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Tsuching a Minimally Structured Back-Propagation Network to Recognise Speech Sounds

T. K. Landauer
C.A. Kamm
S. Singhal
Bell Communications Research, Morristown, N.J. 07960

Abstraet: An associative network was trained on a speech recognition task using continuous speech. The
input speech was processed to produce a spectral representation incorporating some of the transformations
introduced by the peripheral auditory system before the signal reaches the brain. Input nodes to the
network represented a 150-millisecond time window through which the transformed speech passed in 2-
millisecond steps. Output nodes represented elemental speech sounds (demisyllables) whose target values
were specified based on a buman listener’s ability to identify the sounds in the same input segment, The
work reported here focuses on the experience and training conditions needed to produce natural
generalisations between training and test utterances.

The primary goal of this work is to explore the use of learning networks as an analytical tool for gaining
insight into complex human pattern recognition processes. This goal motivates the choice of input
representation, architectare, and training regimen. The strategy is to give a minimally structured network
the experience and training it needs to perform a complex pattern recognition task of a kind that humans
readily master, and then to use the way in which it learns, generalizes, and [ails, and the internal weight
organization which it adopts, as a means of studying ways in which the pattern classification in question
can be accomplished. To the extent that the features of the input stimuli and the information processing
that a successful network uses resemble those used by a human, these results may suggest new hypotheses
about how humans accomplish the pattern recognition task.'

The input to our network model of speech recognition was processed to mimie several transforms that the
peripheral auditory system imposes on the acoustic signal, but that are not specific to recognizing speech.
Thus, the information in the input might be considered grossly analogous to information the brain receives
from the inner ear. The network was required to learn to extract speech-relevant information from a
continuous signal. Error feedback consisted only of information about which speech elements a human
could detect in the signal, and no knowledge or theory about the process or mechanism of speech
perception as such was embedded in the internal architecture of the learning network or the coding of its
output.

The network readily learned to pick a small number of speech sounds, for example, the initial portions of
the syllables do, re, mi, fa, so, la, and ti, out of continuous "sentences” consisting of only these syllables,
and generalized successfully to other sentences composed of the same elements spoken in different orders.
The success of generalization and the naturalness of the errors and partial recognitions evinced by the
network appear to depend in interesting ways on the training set to which it was exposed and the
discriminations required of its output. We will present both systematic data and impressions gained from
experiments with these networks. First, however, we give necessary details on the input transformation,
network configuration, learning rules, and training procedures.

1. Input Speech Transformation

The motivation for the signal processing of the input speech was to approximately simulate several of the
modifications that the inner ear imposes on an acoustic signal. The processing consisted of five steps.
First, the input speech was digitised and low-pass filtered to 5 kHs bandwidth. Spectral estimates were

1. While this is the primary goal, the research can also be viewed as an attempt to apply learning network meilhods to the problem
of automatic speech recognition. In this respect, it asks whether the high-dimensional non-linear representation of such nets and
the solution-optimization procedure of back-propagalion will produce the same, or perbaps interestingly diflerent, results from
those obtained using more traditional pattern-matching or pattern-classification algorithms.
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obtained using 128-point FFTs. To mimic the sensitivity of the human listener to rapid changes in high
frequency components and to fine frequency distinctions at low [requencies, several FFTs were computed,
using temporal windows of 4 to 20 ms, with a 2-ms frame shift. For each 2-ms frame, a composite
amplitude spectrum was obtained by extracting low frequency components from the FFT with 20-ms
window, the highest components from the FRT with 4-ms window, and intermediate components from
FFTs computed with temporal windows between 4 and 20 ms. Second, the frequency scale was
transformed to a Bark scale to reflect the frequency "pacing along the basilar membrane of the inner ear
(Schroeder, Atal & Hall, 1979). Third, the Bark-scaled spectra were convolved with an asymmetric filter
simulating the spread of excitation along the basilar membrane (Schroeder & Hall, 1974), which results in
a highly smoothed output spectrum. The combination of steps two and three serves to simulate the
filtering known to occur in the peripheral auditory system. Fourth, to model the short-term adaptation of
the peripheral auditory system, changes in the amplitude of each component were modified by applying a
multiplicative function of the difference between successive frames, with exponential decay, producing an
enhancement of spectrotemporal "edges”. Fifth, the amplitude of each component was scaled relative to
the overall minimum amplitude by a power function with exponent 0.6 to simulate the transform from
acoustic pressure to relative loudness. Finally, 15 of the 128 transformed amplitudes, spaced at one Bark
(approximately one critical band) intervals from 3 to 17 Barks (287 to 4884 Hs), were selected for input to
the network.

