. Each imaging region was first
imaged under low power and then switched to high
power. Paired images (n = 300 low power, n = 300
high power) were acquired with two separate imaging
channels for nicotinamide adenine dinucleotide (390–
465 nm) and flavin adenine dinucleotide (500–550 nm).
A total of 1200 images were acquired to train the DL
algorithms. Among the 1200 images acquired at each
power, 1169 images were used for neural net training,
and 31 images were randomly designated for testing.

DLMethods

We applied two different DL methods, patch-based
and content-aware image restoration (CARE), to the
two datasets. The patch-based method partitioned
the input into small tiles and then trained a neural
network using supervised learning with the objective
to predict the high-resolution of the middle pixel. The
CAREmethod used U-Net, a popular model that used
contractive convolutional neural networks and expan-
sive up-convolutional neural networks for fine-grained
prediction. CARE was selected for its broad success
and adoption in the literature.29–32

Patch-Based Regression
In thismethod, we followed the patch-basedmethod

of Ciresan et al.33 We first created patches of the
input image. Each patch was a 40 × 40-pixel square
around each pixel in the input image. For pixels near
the edge, portions of the 40 × 40-pixel square fell
outside the image, so we padded the extra values
with 0. These patches were then compiled as a set of
inputs. The target corresponding to a given patch was
the center pixel of the patch in the high-resolution
image. The input image and target image both had two
color channels representing two intrinsic fluorophores
(nicotinamide adenine dinucleotide and flavin adenine
dinucleotide) that provide structural contrast in 2PEF
imaging. We then trained a neural network to predict
the target pixel from the input of the patch using mean
squared error (MSE) as the loss function. We used a
neural network with two convolutional layers followed



Deep Learning-Assisted 2-Photon Imaging TVST | October 2021 | Vol. 10 | No. 12 | Article 30 | 5

by three fully connected layers. The first convolutional
layer had 64 filters with a kernel size of 4 × 4. The
second convolutional layer had 32 layers with a kernel
size of 3 × 3. A batch normalization layer was between
the two convolutional layers. The fully connected layers
had sizes of 1024, 512, 32, and 2, respectively. All
layers had a rectified linear unit (ReLU) activation.
We trained the neural network with Adam optimiza-
tion.34 We used a neural network with two convolu-
tional layers followed by three fully connected layers.
The first convolutional layer had 64 filters with a kernel
size of 4 × 4. The second convolutional layer had 32
layers with a kernel size of 3 × 3. A batch normaliza-
tion layer was between the two convolutional layers.
The fully connected layers had sizes of 256, 128, 32,
and 2, respectively. We trained the neural network with
Adam optimization with a learning rate of 0.001.34
We used a batch size of 256 and 64 steps per epoch.
A pretrained model will be used in future work, as a
pretrainedmodel would likely yield better performance
than patches from scratch.

U-Net
We used CSBDeep CARE,35 a model that is based

on a residual version of U-Net.36 Our dataset included
source images and high-resolution GT images. We split
the images into patches and then ran the CARE U-
Net model on the patches. To create the training set,
we extracted 128 × 128 patches from each image, and
each patch was centered on a pixel in the original image
with padding. The depth of theU-Net was 2, the kernel
size was 5, the last activation was linear, and the train-
ing loss was Laplace. We trained the CARE U-Net on
100 training epochs with 30 training steps per epoch,
with a training learning rate of 0.0004 and a batch size
of 16.

Cross-Validation

Five-fold cross validation was performed for each
dataset. Each image in the datasets was numbered.
We used the last digit to assign each image to a fold
for cross-validation. For the first fold, we trained on

images with digits ending in 2 to 9 and tested on images
with digits ending in 0 and 1. For the second fold, we
trained on images ending in 0, 1, and 4 to 9 and tested
on images ending in 2 and 3. The same process was
repeated across five cross-validation steps.

Quantitative Evaluation of DL Output

Quantitative comparison of images produced by
the two DL strategies for agreement with GT images
was performed by two conventional unitless measures:
MSE and structural similarity index measure (SSIM).
MSE assessed the cumulative error between two
datasets (images in this context). Pixels or groups
of pixels between a target and source image were
compared, and the average squared difference between
the estimated pixel values and the actual pixels was
calculated. Image degradation might occur with data
compression, data lost during transmission or acqui-
sition, or data prediction. SSIM quantified similarity
between two images to produce an image degradation
metric.37

Results

The patch-based and CARE methods applied to
two different datasets were compared using MSE and
SSIM metrics applied to images restored from low-
resolution images. MSE and SSIM were determined
for the held-out test set of images for each dataset
(Table 1). Table 2 presents performance metrics for
Patches and CARE models.

