Title
Synthesis and Quantitative Structure–Activity Relationship of Fatty Acid Amide Hydrolase Inhibitors: Modulation at the N-Portion of Biphenyl-3-yl Alkylcarbamates

Permalink
https://escholarship.org/uc/item/1kr6596k

Journal
Journal of Medicinal Chemistry, 51(12)

ISSN
0022-2623

Authors
Mor, Marco
Lodola, Alessio
Rivara, Silvia
et al.

Publication Date
2008-06-01

DOI
10.1021/jm701631z

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Synthesis and QSAR of Fatty Acid Amide Hydrolase Inhibitors: Modulation at the N-Portion of Biphenyl-3-yl Alkylcarbamates

Marco Mora, Alessio Lodolaa, Silvia Rivaraa, Federica Vacondioa, Andrea Durantib, Andrea Tontinib, Silvano Sanchinib, Giovanni Piersantib, Jason R. Clapperc, Alvin R. Kingc, Giorgio Tarziab,1, and Daniele Piomellic,d

aDipartimento Farmaceutico, Università degli Studi di Parma, viale G. P. Usberti 27/A Campus Universitario, I-43100 Parma, Italy

bIstituto di Chimica Farmaceutica e Tossicologica, Università degli Studi di Urbino “Carlo Bo”, Piazza del Rinascimento 6, I-61029 Urbino, Italy

cDepartment of Pharmacology, University of California, Irvine, 360 MSRII, Irvine CA 92697-4625, USA

dDepartment of Drug Discovery and Development, Italian Institute of Technology, via Morego 30, I-16163 Genova, Italy

Abstract

Alkylcarbamic acid biphenyl-3-yl esters are a class of fatty acid amide hydrolase (FAAH) inhibitors that comprises cyclohexylcarbamic acid 3′-carbamoylbiphenyl-3-yl ester (URB597), a compound with analgesic, anxiolytic-like and antidepressant-like properties in rat and mouse models. Here, we extended the structure-activity relationships (SARs) for this class of compounds by replacing the cyclohexyl ring of the parent compound cyclohexylcarbamic acid biphenyl-3-yl ester (URB524) (IC\textsubscript{50}, for FAAH = 63 nM) with a selected set of substituents of different size, shape, flexibility and lipophilicity.

Docking experiments and Linear Interaction Energy (LIE) calculations indicated that the N-terminal group of O-arylcarbamates fits within the lipophilic region of the substrate-binding site, mimicking the arachidonoyl chain of anandamide. Significant potency improvements were observed for the β-naphthylmethyl derivative 4q (IC\textsubscript{50} = 5.3 nM) and its 3′-carbamoylbiphenyl-3-yl ester 4z (URB880, IC\textsubscript{50} = 0.63 nM), indicating that shape complementarity and hydrogen bonds are crucial to obtain highly potent inhibitors.

Introduction

Fatty acid amide hydrolase (FAAH)1,2 is an intracellular serine enzyme that catalyzes the deactivating hydrolysis of the fatty-acid ethanolamide family of signaling lipids,3,4 which include endogenous ligands for cannabinoid receptors such as arachidonoylethanolamide.

1Corresponding author: Prof. Giorgio Tarzia, Istituto di Chimica Farmaceutica e Tossicologica, Università degli Studi di Urbino “Carlo Bo”, Piazza del Rinascimento 6, I-61029 Urbino, Italy, Phone: (0039) 0722-303328, Fax: (0039) 0722-303313, giorgio.tarzia@uniurb.it.

Supporting Information Available: Tables of calculated Log P values, SGB-LIE components, elemental analytical data. This material is available free of charge via the Internet address http://pubs.acs.org.

2Abbreviations: FAAH: fatty acid amide hydrolase; SAR: structure-activity relationship; QSAR: quantitative structure-activity relationship; MGL: monoglyceride lipase; TGH: triacylglycerol hydrolase; TGL: triacylglycerol lipase; MAP: methyl arachidonylphosphonate; ACB: acyl chain binding; CA: cytoplasmic access; LIE: linear interaction energy; DPPA: diphenylphosphorylazide; LHMDS: lithium hexamethyldisilazane; TPP: triphenylphosphine; SGB: surface-generalized Born; MRA: multiple regression analysis; VDW: van der Waals; SDP: standard deviation of error in prediction.
(anandamide)\(^5\) and peroxisome proliferator-activated receptors type-\(\alpha\) (oleoylethanolamide\(^6,7\) and palmitoylethanolamide\(^8,9\)). The mechanism responsible for the inactivation of FAAH is unique among mammalian enzymes in that it involves a catalytic triad consisting of two serine residues (Ser217 and Ser241) and one lysine residue (Lys142), rather than the more common serine-histidine-aspartate triad of other serine hydrolases.\(^10\) This mechanism has been studied using both experimental\(^11\) and computational methods,\(^12,13,14,15\) and is thought to underpin the ability of FAAH to hydrolyze amides and esters at equivalent rates in vitro.

Endogenous FAAH substrates such as anandamide serve key regulatory functions in the body and have been implicated in a variety of pathological conditions, including pain, anxiety, depression and vascular hypertension.\(^16\) As a result, pharmacological inhibition of intracellular FAAH activity has been the focus of intense drug-discovery efforts.\(^17,18\) Among the different classes of FAAH inhibitors that have been recently disclosed,\(^2\) those appearing to meet basic criteria of drug-likeness are: \(\alpha\)-ketoheterocycles,\(^19,20,21,22,23\) (thio)hydantoins,\(^24\) ureas\(^25\) and \(O\)-alkyl\(^26\) or \(O\)-aryl\(^27,28\) carbamates. The latter class includes potent and selective inhibitors based on the \(N\)-cyclohexylcarbamic acid \(O\)-aryl ester scaffold,\(^29\) such as cyclohexylcarbamic acid 3′-carbamoylbiphenyl-3-yl ester (1, URB597, Figure 1), which have been intensively investigated revealing a pharmacological profile\(^30\) characterized by a unique combination of analgesic,\(^31,32\) anxiolytic-like\(^33\) and antidepressant-like\(^34,35\) properties. Antihypertensive effects of 1\(^36\) and anti-parkinsonian studies with 1\(^37\) have also been described.

A first exploration of the structure-activity relationship (SAR) for the class of \(O\)-aryl carbamates indicated that the aromatic fragment at the oxygen gave better potency when assembled to give a bent shape.\(^27\) A structural similarity between curved aromatic structures and the first portion of the arachidonoyl chain was then sought, and conformationally constrained \(O\)-aryl moieties were designed to mimic the binding conformation of the anandamide chain.\(^38\) This approach led to the identification of the lead compound cyclohexylcarbamic acid biphenyl-3-yl ester (2, URB524, Figure 1), which inhibited FAAH activity in rat brain membranes with a half-maximal inhibitory concentration (IC\(_{50}\)) value of 63 nM. The biphenyl-3-yl motif has been recently employed in a new series of \(O\)-arylcarbamates, deriving from the structure of the known inhibitor \(N\)-arachidonoylserotonin.\(^39\)

In the subsequent optimization of lead based on quantitative structure-activity relationship (QSAR) studies, it was noted that the introduction of hydrophilic residues (e.g., carbamoyl, hydroxymethyl, and hydroxyl groups) at the 3′-position of the biphenyl nucleus yielded FAAH inhibitors with potencies in the low nanomolar concentration range [e.g., 1 (IC\(_{50}\) = 4.6 nM)],\(^29\) a compound with a remarkable selectivity vs monoglyceride lipase (MGL),\(^33\) triacylglycerol hydrolase (TGH) and triacylglycerol lipase (TGL).\(^40\)

The resolution of the crystal structure of FAAH covalently bound to methyl arachidonoyl phosphonate (MAP)\(^41\) allowed molecular modeling studies of enzyme-inhibitor complexes. Docking of 1 into the active site of FAAH showed that the \textit{meta}-biphenyl moiety of this compound may effectively replace the arachidonoyl chain of MAP, allowing its 3′-carbamoyl group to participate in two hydrogen bonds with specific enzyme residues; we called this docking arrangement ‘orientation A’ (Figure 2). However, docking also revealed the possibility of an alternative, equally tenable binding mode\(^29,42\) in which the \(N\)-cyclohexyl group is placed into the acyl chain binding (ACB) channel and the biphenyl scaffold occupies the cytoplasmic access (CA) channel, with the carbamoyl group still being able to give hydrogen bonds with the protein (‘orientation B’, Figure 2). The synthesis of a series of cyclohexylcarbamic acid biphenyl esters with different substituents on the proximal phenyl
ring did not help to discriminate between the two binding modes, as the SARs were consistent with both orientations.43 On the other hand, orientation B had been shown to be consistent with FAAH carbamoylation.15,44

In the present study, we report the synthesis and characterization of a novel series of carbamic acid biphenyl esters, designed as inhibitors of FAAH by progressive modification of the structure of compound 2. We explored the steric and lipophilic requirements of the N-substituents for FAAH inhibition and evaluated the results using QSAR and molecular modeling methods. In particular, we employed the structure-based Linear Interaction Energy method (LIE)45 implemented in the LIAISON package46 to test the hypothesis that differences in potency can be predicted from enzyme-inhibitor recognition, when the reactivity of the carbamic group can be considered essentially the same within the series. This approach had been successfully applied to several enzyme inhibitors,47,48,49 and is generally regarded as a robust computational tool for structure-based SAR rationalization50 and for the prediction of experimental binding affinity.51 Interaction energies were calculated for all compounds docked in both orientation A and B, and statistical models were built and compared.