Clearly this transformation does not perfectly represent the signal sent from ear to brain - for one thing it
carries much less information - but it does have several of the important characteristics of that signal.
Thus, the information the network learns to extract from this input to recognise speech sounds should
have a fair chance of being information the human brain could also extract.

2. Network Architecture and Training Procedure

There were 1,125 input nodes representing the 15 transformed amplitudes for each of 75 successive 2-
millisecond frames of a 150-millisecond window of speech. On each training cycle a real value between 0
and 1, proportional to the amplitude of each spectral component, was applied to each input node. Various
numbers of hidden nodes, usually 20, were fully interconnected with the input nodes and with a varying
number of output nodes depending on the number of speech-sound elements that were to be detected.
Training proceeded by stepping the 150-millisecond speech window across an utterance in 2-millisecond
steps, at each one calculating the results of forward activation to the output nodes, calculating an error
signal, and updating weights by the standard back-propagation procedure (Rumelhart, Hinton and
Williams, 1986).

To specify targets, judgments of whether each of the speech sounds to be trained was or was not present in
the input window were made by listening to 150-millisecond segments of the signal and by visual
inspection of the speech waveform and a speech spectrogram of the signal. Judgments were made on a
nine-point confidence scale, from "possibly™ to "definitely” present. The error signal at each output node
was adjusted in proportion to this confidence value. A separate judgment was made as to whether the
system should be trained on a particular sound element for that window, or allowed to produce an output
without error being propagated back from the corresponding output unit (this strategy is related to the
"don’t care” procedure of Jordan, 1986).

3. Results, Observations, Modifieations, Comparisons and Lessons.

In early trials with a small number of artificially synthesised speech-like stimuli, it quickly became
apparent that the system would learn a training set readily, but did not generalise well to the same
nominal "speech” sounds in other contexts, and that the errors it made were not always sensibly related to
the confusions between sounds that a human listener would make. Two features of the procedure seemed
at fault. First, we thought that the system was not being exposed to enough different speech sounds in
enough different contexts to be able to extract the important features and structure of the stimuli. Second,
the error calculation procedure was forcing the system to discriminate strongly between sounds that would
be perceived as similar by a human, such as "fa" and "va". Therefore, for our main investigation, we used
natural speech input with a greater variety of speech sounds in many different contexts, although still a
very tiny subset of English. A professional announcer spoke 14-syllable "sentences” composed of two
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tokens of each of seven syllables (do, re, mi, fa, so, la, ti) strung together in a Latin square design such
that over the sentences studied each syllable followed and preceded every other syllable, including itself,
equally often. The speaker did not sing the "sentences”, but spoke them with wide variations in
intonation, duration and phrasing. (Examples of the recordings will be played.) The total set contained 39
demisyllables (7 initial and 32 final demisyllables) of the roughly 800 to 1,000 demisyllables needed to
transcribe all of English speech (Fujimura, Macchi & Lovins, 1977). Two representative sentences are given
in Table 1. We typically trained the system to recognise the subset of initial demisyllables.

Table 1. Sample Input “"Sentences”

1. dodo re so mire fa la so mi la ti ti fa.

2. mimifatisofaladotisodorerela.

In addition to using this richer training set in the main experiments, we also altered the rule for error
calculation to encourage more generalization. In particular, the error for output nodes corresponding to
demisyllables not present in the window was multiplied by a constant between 0 and 1, so that a high
value on a node corresponding to an absent element was not as strongly corrected as a low value on a node
corresponding to a present element. For a given residual criterion training error, this causes the system to
move towards a solution in which it adopts high output values for all positive patterns but allows itself
moderate output values for other output nodes that tend to be excited by the same inputs.

