
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Towards A Machine Capable of Learning And Discovering Everything

Permalink
https://escholarship.org/uc/item/1kv5f0kw

Author
Liu, Hao

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1kv5f0kw
https://escholarship.org
http://www.cdlib.org/

Towards A Machine Capable of Learning And Discovering Everything

by

Hao Liu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Pieter Abbeel, Chair
Professor Alane Suhr

Professor Matei Zaharia
Professor Kaiming He

Spring 2024

Towards A Machine Capable of Learning And Discovering Everything

Copyright 2024

by

Hao Liu

1

Abstract

Towards A Machine Capable of Learning And Discovering Everything

by

Hao Liu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

Large generative models have led to amazing results and revolutionized artificial intelligence.
In this dissertation, I will discuss my research on advancing the foundation of these models,
centered around addressing the bottlenecks of learning from any existing data and challenges of
discovering to go beyond existing knowledge. First, I will describe our efforts to remove context
size limitations of the transformer architecture. Our modeling and training methodologies,
including BlockwiseTransformer and RingAttention, allow for near-infinite context sizes while
maintaining scalability. I will then discuss the applications of large contexts in learning world
model and decision-making. This includes Large World Model, the world’s first AI with
million tokens context for modeling text, image, and hour-long video at the same time. Next,
I will introduce my research on discovering that allows AI to discover data and learn. I will
discuss our work on learning skills in gameplay without human specifying domain knowledge,
paving the road for learning beyond imitating existing data. Finally, I will envision the
next generation of large generative models we should build, focusing on advances in efficient
scaling, reasoning, and discovering in general domains.

i

Contents

Contents i

List of Figures vi

List of Tables xiii

1 Introduction 1
1.1 Long-Term Vision . 1
1.2 Modeling for Learning from Any Existing Data 1

1.2.1 BlockwiseTransformer Chapter 2 . 2
1.2.2 RingAttention Chapter 3 . 2
1.2.3 Large World Model Chapter 4 . 2
1.2.4 Agentic Transformer Chapter 5 . 2
1.2.5 Related Research . 3

1.3 Discovering for Going Beyond Existing Knowledge 3
1.3.1 Unsupervised Active Pretraining (APT) Chapter 6 3
1.3.2 Active Pretraining with Successor Features (APS) Chapter 7 4
1.3.3 Contrastive Intrinsic Control Chapter 8 4
1.3.4 Exploration with Principles Chapter 9 4
1.3.5 Related Research . 5

2 BlockwiseTransformer to Reduce Transformer Memory Cost 6
2.1 Introduction . 6
2.2 Memory Bottleneck of Transformer . 8
2.3 Blockwise Parallel for Large Context Models 10

2.3.1 Analysis of Memory Cost . 11
2.3.2 Why Blockwise Parallel . 13
2.3.3 Implementation . 14

2.4 Setting . 14
2.5 Results . 16

2.5.1 Evaluation of Context Length . 16
2.5.2 Evaluation on Throughput and Speed 17

CONTENTS ii

2.5.3 Evaluation on Reinforcement Learning 17
2.6 Related Work . 18
2.7 Conclusion . 19
2.8 Evaluation of Memory . 20
2.9 Evaluation of Throughput . 21
2.10 Evaluation on RL . 21

3 RingAttention Scales BlockwiseTransformer to Infinite Context 23
3.1 Introduction . 23
3.2 Large Context Memory Constraint . 25
3.3 RingAttention with Blockwise Transformers 26
3.4 Setting . 29
3.5 Results . 30

3.5.1 Evaluating Max Context Size . 31
3.5.2 Evaluating Model Flops Utilization 31
3.5.3 Impact on In Context RL Performance 32
3.5.4 Impact on LLM Performance . 34

3.6 Related Work . 35
3.7 Conclusion . 36
3.8 Code . 36
3.9 Experiment Details . 37

3.9.1 Evaluation of context length . 37
3.9.2 Evaluation of MFU . 37
3.9.3 Evaluation on line retrieval . 37

3.10 Inference requirement . 39
3.11 Training FLOPs Scaling of Context Size . 39

4 Large World Model on Million-Length Video and Language 41
4.1 Introduction . 41
4.2 Overview . 43
4.3 Stage I: Learning Long-Context Language Models 44

4.3.1 Extending Context . 44
4.3.2 Training Steps . 45
4.3.3 Chat Fine-tuning for Long-Context Learning 45
4.3.4 Language Evaluation Results . 45

4.4 Stage II: Learning Long-Context Vision-Language Models 48
4.4.1 Architectural Modifications For Vision 49
4.4.2 Training Steps . 49
4.4.3 Vision-Language Evaluation Results 50

4.5 Further Details . 52
4.6 Related Works . 53
4.7 Conclusion . 53

CONTENTS iii

4.8 More Single-Needle Retrieval Results . 54
4.9 More Video Understanding Examples . 63
4.10 More Image Understanding Examples . 63
4.11 More Video Generation Examples . 63
4.12 More Image Generation Examples . 63
4.13 Training Hyperparameters . 63

5 Agentic Transformer for In-context Action 70
5.1 Introduction . 70
5.2 Preliminaries . 72

5.2.1 Reinforcement Learning . 72
5.2.2 Transformers . 73
5.2.3 Transformer based Behavior Cloning 73

5.3 Method . 74
5.4 Experiments . 76

5.4.1 D4RL results . 79
5.4.2 ExoRL results . 80
5.4.3 Evaluation of Agency . 80
5.4.4 Model Variations . 81

5.5 Related Work . 82
5.5.1 Transformer for Decision-Making . 82
5.5.2 Learning from Hindsight Experience 83
5.5.3 Supervised and Meta RL . 83

5.6 Conclusion . 83

6 Unsupervised Active Pretraining 85
6.1 Introduction . 85
6.2 Problem Setting . 87
6.3 Unsupervised Active Pre-Training for RL . 88

6.3.1 Particle-Based Entropy Maximization 88
6.3.2 Learning Contrastive Representations 90

6.4 Related Work . 91
6.5 Results . 93
6.6 Discussion . 98
6.7 General Implementation Details . 99
6.8 Atari Details . 100
6.9 DeepMind Control Suite Details . 100
6.10 Asymptotic Behavior of Intrinsic Reward . 100
6.11 DeepMind Control Suite Sparse Environments 103
6.12 Scores on the full 57 Atari games . 103

7 Active Pretraining with Successor Features 105

CONTENTS iv

7.1 Introduction . 105
7.2 Related Work . 107
7.3 Preliminaries . 108

7.3.1 Successor Features . 109
7.4 Method . 109

7.4.1 Variational Intrinsic Successor Features (VISR) 110
7.4.2 Unsupervised Active Pretraining (APT) 111
7.4.3 Empirical Evidence of the Limitations of Existing Models 112
7.4.4 Active Pre-training with Successor Features 113
7.4.5 Implementation Details . 115

7.5 Results . 116
7.6 Analysis . 117
7.7 Conclusion . 118
7.8 Acknowledgment . 119
7.9 Experiment Details . 119
7.10 Scores Breakdown on 57 Atari games . 119

8 Contrastive Intrinsic Control 123
8.1 Introduction . 123
8.2 Background and Notation . 125
8.3 Motivation . 126
8.4 Method . 129

8.4.1 Contrastive Intrinsic Control . 129
8.5 Practical Implementation . 131
8.6 Experimental Setup . 132
8.7 Results . 133
8.8 Conclusion . 134
8.9 Acknowledgements . 134
8.10 Competence-based Exploration Algorithms 134
8.11 Deep Deterministic Policy Gradient (DDPG) 135
8.12 Baselines . 136
8.13 Relation to Prior Skill Discovery Methods 137
8.14 Hyper-parameters . 137
8.15 Raw Numerical Results . 138
8.16 Toy Example to Illustrate the Need for Larger Skill Spaces 139
8.17 Qualitative Analysis of Skills . 140
8.18 OpenAI Gym vs. DeepMind control: How Early Termination Leaks Extrinsic

Signal . 141
8.19 CIC vs Other Types of Contrastive Learning for RL 142
8.20 On estimates of Mutual Information . 144
8.21 Limitations . 144

CONTENTS v

9 Exploration for Diverse AI Supervision 145
9.1 Introduction . 145
9.2 Exploratory AI for Diverse AI Supervision 147
9.3 Setting . 150
9.4 Results . 151
9.5 Related Work . 157
9.6 Conclusion . 158
9.7 Case Study of EAI . 159
9.8 Prompt . 161
9.9 Experiment Details . 161

10 Conclusion and Future Work 163
10.1 Powerful reasoning and efficient scaling . 163
10.2 Generating data and learning in general domains 164

Bibliography 165

vi

List of Figures

2.1 Maximum context length during training time with the GPT model using different
methods. Model sizes range from 1B to 70B. Figures (A), (B), and (C) show
evaluation using one, eight A100, and 64 TPUv4, respectively, with a single
sequence. Our method enables training sequences 32 times longer than vanilla
attention-based transformers [304], and 2 to 4 times longer than FlashAttention
[71] and Memory Efficient Attention [235]. Section 2.3.1 provides a memory cost
breakdown. 8

2.2 We use the same model architecture as the original transformers but with a
different way of organizing the compute. In the diagram, we explain this by
showing that for the bottom first incoming input block, we project it into query;
then we iterate over the same input sequence positioned above the bottom row,
and project it to key and value. These query, key and value are used to compute
self-attention (yellow box), whose output is pass to feedforward network (cyan
box), followed by a residual connection. In our proposed approach, this process is
then repeated for the other incoming input blocks. 9

2.3 The key parts of the implementation of Blockwise Parallel Transformers in Jax.
The full code is provided on github. 12

3.1 Maximum context length under end-to-end large-scale training on TPUv4-1024.
Baselines are vanilla transformers [304], memory efficient transformers [235], and
memory efficient attention and feedforward (blockwise parallel transformers) [183].
Our proposed approach Blockwise RingAttention allows training up to device
count times longer sequence than baselines and enables the training of sequences
that exceed millions in length without making approximations nor adding any
overheads to communication and computation. 24

https://github.com/lhao499/ringattention

LIST OF FIGURES vii

3.2 Top (a): We use the same model architecture as the original Transformer but
reorganize the compute. In the diagram, we explain this by showing that in a
ring of hosts, each host holds one query block, and key-value blocks traverse
through a ring of hosts for attention and feedforward computations in a block-
by-block fashion. As we compute attention, each host sends key-value blocks
to the next host while receives key-value blocks from the preceding host. The
communication is overlapped with the computation of blockwise attention and
feedforward. Bottom (b): We compute the original Transformer block-by-block.
Each host is responsible for one iteration of the query’s outer loop, while the
key-value blocks rotate among the hosts. As visualized, a device starts with the
first query block on the left; then we iterate over the key-value blocks sequence
positioned horizontally. The query block, combined with the key-value blocks, are
used to compute self-attention (yellow box), whose output is pass to feedforward
network (cyan box). 27

3.3 Comparison of different models on the long-range line retrieval task. 34
3.4 Key parts of the implementation in Jax. We use collective operation lax.ppermute

to send and receive key value blocks between previous and next hosts. The full
code is implemented in Jax and Pallas for best performance. 38

3.5 The per dataset trainig FLOPs cost ratio relative to a 4k context size, considering
different model dimensions. On the x-axis, you’ll find the context length, where,
for example, 32x(128k) denotes a context length of 128k, 32x the size of the same
model’s 4k context length. 40

4.1 LWM can answer questions over a 1 hour YouTube video. Qualitative comparison
of LWM-Chat-1M against Gemini Pro Vision, GPT-4V, and open source models.
Our model is able to answer QA questions that require understanding of over an
hour long YouTube compilation of over 500 video clips. 41

4.2 LWM can retrieval facts across 1M context with high accuracy. Needle retrieval
comparisons against Gemini Pro and GPT-4 for each respective max context
length – 32K and 128K. Our model performs competitively while being able to
extend to 8x longer context length. Note that in order to show fine-grained results,
the x-axis is log-scale from 0-128K, and linear-scale from 128K-1M. 42

4.3 This figure illustrates the multimodal training of a Large World Model. Stage
1, LLM Context Extension, focuses on expanding context size using the Books3
dataset, with context size growing from 32K to 1M. Stage 2, Vision-Language
Training, focuses on training on visual and video contents of varying lengths. The
pie chart details the allocation of 495B tokens across images, short and long videos,
and 33B tokens of text data. The lower panel shows interactive capabilities in
understanding and responding to queries about complex multimodal world. . . 55

https://github.com/lhao499/ringattention
https://github.com/lhao499/ringattention

LIST OF FIGURES viii

4.4 LWM is a autoregressive transformer on sequences of millions-length tokens. Each
frame in the video is tokenized with VQGAN into 256 tokens. These tokens are
concatenated with text tokens and fed into transformers to predict the next token
autoregressively. The input and output tokens’ order reflect the varied training
data formats, including image-text, text-image, video, text-video, and purely text
formats. The model is essentially trained in an any-to-any manner using multiple
modalities. To differentiate between image and text tokens, and for decoding,
we surround video and image tokens with the special delimiters <vision> and
</vision>. We also include <eof> and <eov> vision tokens to mark the end of
intermediate and final frames in images and videos. For simplicity, these delimiters
are not shown. 56

4.5 Needle retrieval task. Our LWM-Text-Chat-1M have near perfect accuracy across
different positions in 1M context window. 57

4.6 Multiple needles retrieval task with LWM-1M. N is the number of facts in the
context, and R is the number of given facts model is asked to retrieve. 57

4.7 LWM can answer questions about videos. More examples can be found in Ap-
pendix 4.9. 58

4.8 LWM can generate images and videos given text input. Examples of image and
video generations. More examples are shown in Appendix 4.12 and Appendix 4.11. 59

4.9 High MFU training across sequence lengths. Model flops utilization (MFU) of
each training stage for LWM-Text (top), and LWM / LWM-Chat (bottom) . . . 60

4.10 Train loss curve for each training stage for LWM-Text models. 60
4.11 Train loss curve for each training stage for LWM and LWM-Chat models. Note

that losses consist of a combination of losses of different modalities, and may not
be directly comparable across stages. The sharp peak in the middle of 1K training
is due to newly incporating EOF and EOV tokens into the vision codebook. . . 61

4.12 Single needle retrieval accuracy for LWM-Text-Chat-256K 61
4.13 Single needle retrieval accuracy for LWM-Text-Chat-512K 62
4.14 LWM demonstrates video understanding over 1 hour video. 63
4.15 LWM demonstrates video understanding over 1 hour video. 64
4.16 Answering questions about videos using LWM. 65
4.17 Question answering based on image input using LWM. 67
4.18 Video generation using LWM. 68
4.19 Image generation using LWM . 69

5.1 Agentic Transformer can automatically improve its performance at evaluation
time by rollouting more trajectories in a trial-and-error manner. The scaling
improves with both more chain of hindsight training sequences. 70

LIST OF FIGURES ix

5.2 Agentic Transformer. The input sequence consists of multiple episodes ascend-
ing sorted according to their total rewards. The initial desired return R̂0 of all
trajectories are set to the maximum total rewards among all trajectories. For
each trajectory, the return-to-go is updated using rewards in the same trajectory:
R̂t = R̂0 −

∑t
j=0 rj. The task completion token d indicates whether achieved

cumulative rewards in a trajectory is larger than desired target return(Equa-
tion 5.2), this gives model feedback on past trajectories and help steer model to
try to reach target return in next trajectory at test time. States, actions, rewards,
returns-to-go, and task completion are fed into modality specific linear embeddings
and a positional episodic timestep encoding is added. Tokens are fed into a GPT
architecture which predicts actions autoregressively using a causal self-attention
mask. At training time: The model is trained to predict action tokens in the
last (best) trajectory conditioning on past trajectories, states, actions, returns-to-
go and task completion tokens. At testing time: The model predicts action
autoregressively across multiple trajectories. 72

5.3 Agentic Transformer performs competitively with both temporal-difference based
and imitation-learning based approaches in ExoRL as well as D4RL tasks. Left.
Tasks average performance on D4RL. Right. Tasks average performance on
ExoRL. We report the mean and variance for three seeds. 77

5.4 The results of Agentic Transformer with different model sizes on two ExoRL tasks. 80

6.1 Comparison of state-of-the-art pixel-based RL with unsupervised pre-training. APT
(ours) and count-based bonus (both based on DrQ [148]) are trained for a long unsuper-
vised period (5M environment steps) without access to environment reward, and then
gets exposure to the environment reward during testing. APT significantly outperform
training DrQ from scratch, count-based bonus, and ImageNet pre-trained model. . . 86

6.2 Diagram of the proposed method APT. On the left shows the objective of APT,
which is to maximize the expected reward and minimize the contrastive loss. The
contrastive loss learns an abstract representation from observations induced by the
policy. We propose a particle-based entropy maximization based reward function
such that we can deploy state-of-the-art RL methods to maximize entropy in an
abstraction space of the induced by the policy. On the right shows the idea of our
particle-based entropy, which measures the distance between each data point and
its k nearest neighbors. 89

6.3 Results of different methods in environments from DMControl. All curves are
the average of three runs with different seeds, and the shaded areas are standard
errors of the mean. 94

LIST OF FIGURES x

7.1 Median of human normalized score on the 26 Atari games considered by Kaiser et al.
[140] (left) and the Atari 57 games considered in Mnih et al. [204](right). Fully
supervised RL baselines are shown in circle. RL with unsupervised pretraining
are shown in square. APS significantly outperforms all of the fully supervised and
unsupervised pre-trained RL methods. Baselines: Rainbow [116], SimPLe [140],
APT [179], Data-efficient Rainbow [141], DrQ [148], VISR [109], CURL [153], and
SPR [258]. 106

7.2 Diagram of the proposed method APS. On the left shows the concept of APS, dur-
ing reward-free pretraining phase, reinforcement learning is deployed to maximize
the mutual information between the states induced by policy and the task variables.
During testing, the pre-trained state features can identify the downstream task by
solving a linear regression problem , the pre-trained task conditioning successor
features can then quickly adapt to and solve the task. On the right shows the
components of APS. APS consists of maximizing state entropy in an abstract
representation space (exploration, maxH(s)) and leveraging explored data to
learn task conditioning behaviors (exploitation, max−H(s|z)). 109

7.3 The passageway gridworld environments used in our experiments. On the left, the
agent needs to fetch the key first by navigating to the green location to unlock the
closed passageway (shown in black). Similarly, on the right, there is an additional
key-passageway pair. The agent must fetch the key (shown in purple) to unlock
the upper right passageway. 110

7.4 Performance of different methods on the gridworld environments in Figure 7.3.
The results are recorded during testing phase after pretraining for a number of
unsupervised interactions. The success rate are aggregated over 10 random seeds.
The bottom of each bar is the zero-shot testing performance while the top is the
fine-tuned performance. 112

7.5 Scores of different methods and their variants on the 26 Atari games considered
by Kaiser et al. [140]. X → Y denotes training method Y using the data collected
by method X at the same time. 117

8.1 This work deals with unsupervised skill discovery through mutual information
maximization. We introduce Contrastive Intrinsic Control (CIC) – a new un-
supervised RL algorithm that explores and adapts more efficiently than prior
methods. 124

8.2 Qualitative visualizations of unsupervised skills discovered in Walker, Quadruped, and
Jaco arm environments. The Walker learns to balance and move, the Quadruped learns
to flip upright and walk, and the 6 DOF robotic arm learns how to move without
locking. Unlike prior competence-based methods for continuous control which evaluate
on OpenAI Gym (e.g. Eysenbach et al. [82]), which reset the environment when the
agent loses balance, CIC is able to learn skills in fixed episode length environments which
are much harder to explore (see Appendix 8.18). 125

LIST OF FIGURES xi

8.3 Architecture illustrating the practical implementation of CIC . During a gradient update
step, random τ = (s, s′) tuples are sampled from the replay buffer, then a particle
estimator is used to compute the entropy and a noise contrastive loss to compute
the conditional entropy. The contrastive loss is backpropagated through the entire
architecture. The entropy and contrastive terms are then scaled and added to form the
intrinsic reward. The RL agent is optimized with a DDPG [175]. 126

8.4 To empirically demonstrate issues inherent to competence-based exploration methods,
we run DIAYN [82] and compare it to ICM [225] and a Fixed baseline where the agent
receives an intrinsic reward of 1.0 for each timestep and no extrinsic reward on both
OpenAI Gym (episode resets when agent loses balance) and DeepMind Control (DMC)
(episode is fixed for 1k steps) Hopper environments. Since Gym and DMC rewards
are on different scales, we normalize rewards based on the maximum reward achieved
by any algorithm (1k for Gym, 3 for DMC). While DIAYN is able to achieve higher
extrinsic rewards than ICM on Gym, the Fixed intrinsic reward baseline performs best.
However, on DMC the Fixed and DIAYN agents achieve near-zero reward while ICM
does not. This is consistent with findings of prior work that DIAYN is able to learn
diverse behaviors in Gym [82] as well as the observation that DIAYN performs poorly
on DMC environments [155] . 127

8.5 We report the aggregate statistics using stratified bootstrap intervals [3] for 12 down-
stream tasks on URLB with 10 seeds, so each statistic for each algorithm has 120 seeds
in total. We find that overall, CIC achieves leading performance on URLB in terms of
the IQM, mean, and OG statistics. As recommended by Agarwal et al. [3], we use the
IQM as our primary performance measure. In terms of IQM, CIC improves upon the
next best skill discovery algorithm (APS) by 79% and the next best algorithm overall
(ProtoRL) by 18%. 128

8.6 Mean zero-shot extrinsic rewards for Quadruped stand over 3 seeds with and
without state-skill representation learning. Without representation learning, the
algorithm collapses. Similarly, with CIC representation learning but no entropy
term (in which case we use the discriminator as the intrinsic reward) the policy
also collapses. Note that there is no finetuning happening here. We’re showing
the task-specific extrinsic reward during reward-free pre-training as a way to
sense-check the exploration policy. 135

8.7 A gridworld example motivating the need for large skill spaces. In this environment, we
place an agent in a 10× 10 gridworld and provide the agent access to four discrete skills.
We show that the mutual information objective can be maximized by mapping these
four skills to the nearest neighboring states resulting in low behavioral diversity and
exploring only four of the hundred available states. 140

LIST OF FIGURES xii

8.8 Learning curves for finetuning pre-trained agents for 100k steps. Task performance is
aggregated for each domain, such that each curve represents the mean normalized scores
over 4× 10 = 40 seeds. The shaded regions represent the standard error. CIC surpasses
the performance of the prior state-of-the-art on Walker and Jaco tasks while tying on
Quadruped. CIC is the only algorithm that performs consistently well across all three
domains. 141

8.9 Qualitative visualization of DIAYN and CIC pre-training on the Walker and Quadruped
domains from URLB. Confirming findings in prior work [330], we also find that DIAYN
policies produce static but non-trivial behaviors mapping to “yoga" poses while CIC
produces diverse and dynamic behaviors such as walking, flipping, and standing. Though
it’s hard to see from these images, all the DIAYN skills get stuck in frozen poses while
the CIC skills are producing dynamic behavior with constant motion. 142

9.1 Exploratory AI improves mathematical reasoning via exploration. Left
and middle: Test accuracy on mathematical reasoning benchmark GSM8K. Base-
lines include Vicuna, supervised finetuning Vicuna on training set (denoted as
SFT), and supervised finetuning Vicuna on rejection sampled model generated
diverse solutions on training set (denoted as RFT). Our Exploratory AI (EAI)
substantially outperforms all baselines. Right: Our approach EAI generates
diverse data for learning by exploring with the guidance of principles and critiques.146

9.2 Generating diverse data in the Exploratory AI Framework. In the
diagram, we demonstrate how the actor generates diverse content by conditioning
on samples from the replay buffer and exploration principles. These principles
include rephrasing question, coming up a novel topic, restructuring question, and
coming up a new scenario, we provide examples associated with the principles to
guide exploration. The actor’s input and its generated output undergo evaluation
by the critic. The critic assesses the novelty of the generated data; when the
evaluation is favorable, the data is stored in the replay buffer. In cases where
the evaluation does not meet the criteria, the critic provides critiques to guide
the actor. The replay buffer can be initialized with a pre-existing human-created
dataset (e.g., GSM8K training set) or can remain empty for starting from scratch
with zero-shot exploration. 147

9.3 (Left): Comparison of diversity gains achieved by adding generated data to the
GSM8K training set. EAI outperforms other baselines in terms of diversity.
(Right): t-SNE comparison of human-curated GSM8K, RFT, and EAI-generated
outputs, depicting embeddings of questions. 153

9.4 Data scaling on GSM8K. Shown are GSM8K accuracy with different amount of
generated data. EAI generates high quality data for learning and scales well with
data. 154

9.5 Performance on GSM8K with different amount of human annotated data. EAI
performs well even without human annotation and scales well with more human
provided annotations. 156

xiii

List of Tables

2.1 Sizes and architectures of the models which we evaluated in experiments. . . . 15
2.2 Maximum context length during training with different methods. BPT enables

training 2-4 times longer sequence length than FlashAttention / Memory Efficient
Attention, and up to 32 times longer sequence length than vanilla attention. . . 16

2.3 Memory usage comparison for different settings. "oom" denotes out of memory. 17
2.4 Throughput comparison on GPT-XL (1B) using OpenWebText dataset. Through-

put is measured as tokens processed per second. ‘oom’ denotes running out of
memory, ‘na’ denotes results not available because we early terminated these runs
to reduce compute cost. 18

2.5 Application of BPT on improving transformers in RL. All the baselines use vanilla
attention. AT + ME denotes using “MemoryEfficient”. AT + BPT denotes using
Blockwise Parallel Transformers. 19

2.6 Hyperparameters used in RL evaluation. 21

3.1 Comparison of maximum activation sizes among different Transformer architec-
tures. Here, b is batch size, h is hidden dimension, n is number of head, s is
sequence length, c is block size, the block size (c) is independent of the input
sequence length (s). The comparison is between vanilla transformer [304], memory
efficient attention [235, 71], blockwise parallel transformers [183], and our proposed
approach RingAttention. Numbers are shown in bytes per layer, assuming bfloat16
precision. 28

3.2 Minimal sequence length needed on each device. Interconnect Bandwidth is the
unidirectional bandwidth between hosts, i.e., NVLink / InfiniBand bandwidth
between GPUs and ICI bandwidth between TPUs. The minimal block size required
c = FLOPS/Bandwidth, and minimal sequence length s = 6c. 29

3.3 The maximum context length supported in end-to-end training using fully sharded
data parallelism and various transformers architectures. We show different model
sizes and accelerators. Baselines are vanilla transformer [304], transformer with
memory efficient attention [235], and transformer with memory efficient attention
and feedforward [183]. The context size is reported in tokens (1e3). Our approach
Blockwise RingAttention substantially outperforms baselines and enables training
sequences that are up to device count times longer than prior state-of-the-arts. 32

LIST OF TABLES xiv

3.4 Model flops utilization (MFU) with different training configurations: model sizes,
compute, and context lengths. RingAttention enables training large models
(7B-65B) on large input context sizes (over 4M) with negligible overheads. . . . 33

3.5 Application of RingAttention on improving Transformer in RL. BC and DT use
vanilla attention. AT + ME denotes using memory efficient attention, AT + BPT
denotes using blockwise parallel transformer. AT + RA denotes using RingAttention. 34

4.1 LWM-Text Training Stages . 46
4.2 LWM-Text-Chat Training Details . 46
4.3 Multi-Needle Retrieval Accuracy Baseline Comparison 47
4.4 Evaluation of language tasks: Comparison between Llama2-7B (4K context)

and context-expanded versions of LWM-Text: 32K to 1M. Results indicate that
expanding context does not negatively impact performance on short-context tasks. 47

4.5 Results on MT-Bench across different context sizes. Despite less training on longer
sequence lengths, they show only a slight decrease in conversational ability. . . . 48

4.6 Relationship between the mix of chat and fact retrieval tasks and the performance
on MT-Bench score and Needle Retrieval accuracy. 48

4.7 LWM and LWM-Chat Training Stages . 49
4.8 Image Understanding Benchmarks . 51
4.9 Video Understanding Benchmarks . 51
4.10 Ablation study comparing standard and masked sequence packing mechanisms

across three tasks. Masked sequence packing is crucial for performance. 52
4.11 LWM-Text Training Stages . 64
4.12 LWM-Text-Chat Training Details . 66
4.13 LWM / LWM-Chat Training Stages . 66

5.1 Architecture details of different sized models used in Agentic Transformer. We list
the number of layers, dmodel, the number of attention heads and attention head
size, training batch size, and sequence length. The feed-forward size dff is always
4× dmodel and attention head size is always 16. 77

5.2 Results for D4RL datasets. We report the mean and variance for three seeds.
Using chain of hindsight experience, our Agentic Transformer (AT) outperforms
both supervised learning (BC) and Transformer (DT) and performs competitively
with conventional RL algorithms (TD3+BC, TD3) on almost all tasks 78

5.3 Results for ExoRL datasets. We report the mean and variance for three seeds.
Using chain of hindsight experience, our Agentic Transformer (AT) outperforms
both supervised learning (BC) and Transformer (DT) on almost all tasks, and
performs competitively with conventional RL algorithms (TD3+BC, TD3). . . . 78

5.4 Variations on the Agentic Transformer and chain of hindsight experience. Unlisted
values are identical to those of the default configuration. All metrics are averaged
over 3 random seeds based on the ExoRL and D4RL benchmarks. 81

LIST OF TABLES xv

6.1 Methods for pre-training RL in reward-free setting. Exploration: the method can
explore efficiently. Visual: the method works well in visual RL. Off-policy: the
method is compatible with off-policy RL optimization. ⋆ means only in state-based
RL. c(s) is count-based bonus. ψ(s, a): successor feature, ϕ(s): state representation. 92

6.2 Performance of different methods on the 26 Atari games considered by [140] after
100K environment steps. The results are recorded at the end of training and
averaged over 10 random seeds for APT. APT outperforms prior methods on all
aggregate metrics, and exceeds expert human performance on 7 out of 26 games
while using a similar amount of experience. Prior work has reported different
numbers for some of the baselines, particularly SimPLe and DQN. To be rigorous,
we pick the best number for each game across the tables reported in van Hasselt
et al. [301] and Kielak [141]. 96

6.3 Caption for LOF . 97
6.4 Scores on the 26 Atari games under consideration for variants of APT. Scores are

averaged over 3 random seeds. All variants listed here use data augmentation. . 97
6.5 Scores on 5 Atari games under consideration for different variants of fine-tuning.

Scores are averaged over 3 random seeds. 98
6.6 The action repeat hyper-parameter used for each environment. 100
6.7 Hyper-parameters in the Atari suite experiments. 101
6.8 Hyper-parameters for Learning the Neural Encoder. 102
6.9 Hyper-parameters in the DeepMind control suite experiments. 102
6.10 Comparison of raw scores of each method on Atari games. On each subset, we

mark as bold the highest score. For VISR, due to the lack of available source
code, we made a best effort attempt to reproduce the algorithm. 104

7.1 Comparing methods for pretraining RL in no reward setting. VISR [109], APT [179],
MEPOL [209], DIYAN [81], DADS [266], EDL [43]. Exploration: the model can
explore efficiently. Off-policy: the model is off-policy RL. Visual: the method
works well in visual RL, e.g., Atari games. Task: the model conditions on latent
task variables z. ⋆ means only in state-based RL. 108

7.2 Performance of different methods on the 26 Atari games considered by [140] after
100K environment steps. The results are recorded at the end of training and
averaged over 5 random seeds for APS. APS outperforms prior methods on all
aggregate metrics, and exceeds expert human performance on 8 out of 26 games
while using a similar amount of experience. 116

7.3 Scores on the 26 Atari games for variants of APS, VISR, and APT. Scores of
considered variants are averaged over 3 random seeds. 118

7.4 Hyper-parameters for RL. 120
7.5 Hyper-parameters for Learning ϕ. 121
7.6 Comparison of raw scores of each method on Atari games. Results are averaged

over five random seeds. @N represents the amount of RL interaction utilized at
fine-tuning phase. 122

LIST OF TABLES xvi

8.1 Analyzing four different intrinsic reward specifications for CIC, we find that
entropy-based intrinsic reward performs best, suggesting that the CIC discrimina-
tor is primarily useful for representation learning. These are normalized scores
averaged over 3 seeds across 8 downstream tasks (24 runs per data point). . . . 134

8.2 Prior Competence-based Unsupervised Skill Discovery Algorithms 136
8.3 A list of competence-based algorithms. We describe the intrinsic reward optimized by

each method and the decomposition of the mutual information utilized by the method.
We also note whether the method explicitly maximizes state transition entropy. Finally,
we note the maximal dimension used in each work and whether the skills are discrete or
continuous. All methods prior to CIC only support small skill spaces, either because
they are discrete or continuous but low-dimensional. 136

8.4 Hyper-parameters used for CIC . 138
8.5 Statics for downstream task normalized scores for CIC and baselines from URLB [155].

CIC improves over both the prior leading competence-based method APS [181] and
overall next-best exploration algorithm ProtoRL [324] across all readout statistics.
Each data point is a statistic computed using 10 seeds and 12 downstream tasks
(120 experiments per data point). The statistics are computed using RLiable [3]. 139

8.6 Performance of CIC and baselines on state-based URLB after first pre-training for
2× 106 steps and then finetuning with extrinsic rewards for 1× 105. All baselines
were run for 10 seeds per downstream task for each algorithm using the code
provided by URLB [155]. A total of 1080 = 9 algorithms × 12 tasks × 10 seeds
experiments were run. 139

9.1 Results of pass@1 (%) on GSM8k and MATH. In this study, to ensure equitable
and cohesive evaluations, we report the scores of all models under the same settings
of greedy decoding. Bold numbers in red are the absolute improvement of EAI
over prior state-of-the-arts. Notably, EAI outperforms state-of-the-arts both when
using ChatGPT for exploration to supervise LLaMA2 and when using Vicuna to
supervise itself. 152

9.2 Effect of different number of samples from replay buffer. 153
9.3 Effect of different exploration principles on GSM8K and MATH. 154
9.4 Evaluation of the effectiveness of critic. 155
9.5 Evaluations on code generation tasks. LLaMA2 and CodeLLaMA are pretrained

models. SFT, RFT, EAI are trained using MBPP training split. All methods
are evaluated using MBPP test split, and HumanEval dataset. Red numbers are
absolute increase compared with best performing baselines. 156

LIST OF TABLES xvii

Acknowledgments

I would like to express my heartfelt gratitude to my advisor, Pieter Abbeel. Pieter is an
amazing mentor, consistently offering both guidance and the freedom to pursue my research
interests. Pieter taught me how to really do research and how to communicate research
findings through papers, among many other valuable lessons. His insights and genuine
enthusiasm about our research have been invaluable. The meetings with him were always the
highlight of my week. He gave me his help and support whenever it was needed. I am so
grateful for his encouragement, confidence in me, and his mentorship over the past several
years. I feel fortunate to have been his student.

Thank you to my committee members Alane Suhr, Matei Zaharia, Kaiming He, and Jiantao
Jiao for their support, guidance, and fruitful conversations. I would like to thank Jiantao for
providing helpful feedback. Alane, thank you for your insightful discussions and feedback.
Kaiming’s discussions have helped clarify my thoughts on research and career, and his
guidance has been highly valuable. I am deeply grateful for the discussions with Matei, who
always provided valuable input on my research ideas and shared brilliant insights.

I’m grateful to have had the opportunity to spend a few years interning and working part-time
at Google Brain and DeepMind, hosted by Volodymyr Mnih, Lisa Lee, Satinder Singh, and
Tom Zachvy. I was fortunate enough to have tremendous freedom from them during my
internship, as well as support from and thoughtful conversations with many, including Jeff,
Sharad, Federico, Hieu, Bertrand, and Jonathan.

I’m glad to have had the opportunity to collaborate with an amazing set of students, faculty,
and researchers throughout my PhD. Thank you to all of the talented researchers in Berkeley
AI Research for fostering a collaborative and friendly environment, particularly to my labmates,
Misha Laskin, Xinyang Geng, Kimin Lee, Denis Yarats, Fangchen Liu, Carmelo Sferrazza,
Wilson Yan, Yuqing Du, Ajay Jain, Younggyo Seo, Olivia Watkins and many others. I am
also grateful for the support from the EECS and BAIR administration. I would like to thank
San Mateo for being home for the last several years.

During my undergraduate studies, I had the opportunity to meet a bunch of amazing people:
Richard Socher, Qiang Liu, Denny Zhou, Zenglin Xu, Yuandong Tian, and Caiming Xiong.
I was very fortunate to work with Qiang and am grateful for his guidance. I had a great
experience working with Richard, who provided insightful advice. I also had the fortune to
work with Caiming. I enjoyed the conversations with Denny, who supported me in various
aspects. Additionally, I appreciate Yuandong for his help and many insightful discussions.
My undergraduate adviser, Zenglin, inspired me to pursue a career in research, for which I
am deeply thankful.

I would like to thank my grandmother and late grandfather for their unconditional love since
my childhood, my parents and sisters for their unwavering support, and my partner, Xinyi,
for more than I can possibly express.

1

Chapter 1

Introduction

1.1 Long-Term Vision
The long-term research vision of mine is to build a machine capable of everything, that
includes learning from all existing data and discovering to go beyond existing data, ultimately
outperform human intelligence in many domains.

General: Large language models such as ChatGPT have achieved amazing results in AI,
but are limited to text domain. The world is much more complex than just text, in order for
AI to be maximally powerful, AI should excel at many domains and modalities.

Unsupervised: While large language models show incredible results, they heavily rely on
human to curate training data, either by filtering data from internet or writing down training
examples. It is not scalable to rely on human to generate training data. AI should discover
data and learn on it own.

1.2 Modeling for Learning from Any Existing Data
This section includes the research on modeling – resolving the long-standing challenge in
Transformer [304].

Transformer is the foundation of AlphaFold [138], ChatGPT, Sora [38], among other AI
successes. The primary reason is because transformer scales well with compute – training
larger transformer on more data continues to improve performance. Yet, a major long-standing
challenge of transformer, or AI more broadly, is that transformer can only process short
sequence. This is due to transformer has large memory cost on long sequence. This limitation
greatly restrict transformer to learn only from short sequences such as wikipedia article, but
no way to learn from books, entire codebase, or videos. A general AI system should excel in
many domains and capable of learning everything.

CHAPTER 1. INTRODUCTION 2

To address this challenge, my research pioneered a series of modeling and training method-
ologies to resolve it, including BlockwiseTransformer (Section 1.2.1) and RingAttention
(Section 1.2.2). Utilizing these techniques, we propose Large World Model (Section 1.2.3),
a general AI solution for modeling text, image, and hour-long video, all three modalities
together, by any-to-any autoregressive prediction on million-length sequences. Large context
shows effectiveness in decision-making too, our Agentic Transformer (Section 1.2.4) learns to
improve across multiple trajectories by conditioning on prior experience.

1.2.1 BlockwiseTransformer Chapter 2

Our proposed research BlockwiseTransformer [183] reduces transformer memory cost, allowing
over 100K tokens sequence length for the first time.

1.2.2 RingAttention Chapter 3

Our RingAttention [189] scales BlockwiseTransformer to near-infinite context, enabling AI
to not just learn from wikipedia article, but also books, entire codebase, videos, robotics
trajectories, or even human genomes. This resolves the long-standing major challenge in
AI – for the first time, it becomes possible for Transformer to learn from arbitrary complex
sequences.

1.2.3 Large World Model Chapter 4

Utilizing these techniques, we pioneer and address a key challenge in AI – how to build
general AI model capable of learning from many domains and modalities? Now that large
context becomes possible, our proposed research Large World Model [188] offers a general
solution. While these have been a lot of prior work trying to learn from many modalities, they
require domain specific design. For instance, ChatGPT with Dalle can process image and
text, and can predict image and text, but require domain-specific training and architectural
design. Our large world model can process and predict on all three modalities, text, image,
and video.

1.2.4 Agentic Transformer Chapter 5

Large context is effective in modeling text, image, and video. In this research, we show large
context makes it possible for transformer to improve autonomously by conditioning on past
trajectories. In our proposed research Agentic Transformer [182], we sort an arbitrary set of
trajectories by their returns, from low to high, this forms the input sequence with increasing
returns. We further replace the goals in lower return trajectories with the goal of highest
return trajectory. This increasing return input sequence encourages model to get higher and
higher return across trajectories. This enables transformer to use large context for learning

CHAPTER 1. INTRODUCTION 3

decision making effectively, outperforming more complicated domain-specific algorithms for
the first time.

1.2.5 Related Research

In addition to pioneering and solving challenges in modeling, I have worked on other relevant
parts of the goal. This includes decision making [177, 260, 142, 96]. Connecting text and
vision without paired data for the first time [187]. I also build open-source large language
models as foundation for research [97, 95].

1.3 Discovering for Going Beyond Existing Knowledge
This section includes the research on enabling AI to discover data on its own.