In particular, we began our SAR investigation by gradually increasing the lipophilicity of the N-alkyl group (methyl to n-octyl). We then explored the steric requirements of the vicinal binding region by introducing allyl, isopropyl, n-butyl and cyclobutyl groups, which have comparable lipophilicity but different shapes. Particular attention was devoted to N-substitution with cyclic groups such as cycloalkyl, arylcycloalkyl and aryl groups to explore the length and size of the FAAH binding pocket. Moreover, searching for compounds able to discriminate between orientations A and B, we introduced different specific features such as a highly bulky group (1-adamantyl), a hydrophilic terminal group (6-morpholinohexyl) and a series of conformationally constrained substituents (α-naphthylmethyl, β-naphthylmethyl, para-biphenylbutyl). Finally, design of selected structures by combining the results of our present exploration with those of previous work on the biphenyl group of compound 227,29,43 led us to identify a subnanomolar FAAH inhibitor.

Chemistry

\textit{O}-biphenyl-3-yl carbamates \textit{N}- and 3′-substituted 4b-i,k-w,y,z were synthesized by addition of opportune 3-phenylphenol, commercially available, or 3-phenylphenol-3′-substituted to isocyanates 3b-i,k-w,y,z (Scheme 1). 3′-Hydroxybiphenyl-3-carboxylic acid amide and 1-\(3′\)-hydroxybiphenyl-3-yl)ethanone were prepared as reported in the literature.29 Compounds 4a,j,x were obtained by reacting \(N,N′\)-carbonyldiimidazole (5) and the opportune amine and, in a subsequent step, 3-phenylphenol with the adduct previously formed (Scheme 2). An analogue procedure was followed to synthesize 2-oxooxazolidine-3-carboxylic acid biphenyl-3-yl ester (6), 2-Cyclohexylacetic acid biphenyl-3-yl ester (8) was obtained by adding 3-phenylphenol to a mixture of 2-cyclohexylacetic acid (7) and dicyclohexycarbodiimide (Scheme 3).

Isocyanates 3b-f,h,i,k-n,w were commercially available. The synthesis of isocyanates 3g-o-v,y,z (Scheme 4) was performed via Curtius rearrangement of the opportune acylazide (10), prepared by reacting the appropriate carboxylic acid (9) with diphenylphosphorylazide (DPPA) (3g,q,r,t-v,y,z) or with oxalylchloride and sodium azide (NaN\(_3\)) (3o,p,s).

Carboxylic acid 9t was obtained by reaction of ethyl 7-bromohexanoate (11t) with morpholine and subsequent hydrolysis of ester 12t (Scheme 5). Carboxylic acids 9u and 9v were synthesized by a catalytic hydrogenation of the respective intermediates 15u and 15v, obtained by a Wittig reaction of the opportune aldehyde and the phosphonium salts 14u and...
14v, in presence of lithium hexamethyldisilylazane (LHMD).52 Concerning the latter compounds, 14v was commercially available while 14u was prepared by reaction of 8-bromoocctanoic acid (13u) and triphenylphosphate (TPP) (Scheme 6).

Results and Discussion

We measured FAAH activity in rat brain membranes, using \[^3H\]anandamide as a substrate. The IC\(_{50}\) values for compounds 4a-z, 6, and 8 are reported in Tables 1a and 1b, along with that of the reference compound 2.

Replacing the cyclohexyl N-substituent of 2 with smaller groups such as methyl (4a), allyl (4b) and isopropyl (4c) resulted in significant decreases in inhibitory potency, which was recovered with longer alkyl chains (compounds 4d-f). Furthermore, while small cyclic N-substituents did not affect activity (4g-i), bulkier groups such as exo-2-norbornyl (4j) and adamantyl (4k) were unfavourable. The influence of a terminal alkylphenyl group strongly depended on chain length and geometry. In general, shorter alkyl chains yielded less potent inhibitors (4l, 4m, 4o), while significant increases in potency were observed when the phenyl ring was attached to an n-butyl (4r), n-hexyl (4s) and n-octyl (4u) chain. Thus, 4u (IC\(_{50}\) = 5.4 nM) was approximately 10 times more potent than compound 2 (IC\(_{50}\) = 63 nM).

Substituting the phenyl ring of 4l and 4s with more hydrophilic groups had a negative effect on potency (4m, 4t). As indicated by the relatively high activity of the biphenyl n-butyl derivative 4v, and according to a QSAR model (see below), rigidity of the hydrocarbon chain was tolerated. Notably, whereas no improvement in potency was observed with the introduction of an α-napthylmethyl group (4p, IC\(_{50}\) = 59 nM), a β-napthylmethyl group yielded one of the most active compounds in the present series (4q, IC\(_{50}\) = 5.3 nM). Modification of the essential alkylcarbamic acid aryl ester scaffold led to much less active compounds (4w, 4x, 6, 8). Finally, combination of the present results with what had been previously observed about substituents 3′-acetyl (IC\(_{50}\) = 9.1 nM) and 3′-carbamoyl (IC\(_{50}\) = 4.6 nM) of the biphenyl group led to 4v (IC\(_{50}\) = 5.2 nM) and 4z (UBR880, IC\(_{50}\) = 0.6 nM), the latter being about 100 times more potent than compound 2 and 6 times more potent than compound 1 at inhibiting FAAH activity in vitro. 4z versus rat brain MGL proved to be ineffective displaying an IC\(_{50}\) value of 100,000 nM.

With pIC\(_{50}\) values spanning almost four orders of magnitude and a large diversity in structure size, shape and lipophilicity, the twenty-two compounds listed in Table 2 constitute an ideal set for QSAR investigation. For reasons of structural consistency, compounds 4j, 4w-z, 6, and 8 were excluded from these analyses.

As a first step in QSAR analysis, we searched for statistical correlation between pIC\(_{50}\) values and lipophilicity. A log P value was calculated for all compounds reported in Table 2 with two well known methods: the Moriguchi log P\(^53\) and the ACD/Labs log P.\(^54\) While the two calculated log P values (see Table S1 in Supporting Information) were mutually correlated (r = 0.95), poor correlations were found between pIC\(_{50}\) and lipophilicity, as confirmed by the regression Equations 1 and 2.

\[
\begin{align*}
\text{pIC}_{50} &= 0.546(\pm 0.187)\log P_{\text{Moriguchi}} + 4.478(\pm 0.894) \\
n &= 22 \quad r^2 = 0.30 \quad s = 0.75 \quad F = 8.54 \quad q^2 = 0.15 \quad SDEP = 0.79
\end{align*}
\text{Eq. 1)}

\[
\begin{align*}
\text{pIC}_{50} &= 0.416(\pm 0.112)\log P_{\text{ACD/Labs}} + 4.867(\pm 0.604) \\
n &= 22 \quad r^2 = 0.41 \quad s = 0.69 \quad F = 13.8 \quad q^2 = 0.29 \quad SDEP = 0.72
\end{align*}
\text{Eq. 2)}

\[J\text{Med Chem. Author manuscript; available in PMC 2013 August 16.}\]
The use of size descriptors, such as molecular volume or molar refractivity, did not produce better models (data not shown). Therefore, while it could be qualitatively inferred that hydrophobic interactions remain crucial for obtaining highly potent inhibitors, overall lipophilicity appeared inadequate to obtain a QSAR within this series.

The FAAH crystal structure was then employed to evaluate the correlation between stereoelectronic complementarity and inhibitory potency. The structure-based linear interaction energy method, implementing a surface-generalized Born model for solvent representation (SGB-LIE),\(^5\) had been applied to several protein-ligand systems to search for relations between the magnitude of free energy changes upon binding of inhibitors to enzymes and the experimental potencies of these inhibitors.\(^47\), \(^48\), \(^49\) The twenty-two compounds of the current dataset were thus docked into the FAAH binding site following an iterative procedure described in the Experimental Section. Two families of complexes, corresponding to orientations A and B, were generated and SGB-LIE calculations were performed using the LIAISON program.\(^46\) The interaction energy terms, referring to van der Waals (VDW), electrostatic and cavity components, were calculated for free and bound ligands, respectively, and are reported in the supporting material (Table S2 and Table S3). The difference between these energy values (bound-free) were used to build linear interaction energy equations by multiple regression analysis (MRA).