Results of this training procedure were quite encouraging. The seven plots in Figure 1 show the output
values for the seven units corresponding to the initial demisyllables as a function of time for a test sentence
after training on just one other sentence. The syllables at the top of the figure, and the lines at the top of
each panel indicate the positions in the utterance where each target syllable occurred. The figure shows
that, in all instances, the output unit corresponding to the target syllable had the highest output of the
seven units. There are several instances where a second output unit also had relatively high activation
(e.g., the "so" unit shows activation of about 0.8 when the "do" syllable is in the input window). Such
evidence of similarity (or confusability) typically occurred for output units sharing the same vowel sound
(e.g., “do" and "so”, "fa" and "la").

We are also studying the effect of variation in the training set by testing on one set after having trained on
one or more others. Preliminary data suggest that more varied training produces somewhat but not
dramatically better generalization. A more detailed characterization of these effects awaits the completion
of additional experiments.

Another technique that we are exploring in an attempt to improve the generalisation of the network
involves training the system to simultaneously recognize the set of speech elements and perform an encoder
or auto-association function. In this network, the output layer consists of output nodes of the set of speech
elements and 1,125 additional output nodes, fully interconnected to the hidden layer. The error on each of
the latter nodes is calculated as the difference between its output and the activation applied to a
corresponding input node. The rationale for this combination of directed training and auto-association is
that this architecture should supply a much greater degree of constraint on the representations adopted by
the hidden nodes, and that these additional constraints may result in a solution that demonstrates better
generalisation for identifying speech sounds. The system is required to maintain its ability to represent
faithfully the raw spectral information at the same time it is learning to recognise a particular speech
element, and should thus be less likely to generate an idiosyncratic representation which distorts its overall
representation of sound. Preliminary results using this network suggest that the performance and the
apparent naturalness of the generalisation are improved. Figure 2 shows time functions displaying the
activation of each inital demisyllable output node for a training run of this combined direct-
training/auto-associative network. Notable in Figure 2 is that demisyllables with common vowel portions
appear to be slightly better differentiated than the same demisyllable pairs in Figure 1, and that the silent
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Figure 1. Generalization Test following Directed Training

Input: dodoreso mire fa leso milatitife
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Fig 1. The network whose recognition performance is shown here had been trained on just one
other "sentence” consisting of the same syllables in a different order. Shown in each horjsontal
frame is the activation level of an output node trained to respond to the presence of a particular
demisyllable, as a function of time as the continuous test sentence was stepped through the 150
msec input window. Labels across the top of the figure indicate the demisyllables judged present
by a human observer; the small horizontal lines indicate intervals in which the highest confidence

of presence was assigned.

.
.
.
.
.
.
.
.
.
.
.
.
L]

ti

e . il . ——

" . e _— . .

0.0 1.0 2. 3.0 4.0
Time (sec)

534



Figure 2, Directed Treining + Auto-Association
Input: dodoreso mire fa laso milatitifa
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Fig 2. Performance after a moderate degree of training for a network that was simultaneously learning to
recognize seven demisyllables and to reconstruct the activation levels of its input nodes. Only the

demisyllable recognition node activities are shown. The training (and test) sentence is the same as the test
sentence of fig 1.
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period (at approximately 1.7 - 2.8 seconds) contains only low levels of activation, the highest of which are
from output units corresponding to demisyllables with voiceless initial consonants containing frication
noise or noise bursts (/f/, /t/, [s/).

This work clearly represents only the first few steps toward the goal of being able to use the network to
analyse the important constituents of speech sounds and their processing. It does appear, however, that,
with sufficient experience and proper training techniques, such a complex yet minimally-structured system
can learn to use approximately natural input to recognize speech sounds in a way that leads to fairly
natural generalization, as evidenced by the recognition performance for non-training tokens of the syllables
and the representation of perceptual "similarities” in the output activation patterns. This work also
encourages the development of methods for studying what the network is extracting from the transformed
speech signal. Experiments along this line may well resemble ones that might be performed using human
observers, for example making various systematic modifications of the speech signal and observing the
result, or trying various systematically arranged generalisation tests. Among the advantages of using
networks as opposed to using human listeners would be that such experiments could be run very rapidly
and that the internal states of the network, including the continuous activation functions on all of the
different output nodes, as well as the auto-association function, are available for analysis.
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