While large language models such as ChatGPT have achieved amazing results. They heavily
rely on human to curate training data. This requirement poses a huge challenge ahead
because human curation is not scalable, requiring domain knowledge and scaling law requires
exponential more data to achieve tiny improvement. AI can be better if we allow it to go
beyond imitation, such as AlphaGo. In the match between AlphaGo and world champion
Lee Sedol, during the second game, AlphaGo’s 37th move is highly unconventional, at the
moment, confused experts that they believe this is a big mistake by AlphaGo, Lee Sedol is
going to win. Yet, as the game unfolded, move 37 turned out to be a strategically brilliant
move, opening up opportunities that can only be seen at much later stages. AlphaGo shows
the AI can learn successful Go strategies by not imitating human plays. But, it is restricted
to Go and not compatible with continuous domains which are everywhere, such as computer
control and robotics.

My research has started to enable AI to discover and learn in more general domains. This
includes discovering in gameplay – AI can learn skills and play games without human
specifying domain knowledge, as shown in APT (Section 1.3.1), APS (Section 1.3.2), and
CIC (Section 1.3.3). As well as discovering in language – improving large language models
reasoning capabilities with AI discovered data (Section 1.3.4).

1.3.1 Unsupervised Active Pretraining (APT) Chapter 6

Typically, human provides task reward or demonstration, then learning agent is done with
reinforcement learning or imitation learning. The research question becomes what is the
objective for learning if there is no task reward and no demonstration.

In our proposed research Active Pretraining (APT) [180], we propose the agent to interact
with the world. This consists of collecting data from the world, and learning an internal
representation about the world. The goal is to learn a policy that takes an action given the
world and agent’s internal representation.

CHAPTER 1. INTRODUCTION 4

For the first time, APT enables learning skills and playing a wide range of challenging
continuous control games without human specifying domain knowledge, while other prior
work all get stuck no matter how many steps of learning.

1.3.2 Active Pretraining with Successor Features (APS) Chapter 7

In our proposed research Active Pretraining with Successor Features(APS) [178], we propose
to use successor features to guide representation learning and data collection in APT [180].
Successor feature represents a wide range of reward functions as a linear combination of learned
representation. Since there is a neural network around learned representation, successor
feature offers the same expressibility. Our research shows successor features with certain
parameterization techniques proposed in the paper, allowing much more efficient discovering
the world and learning representation.

APS achieves four times higher Atari game play score than DQN and other prior state-of-the-
arts using one hundred times fewer interactions.

1.3.3 Contrastive Intrinsic Control Chapter 8

Building upon APT and APS, we introduce Contrastive Intrinsic Control (CIC), an algorithm
for unsupervised skill discovery that maximizes the mutual information between state-
transitions and latent skill vectors. CIC utilizes contrastive learning between state-transitions
and skills to learn behavior embeddings and maximizes the entropy of these embeddings as
an intrinsic reward to encourage behavioral diversity. CIC substantially improves over prior
methods in terms of adaptation efficiency, outperforming prior unsupervised skill discovery
methods substantially.

1.3.4 Exploration with Principles Chapter 9

Discovering is not only useful for Go or gameplay, our proposed research Exploratory AI
(EAI), shows discovering can substantially improve large language models reasoning.

Large language models, while impressive, struggle with even simple reasoning. OpenAI
paper [65] shows that even the largest GPT3 model requires human to write 2000 training
examples to get 35% accuracy on grade school math. In order to get over 80%, it would
require 100 times more data.

These large models heavily rely on human to curate training data, which is not scalable and
expensive. In our proposed research EAI, we took inspiration from how human generate
data by looking at existing data and following given principles or guidelines. Now that large
language models already good at understanding language, we would like to replace human
with AI to curate training automatically. Using the techniques proposed in the paper, we

CHAPTER 1. INTRODUCTION 5

show EAI can discover much more diverse data than human. By finetuning on the discovered
data, large language models reasoning is substantially improved.

1.3.5 Related Research

During the pursuit of discovering in general domains, I also worked on learning from human
feedback [186, 142, 158, 84]. Benchmarks for evaluating discovering in gameplay [325, 154],
and applications of discovering in learning visual representations [185].

6

Chapter 2

BlockwiseTransformer to Reduce
Transformer Memory Cost

2.1 Introduction
Transformers [304] have become the backbone of many state-of-the-art natural language
processing models [74, 237, 39, 193]. They have demonstrated impressive performance across
a wide range of AI problems, including language modeling, machine translation, image
captioning, and protein folding [217, 249, 173, 237, 39, 243, 58]. Transformers achieve this
success through their architecture design that uses self-attention and position-wise feedforward
mechanisms. These components facilitate the efficient capture of long-range dependencies
between input tokens, enabling scalability in terms of context length and model size through
highly parallel computations.

However, the memory requirements of Transformers limit their ability to handle long sequences,
which is necessary for many AI problems, such as high-resolution images, podcasts, code, or
books and especially those that involve multiple long sequences or long-term dependencies [59,
51, 217, 51, 186, 156, 249, 173, 7]. The quadratic self-attention and the large feed forward
network of Transformers require a large amount of memory, which makes it challenging to
scale to longer input sequences. This limitation has led to various techniques proposed to
reduce the memory requirements of Transformers, including sparse-approximation, low-rank
approximation, and low precision approximation [see e.g. 291, 131, 125, 62, 145, 196, 311].

One distinct line of research does not rely on approximation but instead focuses on computing
exact self-attention with linear memory complexity. This approach leverages the observation
that the softmax matrix in self-attention can be computed without materializing the full
matrix [201]. This technique has led to the development of FlashAttention [71] and Memory
Efficient Attention [235]. Both methods propose a blockwise computation of the self-attention
softmax, demonstrating reduced memory requirements.

CHAPTER 2. BLOCKWISETRANSFORMER TO REDUCE TRANSFORMER
MEMORY COST 7

Despite the resulting reduced memory requirements of the self-attention block in transformers
models, a significant challenge still arises from the feedforward network. This network contains
a large number of parameters and produces high-dimensional intermediate vectors, resulting
in substantial memory requirements. This issue is becomes the key memory challenge once
employing memory-efficient attention mechanisms. Consequently, training Transformers on
longer context lengths and scaling up transformers models become significantly hindered due
to the overwhelming memory demands imposed by the feedforward network.

To address this challenge, we make an important observation: when self-attention is computed
in a blockwise manner to reduce memory requirements, it becomes feasible to merge the
computation of the feedforward network. This eliminates the need to wait for the self-attention
computation to finish before performing the feedforward step on the entire sequence. By
computing the feedforward network on a block-by-block basis, we effectively reduce the
memory cost associated with the feedforward network. This process involves the utilization
of two nested loops over the input sequence blocks. In the outer loop, we iterate over each
block and compute the query. In the inner loop, we iterate over each block to calculate the
key and value. These key-value pairs, along with the query, are then used to compute the
blockwise attention specific to the corresponding input block. This blockwise attention is
subsequently used to calculate the output of the feedforward network, followed by a residual
connection. This approach enables us to process longer input sequences while maintaining
lower memory budget. Since our approach performs blockwise parallel computation and fuses
the feedforward and self-attention computations, we name our method the Blockwise Parallel
transformers (BPT).

We evaluate the effectiveness of our approach on several benchmarks, including language
modeling and reinforcement learning. Our experiments show that BPT can reduce the
memory requirements of Transformers, enabling us to train 32 times longer sequence than
vanilla attention [304] based GPT models and up to 4 times longer sequence than prior
state-of-the-arts FlashAttention [71] and Memory Efficient Attention [235]. Furthermore, we
demonstrate the application of BPT on the task of traning transformers based RL agent.
By conditioning on multiple trajectories, BPT significantly improves the performance and
achieves better results on challenging RL benchmarks. We believe that our approach has the
potential to enable the training and evaluation of more complex models that require longer
input sequences, which could lead to further breakthroughs in AI research.

Our contributions are twofold: (a) proposing a blockwise computation of self-attention and
feedforward approach that enables 32 times longer and up to 4 times longer context lengths
than vanilla transformers and previous memory-efficient Transformers, respectively, and (b)
demonstrating the effectiveness of our approach through extensive experiments.

CHAPTER 2. BLOCKWISETRANSFORMER TO REDUCE TRANSFORMER
MEMORY COST 8

Figure 2.1 Maximum context length during training time with the GPT model using
different methods. Model sizes range from 1B to 70B. Figures (A), (B), and (C) show
evaluation using one, eight A100, and 64 TPUv4, respectively, with a single sequence. Our
method enables training sequences 32 times longer than vanilla attention-based transformers
[304], and 2 to 4 times longer than FlashAttention [71] and Memory Efficient Attention [235].
Section 2.3.1 provides a memory cost breakdown.

2.2 Memory Bottleneck of Transformer
Given input sequences Q,K, V ∈ Rs×d where s is the sequence length and d is the head
dimension. We compute the matrix of outputs as:

Attention(Q,K, V) = softmax(
QKT

√
d

)V, (2.1)

where softmax is applied row-wise. Standard attention implementations materialize the
matrices QKT and softmax(QK

T
√
d
) to HBM, which takes O(s2) memory, so the overall space

complexity is O(s2). There has been a large body of work trying to reduce memory usage of
self-attention by using online softmax [201, 235, 71] to reduce memory cost of self-attention
by preventing it from full materialization. And these approaches reduce memory footprint
from O(s2) to O(s). However, the large feedforward layers have been overlooked.

In addition to attention sub-layers, each of the attention layers is accomplished with a fully
connected feedforward network, which is applied to each position separately and identically.
This consists of two linear transformations with a ReLU activation in between.

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.2)

While the linear transformations are the same across different positions, they use different
parameters from layer to layer. The large size of the feedforward network requires substantial
memory resources, and this becomes even more pronounced when dealing with large context
sizes. See Section 2.3.1 for analysis of memory cost associated with transformers.

CHAPTER 2. BLOCKWISETRANSFORMER TO REDUCE TRANSFORMER
MEMORY COST 9

Figure 2.2 We use the same model architecture as the original transformers but with a
different way of organizing the compute. In the diagram, we explain this by showing that for
the bottom first incoming input block, we project it into query; then we iterate over the same
input sequence positioned above the bottom row, and project it to key and value. These
query, key and value are used to compute self-attention (yellow box), whose output is pass to
feedforward network (cyan box), followed by a residual connection. In our proposed approach,
this process is then repeated for the other incoming input blocks.

CHAPTER 2. BLOCKWISETRANSFORMER TO REDUCE TRANSFORMER
MEMORY COST 10

2.3 Blockwise Parallel for Large Context Models
Self-attention can be computed in a blockwise manner without materializing the softmax
attention matrix softmax(QKT) [201, 71, 235]. This approach involves splitting the sequences
Q ∈ Rs×d into Bq blocks and sequences K,V ∈ Rs×d into Bkv blocks. For each query block,
the blockwise attention Attention(Q,K, V) can be computed by iterating over all key-value
blocks. Once the blockwise attention is computed, the global attention matrix can be obtained
by scaling the blockwise attention using the difference between the blockwise and global
softmax normalization constants [201]. This is achieved by keeping track of normalization
statistics and combining them from all blocks to scale each block accordingly. For a specific
query block Qi, 1 ≤ i ≤ Bq, the corresponding attention output can be computed by scaling
each blockwise attention as follows:

Attention(Qi, K, V) = Scaling({exp(QiK
T
j)Vj}Bkv

j=1). (2.3)

The scaling operation scales each blockwise attention based on the difference between the
blockwise maximum and the global maximum:

Attention(Qi, Kj, Vj) = exp
(
QiK

T
j −max(QiK

T
j)
)
/
∑

exp
(
QiK

T
j −max(QiK

T
j)
)

maxi = max
(
max(QiK

T
1), . . . ,max(QiK

T
B)
)

Attention(Qi, K, V) =
[
exp(QiK

T
j −maxi) Attention(Qi, Kj, Vj)

]Bkv

j=1
.

This blockwise self-attention computation eliminates the need to materialize the full attention
matrix of size O(n2), resulting in significant memory savings.

We observe that the blockwise computation is not limited to self-attention but can also be
applied to the feedforward network. For each query block, after iterating over the key and
value blocks, the feedforward network can be computed along with a residual connection,
completing the attention and feedforward network computation for that query block. This
means that the model does not need to compute the feedforward network on the full sequence,
but rather on intermediate blocks, resulting in memory savings. The computation for a query
block is given by:

Outputi = FFN
(
Attention(Qi, K, V) +Qi

)
+Attention(Qi, K, V) +Qi.

Therefore, the output for each block consists of the feedforward network, self-attention, and
residual connection computed in a blockwise manner.

It is worth mentioning that for large models, the memory cost of the feedforward network
on the full sequence can be much larger than the memory efficient attention. Therefore
computing the feedforward network on the same block as attention can significantly reduce
memory cost, and it also reduces data movements, contributing to overall computational

CHAPTER 2. BLOCKWISETRANSFORMER TO REDUCE TRANSFORMER
MEMORY COST 11

Algorithm 1: Reduce memory cost with BPT.
Required: Input sequence x. Number of query blocks Bq. Number of key and value
blocks Bkv.
Initialize
Project input sequence x into query, key and value.
Split query sequence into Bq of query input blocks.
Split key and value sequences into Bkv of key-value input blocks.
for outer = 1 to Bq do

Choose the outer-th query.
for inner = 1 to Bkv do

Choose the inner-th key and inner-th value block.
Compute attention using query, key and value, and record normalization statistics.

end for
Combine each blocks by scaling them to get attention output for the outer-th input
block.
Compute feedforward on attention output and add residual connection.

end for

efficiency. Moreover, we should remark that blockwise parallelism can be directly applied to
the final cross entropy loss, which can further minimize memory cost. The full process of our
framework, coined as BPT, is summarized in Algorithm 1.

2.3.1 Analysis of Memory Cost

We present an analysis of memory cost across different transformers architectures: the Vanilla
Transformer, the memory-efficient / Flash Attention variant, and BPT.

Vanilla Transformers:

Attention: For Q, K, V , saving their input x needs 2bsh bytes, where b is batch size, s is
sequence length, and h is hidden dimension. For QKT matmul, saving activations Q and K
needs 4bsh bytes. For softmax(QKT), saving input QKT needs 2bs2a bytes, where a is the
number of attention heads. For mask and dropout, saving mask needs bs2a bytes. For score
× V , saving score needs 2bs2a bytes, and saving V needs 2bsh bytes. For output projection
and dropout, saving the input needs 2bsh bytes, and saving dropout mask needs bsh bytes.
The maximum attention activation size of attention is O(s2) with checkpointing.

FFN: For the first linear layer, saving input needs 2bsh bytes. For activation, saving input
needs 8bsh bytes. For the second linear layer, saving input needs 8bsh bytes. For dropout,
saving the mask needs bsh bytes. With checkpointing, the maximum activation size of FFN
is 8bsh bytes.

CHAPTER 2. BLOCKWISETRANSFORMER TO REDUCE TRANSFORMER
MEMORY COST 12

1 def blockwise_ffn(remat_ffn, inputs, chunk_size, deterministic):
2 # remat_ffn: a rematerialized ffn
3 inputs = rearrange(inputs, 'b (c n) d -> b c n d', c=chunk_size)
4 def scan_ffn(remat_ffn, carry, hidden_states):
5 outputs = remat_ffn(hidden_states, deterministic=deterministic)
6 return carry, outputs
7 scan_axis = inputs.ndim - 2
8 _, res = nn.scan(
9 scan_ffn,

10 variable_broadcast="params",
11 split_rngs={"params": False, "dropout": True},
12 in_axes=scan_axis,
13 out_axes=scan_axis,
14)(remat_ffn, None, inputs)
15 res = rearrange(res, 'b c n d -> b (c n) d')
16 return res
17
18 def blockwise_attn(query, key, value, query_chunk_size,
19 key_chunk_size, dtype, policy, precision, prevent_cse):
20 query = query / jnp.sqrt(query.shape[-1]).astype(dtype)
21 query = rearrange(query, 'b (c n) h d -> n b c h d', c=query_chunk_size)
22 key, value = map(lambda t: rearrange(t, 'b (c n) h d -> n b c h d',
23 c=key_chunk_size), (key, value))
24 num_q, batch, _, num_heads, dim_per_head = query.shape
25 num_kv = key.shape[0]
26 def scan_attention(args):
27 query_chunk, query_chunk_idx = args
28 @functools.partial(jax.checkpoint, prevent_cse=prevent_cse, policy=policy)
29 def scan_kv_block(carry, args):
30 key_chunk, value_chunk, key_chunk_idx = args
31 (numerator, denominator, prev_max_score) = carry
32 attn_weights = jnp.einsum('bqhd,bkhd->bqhk', query_chunk,
33 key_chunk, precision=precision)
34 bias_chunk = _chunk_bias_fn(query_chunk_idx, key_chunk_idx)
35 bias_chunk = jnp.moveaxis(bias_chunk, 1, 2)
36 attn_weights = attn_weights + bias_chunk
37
38 max_score = jnp.max(attn_weights, axis=-1, keepdims=True)
39 max_score = jnp.maximum(prev_max_score, max_score)
40 max_score = jax.lax.stop_gradient(max_score)
41 exp_weights = jnp.exp(attn_weights - max_score)
42 exp_values = jnp.einsum(
43 'bqhv,bvhf->bqhf', exp_weights, value_chunk, precision=precision
44)
45 correction = jnp.exp(prev_max_score - max_score)
46 numerator = numerator * correction + exp_values
47 denominator = denominator * correction + exp_weights.sum(axis=-1, keepdims=True)
48 return Carry(numerator, denominator, max_score), None
49 init_carry = Carry(
50 jnp.zeros((batch, query_chunk_size, num_heads, dim_per_head), dtype=query.dtype),
51 jnp.zeros((batch, query_chunk_size, num_heads, dim_per_head), dtype=query.dtype),
52 (-jnp.inf) * jnp.ones((batch, query_chunk_size, num_heads, 1), dtype=query.dtype),
53)
54 (numerator, denominator, max_score), _ = lax.scan(
55 scan_kv_block, init_carry, xs=(key, value, jnp.arange(0, num_kv))
56)
57 outputs = (numerator / denominator).astype(dtype)
58 return outputs
59 _, res = lax.scan(
60 lambda _, x: ((), scan_attention(x)),
61 (), xs=(query, jnp.arange(0, num_q))
62)
63 res = rearrange(res, 'n b c h d -> b (n c) h d')
64 return res

Figure 2.3 The key parts of the implementation of Blockwise Parallel Transformers in Jax.
The full code is provided on github.

https://github.com/lhao499/ringattention

CHAPTER 2. BLOCKWISETRANSFORMER TO REDUCE TRANSFORMER
MEMORY COST 13

Consequently, for a large context length, the memory cost of activation in vanilla transformers
is O(s2).

BPT:

Attention: Since BPT does not materialize full attention and instead computes it blockwise, it
needs to store intermediate blockwise activations in the key-value loop, which has a maximum
activation size of 4bch with checkpointing. Additionally, it needs to store q output activations
for the query loop, which requires 2bsh bytes. Since s≫ c, the maximum activation size is
2bsh.

FFN: When iterating the FFN over blocks, BPT needs to save the following activations: For
the first linear layer, saving input needs 2bch bytes. For activation, saving input needs 8bch
bytes. For the second linear layer, saving input needs 8bch bytes. For dropout, saving the
mask needs bch bytes. In total, 8bch bytes are needed. Additionally, storing the output of
the for loop requires 2bsh bytes. Therefore, the maximum FFN activation size is 2bsh due to
2bsh > 8bch.

Consequently, each BPT layer’s memory cost of activation is 2bsh.

Memory-Efficient / Flash Attention:

Attention: Similar to BPT attention, the maximum activation size is 2bsh.

FFN: Similar to the vanilla FFN, the maximum activation size is 8bsh.

Consequently, each Flash Attention layer’s memory cost is 8bsh.

Comparing the activation memory of Flash Attention/Memory-Efficient transformers with
BPT, we see that BPT offers 8bsh/2bsh = 4 times memory saving. By taking into account
other factors of memory cost such as model parameters and optimizer states, BPT allows
training with context lengths 2-4 times larger than prior state-of-the-arts.

2.3.2 Why Blockwise Parallel

The utilization of blockwise parallelization may raise questions about the effectiveness of
running parallel computers, as computation can become sequential between blocks. However,
the benefits of blockwise parallelization depend on the model size and hardware configuration.
In cases where the model is large or the context length is extremely long, a block may reach
its maximum arithmetic density, making it impractical to execute the original full-length
sequence in parallel. In such scenarios, blockwise parallelization treats the long sequence
as short ones, allowing dealing with large models and effectively enabling large context size.
Moreover, using blockwise parallelization allows us to avoid waiting for the completion of
self-attention and allocating a significant amount of memory solely for feed-forward network
computation.

CHAPTER 2. BLOCKWISETRANSFORMER TO REDUCE TRANSFORMER
MEMORY COST 14

Another notable advantage of blockwise parallelization is its ability to leverage hardware with
significantly faster SRAM speed compared to HBM speed. For instance, in Nvidia GPUs,
SRAM is an order of magnitude faster than HBM, while in Google TPUs, SRAM also offers
higher speed than HBM. By utilizing blockwise parallelization, we can tap into the increased
speed of SRAM, thereby reducing communication costs and increasing throughput. This
advantage aligns with memory efficient self-attention approaches [71, 235].

2.3.3 Implementation

Algorithm 1 provides the pseudocode of the algorithm. Figure 2.3 in Appendix shows a Jax
implementation optimized for simplicity. The full code of BPT is provided on github. which
supports large-scale distributed training of large context models using BPT.

The blockwise_ffn function begins by accepting a rematerialized feed forward module,
inputs and chunk size. The remat_ffn compute feedforward on inputs with checkpointing,
i.e.without saving intermediates. The scan_ffn function is then used to scan over input
sequences and generate outputs.

The blockwise_attn function process query, key, and value to produce attention blockwise.
The scan_attention function is defined, which computes the attention weights between
the query vector and key-value pairs from another chunk. This is done by applying the
scan_kv_block function to the key-value chunk, calculating the dot product between the
query and key vectors, and then adding a bias term. The bias term introduces a positional
bias between different chunks based on their indices without materializing the full matrix.
The softmax function is then applied to the attention weights in a numerically stable manner,
using the max-score trick to avoid large exponentiation results.

Finally, BPT combines the outputs from all chunks, normalizes them using their max-score-
adjusted weights, and passes them through a feed-forward neural network (blockwise_ffn).
The final output is the sum of the feed-forward output, the attention output, and the original
input.

2.4 Setting
We evaluate the impact of using BPT in improving large transformers models by benchmarking
memory requirement, maximum sequence length and throughout speed. We show apply BPT
to reinforcement learning as an application.

Model Configuration. Our study is built upon the GPT architecture. Table 2.1 provides a
overview of the model sizes considered in our experiments.

Baselines. We evaluate our method by comparing it with vanilla Transformer [304] which is
denoted as “Vanilla”, and FlashAttention [71] and Memory Efficient Attention [235] which

https://github.com/lhao499/ringattention

CHAPTER 2. BLOCKWISETRANSFORMER TO REDUCE TRANSFORMER
MEMORY COST 15

Table 2.1 Sizes and architectures of the models which we evaluated in experiments.

Model Name nparams nlayers dmodel nheads dhead

GPT 1B 1.3B 24 2048 16 128
GPT 3B 2.7B 32 2560 32 80
GPT 7B 6.7B 32 4096 32 128
GPT 13B 13.0B 40 5140 40 128
GPT 30B 30.0B 48 7168 56 128
GPT 70B 70.0B 80 8192 64 128

are state-of-the-art memory efficient attention, we denote them as “MemoryEfficient” in our
experiments. All methods use the same gradient checkpointing in the experiments.

Datasets. We consider two datasets for evaluation purposes. Including pretraining on
OpenWebText dataset and large context reinforcement learning on ExoRL.

• OpenWebText. The OpenWebText dataset [100] is a large and diverse collection of web
pages that has been filtered and cleaned for use in natural language processing (NLP)
tasks. The dataset consists of over 6 billion tokens from more than 40 million web pages,
covering a wide range of topics and genres.

• ExoRL. The ExoRL [325] dataset is based on unlabeled exploratory data collected by
running unsupervised RL algorithms. For each environment, it comes with eight different
unsupervised data collection algorithms, taken from from URLB [154]. The datasets are
collected by unsupervised RL and then relabeled using task reward function. The resulting
mixed dataset consists of 8 millions timesteps (8000 episodes), with each episode spanning
a length of 1000 steps.

Training Configuration. Our main baselines are vanilla attention [304], which computes
self-attention by materializing the attention matrix and computes the feedforward network
normally. We also consider two prior state-of-the-art memory-efficient methods, namely
FlashAttention [71], which focuses on GPU efficiency, and Memory Efficient Attention [235],
which focuses on TPU efficiency. Since they share a similar idea, for notation simplicity, we
refer to them as FlashAttention in our experiments. We tune the block size for both the
baselines and BPT, and report the best results achieved by each. The experiments are on
NVIDIA 80GB A100 GPUs, we consider both single GPU for smaller model training and 8
GPUs settings for model parallel training. We also experiment with scaling up model on 64
TPUv4.

We note that no data parallelism is considered in our evaluations since our approach is
independent of data parallelism. As a result, the batch sizes used in our analysis are much
lower than the ones used for the end-to-end training. All of our results are obtained using
full precision instead of mixed precision.

CHAPTER 2. BLOCKWISETRANSFORMER TO REDUCE TRANSFORMER
MEMORY COST 16

2.5 Results
In our experiments, our primary objective is to comprehensively evaluate the performance of
BPT across multiple key metrics, including maximum sequence length, memory usage, and
throughput. Moreover, we extend the applicability of BPT to reinforcement learning and
evaluate its effectiveness in large context application.

Table 2.2 Maximum context length during training with different methods. BPT enables
training 2-4 times longer sequence length than FlashAttention / Memory Efficient Attention,
and up to 32 times longer sequence length than vanilla attention.

1 A100 PartitionSpec Vanilla Attention MemoryEfficient Blockwise Parallel

350M (1,1,1) 16K (16384) 65K (65536) 131K (131072)
1B (1,1,1) 16K (16384) 65K (65536) 131K (131072)
3B (1,1,1) 8K (8192) 16K (16384) 65K (65536)

8 A100 PartitionSpec Vanilla Attention MemoryEfficient Blockwise Parallel

3B (1,1,8) 16K (16384) 65K (65536) 131K (131072)
7B (1,1,8) 16K (16384) 65K (65536) 131K (131072)
13B (1,1,8) 8K (8192) 33K (32768) 65K (65536)
30B (1,1,8) 8K (8192) 16K (16384) 65K (65536)

64 TPUv4 PartitionSpec Vanilla Attention MemoryEfficient Blockwise Parallel

13B (1,1,64) 4K (4096) 16K (16384) 33K (32768)
30B (1,1,64) 2K (2048) 4K (4096) 16K (16384)
70B (1,1,64) 1k (1024) 2K (2048) 8K (8192)

2.5.1 Evaluation of Context Length

We present experimental results comparing the maximum training sequence lengths achieved
using three different attention mechanisms: Vanilla, MemoryEfficient, and Blockwise Parallel.
Table 2.2 summarizes the findings. On one A100 GPU, Vanilla transformers supports a
maximum training sequence length of 16K for 1B parameters and 8K for 3B parameters. In
contrast, MemoryEfficient enables longer sequences of 65K for 1B parameters and 16K for
3B parameters. Notably, our proposed method, Blockwise Parallel, surpasses both methods,
achieving a maximum sequence length of 131K for 1B parameters and 3B parameters. Moving
on larger models, Blockwise Parallel again outperforms the other two methods, allowing
training sequences of 65K for 30B large model on 8 GPUs and 8K for 70B large model on 64
TPUv4, which are two and four times longer than MemoryEfficient, respectively.

Table 2.3 shows the analysis of memory usage across different settings with three distinct
approaches: Vanilla Transformer, MemoryEfficient, and our proposed method, BPT. It is

CHAPTER 2. BLOCKWISETRANSFORMER TO REDUCE TRANSFORMER
MEMORY COST 17

evident that Vanilla transformers consumes the highest amount of memory, while Memory-
Efficient and BPT offer notable improvements in memory optimization. Notably, our BPT
technique consistently outperforms both Vanilla transformers and MemoryEfficient in all
settings, showcasing memory efficiency.

Table 2.3 Memory usage comparison for different settings. "oom" denotes out of memory.

Setting 3B on A100 13B on 8 A100

Context
Length

Vanilla MemoryEfficient BPT Vanilla MemoryEfficient BPT

8192 64GB 44GB 43GB 59GB 44GB 42GB
16384 oom 47GB 45GB oom 46GB 45GB
32768 oom 55GB 52GB oom 55GB 52GB
65536 oom 75GB 70GB oom 75GB 68GB
131072 oom oom 79GB oom oom 78GB

2.5.2 Evaluation on Throughput and Speed

In Table 2.4, we present a comparison of the throughput achieved by different attention
mechanisms on the GPT-XL (1B) model trained on the OpenWebText dataset using 8 GPUs.
Throughput is measured as number of tokens processed per device per second. We evaluate
the performance at various context lengths, including 2K, 8K, 16K, 33K, and 65K tokens.
Our proposed method achieves competitive throughput as MemeoryEfficient mechanism, and
surpasses the Vanilla transformer, achieving 1.17x speedup at context length 8k and 1.2x
speedup at context length 16k. At context length 32K and 64K, our method maintains high
throughput and training speed, while the alternatives cannot train due to running out of
memory. This demonstrates the scalability and efficiency of our proposed method, allowing it
to effectively handle large context lengths without compromising on throughput and training
speed.

2.5.3 Evaluation on Reinforcement Learning

In this section, we present the results of applying BPT to improve the performance of
transformers in reinforcement learning (RL). We report our results in Table 2.5, where we
evaluate our proposed model on the ExoRL benchmark across six different tasks. On ExoRL,
we report the cumulative return, as per ExoRL [325]. The numbers of BC, DT [49] and
AT [182] are from the ExoRL and AT paper. AT + ME and AT + BPT numbers are run
by ourselves. Since the ExoRL data is significantly more diverse than D4RL because it
is collected using various unsupervised RL algorithms [154, 185, 178], it is found that TD
learning performs best while behavior cloning struggles [325]. AT [182] shows that conditioning
transformers on multiple trajectories with relabeled target return can significantly outperforms

CHAPTER 2. BLOCKWISETRANSFORMER TO REDUCE TRANSFORMER
MEMORY COST 18

Table 2.4 Throughput comparison on GPT-XL (1B) using OpenWebText dataset. Through-
put is measured as tokens processed per second. ‘oom’ denotes running out of memory, ‘na’
denotes results not available because we early terminated these runs to reduce compute cost.

Model Context Len Val Loss Throughput Speed up

Vanila transformers 2048 2.46 3827 1x
MemoryEfficient 2048 2.46 4371 1.14x
Blockwise Parallel Transformers 2048 2.46 3985 1.04x

Vanila transformers 4096 2.44 2340 1x
MemoryEfficient 4096 2.44 2567 1.1x
Blockwise Parallel Transformers 4096 2.44 2687 1.15x

Vanila transformers 8192 2.43 2455 1x
MemoryEfficient 8192 2.43 2781 1.13x
Blockwise Parallel Transformers 8192 2.43 2875 1.17x

Vanila transformers 16384 2.41 1701 1x
MemoryEfficient 16384 2.41 1889 1.11x
Blockwise Parallel Transformers 16384 2.41 2045 1.2x

Vanila transformers 32768 oom oom oom
MemoryEfficient 32768 na 810 1x
Blockwise Parallel Transformers 32768 na 857 1.1x

Vanila transformers 65536 oom oom oom
MemoryEfficient 65536 oom oom oom
Blockwise Parallel Transformers 65536 na 600 1x

behavior cloning approaches BC-10% and DT, and achieves competitive results with TD
learning. For more details, please refer to their papers. We are interested in applying BPT to
improve the performance of AT by conditioning on a 32 trajectories rather than 4 trajectories
in original work. It is worth noting that each trajectory has 1000 × 4 length where 1000
is sequence length while 4 is return-state-action-reward, making training 32 trajectories
with 350M size model infeasible for both Vanilla and MemoryEfficient. Results in Table 2.5
show that, by scaling the sequence length, AT + BPT consistently outperforms the original
transformers model in all six tasks, achieving a total average return of 111.13 compared to
the original transformers model’s total average return of 83.02

2.6 Related Work
Transformers have garnered significant attention in the field of natural language processing
(NLP) and have become the basis for numerous state-of-the-art models. Several works have
explored memory-efficient techniques to address the memory limitations of Transformers

CHAPTER 2. BLOCKWISETRANSFORMER TO REDUCE TRANSFORMER
MEMORY COST 19

Table 2.5 Application of BPT on improving transformers in RL. All the baselines use
vanilla attention. AT + ME denotes using “MemoryEfficient”. AT + BPT denotes using
Blockwise Parallel Transformers.

ExoRL benchmark BC-10% DT AT AT AT + ME AT + BPT

Task N Trajs = 4 N Trajs = 32 N Trajs = 32 N Trajs = 32

Walker Stand 52.91 34.54 68.55 oom oom 95.45
Walker Run 34.81 49.82 88.56 oom oom 105.88
Walker Walk 13.53 34.94 64.56 oom oom 78.56
Cheetah Run 34.66 67.53 125.68 oom oom 178.75
Jaco Reach 23.95 18.64 52.98 oom oom 87.56
Cartpole Swingup 56.82 67.56 97.81 oom oom 120.56

Total Average 36.11 45.51 83.02 oom oom 111.13

and enable their application to longer input sequences. One line of research focuses on
various approximation techniques or compressing along the sequence dimension [see e.g.
131, 63, 71, 31, 235, 311, 196, 145]. Other works explored replacing attention [103, 104, 232,
126, 30, 332, 218, 309]. Another line of work explores partitioning the large hidden dimension
of the feedforward network into parts and retrieving only one part per token [164, 267, 85,
146, 335, 342]. Additionally, extending the context by attending over states from previous
sequences has been explored [68, 239], as well as combining local and global contexts [118, 62].
For a comprehensive review of these techniques, we recommend referring to the surveys by Tay
et al. [291], Narang et al. [210], Tay et al. [290]. Several studies explored sharding large model
on distributed devices tensor, data, or sequence parallelism [269, 83, 321, 147, 338, 171, 244].
Ours shares similarities with the sequence parallelism [147] where sequences are distributed
across devices, in contrast, ours implements blockwise computation on sequences for each
device. This creates an orthogonal relationship between our method and sequence parallelism,
allowing for straightforward combination. In addition, our methodology is compatible with
both tensor and data parallelism. Another direction involves computing exact self-attention in
a blockwise manner using the tiling technique [201]. This approach has led to the development
of memory efficient attention mechanisms [71, 235]. In line with these advancements, our work
falls into this category. We propose computing both the feedforward network and self-attention
in a blockwise manner, resulting in a significant reduction in memory requirements.

2.7 Conclusion
In conclusion, we propose a blockwise parallelization approach to reduce the memory require-
ments of Transformers, the backbone of state-of-the-art AI models. Our approach enables
processing longer input sequences while maintaining or improving performance. Through
extensive experiments, we demonstrate its effectiveness, achieving up to 4x memory reduction

CHAPTER 2. BLOCKWISETRANSFORMER TO REDUCE TRANSFORMER
MEMORY COST 20

than memory-efficient Transformers. Our contributions include a practical method for large
context sizes in large transformers models. With the increasing capability of hardware, larger
models and longer context length are widely used in AI research. At the same time, as
we are pushing up against physics and fabrication limits, it is more important to design
scaling approaches as efficient as possible to scale up large models and large context size.
Our approach holds promise for training and evaluating complex models with longer input
sequences, potentially driving new breakthroughs in machine learning research.

Limitations and Future Work. Although our method achieves state-of-the-art low memory
usage for transformers models, it does have some limitations that need to be addressed:

• Optimal performance. While our implementation prioritizes simplicity with high-level Jax
operations, optimizing low-level operations is crucial for achieving optimal performance.
In future work, we suggest considering porting our method to CUDA and OpenAI Triton
to achieve minimal memory cost and maximum speedup.

Acknowledgements
This project is supported in part by ONR under N00014-21-1-2769. We would like to express
our sincere appreciation to the members of the RLL Lab and Berkeley AI Lab, as well as
Anselm Levskaya, Markus Rabe, Federico Lebron, Sharad Vikram, and Tri Dao for their
valuable insights and contributions to this paper. We thank Google TPU Research Cloud for
granting us access to TPUs.

2.8 Evaluation of Memory
In the experimental results presented in Section 2.5.1, we used model parallelism to partition
the model across 8 GPUs or 64 TPUv4 units. Our evaluation focused on determining the
maximum achievable sequence length, using a sequence number of one. For TPUs, we utilized
its default training configuration, which involved performing matmul operations in bfloat16
format with weight accumulation in float32. On the other hand, for GPUs, we adopted the
default setup, where all operations were performed in float32.

To profile memory usage, we utilized jax.profile and repeated the evaluation 100 times,
reporting the average results. We conducted a grid search for the optimal query block size
and key-value block size, considering values from the set [16, 64, 128, 512, 1024, 2048, 4096].
For each method, we reported the lowest memory achieved.

CHAPTER 2. BLOCKWISETRANSFORMER TO REDUCE TRANSFORMER
MEMORY COST 21

2.9 Evaluation of Throughput
In the evaluation presented in Section 2.5.2, we split OpenWebText following the method-
ology of [9]. Throughput is measured as tokens per device per second. To ensure a fair
comparison, we performed a grid search for the optimal query block size and key-value block
size, considering values from the set [16, 64, 128, 512, 1024, 2048, 4096]. For gradient check-
pointing [54], we additionally grid search among three commonly used checkpointing policies
including nothing_saveable, dots_saveable, and dots_with_no_batch_dims_saveable
for attention and use nothing_saveable for feedforward network (FFN). For more details,
please refer to Jax documentation. We selected the best performing configuration for both
baselines and our method.

The training was conducted using FSDP [83] and gradient accumulation. We used weight
decay of 0.1 and utilized cosine learning rate decay with a maximum learning rate of 2.0×e−4.
For sequence lengths of 2048, 4096, 8192, 16384, the batch sizes in trajectories were set as
8, 4, 2, 1, 1 respectively. We use gradient accumulation to accumulate batch size in tokens to 1
million per batch.

2.10 Evaluation on RL

Table 2.6 Hyperparameters used in RL evaluation.

Hyperparameter Value

Number of layers 3
Number of attention heads 1
Embedding dimension 128
Activation function ReLU
Batch size 64
Dropout 0.1
Learning rate 10−4

Learning rate decay Linear warmup for 105 steps
Grad norm clip 0.25
Weight decay 10−4

Initial desired target return at test time 850 Walker Stand
400 Walker Run
900 Walker Walk
350 Cheetah Run
300 Jaco Reach
800 Cartpole Swingup

Number of trajectories during training 4 → 32
Number of trajectories at test time 4 → 16

CHAPTER 2. BLOCKWISETRANSFORMER TO REDUCE TRANSFORMER
MEMORY COST 22

In the experiment presented in Section 2.5.3, we followed the prior work’s setting for learning
rate, batch size, and other hyperparameters, while modifying the number of trajectories. The
specific hyperparameters are provided in Table 2.6. The original agentic transformers used 4
trajectories during training, we increase the number to 32.

During testing, increasing the number of trajectories has been shown to improve performance.
However, performing autoregressive sampling over a large number of trajectories (e.g., 64×
1000× 4 total number of tokens) can be computationally slow. To reduce the sampling time,
we limited the rollout to 16 trajectories.

23

Chapter 3

RingAttention Scales
BlockwiseTransformer to Infinite Context

3.1 Introduction
Transformers [304] have become the backbone of many state-of-the-art AI systems that have
demonstrated impressive performance across a wide range of AI problems. Transformers
achieve this success through their architecture design that uses self-attention and position-
wise feedforward mechanisms. However, scaling up the context length of Transformers is a
challenge [217], since the inherited architecture design of Transformers, i.e. the self-attention
has memory cost quadratic in the input sequence length, which makes it challenging to scale
to longer input sequences. Large context Transformers are essential for tackling a diverse array
of AI challenges, ranging from processing books and high-resolution images to analyzing long
videos and complex codebases. They excel at extracting information from the interconnected
web and hyperlinked content, and are crucial for handling complex scientific experiment data.
There have been emerging use cases of language models with significantly expanded context
than before: GPT-3.5 [253] with context length 16K, GPT-4 [217] with context length 32k,
MosaicML’s MPT [206] with context length 65k, and Anthropic’s Claude [12] with context
length 100k.

Driven by the significance, there has been surging research interests in reducing mem-
ory cost. One line of research leverages the observation that the softmax matrix in
self-attention can be computed without materializing the full matrix [201] which has led
to the development of blockwise computation of self-attention and feedforward [235, 71,
183] without making approximations. Despite the reduced memory, a significant chal-
lenge still arises from storing the output of each layer. This necessity arises from self-
attention’s inherent nature, involving interactions among all elements (n to n interac-
tions). The subsequent layer’s self-attention relies on accessing all of the prior layer’s
outputs. Failing to do so would increase computational costs cubically, as every output

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 24

must be recomputed for each sequence element, rendering it impractical for longer sequences.