For orientation A, no significant model was found, as indicated by the low value of \(r^2\) and the poor predictive power \(q^2 = 0.12\) reported for Equation 3:

\[
\text{pIC}_{50} = -0.013(\pm 0.108)\Delta U_{\text{vdw}} + 0.054(\pm 0.066)\Delta U_{\text{elec}} - 2.052(\pm 1.793)\Delta U_{\text{cav}}
\]
\[n = 22 \quad r^2 = 0.29 \quad s = 0.77 \quad F = 2.65 \quad q^2 = 0.12 \quad SDEP = 0.80\]
(Eq. 3)

In the data matrix used for Equation 3, the first and the third independent variables were significantly correlated \(r_{\Delta U_{\text{vdw}}, \Delta U_{\text{cav}}} = 0.975\); VDW energy alone gave Equation 4, with a comparable \(r^2\) and \(q^2\) and better \(F\). Equation 4, free of not significant and correlated variables, was therefore employed to calculate the expected pIC\(_{50}\) values reported in Table 2.

\[
\text{pIC}_{50} = -0.142(\pm 0.003)\Delta U_{\text{vdw}}
\]
\[n = 22 \quad r^2 = 0.23 \quad s = 0.77 \quad F = 6.13 \quad q^2 = 0.15 \quad SDEP = 0.79\]
(Eq. 4)

A better model was obtained for orientation B using the standard SGB-LIE approach. The resulting Equation 5 explained 71% of pIC\(_{50}\) variation and showed a good predictive power \(q^2 = 0.61\).

\[
\text{pIC}_{50} = -0.187(\pm 0.046)\Delta U_{\text{vdw}} - 0.141(\pm 0.034)\Delta U_{\text{elec}} + 0.375(\pm 0.513)\Delta U_{\text{cav}}
\]
\[n = 22 \quad r^2 = 0.71 \quad s = 0.49 \quad F = 15.9 \quad q^2 = 0.61 \quad SDEP = 0.53\]
(Eq. 5)

Internal correlation among X variables was also present in this case \(r_{\Delta U_{\text{vdw}}, \Delta U_{\text{elec}}} = -0.71; \quad r_{\Delta U_{\text{vdw}}, \Delta U_{\text{cav}}} = 0.84; \quad r_{\Delta U_{\text{elec}}, \Delta U_{\text{cav}}} = -0.40\), probably affecting the uncertainty for the cavity term coefficient \(0.375 \pm 0.513\). The exclusion of \(\Delta U_{\text{cav}}\) led to Equation 6, with the same \(r^2\) and all coefficients significantly different from zero, which was employed to calculate the expected pIC\(_{50}\) values reported in Table 2 with the corresponding residuals.

\[
\text{pIC}_{50} = -0.163(\pm 0.005)\Delta U_{\text{vdw}} - 0.129(\pm 0.030)\Delta U_{\text{elec}}
\]
\[n = 22 \quad r^2 = 0.71 \quad s = 0.48 \quad F = 24.1 \quad q^2 = 0.63 \quad SDEP = 0.52\]
(Eq. 6)

\[^5\] Mor et al. Page 5

\[^{47}\] J Med Chem. Author manuscript; available in PMC 2013 August 16.
These models indicated that VDW interactions give the most significant contribution (i.e. with the largest coefficient/standard error ratio) to binding energy. VDW energy is strongly related to the closeness of ligand and enzyme surfaces. Electrostatic interactions also showed a significant effect: as chemical modulation in this set of compounds mainly regarded size and shape, this result can be a consequence of the complementarity between inhibitors and the binding site. In fact, the carbamic group of all these inhibitors may form several hydrogen bonds, and a high steric complementarity allows more efficient electrostatic interaction. However, interpretation of the ΔU_{elec} term is complicated by the fact that it also includes interactions with the SGB solvent reaction-field energy (see Experimental Section).

Experimental and calculated pIC$_{50}$ values are reported in Table 2 and graphically plotted in Figure 3. When placed in position A, the compounds with a cyclic aliphatic substituent [e.g. compounds 2, 4g, 4h and, in particular, the 1-adamantyl derivative 4k ($\Delta_{\text{obs/calc}} = -1.55$)] generally showed a marked difference between observed and calculated pIC$_{50}$. On the contrary, placing the structures in orientation B allowed better predictions ($\Delta_{\text{obs/calc}} = -0.56$ for 4k), which can be attributed to a more accurate evaluation of the steric tolerance for the two binding pockets.

Visual inspection of the FAAH active site reveals that the ACB pocket is more lipophilic than the CA channel, in that it is mainly lined by aliphatic and aromatic residues. The introduction of a polar substituent at the nitrogen atom, as in the case of compound 4t, represented a further attempt to discriminate between the two binding modes. When the morpholinohexyl derivative was placed in orientation B, its potency was accurately calculated ($\Delta_{\text{obs/calc}} = -0.23$). Furthermore, Equation 6 accounted for the different potencies of compounds 4s and 4t. Conversely, compound 4t in orientation A was an outlier, with a calculated pIC$_{50}$ higher by one unit than the experimental one and with no variation of calculated potency with respect to 4s. Thus, the SGB-LIE approach, considering orientation B, can appropriately evaluate the effect of “lipophilicity” for these compounds.

However, even considering the better orientation, the SGB-LIE model did not reproduce potency variations with complete accuracy ($r^2 = 0.71$). In fact, it could not account for the 10-fold higher potency of the β-naphthylmethyl derivative 4q over the α-naphthylmethyl one 4p. Compound 4q had been designed as an improved derivative of the benzyl derivative 4l and visual inspection and manual docking of it, according to orientation B, indicated that 4q would fit the ACB cavity better than 4p. Somewhat unexpectedly, while experimental potency confirmed the effect, LIAISON underestimated this difference, calculating similar potencies for the two compounds. However, also in this case, orientation B worked slightly better than orientation A.

Despite model weaknesses, probably due to the fact that recognition is only partially responsible for experimental IC$_{50}$ and to the approximations mentioned in the Experimental Section, additional observations supported the consistency of the SGB-LIE model with orientation B. Compound 4j, which contains a racemic norbornyl group, was excluded from the training set; the calculated pIC$_{50}$ for both enantiomers was 7.3 ± 0.1, reasonably close to the experimental value of 6.6. Compound 4v was designed as a less flexible derivative of 4u, representing the conformation it assumed in orientation B; as correctly predicted by Equation 6, the two compounds actually showed similar potencies.

The consistency of the model described above with the SAR previously reported for the biphenyl moiety was tested by selecting one of the most potent compounds of the series, 4q, and placing at the 3′-position of its biphenyl nucleus a polar hydrogen bonding group. Even if the two moieties did not show a purely additive effect on pIC$_{50}$, the subnanomolar
potency showed by 4z confirmed that concurrent positioning of the lipophilic N-alkyl group within the ACB pocket and of the biphenyl moiety within the more polar CA cavity (represented in Figure 4) favors inhibitory potency.

Conclusions

The potency of carbamic FAAH inhibitors, such as those described in the present study, is expected to depend on two factors: first, the ability of the inhibitor to bind to the enzyme recognition site; and, second, the propensity of the carbamate group to react with the Ser241 nucleophile. However, in the case of the carbamic acid biphenyl esters investigated here, recognition events appear to predominate. In the present series of compounds, alteration of the N-alkyl structure (as in compounds 4w, 4x, 6, 8) led to a decrease of inhibitory potency, probably reflecting negative effects upon reactivity. On the other hand, good correlations between calculated and experimental potency could be achieved by limiting SAR analysis to compounds that share the alkylcarbamic acid biphenyl ester scaffold, provided that the binding mode is rightly chosen. Our findings rule out the hypothesis that the biphenyl nucleus mimics the fatty acyl chain of FAAH substrates, and describe a protocol that, at affordable computational costs, provides a robust and sufficiently accurate QSAR model.

The QSAR model based on SGB-LIE estimation of binding propensity supported the rational design of new FAAH inhibitors, comprising the subnanomolar inhibitor 4z. Such a model, being based on complex stereoelectronic complementarity, has sufficient accuracy to be considered as a tool to estimate FAAH inhibitor potency for different N-alkyl carbamates in a process of combined pharmacokinetic, toxicologic and pharmacodynamic optimization of this promising class of inhibitors. Notably, generic descriptors of lipophilicity or steric bulk performed less well in predicting the ability of the N-alkyl portion to bind a lipophilic cavity.