Figure 3 shows representative images restored using
the two DL approaches and by averaging the restored
images to produce an average image produced by
the two DL approaches. Associated MSE and SSIM
images are shown for each of the three approaches. As
shown in Table 1, the patches method achieved much
lower MSE and slightly higher SSIM.

Cross-validation was performed for both skin and
retinal organoid datasets as detailed in the Supple-
mentary Materials. For the skin dataset, the mean

Table 1. Quantitative Output for All Test Images From the Retinal Organoid and Skin Datasetsa

Dataset Patches Care Average (Patches + Care)

Retinal organoid Average MSE 27,611 (2819) 146,855 (26633) 55,546 (5899)
Average SSIM 0.636 (0.01) 0.607 (0.04) 0.620 (0.01)

Skin samples Average MSE 3.768 (0.4) 4.032 (2.1) 3.803 (0.3)
Average SSIM 0.824 (0.01) 0.783 (0.4) 0.816 (0.02)

aAverage valueswere determined for 31 values in the retinal organoid set and72 values in the skin set. Values in parentheses
indicate standard deviations across five-fold cross-validation.
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Figure 3. Representative images demonstrating performance of DL methods and the average of the output of each method. (a) Human
skin sample imaging (epidermal keratinocytes) using DL to predict higher resolution images using a low scan number for image acquisition.
Ground-truth images were acquired using a high scan number. (b) Retinal organoid imaging using DL to predict higher resolution images
using a low-power laser for image acquisition. Ground-truth images were acquired using a high laser power.

Table 2. Comparison of the Two Methods by Number
of Parameters and Time to Predict

Patches Care

Number of parameters 20,260,162 923,876
Time to predict one image 303.68 s 0.89 s

MSE values across five trials for CARE, patches, and
average of CARE and patches were 10.41, 4.43, and
5.92, respectively. For the skin dataset, the mean SSIM
values across five trials for CARE, patches, and average
of CAREand patches were 0.69, 0.82, and 0.77, respec-
tively. For the retinal organoid dataset, the mean MSE
values across five trials for CARE, patches, and average
of CARE and patches were 164,154, 26,424, and
59,154, respectively. For the retinal organoid dataset,
the mean SSIM values across five trials for CARE,
patches, and average of CARE and patches were 0.59,
0.64, and 0.61, respectively.

Discussion

One of the primary concerns with the applica-
tion of advanced laser imaging to humans is safety.
The retina is the tissue most sensitive to light. There-
fore, minimizing the light exposure required to image
the retina can safeguard imaging all human tissues in
vivo. However, image quality is generally improved by
increasing the light captured, which presents a contra-
dictory requirement for tissue safety. In multipho-

ton microscopy, fluorescence is excited by an ultrafast
femtosecond laser, and the emitted light is detected.
We sought to determine if multiphoton excitation of
intrinsic fluorophores to image human skin and retinal
organoid tissue can be enhanced using DL methodol-
ogy without increasing light exposure.

In this paper, we presented two DL methods for
improving the image quality of microscopy images
acquired using two-photon excited fluorescence. The
first method was based on U-Net, and the second
was a patch-based regression model. We evaluated
these methods on two datasets. The first dataset
was acquired from human skin, and the second was
from human retinal organoids. Both methods achieved
good performance on both datasets. Although the
patch-based method outperformed CARE in image-
quality metrics, the former was trained for longer than
the CARE U-Net method. Because both methods
used different architectures, training parameters, and
training time, these results should not be used to
infer that the patch-based method would always
outperform the CARE method. Rather, these results
demonstrate that both methods could achieve good
performance on both datasets. Therefore, we have
demonstrated that DL could be used to reconstruct
high-resolution images from lower resolution images
acquired using lower excitation laser power or fewer
excitation light scans. Although patch-based regres-
sion achieved higher image quality than the U-Net,
it was slower at predicting new images. Qualitative
evaluation of images produced by averaging CARE
U-Net and patches suggested that a combination
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of DL approaches might produce images with high
resolution and faster computational times.

In conclusion, we have demonstrated that DL is
a valuable approach to reconstructing high-resolution
images frommultiphotonmicroscopy on light-sensitive
tissues with minimal light exposure needed to acquire
an image when phototoxicity was a demonstrable
concern.
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