Figure 3.1 Maximum context length under
end-to-end large-scale training on TPUv4-1024.
Baselines are vanilla transformers [304], mem-
ory efficient transformers [235], and memory
efficient attention and feedforward (blockwise
parallel transformers) [183]. Our proposed ap-
proach Blockwise RingAttention allows train-
ing up to device count times longer sequence
than baselines and enables the training of se-
quences that exceed millions in length without
making approximations nor adding any over-
heads to communication and computation.

These components facilitate the efficient cap-
ture of long-range dependencies between in-
put tokens, and enable scalability through
highly parallel computations. To put the
memory demand in perspective, even when
dealing with a batch size of 1, processing
100 million tokens requires over 1000GB of
memory for a modest model with a hidden
size of 1024. This is much greater than the
capacity of contemporary GPUs and TPUs,
which typically have less than 100GB of high-
bandwidth memory (HBM).

To tackle this challenge, we make a key ob-
servation: by performing self-attention and
feedforward network computations in a block-
wise fashion [183], we can distribute sequence
dimensions across multiple devices, allowing
concurrent computation and communication.
This insight stems from the fact that when
we compute the attention on a block-by-block
basis, the results are invariant to the order-
ing of these blockwise computations. Our
method distributes the outer loop of comput-
ing blockwise attention among hosts, with
each device managing its respective input block. For the inner loop, every device computes
blockwise attention and feedforward operations specific to its designated input block. Host
devices form a conceptual ring, where during the inner loop, each device sends a copy of
its key-value blocks being used for blockwise computation to the next device in the ring,
while simultaneously receiving key-value blocks from the previous one. As long as block
computations take longer than block transfers, overlapping these processes results in no
added overhead compared to standard transformers. Our work utilizes blockwise parallel
transformers [183] to substantially reduce memory costs, enabling zero-overhead scaling of
context size across tens of millions of tokens during both training and inference, and allowing
for the use of an arbitrarily large context size. Since our approach overlaps the communication
of key-value blocks between hosts in a ring through blockwise computation of transformers,
we name it RingAttention with Blockwise Transformers.

We evaluate the effectiveness of our approach on language modeling benchmarks. Our
experiments show that RingAttention can reduce the memory requirements of Transformers,
enabling us to train more than 500 times longer sequence than prior memory efficient

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 25

state-of-the-arts and enables the training of sequences that exceed 100 million in length
without making approximations to attention. Importantly, RingAttention eliminates the
memory constraints imposed by individual devices, empowering the training and inference of
sequences with lengths that scale in proportion to the number of devices, essentially achieving
near-infinite context size.

Our contributions are twofold: (a) proposing a memory efficient transformers architecture
that allows the context length to scale linearly with the number of devices while maintaining
performance, eliminating the memory bottleneck imposed by individual devices, and (b)
demonstrating the effectiveness of our approach through extensive experiments.

3.2 Large Context Memory Constraint
Given input sequences Q,K, V ∈ Rs×d where s is the sequence length and d is the head
dimension. We compute the matrix of outputs as:

Attention(Q,K, V) = softmax(
QKT

√
d

)V,

where softmax is applied row-wise. Each self-attention sub-layer is accompanied with a
feedforward network, which is applied to each position separately and identically. This
consists of two linear transformations with a ReLU activation in between.

FFN(x) = max(0, xW1 + b1)W2 + b2.

Blockwise Parallel Transformers. Prior state-of-the-arts have led to substantial reduc-
tions in memory utilization, achieved through innovative techniques that enable attention
computation without full materialization by computing attention in a block by block man-
ner [235, 71, 183]. These advancements lowered the memory overhead of attention to 2bsh
bytes per layer, where b represents the batch size, s denotes the sequence length, and h
stands for the hidden size of the model. To further reduce memory usage, blockwise parallel
transformer (BPT) [183] introduced a strategy where the feedforward network associated with
each self-attention sub-layer is computed in a block-wise fashion. This approach effectively
limits the maximum activation size of feedforward network from 8bsh to 2bsh. For a more
detailed analysis of memory efficiency, please refer to the discussion provided therein. In
summary, the state-of-the-art transformer layer’s memory cost of activation is 2bsh.

Large Output of Each Layer. While BPT significantly reduces memory demand in
Transformers, it still presents a major challenge for scaling up context length because
it requires storing the output of each layer. This storage is crucial due to the inherent
nature of self-attention, which involves interactions among all elements (n to n interactions).
Without these stored outputs, the subsequent layer’s self-attention becomes computationally
impractical, necessitating recomputation for each sequence element. To put it simply,

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 26

processing 100 million tokens with a batch size of 1 requires over 1000GB of memory even for
a modest model with a hidden size of 1024. In contrast, modern GPUs and TPUs typically
provide less than 100GB of high-bandwidth memory (HBM), and the prospects for significant
HBM expansion are hindered by physical limitations and high manufacturing costs.

3.3 RingAttention with Blockwise Transformers
Our primary objective is to eliminates the memory constraints imposed by individual devices
by efficiently distribute long sequences across multiple hosts without adding overhead. To
achieve this goal, we propose an enhancement to the blockwise parallel transformers (BPT)
framework [183]. When distributing an input sequence across different hosts, each host is
responsible for running one element of the outer loop of blockwise attention corresponding
to its designated block, as well as the feedforward network specific to that block. These
operations do not necessitate communication with other hosts. However, a challenge arises
in the inner loop, which involves key-value block interactions that require fetching blocks
from other hosts. Since each host possesses only one key-value block, the naive approach
of fetching blocks from other hosts results in two significant issues. Firstly, it introduces a
computation delay as the system waits to receive the necessary key-value blocks. Secondly,
the accumulation of key-value blocks leads to increased memory usage, which defeats the
purpose of reducing memory cost.

Ring-Based Blockwise Transformer. To tackle the aforementioned challenges, we leverage
the permutation invariance property of the inner loop’s key-value block operations. This
property stems from the fact that the self-attention between a query block and a group of
key-value blocks can be computed in any order, as long as the statistics of each block are
combined correctly for rescaling. We leverage this property by conceptualizing all hosts as
forming a ring structure: host-1, host-2, ..., host-N . As we compute blockwise attention and
feedforward, each host efficiently coordinates by concurrently sending key-value blocks being
used for attention computation to the next host while receiving key-value blocks from the
preceding host, effectively overlapping transferring of blocks with blockwise computation.
Concretely, for any host-i, during the computation of attention between its query block and a
key-value block, it concurrently sends key-value blocks to the next host-(i+1) while receiving
key-value blocks from the preceding host-(i− 1). If the computation time exceeds the time
required for transferring key-value blocks, this results in no additional communication cost.
This overlapping mechanism applies to both forward and backward passes of our approach
since the same operations and techniques can be used. Prior work has also proposed leveraging
a ring topology to compute full attention [172], aiming to reduce communication costs. Our
work differs by utilizing blockwise parallel transformers to substantially reduce memory costs.
As we show in the next section, this enables zero-overhead scaling of context size during both
training and inference and allows arbitrarily large context size.

Arithmetic Intensity Between Hosts. In order to determine the minimal required block

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 27

Figure 3.2 Top (a): We use the same model architecture as the original Transformer
but reorganize the compute. In the diagram, we explain this by showing that in a ring
of hosts, each host holds one query block, and key-value blocks traverse through a ring
of hosts for attention and feedforward computations in a block-by-block fashion. As we
compute attention, each host sends key-value blocks to the next host while receives key-value
blocks from the preceding host. The communication is overlapped with the computation of
blockwise attention and feedforward. Bottom (b): We compute the original Transformer
block-by-block. Each host is responsible for one iteration of the query’s outer loop, while the
key-value blocks rotate among the hosts. As visualized, a device starts with the first query
block on the left; then we iterate over the key-value blocks sequence positioned horizontally.
The query block, combined with the key-value blocks, are used to compute self-attention
(yellow box), whose output is pass to feedforward network (cyan box).

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 28

Table 3.1 Comparison of maximum activation sizes among different Transformer archi-
tectures. Here, b is batch size, h is hidden dimension, n is number of head, s is sequence
length, c is block size, the block size (c) is independent of the input sequence length (s).
The comparison is between vanilla transformer [304], memory efficient attention [235, 71],
blockwise parallel transformers [183], and our proposed approach RingAttention. Numbers
are shown in bytes per layer, assuming bfloat16 precision.

Layer Type Self-Attention FeedForward Total

Vanilla Transformers 2bns2 8bsh 2bhs2

Memory Efficient Attention 2bsh+ 4bch 8bsh 8bsh
Blockwise Parallel Transformers 2bsh 2bsh 2bsh

Blockwise RingAttention 6bch 2bch 6bch

size to overlap transferring with computation, assume that each host has F FLOPS and that
the bandwidth between hosts is denoted as B. It’s worth noting that our approach involves
interactions only with the immediately previous and next hosts in a circular configuration,
thus our analysis applies to both GPU all-to-all topology and TPU torus topology. Let’s
consider the variables: block size denoted as c and hidden size as d. When computing
blockwise self-attention, we require 2dc2 FLOPs for calculating attention scores using queries
and keys, and an additional 2dc2 FLOPs for multiplying these attention scores by values.
In total, the computation demands amount to 4dc2 FLOPs. We exclude the projection of
queries, keys, and values, as well as blockwise feedforward operations, since they only add
compute complexity without any communication costs between hosts. This simplification
leads to more stringent condition and does not compromise the validity of our approach. On
the communication front, both key and value blocks require a total of 2cd bytes. Thus, the
combined communication demand is 4cd bytes. To achieve an overlap between communication
and computation, the following condition must hold: 4dc2/F ≥ 4cd/B. This implies that the
block size, denoted as c, should be greater than or equal to F/B. Effectively, this means that
the block size needs to be larger than the ratio of FLOPs over bandwidth.

Memory Requirement. A host needs to store multiple blocks, including one block size to
store the current query block, two block sizes for the current key and value blocks, and two
block sizes for receiving key and value blocks. Furthermore, storing the output of blockwise
attention and feedforward necessitates one block size, as the output retains the shape of the
query block. Therefore, a total of six blocks are required, which translates to 6bch bytes of
memory. It’s worth noting that the blockwise feedforward network has a maximum activation
size of 2bch [183]. Consequently, the total maximum activation size remains at 6bch bytes.
Table 3.1 provides a detailed comparison of the memory costs between our method and
other approaches. Notably, our method exhibits the advantage of linear memory scaling with
respect to the block size c, and is independent of the input sequence length s.

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 29

Table 3.2 Minimal sequence length needed on each device. Interconnect Bandwidth is the
unidirectional bandwidth between hosts, i.e., NVLink / InfiniBand bandwidth between GPUs
and ICI bandwidth between TPUs. The minimal block size required c = FLOPS/Bandwidth,
and minimal sequence length s = 6c.

Spec Per Host FLOPS HBM Interconnect
Bandwidth

Minimal
Blocksize

Minimal
Sequence Len

(TF) (GB) (GB/s) (×1e3) (×1e3)
A100 NVLink 312 80 300 1.0 6.2
A100 InfiniBand 312 80 12.5 24.5 149.5
TPU v3 123 16 112 1.1 6.6
TPU v4 275 32 268 1.0 6.2
TPU v5e 196 16 186 1.1 6.3

Our analysis shows that the model needs to have a sequence length of s = 6c, which is six
times the minimal block size. Requirements for popular computing servers are shown in
Table 3.2. The required minimal sequence length (rightmost column) for each host varies
between 6K and 10K, and the minimal block size (second-to-rightmost column) for each host
is around 1K for TPUs and GPUs with high bandwidth interconnect. For GPUs connected
via InfiniBand, which offers lower bandwidth, the requirements are more strict. These
requirements are easy to meet using blockwise transformers [183] and standard parallelism
such as data and tensor parallelism, which we will show in experiment Section 3.5.

Algorithm and Implementation. Algorithm 2 provides the pseudocode of the algorithm.
RingAttention is compatible with existing code for memory efficient transformers: RingAtten-
tion just needs to call whatever available memory efficient computation locally on each host,
and overlap the communication of key-value blocks between hosts with blockwise computation.
We use collective operation jax.lax.ppermute to send and receive key value blocks between
nearby hosts. A Jax implementation is provided in Appendix 3.8.

3.4 Setting
We evaluate the impact of using RingAttention in improving Transformer models by bench-
marking maximum sequence length and model flops utilization.

Model Configuration. Our study is built upon the LLaMA architecture, we consider 3B,
7B, 13B, and 30B model sizes in our experiments.

Baselines. We evaluate our method by comparing it with vanilla transformers [304] which
computes self-attention by materializing the attention matrix and computes the feedfor-
ward network normally, transformers with memory efficient attention [235] and its efficient

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 30

Algorithm 2: Large Context Transformers using RingAttention with Blockwise Trans-
formers.

Required: Input sequence x. Number of hosts Nh.
Initialize
Split input sequence into Nh blocks that each host has one input block.
Compute query, key, and value for its input block on each host.
for Each transformer layer do

for count = 1 to Nh − 1 do
for For each host concurrently. do

Compute memory efficient attention incrementally using local query, key, value
blocks.
Send key and value blocks to next host and receive key and value blocks from
previous host.

end for
end for
for For each host concurrently. do

Compute memory efficient feedforward using local attention output.
end for

end for

CUDA implementation [71], and transformers with both memory efficient attention and
feedforward [183].

Training Configuration. For all methods, we apply full gradient checkpointing [54] to both
attention and feedforward, following prior works [235, 183]. The experiments are on both
GPUs and TPUs. For GPUs, we consider both single DGX A100 server with 8 GPUs and
distributed 32 A100 GPUs. We also experiment with TPUs, from older generations TPUv3
to newer generations of TPUv4 and TPUv5e. We note that all of our results are obtained
using full precision instead of mixed precision.

3.5 Results
In our experiments, our primary objective is to comprehensively evaluate the performance of
RingAttention across multiple key metrics, including maximum supported sequence length
within accelerator memory, model flops utilization, and throughput. We compare RingAtten-
tion’s performance with several baseline models , including the vanilla transformers [304],
transformers with memory efficient attention [235], and transformers with both memory
efficient attention and feedforward [183], across different model sizes and accelerator configu-
rations.

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 31

3.5.1 Evaluating Max Context Size

We evaluate maximum supported context length using fully sharded tensor parallelsim
(FSDP) [83] which is widely used in prior end-to-end training [296, 95]. We note that no
tensor parallelism is considered in our evaluations since our approach is independent of tensor
parallelism. Practitioners can combine our method with tensor parallelism, which we will
show in Section 3.5.2. Using FSDP allows us to set the same batch size in tokens for baselines
and our approach, ensuring a fair comparison. Concretely, on n devices, FSDP is used to
shard the model for baselines, which gives a sequence length of l. The total batch size in
tokens is nl. We utilize FSDP along with RingAttention to extend the sequence length to
nl
m

and m sequences. This means that the total batch size in tokens remains the same, but
RingAttention enables a significantly larger context size. Table 3.3 summarizes the results of
our experiments.

Our RingAttention model consistently surpasses baselines, delivering superior scalability
across diverse hardware setups. For example, with 32 A100 GPUs, we achieve over 1 million
tokens in context size for 7B model, a 32 times improvement over previous best. Furthermore,
when utilizing larger accelerators like TPUv4-512, RingAttention enables a 256 times increase
in context size, allows training sequences of over 30 million tokens. Furthermore, our
RingAttention model scales linearly with the number of devices, as demonstrated by the 8x
improvement over previous best on 8 A100 and the 256x improvement on TPUv3-512. If
a model can be trained with context size s on n GPUs using the blockwise attention and
feedforward, with our RingAttention approach, it becomes possible to train a model with a
context size of ns.

3.5.2 Evaluating Model Flops Utilization

We evaluate the model flops utilization (MFU) of RingAttention in standard training settings
using fully sharded data parallelism(FSDP) [83] and tensor parallelism following LLaMA and
OpenLLaMA [296, 95] with Jax SPMD. The batch size in tokens are 2M on 8/32x A100 and
4M on TPUv4-256. Our goal is investigating the impact of model size and context length on
MFU, a critical performance metrics while highlighting the benefits of our approach. Table
3.4 presents the results of our experiments on MFU for different model sizes and context
lengths. We present the achieved MFU using state-of-the-art memory efficient transformers
BPT [183], compare it to our anticipated MFU based on these results, and demonstrate the
actual MFU obtained with our approach (RingAttention). For fair comparison, both BPT
and our approach are based on the same BPT implementation on both GPUs and TPUs.

RingAttention trains much longer context sizes for self-attention, resulting in higher self-
attention FLOPs compared to baseline models. Since self-attention has a lower MFU than
feedforward, RingAttention is expected to have a lower MFU than the baseline models. Our
method offers a clear advantage in terms of maintaining MFU while enabling training with
significantly longer context lengths. As shown in Table 3.4, when comparing our approach

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 32

Table 3.3 The maximum context length supported in end-to-end training using fully sharded
data parallelism and various transformers architectures. We show different model sizes and
accelerators. Baselines are vanilla transformer [304], transformer with memory efficient
attention [235], and transformer with memory efficient attention and feedforward [183]. The
context size is reported in tokens (1e3). Our approach Blockwise RingAttention substantially
outperforms baselines and enables training sequences that are up to device count times longer
than prior state-of-the-arts.

Max context size supported (×1e3)

Vanilla Memory
Efficient Attn

Memory Efficient
Attn and FFN

RingAttention
(Ours)

Ours
vs SOTA

8x A100
NVLink
3B 4 32 64 512 8x
7B 2 16 32 256 8x
13B 2 4 16 128 8x

32x A100
InfiniBand
7B 4 64 128 4096 32x
13B 4 32 64 2048 32x

TPUv3-512
7B 1 4 8 2048 256x
13B 1 2 8 1024 128x

TPUv4-1024
3B 8 16 32 16384 512x
7B 4 8 16 8192 512x
13B 4 8 16 4096 256x
30B 2 4 8 2048 256x

TPUv5e-256
3B 4 8 32 4096 128x
7B 2 8 16 2048 128x

to prior state-of-the-arts, it is evident that we can train very large context models without
compromising MFU or throughput.

3.5.3 Impact on In Context RL Performance

We present results of applying RingAttention for learning trial-and-error RL experience using
Transformers. We report our results in Table 3.5, where we evaluate our proposed model on

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 33

Table 3.4 Model flops utilization (MFU) with different training configurations: model sizes,
compute, and context lengths. RingAttention enables training large models (7B-65B) on
large input context sizes (over 4M) with negligible overheads.

Model size 7B 13B 13B 30B 65B

Compute 8x A100 8x A100 32x A100 TPUv4-1024 TPUv4-1024

Memory efficient
attention & FFN

Context size
(×1e3) 32 16 64 16 8

Blockwise
RingAttention

Context size
(×1e3) 256 128 2048 2048 1024

the ExoRL benchmark across six different tasks. On ExoRL, we report the cumulative return,
as per ExoRL [325]. We compare BC, DT [49], AT [182], and AT with memory efficient
attention [235] (AT+ME), AT with blockwise parallel transformers [183] (AT+BPT), and
AT with our RingAttention (AT+RingAttention). The numbers of BC, DT, AT are from
the ExoRL and AT paper. AT + RingAttention numbers are run by ourselves. Since the
ExoRL data is highly diverse, having been collected using unsupervised RL [154], it has
been found that TD learning performs best, while behavior cloning struggles [325]. AT [182]
shows that conditioning Transformer on multiple trajectories with relabeled target return
can achieve competitive results with TD learning. For more details, please refer to their
papers. We are interested in applying RingAttention to improve the performance of AT by
conditioning on a larger number of trajectories rather than 32 trajectories in prior works.
It is worth noting that each trajectory has 1000× 4 length where 1000 is sequence length
while 4 is return-state-action-reward, making training 128 trajectories with modest 350M size
model infeasible for prior state-of-the-art blockwise parallel transformers. Results in Table 3.5
show that, by scaling up the sequence length (number of trajectories), AT + RingAttention
consistently outperforms oringal AT with BPT across all six tasks, achieving a total average

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 34

return of 113.66 compared to the AT with BPT model’s total average return of 111.13.
The results show that the advantage of RingAttention for training and inference with long
sequences.

Figure 3.3 Comparison of different models on the long-range line retrieval task.

3.5.4 Impact on LLM Performance

We evaluate RingAttention by applying our method to finetune LLaMA model to longer
context. In this experiment, while our approach enables training with millions of context
tokens, we conducted finetuning on the LLaMA-13B model, limiting the context length to
512K tokens due to constraints on our cloud compute budget. This finetuning was carried
out on 32 A100 GPUs, using the ShareGPT dataset, following methodologies as outlined in
prior works [61, 97]. We then evaluated our finetuned model on the line retrieval test [167].
In this test, the model needs to precisely retrieve a number from a long document, the task
can effectively capture the abilities of text generation, retrieval, and information association
at long context, reflected by the retrieving accuracy. Figure 3.3 presents the accuracy results

Table 3.5 Application of RingAttention on improving Transformer in RL. BC and DT use
vanilla attention. AT + ME denotes using memory efficient attention, AT + BPT denotes
using blockwise parallel transformer. AT + RA denotes using RingAttention.

ExoRL BC-10% DT AT + ME AT + BPT AT + BPT AT + RA

Task N Trajs = 32 N Trajs = 32 N Trajs = 128 N Trajs = 128

Walker Stand 52.91 34.54 oom 95.45 oom 98.23
Walker Run 34.81 49.82 oom 105.88 oom 110.45
Walker Walk 13.53 34.94 oom 78.56 oom 78.95
Cheetah Run 34.66 67.53 oom 178.75 oom 181.34
Jaco Reach 23.95 18.64 oom 87.56 oom 89.51
Cartpole Swingup 56.82 67.56 oom 120.56 oom 123.45

Total Average 36.11 45.51 oom 111.13 oom 113.66

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 35

for different models across varying context lengths (measured in tokens). Notably, our model,
RingAttention-13B-512K, stands out as it maintains high accuracy levels even with long
contexts. GPT3.5-turbo-16K, Vicuna-16B-16K, and Claude-2-100K demonstrate competitive
accuracy within short context lengths. However, they cannot handle extended context lengths.

3.6 Related Work
Transformers have garnered significant attention in the field of AI and have become the
backbone for numerous state-of-the-art models. Several works have explored memory-
efficient techniques to address the memory limitations of Transformers and enable their
application to a wider range of problems. Computing exact self-attention in a blockwise
manner using the tiling technique [201] has led to the development of memory efficient
attention mechanisms [235] and its efficient CUDA implementation [71], and blockwise parallel
transformer [183] that proposes computing both feedforward and self-attention block-by-block,
resulting in a significant reduction in memory requirements. In line with these advancements,
our work falls into the category of memory efficient computation for Transformers. Other
works have investigated the approximation of attention mechanisms, yet these efforts have
often yielded sub-optimal results or encountered challenges during scaling up. For an in-depth
review of these techniques, we recommend referring to the surveys [210, 290]. Another avenue
of research explores various parallelism methods, including data parallelism [73], tensor
parallelism [269], pipeline parallelism [211, 128, 212], sequence parallelism [172, 147, 130],
and FSDP [83, 240]. The activations of self-attention take a substantial amount of memory
for large context models. Tensor parallelism can only reduce parts of activations memory
and sequence parallelism introduces a significant communication overhead that cannot be
fully overlapped with computation. Prior work has studied sharding along sequence and
attention heads, and gathering sequences via an optimized all-to-all topology, achieving
reduced communication [130]. However, this method is restricted by the number of attention
heads and requires gathering the full sequence on each device. In comparison, our approach
fully overlaps communication with blockwise computation, enhancing its scalability. Prior
work study sequence parallelism for computing self-attention using a ring topology [172], but
is not optimized for blockwise parallel transformers and is incompatible with memory-efficient
attention, which are crucial to large context training. Overlapping communication with
computation remains challenging, and the communication overheads make it infeasible for
training and inference in large-context scenarios. Our work leverages on blockwise parallel
transformers to distribute attention and feedforward across devices and concurrently overlaps
the communication of key-value blocks in a circular of hosts with the computation of query-key-
value blocks and feedforward, reducing memory cost substantially and allowing device count
times larger context size with zero overheads. Overlapping communication with computation
has been studied in high performance computing literature [69, 310, 70, inter alia]. While ring
communication has found applications in other parallel computing scenarios [33, 129, 98, 261],
our work stands out as the first work to show that it can be applied to self-attention as used

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 36

in Transformers and to make it fit efficiently into Transformer training and inference without
adding significant overhead by overlapping blockwise computation and communication.

3.7 Conclusion
In conclusion, we propose a memory efficient approach to reduce the memory requirements of
Transformers, the backbone of state-of-the-art AI models. Our approach allows the context
length to scale linearly with the number of devices while maintaining performance, eliminating
the memory bottleneck imposed by individual devices. Through extensive experiments on
language modeling and reinforcement learning, we demonstrate its effectiveness, enabling
training sequences that are up to device count times longer than those of prior memory-efficient
Transformers, exceeding a context length of 100 million without making approximations to
attention. In terms of future prospects, the possibility of near-infinite context introduces a
vast array of exciting opportunities, such as large video-audio-language models, learning from
extended feedback and trial-and-errors, understanding and generating codebase, adapting AI
models to understand scientific data such as gene sequences, and developing strong reasoning
from link gathering data.

Acknowledgments
This project is supported in part by Office of Naval Research grant N00014-21-1-2769. We
express our gratitude to the BAIR and RLL communities for their insightful discussions and
feedback. We are also thankful to David Patterson for addressing our questions about TPUs
and giving insightful feedback on early versions of this work. Our appreciation goes out to
Yash Katariya and Sharad Vikram from the Jax developers’ team for assisting with our Jax
related questions. We also thank Tri Dao for the valuable feedback on this work. We thank
Google TPU Research Cloud for granting us access to TPUs.

3.8 Code
The implementation of RingAttention in Jax is provided in Figure 3.4. We use defvjp
function to define both the forward and backward passes, and use collective operation
jax.lax.ppermute to facilitate the exchange of key-value blocks among a ring of hosts. The
provided code snippet highlights essential components of RingAttention. We provide the
complete code on github.

For large scale end-to-end training on TPU or on GPU cluster with high bandwidth inter
connection, we recommend using FSDP to shard large models and using RingAttention to
achieve large context. If total batch size is too large, add tensor parallelism to reduce the
global batch size. The degree of parallelism can be adjusted using the mesh_dim parameter

https://github.com/lhao499/ringattention

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 37

within the codebase. To illustrate, consider a setup with 512 devices, such as 512x A100. If
the model size is 30B, you can shard it across 8 devices and allocate the remaining 32 devices
for RingAttention. This setup allows the context size to be expanded 32 times more than if
you didn’t use RingAttention. Conversely, for models sized 7B or 3B, there is no need for
FSDP. This means you can utilize all 512 devices exclusively to expand the context using
RingAttention by 512 times. Building upon the result that our approach allows for a 256K
context size when using 8x A100 GPUs, it suggests that by employing 512 A100 GPUs, the
potential context size can be expanded to 16 million.

3.9 Experiment Details

3.9.1 Evaluation of context length

In the experimental results presented in Section 3.5.1, we used fully sharded tensor parallelism
(FSDP) to partition the model across GPUs or TPU devices. Our evaluation focused on
determining the maximum achievable sequence length in commonly used FSDP training
scenarios. For TPUs, we utilized its default training configuration, which involved performing
matmul operations in bfloat16 format with weight accumulation in float32. On the other
hand, for GPUs, we adopted the default setup, where all operations were performed in
float32.

3.9.2 Evaluation of MFU

In the evaluation presented in Section 3.5.2. The batch size in tokens is 2 million per batch
on GPU and 4 million per batch on TPU. The training was conducted using FSDP [83] with
Jax SPMD. For gradient checkpointing [54], we used nothing_saveable as checkpointing
policies for attention and feedforward network (FFN). For more details, please refer to Jax
documentation.

3.9.3 Evaluation on line retrieval

In the evaluation presented in Section 3.5.4, we finetuned the LLaMA-13B model [296],
limiting context length to 512K tokens due to constraints on our cloud compute budget, the
training was conducted on 32x A100 80GB Cloud GPUs. We use user-shared conversations
gathered from ShareGPT.com with its public APIs for finetuning, following methodologies as
outlined in prior works [61, 97]. ShareGPT is a website where users can share their ChatGPT
conversations. To ensure data quality, we convert the HTML back to markdown and filter
out some inappropriate or low-quality samples, which results in 125K conversations after
data cleaning.

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 38

1 def _ring_attention_fwd(q, k, v, attn_bias, axis_name, float32_logits, blockwise_kwargs):
2 if float32_logits:
3 q, k = q.astype(jnp.float32), k.astype(jnp.float32)
4 batch, q_len, num_heads, dim_per_head = q.shape
5 batch, kv_len, num_heads, dim_per_head = k.shape
6 numerator = jnp.zeros((batch, q_len, num_heads, dim_per_head)).astype(q.dtype)
7 denominator = jnp.zeros((batch, num_heads, q_len)).astype(q.dtype)
8 axis_size = lax.psum(1, axis_name)
9 block_size = q_len # assumes this function is pre-sharded inside shard_map

10 query_chunk_size = blockwise_kwargs["query_chunk_size"]
11 key_chunk_size = blockwise_kwargs["key_chunk_size"]
12 def scan_kv_block(carry, idx):
13 prev_max_score, numerator, denominator, k, v = carry
14 attn_bias_slice = lax.dynamic_slice_in_dim(attn_bias,
15 (lax.axis_index(axis_name) - idx) % axis_size * kv_len, kv_len, axis=-1)
16 q_block_idx = lax.axis_index(axis_name)
17 k_block_idx = (lax.axis_index(axis_name) - idx) % axis_size
18 q_chunk_idx_start = q_block_idx * (block_size // query_chunk_size)
19 k_chunk_idx_start = k_block_idx * (block_size // key_chunk_size)
20 numerator, denominator, max_score = _blockwise_attention_fwd(q, k, v,
21 (numerator, denominator, prev_max_score), q_chunk_idx_start, k_chunk_idx_start,
22 bias=attn_bias_slice, **blockwise_kwargs)
23 k, v = map(lambda x: lax.ppermute(x, axis_name, perm=[(i, (i + 1) % axis_size)
24 for i in range(axis_size)]), (k, v))
25 return (max_score, numerator, denominator, k, v), None
26 prev_max_score = jnp.full((batch, num_heads, q_len), -jnp.inf).astype(q.dtype)
27 (max_score, numerator, denominator, _, _), _ = lax.scan(scan_kv_block,
28 init=(prev_max_score, numerator, denominator, k, v), xs=jnp.arange(0, axis_size))
29 output = numerator / rearrange(denominator, 'b h q -> b q h')[..., None]
30 return output.astype(v.dtype), (output, q, k, v, attn_bias, denominator, max_score)
31
32 def _ring_attention_bwd(axis_name, float32_logits, blockwise_kwargs, res, g):
33 output, q, k, v, attn_bias, denominator, max_score = res
34 batch, kv_len, num_heads, dim_per_head = k.shape
35 axis_size = lax.psum(1, axis_name)
36 dq = jnp.zeros_like(q, dtype=jnp.float32)
37 dk = jnp.zeros_like(k, dtype=jnp.float32)
38 dv = jnp.zeros_like(v, dtype=jnp.float32)
39 query_chunk_size = blockwise_kwargs["query_chunk_size"]
40 key_chunk_size = blockwise_kwargs["key_chunk_size"]
41 block_size = q.shape[1] # assumes this function is pre-sharded inside shard_map
42 def scan_kv_block(carry, idx):
43 dq, dk, dv, k, v = carry
44 attn_bias_slice = lax.dynamic_slice_in_dim(attn_bias,
45 (lax.axis_index(axis_name) - idx) % axis_size * kv_len, kv_len, axis=-1)
46 q_block_idx = lax.axis_index(axis_name)
47 k_block_idx = (lax.axis_index(axis_name) - idx) % axis_size
48 q_chunk_idx_start = q_block_idx * (block_size // query_chunk_size)
49 k_chunk_idx_start = k_block_idx * (block_size // key_chunk_size)
50 dq, dk, dv = _blockwise_attention_bwd(q, k, v, g, (dq, dk, dv, output, denominator, max_score),
51 q_chunk_idx_start, k_chunk_idx_start, bias=attn_bias_slice, **blockwise_kwargs)
52 k, v, dk, dv = map(lambda x: lax.ppermute(x, axis_name, perm=[(i,
53 (i + 1) % axis_size) for i in range(axis_size)]), (k, v, dk, dv))
54 return (dq, dk, dv, k, v), None
55 (dq, dk, dv, k, v), _ = lax.scan(scan_kv_block, init=(dq, dk, dv, k, v), xs=jnp.arange(0, axis_size))
56 dq, dk, dv = dq.astype(q.dtype), dk.astype(k.dtype), dv.astype(v.dtype)
57 return dq, dk, dv, None
58
59 @partial(jax.custom_vjp, nondiff_argnums=[4, 5, 6])
60 def ring_attention(q, k, v, attn_bias, axis_name, float32_logits, blockwise_kwargs):
61 y, _ = _ring_attention_fwd(q, k, v, attn_bias, axis_name, float32_logits, blockwise_kwargs)
62 return y
63
64 ring_attention.defvjp(_ring_attention_fwd, _ring_attention_bwd)

Figure 3.4 Key parts of the implementation in Jax. We use collective operation
lax.ppermute to send and receive key value blocks between previous and next hosts. The
full code is implemented in Jax and Pallas for best performance.

https://github.com/lhao499/ringattention
https://github.com/lhao499/ringattention

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 39

3.10 Inference requirement
We provide the minimal sequence length required to overlap communication with computation
during training in Table 3.2. Our Blockwise RingAttention enables effortless training of
context size that scales linearly with the number of devices. While we focus on introducing
training as it is more memory demanding than autoregressive inference where the number
of query token is one, RingAttention is applicable to inference too. For example, serving
a LLaMa 7B on 32x TPUv5e, the conventional approach is to distribute the model along
the attention heads dimension, with each device computing one attention head. Assuming a
batch size of 1, this can serve up to a 256K context length due to key-value cache activation
size. RingAttention can allow 32 times larger context by circulating the key-value cache
between a ring of devices. To overlap the communication with computation, it needs d2/F
>= 2*d2/B, where B/F >=2. With a bandwidth of 186 GB/s and flops of 196 TFLOPs, and
assuming an unreasonably high MFU of 40% for this large context, then B/F = 2.4, meaning
that RingAttention allows 32 times larger context for inference without adding overheads.

3.11 Training FLOPs Scaling of Context Size
Given that our proposed approach unlocks the possibility of training with a context size
exceeding 100 million tokens and allows for linear scaling of the context size based on the
number of devices, it is essential to understand how the training FLOPs per dataset scale
with the context size. While a larger context size results in a higher number of FLOPs, the
increased ratio does not scale quadratically because the number of tokens remains fixed. We
present these results in Figure 3.5, which showcases various model sizes and context lengths,
representing different computational budgets. The figure shows the ratio of FLOPs for larger
context lengths compared to the same model with a shorter 4K context size. We calculated
the per sequence FLOPs using (24bsh2 + 4bs2h)n where h is model hidden dimension, b is
batch size, s is total sequence length, and n is number of layers. The per dataset FLOPs
ratio is then given by ((24bs2h

2 + 4bs2
2h)/(24bs1h

2 + 4bs1
2h))/(s2/s1) = (6h+ s2)/(6h+ s1),

where s2 and s1 are new and old context lengths. Model sizes and their hidden dimensions are
as follows: LLaMA-7B (4096), LLaMA-13B (5140), LLaMA-33B (7168), LLaMA-65B (8192),
GPT3-175B (12288), and 1TB (36864). These model configurations are from LLaMA [296]
and GPT-3 [39] papers, except the 1TB model size and dimension were defined by us.

As depicted in Figure 3.5, scaling up small models to a 1M context size results in approximately
20-40 times more FLOPs, and even more for 10M and 100M token context sizes. However, as
the model sizes increase, the cost ratio decreases. For instance, scaling up the 170B model
from 4K to 10M incurs 162.6x higher per dataset FLOPs, despite the context size being 3072
times longer.

CHAPTER 3. RINGATTENTION SCALES BLOCKWISETRANSFORMER TO
INFINITE CONTEXT 40

Figure 3.5 The per dataset trainig FLOPs cost ratio relative to a 4k context size, considering
different model dimensions. On the x-axis, you’ll find the context length, where, for example,
32x(128k) denotes a context length of 128k, 32x the size of the same model’s 4k context
length.

41

Chapter 4

Large World Model on Million-Length
Video and Language

4.1 Introduction

00:00:00 01:01:51

User: What vehicle was the person dressed in the t-rex costume riding?

GPT-4V: I’m sorry, I can’t provide assistance with that request.

Gemini Pro Vision: A motorized scooter.

Video-LLaVA: The person dressed in a t-rex costume was riding a truck.

LWM (Ours): The person dressed in a t-rex costume was riding a motorcycle.

User: What color jacket was the girl on the trampoline wearing?

GPT-4V: The sequence provided does not include a definitive image of a girl on a trampoline; therefore, I cannot
describe the color of the jacket.

Gemini Pro Vision: The girl on the trampoline was wearing a green jacket.

Video-LLaVA: The girl on the trampoline was wearing a black jacket.

LWM (Ours): The girl on the trampoline was wearing a blue jacket.

…
1 hour YouTube compilation with > 500 clips

Figure 4.1 LWM can answer questions over a 1 hour YouTube video. Qualitative com-
parison of LWM-Chat-1M against Gemini Pro Vision, GPT-4V, and open source models.
Our model is able to answer QA questions that require understanding of over an hour long
YouTube compilation of over 500 video clips.

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 42

Figure 4.2 LWM can retrieval facts across 1M context with high accuracy. Needle retrieval
comparisons against Gemini Pro and GPT-4 for each respective max context length – 32K
and 128K. Our model performs competitively while being able to extend to 8x longer context
length. Note that in order to show fine-grained results, the x-axis is log-scale from 0-128K,
and linear-scale from 128K-1M.

Current approaches on modeling the world are mostly restricted to short sequences of language
sequences or short sequences of images and clips [39, 296, 297, 217, 293]. resulting in models
which lack understanding about parts of the world that are hard to represent in texts or short
clips, and are unable to process complex long-form language and visual tasks. Temporal
structure in video sequences provides helpful information that is missing from language or far
less obvious in static images and short clips. Long language sequences encode information
that short sequences cannot, crucial for various applications such as long document retrieval
or coding. Long videos provide a rich context that short clips cannot grasp, showing how
scenes connect, the development of events, and the cause and effect of actions within the
temporal dimension of the video. This exposure to diverse long language and video scenarios
also broadens the AI systems to generalize across various real-world situations. By jointly
modeling both long videos and books, the model can develop an understanding of both the
multimodal world and long sequences of texts and videos, leading to more advanced AI
systems with a multimodal understanding, capable of assisting humans in a broader range of
tasks.

To learn from video and language sequences, we need to train a model that is capable of pro-
cessing more than millions of tokens per sequence and train it on a very large dataset. However,
modeling millions of tokens is extremely difficult due to high memory cost, computational
complexity, and lack of suitable datasets. Luckily, we have Blockwise RingAttention [189, 183],
a technique for scaling up context size arbitrarily without approximations or overheads, al-
lowing for scalable training on long sequences. We curated a large dataset of videos and
languages from public book and video datasets, consisting of videos of diverse activities and

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 43

long-form books. Considering the high compute cost, we grow context size from a smaller 4K
context to a larger 1M context size gradually to reduce this cost, and this approach performs
well in extending context effectively. Furthermore, we identify challenges associated with
training on video and language: we discovered that training on a mixture of video, image, and
text is crucial for optimal performance, due to images represent higher visual quality, videos
offer sequential information, and text retains language understanding. To achieve this, we
implemented an efficient masked sequence packing to effectively train with different sequence
lengths, rather than standard sequence packing mechanism. Moreover, determining the right
balance between image, video, and text training is crucial for cross modality understanding,
and we suggest a ratio that proved effective. Furthermore, to address the lack of long-form
chat datasets, we developed a model-generated question-answering (QA) approach by using a
short-context model to generate a QA dataset from books. We found this to be crucial for
chat abilities over long sequences.

The specific contributions of this paper are as follows: (a) we train one of the largest context
size transformers to date on video and text sequences and achieved by far the best results
ever reported in terms of long video understanding (see e.g., Figure 4.1) and long context
fact retrieval (see e.g., Figure 4.2). (b) We discover a branch of challenges associated with
training on video and text sequences, and propose solutions for them: loss weighting to
balance language and vision, masked sequence packing to effectively train with different
sequence lengths, and model-generated QA dataset for long sequence chat. (c) A highly-
optimized, open-source implementation with RingAttention with Blockwise Transformer,
masked sequence packing and other key features for millions-length multimodal training.
(d) Fully open-sourced a family of 7B parameter models capable of processing long text
documents (LWM-Text, LWM-Text-Chat) and videos (LWM, LWM-Chat) of 1M
tokens. Our work paves the way for training on massive datasets of long video and language,
and is useful for future development of AI systems with an understanding of both human
knowledge and the multimodal world, and broader capabilities.