The present results confirm the hypothesis that carbamic acid biphenyl esters inhibit FAAH by assuming an orientation in which the N-substituent is positioned within the ACB channel of the enzyme (‘orientation B’). While previous studies44 based this hypothesis on the evidence of enzyme carbamoylation, and exploited the role of lipophilicity for the N-alkyl group, the present work describes the SAR requirements for potent inhibitors and underlines steric similarities between the two binding pockets, as shown by the generally better prediction of pIC\textsubscript{50} values in the orientation B.

In brief, rational exploration of the chemical space, convergent consideration of SARs and structural information allowed us to find appropriate stereoelectronic features and to obtain a subnanomolar inhibitor of FAAH activity, named 4z which is currently undergoing in vivo tests. The definition of these requirements may also be useful to the development of new classes of FAAH inhibitors, aimed at selectivity and pharmacokinetic optimization.

Experimental Section

(a) Chemicals, Materials and Methods

All reagents were purchased from Sigma–Aldrich or Lancaster in the highest quality commercially available. Solvents were RP grade unless otherwise indicated. Chromatographic separations were performed on silica gel (Kieselgel 60, 0.040-0.063 mm, Merck). TLC analyses were performed on precoated silica gel on aluminium sheets (Kieselgel 60 F\textsubscript{254}, Merck). Melting points were determined on a Büchi SMP-510 capillary melting point apparatus. The structure of the unknown compounds was unambiguously assessed by MS, 1H NMR, IR, and elemental analysis. EI-MS spectra were recorded with a Fisons Trio 1000 (70 eV) spectrometer; only molecular ions (M+) and base peaks are
given. ¹H NMR spectra were recorded on a Bruker AC 200 spectrometer and analyzed using the WIN-NMR software package; chemical shifts were measured by using the central peak of the solvent. IR spectra were obtained on a Nicolet Atavar 360 FT spectometer. Elemental analyses were performed on a Carlo Erba analyzer. All products had satisfactory (within ± 0.4 of theoretical values) C, H, N analyses results.

General Procedure for the Synthesis of N-Substituted Carbamic Acid Biphenyl-3-yl Ester 4b-i,k-w,y,z—To a stirred solution of the opportune 3-phenylphenol or 3-phenylphenol-3′-substituted (1 mmol) in toluene (5 mL) were added the suitable isocyanate (1.1 mmol) and Et₃N (0.05 mmol, 0.005 g, 0.007 mL). After the reactants were refluxed for 5 h a further amount of the opportune isocyanate was added [4w, 0.27 mmol, 0.033 g; 4b, 0.046 g; 4d, 0.055 g; 4e, 0.070 g; 4h, 0.061 g; 4n, 0.081 g; 4f, 0.825 mmol, 0.128 g; 4c, 0.90 mmol, 0.076 g; 4i, 1.1 mmol, 0.153 g; 4l: 0.081 g (no such further addition was necessary in the cases of 4g,k,m,o-v,y,z)] and the mixture was again reacted (4y, 2 h; 4c, 3 h; 4b, 4 h; 4i, 6 h; 4l, 12 h; 4d, e, h, 14 h; 4z, 15 h; 4n, 17 h; 4t, 19 h; 4f, 22 h) then cooled and concentrated. Purification of the residue by column chromatography (cyclohexane/EtOAc 85:15 for 4c,e, 8:2 for 4h,i,k,w,y; 4:6 for 4z; CH₂Cl₂/cyclohexane 9:1 for 4y, 8:2 for 4m-s,u,v, 9:1 for 4g,m, 95:5 for 4f, 99.5:0.5 for 4b; CH₂Cl₂ for 4d,l; CH₂Cl₂/MeOH 95:5 for 4l) and recrystallization gave 4b-i,k-w,y,z.

Allylcarbamic Acid Biphenyl-3-yl Ester (4b)—White crystals. Yield: 91% (0.467 g). Mp 64-65 °C (Et₂O/petroleum ether). MS (EI): m/z 253 (M⁺), 170 (100). ¹H NMR (CDCl₃): δ 3.91-3.97 (t, 2H), 5.13 (br d, 1H), 5.19-5.35 (m, 2H), 5.84-6.02 (m, 1H), 7.10-7.16 (m, 1H), 7.32-7.35 (m, 6H), 7.61-7.62 (m, 2H) ppm. IR (Nujol): 3400, 1697 cm⁻¹. Anal. (C₁₀H₁₅NO₂) C, H, N.

Isopropylcarbamic Acid Biphenyl-3-yl Ester (4c)⁵⁶—White crystals. Yield: 58% (0.148 g). Mp 86-89 °C (EtOH). MS (EI): m/z 255 (M⁺), 170 (100). ¹H NMR (CDCl₃): δ 0.87-0.93 (d, 6H), 3.84-4.01 (m, 1H), 4.90 (br d, 1H), 7.08-7.23 (m, 1H), 7.31-7.49 (m, 5H), 7.56-7.62 (m, 2H) ppm. IR (Nujol): 3370, 1712 cm⁻¹. Anal. (C₁₀H₁₇NO₂) C, H, N.

n-Butylcarbamic Acid Biphenyl-3-yl Ester (4d)—White crystals. Yield: 79% (0.212 g). Mp 68-70 °C (EtOAc). MS (EI): m/z 269 (M⁺), 170 (100). ¹H NMR (CDCl₃): δ 0.88-1.64 (m, 11H), 3.29 (m, 2H), 5.06 (br s, 1H), 7.08-7.18 (m, 1H), 7.31-7.48 (m, 6H), 7.56-7.62 (m, 2H) ppm. IR (Nujol): 3323, 1704 cm⁻¹. Anal. (C₁₃H₂₁NO₂) C, H, N.

n-Hexylcarbamic Acid Biphenyl-3-yl Ester (4e)—White crystals. Yield: 90% (0.267 g). Mp 71-73 °C (petroleum ether). MS (EI): m/z 297 (M⁺), 170 (100). ¹H NMR (CDCl₃): δ 0.87-0.93 (m, 3H), 1.44-1.56 (m, 4H), 3.30 (q, 2H), 5.04 (br s, 1H), 7.08-7.16 (m, 1H), 7.31-7.48 (m, 6H), 7.56-7.62 (m, 2H) ppm. IR (Nujol): 3326, 1702 cm⁻¹. Anal. (C₁₅H₂₃NO₂) C, H, N.

n-Octylcarbamic Acid Biphenyl-3-yl Ester (4f)—White crystals. Yield: 91% (0.590 g). Mp 80 °C (EtOH). MS (EI): m/z 326 (M⁺), 170 (100). ¹H NMR (CDCl₃): δ 0.87-0.93 (m, 3H), 1.29-1.33 (m, 10H), 1.59 (q, 2H), 3.29 (q, 2H), 5.04 (br s, 1H), 7.08-7.19 (m, 1H), 7.31-7.48 (m, 6H), 7.56-7.62 (m, 2H) ppm. IR (Nujol): 3326, 1701 cm⁻¹. Anal. (C₁₇H₂₇NO₂) C, H, N.

Cyclobutylcarbamic Acid Biphenyl-3-yl Ester (4g)—White crystals. Yield: 54% (0.382 g). Mp 114-118 °C (EtOH). MS (EI): m/z 267 (M⁺), 169 (100). ¹H NMR (CDCl₃): δ 1.63-2.08 (m, 4H), 2.33-2.48 (m, 2H), 4.16-4.36 (m, 1H), 5.21-5.22 (br d, 1H), 7.09-7.61 (m, 9H) ppm. IR (Nujol): 3444, 3310, 1704 cm⁻¹. Anal. (C₁₇H₁₇NO₂) C, H, N.

J Med Chem. Author manuscript; available in PMC 2013 August 16.
Cyclopentylcarbamic Acid Biphenyl-3-yl Ester (4h)—White scales. Yield: 57% (0.160 g). Mp 142-145 °C (EtOH). MS (EI): m/z 281 (M⁺), 170 (100). ¹H NMR (CDCl₃): δ 1.50-1.74 (m, 6H), 2.01-2.10 (m, 2H), 4.04-4.14 (m, 1H), 5.01 (br d, 1H), 7.10-7.17 (m, 1H), 7.31-7.48 (m, 6H), 7.56-7.62 (m, 2H) ppm. IR (Nujol): 3311, 1706 cm⁻¹. Anal. (C₁₈H₁₉NO₂) C, H, N.

Cyclohexylmethylcarbamic Acid Biphenyl-3-yl Ester (4i)—White crystals. Yield: 81% (0.500 g). Mp 118 °C (EtOH). MS (EI): m/z 310 (M⁺), 170 (100). ¹H NMR (CDCl₃): δ 0.95-1.82 (m, 11H), 3.15 (t, 2H), 5.09 (br s, 1H), 7.10-7.69 (m, 9H) ppm. IR (Nujol): 3426, 3311, 1701 cm⁻¹. Anal. (C₂₀H₂₃NO₂) C, H, N.

Adamant-1-ylcarbamic Acid Biphenyl-3-yl Ester (4k)—White crystals. Yield: 24% (0.083 g). Mp 128-131 °C (EtOH). MS (EI): m/z 347 (M⁺), 170 (100). ¹H NMR (CDCl₃): δ 1.70 (m, 6H), 2.03-2.13 (m, 9H), 4.93 (br s, 1H), 7.07-7.18 (m, 1H), 7.35-7.48 (m, 6H), 7.57-7.62 (m, 2H) ppm. IR (Nujol): 3309, 1704 cm⁻¹. Anal. (C₂₃H₂₅NO₂) C, H, N.

Benzylcarbamic Acid Biphenyl-3-yl Ester (4l)—White solid. Yield: 98% (0.297 g). Mp 97-98 °C (EtOH). MS (EI): m/z 303 (M⁺), 170 (100). ¹H NMR (CDCl₃): δ 4.49 (d, 2H), 5.38 (br s, 1H), 7.12-7.18 (m, 1H), 7.32-7.49 (m, 11H), 7.57-7.62 (m, 2H) ppm. IR (Nujol): 3325, 1707 cm⁻¹. Anal. (C₁₉H₁₅NO₂) C, H, N.

Furan-2-ylmethylcarbamic Acid Biphenyl-3-yl Ester (4m)—White crystals. Yield: 62% (0.365 g). Mp 86-87 °C (Et₂O/petroleum ether). MS (EI): m/z 293 (M⁺), 170 (100). ¹H NMR (CDCl₃): δ 4.48 (d, 2H), 5.40 (br s, 1H), 6.31-6.38 (m, 2H), 7.09-7.24 (m, 1H), 7.31-7.49 (m, 7 H), 7.56-7.62 (m, 2H) ppm. IR (Nujol): 3328, 1701 cm⁻¹. Anal. (C₁₈H₁₅NO₃) C, H, N.

Phenethylcarbamic Acid Biphenyl-3-yl Ester (4n)—White crystals. Yield: 65% (0.206 g) Mp 137-138 °C (EtOH). MS (EI): m/z 317 (M⁺), 170 (100). ¹H NMR (CDCl₃): δ 2.89-2.96 (t, 2H), 3.53-3.63 (q, 2H), 5.08 (br s, 1H), 7.08-7.14 (m, 1H), 7.22-7.67 (m, 13H) ppm. IR (Nujol): 3418, 3359, 1732, 1712 cm⁻¹. Anal. (C₂₁H₁₉NO₂) C, H, N.

Indan-2-ylcarbamic Acid Biphenyl-3-yl Ester (4o)—White crystals. Yield: 71% (0.930 g). Mp 140-141 °C (EtOH). MS (EI): m/z 329 (M⁺), 170 (100). ¹H NMR (CDCl₃): δ 2.89-3.00 (dd, 2H), 3.32-3.44 (m, 2H), 4.55-4.70 (m, 1H), 5.30 (br d, 1H), 7.10-7.62 (m, 13H) ppm. IR (Nujol): 3302, 1699 cm⁻¹. Anal. (C₂₂H₁₉NO₂) C, H, N.

Naphthalen-1-ylmethylcarbamic Acid Biphenyl-3-yl Ester (4p)—White solid. Yield: 74% (0.260 g). Mp 101-102 °C (EtOH). MS (EI): m/z 353 (M⁺), 170 (100). ¹H NMR (CDCl₃): δ 4.96 (d, 2H), 5.36 (br s, 1H), 7.12-7.21 (m, 1H), 7.32-8.14 (m, 15H) ppm. IR (Nujol): 3316, 1699 cm⁻¹. Anal. (C₂₄H₁₉NO₂) C, H, N.

Naphthalen-2-ylmethylcarbamic Acid Biphenyl-3-yl Ester (4q)—White crystals. Yield: 11% (0.153 g). Mp 160 °C (EtOH). MS (EI): m/z 353 (M⁺), 266 (100), 170 (100). ¹H NMR (CDCl₃): δ 4.66 (d, 2H), 5.47 (br s, 1H), 7.14-7.21 (m, 1H), 7.32-8.14 (m, 15H) ppm. IR (Nujol): 3266, 1704 cm⁻¹. Anal. (C₂₄H₁₉NO₂) C, H, N.

4-Phenylbutylcarbamic Acid Biphenyl-3-yl Ester (4r)—White crystals. Yield: 13% (0.180 g). Mp 112 °C (EtOH). MS (EI): m/z 345 (M⁺), 170 (100). ¹H NMR (CDCl₃): δ 1.61-1.74 (m, 4H), 2.65-2.72 (t, 2H), 3.27-3.37 (t, 2H), 5.03 (br s, 1H), 7.09-7.49 (m, 12 H), 7.55-7.61 (m, 2H) ppm. IR (Nujol): 3311, 1716 cm⁻¹. Anal. (C₂₃H₂₃NO₂) C, H, N.
6-Phenylhexylcarbamic Acid Biphenyl-3-yl Ester (4s)—White crystals. Yield: 68% (0.254 g). Mp 75-76 °C (EtOH). MS (EI): m/z 374 (M+), 170 (100). ¹H NMR (CDCl₃): δ 1.37-1.50 (m, 4H), 1.53-1.73 (m, 4H), 2.63 (t, 2H), 3.24-3.34 (m, 2H), 5.04 (br s, 1H), 7.10-7.49 (m, 12H), 7.56-7.62 (m, 2H) ppm. IR (Nujol): 3327, 1704 cm⁻¹. Anal. (C₂₅H₂₇NO₂) C, H, N.

6-Morpholinohexylcarbamic Acid Biphenyl-3-yl Ester (4t)—White crystals. Yield: 13% (0.382 g). Mp 93-95 °C (Et₂O). MS (EI): m/z 382 (M+), 170 (100). ¹H NMR (CDCl₃): δ 1.40-1.60 (m, 8H), 2.30-2.47 (m, 6H), 3.24-3.34 (q, 2H), 3.71-3.76 (m, 4H), 5.15 (br d, 1H), 7.09-7.15 (m, 1H), 7.35-7.47 (m, 6H), 7.57-7.61 (m, 2H) ppm. IR (Nujol): 3300, 1712 cm⁻¹. Anal. (C₂₃H₂₀N₂O₃) C, H, N.

8-Phenyloctylcarbamic Acid Biphenyl-3-yl Ester (4u)—White crystals. Yield: 16% (0.141 g). Mp 77-79 °C (EtOH). MS (EI): m/z 402 (M+), 170 (100). ¹H NMR (CDCl₃): δ 1.27-1.36 (m, 8H), 1.59-1.63 (m, 4H), 2.58-2.66 (t, 2H), 3.24-3.34 (m, 2H), 5.05 (br s, 1H), 7.10-7.49 (m, 12H), 7.56-7.62 (m, 2H) ppm. IR (Nujol): 3325, 1704 cm⁻¹. Anal. (C₂₇H₃₁NO₂) C, H, N.

4′-Phenyl-4-phenylbutylcarbamic Acid Biphenyl-3-yl Ester (4v)—White crystals. Yield: 76% (0.320 g). Mp 127-130 °C (EtOH). MS (EI): m/z 421 (M+), 167 (100). ¹H NMR (CDCl₃): δ 1.61-1.73 (m, 4H), 2.69-2.76 (m, 2H), 3.30-3.39 (m, 2H), 4.91-5.12 (m, 1H), 7.27-7.61 (m, 18 H) ppm. IR (Nujol): 3292, 1712 cm⁻¹. Anal. (C₂₉H₂₇NO₂) C, H, N.

Phenylcarbamic Acid Biphenyl-3-yl Ester (4w)—White scales. Yield: 95% (0.274 g). Mp 133-136 °C (EtOH). MS (EI): m/z 289 (M+), 170 (100). ¹H NMR (CDCl₃): δ 7.02 (br s, 1H), 7.09-7.22 (m, 2H), 7.32-7.63 (m, 12H) ppm. IR (Nujol): 3352, 1720 cm⁻¹. Anal. (C₁₉H₁₅NO₂) C, H, N.

Naphthalen-2-ylmethylcarbamic Acid 3′-Acetylbiphenyl-3-yl Ester (4y)—White crystals. Yield: 20% (0.081 g). Mp 151-152 °C (EtOH). MS (EI): m/z 289 (M+), 167 (100). ¹H NMR (CDCl₃): δ 2.67 (s, 3H), 4.64-4.68 (d, 2H), 5.47-5.50 (br s, 1H), 7.18-7.23 (m, 1H), 7.44-7.58 (m, 7H), 7.78-7.97 (m, 6H), 8.18 (s, 1H) ppm. IR (Nujol): 3282, 1708 cm⁻¹. Anal. (C₂₆H₂₁NO₃) C, H, N.