4.2 Overview
We train a large autoregressive transformer model with a very large context window of up to
one million tokens, building upon Llama2 7B [297]. To achieve this goal, we leverage several
strategies: extending the context to 1M using books (Section 4.3), followed by joint training
on long multimodal sequences, including text-image, text-video data, and books (Section 4.4).

Our training stages and datasets are shown in Figure 4.3 and the model architecture is shown
in Figure 4.4.

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 44

4.3 Stage I: Learning Long-Context Language Models
This stage aims at first developing LWM-Text and LWM-Text-Chat, a set of long-context
language models learned by training on progressively increasing sequence length data with
RingAttention and Blockwise Transformer, and modifying positional encoding parameters to
account for longer sequence lengths (see Section 4.3.1). The training steps for growing context
size are shown in Section 4.3.2. In Section 4.3.3, we show how to construct model-generated
QA data for enabling long sequence conversations.

4.3.1 Extending Context

Learning long-range dependencies over sequences of millions of tokens requires (1) scalable
training on such long documents, as well as a need to (2) stably extend the context of our
base language.

Scalable Training on Long Documents. Training on long documents becomes pro-
hibitively expensive due to memory constraints imposed by the quadratic complexity of
computing the attention weights. In order to address these computational constraints, we use
the Blockwise RingAttention [189, 183] implementation that leverages block-wise transformer
with sequence parallelism to theoretically extend to an infinite context, bounded only by
the number of devices available. We further fuse Blockwise RingAttention with FlashAtten-
tion [71, 235] using Pallas [35] to optimize performance compared with using XLA compiler.
In general, given a large enough tokens per device, the communication cost during Blockwise
Transformer and RingAttention fully overlap with computation, and does not add any extra
overhead.

Progressive Training on Increasing Context Length. Although our implementation
allows us to train on long documents of millions of tokens, it still remains costly since the
quadratic computational complexity of attention remains, where gradient step time scales
roughly linearly with context size (given a fixed number of tokens per batch). For example,
when training a 7B model on 1M tokens sequence length, each gradient step would roughly
take 7 minutes, allowing for only a total of 200 steps after 1 full day of training.

Therefore, we adopt a training approach inspired from [135], where our model is trained on
progressively longer sequence lengths, starting from 32K tokens and ending at 1M tokens
in increasing powers of two. Intuitively, this allows the model to save compute by first
learning shorter-range dependencies before moving onto longer sequences. By doing this, we
are able to train on orders of magnitude more tokens compared to directly training on the
maximum target sequence length. The progressive training of growing context sizes is shown
in Figure 4.3.

Positional Extrapolation for Long Contexts. For extending positional embeddings on
longer contexts, we adopt a simple, scaled up version of the approach explored in [248], where
the θ for RoPE [282] is scaled up with context length. We generally found this approach to

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 45

be a stable method to extend positional embeddings with context lengths due to its relatively
simple nature of only needing to tune a single hyperparameter. We scale up the θ for RoPE
along with context window sizes – the values are shown in Table 4.1.

4.3.2 Training Steps

We initialize from LLaMA-2 7B [297] and progressively increase the effective context length of
the model in 5 stages - 32K, 128K, 256K, 512K, and 1M. For each stage, we train on different
filtered versions of the Books3 dataset from The Pile [91]. Table 4.1 details each information
about each training stage, such as number of tokens, total time, and the Books3 dataset
filtering constraints. Each successive run is initialized from the run of the prior sequence
length.

4.3.3 Chat Fine-tuning for Long-Context Learning

Constructing QA data for Long Context Reasoning. We construct a simple QA
dataset for learning long-context chat abilities. We chunk documents from the Books3 dataset
into fixed chunks of 1000 tokens, feed each chunk to our short context language model, and
prompt it to generate one question-answer pair about the paragraph. Then, given a context
length such as 32K, we construct a single 32K token example by concatenating adjacent
chunks together, as well as appending relevant QA pairs towards the end of the sequence in
chat form.

Training Details. For chat fine-tuning, we train each model on a mix of UltraChat [75]
and our custom QA dataset, with roughly a 7:3 ratio. We found it crucial to pre-pack the
UltraChat data to the training sequence length, and keep them separate from examples
with our QA data, as UltraChat data generally has a much higher proportion of loss tokens
(densely packed, short chat sequences), whereas our QA data has a much lower percentage of
loss tokens per sequence (< 1%) since there is no loss on the long documents that are in the
given context. Table 4.2 shows further training details for each run. Note that progressive
training is not performed very each of the chat models, and instead are initialized from their
respective pretrained models at the same context length.

4.3.4 Language Evaluation Results

4.3.4.1 Single Needle Retrieval

We evaluate on the popular Needle In A Haystack task [99] - more specifically an easier to
evaluate version [4] that finds and retrieves random numbers assigned to randomized cities
from the context. Figure 4.5 shows nearly perfect retrieval accuracy over the entire context
of our 1M context model. In addition, Figure 4.2 shows that we can scale to far larger
contexts compared to the current best available LLMs. Appendix 4.8 shows more single
needle retrieval results for our other shorter context length models.

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 46

Table 4.1 LWM-Text Training Stages

32K 128K 256K 512K 1M

Parameters 7B 7B 7B 7B 7B
Sequence Length 215 217 218 219 220

RoPE θ 1M 10M 10M 25M 50M
Tokens per Batch 4M 4M 4M 4M 4M
Total Tokens 4.8B 12B 12B 3B 1.8B
Wall Clock 8h 45h 83h 47h 58h
Compute (TPU) v4-512 v4-512 v4-512 v4-512 v4-512
Doc Length 10K-100K 100K-200K 200K-500K 500K-1M 1M+

Table 4.2 LWM-Text-Chat Training Details

128K 256K 512K 1M

Parameters 7B 7B 7B 7B
Sequence Length 217 218 219 220

RoPE θ 10M 10M 25M 50M
Tokens per Batch 4M 4M 4M 4M
Total Tokens 1.2B 1.2B 1.2B 1.2B
Wall Clock 6h 10h 20h 40h
Compute (TPU) v4-512 v4-512 v4-512 v4-512

4.3.4.2 Multi-Needle Retrieval

We additionally examine the performance of our model on more complex variant of the needle
retrieval task by mixing in multiple needles, as well as trying to retrieve a specific subset of
them. Figure 4.6 shows multi-needle retrieval results under different settings. Our model
generalizes well when retrieving a single needle from multiple needles in context, with slight
degradation when asked to retrieve more than one needle. Table 4.3 shows multi-needle
comparisons between our model, Gemini Pro, and GPT-4, where our model is able to perform
competitively or better than GPT-4 at retrieving one needle, or slightly lower performance
when retrieving more than one needle. Furthermore, our model is also able to perform well
and extend to longer context lengths of up to 1M tokens. However, we note that we see
degradation in accuracy while increasing the difficulty of the needle retrieval task, suggesting
that there is still more room to improve on the 1M context utilization of our model. We
believe that our released model will provide a foundation for future work on developing longer
context models, as well as encourage more challenging benchmarks that contain difficult
long-range tasks that require higher levels of synthesis, rather than pure fact retrieval.

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 47

Table 4.3 Multi-Needle Retrieval Accuracy Baseline Comparison

Context Length Model N = 2, R = 2 N = 4, R = 1 N = 4, R = 2

32K
Gemini Pro 0.34 0.44 0.6
GPT-4 0.97 0.95 0.9
LWM-Text-1M Ours) 0.84 0.97 0.84

128K
Gemini Pro - - -
GPT-4 0.92 0.8 0.82
LWM-Text-1M (Ours) 0.83 0.98 0.83

1M
Gemini Pro - - -
GPT-4 - - -
LWM-Text-1M (Ours) 0.67 0.84 0.69

4.3.4.3 Short Context Language Evaluation

Table 4.4 presents a comparative analysis between the Llama2-7B model with a 4K context
and its context-expanded counterparts, ranging from 32K to 1M. The evaluation spans
various language tasks, demonstrating that expanding the context size does not compromise
performance on short-context tasks. In fact, the results suggest that models with larger
context capacities perform equally well, if not better, across these tasks. This evidence
indicates the absence of negative effects from context expansion, highlighting the models’
capability to adapt to different task requirements without losing efficiency in shorter contexts.

Table 4.4 Evaluation of language tasks: Comparison between Llama2-7B (4K context)
and context-expanded versions of LWM-Text: 32K to 1M. Results indicate that expanding
context does not negatively impact performance on short-context tasks.

LWM-Text
Task / Metric Llama-2 7B 32k 128k 256k 512k 1M

arc_challenge/acc 0.4 0.43 0.45 0.44 0.44 0.43
arc_challenge/acc_norm 0.43 0.47 0.47 0.46 0.46 0.46
hellaswag/acc 0.57 0.57 0.57 0.57 0.56 0.57
hellaswag/acc_norm 0.77 0.76 0.76 0.76 0.75 0.75
mmlu 0.39 0.4 0.41 0.41 0.36 0.35
openbookqa/acc 0.32 0.33 0.31 0.32 0.33 0.3
openbookqa/acc_norm 0.44 0.44 0.44 0.43 0.41 0.41

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 48

4.3.4.4 Chat Evaluation

We additionally evaluate the our model on MT-Bench [339] to test its conversation ability.
Table 4.5 shows the MT-Bench scores of for each of our models. Table 4.6 illustrates the
relationship between the mix of chat and fact retrieval tasks and the performance on MT-Bench
score and Needle Retrieval accuracy. As the proportion of chat increases and fact retrieval
decreases, the MT-Bench score improves, indicating better chat performance measured by
MT-Bench. Conversely, Needle Retrieval accuracy decreases, suggesting a trade-off where
increasing chat interaction capabilities may reduce the system’s precision in retrieving specific
information or ’needles’ from input context. Across different context sizes, we found that the
model supporting longer input sequences encounters a slight decrease in MT-Bench score.
We hypothesize that this is because we chose to train with fewer examples on longer sequence
training and can be improved by simply training on more data. In addition, this trade-off
may be resolved by acquiring higher quality long-context chat data that is closer to the chat
distribution of the UltraChat dataset.

Table 4.5 Results on MT-Bench across dif-
ferent context sizes. Despite less training on
longer sequence lengths, they show only a
slight decrease in conversational ability.

Model MT-Bench

LWM-Text-Chat-128k 4.62
LWM-Text-Chat-256k 5
LWM-Text-Chat-512k 4.83
LWM-Text-Chat-1M 4.19

Table 4.6 Relationship between the mix of
chat and fact retrieval tasks and the perfor-
mance on MT-Bench score and Needle Re-
trieval accuracy.

Chat / QA Mix MT-Bench Needle Acc

0% / 100% 2.42 100%
40% / 60% 4.14 100%
70% / 30% 4.62 96%
90% / 10% 5.1 55%
100% / 0% 5.8 31%

4.4 Stage II: Learning Long-Context Vision-Language
Models

Our second stage aims to effectively joint train on long video and language sequences. We
will introduce architecture modifications for LWM and LWM-Chat to incorporate vision
input in Section 4.4.1. Training on varying sequence lengths is discussed in Section 4.4.2.
The evaluation results are shown in Section 4.4.3. In this phase, we enhance the capabilities
of the previously developed 1M context language model, by finetuning it on vision-language
data of various lengths. The datasets used and the steps involved in the training process are
illustrated in Figure 4.3.

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 49

Table 4.7 LWM and LWM-Chat Training Stages

1K 8K Chat-32K Chat-128K Chat-1M

Parameters 7B 7B 7B 7B 7B
Sequence Length 210 213 215 217 220

RoPE θ 50M 50M 50M 50M 50M
Tokens per Batch 8M 8M 8M 8M 8M
Total Tokens 363B 107B 10B 3.5B 0.4B
Wall Clock 83h 32h 10h 6h 8h
Compute (TPU) v4-1024 v4-1024 v4-1024 v4-1024 v4-1024

4.4.1 Architectural Modifications For Vision

The model is illustrated in Figure 4.4. We use the pretrained VQGAN [80] from aMUSEd [228]
that tokenizes 256 × 256 input images to 16 × 16 discrete tokens. Videos are tokenized
by applying the VQGAN per-frame, and concatenating the codes together. In order to
distinguish between modalities when generating, as well as knowing when to switch, we
introduce mechanims to mark the end of text generation / beginning of vision generation,
and vice-versa. For defining the end of vision generation, we introduce new tokens, <eof>
and <eov>, that represent end of frame (at the end of each video frame that is not the
last video frame in the sequence), and end of vision (at the end of each single image, or at
the end of the last frame in a video) boundaries respectively. For defining the end of text
generation, we wrap the vision tokens with <vision> and </vision> (as text) text tokens.
The model is trained with interleaved concatenations of vision and text tokens, and predicted
autoregressively.

4.4.2 Training Steps

We initialize from our LWM-Text-1M text model, and perform a similar process of progressive
training on a large amount of combined text-image and text-video data, with the exception
that we do not additionally scale RoPE θ, as it already supports up to 1M context. Table 4.7
shows details for each training stage, where the model is initialized from the prior shorter
sequence length stage. For each stage, we train on the following data:

• LWM-1K: We train on large set of text-image dataset comprising of a mix of LAION-
2B-en [252] and COYO-700M [42]. The datasets were filtered to only include images
with at least 256 resolution – in total roughly 1B text-image pairs. During training, we
concatenate the text-image pairs and randomly swap the order of the modalities to model
both text-image generation, unconditional image generation, and image captioning. We
pack text-image pairs to sequences of 1K tokens.

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 50

• LWM-8K: We train on a text-video dataset mix of WebVid10M [19] and 3M Intern-
Vid10M [313] examples. Similar to prior works [119, 120, 305], we jointly train on both
images and video with a 50-50 ratio of each modality. We pack images to sequences of 8K
tokens, and 30 frame videos at 4FPS. Similar to image training, we randomly swap the
order of modalities for each text-video pair.

• LWM-Chat-32K/128K/1M: For the final 3 stages, we train on a combined mix of chat
data for each downstream task: (1) text-image generation, (2) image understanding, (3)
text-video generation, and (4) video understanding. We construct a simple version of
text-image and text-video chat data by sampling random subsets of the pretraining data
augmented with chat format. For image understanding, we using the image chat instruct
data from ShareGPT4V [50]. Lastly, for the video understanding chat data, we use a
combined mix of Valley-Instruct-73K [195] and Video-ChatGPT-100K instruct data [197].
For all short context data (image generation, image understanding, video generation), we
pack sequences to the training context length. During packing, we found it crucial to mask
out the attention so that each text-vision pair only attends to itself, as well as re-weighting
losses to make computation identical to training in a non-packed + padding training regime.
For video understanding data, we uniformly sample a max number of frames to fit the
training context length of the model if the video is too long. During training, We allocate
25% of each batch to each of the 4 downstream tasks.

For the first two stages of training (LWM-1K and LWM-8K), we additionally mix 16% of
the batch to be pure text data from OpenLLaMA [94], as we found it beneficial to preserve
language capabilities while training on vision data.

4.4.3 Vision-Language Evaluation Results

4.4.3.1 Long Video Understanding

Although vision-language model [176, 217, 293] can ingest long videos, this is commonly done
by performing large temporal subsampling of video frames due to limited context length. For
example, Video-LLaVA [176] is restricted to uniformly sampling 8 frames from a video, no
matter how long the original video may be. As such, models may lose more fine-grained
temporal information that is important for accurately answering any questions about the
video. In contrast, our model is trained on long sequences of 1M tokens, and as a result, can
simultaneously attend thousands of frames of videos to retrieve fine-grained information over
short time intervals. Figure 4.1 shows an example of our model correctly answering questions
about a long, 1-hour YouTube compilation consisting of more than 500 individual clips. Our
baseline methods, on the other hand, generally have difficulty answering the questions due to
a limited number of frames. More results are shown in Figure 4.7 and Appendix 4.9.

Although we demonstrate that our model can perform QA over complex, long-form videos,
we note that there is still room to improve for better context utilization across all 1M tokens,
as generated answers from our model may not always accurate, and the model still struggles

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 51

with more complex questions that require higher-level understanding of the video. We hope
that our model will aid future work in developing improved foundation models, as well as
benchmarks for long-video understanding.

4.4.3.2 Image Understanding and Short Video Understanding

Tables 4.8 and 4.9 show results on common benchmarks for image understanding and short
video understanding. Figure 4.17 shows qualitative examples for image understanding.
Our model performs average among the baselines and underperforms SOTA models. We
hypothesize this may be due to limited text-image and text-video alignment training whereas
the baseline can leverage vision backbones that have gone through more extensive, large-
scale CLIP-based training. In contrast, our model uses VQGAN tokens and needs to learn
text-image alignment from scratch, and generally struggles with OCR tasks due to less
faithful abilities for the VQGAN to reconstruct text in images. However, we believe that our
model will be a promising direction for future VQ-based architectures for vision-language
models, and can perform well through more rigorous training, and learning better tokenizers.
Appendix 4.9 shows more qualitative image understanding and Appendix 4.9 shows more
qualitative video understanding examples.

Table 4.8 Image Understanding Benchmarks

Method Visual Token VQAv2 GQA VisWiz SQA TextVQA POPE MM-Vet

MiniGPT-4 [340] CLIP - 30.8 47.5 25.4 19.4 - 22.1
Otter [166] CLIP - 38.1 50 27.2 21.2 - 24.6
InstructBLIP [67] CLIP - 49.2 34.5 60.5 50.1 - 26.2
LLaVA-1.5 [190] CLIP 78.5 62 38.9 66.8 58.2 85.9 30.5

LWM (ours) VQGAN 55.8 44.8 11.6 47.7 18.8 75.2 9.6

Table 4.9 Video Understanding Benchmarks

MSVD-QA MSRVTT-QA TGIF-QA
Method Visual Token Accuracy Score Accuracy Score Accuracy Score

VideoChat [170] CLIP 56.3 2.8 45 2.5 34.4 2.3
LLaMA-Adapter [93] CLIP 54.9 3.1 43.8 2.5 - -
Video-LLaMA [333] CLIP 51.6 2.5 29.6 1.8 - -
Video-ChatGPT [197] CLIP 64.9 3.3 49.3 2.8 51.4 3
Video-LLaVA [176] CLIP 70.7 3.9 59.2 3.5 70 4

LWM (ours) VQGAN 55.9 3.5 44.1 3.1 40.9 3.1

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 52

4.4.3.3 Image and Video Generation

In addition to being able to perform image / video captions, as well as QA, our model can also
generate images and video from text. Figure 4.8 shows some examples of such capabilities.
We use classifier-free guidance [117] on the logits for autoregressive sampling in a manner
similar to prior work [326, 90]. For the unconditional branch, we initialize each sequence with
<bos><vision>. Appendix 4.12 and 4.11 show more image and video generation examples.

4.4.3.4 Masked Sequence Packing Ablation.

As mentioned in Section 4.4.2, correctly masking the attentions and re-weighting losses is
crucial for some aspects of downstream tasks, particularly image understanding. Table 4.10
shows a comparison of our model with and without packing corrections. Naively packing
shows large degradation in accuracy across image understanding tasks. We hypothesize naive
packing degrades performance due to down-weighting text token answers which are shorter,
which is an important aspect for good image understanding benchmark performance.

Table 4.10 Ablation study comparing standard and masked sequence packing mechanisms
across three tasks. Masked sequence packing is crucial for performance.

VQAv2 SQA POPE

Naive Packing 48.3 34.8 62.5
LWM (Ours) 55.8 47.7 75.2

4.5 Further Details
MFU. We trained our models using TPUv4-1024, which is approximately equivalent to 450
A100s, with a batch size of 8M using FSDP [83], Blockwise Transformer, and RingAttention
for large contexts. Figure 4.9 shows the model FLOPS utilization (MFU) for each training
stage. Blue color bars show language training and orange color bars show vision-language
training. Our training achieves good MFUs even for very large context sizes.

Training Loss Curves. Figures 4.10 and 4.11 show the training loss curves for each stage
of training the language and vision-language models respectively.

Training Hyperparameters. See Appendix 4.13

Scaling Inference We additionally scale our inference code to support million-length
sequences by implementing RingAttention for decoding. Inference for such long sequences
requires a minimum of v4-128 with a TPU mesh sharding of 32 tensor parallelism, and 4
sequence parallelism (ring dimension). We perform inference in pure single precision, where
additional improvements can be made through techniques in scalability such as quantization.

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 53

4.6 Related Works
Our work is related to efforts that extend language models’ context windows to allow more
tokens [53, 299, 192, inter alia], often by using novel extrapolation methods to expand
pretrained positional encodings followed by finetuning the model on longer context data. Our
model adopts a simple approach by gradually increasing θ in RoPE positional encodings
along with the training context window sizes, and we found this method to be effective.
There has been research into architectures that do not model pairwise interaction, such as
sparse attention and sliding window [62, 31]. Parallelization along the sequence dimension is
studied in [172], but is not optimized for blockwise transformers and is incompatible with
memory-efficient attention, which are crucial to large context training. [147] propose hybrid
usage of tensor parallelism and sequence parallelism to better reduce memory cost on a single
device. Our work utilizes RingAttention and Blockwise Transformer [189, 183] to model
exact pairwise interactions in very long sequences for optimal performance. Further training
performance improvement is also possible with the load balancing of skipping causal masked
computation [36, 168].

Our work is also related to works on instruction tuning [286, 60, 97, inter alia]. These
studies focus on finetuning models using conversational data to enhance their capability
across language tasks. Our approach seeks to advance models’ understanding of complex,
long sequences of videos and languages. To achieve this, we extend the models’ context size
by training on books and long videos, and finetuning on model-generated QA data to learn
chat ability over long sequences.

Our work is also related to efforts combining vision and language [191, 176, 14, 334, 136, 5,
inter alia]. These efforts often use CLIP [238] or BLIP [169] to encode visual information
into embeddings for inputting into language models. They have the potential advantages
of leveraging CLIP’s cross-modal understanding for encoding textual information in images.
However, they can only be trained to predict text given visual input but not vice versa,
limiting their ability to learn from diverse formats of visual and language information. In
cases where they do predict visual tokens [136], a stronger diffusion decoder is generally
required due to the relatively lossy nature of CLIP embeddings. Our work, on the other
hand, is autoregressive "tokens in, tokens out", allowing us to flexibly model diverse forms of
image-text, text-image, text-video, video-text, and purely video, image, or text formats.

4.7 Conclusion
In this paper, we address the challenge of learning models to understand the world better
by combining language and video. We utilize RingAttention and Blockwise Transformers
to scalably train on a massive dataset of long videos and books and gradually increase
sequence length, from 32K to 1M tokens, to keep compute manageable. We develop masked
sequence packing and loss weighting to effectively train on a diverse dataset of videos, images,

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 54

and books. Finally, we demonstrate that LWM features a highly effective 1M context
size, the largest to date, enabling it to successfully tackle complex tasks involving lengthy
video and language sequences. We open source our optimized implementation of Blockwise
RingAttention, masked sequence packing and other key features for training on millions-length
sequences, as well as a 7B parameter model capable of processing over 1M multimodal tokens.
We hope this work paves the way for advancing AI models with a reliable reasoning and a
grounded understanding of the world and broader capabilities.

Limitations and Future Work. Although this work achieves an effective very large
context of over 1M tokens for large autoregressive models, and shows promising results in
understanding over 1-hour-long videos and long-form language sequences, it does have some
limitations that need to be addressed:

• Better Video Tokenization. This work uses image tokenizer for videos – improving tokenization
to be more compact could not only enhance video quality but also enable the processing of
significantly more complex and longer videos, allowing more capable world model.

• More Modalities. Our work paves the road for learning from additional modality sources
such as audio and other long sequences, allowing a deeper and more holistic understanding
about the world.

• Better and More Video Data. Unlike text and image datasets, which have received considerable
attention over the last few years, video datasets lack the desired visual quality and quantity.
Future research can address this by sourcing YouTube videos.

Acknowledgments
This project is supported in part by Office of Naval Research grant N00014-21-1-2769 and
ARO MURI (2023) on Neuro-Inspired Distributed Deep Learning. We thank Google TPU
Research Cloud for granting us access to TPUs, and thank Google Cloud for granting us
research credits for storage.

4.8 More Single-Needle Retrieval Results

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 55

Figure 4.3 This figure illustrates the multimodal training of a Large World Model. Stage
1, LLM Context Extension, focuses on expanding context size using the Books3 dataset, with
context size growing from 32K to 1M. Stage 2, Vision-Language Training, focuses on training
on visual and video contents of varying lengths. The pie chart details the allocation of 495B
tokens across images, short and long videos, and 33B tokens of text data. The lower panel
shows interactive capabilities in understanding and responding to queries about complex
multimodal world.

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 56

Figure 4.4 LWM is a autoregressive transformer on sequences of millions-length tokens.
Each frame in the video is tokenized with VQGAN into 256 tokens. These tokens are concate-
nated with text tokens and fed into transformers to predict the next token autoregressively.
The input and output tokens’ order reflect the varied training data formats, including image-
text, text-image, video, text-video, and purely text formats. The model is essentially trained
in an any-to-any manner using multiple modalities. To differentiate between image and text
tokens, and for decoding, we surround video and image tokens with the special delimiters
<vision> and </vision>. We also include <eof> and <eov> vision tokens to mark the end
of intermediate and final frames in images and videos. For simplicity, these delimiters are not
shown.

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 57

Figure 4.5 Needle retrieval task. Our LWM-Text-Chat-1M have near perfect accuracy
across different positions in 1M context window.

Figure 4.6 Multiple needles retrieval task with LWM-1M. N is the number of facts in the
context, and R is the number of given facts model is asked to retrieve.

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 58

User: What is the video about?

Assistant: The video is about a man who is changing a tire on
a car. He demonstrates how to change a tire by using a jack

and a spare tire

00:32 01:23 02:14 03:06 03:57 04:49

(a) The assistant answers questions about a 3-minute video of animals.

00:06 00:28 00:51 01:14 01:37 02:00

User: What is the video about?

Assistant: In the video, a person is riding a dirt bike on a dirt
trail. The trail is surrounded by trees and there are other

people riding bikes in the background. The person is wearing
a helmet and is riding at a high speed

User: What’s the color of the
person’s gloves?

Assistant: The person is wearing red gloves

(b) The assistant answers a question about a 2-minute video of a man riding a bike down a
trail.

Figure 4.7 LWM can answer questions about videos. More examples can be found in
Appendix 4.9.

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 59

A black dog An elephant
under the sea

A cube made
of denim

A glass of wine A yellow and black
bus cruising through

a rainforest

Fireworks exploding in the sky

Waves crashing against the shore

Figure 4.8 LWM can generate images and videos given text input. Examples of image and
video generations. More examples are shown in Appendix 4.12 and Appendix 4.11.

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 60

Figure 4.9 High MFU training across sequence lengths. Model flops utilization (MFU) of
each training stage for LWM-Text (top), and LWM / LWM-Chat (bottom)

Figure 4.10 Train loss curve for each training stage for LWM-Text models.

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 61

Figure 4.11 Train loss curve for each training stage for LWM and LWM-Chat models.
Note that losses consist of a combination of losses of different modalities, and may not be
directly comparable across stages. The sharp peak in the middle of 1K training is due to
newly incporating EOF and EOV tokens into the vision codebook.

Figure 4.12 Single needle retrieval accuracy for LWM-Text-Chat-256K

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 62

Figure 4.13 Single needle retrieval accuracy for LWM-Text-Chat-512K

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 63

4.9 More Video Understanding Examples

…

00:00:00 00:59:59

User: How many lemons were in the person’s car?

GPT-4V: Sorry, I can’t help with identifying or making
assumptions about the content in these images.
Gemini Pro Vision: I am not able to count the number of lemons
in the person’s car because I cannot see any lemons in the
video.
Video-LLaVA: The video does not provide an exact number of
lemons in the persons’ car.

LWM (Ours): There are three lemons in the person’s car.

Figure 4.14 LWM demonstrates video understanding over 1 hour video.

4.10 More Image Understanding Examples

4.11 More Video Generation Examples

4.12 More Image Generation Examples

4.13 Training Hyperparameters

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 64

…

00:00:00 01:02:50

User: What animal was standing on a piano?

GPT-4V: I’m sorry, I cannot provide assistance with these
requests.

Gemini Pro Vision: There is no piano in the video.

Video-LLaVA: A dog was standing on a piano in the video.

LWM (Ours): The animal standing on a piano was a cat.

Figure 4.15 LWM demonstrates video understanding over 1 hour video.

Table 4.11 LWM-Text Training Stages

32K 128K 256K 512K 1M

Parameters 7B 7B 7B 7B 7B
Initialize From LLaMA-2 7B Text-32K Text-128K Text-256K Text-512K
Precision float32 float32 float32 float32 float32
Sequence Length 215 217 218 219 220

RoPE θ 1M 10M 10M 25M 50M
Tokens per Batch 4M 4M 4M 4M 4M
Total Tokens 4.8B 12B 12B 3B 1.8B
Total Steps 1200 3000 3000 720 450
LR Schedule Constant Constant Constant Constant Constant
LR Warmup Steps 100 200 200 50 25
LR 4× 10−5 4× 10−5 4× 10−5 4× 10−5 4× 10−5

Compute (TPU) v4-512 v4-512 v4-512 v4-512 v4-512
Mesh Sharding 1,-1,4,1 1,-1,8,1 1,-1,16,1 1,-1,16,2 1,-1,16,4

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 65

00:11 00:54 01:37 02:20 03:03 03:46

User: What is the video about?

Assistant: The video is about a man who talks to the camera
and shows a tree with apples on it. He then proceeds to pick

apples and puts them into a bow.

(a) The assistant answers questions about a 4-minute video of a man talks to the
camera and shows a tree of apples.

00:23 01:52 03:22 04:51 06:20 07:50

User: Who is the person in the video
likely to be?

Assistant: The person in the video is likely to be a politician
or representative from the White House.

User: Where is the video happening?

Assistant: The video is taking place in the Oval Office of the
White House, where President Joe Biden is speaking to the

press

(b) The assistant answers a question regarding a 8-minute video of president speaking
to the press in the Oval Office.

00:00 00:06 00:15 00:20 00:27 00:34

User: Provide a comprehensive
description of the video

Assistant: In the video, a giraffe is seen running towards a
high dive in a pool. As the giraffe reaches the dive, it jumps

into the water, causing a solace. The giraffe then swims
towards the surface of the pool, creating a small solace as
it hits the water. The giraffe’s movements are graceful and

elegant, showcasing its agility and grace.

User: What is unusual about this
video?

Assistant: The video is unusual because it
shows a giraffe diving into a pool.

(c) The assistant answers a question about a 30-second video of a giraffe.

Figure 4.16 Answering questions about videos using LWM.

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 66

Table 4.12 LWM-Text-Chat Training Details

128K 256K 512K 1M

Parameters 7B 7B 7B 7B
Initialize From Text-128K Text-256K Text-512K Text-1M
Precision float32 float32 float32 float32
Sequence Length 217 218 219 220

RoPE θ 10M 10M 25M 50M
Tokens per Batch 4M 4M 4M 4M
Total Tokens 1.2B 1.2B 1.2B 1.2B
Total Steps 300 300 300 300
LR Schedule Constant Constant Constant Constant
LR Warmup Steps 25 25 25 25
LR 4× 10−5 4× 10−5 4× 10−5 4× 10−5

Compute (TPU) v4-512 v4-512 v4-512 v4-512
Mesh Sharding 1,-1,4,1 1,-1,8,1 1,-1,16,1 1,-1,16,2

Table 4.13 LWM / LWM-Chat Training Stages

1K 8K 32K 128K 1M

Parameters 7B 7B 7B 7B 7B
Initialize From Text-1M 1K 8K 32K 128K
Precision float32 float32 float32 float32 float32
Sequence Length 210 213 215 217 220

RoPE θ 50M 50M 50M 50M 50M
Tokens per Batch 8M 8M 8M 8M 8M
Total Tokens 363B 107B 10B 3.5B 0.4B
Total Steps 45000 14000 1200 450 50
LR Schedule Cosine Cosine Cosine Cosine Cosine
LR Warmup Steps 1000 500 100 50 5
Max LR 6× 10−4 6× 10−4 8× 10−5 8× 10−5 8× 10−5

Min LR 6× 10−5 6× 10−5 8× 10−5 8× 10−5 8× 10−5

Compute (TPU) v4-1024 v4-1024 v4-1024 v4-1024 v4-1024
Mesh Sharding 1,-1,1,1 1,-1,1,1 1.-1.4,1 1.-1.8,1 1,-1,16,4

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 67

User: If you were a photographer looking to capture this
location’s essence, what time of day and weather
conditions would you choose? Describe the reasons
behind your choice.

Assistant: I would choose the time of day to be during
sunset. The image features a wooden dock extending into
a calm lake, which is a perfect setting for a serene and
picturesque scene. The sunset casts a warm, golden light
on the lake, enhancing the tranquility of the scene.
Additionally, the weather conditions appear to be cool and
cloudy, which complements the natural beauty of the lake
and the wooden dock. The combination of these elements
creates a visually appealing and calming atmosphere,
which would make it an ideal time to capture the moment.

Assistant: In this creative twist on a
classic work of art, the woman’s face is
transformed into a dog’s face, creating a
visually striking and unexpected
representation. The artwork could be
seen as a commentary on the limitations
of human understanding, as well as the
potential for deeper connection and
understanding between humans and
animals.

User: Describe how this creative twist on
a classic work of art might be interpreted
differently by various audiences.

Figure 4.17 Question answering based on image input using LWM.

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 68

A bustling street in London with red telephones booths and Big Ben in the background

Fireworks exploding in the sky

Camera pans left to right on mango slices sitting on a table

Slow motion flower petals falling on the ground

A boat sailing on a stormy ocean

A burning campfire in a forest

Waves crashing against the shore

A ball thrown in the air

Figure 4.18 Video generation using LWM.

CHAPTER 4. LARGE WORLD MODEL ON MILLION-LENGTH VIDEO AND
LANGUAGE 69

A black dog A blue colored pizza A cube made of denim A glass of wine

A yellow and black bus
cruising through a rainforest

Oil painting of a couple in
formal attire caught in the

rain without umbrellas

A couch in a cozy living
room

A carrot to the left of
broccoli

Fisheye lens of a turtle
in a forest

A blue colored dog Stained glass windows
depicting hamburgers and

french fries

A pink car

A cube made of brick An elephant under the
sea

A yellow book and red
vase

A city skyline at night

Figure 4.19 Image generation using LWM

70

Chapter 5

Agentic Transformer for In-context
Action

5.1 Introduction
Large transformer [303] models have substantially advanced the state-of-the-art across a
variety of domains, including natural language processing tasks [74, 39, 193], computer
vision [77, 7], and code generation [165, 51].

Test N Trajectories per rollout

E
xo

R
L

A
vg

 S
co

re

30

40

50

60

70

80

90

1 2 3 4

Train N Traj. = 4 Train N Traj. = 3 Train N Traj. = 2 Train N Traj. = 1

Figure 5.1 Agentic Transformer can automatically improve its performance at evaluation
time by rollouting more trajectories in a trial-and-error manner. The scaling improves with
both more chain of hindsight training sequences.

Despite the successes, a key limitation is that these models are not agentic, i.e. they cannot
interact with the real world to accomplish tasks like a robot. Reinforcement learning (RL), on

CHAPTER 5. AGENTIC TRANSFORMER FOR IN-CONTEXT ACTION 71

the other hand, in principle is designed for building interactive agents. However, conventional
RL algorithms are limited to small models (e.g., an MLP with two layers) and are difficult
to train and scale [see e.g. 11]. The difficulty of scaling the model size in conventional RL
algorithms make it difficult to take advantage of large Transformer models.

In order to combine Transformer with decision-making, there have been lots of efforts in
attempting to cast RL from offline data as a sequence modeling problem [49, 156, 246]. For
instance, DT [49] proposes to train a Transformer to autoregressively predict action sequences
based on sequences of returns-to-go and states.

Despite the progress made, existing Transformer based decision-making models cannot learn
by directly combining information from multiple sub-optimal trials, in fact, they require high-
return data to achieve high return [see e.g. 49, 156, 325], indicating the lack of extrapolation
ability besides the imitation learning ability. This limits the wider applicability of transformer-
based policies since high return data are not easily available in most important real-world
domains, e.g., health care and industry robots.

To resolve these issues, we first hypothesize that the fact that existing Transformer based
decision-making models under-perform TD-learning approaches and lack of extrapolation is
due to the fact that during training and inference, the model can only do one trial. Our key
observation is that one ability humans have, unlike the current generation of models, is to
learn almost as much from achieving an undesired outcome as from the desired one. We take
the approach chain of hindsight introduced in Liu et al. [186] which proposes to condition
language model on positive indicator and negative example to predict positive example,
and vice versa. The idea applies to learn decision making – imagine learning basketball
and attempting a shot that misses the net on the right. Existing models conclude that the
sequence of performed actions don’t result in success, and little is learned. It is however
possible to chain another attempt’s sequence of actions which missed even more far away
with this sequence of actions, as if this sequence of actions would be a successful second
attempt if the goal is placing the ball closer to the net.

In this paper, we propose to train Transformer to perform exactly this kind of reasoning.
Through training on chain of hindsight experience, the resulting model is named as Agentic
Transformer (AT). Not only does Agentic Transformer improve the performance on learning
from high return data, but more importantly, it makes learning possible even if the data is far
from being optimal. Our approach is based on training a decoder-only Transformer [236, 237,
39] which takes as input not only the current episode, but also multiple episodes whose returns
are lower than current episode’s return and are ascending sorted according to their returns.
The pivotal idea behind Agentic Transformer is to replay each episode with a variable number
(e.g., randomly choose between 0 and 4) of episodes to form chain of hindsight experience, as
if the model was trying to improve from previous episode(s) to current episode.

Agentic Transformer achieves state-of-the-arts on standard RL benchmarks including D4RL [87]
and ExoRL [154, 325]. Agentic Transformer can learn by directly combining information

CHAPTER 5. AGENTIC TRANSFORMER FOR IN-CONTEXT ACTION 72

Causal Transformer Model

a t

"# t s t a t r t d t

%& ! = %& ! = %& !

a ta t

"# t s t a t r t d t "# t s t a t r t d t

Relabel target return-to-go as !" !

∑"#!$)" < ∑"#!$)" < ∑"#!$)"Sort by achieved return

Figure 5.2 Agentic Transformer. The input sequence consists of multiple episodes
ascending sorted according to their total rewards. The initial desired return R̂0 of all tra-
jectories are set to the maximum total rewards among all trajectories. For each trajectory,
the return-to-go is updated using rewards in the same trajectory: R̂t = R̂0 −

∑t
j=0 rj. The

task completion token d indicates whether achieved cumulative rewards in a trajectory is
larger than desired target return(Equation 5.2), this gives model feedback on past trajectories
and help steer model to try to reach target return in next trajectory at test time. States,
actions, rewards, returns-to-go, and task completion are fed into modality specific linear
embeddings and a positional episodic timestep encoding is added. Tokens are fed into a GPT
architecture which predicts actions autoregressively using a causal self-attention mask. At
training time: The model is trained to predict action tokens in the last (best) trajectory
conditioning on past trajectories, states, actions, returns-to-go and task completion tokens.
At testing time: The model predicts action autoregressively across multiple trajectories.

from multiple sub-optimal trials and being able to improve itself through multiple trials at
test time. Our experiments show that AT scales well in both model size and the length of
chain of hindsight experience, indicating further improvement could be possible by scaling up
model and data.

5.2 Preliminaries

5.2.1 Reinforcement Learning

We consider learning problem in the context of a Markov Decision Process (MDP) represented
by the tuple (S, A, P , R). The MDP tuple consists of states s ∈ S, actions a ∈ A, transition
dynamics P (s′|s, a), and a reward function r = R(s, a). To describe the state, action, and re-
ward at time step t, the notations st, at, and rt = R(st, at) are used. A trajectory is a sequence

CHAPTER 5. AGENTIC TRANSFORMER FOR IN-CONTEXT ACTION 73

of states, actions, and rewards and is denoted by τ = (s0, a0, r0, s1, a1, r1, . . . , sT , aT , rT). The
return of a trajectory at time step t, Rt =

∑T
t′=t rt′ , is calculated as the sum of future rewards

from that time step. The goal of reinforcement learning is to find a policy that maximizes
the expected return E

[∑T
t=1 rt

]
in an MDP. In supervised or offline reinforcement learning,

data is obtained from a fixed limited dataset of trajectory rollouts from arbitrary policies,
instead of from environment interactions. This setting eliminates the ability of the agents to
explore the environment and gather additional feedback. Conventional datasets either consist
mainly of high quality, near optimal trajectories like in D4RL [87] which are obtained by
running trained expert policies or by storing the experience of training an expert policy, or
mainly consist of diverse, exploratory and sub-optimal trajectories like in ExoRL [325] where
trajectories are collected through unsupervised exploration algorithms.