Naphthalen-2-ylmethylcarbamic Acid 3′-Carbamoylbiphenyl-3-yl Ester (4z)—White crystals. Yield: 22% (0.087 g). Mp 168-170 °C (EtOH). MS (EI): m/z 396 (M+), 183 (100). ¹H NMR (CDCl₃): δ 4.64-4.67 (d, 2H), 5.41-5.55 (br s, 1H), 5.61-5.76 (m, 1H), 6.08-6.22 (m, 1H), 7.17-7.23 (m, 1H), 7.44-7.56 (m, 7H), 7.74-7.90 (m, 6H), 8.02-8.04 (m, 1H) ppm. IR (Nujol): 3373, 2361, 1718 cm⁻¹. Anal. (C₂₅H₂₀N₂O₃) C, H, N.

General Procedure for the Synthesis of N-Substituted Carbamic Acid Biphenyl-3-yl Ester 4a,j,x,6—To a stirred solution of the opportune amine (1 mmol) and diimidazol-1-ylmethanone (5) (4a, 1 mmol; 4j,x,6, 2 mmol) in dry CH₂CN (4a, 5.5 mL; 4j,x,6, 11 mL), DMAP (0.044 mmol, 0.006 g) was added and the mixture was refluxed under N₂ atmosphere (4j,x,6, 4 h; 4x, 20 h; 4a, 24 h). Then 3-phenylphenol (1 mmol, 0.170 g) was added and the mixture was refluxed again (4x, 2 h; 6, 18 h; 4j, 20 h; 4a, 30 h), cooled and concentrated. Purification of the residue by column chromatography (cyclohexane/EtOAc 8:2 for 4a,x, 4:6 for 6; CH₂Cl₂/cyclohexane 8:2 for 4j) and recrystallization gave 4a,j,x,6.

Methylcarbamic Acid Biphenyl-3-yl Ester (4a)—White crystals. Yield: 9% (0.020 g). Mp 111-115 °C (Et₂O/petroleum ether). MS (EI): m/z 227 (M+), 170 (100). ¹H NMR
(±) Bicyclo[2.2.1]hept-2-ylcarbamic Acid Biphenyl-3-yl Ester (4j)—White crystals. Yield: 25% (0.157 g). Mp 151-152 °C (EtOH). MS (EI): m/z 307 (M+), 170 (100).

1H NMR (CDCl3): δ 1.09-1.55 (m, 7H), 1.81-1.93 (m, 1H), 2.33 (m, 2H), 3.58-3.67 (m, 1H), 4.92 (br d, 1H), 7.09-7.15 (m, 1H), 7.35-7.48 (m, 6H), 7.57-7.62 (m, 2H) ppm. IR (Nujol): 3331, 1707 cm⁻¹. Anal. (C20H21NO2) C, H, N.

Biphenyl-3-ylcarbamic Acid Biphenyl-3-yl Ester (4x)—Pearly crystals. Yield: 18% (0.066 g). Mp, MS (EI), 1H NMR and IR are according to the literature. Anal. (C25H19NO2) C, H, N.

2-Oxooxazolidine-3-carboxylic Acid Biphenyl-3-yl Ester (6)—White crystals. Yield: 32% (0.091 g). Mp 123-125 °C (EtOH). MS (EI): m/z 283 (M+), 170 (100).

1H NMR [CD3C(O)CD3]: δ 4.22-4.31 (m, 2H), 4.48-4.56 (m, 2H), 7.22-7.70 (m, 9H) ppm. IR (Nujol): 3327, 1823, 1719 cm⁻¹. Anal. (C16H13NO4) C, H, N.

Synthesis of 2-Cyclohexylacetic Acid Biphenyl-3-yl Ester (8)—To a stirred solution of 2-cyclohexylacetic acid (7) (1 mmol, 0.142 g), dicyclohexylcarbodiimide (1.1 mmol, 0.227 g) and DMAP (0.2 mmol, 0.024 g) in CH2Cl2 (2 mL) was added a mixture of 3-phenylphenol (1.2 mmol, 0.204 g) in CH2Cl2 (1 mL). The mixture was stirred at room temperature for 18 h, and concentrated. The residue was diluted with EtOAc and filtered on Celite. The purification of the residue by column chromatography (cyclohexane/EtOAc 9:1) gave 8 as an oil that solidifies in freezer to a white-yellow solid. Yield 81% (0.239 g). Mp <35 °C. MS (EI): m/z 294 (M+), 170 (100). 1H NMR (CDCl3): δ 1.02-2.01 (m,11H), 2.47 (d, 2H), 7.05-7.62 (m, 9H) ppm. IR (nujol): 1762 cm⁻¹. Anal. (C20H22O2) C, H, N.

Synthesis of 7-morpholinoheptanoic acid (9t)—To a stirred solution of ethyl 7-bromo heptanoate (11t) (5 mmol, 1.18 g) in toluene (3 mL), a solution of morpholine (9.5 mmol, 0.828 g, 0.832 mL) in toluene (3 mL) was added dropwise. The mixture was refluxed for 30 min and filtered on Celite. The filtrate was washed with brine and Et2O. The
combined organic layers were dried and concentrated. Purification of the residue by column chromatography (EtOAc/MeOH 96:4) gave \textbf{12t} as an yellow-orange oil. \textbf{12t} (3.9 mmol, 0.949 g) was refluxed for 72 h in H$_2$O (245 mL); the solvent was then evaporated and the residue diluted with EtOAc and washed with H$_2$O. The combined aqueous layers were again washed with EtOAc (5 x 30 mL) and concentrated. \textbf{9t} was obtained as orange oil. Yield: 23% (0.555 g). MS (EI): m/z 215 (M$^+$), 100 (100). 1H NMR (CDCl$_3$): δ 1.26-1.54 (m, 8H), 2.16-2.23 (m, 2H), 2.43-2.67 (m, 6H), 3.71-3.76 (m, 4H), 13.04 (s, 1H) ppm.

\textbf{Synthesis of 9-phenylnonanoic acid (9u) and 4′-phenyl-5-phenylpentanoic acid (9v)—To a stirred solution of 8-bromooctanoic acid (13u) (2 mmol, 0.483 g) in dry CH$_3$CN (6.7 mL), TPP (2.12 mmol, 0.57 g) was added and the mixture was refluxed under N$_2$ atmosphere for 48 h, then cooled and concentrated. The residue was washed with dry Et$_2$O (4 x 7 mL) then concentrated. The white gummy solid obtained, dried under vacuum, constitutes the phosphonium salt \textbf{14u}. (Yield: 98%). To a stirred suspension of the opportune phosphonium salt (\textbf{14u,v}, 1.96 mmol) in dry THF, a 1 M solution of lithium hexamethyldisilazane (LHMDS, 4.3 mmol, 0.725 g) in dry THF (4.3 mL) was slowly added under N$_2$ atmosphere. The resulting mixture was stirred for 15 min and then, after the addiction of the opportune aldehyde (1.58 mmol), stirred again for 24 h. Then HCl 2 N was added until acid pH and the aqueous phase was extracted with EtOAc. The organic layer was dried over Na$_2$SO$_4$, filtrated and concentrated. Purification of the residue by column chromatography (cyclohexane/EtOAc 7:3 for \textbf{15u}, 1:1 for \textbf{15v}) gave \textbf{15u,v}. (Yield: 55% and 63%, respectively). Compounds \textbf{15u} and \textbf{15v} were hydrogenated by Pd on charcoal (10%) to give \textbf{9u,v}. (Yield: 98%).

9-Phenylnonanoic Acid (9u)60—White crystals. Yield: 53% (0.125 g). MS (EI) and 1H NMR are according to the literature.52

4′-Phenyl-5-phenylpentanoic Acid (9v)61—White crystals. Yield: 62% (0.155 g). MS (EI) and 1H NMR are according to the literature.61

\textbf{(b) Pharmacology}

Membrane fractions were prepared from brain homogenates, and FAAH activity was assayed using anandamide[ethanolamine-3H] [American Radiolabeled Chemicals, ARC (St. Louis, MO), 60 Ci/mmol] as a substrate.43 Inhibition of MGL was assessed on purified rat recombinant MGL, using 2-oleoylglycerol as substrate, as previously described.59

\textbf{(c) Linear Interaction Energy Methods}

The Linear Interaction Energy (LIE) method is based on the Linear Response Approximation, which estimates ΔG of the binding of a small molecule to a protein as a function of polar and non-polar energy components, that are considered linearly related to electrostatic and VDW interactions between the ligand and its environment.45 The free energy of binding for the protein-ligand complex is calculated considering two states: the “free” ligand, in a solvent environment, and the ligand bound to the solvated protein.

The present application of the LIE method implements the formulation proposed by Carlson and Jorgensen,62 where the Surface Generalized Born (SGB) continuum model is used for solvent representation.63 In the resulting SGB-LIE approach the free energy of binding is calculated as:

$$\Delta G_{bind} = \alpha (\langle U^{b}_{vdw} \rangle - \langle U^{f}_{vdw} \rangle) + \beta (\langle U^{b}_{elec} \rangle - \langle U^{f}_{elec} \rangle) + \gamma (\langle U^{b}_{cav} \rangle - \langle U^{f}_{cav} \rangle)$$

(Eq. 7)
In this equation, \(\langle U_{\text{vdw}}^b - U_{\text{vdw}}^f \rangle \) estimates, by means of a Lennard-Jones potential, the variation of steric energy associated with ligand binding; \(\langle U_{\text{elec}}^b - U_{\text{elec}}^f \rangle \) describes the change of electrostatic energy due to ligand desolvation and its accommodation into the protein binding site; the last term \(\langle U_{\text{cav}}^b - U_{\text{cav}}^f \rangle \) accounts for the energy penalty due to the formation of a cavity within the solvent. The \(\langle \rangle \) bracket notation indicates that an ensemble average of the energy terms should be taken into account for binding energy calculations. Molecular dynamics simulation or Monte Carlo sampling should be applied to generate a significant number of configurations for LIE calculations. However, local sampling with energy minimization had been shown to provide reasonable results in several cases, with limited or no reduction in the accuracy of \(\Delta G \) estimation, and this approach was applied to the extended set of data of this study.

In the SGB-LIE equation (Eq. 7), all the terms are evaluated for the interaction between ligand, both in the free and bound state, and its environment. \(\alpha, \beta \) and \(\gamma \) are free coefficients which were calculated by fitting the experimental free energies of binding for a training set of ligands with known protein affinity values. The transferability and dependence of such parameters on the choice of force field and protein-ligand system are still subject to debate. Nevertheless, this empirical fitting can be useful to compensate part of the limits of the method, due to neglect of conformational changes, intramolecular strain and entropic effects. In the case of covalent binding of inhibitors to FAAH, we lack an accurate measure of the free energy of binding; another approximation inherent to our approach is that, for a series of compounds with similar reactivity towards the enzyme catalytic center, the pIC\textsubscript{50} values should be linearly related to the free energy of the recognition process. For this reason only compounds belonging to the unsubstituted \(O \)-biphenyl carbamates were included in the training set.

It should be pointed out that in the SGB approach the electrostatic energy \((U_{\text{elec}}) \) is obtained by combining the pure Coulombic \((U_{\text{coul}}) \) interaction energy with the SGB solvent reaction-field energy \((U_{\text{rxn}}) \) \(^{55}\)

\[
U_{\text{elec}} = U_{\text{coul}} + 2U_{\text{rxn}} \quad \text{(Eq. 8)}
\]

(d) Protein Preparation and Inhibitor Docking

Molecular models of the inhibitors were built by Sybyl version 7.2.\(^{65}\) Energy minimizations were performed employing the Merck molecular force field (MMFF94s)\(^{66}\) implemented in Sybyl, with the dielectric constant set to 1 to an energy gradient of 0.01 kcal/(mol·Å). FAAH structure coordinates were taken from those of the covalent adduct with methyl arachidonyl phosphonate (MAP), deposited in the Protein Data Bank (PDB code: 1MT5).\(^{41}\) The first structural refinement (addition of missing side chains and hydrogens) was done by the Biopolymer module of Sybyl, and it was followed by a visual inspection of histidines, choosing the tautomeric states that maximize the number of hydrogen bonds. The geometry of added atoms was then relaxed by energy minimization to a gradient of 0.1 kcal/(mol·Å), the MAP atoms were removed, and the hydrogen atoms of the catalytic site residues were reassigned, forming a hydrogen bond between Ser241 and Ser217, and one between Ser217 and the neutral NH\textsubscript{2} group of Lys142.

Two families of complexes were then generated for the inhibitors, corresponding to the two possible orientations already reported for cyclohexylcarbamic acid biphenyl-3-yl esters within the catalytic site.\(^{29,43}\) The inhibitors were interactively docked into the enzyme channel, optimizing their position and conformation by the Dock_minimize procedure. Docking was followed by energy minimization of the complexes, allowing movements of
the side chain of the residues at maximum 8 Å from the inhibitor, using MMFF94s force field to a gradient of 0.1 kcal/(mol·Å). In the first orientation (orientation A), all the docked ligands place their biphenyl fragment in the acyl binding pocket (also occupied by the acyl chain of covalently bound MAP in the 1MT5 pdb structure) and the substituent at the nitrogen atom in the cytosolic access channel. In the second one (orientation B), the meta-biphenyl fragment lies in the cytosolic access channel, whereas the carbamate nitrogen substituent occupies the acyl binding pocket. In both orientations, the carbonyl oxygen closely interacts with the NH groups of the oxyanion hole, whereas the NH of the carbamate forms a hydrogen bond with the backbone oxygen of Met191. At the end of this preliminary optimization cycle, the energy-minimized complexes were transported to the LIAISON package for subsequent SGB-LIE calculations.

(e) LIE Calculation

To compute the interaction terms required in the LIE model, a second energy minimization was performed with LIAISON, applying OPLS2001 force field, in combination with the Surface Generalized Born continuum model. The Truncated Newton (TN) technique was applied to an energy gradient of 0.01 kcal/(mol·Å) using a residue based cut-off distance of 10 Å for the free ligands, and to 0.05 kcal/(mol·Å) for FAAH-inhibitor complexes, with a residue based cut-off distance of 15 Å. During energy minimization of the complexes, only the side chains of the protein residues within 20 Å from the catalytic Ser241 were allowed to move. The protein backbone was maintained with fixed geometry to preserve the structure of the binding site. The energy terms reported in Equations 7 and 8 were collected by LIAISON after energy minimization and used for further MRA analysis. Their values are reported in the supporting information (Tables S2 and S3).

(f) QSAR

Multiple regression analysis (MRA) calculations were performed with an Excel (Microsoft Co., version 97) spreadsheet, employing the built-in statistical functions and automated macro procedures to determine the empirical value for regression coefficients and statistical parameters. Moriguchi Log P were calculated employing an external script implemented in Sybyl 7.2, whereas ACD Log P where calculated by using ACD/Labs suite software.

Standard deviation of the errors in prediction (SDEP), and the relative predictivity parameter, q^2, were calculated by cross-validation, omitting one compound at a time from the set, according to the leave-one-out technique.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by Italian MiUR (Ministero dell'Università e della Ricerca) (Grant N° 2005032713_002), Universities of Parma and Urbino “Carlo Bo”, and the National Institute of Drug Abuse (to D.P.). The S.I.T.I. (Settore Innovazione Tecnologie Informatiche) and C.I.M. (Centro Interdipartimentale Misure) of the University of Parma are gratefully acknowledged for supplying the Sybyl software license.

References

J Med Chem. Author manuscript; available in PMC 2013 August 16.

J Med Chem. Author manuscript; available in PMC 2013 August 16.

65. Sybyl version 7.2. Tripos Inc; 1699 South Hanley Rd., St. Louis, MO, 63144;

Figure 1.
Chemical structures of compounds 1 and 2.
Figure 2.
Representation of compound 1 docked into the FAAH binding site in two alternative orientations, named A and B, respectively. Carbons of the inhibitor are coloured in white, those of FAAH in orange. The hydrogen bonds of the carbamoyl group of compound 1 with the enzyme are evidenced in red.
Figure 3.
Plot of the observed pIC$_{50}$ values vs those calculated by SGB-LIE models in orientations A (Equation 4, left panel) and B (Equation 6, right panel).
Figure 4. Compound 4z (white carbons) docked into FAAH (orange carbons) binding site in orientation B. The hydrogen bonds between the carbamoyl group of 4z and the CA channel of FAAH are evidenced with dashed red lines.
Scheme 1.