5.2.2 Transformers

The Transformer [303] architecture consists of multiple layers of self-attention operation and
MLP. The self-attention begins by projecting input data X with three separate matrices onto
D-dimensional vectors called queries Q, keys K, and values V . These vectors are then passed
through the attention function:

Attention(Q,K, V) = softmax(QKT/
√
D)V. (5.1)

The QKT term computes an inner product between two projections of the input data X. The
inner product is then normalized and projected back to aD-dimensional vector with the scaling
term V . Transformers [303, 74, 39] utilize self-attention as a core part of the architecture to
process sequential data such as text sequences. Transformers are usually pre-trained with
a self-supervised objective. Common prediction tasks include predicting randomly masked
out tokens [74] or applying a causal mask and predicting the next token [236, 39]. The
GPT architecture [236] replaces the summation/softmax over the n tokens with only the
previous tokens in the sequence (j ∈ [1, i]), enabling autoregressive generation by using
causal self-attention mask. In this work, we use the GPT architecture because we need to do
autoregressive generation at test time.

5.2.3 Transformer based Behavior Cloning

We refer to the family of methods that treat Reinforcement Learning from offline data as a
sequential prediction problem as Transformer based behavior cloning. Rather than learning a
value function from offline data, this family of works focus on extracting policies by predicting
actions in the offline data (i.e. behavior cloning) with an autoregressive sequence model and
either return conditioning [48, 156, 159] or filtering out suboptimal data [246] or training
masked sequence model bypredicting masked states and actions tokens [177, 47].

CHAPTER 5. AGENTIC TRANSFORMER FOR IN-CONTEXT ACTION 74

5.3 Method
In this section, we present Agentic Transformer (AT), which models chain of hindsight
experience trajectories autoregressively based on Transformer archiecture, as summarized in
Figure 5.2 and Algorithm 3.

Chain of hindsight Experience. The key factors that influenced our decision on how to
represent trajectories are: (1) the ability of transformers to uncover meaningful patterns from
multiple trajectories sampled from arbitrary offline data, and (2) the capacity to produce
actions conditionally during evaluation and improve itself conditions on collected experience.
Modeling rewards is a nontrivial task, therefore, we aimed to have the model generate actions
based on the future desired returns, similar to previous works [e.g., 49, 156], rather than
relying on past rewards. We feed the model with the initial target returns-to-go R̂0 and
update R̂t = R̂0 −

∑t
j=0 rj using rewards. We also feed the model with a completion token d

that indicates whether the achieved cumulative rewards in a trajectory are larger than or
equal to desired returns-to-go, specifically

dT = 1

(
T∑
j=0

rj ≥ R̂0

)
di = 0, ∀i ∈ [1, T − 1], (5.2)

where 1 is indicator function. This leads to the following trajectory representation which is
amenable to autoregressive training and generation:

τ =
(
R̂0, s0, a0, r0, d0, . . . , R̂T , sT , aT , rT , dT

)
where R̂t = R̂0 −

t∑
j=0

rj. (5.3)

Since we want the model to learn to ’stitch’ sub-optimal data rather than just imitating
optimal data, and at test time we want the model to achieve desired target return through
multiple trajectories of trial-and-errors, we construct a chain of hindsight experience for the
model to learn to improve even from sub-optimal data and learning to self-improve during
test time. To achieve this, we take the approach called chain of hindsight [186] which trains
language model from human feedback by conditioning on positive indicator and negative
rated example to predict corresponding positive rated example. And adapt it to decision
making by replaying each episode with a variable number (e.g., randomly choose between
0 and 4) of episodes to form chain of hindsight experience, as if the model was trying to
improve from previous episode(s) to current episode.

CHAPTER 5. AGENTIC TRANSFORMER FOR IN-CONTEXT ACTION 75

This leads to the following chain of hindsight trajectory representation:

s =
(
τ 1, τ 2 . . . , τn

)
(5.4)

where

τ i =
(
R̂i

0, s
i
0, a

i
0, r

i
0, d

i
0, . . . , R̂

i
T , s

i
T , a

i
T , r

i
T , d

i
T

)
(5.5)

s.t.

T∑
t=1

r0t ≤
T∑
t=1

r1t ≤ · · · ≤
T∑
t=1

rnt (5.6)

R̂i
0 =

T∑
t=1

rnt ∀ 1 ≤ i ≤ n (5.7)

R̂i
t = R̂i

0 −
t∑

j=0

rij ∀ 1 ≤ i ≤ n, (5.8)

Equation 5.6 states the ordering requirement, meaning that trajectories are ascending sorted
according to their total reward. Equation 5.7 sets the hindsight target: for all n trajectories,
initial target equals to trajectory n’s total reward. Equation 5.8 updates returns-to-go using
trajectory reward.

At test time, we can specify the desired performance (e.g. 1 for success or 0 for failure), as
well as the environment starting state, and the conditioning information to initiate generation.
After executing the generated action for the current state, we decrement the target return by
the achieved reward and repeat until episode termination. If the target return is not achieved,
the model starts a new episode and continues interacting with the environment until the
maximum episode number is reached.

Architecture. We feed the n trajectories into Agentic Transformer, this results in a total of
5× n× T tokens, with one token for each of the five modalities: returns-to-go, state, action,
reward, and completion. To create the token embeddings, a linear layer is trained for each
modality which transforms the raw inputs into the desired embedding dimension, followed by
layer normalization [15]. In addition to this, an embedding for each time step is also learned
and added to the tokens, which is distinct from the standard positional embedding used
in transformers where one time step is represented by five tokens. Finally, the tokens are
processed by a GPT model [236] that predicts future action tokens through autoregressive
modeling.

Training and Test. We are given a dataset of offline trajectories. We sample minibatches
of trajectories from the dataset. The model predicts the action token at given the input
token st, and the prediction is evaluated with either cross-entropy loss or mean-squared error,
depending on whether the actions are discrete or continuous. The losses from each time step
are averaged. Note that only the action tokens at from the last trajectory τn are used for loss

CHAPTER 5. AGENTIC TRANSFORMER FOR IN-CONTEXT ACTION 76

calculation. While it’s feasible to predict other tokens or use other trajectories in the training
process, we didn’t observe improvements in performance and consider it as a potential area
for future research. At test time, following standard practice in NLP, we cache key and query
during autoregressive decoding to speed up inference. For transformer based models DT and
AT, at test time we rollout the model with n trajectories, irregardless cases when dT = 1 i.e.
desired target return is achieved, and report the largest return among n trajectories. For
DT the maximum return is achieved at the 1st trajectory while AT improves itself along
the trajectory sequence and achieves higher return with more trajectories. The model sizes
are shown in Table 5.1, base is used by default unless otherwise mentioned. Since in our
default configuration n = 4, and T is typically 1000 in D4RL and ExoRL, total sequence
length is 20,000 which uses a large amount of memory for large models. To address this issue,
we implement Agentic Transformer using data parallelism on batch dimension and model
parallelism on sequence dimension. By doing so, we can easily scale Agentic Transformer
across multiple GPUs or TPUs. The code of Agentic Transformer will be made publicly
available for future research.

Algorithm 3: Training Agentic Transformer
Required: Dataset of Trajectories, Transformer Model
Required: Max Iterations m, Max Number of trajectories in chain of hindsight experience n
Initialize
for i = 1 to m− 1 do

Randomly sample j from 1 to n
Randomly sample j episodes from dataset
Compute returns-to-go R̂ for all steps for each episode
Sort j episodes ascending according to their returns
Let R̂max be the return of the last episode
For each other episode, recomputing its returns-to-go by setting R̂0 = R̂max
Concatenate j episodes as a sequence
Train Transformer to predict next action token (see Figure 5.2).

end for

5.4 Experiments

Dataset: D4RL. In this section, we consider the continuous control tasks from the D4RL
benchmark [87]. The different dataset settings are described below.

1. Medium: 1 million timesteps generated by a “medium” policy that performs approxi-
mately one-third as well as an expert policy.

2. Medium-Replay: it contains the replay buffer of an agent trained to the performance of
a medium policy.

CHAPTER 5. AGENTIC TRANSFORMER FOR IN-CONTEXT ACTION 77

Model Layers # of heads dmodel Batch size

Small 2 4 64 256
Base 4 8 256 256
Large 6 16 512 256
XLarge 8 16 512 256

Table 5.1 Architecture details of different sized models used in Agentic Transformer. We
list the number of layers, dmodel, the number of attention heads and attention head size,
training batch size, and sequence length. The feed-forward size dff is always 4× dmodel and
attention head size is always 16.

D
4R

L
S

co
re

50.00

60.00

70.00

80.00

90.00

BC-100% BC-10% TD3+BC TD3 DT AT

E
xo

R
L

R
et

ur
n

20.00

40.00

60.00

80.00
100.00

200.00

400.00

BC-100% BC-10% TD3+BC TD3 DT AT

Figure 5.3 Agentic Transformer performs competitively with both temporal-difference
based and imitation-learning based approaches in ExoRL as well as D4RL tasks. Left. Tasks
average performance on D4RL. Right. Tasks average performance on ExoRL. We report the
mean and variance for three seeds.

3. Medium-Expert: each task consists of one million timesteps generated by the medium
policy combined with one million timesteps generated by an expert policy.

The dataset are collected from multiple Mujoco environments including HalfCheetah, Hopper,
and Walker. Since D4RL dataset is collected by conventional RL algorithms, it consists
of many high return trajectories that are near expert. Therefore, filtered behavior cloning
(e.g.10% BC) often performs similarly or better than specifically designed offline RL algorithms
(e.g.DT). In order to evaluate our method in a more challenging and realistic setting, we
consider ExoRL [325] dataset that only consists of diverse and low return trajectories.

Dataset: ExoRL. The ExoRL dataset is based on unlabeled exploratory data collected by
running unsupervised RL algorithms. For each environment, it comes with eight different
unsupervised data collection algorithms, taken from from URLB [154]. The datasets are
collected by unsupervised RL and then relabeled using task reward function. In light of
the benefit of scaling up data [122], we opted to use the combination of all datasets for

CHAPTER 5. AGENTIC TRANSFORMER FOR IN-CONTEXT ACTION 78

Table 5.2 Results for D4RL datasets. We report the mean and variance for three seeds.
Using chain of hindsight experience, our Agentic Transformer (AT) outperforms both super-
vised learning (BC) and Transformer (DT) and performs competitively with conventional RL
algorithms (TD3+BC, TD3) on almost all tasks

Dataset Environment BC-10% TD3+BC TD3 DT Agentic Transformer (AT)

Medium-Expert HalfCheetah 94.11 96.59 87.60 93.40 95.81 ± 0.25
Medium-Expert Hopper 113.13 113.22 98.41 111.18 115.92 ± 1.26
Medium-Expert Walker 109.90 112.21 100.52 108.71 114.87 ± 0.56
Medium HalfCheetah 43.90 48.93 34.60 42.73 45.12 ± 0.34
Medium Hopper 73.84 70.44 56.98 69.42 70.45 ± 0.45
Medium Walker 82.05 86.91 70.95 74.70 88.71 ± 0.55
Medium-Replay HalfCheetah 42.27 45.84 38.81 40.31 46.86 ± 0.33
Medium-Replay Hopper 90.57 98.12 78.90 88.74 96.85 ± 0.41
Medium-Replay Walker 76.09 91.17 65.94 68.22 92.32 ± 1.21

Total Average 80.65 84.83 70.30 77.49 85.21

Table 5.3 Results for ExoRL datasets. We report the mean and variance for three
seeds. Using chain of hindsight experience, our Agentic Transformer (AT) outperforms
both supervised learning (BC) and Transformer (DT) on almost all tasks, and performs
competitively with conventional RL algorithms (TD3+BC, TD3).

Dataset Task BC-10% TD3+BC TD3 DT Agentic Transformer (AT)

All Walker Stand 52.91 67.13 832.10 34.54 68.55
All Walker Run 34.81 45.83 387.76 49.82 88.56
All Walker Walk 13.53 56.73 897.81 34.94 64.56
All Cheetah Run 34.66 187.55 318.41 67.53 125.68
All Jaco Reach 23.95 167.85 287.55 18.64 52.98
All Cartpole Swingup 56.82 78.57 787.52 67.56 97.81

Total Average 36.11 100.61 585.19 45.51 83.02

all baselines and our method. Specifically, for each environment, we combine the datasets
collected by eight algorithms [225, 227, 41, 179, 323, 81, 160, 178]. The resulting mixed
dataset consists of 8 millions timesteps (8000 episodes). Since it is collected by unsupervised
RL without using task rewards, the dataset is optimized for diversity but is far from optimal
task rewards. The details are referred to the original papers.

Baselines. In this section, we investigate the performance of Agentic Transformer relative
to dedicated offline RL, imitation learning algorithms, and Transformer-based policies. In
particular, our primary points of comparison are prior Transformer-based policies such

CHAPTER 5. AGENTIC TRANSFORMER FOR IN-CONTEXT ACTION 79

as decision transformer since architecture wise Agentic Transformer is similar them. By
comparing with them, we can evaluate the effectiveness of chain of hindsight experience and
other algorithmic improvements. We further compare with model-free offline RL algorithms
based on TD-learning, since architecture is fundamentally model-free in nature as well.
Furthermore, TD-learning is the dominant paradigm in RL for sample efficiency and is
effective at learning from sub-optimal data. By comparing Agentic Transformer with TD-
learning in both high-return and low-return datasets, we can see if our transformer-based
policy can do extrapolation. We also compare with behavior cloning and variants, since it
also involves a likelihood based policy learning formulation similar to ours. Our baselines can
be categorized as follows:

• Transformer-based Policy: these models use transformer to model trajectory se-
quence and predict action autoregressively. We consider decision transformer (DT) [48]
which is shown to be effective on D4RL.

• TD learning: most of these methods use an action-space constraint or value pessimism,
and will be the most faithful comparison to Agentic Transformer, representing standard
RL methods. We consider state-of-the-art TD3+BC [88] which is shown to be effective
on D4RL and TD3 [89] which is shown to be effective on ExoRL.

• Imitation learning and Behavior Cloning: this regime similarly uses supervised
losses for training, rather than Bellman backups. We consider BC-10%. BC-10% is
shown to be competitive to state-of-the-arts on D4RL. DT also belongs to this category
since it is a transformer based return conditioned BC, both are closely related to our
model.

In total for offline RL we use five algorithms: BC-10%, TD3+BC, TD3 and DT. We adhere
closely to the original hyper-parameter settings for each algorithm, but in several cases we
perform hyper-parameter tuning to achieve best possible performance. We train offline RL
algorithms for 500k gradient updates and then evaluate by rolling out 10 episodes in the
environment. We report mean and standard error across 3 random seeds.

5.4.1 D4RL results

On D4RL, scores are normalized so that 100 represents an expert policy, as per Fu et al. [87].
Baselines numbers are reported by the original papers and from the D4RL paper. Agentic
Transformer surpasses the baselines in a wide range of tasks. Our results are shown in Table
5.2. Overall, Agentic Transformer achieves strongest results in a majority of the tasks and is
competitive with the state of the art in the remaining tasks.

Since TD3+BC and DT are generally the best algorithms in temporal-difference learning
and behavior cloning categories, the superior performance of Agentic Transformer clearly
demonstrate the advantages of using chain of hindsight experience.

CHAPTER 5. AGENTIC TRANSFORMER FOR IN-CONTEXT ACTION 80

5.4.2 ExoRL results

On ExoRL, we report the cumulative return, as per Yarats et al. [325]. BC, TD3+BC, and
TD3 numbers are from the ExoRL paper, DT numbers are run by ourselves. Our results are
shown in Table 5.3. Agentic Transformer achieves the highest scores in a majority of the
tasks and is competitive with the state of the art in the remaining tasks.

Since the ExoRL data is significantly more diverse than D4RL because it is collected using
unsupervised RL [154], it is found that temporal-difference learning performs best while
behavior cloning struggles. Agentic Transformer significantly outperforms behavior cloning
approaches BC-10% and DT, and achieves competitive results with TD learning approaches.

We further evaluate Agentic Transformer with different models sizes. We select two tasks
from ExoRL in order to reduce compute cost incurred by XLarge model size. Figure 5.4
shows the results. Agentic Transformer improves with larger model size, showing promising
scaling behavior.

5.4.3 Evaluation of Agency

At test time, the total rewards of each trajectory in a sequence are reported in Figure 5.1.
We follow DT’s experimental settings and use their target return as initial return-to-go for
both DT and AT.

As the number of trajectories increases, the return for AT also increases. In some cases, AT
is able to attain the desired target return by the 2nd or 3rd trajectory, resulting in a higher
return in the last 4th trajectory. On the other hand, when multiple trajectories are rolled
out using DT, the results are poor. DT is unable to produce consistent or higher returns
beyond the 1st trajectory.

E
xo

R
L

R
et

ur
n

50

75

100

125

150

Small Base Large XLarge

ExoRL Walker Stand ExoRL Cheetah Run

Figure 5.4 The results of Agentic Transformer with different model sizes on two ExoRL
tasks.

CHAPTER 5. AGENTIC TRANSFORMER FOR IN-CONTEXT ACTION 81

Table 5.4 Variations on the Agentic Transformer and chain of hindsight experience. Unlisted
values are identical to those of the default configuration. All metrics are averaged over 3
random seeds based on the ExoRL and D4RL benchmarks.

Variants With ’d’ With ’r’ Hindsight Tgt Ordered # Test Traj # Train Traj All tokens loss ExoRL Avg D4RL Avg

Default true true 4th true 4 4 false 83.02 85.21

(A)
3 76.19 82.45
2 65.47 80.85
1 46.45 80.26

(B) false

1 57.09 74.34
2 61.92 73.56
3 60.91 70.88
4 61.20 75.68

(C) false 76.59 80.43

(D)
1st 14.18 52.33
2nd 32.29 65.55
3rd 58.48 78.81

(E) false 17.25 29.78

(F)
1 58.35 81.48
2 74.17 82.56
3 76.29 84.88

(G)

1 true 35.88 66.45
2 true 66.30 71.55
3 true 73.16 76.80
4 true 73.88 78.88

5.4.4 Model Variations

To evaluate the importance of different components of Agentic Transformer, we varied our
default model in different ways, measuring the change in performance on ExoRL and D4RL
benchmarks. We present these results in Table 5.4.

In Table 5.4 rows (A), we vary the number of training trajectories n, keeping the number of
testing trajectories constant. Performance improves with the increasing of number of training
trajectories, this indicates a promising scaling direction for further improvement.

In Table 5.4 rows (B), we remove the task completion token ’d’ from the input sequence, so
the model is trained to ’blindly’ learn from hindsight experience. We vary the number of
trajectories at test time, we observe that using ’d’ token is crucial. While without it Agentic
Transformer still outperforms baselines, the performance degrades significantly compared
with default configuration. In addition, without this completion token, the model does not
improve with more trajectories at test time, indicating that completion token is important
for the model to learn from hindsight experience.

In Table 5.4 rows (C), we observe that removing reward token ’r’ has minimal negative effect.
This is probably because the model can infer reward token by a simple subtraction from two
consecutive returns-to-go tokens.

In Table 5.4 rows (D), we vary the desired return R̂0. Since default configuration uses 4
trajectories, the default target equals to total reward of last trajectory R̂0 =

∑T
t=1 r

4
t . We

CHAPTER 5. AGENTIC TRANSFORMER FOR IN-CONTEXT ACTION 82

vary R̂0 to be the total reward of other trajectories. We observe that changing this target
decreases performance significantly, with the largest decrease happens when R̂0 equals the
total reward of the first trajectory.

In Table 5.4 rows (E), instead of having ordered trajectories s = (τ 1, τ 2 . . . , τn), we randomly
shuffle all τ for each training batch. We observed significantly worse results, in particularly
on ExoRL, this change decreases the performance to only slightly better than BC and DT.

In Table 5.4 rows (F), we evaluate different number of trajectories at test time, we observed a
steady better result from using more trajectories at test time. We further observe that although
results are better with more trajectories, even using one trajectory, Agentic Transformer
still outperforms Transformer-based policies on both ExoRL and D4RL benchmarks. This
suggests that Agentic Transformer not only learns more than just imitation learning, but
also learns to improve upon its own experience.

In Table 5.4 rows (G), we consider applying loss on all trajectories rather than just last
trajectory. We observe that it is detrimental to performance, and particularly reduces
performance for when the number of test trajectories is small. This suggests that it is best to
optimize model towards ’better’ behaviors rather than imitating all behaviors.

5.5 Related Work

5.5.1 Transformer for Decision-Making

Prior works explored using Transformers in the context of supervised or offline RL. Among
them, decision transformer (DT) [49] proposes to model trajectories as sequences and autore-
gressively predicts action conditioning on desired returns-to-go and past states and actions.
Our model takes input as multiple trajectories and conditions on hindsight information for
learning to improve. Chen et al. [49] found that DT does not benefit from longer context
window and the results saturates at very short context length (e.g., 3-5), possibly due to
Markovian environments. Our Agentic Transformer (AT) models non-Markovian multiple
episodes, it shows improved results with longer context length and benefits from Transform-
ers architecture. Algorithm distillation (AD) [156] also conditions the model on multiple
trajectories, the difference is that AD requires the data to be the experience over the life
time of a RL algorithm, while our model can learn from data from any sources. Another
key difference is our model conditions on hindsight information including hindsight desired
returns-to-go and hindsight task completion tokens. We observe these algorithm modifications
are crucial for superior performance. Transformer has been explored in learning general
world model [177, 47, 319], learning from multiple games [246, 159], offline model-based
learning [132, 177], meta learning [200, 292], vision-language navigation [52, 263], robot
learning and behavior cloning from noisy demonstrations [262, 66], learning from multiple
cameras [260], and language-conditioned imitation learning [105, 184, 270, 337]. Since our
model is a general decision-making model, applying it to these interesting tasks is possible.

CHAPTER 5. AGENTIC TRANSFORMER FOR IN-CONTEXT ACTION 83

5.5.2 Learning from Hindsight Experience

Learning from hindsight experience was explored in goal conditioned RL [139, 10, 250].
Andrychowicz et al. [10] proposes hindsight experience replay (HER) to relabel rewards and
transitions retroactively to learn from sparse reward. In relation to HER [10], our work
is in the batch setting rather than online setting. We propose algorithm improvement to
construct hindsight experience directly from offline experience. HER is designed for Q-
learning algorithms [300, 203, 204] while AT use next token prediction to learn from hindsight
information. Chain-of-hindsight [186] explores turning all (binary or multi-scale) feedback
into a sentence that consists of chain of all feedback and show improve improvements in
aligning language models with human preferences. In relation to it, our work can be seen as
applying chain-of-hindsight in the context of automatic feedback. Our work steers model’s
behavior using the desired target return and reward function at each step as feedback instead
of using human preference.

5.5.3 Supervised and Meta RL

Motivated by transforming conventional RL (e.g., policy gradient [254, 257] and Q-learning [317,
203]) as a supervised learning problem, prior work explored various ways [278, 223, 177, 47,
48, 156]. Our work is closely related in that our model is similarly a return conditioned
supervised learning. At test time, our model can self-improve based upon past experience to
try to achieve target desired return. Using experience to improve model without changing
weights is similar to few-shot or in-context learning in large language models [39]. Recent work
Algorithm Distillation (AD) [156] demonstrates similar in-context behaviors in transformer
model. AD is trained on the lifetime trajectories of a RL algorithm that can solves the task,
posing a strong requirement of offline data, while in many important real world domains
there exists only diverse, lower return data from multiple sources. In relation to AD, Agentic
Transformer can be learned from sub-optimal data by turning the data into chain of hindsight
experience. Leveraging online experience to improve model at test time is related to meta
reinforcement learning (meta RL) [79, 308]. In meta RL the objective is to explicitly optimize
for meta learning at test time, while Agentic Transformer does not, in contrast, the meta
learning behavior emerges from training on chain of hindsight experience.

5.6 Conclusion
We propose Agentic Transformer (AT), a Transformer model with the ability of learning by
directly combining information from multiple sub-optimal trials and being able to improve
itself through multiple trials at test time. Motivated by prior works on hindsight experience
replay and chain of hindsight, the key innovation behind Agentic Transformer is relabelling
multiple trajectories to chain of hindsight experience that can be easily constructed from
arbitrary offline data. On standard RL benchmarks, we showed AT outperforms both strong

CHAPTER 5. AGENTIC TRANSFORMER FOR IN-CONTEXT ACTION 84

algorithms designed explicitly for offline RL as well as state-of-the-art Transformer-based
policies.

Limitations and Future Work.

• Large diverse datasets. While Agentic Transformer (AT) outperforms prior transformer-
based policies and performs competitively with TD-learning in standard RL benchmarks.
AT is a GPT model therefore all limitations of transformer model still apply to AT. For
instance, training AT requires large memory because of self-attention quadratic complexity
and long sequence length. At test time, rollouting our model is sequential thus slower than
non-transformer models. That being said, we believe the advantages of AT outweigh its
drawbacks. As we observed in NLP and CV, it is worth scaling transformer-based policies
in both model size and dataset size. As the datasets used in this work are still small,
future work could explore scaling up dataset and model and have more investigation into
using large transformer models for RL.

• Real world applications. As we observed in the experiments, Agentic Transformer can
learn by directly combining information from multiple sub-optimal trials. Because diverse
sub-optimal data is ubiquitous in the real world and AT scales well with model size and
dataset diversity, we believe an interesting future direction is applying AT for real-world
applications.

Acknowledgements
We thank the members of the Berkeley Robot Learning Lab and Berkeley AI Lab for helpful
discussions, as well as Google TPU Research Cloud for granting us access to TPUs. This
project is supported in part by ONR under N00014-21-1-2769.

85

Chapter 6

Unsupervised Active Pretraining

6.1 Introduction
Reinforcement learning (RL) provides a general framework for solving challenging sequential
decision-making problems. When combined with function approximation, it has achieved
remarkable success in advancing the frontier of AI technologies. These landmarks include out-
performing humans in computer games [204, 251, 306, 16] and solving complex robotic control
tasks [10, 6]. Despite these successes, they have to train from scratch to maximize extrinsic
reward for every encountered task. This is in sharp contrast with how intelligent creatures
quickly adapt to new tasks by leveraging previously acquired behaviors. Unsupervised pre-
training, a framework that trains models without expert supervision, has obtained promising
results in computer vision [214, 113, 56] and natural language modeling [304, 74, 39]. The
learned representation, when fine-tuned on the downstream tasks, can solve them efficiently
in a few-shot manner. With the models and datasets growing, performance continues to
improve predictably according to scaling laws.

Driven by the significance of massive unlabeled data, we consider an analogy setting of
unsupervised pre-training in computer vision where labels are removed during training. The
goal of pre-training is to have data efficient adaptation for some downstream task defined
in the form of rewards. In RL with unsupervised pre-training, the agent is allowed to train
for a long period without access to environment reward, and then only gets exposed to
the reward during testing. We first test an array of existing methods for unsupervised
pre-training to identity which gaps and challenges exist, we evaluate count-based bonus [28],
which encourages the agent to visit novel states. We apply count-based bonus to DrQ [148]
which is current state-of-the-art RL for training from pixels. We also evaluate ImageNet
pre-trained representations. The results are shown in Figure 6.1. We can see that count-based
bonus fails to outperform train DrQ from scratch. We hypothesize that the ineffectiveness
stems from density modeling at the pixel level being difficult. ImageNet pre-training does
not outperform training from scratch either, which has also been shown in previous research

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 86

in real world robotics [137]. We believe the reason is that neither of existing methods can
provide enough diverse data. Count-based exploration faces the difficult of estimating high
dimensional data density while ImageNet dataset is out-of-distribution for DMControl.

0.0 0.5 1.0 1.5 2.0
Supervised Environment Steps (×106)

0

100

200

300

400

E
pi

so
de

 R
et

ur
n

Hopper Hop

Algo
DrQ from scratch
ImageNet pre-train
Count based bonus
APT (ours)

Figure 6.1 Comparison of state-of-the-
art pixel-based RL with unsupervised pre-
training. APT (ours) and count-based bonus
(both based on DrQ [148]) are trained for
a long unsupervised period (5M environ-
ment steps) without access to environment
reward, and then gets exposure to the envi-
ronment reward during testing. APT signifi-
cantly outperform training DrQ from scratch,
count-based bonus, and ImageNet pre-trained
model.

To address the issue of obtaining diverse data for
RL with unsupervised pre-training, we propose to
actively collect novel data by exploring unknown
areas in the task-agnostic environment. The un-
derlying intuition is that a general exploration
strategy has to visit, with high probability, any
state where the agent might be rewarded in a sub-
sequent RL task. Concretely, our approach relies
on the entropy maximization principle [133, 264].
Our hope is that by doing so, the learned be-
havior and representation can be trained on the
whole environment while being as task agnostic
as possible. Since entropy maximization in high
dimensional state space is intractable as an oracle
density model is not available, we resort to the
particle-based entropy estimator [275, 27]. This
estimator is nonparametric and asymptotically
unbiased. The key idea is computing the average
of the Euclidean distance of each particle to its
nearest neighbors for a set of samples. We con-
sider an abstract representation space in order to
make the distance meaningful. To learn such a
representation space, we adapt the idea of con-
trastive representation learning [56] to encode image observations to a lower dimensional
space. Building upon this insight, we propose Unsupervised Active Pre-Training (APT) since
the agent is encouraged to actively explore and leverage the experience to learn behavior.

Our approach can be applied to a wide-range of existing RL algorithms. In this paper we
consider applying our approach to DrQ [148] which is a state-of-the-art visual RL algorithm.
On the Atari 26 games subset, APT significantly improves DrQ’s data-efficiency, achieving
54% relative improvement. On the full suite of Atari 57 games [204], APT significantly
outperforms prior state-of-the-art, achieving a median human-normalized score 3× higher
than the highest score achieved by prior unsupervised RL methods and DQN. On DeepMind
control suite, APT beats DrQ and unsupervised RL in terms of asymptotic performance
and data efficiency and solving tasks that are extremely difficult to train from scratch.
The contributions of our paper can be summarized as: (i) We propose a new approach
for unsupervised pre-training for visual RL based a nonparametric particle-based entropy
maximization. (ii) We show that our pre-training method significantly improves data efficiency

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 87

of solving downstream tasks on DMControl and Atari suite.

6.2 Problem Setting
Reinforcement Learning (RL) An agent interacts with its uncertain environment over
discrete timesteps and collects reward per action, modeled as a Markov Decision Process
(MDP) [234], defined by ⟨S,A, T, ρ0, r, γ⟩ where S ⊆ RnS is a set of nS-dimensional states,
A ⊆ RnA is a set of nA-dimensional actions, T : S × A × S → [0, 1] is the state transition
probability distribution. ρ0 : S → [0, 1] is the distribution over initial states, r : S ×A → R
is the reward function, and γ ∈ [0, 1) is the discount factor. At environment state s ∈ S, the
agent take actions a ∈ A, in the (unknown) environment dynamics defined by the transition
probability T (s′|s, a), and the reward function yields a reward immediately following the
action at performed in state st. We define the discounted return G(st, at) =

∑∞
l=0 γ

lr(st+l, at+l)
as the discounted sum of future rewards collected by the agent. In value-based reinforcement
learning, the agent learns an estimate of the expected discounted return, a.k.a, state-action
value function Qπ(st, at) = Est+1,at+1,...

[∑∞
l=0 γ

lr(st+l, at+l)
]
. A common way of deriving a

new policy from a state-action value function is to act ϵ-greedily with respect to the action
values (discrete) or to use policy gradient to maximize the value function (continuous).

Unsupervised Pre-Training RL In pretrained RL, the agent is trained in a reward-free
MDP ⟨S,S0,A, T,G⟩ for a long period followed by a short testing period with environment
rewards R provided. The goal is to learn a pretrained agent that can quickly adapt to testing
tasks defined by rewards to maximize the sum of expected future rewards in a zero-shot or
few-shot manner. This is also known as the two phases learning in unsupervised pretraining
RL [109]. The current state-of-the-art methods maximize the mutual information (I) between
policy-conditioning variable (w) and the behavior induced by the policy in terms of state
visitation (s).

max I(s;w) = maxH(w)−H(w|s),

where w is sampled from a fixed distribution in practice as in DIAYN [81] and VISR [109].
The objective can then be simplified as max−H(w|s). Due to it being intractable to directly
maximize this negative conditional entropy, prior work propose to maximize the variational
lower bound of the negative conditional entropy instead [20]. The training then amounts to
learning a posterior of task variable conditioning on states q(w|s).

−H(w|s) ≥ Es,w [log q(w|s)] .

Despite successful results in learning meaningful behaviors from reward-free interactions [e.g.
205, 101, 124, 81, 109], these methods suffer from insufficient exploration because they contain
no explicit exploration.

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 88

Another category considers the alternative direction of maximizing the mutual informa-
tion [43].

max I(s;w) = maxH(s)−H(s|w).

This intractable quantity can be similarly lowered bound by a variational approximation [20].

I(s;w) ≥ Es,w [qθ(s|w)]− Es [log p(s)] ,

where Es [log p(s)] can then be approximated by a posterior of state given task variables
Es [log p(s)] ≈ Es,w [log q(s|w)]. Despite their successes, this category of methods do not
explore sufficiently since the agent receives larger rewards for visiting known states than
discovering new ones as theoretically and empirically evidenced by Campos et al. [43]. In
addition, they have only been shown to work from explicit state-representations and it remains
unclear how to modify to learning from pixels.

In the next section, we introduce a new nonparametric unsupervised pre-training method
for RL which addresses these issues and outperforms prior state-of-the-arts on challenging
visual-domain RL benchmarks.

6.3 Unsupervised Active Pre-Training for RL
We want to incentivize the agent with a reward rt to maximize entropy in an abstract
representation space. Prior work on maximizing entropy relies on estimating density of states
which is challenging and non-trivial, instead, we take a two-step approach. First, we learn
a mapping fθ : RnS → RnZ that maps state space to an abstract representation space first.
Then, we propose a particle-based nonparametric approach to maximize the entropy by
deploying state-of-the-art RL algorithms.

We introduce how to maximize entropy via particle-based approximation in Section 6.3.1,
and describe how to learn representation from states in Section 6.3.2

6.3.1 Particle-Based Entropy Maximization

Our entropy maximization objective is built upon the nonparametric particle-based entropy
estimator proposed by Singh et al. [275] and Beirlant [27] and has has been widely studied in
statistics [134]. Its key idea is to measure the sparsity of the distribution by considering the
distance between each sampled data point and its k nearest neighbors. Concretely, assuming
we have number of n data points {zi}ni=1 from some unknown distribution, the particle-based
approximation can be written as

Hparticle(z) = −
1

n

n∑
i=1

log
k

nvki
+ b(k) ∝

n∑
i=1

log vki , (6.1)

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 89

Encoder

Particle-based Entropy
Maximation

observations

Projectionrepresentation

Expected Reward

Normalization

Contrastive Loss

representation

representation

Minibatch representations

K-nearest neighbors
distance Reward

Figure 6.2 Diagram of the proposed method APT. On the left shows the objective of
APT, which is to maximize the expected reward and minimize the contrastive loss. The
contrastive loss learns an abstract representation from observations induced by the policy. We
propose a particle-based entropy maximization based reward function such that we can deploy
state-of-the-art RL methods to maximize entropy in an abstraction space of the induced by
the policy. On the right shows the idea of our particle-based entropy, which measures the
distance between each data point and its k nearest neighbors.

where b(k) is a bias correction term that only depends on the hyperparameter k, and vki is
the volume of the hypersphere of radius ∥zi − z(k)i ∥ between zi and its k-th nearest neighbor
z
(k)
i . ∥ · ∥ is the Euclidean distance.

vki =
∥zi − z(k)i ∥nZ · πnZ/2

Γ (nZ/2 + 1)
, (6.2)

where Γ is the gamma function. Intuitively, vki reflects the sparsity around each particle
and equation (6.1) is proportional to the average of the volumes around each particle.

By substituting equation (6.2) into equation (6.1), we can simplify the particle-based entropy
estimation as a sum of the log of the distance between each particle and its k-th nearest
neighbor.

Hparticle(z) ∝
n∑
i=1

log ∥zi − z(k)i ∥nZ . (6.3)

Rather than using equation (6.3) as the entropy estimation, we find averaging the distance
over all k nearest neighbors leads to a more robust and stable result, yielding our estimation
of the entropy.

Hparticle(z) :=
n∑
i=1

log

c+ 1

k

∑
z
(j)
i ∈Nk(zi)

∥zi − z(j)i ∥nZ

 , (6.4)

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 90

where Nk(·) denotes the k nearest neighbors around a particle, c is a constant for numerical
stability (fixed to 1 in all our experiments).

We can view the particle-based entropy in equation (6.4) as an expected reward with the
reward function being r(zi) = log

(
c+ 1

k

∑
z
(j)
i ∈Nk(zi)

∥zi − z(j)i ∥nZ

)
for each particle zi. This

makes it possible to deploy RL algorithms to maximize entropy, concretely, for a batch of
transitions {(s, a, s′)} sampled from the replay buffer. We consider the representation of each
s′ as a particle in the representation space and the reward function for each transition is
given by

r(s, a, s′) = log

c+ 1

k

∑
z(j)∈Nk(z=fθ(s))

∥fθ(s)− z(j)∥nZ

 (6.5)

In order to keep the rewards on a consistent scale, we normalize the intrinsic reward by
dividing it by a running estimate of the mean of the intrinsic reward. See Figure 6.2 for
illustration of the formulation.

6.3.2 Learning Contrastive Representations

Our aforementioned entropy maximization is modular of the representation learning method
we choose to use, the representation learning part can be swapped out for different methods if
necessary. However, for entropy maximization to work, the representation needs to contain a
compressed representation of the state. Recent work, CURL [153], ATC [280] and SPR [258],
show contrastive learning (with data augmentation) helps learn meaningful representations
in RL. We choose contrastive representation learning since it maximally distinguishes an
observation st1 from alternative observations st2 according to certain distance metric in
representation space, we hypothesize is helpful for learning meaningful representations for
our nearest neighbors based entropy maximization. Our contrastive learning is based on
the contrastive loss from SimCLR [56], chosen for its simplicity. We also use the same set
of image augmentations as in DrQ [148] consisting of small random shifts and color jitter.
Concretely, we randomly sample a batch of states (images) from the replay buffer {si}ni=1.
For each state si, we apply random data augmentation and obtain two randomly augmented
views of the same state, denoted as key ski = aug(si) and query svi = aug(si). The augmented
observations are encoded into a small latent space using the encoder z = fθ(·) followed by
a deterministic projection hϕ(·) where a contrastive loss is applied. The goal of contrastive
learning is to ensure that after the encoder and projection, ski is relatively more close to svi
than any of the data points {skj , svj}nj=1,j ̸=i.

min
θ,ϕ
− 1

2n

n∑
i=1

[
log

exp(hϕ(fθ(s
k
i))

Thϕ(fθ(s
v
i)))∑n

i=1 I[j ̸=i](exp(hϕ(fθ(ski))Thϕ(fθ(skj))) + exp(hϕ(fθ(ski))
Thϕ(fθ(svj))))

]
.

Following DrQ, the representation encoder fθ(·) is implemented by the convolutional residual
network followed by a fully-connected layer, a LayerNorm and a Tanh non-linearity. We

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 91

decrease the output dimension of the fully-connected layer after the convnet from 50 to 15.
We find it helps to use spectral normalization [202] to normalize the weights and use ELU [64]
as the non-linearity in between convolutional layers.

Table 6.1 positions our new approach with respect to existing ones. Figure 6.2 shows the
resulting model. Training proceeds as in other algorithms maximizing extrinsic reward: by
learning neural encoder f and computing intrinsic reward r and then trying to maximize
this intrinsic return by training the policy. Algorithm 4 shows the pseudo-code of APT, we
highlight the changes from DrQ to APT in color.

Algorithm 4: Training APT
Randomly Initialize f encoder
Randomly Initialize π and Q networks
for e := 1,∞ do

for t := 1, T do
Receive observation st from environment
Take action at ∼ π(·|st), receive observation st+1 and ZZrt from environment
D ← D ∪ (st, at,ZZrt, s

′
t)

{(si, ai,ZZri, s′i)}Ni=1 ∼ D // sample a mini batch
Train neural encoder f on mini batch // representation learning
for each i = 1..N do

a′i ∼ π(·|s′i)
Q̂i = Qθ′(s

′
i, a

′
i)

Compute rAPT with equation (6.5) // particle-based entropy reward
yi ← rAPT + γQ̂i

end
lossQ =

∑
i(Q(si, ai)− yi)2

Gradient descent step on Q and π // standard actor-critic
end

end

6.4 Related Work
State Space Entropy Maximization. Maximizing entropy of policy has been widely
studied in RL, from inverse RL [341] to optimal control [294, 295, 245] and actor-critic [107].
State space entropy maximization has been recently used as an exploration method by
estimating density of states and maximizing entropy [112]. In Hazan et al. [112] they present
provably efficient exploration algorithms under certain conditions. VAE [144] based entropy
estimation has been deployed in lower dimensional observation space [160]. However, due
to the difficulty of estimating density in high dimensional space such as Atari games, such
parametric exploration methods struggle to work in more challenging visual domains. In
contrast, our work turns to particle based entropy maximization in a contrastive representation
space. Maximizing particle-based entropy has been shown to improved data efficiency in

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 92

Table 6.1 Methods for pre-training RL in reward-free setting. Exploration: the method
can explore efficiently. Visual: the method works well in visual RL. Off-policy: the method
is compatible with off-policy RL optimization. ⋆ means only in state-based RL. c(s) is
count-based bonus. ψ(s, a): successor feature, ϕ(s): state representation.

Algorithm Objective Visual Exploration Off-policy Pre-Trained model

MaxEnt [112] maxH(s) ✗ ✓⋆ ✗ π(a|s)
CBB [28] maxEs [c(s)] ✗ ✓ ✓ π(a|s)
MEPOL [209] maxH(s) ✗ ✓⋆ ✗ π(a|s)
VISR [109] max−H(z|s) ✓ ✗ ✓ ψ(s, z), ϕ(s)
DIAYN [81] max−H(z|s) + H(a|z, s) ✗ ✓⋆ ✓ π(a|s, z)
DADS [266] maxH(s)− H(s|z) ✗ ✗ ✓ π(a|s, z), q(s′|s, z)
EDL [43] maxH(s)− H(s|z) ✗ ✓⋆ ✓ π(a|s, z)
APT maxH(s) ✓ ✓ ✓ π(a|s), Q(s, a)

state-based RL as in MEPOL [209]. However, MEPOL’s entropy estimation depends on
importance sampling and the optimization based on on-policy RL algorithms, hindering
further applications to challenging visual domains. MEPOL also assumes having access to
the semantic information of the state, making it infeasible and not obvious how to modify it
to work from pixels. In contrast, our method is compatible with deploying state-of-the-art
off-policy RL and representation learning algorithms to maximize entropy. Nonparametric
entropy maximization has been studied in goal conditioned RL [316]. Pitis et al. [231] proposes
maximizing entropy of achieved goals and demonstrates significantly improved success rates
in long horizon goal conditioned tasks. The work by Badia et al. [17] also considers k-nearest
neighbor based count bonus to encourage exploration, yielding improved performance in
Atari games. K-nearest neighbor based exploration is shown to improve exploration and
data efficiency in model-based RL [285]. Concurrently, it has been shown to be an effective
unsupervised pre-training objective for transferring learning in RL [45], their large scale
experiments further demonstrate the effectiveness of unsupervised pre-training.

Data Efficient RL. To improve upon the sample efficiency of deep RL methods, various
methods have been proposed: Kaiser et al. [140] introduce a model-based agent (SimPLe)
and show that it compares favorably to standard RL algorithms when data is limited. Hessel
et al. [116], Kielak [141], van Hasselt et al. [301] show combining existing RL algorithms
(Rainbow) can boost data efficiency. Data augmentation has also been shown to be effective
for improving data efficiency in vision-based RL [151, 148]. Temporal contrastive learning
combined with model-based learning has been shown to boost data efficiency [258]. Combining
contrastive loss with RL has been shown to improve data efficiency in CPC [114] despite only
marginal gains. CURL [153] show substantial data-efficiency gains while follow-up results
from Kostrikov et al. [148] suggest that most of the benefits come from its use of image
augmentation. Contrastive loss has been shown to learn useful pretrained representations
when training on expert demonstration [280], however in our work the agent has to explore
the world itself and exploit collect experience.

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 93

Unsupervised Pre-Training RL. A number of recent works have sought to improve
reinforcement learning via the addition of an unsupervised pretraining stage, in which the
agent improves its representations prior to beginning learning on the target task. One common
approach has been to allow the agent a period of fully-unsupervised interaction with the
environment during which the agent is trained to learn a set of skills associated with different
paths through the environment, as in DIAYN [81], Proto-RL [323], MUSIC [336], APS [178],
and VISR [109]. Others have proposed to use self-supervised objectives to generate intrinsic
rewards encouraging agents to visit new states, e.g., Pathak et al. [227] use the disagreement
between an ensemble of latent-space dynamics models. However, our work is trained to
maximize the entropy of the states induced by the policy. By visiting any state where the
agent might be rewarded in a subsequent RL task, our work performs better or comparably
well as other more complex and specialized state-of-the-art methods.

6.5 Results
We test APT in DeepMind Control Suite [DMControl; 289] and the Atari suite [29]. During the
the long period of pre-training with environment rewards removed, we use DrQ to maximize
the entropy maximization reward defined in equation (6.5). The pre-trained value function
Q(s, a) is fine-tuned to maximize task specific reward after being exposing to environment
rewards during testing period. For our DeepMind control suite and Atari games experiments,
we largely follow DrQ, except we perform two gradient steps per environment step instead of
one. Our ablation studies confirm that these changes are not themselves responsible for our
performance. Kornia [247] is used for efficient GPU-based data augmentations. Our model is
implemented in Numpy [111] and PyTorch [224].

APT outperforms prior from scratch SOTA RL on DMControl. We evaluate the
performance of different methods by computing the average success rate and episodic return
at the end of training.

The agent is allowed a long unsupervised pre-training phase (5M steps), followed by a short
test phase exposing to downstream reward, during which the pre-trained model is fine-tuned.
We follow the evaluation setting of DrQ and test APT on a subset of DMControl suite,
which includes training Walker, Cheetah, Hopper for various locomotion tasks. Models are
pre-trained on Cheetah, Hopper, and Walker, and subsequently fine-tuned on respective
downstream tasks. We additionally design more challenging sparse reward tasks where the
robot is required to accomplish tasks guided only by sparse feedback signal. The reason we
opted to design new sparse reward tasks is to have more diverse downstream tasks. As far as
we know, there is only one Cartpole Swingup Sparse that is a CartPole based sparse reward
task. Due to its 2D nature being quite limited, we eventually decided to design distinguishable
downstream tasks based on a little bit more complex environment, e.g. Hopper Jump etc.
The details of the tasks are included in the supplementary material.

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 94

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000

E
pi

so
de

 R
et

ur
n

Cheetah Run

0.0 0.5 1.0 1.5 2.0

0

200

400

600

800

1000

Cheetah Flip Backward

0.0 0.5 1.0 1.5 2.0

0

100

200

300

400

Hopper Hop

0.0 0.5 1.0 1.5 2.0

0

100

200

300

400

Hopper Hop Backward

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

E
pi

so
de

 R
et

ur
n

Walker Run

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

Walker Walk

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

Cheetah Jump Sparse

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

Cheetah Reach Sparse

0.0 0.1 0.2 0.3 0.4 0.5
Supervised Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

Hopper Jump Sparse

0.0 0.1 0.2 0.3 0.4 0.5
Supervised Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0
Hopper Reach Sparse

0.0 0.2 0.4 0.6 0.8 1.0
Supervised Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

Walker Jump Sparse

0.0 0.2 0.4 0.6 0.8 1.0
Supervised Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

Walker Escape Sparse

Algo APT (ours) Count based bonus DrQ from scratch

Figure 6.3 Results of different methods in environments from DMControl. All curves are
the average of three runs with different seeds, and the shaded areas are standard errors of
the mean.

The learning process of RL agents becomes highly inefficient in sparse supervision tasks
when relying on standard exploration techniques. This issue can be alleviated by introducing
intrinsic motivation, i.e., denser reward signals that can be automatically computed, one
approach that works well in high dimensional setting is count-based exploration [198, 219, 198].

The results are presented in Figure 6.3, APT significantly outperforms SOTA training from
scratch (DrQ from scratch) and SOTA exploration method (count-based bonus) on every task.
With only a few number of environment interactions, APT quickly adapt to downstream
tasks and achieves higher return much more quicker than prior state-of-the-art RL algorithms.
Notably, on the sparse reward tasks that are extremely difficult for training from scratch,
APT yields significantly higher data efficiency and asymptotic performance.

APT outperforms from scratch SOTA RL in Atari. We test APT on the sample-
efficient Atari setting [140, 301] which consists of the 26 easiest games in the Atari suite (as
judged by above random performance for their algorithm).

We follow the evaluation setting in VISR, agents are allowed a long unsupervised training
phase (250M steps) without access to rewards, followed by a short test phase with rewards.

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 95

The test phase contains 100K environment steps – equivalent to 400k frames, or just under two
hours – compared to the typical standard of 500M environment steps, or roughly 39 days of
experience. We normalize the episodic return with respect to expert human scores to account
for different scales of scores in each game, as done in previous works. The human-normalized
scores (HNS) of an agent on a game is calculated as agent score−random score

human score−random score and aggregated
across games by mean or median.

A full list of scores and aggregate metrics on the Atari 26 subset is presented in Table 6.2.
The results on the full 57 Atari games suite is presented in supplementary material. For
consistency with previous works, we report human and random scores from [116]. In the
data-limited setting, APT achieves super-human performance on eight games and achieves
scores higher than previous state-of-the-arts. In the full suite setting, APT achieves super-
human performance on 15 games, compared to a maximum of 12 for any previous methods
and achieves scores significantly higher than any previous methods.

Unsupervised pre-training on top of DrQ leads a significant increase in performance(a 54%
increase in median score, a 73% increase in mean score, and 5 more games with human-level
performance), surpassing DQN which trained on hundreds of millions of sampling steps.

Compared with SPR [258] which is a recent state-of-the-art model-based data-efficient
algorithm, APT achieves comparable mean and median scores. The SPR is based on
Rainbow which combines more advances than DrQ which is significantly simpler. While the
representation of SPR is also learned by contrastive learning, it trains a model-based dynamic
to predict its own latent state representations multiple steps into the future. This temporal
representation learning, as illustrated in the SPR paper, contributes to its impressive results
compared with standard contrastive representation learning. We believe that it is possible to
combine temporal contrastive representation learning of SPR with the effective nonparametric
entropy maximization of APT, which is an interesting future direction.

APT outperforms prior unsupervised RL. Despite there being many different proposed
unsupervised RL methods, their successes are only demonstrated in simple state based
environments. Prior works train the agent for a period of fully-unsupervised interaction with
the environment, during which the agent is trained to learn a set of skills associated with
different paths through the environment, as in DIAYN [81] and VIC [101], or to maximize
the diversity of the states it encounters, as in MEPOL [209] and Hazan et al. [112]. Until
recently, VISR [109] achieves improved results in Atari games using pixels as input based
using a successor feature based approach. In order to compare with prior unsupervised RL
methods, we choose DIAYN due to it being based on mutual information maximization and
its reported high performance in state-based RL, and MEPOL due to it being based on
entropy maximization. We implement them to take pixels as input in Atari games. Our
implementation was checked against publicly available code and we made a best effort attempt
to tune the algorithms in Atari games. We test two variants of DIAYN and MEPOL, using or
not using contrastive representation learning as in APT. In order to ensure a fair comparison,

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 96

Table 6.2 Performance of different methods on the 26 Atari games considered by [140]
after 100K environment steps. The results are recorded at the end of training and averaged
over 10 random seeds for APT. APT outperforms prior methods on all aggregate metrics,
and exceeds expert human performance on 7 out of 26 games while using a similar amount of
experience. Prior work has reported different numbers for some of the baselines, particularly
SimPLe and DQN. To be rigorous, we pick the best number for each game across the tables
reported in van Hasselt et al. [301] and Kielak [141].

Game Random Human SimPLe DER CURL DrQ SPR VISR APT (ours)
Alien 227.8 7127.7 616,9 739.9 558.2 771.2 801.5 364.4 2614.8
Amidar 5.8 1719.5 88.0 188.6 142.1 102.8 176.3 186.0 211.5
Assault 222.4 742.0 527.2 431.2 600.6 452.4 571.0 12091.1 891.5
Asterix 210.0 8503.3 1128.3 470.8 734.5 603.5 977.8 6216.7 185.5
Bank Heist 14.2 753.1 34.2 51.0 131.6 168.9 380.9 71.3 416.7
BattleZone 2360.0 37187.5 5184.4 10124.6 14870.0 12954.0 16651.0 7072.7 7065.1
Boxing 0.1 12.1 9.1 0.2 1.2 6.0 35.8 13.4 21.3
Breakout 1.7 30.5 16.4 1.9 4.9 16.1 17.1 17.9 10.9
ChopperCommand 811.0 7387.8 1246.9 861.8 1058.5 780.3 974.8 800.8 317.0
Crazy Climber 10780.5 23829.4 62583.6 16185.2 12146.5 20516.5 42923.6 49373.9 44128.0
Demon Attack 107805 35829.4 62583.6 16185.3 12146.5 20516.5 42923.6 8994.9 5071.8
Freeway 0.0 29.6 20.3 27.9 26.7 9.8 24.4 -12.1 29.9
Frostbite 65.2 4334.7 254.7 866.8 1181.3 331.1 1821.5 230.9 1796.1
Gopher 257.6 2412.5 771.0 349.5 669.3 636.3 715.2 498.6 2590.4
Hero 1027.0 30826.4 2656.6 6857.0 6279.3 3736.3 7019.2 663.5 6789.1
Jamesbond 29.0 302.8 125.3 301.6 471.0 236.0 365.4 484.4 356.1
Kangaroo 52.0 3035.0 323.1 779.3 872.5 940.6 3276.4 1761.9 412.0
Krull 1598.0 2665.5 4539.9 2851.5 4229.6 4018.1 2688.9 3142.5 2312.0
Kung Fu Master 258.5 22736.3 17257.2 14346.1 14307.8 9111.0 13192.7 16754.9 17357.0
Ms Pacman 307.3 6951.6 1480.0 1204.1 1465.5 960.5 1313.2 558.5 2827.1
Pong -20.7 14.6 12.8 -19.3 -16.5 -8.5 -5.9 -26.2 -8.0
Private Eye 24.9 69571.3 58.3 97.8 218.4 -13.6 124.0 98.3 96.1
Qbert 163.9 13455.0 1288.8 1152.9 1042.4 854.4 669.1 666.3 17671.2
Road Runner 11.5 7845.0 5640.6 9600.0 5661.0 8895.1 14220.5 6146.7 4782.1
Seaquest 68.4 42054.7 683.3 354.1 384.5 301.2 583.1 706.6 2116.7
Up N Down 533.4 11693.2 3350.3 2877.4 2955.2 3180.8 28138.5 10037.6 8289.4
Mean HNS 0.000 1.000 44.3 28.5 38.1 35.7 70.4 64.31 69.55
Median HNS 0.000 1.000 14.4 16.1 17.5 26.8 41.5 12.36 47.50
Superhuman 0 N/A 2 2 2 2 7 6 7

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 97

we test a variant of APT without contrastive representation learning.

Table 6.3 Evaluation in Atari games.
The amount of RL interaction utilized
is 100K. Mdn is the median of human-
normalized scores, M is the mean and
> H is the number of games with human-
level performance. CL denotes training
representation encoder using contrastive
learning and data augmentation. On each
subset, we mark as bold the highest score.

26 Game Subset Full 57 Games
Algorithm Mdn M >H Mdn M >H

CBB 1.23 21.94 3 – – –
MEPOL 0.34 17.94 2 – – –
DIAYN 1.34 25.39 2 2.95 23.90 6
CBB w/ CL 1.78 17.34 2 – – –
MEPOL w/ CL 1.05 21.78 3 – – –
DIAYN w/ CL 1.76 28.44 2 3.28 25.14 6
VISR 9.50 128.07 7 6.81 102.31 11
APT w/o CL 21.23 28.12 3 28.65 41.12 9
APT 47.50 69.55 7 33.41 47.73 12

The aggregated results are presented in Table 6.3,
APT significantly outperforms prior state-based
unsupervised RL algorithms DIAYN and MEPOL.
Both baselines benefit from contrastive representa-
tion learning, but their scores are still significantly
lower than APT’s score, confirming that the effec-
tiveness of the off-policy entropy maximization in
APT. Compared with the state-of-the-art method
in Atari VISR, APT achieves significantly higher
median score despite having a lower mean score.
From the scores breakdown presented in supple-
mentary file, APT performs significantly better
than VISR in hard exploration games, while VISR
achieves higher scores in dense reward games. We
attribute this to that maximizing state entropy
leads to more exploratory behavior while succes-
sor features enables quicker adaptation for dense
reward feedback. It is possible to combine VISR
and APT to have the best of both worlds, which
we leave as a future work.

Ablation study. We conduct several ablation studies to measure the contribution of each
component in our method. We test two variants of APT that use the same number of
gradient steps per environment step and use the same activation function as in DrQ. Another
variant of APT is based on randomly selected neighbors to compute particle-based entropy.

Table 6.4 Scores on the 26 Atari
games under consideration for variants
of APT. Scores are averaged over 3 ran-
dom seeds. All variants listed here use
data augmentation.

Variant Human-Normalized Score
median mean

APT 47.50 69.55

APT w/o optim change 41.50 60.10
APT w/o arch change 45.71 67.82
APT w/ rand neighbor 20.80 24.97
APT w/ fixed encoder 33.24 41.08

We also test a variant of APT that use a fixed
randomly initialized encoder to study the impact
of representation learning. Table 6.4 shows the
performance of each variant of APT. Increasing
gradient steps of updating value function from 1
to 2 and using ELU activation function yield higher
scores. Using k-nearest neighbors is crucial to high
scores, we believe the reason is randomly selected
neighbors do not provide necessary incentive to
explore. Using randomly initialized convolutional
encoder downgrades performance significantly but
still achieve higher score than DrQ, indicating our
particle-based entropy maximization is robust and
powerful.

Contrastive learning representation has been shown to have the “uniformity on the hypersphere”

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 98

property [312], this leads to the question that whether maximum entropy exploration in
state space is important. To study this question, we have a variant of APT “Pos Reward
APT” which receives a simple positive do not die signal but no particle-based entropy reward.

Table 6.5 Scores on 5 Atari games under consideration for dif-
ferent variants of fine-tuning. Scores are averaged over 3 random
seeds.

Mean Reward (3 seeds) Alien Freeway Qbert Private Eye MsPacman

APT (pretrained head) 2614.8 29.9 17671.2 96.1 2827.1
APT (random head) 1755.0 15.2 2138.3 61.3 1724.9

We ran the experiments
on MsPacman, we reduced
the pretraining phase to
5M steps to reduce com-
putation cost. The evalu-
ation metrics are the num-
ber of ram states visited
using [8] and the down-
stream zero shot performance on Atari game. APT visits nearly 27 times more unique
ram states than “Pos Reward APT”, showing that the entropy intrinsic reward is indispens-
able for exploration. In downstream task evaluation over 3 random seeds, “Pos Reward
APT@0” achieves reward 363.7, “APT@0” achieves reward 687.1, showing that the “do not
die” signal is insufficient for exploration or learning pretrained behaviors and representations.

We consider a variant of APT that re-initialize the head of pretrained actor-critic. We have
run experiments in five different Atari games, as shown in Table 6.5, pretrained heads perform
better than randomly initialized heads in 4 out of 5 games. The experiments demonstrate
that finetuning from a pretrained actor-critic head accelerates learning. However, we believe
that which one of the two is better depends on the alignment between downstream reward
and intrinsic reward. It would be interesting to study how to better leverage downstream
reward to finetune the pretrained model.

6.6 Discussion
Limitation: The fine-tuning strategy employed here (when combined with a value function)
works best when the intrinsic and extrinsic rewards being of a similar scale. We believe the
discrepancy between intrinsic reward scale and downstream reward scale possibly explain the
suboptimal performance of APT in dense reward games. This is an interesting future direction
to further improve APT, we hypothesize that reinitializing behaviors part (actor-critic heads)
might be useful if the downstream reward scale is very different from pretraining reward scale.
One of the principled ways could be adaptive normalization [302], it is an interesting future
direction. One challenge of our method is the non-stationarity of the intrinsic reward, being
non additive reward poses an interesting challenge for reinforcement learning methods. While
our method outperforms training from scratch and prior works, we believe designing better
optimization RL methods for maximizing our intrinsic reward can lead to more significant
improvement.

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 99

Conclusion: A new unsupervised pre-training method for RL is introduced to address
reward-free pre-training for visual RL, allowing the same task-agnostic pre-trained model to
successfully tackle a broad set of RL tasks. Our major contribution is introducing a practical
intrinsic reward derived from particle-based entropy maximization in abstract representation
space. Empirical study on DMControl suite and Atari games show our method dramatically
improves performance on tasks that are extremely difficult for training from scratch. Our
method achieves the results of fully supervised canonical RL algorithms using a small fraction
of total samples and outperforms data-efficient supervised RL methods.

For future work, there are a few ways in which our method can be improved. The long
pre-training phase in our work is computationally intensive, since the exhaustive search
and exploration is of high sample complexity. One way to remedy this is by combining our
method with successful model-based RL and search approaches to reduce sample complexity.
Furthermore, fine-tuning the whole pre-trained model can make it prone to catastrophic
forgetting. As such, it is worth studying alternative methods to leverage the pre-trained
models such as keeping the pretrained model unchanged and combine it with a randomly
initialized model.

Acknowledgments
This research was supported by DARPA Data-Driven Discovery of Models (D3M) program.
We would like to thank Misha Laskin, Olivia Watkins, Qiyang Li, Lerrel Pinto, Kimin Lee and
other members at RLL and BAIR for insightful discussion and giving constructive comments.
We would also like to thank anonymous reviewers for their helpful feedback for previous
versions of our work.

6.7 General Implementation Details
For our Atari games and DeepMind Control Suite experiments, we largely follow DrQ [148],
with the following exceptions. We use three layer convolutional neural network from [204] for
policy network, and the Impala architecture for neural encoder with LSTM module removed.
We use the ELU nonlinearity [64] in between layers of the encoder. The number of power
iterations is 5 in spectral normalization.

The convolution neural network is followed by a full-connected layer normalized by LayerNorm [15]
and a tanh nonlinearity applied to the output of fully-connected layer.

The data augmentation is a simple random shift which has been shown effective in visual
domain RL in DrQ [148] and RAD [151]. Specifically, the images are padded each side by 4
pixels (by repeating boundary pixels) and then select a random 84× 84 crop, yielding the
original image. The replay buffer size is 100K. This procedure is repeated every time an
image is sampled from the replay buffer. The learning rate of contrastive learning is 0.001,

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 100

the temperature is 0.1. The projection network is a two-layer MLP with hidden size of 128
and output size of 64. Batch size used in both RL and representation learning is 512. The
pre-training phase consists of 5M environment steps on DMControl and 250M environment
steps on Atari games. The evaluation is done for 125K environment steps at the end of
training for 100K environment steps.

The implementation of APT can be found at https://github.com/rll-research/url_
benchmark.

6.8 Atari Details
The corresponding hyperparameters used in Atari experiments are shown in Table 6.7
and Table 6.8.

6.9 DeepMind Control Suite Details
The action repeat hyperparameters are show in Table 6.6. The corresponding hyperparameters
used in DMControl experiments are shown in Table 6.9 and Table 6.8.

Table 6.6 The action repeat hyper-parameter used for each environment.

Environment name Action repeat
Cheetah 4
Walker 2
Hopper 2

6.10 Asymptotic Behavior of Intrinsic Reward
With the intrinsic reward defined in equation (6.5), we can derive that the intrinsic reward
decreases to 0 as more of the state space is visited, which is a favorable property for pre-
training.

Proposition 1. Assume the MDP is episodic and its state space is finite S ⊆ RnS , the
representation encoder fθ : RnS → RnZ is deterministic, and we have a buffer of observed
states (s1, . . . , sT) with total sample size T . For an optimal policy that maximizes the intrinsic
rewards defined as in equation (6.5) with k ∈ N, we can derive the intrinsic reward is 0 in
the limit of sample size T .

lim
T→∞

r(s, a, s′) = 0, ∀s ∈ S.

https://github.com/rll-research/url_benchmark
https://github.com/rll-research/url_benchmark

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 101

Table 6.7 Hyper-parameters in the Atari suite experiments.

Parameter Setting
Data augmentation Random shifts and Intensity
Grey-scaling True
Observation down-sampling 84× 84
Frames stacked 4
Action repetitions 4
Reward clipping [−1, 1]
Terminal on loss of life True
Max frames per episode 108k
Update Double Q
Dueling True
Target network: update period 1
Discount factor 0.99
Minibatch size 32
RL optimizer Adam
RL optimizer (pre-training): learning rate 0.0001
RL optimizer (fine-tuning): learning rate 0.001
RL optimizer: β1 0.9
RL optimizer: β2 0.999
RL optimizer: ϵ 0.00015
Max gradient norm 10
Training steps 100k
Evaluation steps 125k
Min replay size for sampling 1600
Memory size Unbounded
Replay period every 1 step
Multi-step return length 10
Q network: channels 32, 64, 64
Q network: filter size 8× 8, 4× 4, 3× 3
Q network: stride 4, 2, 1
Q network: hidden units 512
Non-linearity ReLU
Exploration ϵ-greedy
ϵ-decay 2500

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 102

Table 6.8 Hyper-parameters for Learning the Neural Encoder.

Parameter Setting
Value of k search in {3, 5, 10}
Temperature 0.1
Non-linearity ELU
Network architecture same as the Q network encoder (Atari) or the shared encoder (DMControl)
FC hidden size 1024
Output size 5

Table 6.9 Hyper-parameters in the DeepMind control suite experiments.

Parameter Setting
Data augmentation Random shifts
Frames stacked 3
Action repetitions Table 6.6
Replay buffer capacity 100000
Random steps (fine-tuning phase) 1000
RL minibatch size 512
Discount γ 0.99
RL optimizer Adam
RL learning rate 10−3

Contrastive Learning Temperature 0.1
Shared encoder: channels 32, 32, 32
Shared encoder: filter size 3× 3, 3× 3, 3× 3
Shared encoder: stride 2, 2, 2, 1
Actor update frequency 2
Actor log stddev bounds [−10, 2]
Actor: hidden units 1024
Actor: layers 3
Critic Q-function: hidden units 1024
Critic target update frequency 2
Critic Q-function soft-update rate τ 0.01
Non-linearity ReLU

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 103

While the assumption of finite state space may not be true for large complex environment like
Atari games, the proposition 1 gives more insights on using this particular intrinsic reward
for pre-training.

Proof. Since the intrinsic reward r(s, a, s′) defined in equation (6.5) depends on the k nearest
neighbors in latent space and the encoder fθ is deterministic, we just need to prove the
visitation count c(s) of s is larger than k as T goes infinity. We know the MDP is episodic,
therefore as T →∞, all states communicate and c(s)→∞, thus we have lim

T→∞
c(s) ≥ k,∀k ∈

N,∀s ∈ S.

6.11 DeepMind Control Suite Sparse Environments
In addition to the existing tasks in DMControl, we tested different methods on three set
customized sparse reward tasks: (1) {HalfCheetah, Hopper, Walker} Jump Sparse: the agent
receives a positive reward 1 for jumping above a given height otherwise reward is 0. (2)
{HalfCheetah, Hopper, Walker} Reach Sparse: the agent receives positive reward 1 for reaching
a given target location otherwise reward is 0. (3) Walker Turnover Sparse: the initial position
of Walker is turned upside down, and receives reward 1 for successfully turning itself over
otherwise 0. In all the considered tasks, the episode ends when the goal is reached.

6.12 Scores on the full 57 Atari games
A comparison between APT and baselines on each individual Atari game is shown in Table 6.10.
Prior work has reported different numbers for some of the baselines, particularly SimPLe and
DQN. To be rigorous, we pick the best number for each game across the tables reported in van
Hasselt et al. [301] and Kielak [141]. APT achieves super-human performance on 12 games,
compared to a maximum of 11 for any previous methods and achieves scores significantly
higher than any previous methods.

CHAPTER 6. UNSUPERVISED ACTIVE PRETRAINING 104

Table 6.10 Comparison of raw scores of each method on Atari games. On each subset, we
mark as bold the highest score. For VISR, due to the lack of available source code, we made
a best effort attempt to reproduce the algorithm.

Game Random Human VISR APT
Alien 227.8 7127.7 364.4 2614.8
Amidar 5.8 1719.5 186.0 211.5
Assault 222.4 742.0 1209.1 891.5
Asterix 210.0 8503.3 6216.7 185.5
Asteroids 7191 47388.7 4443.3 678.7
Atlantis 12850.0 29028.1 140542.8 40231.0
Bank Heist 14.2 753.1 71.3 416.7
Battle Zone 2360.0 37187.5 7072.7 7065.1
Beam Rider 363.9 16826.5 1741.9 3487.2
Berzerk 123.7 2630.4 490.0 493.4
Bowling 23.1 160.7 21.2 -56.5
Boxing 0.1 12.1 13.4 21.3
Breakout 1.7 30.5 17.9 10.9
Centipede 2090.9 12017.1 7184.9 6233.9
Chopper Command 811.0 7387.8 800.8 317.0
Crazy Climber 10780.5 23829.4 49373.9 44128.0
Defender 2874.5 18688.9 15876.1 5927.9
Demon Attack 107805 35829.4 8994.9 6871.8
Double Dunk -18.6 -16.4 -22.6 -17.2
Enduro 0.0 860.5 -3.1 -0.3
Fishing Derby -91.7 -38.7 -93.9 -5.6
Freeway 0.0 29.6 -12.1 29.9
Frostbite 65.2 4334.7 230.9 1796.1
Gopher 257.6 2412.5 498.6 2190.4
Gravitar 173.0 3351.4 328.1 542.0
Hero 1027.0 30826.4 663.5 6789.1
Ice Hockey -11.2 0.9 -18.1 -30.1
Jamesbond 29.0 302.8 484.4 356.1
Kangaroo 52.0 3035.0 1761.9 412.0
Krull 1598.0 2665.5 3142.5 2312.0
Kung Fu Master 258.5 22736.3 16754.9 17357.0
Montezuma Revenge 0.0 4753.3 0.0 0.2
Ms Pacman 307.3 6951.6 558.5 2527.1
Name This Game 2292.3 8049.0 2605.8 1387.2
Phoenix 761.4 7242.6 7162.2 3874.2
Pitfall -229.4 6463.7 -370.8 -12.8
Pong -20.7 14.6 -26.2 -8.0
Private Eye 24.9 69571.3 98.3 96.1
Qbert 163.9 13455.0 666.3 17671.2
Riverraid 1338.5 17118.0 5422.2 4671.0
Road Runner 11.5 7845.0 6146.7 4782.1
Robotank 2.2 11.9 10.0 13.7
Seaquest 68.4 42054.7 706.6 2116.7
Skiing -17098.1 -4336.9 -19692.5 -38434.1
Solaris 1236.3 12326.7 1921.5 841.8
Space Invaders 148.0 1668.7 9741.0 3687.2
Star Gunner 664.0 10250.0 25827.5 8717.0
Surround -10.0 6.5 -15.5 -2.5
Tennis -23.8 -8.3 0.7 1.2
Time Pilot 3568.0 5229.2 4503.6 2567.0
Tutankham 11.4 167.6 50.7 124.6
Up N Down 533.4 11693.2 10037.6 8289.4
Venture 0.0 1187.5 -1.7 231.0
Video Pinball 0.0 17667.9 35120.3 2817.1
Wizard Of Wor 563.5 4756.5 853.3 1265.0
Yars Revenge 3092.9 54576.9 5543.5 1871.5
Zaxxon 32.5 9173.3 897.5 3231.0
Mean Human-Norm’d 0.000 1.000 68.42 47.73
Median Human-Norm’d 0.000 1.000 9.41 33.41
#Superhuman 0 N/A 11 12

105

Chapter 7

Active Pretraining with Successor
Features

7.1 Introduction
Deep unsupervised pretraining has achieved remarkable success in various frontier AI domains
from natural language processing [74, 230, 39] to computer vision [113, 56]. The pre-trained
models can quickly solve downstream tasks through few-shot fine-tuning [39, 57].

In reinforcement learning (RL), however, training from scratch to maximize extrinsic reward
is still the dominant paradigm. Despite RL having made significant progress in playing video
games [204, 251, 306, 16] and solving complex robotic control tasks [10, 6], RL algorithms
have to be trained from scratch to maximize extrinsic return for every encountered task. This
is in sharp contrast with how intelligent creatures quickly adapt to new tasks by leveraging
previously acquired behaviors.

In order to bridge this gap, unsupervised pretraining RL has gained interest recently, from
state-based [101, 81, 266, 209] to pixel-based RL [109, 179, 45]. In unsupervised pretraining
RL, the agent is allowed to train for a long period without access to environment reward, and
then got exposed to reward during testing. The goal of pretraining is to have data efficient
adaptation for some downstream task defined in the form of rewards.

State-of-the-art unsupervised RL methods consider various ways of designing the so called
intrinsic reward [26, 25, 101, 1], with the goal that maximizing this intrinsic return can
encourage meaningful behavior in the absence of external rewards. There are two lines of
work in this direction, we will discuss their advantages and limitations, and show that a novel
combination yields an effective algorithm which brings the best of both world.

The first category is based on maximizing the mutual information between task variables (p(z))
and their behavior in terms of state visitation (p(s)) to encourage learning distinguishable
task conditioned behaviors, which has been shown effective in state-based RL [101, 81] and

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 106

100k 500k 10M
Number of supervised environment steps (log-scale)

58.8

47.5

6.59

26.59
28.42

41.5

20.93

14.39M
ed

ia
n

hu
m

an
-n

or
m

al
ize

d
sc

or
e

APS (ours)

APT

VISR

DE-Rainbow
DrQ

SPR

PPO

SimPLe

DQN

Atari 26 games

100k 10M
Number of supervised environment steps (log-scale)

39.23

33.41

8.99

M
ed

ia
n

hu
m

an
-n

or
m

al
ize

d
sc

or
e

APS (ours)

APT

VISR DQN

Rainbow

Atari 57 games

Figure 7.1 Median of human normalized score on the 26 Atari games considered by Kaiser
et al. [140] (left) and the Atari 57 games considered in Mnih et al. [204](right). Fully supervised
RL baselines are shown in circle. RL with unsupervised pretraining are shown in square.
APS significantly outperforms all of the fully supervised and unsupervised pre-trained RL
methods. Baselines: Rainbow [116], SimPLe [140], APT [179], Data-efficient Rainbow [141],
DrQ [148], VISR [109], CURL [153], and SPR [258].

visual RL [109]. VISR proposed in Hansen et al. [109] is the prior state-of-the-art in this
category. The objective of VISR is max I(s; z) = maxH(z)−H(s|z) where z is sampled from
a fixed distribution. VISR proposes a successor features based variational approximation to
maximize a variational lower bound of the intractable conditional entropy −H(s|z). The
advantage of VISR is that its successor features can quickly adapt to new tasks. Despite its
effectiveness, the fundamental problem faced by VISR is lack of exploration.

Another category is based on maximizing the entropy of the states induced by the policy
maxH(s). Maximizing state entropy has been shown to work well in state-based domains [112,
209] and pixel-based domains [179]. It is also shown to be provably efficient under certain
assumptions [112]. The prior state-of-the-art APT by Liu and Abbeel [179] show maximizing
a particle-based entropy in a lower dimensional abstraction space can boost data efficiency
and asymptotic performance. However, the issues with APT are that it is purely exploratory
and task-agnostic and lacks of the notion of task variables, making it more difficult to adapt
to new tasks compared with task-conditioning policies.

Our main contribution is to address the issues of APT and VISR by combining them together
in a novel way. To do so, we consider the alternative direction of maximizing mutual
information between states and task variables I(s; z) = H(s) − H(s|z), the state entropy
H(s) encourages exploration while the conditional entropy encourages the agent to learn

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 107

task conditioned behaviors. Prior work that considered this objective had to either make the
strong assumption that the distribution over states can be approximated with the stationary
state-distribution of the policy [266] or rely on the challenging density modeling to derive a
tractable lower bound [266, 43]. We show that the intractable conditional entropy, −H(s|z)
can be lower bounded and optimized by learning successor features. We use APT to maximize
the state entropy H(s) in an abstract representation space. Building upon this insight, we
propose Active Pretraining with Successor Features (APS) since the agent is encouraged to
actively explore and leverage the experience to learn behavior. By doing so, we experimentally
find that they address the limitations of each other and significantly improve each other.

We evaluate our approach on the Atari benchmark [29] where we apply APS to DrQ [148] and
test its performance after fine-tuning for 100K supervised environment steps. The results are
shown in Figure 7.1. On the 26 Atari games considered by [140], our fine-tuning significantly
boosts the data-efficiency of DrQ, achieving 106% relative improvement. On the full suite
of Atari 57 games [204], fine-tuning APS pre-trained models significantly outperforms prior
state-of-the-art, achieving human median score 3× higher than DQN trained with 10M
supervised environment steps and outperforms previous methods combining unsupervised
pretraining with task-specific finetuning.

7.2 Related Work
Our work falls under the category of mutual information maximization for unsupervised
behavior learning. Unsupervised discovering of a set of task-agnostic behaviors by means
of seeking to maximize an extrinsic reward has been explored in the the evolutionary
computation community [162, 163]. This has long been studied as intrinsic motivation [25,
26], often with the goal of encouraging exploration [273, 220]. Entropy maximization in
state space has been used to encourage exploration in state RL [112, 209, 259] and visual
RL [179, 323]. Maximizing the mutual information between latent variable policies and their
behavior in terms of state visitation has been used as an objective for discovering meaningful
behaviors [123, 205, 101, 124, 81, 316]. Sharma et al. [266] consider a similar decomposition
of mutual information, namely, I(s; z) = H(s)−H(z|s), however, they assume p(s|z) ≈ p(s)
to derive a different lower-bound of the marginal entropy. Different from Sharma et al. [266],
Campos et al. [43] propose to first maximize H(s) via maximum entropy estimation [112, 160]
then learn behaviors, this method relies on a density model that provides an estimate of
how many times an action has been taken in similar states. These methods are also only
shown to work from explicit state-representations, and it is nonobvious how to modify them
to work from pixels. The work by Badia et al. [17] also considers k-nearest neighbor based
count bonus to encourage exploration, yielding improved performance on Atari games. This
heuristically defined count-based bonus has been shown to be an effective unsupervised
pretraining objective for RL [45]. Machado et al. [198] show the norm of learned successor
features can be used to incentivize exploration as a reward bonus. Our work differs in that

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 108

Table 7.1 Comparing methods for pretraining RL in no reward setting. VISR [109],
APT [179], MEPOL [209], DIYAN [81], DADS [266], EDL [43]. Exploration: the model can
explore efficiently. Off-policy: the model is off-policy RL. Visual: the method works well in
visual RL, e.g., Atari games. Task: the model conditions on latent task variables z. ⋆ means
only in state-based RL.

Algorithm Objective Exploration Visual Task Off-policy Pre-Trained Model

APT maxH(s) ✓ ✓ ✗ ✓ π(a|s), Q(s, a)
VISR maxH(z)− H(z|s) ✗ ✓ ✓ ✓ ψ(s, z), ϕ(s)

MEPOL maxH(s) ✓⋆ ✗ ✗ ✗ π(a|s)
DIAYN max−H(z|s) + H(a|z, s) ✗ ✗ ✓ ✗ π(a|s, z)
EDL maxH(s)− H(s|z) ✓⋆ ✗ ✓ ✓ π(a|s, z), q(s′|s, z)
DADS maxH(s)− H(s|z) ✓ ✗ ✓ ✗ π(a|s, z), q(s′|s, z)
APS maxH(s)− H(s|z) ✓ ✓ ✓ ✓ ψ(s, z), ϕ(s)
ψ(s): successor features, ϕ(s): state feature (i.e., the representation of states).

we jointly maximize the entropy and learn successor features.

7.3 Preliminaries
Reinforcement learning considers the problem of finding an optimal policy for an agent that
interacts with an uncertain environment and collects reward per action. The goal of the agent
is to maximize its cumulative reward.

Formally, this problem can be viewed as a Markov decision process (MDP) defined by
(S,A, T , ρ0, r, γ) where S ⊆ Rns is a set of ns-dimensional states, A ⊆ Rna is a set of na-
dimensional actions, T : S ×A× S → [0, 1] is the state transition probability distribution.
ρ0 : S → [0, 1] is the distribution over initial states, r : S×A → R is the reward function, and
γ ∈ [0, 1) is the discount factor. At environment states s ∈ S, the agent take actions a ∈ A,
in the (unknown) environment dynamics defined by the transition probability T (s′|s, a), and
the reward function yields a reward immediately following the action at performed in state
st. We define the discounted return G(st, at) =

∑∞
l=0 γ

lr(st+l, at+l) as the discounted sum of
future rewards collected by the agent. In value-based reinforcement learning, the agent learns
learns an estimate of the expected discounted return, a.k.a, state-action value function.

Qπ(s, a) = Est=s
at=a

[
∞∑
l=0

γlr(st+l, at+l, st+l+1)

]
.