Reagents and conditions: (a) 3-phenylphenol or 3-phenylphenol-3′-substituted, toluene, Et₃N, reflux, 5-27 h.

b R¹ = allyl R² = H

c R¹ = i-C₅H₇ R² = H

d R¹ = n-C₄H₉ R² = H

e R¹ = n-C₆H₁₃ R² = H

f R¹ = n-C₆H₁₇ R² = H

R¹ = c-C₄H₇ R² = H

h R¹ = c-C₆H₉ R² = H

i R¹ = c-C₆H₁₁CH₂ R² = H

k R¹ = adamant-1-yl R² = H

l R¹ = C₈H₅CH₂ R² = H

m R¹ = furfuryl R² = H

n R¹ = phenethyl R² = H

o R¹ = 2-indanyl R² = H

p R¹ = naphthalen-1-ylmethyl R² = H

q R¹ = naphthalen-2-ylmethyl R² = H

r R¹ = C₆H₅(CH₂)₄ R² = H

s R¹ = C₆H₅(CH₂)₆ R² = H

t R¹ = 6-morpholinohexyl R² = H

u R¹ = C₆H₅(CH₂)₈ R² = H

v R¹ = 4′-phenyl-4-phenylbutyl R² = H

w R¹ = C₈H₅ R² = H

y R¹ = naphthalen-2-ylmethyl R² = COCH₃

z R¹ = naphthalen-2-ylmethyl R² = CO(NH)₂
Scheme 2.

Reagents and conditions: (a₁) R-NH₂, CH₃CN, DMAP, reflux, 4-24 h; (a₂) 3-phenylphenol, reflux, 2-30 h.

\[
\begin{align*}
5 & \xrightarrow{a} 4a, j, x \\
\text{a} & \quad R = \text{CH₃} \\
\text{j} & \quad R = \text{exo-2-norbornyl} \\
\text{x} & \quad R = \text{biphenyl-3-yl}
\end{align*}
\]
Scheme 3.

Reagents and conditions: (a) 3-phenylphenol, CH$_2$Cl$_2$, DCC, DMAP, r.t., 18 h.
Scheme 4.
Reagents and conditions: (a) toluene, TEA, DPPA, 0.5 h (3g.q,r.t-v.y.z) or CH₂Cl₂, DMF, (COCl)₂, 0.5 h then NaN₃ in H₂O, 0.5 h, 0-5 °C (3o.p.s); (b) reflux, 0.5 h.

- g R = c-C₄H₇
- o R = 2-indanyl
- p R = naphthalen-1-ylmethyl
- q R = naphthalen-2-ylmethyl
- r R = C₆H₅(CH₂)₄
- s R = C₆H₅(CH₂)₆
- t R = 6-morpholinohexyl
- u R = C₆H₅(CH₂)₈
- v R = 4'-phenyl-4-phenylbutyl
- y R = naphthalen-2-ylmethyl
- z R = naphthalen-2-ylmethyl
Scheme 5.

\[a \] Reagents and conditions: (a) toluene, morpholine, reflux, 0.5 h; (b) \(\text{H}_2\text{O} \), reflux, 72 h.
Scheme 6.
Reagents and conditions: (a) CH₃CN, TPP, 48 h; (b) THF, LHMDS 1M in THF, R-C(O)H, 24 h; (c) AcOEt, H₂, Pd/C 10%, 3 h.
Table 1a

Inhibitory Potencies (IC$_{50}$) of Tested Compounds 2 and 4a-z on FAAH Activity.

<table>
<thead>
<tr>
<th>Cpd.</th>
<th>R-</th>
<th>X</th>
<th>IC$_{50}$ (nM)\pm S.E.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>H</td>
<td>63±9</td>
</tr>
<tr>
<td>4a</td>
<td>Me</td>
<td>H</td>
<td>13,901±4,426</td>
</tr>
<tr>
<td>4b</td>
<td></td>
<td>H</td>
<td>696±38</td>
</tr>
<tr>
<td>4c</td>
<td></td>
<td>H</td>
<td>521±87</td>
</tr>
<tr>
<td>4d</td>
<td></td>
<td>H</td>
<td>113±16</td>
</tr>
<tr>
<td>4e</td>
<td></td>
<td>H</td>
<td>57±15</td>
</tr>
<tr>
<td>4f</td>
<td></td>
<td>H</td>
<td>53±8</td>
</tr>
</tbody>
</table>

J Med Chem. Author manuscript; available in PMC 2013 August 16.
<table>
<thead>
<tr>
<th>Cpd.</th>
<th>R-</th>
<th>X</th>
<th>IC$_{50}$ (nM)± S.E.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4g</td>
<td>H</td>
<td>54±0.9</td>
<td></td>
</tr>
<tr>
<td>4h</td>
<td>H</td>
<td>34±7</td>
<td></td>
</tr>
<tr>
<td>4i</td>
<td>H</td>
<td>66±15</td>
<td></td>
</tr>
<tr>
<td>4j</td>
<td>H</td>
<td>244±5</td>
<td></td>
</tr>
<tr>
<td>4k</td>
<td>H</td>
<td>4,089±1,037</td>
<td></td>
</tr>
<tr>
<td>4l</td>
<td>H</td>
<td>139±34</td>
<td></td>
</tr>
<tr>
<td>Cpd</td>
<td>R-</td>
<td>X</td>
<td>IC_{50} (nM)± S.E.M.</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>----</td>
<td>---------------------</td>
</tr>
<tr>
<td>4m</td>
<td>O</td>
<td>H</td>
<td>175±11</td>
</tr>
<tr>
<td>4n</td>
<td>H</td>
<td>H</td>
<td>481±65</td>
</tr>
<tr>
<td>4o</td>
<td>H</td>
<td>H</td>
<td>215±51</td>
</tr>
<tr>
<td>4p</td>
<td>H</td>
<td>H</td>
<td>59±7</td>
</tr>
<tr>
<td>4q</td>
<td>H</td>
<td>H</td>
<td>5.3±0.2</td>
</tr>
<tr>
<td>4r</td>
<td>H</td>
<td>H</td>
<td>9.4±2.8</td>
</tr>
<tr>
<td>4s</td>
<td>H</td>
<td>H</td>
<td>13±2</td>
</tr>
<tr>
<td>4t</td>
<td>H</td>
<td>H</td>
<td>39.9±8.5</td>
</tr>
<tr>
<td>4u</td>
<td>H</td>
<td>H</td>
<td>5.4±0.5</td>
</tr>
</tbody>
</table>
Table 1b. Inhibitory Potencies (IC₅₀) of Tested Compounds 6 and 8 on FAAH Activity.

<table>
<thead>
<tr>
<th>Cpd.</th>
<th>R-</th>
<th>X</th>
<th>IC₅₀ ± S.E.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>28,617±10,782</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>2,551±1,074</td>
</tr>
</tbody>
</table>
Table 2

QSAR Analysis for Selected N-Substituted Carbamic Acid Biphenyl-3-yl Esters: Experimental and Calculated pIC50 Values and Residuals in Orientations A and B, Calculated by Equations 4 and 6, Respectively.

<table>
<thead>
<tr>
<th>Cpd.</th>
<th>Orientation A</th>
<th>Orientation B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exp. pIC50</td>
<td>Calcd. pIC50</td>
</tr>
<tr>
<td>2</td>
<td>7.20</td>
<td>6.49</td>
</tr>
<tr>
<td>4a</td>
<td>4.86</td>
<td>5.37</td>
</tr>
<tr>
<td>4b</td>
<td>6.16</td>
<td>5.54</td>
</tr>
<tr>
<td>4c</td>
<td>6.28</td>
<td>5.94</td>
</tr>
<tr>
<td>4d</td>
<td>6.95</td>
<td>6.09</td>
</tr>
<tr>
<td>4e</td>
<td>7.24</td>
<td>6.64</td>
</tr>
<tr>
<td>4f</td>
<td>7.28</td>
<td>7.29</td>
</tr>
<tr>
<td>4g</td>
<td>7.27</td>
<td>6.13</td>
</tr>
<tr>
<td>4h</td>
<td>7.47</td>
<td>6.35</td>
</tr>
<tr>
<td>4i</td>
<td>7.18</td>
<td>7.08</td>
</tr>
<tr>
<td>4k</td>
<td>5.39</td>
<td>6.94</td>
</tr>
<tr>
<td>4l</td>
<td>6.86</td>
<td>6.57</td>
</tr>
<tr>
<td>4m</td>
<td>6.76</td>
<td>6.11</td>
</tr>
<tr>
<td>4n</td>
<td>6.32</td>
<td>7.01</td>
</tr>
<tr>
<td>4o</td>
<td>6.67</td>
<td>7.41</td>
</tr>
<tr>
<td>4p</td>
<td>7.23</td>
<td>7.48</td>
</tr>
<tr>
<td>4q</td>
<td>8.27</td>
<td>7.38</td>
</tr>
<tr>
<td>4r</td>
<td>8.03</td>
<td>7.44</td>
</tr>
<tr>
<td>4s</td>
<td>7.89</td>
<td>8.31</td>
</tr>
<tr>
<td>4t</td>
<td>7.40</td>
<td>8.35</td>
</tr>
<tr>
<td>4u</td>
<td>8.27</td>
<td>8.90</td>
</tr>
<tr>
<td>4v</td>
<td>8.11</td>
<td>9.04</td>
</tr>
</tbody>
</table>