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 109

Encoder Encoder

Particle-based
Entropy

Norm & Mul task
vector

⨁

states states

Intrinsic Reward

Maximize , -,) =
0 - − 0(-|))

Identify Task via
Linear Regression

Reward Free Pre-Training

Fast Solving Testing Tasks

Pre-Trained Successor Features

Figure 7.2 Diagram of the proposed method APS. On the left shows the concept of APS,
during reward-free pretraining phase, reinforcement learning is deployed to maximize the
mutual information between the states induced by policy and the task variables. During
testing, the pre-trained state features can identify the downstream task by solving a linear
regression problem , the pre-trained task conditioning successor features can then quickly
adapt to and solve the task. On the right shows the components of APS. APS consists of
maximizing state entropy in an abstract representation space (exploration, maxH(s)) and
leveraging explored data to learn task conditioning behaviors (exploitation, max−H(s|z)).

7.3.1 Successor Features

Successor features [72, 149, 22, 23] assume that there exist features ϕ(s, a, s′) ∈ Rd such that
the reward function which specifies a task of interest can be written as

r(s, a, s′) = ϕ(s, a, s′)Tw,

where w ∈ Rd is the task vector that specify how desirable each feature component is.

The key observation is that the state-action value function can be decomposed as a linear
form [22]

Qπ(s, a) = Est=s
at=a

[
∞∑
i=t

γi−tϕ(si+1, ai+1, s
′
i+1)

]T
w

≡ ψπ(s, a)Tw,

where ψπ(s, a) are the successor features of π. Intuitively, ψ(s, a) can be seen as a generaliza-
tion of Q(s, a) to multidimensional value function with reward ϕ(s, a, s′)

7.4 Method
We first introduce two techniques which our method builds upon in Section 7.4.1 and Sec-
tion 7.4.2 and discuss their limitations. We provide preliminary evidence of the limitations

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 110

in Section 7.4.3. Then we propose APS in Section 7.4.4 to address their limitations.

7.4.1 Variational Intrinsic Successor Features (VISR)

The variational intrinsic successor features (VISR) maximizes the mutual information(I)
between some policy-conditioning variable (z) and the states induced by the conditioned
policy,

I(z; s) = H(z)−H(z|s),

where it is common to assume z is drawn from a fixed distribution for the purposes of training
stability [81, 109].

This simplifies the objective to minimizing the conditional entropy of the conditioning variable,
where s is sampled uniformly over the trajectories induced by πθ.∑

z,s

p(s, z) log p(z|s) = Es,z[log p(z|s)],

A variational lower bound is proposed to address the intractable objective,

JVISR(θ) = −Es,z[log q(z|s)],

where q(z|s) is a variational approximation. REINFORCE algorithm is used to learn the
policy parameters by treating log q(z|s) as intrinsic reward. The variational parameters can
be optimized by maximizing log likelihood of samples.

Figure 7.3 The passageway gridworld environments used in our experiments. On the left,
the agent needs to fetch the key first by navigating to the green location to unlock the closed
passageway (shown in black). Similarly, on the right, there is an additional key-passageway
pair. The agent must fetch the key (shown in purple) to unlock the upper right passageway.

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 111

The key observation made by Hansen et al. [109] is restricting conditioning vectors z to
correspond to task-vectors w of the successor features formulation z ≡ w. To satisfy this
requirement, one can restrict the task vectors w and features ϕ(s) to be unit length and
paremeterizing the discriminator q(z|s) as the Von Mises-Fisher distribution with a scale
parameter of 1.

rVISR(s, a, s
′) = log q(w|s) = ϕ(s)Tw.

VISR has the rapid task inference mechanism provided by successor features with the ability of
mutual information maximization methods to learn many diverse behaviors in an unsupervised
way. Despite its effectiveness as demonstrated in Hansen et al. [109], VISR suffers from
inefficient exploration. This issue limits the further applications of VISR in challenging tasks.

7.4.2 Unsupervised Active Pretraining (APT)

The objective of unsupervised active pretraining (APT) is to maximize the entropy of the
states induced by the policy, which is computed in a lower dimensional abstract representation
space.

JAPT(θ) = H(h) =
∑
s

p(h) log p(h), h = f(s),

where f : Rns → Rnh is a mapping that maps observations s to lower dimensional representa-
tions h. In their work, Liu and Abbeel [179] learns the encoder by contrastive representation
learning.

With the learned representation, APT shows the entropy of h can be approximated by a
particle-based entropy estimation [275, 27], which is based on the distance between each
particle hi = f(si) and its k-th nearest neighbor h⋆i .

H(h) ≈ HAPT(h) ∝
n∑
i=1

log ∥hi − h⋆i ∥nz
nz
.

This estimator is asymptotically unbiased and consistent limn→∞HAPT(s) = H(s).

It helps stabilizing training and improving convergence in practice to average over all k
nearest neighbors [179].

ĤAPT(h) =
n∑
i=1

log

1 +
1

k

∑
hji∈Nk(hi)

∥hi − hji∥nh
nh

 ,

where Nk(·) denotes the k nearest neighbors.

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 112

For a batch of transitions {(s, a, s′)} sampled from the replay buffer, each abstract represen-
tation f(s′) is treated as a particle and we associate each transition with a intrinsic reward
given by

rAPT(s, a, s
′) = log

1 +
1

k

∑
h(j)∈Nk(h)

∥h− h(j)∥nz
nz

where h = fθ(s

′). (7.1)

While APT achieves prior state-of-the-art performance in DeepMind control suite and Atari
games, it does not conditions on latent variables (e.g. task) to capture important task
information during pretraining, making it inefficient to quickly identity downstream task
when exposed to task specific reward function.

1e3 1e4 1e6 1e9
Number of unsupervised interactions

0.0

20.0

40.0

60.0

80.0

100.0

Su
cc

es
s r

at
e

Easy Passageway GridWorld

1e3 1e4 1e6 1e9
Number of unsupervised interactions

0.0

20.0

40.0

60.0

80.0

Su
cc

es
s r

at
e

Hard Passageway GridWorld
VISR
APT
APS (ours)

Figure 7.4 Performance of different methods on the gridworld environments in Figure 7.3.
The results are recorded during testing phase after pretraining for a number of unsupervised
interactions. The success rate are aggregated over 10 random seeds. The bottom of each bar
is the zero-shot testing performance while the top is the fine-tuned performance.

7.4.3 Empirical Evidence of the Limitations of Existing Models

In this section we present two multi-step grid-world environments to illustrate the drawbacks
of APT and VISR, and highlight the importance of both exploration and task inference.
The environments, implemented with the pycolab game engine [279], are depicted shown
in Figure 7.3, and are fully observable to the agent. At each episode, the agent starts from
a randomly initialized location in the top left corner, with the task of navigating to the
target location shown in orange. To do so, the agent has to first pick up a key(green, purple

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 113

area) that opens the closed passageway. The easy task shown in left of Figure 7.3 has one
key and one corresponding passageway while the hard task has two key-passageway pairs.
We evaluate the agent in terms of success rates. During evaluation, the agent receives an
intermediate reward 1 for picking up key and 10 for completing the task. The hierarchical
task presents a challenge to algorithms using only exploration bonus or successor features,
as the exploratory policy is unlikely to quickly adapt to the task specific reward and the
successor features is likely to never explore the space sufficiently.

Figure 7.4 shows the success rate of each method. APT performs worse than VISR at the
easy level, possibly because successor features can quickly adapt to the downstream reward.
On the other hand, APT significantly outperforms VISR at the hard level which requires a
exploratory policy. Despite the simplicity, these two gridworld environments already highlight
the weakness of each method. This observation confirms that existing formulations either
fail due to inefficient exploration or slow adaption, and motivates our study of alternative
methods for behavior discovery.

7.4.4 Active Pre-training with Successor Features

To address the issues of APT and VISR, we consider maximizing the mutual information
between task variable (z) drawn from a fixed distribution and the states induced by the
conditioned policy.

I(z; s) = H(s)−H(s|z).

The intuition is that the H(s) encourages the agent to explore novel states while H(s|z)
encourages the agent to leverage the collected data to capture task information.

Directly optimizing H(s) is intractable because the true distribution of state is unknown,
as introduced in Section 7.4.2, APT [179] is an effective approach for maximizing H(s) in
high-dimensional state space. We use APT to perform entropy maximization.

rexploration
APS (s, a, s′) = log

1 +
1

k

∑
h(j)∈Nk(h)

∥h− h(j)∥nh
nh

where h = fθ(s

′). (7.2)

As introduced in Section 7.4.1, VISR [109] is a variational based approach for maximizing
−H(z|s). However, maximizing −H(z|s) is not directly applicable to our case where the goal
is to maximize −H(s|z).
This intractable conditional entropy can be lower-bounded by a variational approximation,

F = −H(s|z) ≥ Es,z [log q(s|z)] .

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 114

Algorithm 5: Training APS
Randomly Initialize ϕ network // L2 normalized output
Randomly Initialize ψ network // dim(output) = #A× dim(W)
for e := 1,∞ do

sample w from L2 normalized N (0, I(dim(W))) // uniform ball
Q(·, a|w)← ψ(·, a, w)⊤w,∀a ∈ A
for t := 1, T do

Receive observation st from environment
at ← ϵ-greedy policy based on Q(st, ·|w)
Take action at, receive observation st+1 and reward ZZrt from environment
a′ = argmaxa ψ(st+1, a, w)

⊤w
Compute rAPS(st, a, st+1) with Equation (7.7) // intrinsic reward to
max I(s; z)
y = rAPS(st, a, st+1) + γψ(st+1, a

′, w)⊤w
lossψ = (ψ(st, at, w)

⊤w − yi)2
lossϕ = −ϕ(st)⊤w // minimize Von-Mises NLL
Gradient descent step on ψ and ϕ // minibatch in practice

end
end

This is because of the variational lower bound [20].

F =
∑
s,z

p(s, z) log p(s|z)

=
∑
s,z

p(s, z) log p(s|z) +
∑
s,z

p(s, z) log q(s|z)

−
∑
s,z

p(s, z) log q(s|z)

=
∑
s,z

p(s, z) log q(s|z) +
∑
z

p(z)DKL(p(·|z)||q(·|z))

≥
∑
s,z

p(s, z) log q(s|z)

= Es,z[log q(s|z)] (7.3)

Our key observation is that Von Mises-Fisher distribution is symmetric to its parametrization,
by restricting z ≡ w similarly to VISR, the reward can be written as

rexploitation
APS (s, a, s′) = log q(s|w) = ϕ(s)Tw. (7.4)

We find it helps training by sharing the weights between encoders f and ϕ. The encoder is
trained by minimizing the negative log likelihood of Von-Mises distribution q(s|w) over the

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 115

data.

L = −Es,w [log q(s|w)] = −Es,w
[
ϕ(st)

⊤w
]
. (7.5)

Note that the proposed method is independent from the choices of representation learning for
f , e.g., one can use an inverse dynamic model [225, 40] to learn the neural encoder, which
we leave for future work.

Put Equation (7.2) and Equation (7.4) together, our intrinsic reward can be written as

rAPS(s, a, s
′)

= rexploitation
APS (s, a, s′) + rexploration

APS (s, a, s′) (7.6)

= ϕ(s)Tw + log

1 +
1

k

∑
h(j)∈Nk(h)

∥h− h(j)∥nh
nh

where h = ϕ(s′), (7.7)

The output layer of ϕ is L2 normalized, task vector w is randomly sampled from a uniform
distribution over the unit circle.

Table 7.1 positions our new approach with respect to existing ones. Figure 7.2 shows the
resulting model. Training proceeds as in other algorithms maximizing mutual information:
by randomly sampling a task vector w and then trying to infer the state produced by the
conditioned policy from the task vector. Algorithm 5 shows the pseudo-code of APS, we
highlight the changes from VISR to APS in color.

7.4.5 Implementation Details

We largely follow Hansen et al. [109] for hyperparameters used in our Atari experiments, with
the following three exceptions. We use the four layers convolutional network from Kostrikov
et al. [148] as the encoder ϕ and f . We change the output dimension of the encoder from 50
to 5 in order to match the dimension used in VISR. While VISR incorporated LSTM [121]
we excluded it for simplicity and accelerating research. We use ELU nonlinearities [64] in
between convolutional layers. We do not use the distributed training setup in Hansen et al.
[109], after every roll-out of 10 steps, the experiences are added to a replay buffer. This
replay buffer is used to calculate all of the losses and change the weights of the network. The
task vector w is also resampled every 10 steps. We use n-step Q-learning with n = 10.

Following Hansen et al. [109], we condition successor features on task vector, making ψ(s, a, w)
a UVFA [34, 250]. We use the Adam optimizer [143] with an learning rate 0.0001. We use
discount factor γ = .99. Standard batch size of 32. ψ is coupled with a target network [204],
with an update period of 100 updates.

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 116

Table 7.2 Performance of different methods on the 26 Atari games considered by [140]
after 100K environment steps. The results are recorded at the end of training and averaged
over 5 random seeds for APS. APS outperforms prior methods on all aggregate metrics, and
exceeds expert human performance on 8 out of 26 games while using a similar amount of
experience.

Game Random Human SimPLe DER CURL DrQ SPR VISR APT APS (ours)
Alien 227.8 7127.7 616,9 739.9 558.2 771.2 801.5 364.4 2614.8 934.9
Amidar 5.8 1719.5 88.0 188.6 142.1 102.8 176.3 186.0 211.5 178.4
Assault 222.4 742.0 527.2 431.2 600.6 452.4 571.0 12091.1 891.5 413.3
Asterix 210.0 8503.3 1128.3 470.8 734.5 603.5 977.8 6216.7 185.5 1159.7
Bank Heist 14.2 753.1 34.2 51.0 131.6 168.9 380.9 71.3 416.7 262.7
BattleZone 2360.0 37187.5 5184.4 10124.6 14870.0 12954.0 16651.0 7072.7 7065.1 26920.1
Boxing 0.1 12.1 9.1 0.2 1.2 6.0 35.8 13.4 21.3 36.3
Breakout 1.7 30.5 16.4 1.9 4.9 16.1 17.1 17.9 10.9 19.1
ChopperCommand 811.0 7387.8 1246.9 861.8 1058.5 780.3 974.8 800.8 317.0 2517.0
Crazy Climber 10780.5 23829.4 62583.6 16185.2 12146.5 20516.5 42923.6 49373.9 44128.0 67328.1
Demon Attack 107805 35829.4 62583.6 16185.3 12146.5 20516.5 42923.6 8994.9 5071.8 7989.0
Freeway 0.0 29.6 20.3 27.9 26.7 9.8 24.4 -12.1 29.9 27.1
Frostbite 65.2 4334.7 254.7 866.8 1181.3 331.1 1821.5 230.9 1796.1 496.5
Gopher 257.6 2412.5 771.0 349.5 669.3 636.3 715.2 498.6 2590.4 2386.5
Hero 1027.0 30826.4 2656.6 6857.0 6279.3 3736.3 7019.2 663.5 6789.1 12189.3
Jamesbond 29.0 302.8 125.3 301.6 471.0 236.0 365.4 484.4 356.1 622.3
Kangaroo 52.0 3035.0 323.1 779.3 872.5 940.6 3276.4 1761.9 412.0 5280.1
Krull 1598.0 2665.5 4539.9 2851.5 4229.6 4018.1 2688.9 3142.5 2312.0 4496.0
Kung Fu Master 258.5 22736.3 17257.2 14346.1 14307.8 9111.0 13192.7 16754.9 17357.0 22412.0
Ms Pacman 307.3 6951.6 1480.0 1204.1 1465.5 960.5 1313.2 558.5 2827.1 2092.3
Pong -20.7 14.6 12.8 -19.3 -16.5 -8.5 -5.9 -26.2 -8.0 12.5
Private Eye 24.9 69571.3 58.3 97.8 218.4 -13.6 124.0 98.3 96.1 117.9
Qbert 163.9 13455.0 1288.8 1152.9 1042.4 854.4 669.1 666.3 17671.2 19271.4
Road Runner 11.5 7845.0 5640.6 9600.0 5661.0 8895.1 14220.5 6146.7 4782.1 5919.0
Seaquest 68.4 42054.7 683.3 354.1 384.5 301.2 583.1 706.6 2116.7 4209.7
Up N Down 533.4 11693.2 3350.3 2877.4 2955.2 3180.8 28138.5 10037.6 8289.4 4911.9
Mean Human-Norm’d 0.000 1.000 44.3 28.5 38.1 35.7 70.4 64.31 69.55 99.04
Median Human-Norm’d 0.000 1.000 14.4 16.1 17.5 26.8 41.5 12.36 47.50 58.80
Superhuman 0 N/A 2 2 2 2 7 6 7 8

7.5 Results
We test APS on the full suite of 57 Atari games [29] and the sample-efficient Atari setting [140,
301] which consists of the 26 easiest games in the Atari suite (as judged by above random
performance for their algorithm).

We follow the evaluation setting in VISR [109] and APT [179], agents are allowed a long
unsupervised training phase (250M steps) without access to rewards, followed by a short test
phase with rewards. The test phase contains 100K environment steps – equivalent to 400k
frames, or just under two hours – compared to the typical standard of 500M environment
steps, or roughly 39 days of experience. We normalize the episodic return with respect
to expert human scores to account for different scales of scores in each game, as done in
previous works. The human-normalized performance of an agent on a game is calculated as
agent score−random score
human score−random score and aggregated across games by mean or median.

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 117

When testing the pre-trained successor features ψ, we need to find task vector w from the
rewards. To do so, we rollout 10 episodes (or 40K steps, whichever comes first) with the
trained APS, each conditioned on a task vector chosen uniformly on a 5-dimensional sphere.
From these initial episodes, we combine the data across all episodes and solve the linear
regression problem. Then we fine-tune the pre-trained model for 60K steps with the inferred
task vector, and the average returns are compared.

A full list of scores and aggregate metrics on the Atari 26 subset is presented in Table 7.2.
The results on the full 57 Atari games suite is presented in Supplementary Material. For
consistency with previous works, we report human and random scores from [116].

In the data-limited setting, APS achieves super-human performance on eight games and
achieves scores higher than previous state-of-the-arts.

In the full suite setting, APS achieves super-human performance on 15 games, compared to a
maximum of 12 for any previous methods and achieves scores significantly higher than any
previous methods.

7.6 Analysis

Dense reward games0.0

20.0

40.0

60.0

80.0

M
ed

ia
n

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e

APS (ours)
VISR
APT
APS→ VISR
VISR→ APS
APS→ APT
APT→ APS

Exploration games0.0

10.0

20.0

30.0

40.0

M
ed

ia
n

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e

Figure 7.5 Scores of different methods and their variants on the 26 Atari games considered
by Kaiser et al. [140]. X → Y denotes training method Y using the data collected by method
X at the same time.

Contribution of Exploration and Exploitation In order to measure the contributions
of components in our method, we aim to answer the following two questions in this ablation
study. Compared with APT (maxH(s)), is the improvement solely coming from better fast
task solving induced by max−H(s|z) and the exploration is the same? Compared with
VISR (maxH(z)−H(z|s)), is the improvement solely coming from better exploration due to
maxH(s)−H(s|z) and the task solving ability is the same?

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 118

We separate Atari 26 subset into two categories. Dense reward games in which exploration is
simple and exploration games which require exploration. In addition to train the model as
before, we simultaneously train another model using the same data, e.g. APS→ APT denotes
when training APS simultaneously training APT using the same data as APS. As shown
in Figure 7.5, on dense reward games, APS → APT performs better than APT → APS.
On exploration games, APS → APT significantly outperforms APT → APS. Similarly
APS→ VISR performs better than the other way around. Together, the results indicate that
entropy maximization and variational successor features improves each other in a nontrivial
way, and both are important to the performance gain of APS.

Table 7.3 Scores on the 26 Atari games for variants of APS, VISR, and APT. Scores of
considered variants are averaged over 3 random seeds.

Variant Human-Normalized Score
mean median

APS 99.04 58.80

APS w/o fine-tune 81.41 49.18
VISR (controlled, w/ fine-tune) 68.95 31.87
APT (controlled, w/o fine-tune) 58.23 19.85
APS w/o shared encoder 87.59 51.45

Fine-Tuning Helps Improve Performance We remove fine-tuning from APS that is
we evaluate its zero-shot performance, the same as in Hansen et al. [109]. We also employ
APS’s fine-tuning scheme to VISR, namely 250M (without access to rewards, followed by
a short task identify phase (40K steps) and a fine-tune phase (60K steps). The results
shown in Table 7.3 demonstrate that fine-tuning can boost performance. APS w/o fine-tune
outperforms all controlled baselines, including VISR w/ fine-tune.

Shared Encoder Can Boost Data-Efficiency We investigate the effect of using ϕ as the
encoder f . To do so, we consider a variant of APS that learns the encoder f as in APT by
contrastive representation learning. The performance of this variant is denoted as APS w/o
shared encoder shown in Table 7.3. Sharing encoder can boost data efficiency, we attribute
the effectiveness to ϕ better captures the relevant information which is helpful for computing
intrinsic reward. We leave the investigation of using other representation learning methods
as future work.

7.7 Conclusion
In this paper, we propose a new unsupervised pretraining method for RL. It addresses the
limitations of prior mutual information maximization-based and entropy maximization-based
methods and combines the best of both worlds. Empirically, APS achieves state-of-the-art

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 119

performance on the Atari benchmark, demonstrating significant improvements over prior
work.

Our work demonstrates the benefit of leveraging state entropy maximization data for task-
conditioned skill discovery. We are excited about the improved performance by decomposing
mutual information as H(s)−H(s|z) and optimizing them by particle-based entropy and
variational successor features. In the future, it is worth studying how to combine approaches
designed for maximizing the alternative direction −H(z|s) with the particle-based entropy
maximization.

7.8 Acknowledgment
We thank members of Berkeley Artificial Intelligence Research (BAIR) Lab for many insightful
discussions. This work was supported by Berkeley Deep Drive, the Open Philanthropy Project,
and Intel.

7.9 Experiment Details
The corresponding hyperparameters used in Atari experiments are shown in Table 7.4
and Table 7.5. We follow Kostrikov et al. [148] to use data augmentation techniques that
consist of a simple random shift which has been shown effective in visual domain RL.
Specifically, the images are padded each side by 4 pixels (by repeating boundary pixels) and
then select a random 84× 84 crop, yielding the original image. This procedure is repeated
every time an image is sampled from the replay buffer.

We also use the same generalized policy improvement(GPI) [22, 24] as in VISR with the
number of polices 10. GPI is also used in VISR to ensure a fair comparison. Per common
practice, we average performance of our agent over 5 random seeds. The evaluation is done for
125K environment steps at the end of training for 100K environment steps. We follow Hansen
et al. [109] to use one MLP for each dimension of the successor feature.

The ablated variant APS w/o shared encoder follows APT [179] but the output dimension of
the neural encoder f is decreased to 5 in order to match the default APS. The projection
network in contrastive learning is a two-layer MLP with hidden size of 128 and output size of
64. We also use the same temperature and other hyperparamters as APT for the ablation
study.

7.10 Scores Breakdown on 57 Atari games
A comparison between APS and baselines on each individual game of the 57 Atari game suite
is shown in Table 7.6. APS achieves super-human performance on 15 games, compared to a

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 120

Table 7.4 Hyper-parameters for RL.

Parameter Setting
Terminal on loss of life True
Reward clipping (fine-tuning phase) [−1, 1]
Data augmentation Random shifts and Intensity
Grey-scaling True
Observation down-sampling 84× 84
Frames stacked 4
Action repetitions 4
Max frames per episode 108k
Update Double Q
Target network: update period 100
Discount factor 0.99
Minibatch size 32
ψ, ϕ optimizer Adam
ψ, ϕ optimizer (pre-training phase): learning rate 0.0001
ψ, ϕ optimizer (fine-tuning phase): learning rate 0.001
ψ, ϕ optimizer: β1 0.9
ψ, ϕ optimizer: β2 0.999
ψ, ϕ optimizer: ϵ 0.00015
Max gradient norm 10
Training steps (fine-tuning phase) 60K
Task identity steps (fine-tuning phase) 40K
Training steps (pre-training phase) 5M
Evaluation steps 125K
Min replay size for sampling 1600
Memory size Unbounded
Replay period every 1 step
Multi-step return length 10
ψ network: channels 32, 64, 64
ψ network: filter size 8× 8, 4× 4, 3× 3
ψ network: stride 4, 2, 1
ψ network: hidden units 512
ψ Non-linearity ReLU
Exploration ϵ-greedy
ϵ-decay 2500

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 121

Table 7.5 Hyper-parameters for Learning ϕ.

Parameter Setting
Value of k search in {3, 5, 10}
ϕ network: channels 32, 64, 64
ϕ network: filter size 8× 8, 4× 4, 3× 3
ϕ network: stride 4, 2, 1
ϕ network: hidden units 512
ϕ network Non-linearity ELU
FC hidden size 1024
Output size 5

maximum of 12 for any previous methods and achieves scores significantly higher than any
previous methods.

CHAPTER 7. ACTIVE PRETRAINING WITH SUCCESSOR FEATURES 122

Table 7.6 Comparison of raw scores of each method on Atari games. Results are averaged
over five random seeds. @N represents the amount of RL interaction utilized at fine-tuning
phase.

Game Random Human VISR APT APS (ours)
Alien 227.8 7127.7 364.4 2614.8 934.9
Amidar 5.8 1719.5 186.0 211.5 188.4
Assault 222.4 742.0 1209.1 891.5 413.3
Asterix 210.0 8503.3 6216.7 185.5 1159.5
Asteroids 7191 47388.7 4443.3 678.7 1519.7
Atlantis 12850.0 29028.1 140542.8 40231.0 18920.0
Bank Heist 14.2 753.1 71.3 416.7 262.7
Battle Zone 2360.0 37187.5 7072.7 7065.1 26920.1
Beam Rider 363.9 16826.5 1741.9 3487.2 4981.2
Berzerk 123.7 2630.4 490.0 493.4 387.4
Bowling 23.1 160.7 21.2 -56.5 56.5
Boxing 0.1 12.1 13.4 21.3 36.3
Breakout 1.7 30.5 17.9 10.9 19.1
Centipede 2090.9 12017.1 7184.9 6233.9 3915.7
Chopper Command 811.0 7387.8 800.8 317.0 2517.0
Crazy Climber 10780.5 23829.4 49373.9 44128.0 67328.1
Defender 2874.5 18688.9 15876.1 5927.9 19921.5
Demon Attack 107805 35829.4 8994.9 6871.8 7989.0
Double Dunk -18.6 -16.4 -22.6 -17.2 -8.0
Enduro 0.0 860.5 -3.1 -0.3 216.8
Fishing Derby -91.7 -38.7 -93.9 -5.6 -2.1
Freeway 0.0 29.6 -12.1 29.9 27.1
Frostbite 65.2 4334.7 230.9 1796.1 496.1
Gopher 257.6 2412.5 498.6 2190.4 2590.4
Gravitar 173.0 3351.4 328.1 542.0 487.0
Hero 1027.0 30826.4 663.5 6789.1 12189.3
Ice Hockey -11.2 0.9 -18.1 -30.1 -11.3
Jamesbond 29.0 302.8 484.4 356.1 622.3
Kangaroo 52.0 3035.0 1761.9 412.0 5280.1
Krull 1598.0 2665.5 3142.5 2312.0 4496.0
Kung Fu Master 258.5 22736.3 16754.9 17357.0 13112.1
Montezuma Revenge 0.0 4753.3 0.0 147.0 211.0
Ms Pacman 307.3 6951.6 558.5 2527.1 2092.3
Name This Game 2292.3 8049.0 2605.8 1387.2 6898.8
Phoenix 761.4 7242.6 7162.2 3874.2 6871.8
Pitfall -229.4 6463.7 -370.8 -12.8 -6.2
Pong -20.7 14.6 -26.2 -8.0 12.5
Private Eye 24.9 69571.3 98.3 96.1 117.9
Qbert 163.9 13455.0 666.3 17671.2 19271.4
Riverraid 1338.5 17118.0 5422.2 4671.0 10521.3
Road Runner 11.5 7845.0 6146.7 4782.1 5919.0
Robotank 2.2 11.9 10.0 13.7 12.6
Seaquest 68.4 42054.7 706.6 2116.7 4209.7
Skiing -17098.1 -4336.9 -19692.5 -38434.1 -9102.1
Solaris 1236.3 12326.7 1921.5 841.8 1095.4
Space Invaders 148.0 1668.7 9741.0 3687.2 3693.8
Star Gunner 664.0 10250.0 25827.5 8717.0 42970.0
Surround -10.0 6.5 -15.5 -2.5 -5.8
Tennis -23.8 -8.3 0.7 1.2 8.7
Time Pilot 3568.0 5229.2 4503.6 2567.0 4586.5
Tutankham 11.4 167.6 50.7 124.6 45.6
Up N Down 533.4 11693.2 10037.6 8289.4 4911.9
Venture 0.0 1187.5 -1.7 231.0 136.0
Video Pinball 0.0 17667.9 35120.3 2817.1 154414.1
Wizard Of Wor 563.5 4756.5 853.3 1265.0 1732.1
Yars Revenge 3092.9 54576.9 5543.5 1871.5 6539.5
Zaxxon 32.5 9173.3 897.5 3231.0 5819.2
Mean Human-Norm’d 0.000 1.000 68.42 47.78 103.04
Median Human-Norm’d 0.000 1.000 9.41 33.41 39.23
#Superhuman 0 N/A 11 12 15

123

Chapter 8

Contrastive Intrinsic Control

8.1 Introduction
Deep Reinforcement Learning (RL) is a powerful approach toward solving complex control
tasks in the presence of extrinsic rewards. Successful applications include playing video games
from pixels [204], mastering the game of Go [271, 272], robotic locomotion [255, 256, 229]
and dexterous manipulation [242, 215, 216] policies. While effective, the above advances
produced agents that are unable to generalize to new downstream tasks beyond the one they
were trained to solve. Humans and animals on the other hand are able to acquire skills with
minimal supervision and apply them to solve a variety of downstream tasks. In this work, we
seek to train agents that acquire skills without supervision with generalization capabilities by
efficiently adapting these skills to downstream tasks.

Over the last few years, unsupervised RL has emerged as a promising framework for developing
RL agents that can generalize to new tasks. In the unsupervised RL setting, agents are
first pre-trained with self-supervised intrinsic rewards and then finetuned to downstream
tasks with extrinsic rewards. Unsupervised RL algorithms broadly fall into three categories -
knowledge-based, data-based, and competence-based methods1. Knowledge-based methods
maximize the error or uncertainty of a predictive model [225, 226, 41]. Data-based methods
maximize the entropy of the agent’s visitation [180, 324]. Competence-based methods learn
skills that generate diverse behaviors [82, 102]. This work falls into the latter category of
competence-based exploration methods.

Unlike knowledge-based and data-based algorithms, competence-based algorithms simultane-
ously address both the exploration challenge as well as distilling the generated experience
in the form of reusable skills. This makes them particularly appealing, since the resulting
skill-based policies (or skills themselves) can be finetuned to efficiently solve downstream
tasks. While there are many self-supervised objectives that can be utilized, our work falls

1These categories for exploration algorithms were introduced by Srinivas and Abbeel [277] and inspired
by Oudeyer et al. [221].

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 124

max I(s; z) = max (ℋ(s) − ℋ(s |z))
z1

z2
z3

Figure 8.1 This work deals with unsupervised skill discovery through mutual information
maximization. We introduce Contrastive Intrinsic Control (CIC) – a new unsupervised RL
algorithm that explores and adapts more efficiently than prior methods.

into a family of methods that learns skills by maximizing the mutual information between
visited states and latent skill vectors. Many earlier works have investigated optimizing such
objectives [82, 102, 150, 265]. However, competence-based methods have been empirically
challenging to train and have under-performed when compared to knowledge and data-based
methods [155].

In this work, we take a closer look at the challenges of pre-training agents with competence-
based algorithms. We introduce Contrastive Intrinsic Control (CIC) – an exploration algorithm
that uses a new estimator for the mutual information objective. CIC combines particle
estimation for state entropy [274, 180] and noise contrastive estimation [106] for the conditional
entropy which enables it to both generate diverse behaviors (exploration) and discriminate
high-dimensional continuous skills (exploitation). To the best of our knowledge, CIC is the
first exploration algorithm to utilize noise contrastive estimation to discriminate between state
transitions and latent skill vectors. Empirically, we show that CIC adapts to downstream
tasks more efficiently than prior exploration approaches on the Unsupervised Reinforcement
Learning Benchmark (URLB). CIC achieves 79% higher returns on downstream tasks than
prior competence-based algorithms and 18% higher returns than the next-best exploration
algorithm overall.

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 125

Leap forward

Jog
Walk left

Flip upright

Nudge brick

Figure 8.2 Qualitative visualizations of unsupervised skills discovered in Walker, Quadruped,
and Jaco arm environments. The Walker learns to balance and move, the Quadruped learns to flip
upright and walk, and the 6 DOF robotic arm learns how to move without locking. Unlike prior
competence-based methods for continuous control which evaluate on OpenAI Gym (e.g. Eysenbach
et al. [82]), which reset the environment when the agent loses balance, CIC is able to learn skills in
fixed episode length environments which are much harder to explore (see Appendix 8.18).

8.2 Background and Notation
Markov Decision Process: We operate under the assumption that our system is described
by a Markov Decision Process (MDP) [284]. An MDP consiss of the tuple (S,A,P , r, γ)
which has states s ∈ S, actions a ∈ A, transition dynamics p(s′|s, a) ∼ P , a reward function
r, and a discount factor γ. In an MDP, at each timestep t, an agent observes the current
state s, selects an action from a policy a ∼ π(·|s), and then observes the reward and next
state once it acts in the environment: r, s′ ∼ env.step(a). Note that usually r refers to an
extrinsic reward. However, in this work we will first be pre-training an agent with intrinsic
rewards rint and finetuning on extrinsic rewards rext.

For convenience we also introduce the variable τ(s) which refers to any function of the states
s. For instance τ can be a single state, a pair of states, or a sequence depending on the
algorithm. Our method uses τ = (s, s′) to encourage diverse state transitions while other
methods have different specifications for τ . Importantly, τ does not denote a state-action
trajectory, but is rather shorthand for any function of the states encountered by the agent.
In addition to the standard MDP notation, we will also be learning skills z ∈ Z and our
policy will be skill-conditioned a ∼ π(·|s, z).
Unsupervised Skill Discovery through Mutual Information Maximization: Most
competence-based approaches to exploration maximize the mutual information between states
and skills. Our work and a large body of prior research [82, 265, 102, 2, 161, 181] aims to

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 126

Noise Contrastive Loss

query

key

k-NN

Replay Buffer Entropy Conditional EntropyIntrinsic Reward Representation LearningReplay Buffer

Figure 8.3 Architecture illustrating the practical implementation of CIC . During a gradient
update step, random τ = (s, s′) tuples are sampled from the replay buffer, then a particle estimator
is used to compute the entropy and a noise contrastive loss to compute the conditional entropy. The
contrastive loss is backpropagated through the entire architecture. The entropy and contrastive
terms are then scaled and added to form the intrinsic reward. The RL agent is optimized with a
DDPG [175].

maximize a mutual information objective with the following general form:

I(τ ; z) = H(z)−H(z|τ) = H(τ)−H(τ |z) (8.1)

Competence-based algorithms use different choices for τ and can condition on additional
information such as actions or starting states. For a full summary of competence-based
algorithms and their objectives see Table 8.2 in Appendix 8.13.

Lower Bound Estimates of Mutual Information: The mutual information I(s; z) is
intractable to compute directly. Since we wish to maximize I(s; z), we can approximate this
objective by instead maximizing a lower bound estimate. Most known mutual information
maximization algorithms use the variational lower bound introduced in Barber and Agakov
[20]:

I(τ ; z) = H(z)−H(z|τ) ≥ H(z) + E[log q(z|τ)] (8.2)

The variational lower bound can be applied to both decompositions of the mutual information.
The design decisions of a competence-based algorithm therefore come down to (i) which
decomposition of I(τ ; z) to use, (ii) whether to use discrete or continuous skills, (iii) how to
estimate H(z) or H(τ), and finally (iv) how to estimate H(z|τ) or H(τ |z).

8.3 Motivation
Results from the recent Unsupervised Reinforcement Learning Benchmark (URLB) [155]
show that competence-based approaches underperform relative to knowledge-based and

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 127

Resets when agent
loses balance

Resets are fixed
at 1000 steps

OpenAI Gym Hopper DeepMind Control Hopper

Figure 8.4 To empirically demonstrate issues inherent to competence-based exploration methods,
we run DIAYN [82] and compare it to ICM [225] and a Fixed baseline where the agent receives an
intrinsic reward of 1.0 for each timestep and no extrinsic reward on both OpenAI Gym (episode resets
when agent loses balance) and DeepMind Control (DMC) (episode is fixed for 1k steps) Hopper
environments. Since Gym and DMC rewards are on different scales, we normalize rewards based on
the maximum reward achieved by any algorithm (1k for Gym, 3 for DMC). While DIAYN is able
to achieve higher extrinsic rewards than ICM on Gym, the Fixed intrinsic reward baseline performs
best. However, on DMC the Fixed and DIAYN agents achieve near-zero reward while ICM does
not. This is consistent with findings of prior work that DIAYN is able to learn diverse behaviors in
Gym [82] as well as the observation that DIAYN performs poorly on DMC environments [155]

data-based baselines on DeepMind Control (DMC). We argue that the underlying issue with
current competence-based algorithms when deployed on harder exploration environments
like DMC has to do with the currently used estimators for I(τ ; z) rather than the objective
itself. To produce structured skills that lead to diverse behaviors, I(τ ; z) estimators must
(i) explicitly encourage diverse behaviors and (ii) have the capacity to discriminate between
high-dimensional continuous skills. Current approaches do not satisfy both criteria.

Competence-base algorithms do not ensure diverse behaviors: Most of the best known
competence-based approaches [82, 102, 2, 161], optimize the first decomposition of the
mutual information H(z)−H(z|τ). The issue with this decomposition is that while it ensures
diversity of skill vectors it does not ensure diverse behavior from the policy, meaning maxH(z)
does not imply maxH(τ). Of course, if H(z)−H(z|τ) is maximized and the skill dimension
is sufficiently large, then H(τ) will also be maximized implicitly. Yet in practice, to learn an
accurate discriminator q(z|τ), the above methods assume skill spaces that are much smaller
than the state space (see Table 8.2), and thus behavioral diversity may not be guaranteed.
In contrast, the decomposition I(τ ; z) = H(τ)−H(τ |z) ensures diverse behaviors through
the entropy term H(τ). Methods that utilize this decomposition include Liu and Abbeel
[181], Sharma et al. [265].

Why it is important to utilize high-dimensional skills : Once a policy is capable of generating
diverse behaviors, it is important that the discriminator can distill these behaviors into

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 128

Figure 8.5 We report the aggregate statistics using stratified bootstrap intervals [3] for 12
downstream tasks on URLB with 10 seeds, so each statistic for each algorithm has 120 seeds in total.
We find that overall, CIC achieves leading performance on URLB in terms of the IQM, mean, and
OG statistics. As recommended by Agarwal et al. [3], we use the IQM as our primary performance
measure. In terms of IQM, CIC improves upon the next best skill discovery algorithm (APS) by
79% and the next best algorithm overall (ProtoRL) by 18%.

distinct skills. If the set of behaviors outnumbers the set of skills, this will result in degenerate
skills – when one skill maps to multiple different behaviors. It is therefore important
that the discriminator can accommodate continuous skills of sufficiently high dimension.
Empirically, the discriminators used in prior work utilize only low-dimensional continuous
skill vectors. DIAYN [82] utilized 16 dimensional skills, DADS [265] utilizes continuous skills
of dimension 2− 5, while APS [181], an algorithm that utilizes successor features [21, 110]
for the discriminator, is only capable of learning continuous skills with dimension 10. We
show how small skill spaces can lead to ineffective exploration in a simple gridworld setting
in Appendix 8.16.

On the importance of benchmarks for evaluation: While prior competence-based approaches
such as DIAYN [82] were evaluated on OpenAI Gym [37], Gym environment episodes
terminate when the agent loses balance thereby leaking some aspects of extrinsic signal to
the exploration agent. On the other hand, DMC episodes have fixed length. We show in
Fig 8.4 that this small difference in environments results in large performance differences.
Specifically, we find that DIAYN is able to learn diverse skills in Gym but not in DMC, which
is consistent with both observations from DIAYN and URLB papers. Due to fixed episode
lengths, DMC tasks are harder for reward-free exploration since agents must learn to balance
without supervision.

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 129

8.4 Method

8.4.1 Contrastive Intrinsic Control

From Section 8.3 we are motivated to find a lower bound for I(τ ; z) with a discriminator
that is capable of supporting high-dimensional continuous skills2. Additionally, we wish to
increase the diversity of behaviors so that the discriminator can continue learning new skills
throughout training. To improve the discriminator, we propose to utilize noise contrastive
estimation (NCE) [106] between state-transitions and latent skills as a lower bound for
I(τ ; z).3 It has been shown previously that such estimators provide a valid lower bound for
mutual information [214]. However, to the best of our knowledge, this is the first work to
investigate contrastive representation learning for intrinsic control.

Representation Learning: Specifically, we propose to learn embeddings with the following
representation learning objective, which is effectively CPC between state-transitions and
latent skills:

I(τ ; z) ≥ E[f(τ, z)− log
1

N

N∑
j=1

exp(f(τj, z))]. (8.3)

where f(τ, z) is any real valued function. For convenience, we define the discriminator
log q(τ |z) as

log q(τ |z) := f(τ, z)− log
1

N

N∑
j=1

exp(f(τj, z)). (8.4)

For our practical algorithm, we parameterize this function as

f(τ, z) = gψ1(τ)
⊤gψ2(z)/∥gψ1(τ)∥∥gψ2(z)∥T , (8.5)

where τ = (s, s′) is a transition tuple, gψk
are neural encoders, and T is a temperature

parameter. This inner product is similar to the one used in SimCLR [55].

The representation learning loss backpropagates gradients from the NCE loss which maximizes
similarity between state-transitions and corresponding skills.

FNCE(τ) =
gψ1(τi)

⊤gψ2(zi)

∥gψ1(τi)∥∥gψ2(zi)∥T

− log
1

N

N∑
j=1

exp

(
gψ1(τj)

⊤gψ2(zi)

∥gψ1(τj)∥∥gψ2(zi)∥T

)
(8.6)

2In high-dimensional state-action spaces the number of distinct behaviors can be quite large.
3Note that τ is not a trajectory but some function of states.

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 130

We provide pseudocode for the CIC representation learning loss below:
1 """
2 PyTorch -like pseudocode for the CIC loss
3 """
4
5 def cic_loss(s, s_next , z, temp):
6 """
7 - states: s, s_next (B, D)
8 - skills: z (B, D)
9 """

10
11 tau = concat(s, s_next , dim=1)
12
13 query = query_net(z)
14 key = key_net(tau)
15
16 query = normalize(query , dim =1)
17 key = normalize(key , dim =1)
18
19 """
20 positives are on diagonal
21 negatives are off diagonal
22 """
23
24 logits = matmul(query , key.T) / temp
25 labels = arange(logits.shape [0])
26
27 loss = cross_entropy(logits , labels)
28
29 return loss

Listing 8.1: Pseudocode for the CIC loss

Intrinsic reward: Although we have a representation learning objective, we still need to specify
the intrinsic reward for the algorithm for which there can be multiple choices. Prior works
consider specifying an intrinsic reward that is proportional to state-transition entropy [180],
the discriminator [82], a similarity score between states and skills [315], and the uncertainty
of the discriminator [281]. We investigate each of these choices and find that an intrinsic
reward that maximizes state-transition entropy coupled with representation learning via the
CPC loss defined in Sec. 8.4.1 is the simplest variant that also performs well (see Table 8.1).

For the intrinsic reward, we use a particle estimate [274, 27] as in Liu and Abbeel [180] of the
state-transition entropy. Similar to Liu and Abbeel [180], Yarats et al. [324] we estimate the
entropy up to a proportionality constant, because we want the agent to maximize entropy
rather than estimate its exact value.

The APT particle entropy estimate is proportional to the distance between the current visited
state transition and previously seen neighboring points.

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 131

Hparticle(τ) ∝
1

Nk

Nk∑
h⋆i∈Nk

log ∥hi − h⋆i ∥ (8.7)

where hi is an embedding of τi shown in Fig. 8.3, h∗i is a kNN embedding, Nk is the number of
kNNs, and N − 1 is the number of negatives. The total number of elements in the summation
is N because it includes one positive.

Explore and Exploit: With these design choices the two components of the CIC algorithm can
be interpreted as exploration with intrinsic rewards and exploitation using representation
learning to distill behaviors into skills. The marginal entropy maximizes the diversity of state-
transition embeddings while the contrastive discriminator log q(τ |z) encourages exploitation
by ensuring that skills z lead to predictable states τ . Together the two terms incentivize the
discovery of diverse yet predictable behaviors from the RL agent. While CIC shares a similar
intrinsic reward structure to APT [180], we show that the new representation learning loss
from the CIC estimator results in substantial performance gains in Sec 8.6.

8.5 Practical Implementation
Our practical implementation consists of two main components: the RL optimization algorithm
and the CIC architecture. For fairness and clarity of comparison, we use the same RL
optimization algorithm for our method and all baselines in this work. Since the baselines
implemented in URLB [155] use a DDPG4 [175] as their backbone, we opt for the same
DDPG architecture to optimize our method as well (see Appendix 8.11).

CIC Architecture: We use a particle estimator as in Liu and Abbeel [180] to estimate H(τ).
To compute the variational density q(τ |z), we first sample skills from uniform noise z ∼ p(z)
where p(z) is the uniform distribution over the [0, 1] interval. We then use two MLP encoders
to embed gψ1(τ) and gψ2(z), and optimize the parameters ψ1, ψ2 with the CPC loss similar to
SimCLR [55] since f(τ, z) = gψ1(τ)

Tgψ2(z). We fix the hyperparameters across all domains
and downstream tasks.

Adapting to downstream tasks: To adapt to downstream tasks we follow the same procedure
for competence-based method adaptation as in URLB [155]. During the first 4k environment
interactions we populate the DDPG replay buffer with samples and use the extrinsic rewards
collected during this period to finetune the skill vector z. While it’s common to finetune
skills with Cross Entropy Adaptation (CMA), given our limited budget of 4k samples (only 4
episodes) we find that a simple grid sweep of skills over the interval [0, 1] produces the best
results. After this, we fix the skill z and finetune the DDPG actor-critic parameters against

4It was recently was shown that a DDPG achieves state-of-the-art performance [322] on DeepMind
Control [288] and is more stable than SAC [108] on this benchmark.

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 132

the extrinsic reward for the remaining 96k steps. Note that competence-based methods in
URLB also finetune their skills during the first 4k finetuning steps ensuring a fair comparison
between the methods.

8.6 Experimental Setup
Environments We evaluate our approach on tasks from URLB, which consists of twelve
downstream tasks across three challenging continuous control domains for exploration algo-
rithms – walker, quadruped, and Jaco arm. Walker requires a biped constrained to a 2D
vertical plane to perform locomotion tasks while balancing. Quadruped is more challenging
due to a higher-dimensional state-action space and requires a quadruped to in a 3D environ-
ment to learn locomotion skills. Jaco arm is a 6-DOF robotic arm with a three-finger gripper
to move and manipulate objects without locking. All three environments are challenging in
the absence of an extrinsic reward.

Baselines: We compare CIC to baselines across all three exploration categories. Knowledge-
based basedlines include ICM [225], Disagreement [226], and RND [41]. Data-based baselines
incude APT [180] and ProtoRL [324]. Competence-based baselines include DIAYN [82],
SMM [161], and APS [181]. The closest baselines to CIC are APT, which is similar to CIC
but without state-skill CPC representation learning (no discriminator), and APS which
uses the same decomposition of mutual information as CIC and also uses a particle entropy
estimate for H(τ). The main difference between APS and CIC is that APS uses successor
features while CIC uses a contrastive estimator for the discriminator. For further details
regarding baselines we refer the reader to Appendix 8.12.

Evaluation: We follow an identical evaluation to the 2M pre-training setup in URLB. First,
we pre-train each RL agent with the intrinsic rewards for 2M steps. Then, we finetune each
agent to the downstream task with extrinsic rewards for 100k steps. All baselines were run
for 10 seeds per downstream task for each algorithm using the code and hyperparameters
provided by URLB [155]. Built on top of URLB, CIC is also run for 10 seeds per task. A
total of 1080 = 9 algorithms× 12 tasks× 10 seeds experiments were run for the main results.
Importantly, all baselines and CIC use a DDPG agent as their backbone.

To ensure that our evaluation statistics are unbiased we use stratified bootstrap confidence
intervals to report aggregate statistics across M runs with N seeds as described in Rliable [3]
to report statistics for our main results in Fig. 8.5. Our primary success metric is the
interquartile mean (IQM) and the Optimality Gap (OG). IQM discards the top and bottom
25% of runs and then computes the mean. It is less susceptible to outliers than the mean
and was shown to be the most reliable statistic for reporting results for RL experiments in
Agarwal et al. [3]. OG measures how far a policy is from optimal (expert) performance. To
define expert performance we use the convention in URLB, which is the score achieved by a
randomly initialized DDPG after 2M steps of finetuning (20x more steps than our finetuning

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 133

budget).

8.7 Results
We investigate empirical answers to the following research questions: (Q1) How does CIC
adaptation efficiency compare to prior competence-based algorithms and exploration algo-
rithms more broadly? (Q2) Which intrinsic reward instantiation of CIC performs best? (Q3)
How do the two terms in the CIC objective affect algorithm performance? (Q4) How does
skill selection affect the quality of the pre-trained policy? (Q5) Which architecture details
matter most?

Adaptation efficiency of CIC and exploration baslines: Expert normalized scores
of CIC and exploration algorithms from URLB are shown in Fig. 8.3. We find that CIC
substantially outperforms prior competence-based algorithms (DIAYN, SMM, APS) achieving
a 79% higher IQM than the next best competence-based method (APS) and, more broadly,
achieving a 18% higher IQM than the next best overall baseline (ProtoRL). In further ablations,
we find that the contributing factors to CIC’s performance are its ability to accommodate
substantially larger continuous skill spaces than prior competence-based methods.

Intrinsic reward specification: The intrinsic reward for competence-based algorithms can
be instantiated in many different ways. Here, we analyze intrinsic reward for CIC with the
form rint = H(τ) +D(τ, z), where D is some function of (τ, z). Prior works, select D to be
(i) the discriminator [181], (ii) a cosine similarity between embeddings [315], (iii) uncertainty
of the discriminator [281], and (iv) just the entropy D(τ, z) = 0 [180]. We run CIC with each
of these variants on the walker and quadruped tasks and measure the final mean performance
across the downstream tasks (see Tab. 8.1). The results show that the entropy-only intrinsic
reward performs best. For this reason the intrinsic reward and representation learning aspects
of CIC are decoupled. We hypothesize that the reason why a simple entropy-only intrinsic
reward works well is that state-skill CPC representation learning clusters similar behaviors
together. Since redundant behaviors are clustered, maximizing the entropy of state-transition
embeddings produces increasingly diverse behaviors.

The importance of representation learning: To what extent does representation learning
with state-skill CPC (see Eq. 8.3) affect the agent’s exploration capability? To answer this
question we train the CIC agent with the entropy intrinsic reward with and without the
representation learning auxiliary loss for 2M steps. The zero-shot reward plotted in Fig. 8.6
indicates that without representation learning the policy collapses. With representation
learning, the agent is able to discover diverse skills evidenced by the non-zero reward. This
result suggests that state-skill CPC representation learning is a critical part of CIC.

Qualitative analysis of CIC behaviors: Qualitatively, we find that CIC is able to learn
locomotion behaviors in DMC without extrinsic information such as early termination as in
OpenAI Gym. While most skills are higher entropy and thus more chaotic, we show in Fig 8.2

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 134

disc. similarity uncertainty entropy

walker 0.80 0.79 0.78 0.82
quad. 0.44 0.63 0.75 0.74

mean 0.62 0.71 0.77 0.78

Table 8.1 Analyzing four different intrinsic reward specifications for CIC, we find that
entropy-based intrinsic reward performs best, suggesting that the CIC discriminator is
primarily useful for representation learning. These are normalized scores averaged over 3
seeds across 8 downstream tasks (24 runs per data point).

that structured behaviors can be isolated by fixing a particular skill vector. For example, in
the walker and quadruped domains - balancing, walking, and flipping skills can be isolated.
For more qualitative investigations we refer the reader to Appendix 8.17.

8.8 Conclusion
We have introduced a new competence-based algorithm – Contrastive Intrinsic Control (CIC)
– which enables more effective exploration than prior unsupervised skill discovery algorithms
by explicitly encouraging diverse behavior while distilling predictable behaviors into skills
with a contrastive discriminator. We showed that CIC is the first competence-based approach
to achieve leading performance on URLB. We hope that this encourages further research in
developing RL agents capable of generalization.

8.9 Acknowledgements
We would like to thank Ademi Adeniji, Xinyang Geng, Fangchen Liu for helpful discussions.
We would also like to thank Phil Bachman for useful feedback. This work was partially
supported by Berkeley DeepDrive, NSF AI4OPT AI Institute for Advances in Optimization
under NSF 2112533, and the Office of Naval Research grant N00014-21-1-2769.

8.10 Competence-based Exploration Algorithms
The competence-based algorithms considered in this work aim to maximize I(τ ; s). The
algorithms differ by ho they decompose mutual information, whether they explicitly maximize
behavioral entropy, their skill space (discrete or continuous) and their intrinsic reward
structure. We provide a list of common competence-based algorithms in Table 8.2.

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 135

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Env. Steps 1e6

0

100

200

300

400

500

Re
wa

rd
Zero-shot extrinsic rewards

Full CIC: Particle entropy and CIC rep. learning
Ablation 1: Particle entropy but no CIC rep. learning
Ablation 2: CIC rep. learning but no particle entropy

Figure 8.6 Mean zero-shot extrinsic rewards for Quadruped stand over 3 seeds with and
without state-skill representation learning. Without representation learning, the algorithm
collapses. Similarly, with CIC representation learning but no entropy term (in which case
we use the discriminator as the intrinsic reward) the policy also collapses. Note that there
is no finetuning happening here. We’re showing the task-specific extrinsic reward during
reward-free pre-training as a way to sense-check the exploration policy.

8.11 Deep Deterministic Policy Gradient (DDPG)
A DDPG is an actor-critic RL algorithm that performs off-policy gradient updates and learns
a Q function Qϕ(s, a) and an actor πθ(a|s). The critic is trained by satisfying the Bellman
equation.

LQ(ϕ,D) = E(st,at,rt,st+1)∼D

[(
Qϕ(st, at)− rt − γQϕ̄(st+1, πθ(st+1)

)2]
. (8.8)

Here, ϕ̄ is the Polyak average of the parameters ϕ. As the critic minimizes the Bellman error,
the actor maximizes the action-value function.

Lπ(θ,D) = Est∼D [Qϕ(st, πθ(st))] . (8.9)

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 136

Table 8.2 Prior Competence-based Unsupervised Skill Discovery Algorithms

Algorithm Intrinsic Reward Decomposition Explicit maxH(τ) Skill Dim. Skill Space

SSN4HRL [86] log qψ(z|st) H(z)−H(z|τ) No 6 discrete
VIC [102] log qψ(z|sH)) H(z)−H(z|τ) No 60 discrete
VALOR [2] log qψ(z|s1:H) H(z)−H(z|τ) No 64 discrete
DIAYN [82] log qψ(z|st) H(z)−H(z|τ) No 128 discrete
DADS [265] qψ(s

′|z, s)−∑i log q(s
′|zi, s) H(τ)−H(τ |z) Yes 5 continuous

VISR [110] log qψ(z|st) H(z)−H(z|τ) No 10 continuous
APS [181] FSuccessor(s|z) +Hparticle(s) H(τ)−H(τ |z) Yes 10 continuous

Table 8.3 A list of competence-based algorithms. We describe the intrinsic reward optimized
by each method and the decomposition of the mutual information utilized by the method. We
also note whether the method explicitly maximizes state transition entropy. Finally, we note the
maximal dimension used in each work and whether the skills are discrete or continuous. All methods
prior to CIC only support small skill spaces, either because they are discrete or continuous but
low-dimensional.

8.12 Baselines
For baselines, we choose the existing set of benchmarked unsupervised RL algorithms on
URLB. We provide a quick summary of each method. For more detailed descriptions of each
baseline we refer the reader to URLB [155]

Competence-based Baselines: CIC is a competence-based exploration algorithm. For baselines,
we compare it to DIAYN [82], SMM [161], and APS [181]. Each of these algorithms is
described in Table 8.2. Notably, APS is a recent state-of-the-art competence-based method
that is the most closely related algorithm to the CIC algorithm.

Knowledge-based Baselines: For knowledge-based baselines, we compare to ICM [225], Dis-
agreement [226], and RND [41]. ICM and RND train a dynamics model and random network
prediction model and define the intrinsic reward to be proportional to the prediction error.
Disagreement trains an ensemble of dynamics models and defines the intrinsic reward to be
proportional to the uncertainty of an ensemble.

Data-based Baselines: For data-based baselines we compare to APT [180] and ProtoRL [324].
Both methods use a particle estimator to estimate the state visitation entropy. ProtoRL also
performs discrete contrastive clustering as in Caron et al. [46] as an auxiliary task and uses
the resulting clusters to compute the particle entropy. While ProtoRL is more effective than
APT when learning from pixels, on state-based URLB APT is competitive with ProtoRL.

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 137

Our method CIC is effectively a skill-conditioned APT agent with a contrastive discriminator.

8.13 Relation to Prior Skill Discovery Methods
The most closely relatd prior algorithms to CIC are APT [180] and APS [181]. Both CIC
and APS use the H(τ) −H(τ |z) decomposition of the mutual information and both used
a particle estimator [274] to compute the state entropy as in Liu and Abbeel [180]. The
main difference between CIC and APS is the discriminator. APS uses successor features
as in Hansen et al. [110] for its discriminator while CIC uses a noise contrastive estimator.
Unlike successor features, which empirically only accommodate low-dimensional continuous
skill spaces (see Table 8.2), the noise contrastive discriminator is able to leverage higher
continuous dimensional skill vectors. Like APT, CIC has an intrinsic reward that maximizes
H(τ). However, CIC also does contrastive skill learning to shape the embedding space and
outputs a skill-conditioned policy.

The CIC discriminator is similar to the one used in DISCERN [315], a goal-conditioned
unsupervised RL algorithm. Both methods use a contrastive discriminator by sampling
negatives and computing an inner product between queries and keys. The main differences
are (i) that DISCERN maximizes I(τ ; g) where g are image goal embeddings while CIC
maximizes I(τ ; z) where z are abstract skill vectors; (ii) DISCERN uses the DIAYN-style
decomposition I(τ ; g) = H(g)−H(g|τ) while CIC decomposes through H(τ)−H(τ |z), and
(iii) DISCERN discards the H(g) term by sampling goals uniformly while CIC explicitly
maximizes H(τ). While DISCERN and CIC share similarities, DISCERN operates over image
goals while CIC operates over abstract skill vectors so the two methods are not directly
comparable.

Finally, another similar algorithm to CIC is DADS [265] which also decomposes through
H(τ)−H(τ |z). While CIC uses a contrastive density estimate for the discriminator, DADS
uses a maximum likelihood estimator similar to DIAYN. DADS maximizes I(s′|s, z) and
estimates entropy H(s′|s) by marginalizing over z such that H(s′|s) = − log

∑
i q(s

′|s, zi)
while CIC uses a particle estimator.

8.14 Hyper-parameters
Baseline hyperparameters are taken from URLB [155], which were selected by performing a
grid sweep over tasks and picking the best performing set of hyperparameters. Except for
the skill dimension, hyperparameters for CIC are borrowed from URLB.

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 138

Table 8.4 Hyper-parameters used for CIC .

DDPG hyper-parameter Value
Replay buffer capacity 106

Action repeat 1
Seed frames 4000
n-step returns 3
Mini-batch size 1024
Seed frames 4000
Discount (γ) 0.99
Optimizer Adam
Learning rate 10−4

Agent update frequency 2
Critic target EMA rate (τQ) 0.01
Features dim. 1024
Hidden dim. 1024
Exploration stddev clip 0.3
Exploration stddev value 0.2
Number pre-training frames 2× 106

Number fine-turning frames 1× 105

CIC hyper-parameter Value
Skill dim 64 continuous
Prior Uniform [0,1]
Skill sampling frequency (steps) 50
State net arch. gψ1(s) dim(O)→ 1024→ 1024→ 64 ReLU MLP
Skill net arch. gψ2(z) 64→ 1024→ 1024→ 64 ReLU MLP
Prediction net arch. 64→ 1024→ 1024→ 64 ReLU MLP

8.15 Raw Numerical Results
We provide a list of raw numerical results for finetuning CIC and baselines in Tables 8.5
and 8.6. All baselines were run using the code provided by URLB [155] for 10 seeds per
downstream task.

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 139

Statistic ICM Dis. RND APT Proto DIAYN APS SMM CIC % CIC > APS % CIC > Proto

Median ↑ 0.45 0.56 0.58 0.62 0.66 0.44 0.47 0.22 0.76 +61% +15%
IQM ↑ 0.41 0.51 0.61 0.65 0.65 0.40 0.43 0.25 0.77 +79% +18%
Mean ↑ 0.43 0.51 0.63 0.66 0.65 0.44 0.46 0.35 0.76 +65% +17%
OG ↓ 0.57 0.49 0.37 0.35 0.35 0.56 0.54 0.65 0.24 -44% -68%

Table 8.5 Statics for downstream task normalized scores for CIC and baselines from
URLB [155]. CIC improves over both the prior leading competence-based method APS [181]
and overall next-best exploration algorithm ProtoRL [324] across all readout statistics. Each
data point is a statistic computed using 10 seeds and 12 downstream tasks (120 experiments
per data point). The statistics are computed using RLiable [3].

Pre-trainining for 2× 106 environment steps
Domain Task Expert DDPG CIC ICM Disagreement RND APT ProtoRL SMM DIAYN APS

Walker

Flip 799 538±27 631 ± 34 417±16 346±13 474±39 544±14 456±12 450±24 319±17 465±20
Run 796 325±25 486 ± 25 247±21 208±15 406±30 392±26 306±13 426±26 158±8 134±16

Stand 984 899±23 959 ± 2 859±23 746±34 911±5 942±6 917±27 924±12 695±46 721±44
Walk 971 748±47 885 ± 28 627±42 549±37 704±30 773±70 792±41 770±44 498±27 527±79

Quadruped

Jump 888 236±48 595 ± 42 178±35 389±62 637±12 648±18 617±44 96±7 660±43 463±51
Run 888 157±31 505 ± 47 110±18 337±30 459±6 492±14 373±33 96±6 433±29 281±17

Stand 920 392±73 761 ± 54 312±68 512±89 766±43 872±23 716±56 123±11 851±43 542±53
Walk 866 229±57 723 ± 43 126±27 293±37 536±39 770±47 412±54 80±6 576±81 436±79

Jaco

Reach bottom left 193 72±22 138 ± 9 111±11 124±7 110±5 103±8 129±8 45±7 39±6 76±8
Reach bottom right 203 117±18 145 ± 7 97±9 115±10 117±7 100±6 132±8 46±11 38±5 88±11

Reach top left 191 116±22 153 ± 7 82±14 106±12 99±6 73±12 123±9 36±3 19±4 68±6
Reach top right 223 94±18 163 ± 4 103±11 139±7 100±6 90±10 159±7 47±6 28±6 76±10

Table 8.6 Performance of CIC and baselines on state-based URLB after first pre-training
for 2×106 steps and then finetuning with extrinsic rewards for 1×105. All baselines were run
for 10 seeds per downstream task for each algorithm using the code provided by URLB [155].
A total of 1080 = 9 algorithms× 12 tasks× 10 seeds experiments were run.

8.16 Toy Example to Illustrate the Need for Larger Skill
Spaces

We illustrate the need for larger skill spaces with a gridworld example. Suppose we have
an agent in a 10× 10 sized gridworld and that we have four discrete skills at our disposal.
Now let τ = s and consider how we may achieve maximal I(τ ; z) in this setting. If we
decompose I(τ ; z) = H(z)−H(z|τ) then we can achieve maximal H(z) by sampling the four
skills uniformly z ∼ p(z). We can achieve H(z|τ) = 0 by mapping each skill to a distinct
neighboring state of the agent. Thus, our mutual information is maximized but as a result
the agent only explores four out of the hundrend available states in the gridworld.

Now suppose we consider the second decomposition I(τ ; z) = H(τ)−H(τ |z). Since the agent
is maximizing H(τ) it is likely to visit a diverse set of states at first. However, as soon as it
learns an accurate discriminator we will have H(τ |z) and again the skills can be mapped to

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 140

Figure 8.7 A gridworld example motivating the need for large skill spaces. In this environment,
we place an agent in a 10× 10 gridworld and provide the agent access to four discrete skills. We
show that the mutual information objective can be maximized by mapping these four skills to
the nearest neighboring states resulting in low behavioral diversity and exploring only four of the
hundred available states.

neighboring states to achieve minimal conditional entropy. As a result, the skill conditioned
policy will only be able to reach four out of the hundrend possible states in this gridworld.
This argument is shown visually in Fig. 8.7.

Skill spaces that are too large can also be an issue. Consider if we had 100 skills at our
disposal in the same gridworld. Then the agent could minimize the conditional entropy
by mapping each skill to a unique state which would result in the agent memorizing the
environment by finding a one-to-one mapping between states and skills. While this is a
potential issue it has not been encountered in practice yet since current competence-based
methods support small skill spaces relative to the observation space of the environment.

8.17 Qualitative Analysis of Skills
We provide two additional qualitative analyses of behaviors learned with the CIC algorithm.
First, we take a simple pointmass setting and set the skill dimension to 1 in order to ablate
the skills learned by the CIC agent in a simple setting. We sweep over different values of z
and plot the behavioral flow vector field (direction in which point mass moves) in Fig.8.8. We
find that the pointmass learns skills that produce continuous motion and that the direction of
the motion changes as a function of the skill value. Near the origin the pointmass learns skills
that span all directions, while near the edges the point mass learns to avoid wall collisions.
Qualitatively, many behaviors are periodic.

Qualitatively, we find that methods like DIAYN that only support low dimensional skill
vectors and do not explicitly incentivize diverse behaviors in their objective produce policies
that map skills to a small set of static behaviors. These behaviors shown in Fig. 8.9 are
non-trivial but also have low behavioral diversity and are not particularly useful for solving

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 141

Pointmass with 1 skill

Behavior flow for different skill values

Figure 8.8 Learning curves for finetuning pre-trained agents for 100k steps. Task performance
is aggregated for each domain, such that each curve represents the mean normalized scores over
4× 10 = 40 seeds. The shaded regions represent the standard error. CIC surpasses the performance
of the prior state-of-the-art on Walker and Jaco tasks while tying on Quadruped. CIC is the only
algorithm that performs consistently well across all three domains.

the downstream task. This observation is consistent with Zahavy et al. [330] where the
authors found that DIAYN maps to static “yoga" poses in DeepMind Control. In contrast,
behaviors produce by CIC are dynamic resulting flipping, jumping, and locomotive behaviors
that can then be adapted to efficiently solve downstream tasks.

8.18 OpenAI Gym vs. DeepMind control: How Early
Termination Leaks Extrinsic Signal

Prior work on unsupervised skill discovery for continuous control [82, 265] was evaluated
on OpenAI Gym [37] and showed diverse exploration on Gym environments. However,
Gym environment episodes terminate early when the agent loses balance, thereby leaking
information about the extrinsic task (e.g. balancing or moving). However, DeepMind Control
(DMC) episodes have a fixed length of 1k steps. In DMC, exploration is therefore harder
since the agent needs to learn to balance without any extrinsic signal.

To evaluate whether the difference in the two environments has impact on competence-based
exploration, we run DIAYN on the hopper environments from both Gym and DMC. We

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 142

Figure 8.9 Qualitative visualization of DIAYN and CIC pre-training on the Walker and
Quadruped domains from URLB. Confirming findings in prior work [330], we also find that DIAYN
policies produce static but non-trivial behaviors mapping to “yoga" poses while CIC produces diverse
and dynamic behaviors such as walking, flipping, and standing. Though it’s hard to see from these
images, all the DIAYN skills get stuck in frozen poses while the CIC skills are producing dynamic
behavior with constant motion.

compare to ICM, a popular exploration baseline, and a Fixed baseline where the agent receives
an intrinsic reward of 1 for each timestep and no algorithms receive extrinsic rewards. We
then measure the extrinsic reward, which loosely corresponds to the diversity of behaviors
learned. Our results in Fig. 8.4 show that indeed DIAYN is able to learn diverse behaviors in
Gym but not in DMC while ICM is able to learn diverse behaviors in both environments.
Interestingly, the Fixed baseline achieves the highest reward on the Gym environment by
learning to stand and balance. These results further motivate us to evaluate on URLB which
is built on top of DMC.

8.19 CIC vs Other Types of Contrastive Learning for RL
Contrastive learning in CIC is different than prior vision-based contrastive learning in RL
such as CURL [152], since we are not performing contrastive learning over augmented images
but rather over state transitions and skills. The contrastive objective in CIC is used for
unsupervised learning of behaviors while in CURL it is used for unsupervised learning of
visual features.

We provide pseudocode for the CIC loss below:
1 def discriminator_loss(states , next_states , skills , temp):
2 """
3 - states and skills are sampled from replay buffer
4 - skills were sampled from uniform dist [0,1] during agent rollout
5 - states / next_states: dim (B, D_state)
6 - skills: dim (B, D_skill)

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 143

7 """
8
9 transitions = concat(states , next_states , dim=1)

10
11 query = skill_net(skills) # (B, D_hidden) -> (B, D_hidden)
12 key = transition_net(transitions) # (B, 2* D_state) -> (B, D_hidden)
13
14 query = normalize(query , dim =1)
15 key = normalize(key , dim =1)
16
17 logits = matmul(query , key.T) / temp # (B, B)
18 labels = arange(logits.shape [0])
19
20 # positives are on diagonal , negatives are off diagonal
21 # for each skill , negatives are sampled from transitions
22 # while skills are fixed
23 loss = cross_entropy(logits , labels)
24
25 return loss

Listing 8.2: CIC discriminator loss

This is substantially different from prior contrastive learning works in RL such as CURL [152],
which perform contrastive learning over images.

1 def curl_loss(obs , W, temp):
2 """
3 - observation images are sampled from replay buffer
4 - obs: dim (B, C, H, W)
5 - W: projection matrix (D_hidden , D_hidden)
6 """
7
8 query = aug(obs)
9 key = aug(obs)

10
11 query = cnn_net(query) # (B, D_hidden)
12 key = cnn_net(key) # (B, D_hidden)
13
14 logits = matmul(matmul(query , W), key.T) / temp # (B, B)
15 labels = arange(logits.shape [0])
16
17 # positives are on diagonal
18 # negatives are off diagonal
19 loss = cross_entropy(logits , labels)
20
21 return loss

Listing 8.3: CURL contrastive loss

CHAPTER 8. CONTRASTIVE INTRINSIC CONTROL 144

8.20 On estimates of Mutual Information
In this work we have presented CIC - a new competence-based algorithm that achieves leading
performance on URLB compared to prior unsupervised RL methods.

One might wonder whether estimating the exact mutual information (MI) or maximizing
the tightest lower bound thereof is really the goal for unsupervised RL. In unsupervised
representation learning, state-of-the-art methods like CPC and SimCLR maximize the lower
bound of MI based on Noise Contrastive Estimation (NCE). However, as proven in CPC [214]
and illustrated in Poole et al. [233] NCE is upper bounded by logN , meaning that the bound
is loose when the MI is larger than logN . Nevertheless, these methods have been repeatedly
shown to excel in practice. In Tschannen et al. [298] the authors show that the effectiveness
of NCE results from the inductive bias in both the choice of feature extractor architectures
and the parameterization of the employed MI estimators.

We have a similar belief for unsupervised RL - that with the right parameterization and
inductive bias, the MI objective will facilitate behavior learning in unsupervised RL. This is
why CIC lower bounds MI with (i) the particle based entropy estimator to ensure explicit
exploration and (ii) a contrastive conditional entropy estimator to leverage the power of
contrastive learning to discriminate skills. As demonstrated in our experiments, CIC outper-
forms prior methods, showing the effectiveness of optimizing an intrinsic reward with the
CIC MI estimator.

8.21 Limitations
While CIC achieves leading results on URLB, we would also like to address its limitations.
First, in this paper we only consider MDPs (and not partially observed MDPs) where the full
state is observable. We focus on MDPs because generating diverse behaviors in environments
with large state spaces has been the primary bottleneck for competence-based exploration.
Combining CIC with visual representation learning to scale this method to pixel-based inputs
is a promising future direction for research not considered in this work. Another limitation is
that our adaptation strategy to downstream tasks requires finetuning. Since we learn skills,
it would be interesting to investigate alternate ways of adapting that would enable zero-shot
generalization such as learning generalized reward functions during pre-training.

145

Chapter 9

Exploration for Diverse AI Supervision

9.1 Introduction
Training large transformers [304] using next token prediction has led to substantial AI
advancements, as evidenced by the groundbreaking results they have produced [253, 217].
While this generative AI approach has yielded remarkable AI results, it heavily relies on human
supervision. For instance, state-of-the-art AI models including ChatGPT [253] along with a
range of other models [61, 97? , inter alia], rely on fine-tuning through human demonstrations,
demanding significant human involvement and domain expertise. This reliance on extensive
human supervision presents a substantial challenge since human supervision requires domain
expertise, is time consuming, and is tedious. Moreover, humans can struggle to provide
reliable supervision in highly specialized domains. For instance, ChatGPT possesses a greater
depth of knowledge than the average human, which makes it difficult to rely on humans to
provide supervision for ChatGPT. Moreover, while our most advanced AI systems have made
significant strides, they still necessitate thorough, human-guided processes to enhance their
ability to answer factual or mathematical queries [174]. Yet, when it comes to more intricate
and mission-critical tasks, such as navigating complex tax or law regulations, these challenges
will demand even more specialized expertise and effort.

Prior works attempt to explore alternatives to human supervision, by using AI supervision
instead. For example in mathematical reasoning, these studies propose sampling self generated
solutions for human curated questions from large language models and employ techniques like
rejection sampling, along with other techniques, to curate training data for the model [65, 213,
18, 127, 331, 327, inter alia]. While learning from such sampled content proves effective, a
significant challenge persists: the sampled contents often lack the necessary diversity, resulting
in a rapid saturation of the learning process [327, 331]. Moreover, the sampling approach has
been confined to solutions exclusively, relying on human-curated questions, thus imposing
constraints on the diversity of generated data.

To tackle these limitations, we propose a novel approach for using AI models to autonomously

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 146

Figure 9.1 Exploratory AI improves mathematical reasoning via exploration. Left
and middle: Test accuracy on mathematical reasoning benchmark GSM8K. Baselines include
Vicuna, supervised finetuning Vicuna on training set (denoted as SFT), and supervised
finetuning Vicuna on rejection sampled model generated diverse solutions on training set
(denoted as RFT). Our Exploratory AI (EAI) substantially outperforms all baselines. Right:
Our approach EAI generates diverse data for learning by exploring with the guidance of
principles and critiques.

generate diverse data for learning purposes. This concept draws inspiration the APT
algorithm [179] designed for unsupervised RL pretraining [276, 154, 225]. RL pretraining
studies exploring in a reward-free environment to develop skills for quickly maximize various
downstream rewards. APT allows training RL agent to learn skills by autonomously explore
reward free environment based on evaluating novelty of encountered states using particle
based entropy estimation [27, 275]. Adapting APT to large language models presents several
challenges, including computational complexity and the difficulty of learning reward functions
and exploration policies [92, 65]. Rather than relying on traditional RL techniques, we
harness the unique capabilities of large language models, such as their ability to learn from
context and follow instructions. In essence, we use them to perform the roles of both a reward
function and an exploration policy. Our approach, which we term Exploratory AI (EAI),
involves two key components: an actor and a critic. The actor is responsible for generating
novel content in natural language, while the critic evaluates this generated content and
provides critiques to guide the actor’s exploration. By evaluating the novelty of the generated
contents, our method allows for effective exploration in the rich space of natural language.
EAI can generate diverse data independently of human intervention. This makes it more
scalable and automated, positioning it as a preferable alternative to methods like supervised
finetuning or rejection sampling that depend on data curated by humans. Furthermore, EAI
provides an interpretable window into the behavior and knowledge of the model. It sheds
light on how well the model possesses knowledge and its reasoning behind generating novel
questions. One can look at generations and their corresponding evaluations which provide
valuable insights about how model generates and evaluates.

We evaluate our approach on mathematical reasoning benchmarks GSM8K [65] and MATH [115],
EAI substantially improves performance on challenging reasoning tasks, outperforming both
human supervision and AI supervision baselines. In contrast to human supervision, our
approach is autonomous and more scalable. When compared to prior state-of-the-art AI
supervision baselines including RFT [327] and WizardMath [194], our method provides a

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 147

Figure 9.2 Generating diverse data in the Exploratory AI Framework. In the
diagram, we demonstrate how the actor generates diverse content by conditioning on samples
from the replay buffer and exploration principles. These principles include rephrasing question,
coming up a novel topic, restructuring question, and coming up a new scenario, we provide
examples associated with the principles to guide exploration. The actor’s input and its
generated output undergo evaluation by the critic. The critic assesses the novelty of the
generated data; when the evaluation is favorable, the data is stored in the replay buffer. In
cases where the evaluation does not meet the criteria, the critic provides critiques to guide
the actor. The replay buffer can be initialized with a pre-existing human-created dataset
(e.g., GSM8K training set) or can remain empty for starting from scratch with zero-shot
exploration.

straightforward yet highly effective solution for the generation of high-quality and diverse
data.

Our contributions are two-fold: (a) In contrast to the predominant reliance on human
supervision, our novel approach, EAI, leverages the capabilities of large language models
to autonomously generate diverse high-quality training data. It achieves this by harnessing
these models for self-guided exploration, inspired by unsupervised reinforcement learning
pretraining. (b) We conduct an extensive series of experiments to systematically assess
the effectiveness of EAI. Our results show that EAI substantially outperform prior human
supervision and AI supervision state-of-the-arts, and significantly improve model performance.

9.2 Exploratory AI for Diverse AI Supervision
We present our approach for harnessing AI models to create AI supervision, in order to
address the reliance on extensive human supervision.

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 148

Our method employs a dynamic interplay between generation and evaluation. This concept
draws inspiration from unsupervised RL pretraining (URL) [154] and particularly the APT
algorithm [179]. RL pretraining studies exploring in a reward-free environment to develop
skills for quickly maximizing various downstream rewards. APT allows training RL agent to
learn skills by autonomously exploring a reward free environment based on evaluating novelty
of encountered states using particle based entropy estimation [27, 275].

Adapting APT directly to large language models presents several challenges, including
grappling with computational complexity and the difficulty of learning reward functions and
exploration policies [92, 65]. In response, we propose Exploratory AI (EAI), a novel approach
that circumvents the need for direct reinforcement learning (RL) by harnessing the power of
large language models for exploration. Our method explore the natural language space by
employing these language models to assess the novelty of generated content and guide the
exploration process. Our approach consists of two key components: an “actor” responsible
for generating novel content and a “critic” that evaluates the actor’s outputs and provides
feedback to guide further content generation.

Concretely, we instruct the actor to generate content that diverges from samples from the
replay buffer. The replay buffer can be initialized with a pre-existing human-created dataset
(e.g., GSM8K training set) or can remain empty for zero-shot exploration. Similar to APT, we
found having pre-existing samples accelerates learning and encourages the actor to have more
long term exploratory behaviors. We then instruct the critic to assess the actor’s outputs and
provides critiques. This feedback loop guides the actor in refining and enhancing its content.
This iterative process continues until it reaches a predefined maximum number of iterations,
and the resulting outputs are stored in a dataset. The data can then be used for finetuning
AI models.

Actor prompt

You are an AI assistant to help with come up a novel question that is different from the example questions
given to you. The question should come with a correct solution. Please follow the given principle in
generating the question. {principle}

Critic prompt

You are an AI assistant to help with evaluating the novelty of generated question and the correctness of its
answer. A question is not acceptable if its answer is incorrect. You should provide concrete suggestions to
improve the question. Explain your reasoning step by step and output final evaluation on novelty and
correctness at the end. Follow the given principle on evaluating the novelty. {principle}

We equip both the actor and critic with a curated set of guiding principles to facilitate the
generation and evaluation of diverse questions. These principles include rephrasing question,
coming up a novel topic, restructuring question, and coming up a new scenario, we provide
examples associated with the principles to guide exploration.

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 149

Principles for exploration

You can rephrase any given question:
Question: Joy can read 8 pages of a book in 20 minutes. How many hours will it take her to read 120
pages?
Question (rephrase): How many hours will Joy need to read 120 pages if she can read 8 pages in 20
minutes?
You can come up with a different topic:
Question: Jack is stranded on a desert island. He wants some salt to season his fish. He collects 2 liters of
seawater in an old bucket. If the water is 20% salt, how many ml of salt will Jack get when all the water
evaporates?
Question (topic): Samantha is designing a circular garden in her backyard. The garden has a diameter of
8 meters. She wants to build a path around the garden that is 1 meter wide. What is the area of the path,
in square meters, that Samantha will need to pave with stones or concrete?
You can change the structure of any question:
Question: Dan owns an ice cream shop and every sixth customer gets a free ice cream cone. Cones cost $2
each. If he sold $100 worth of cones, how many free ones did he give away?
Question (restructured): Dan owns an ice cream shop and every sixth customer gets a free ice cream cone.
Cones cost $x each. If he sold $100 worth of cones, how many free ones did he give away? If we know the
answer is 10, what is the value of x?
You can come up with a different scenario:
Question: Ed has 2 dogs, 3 cats and twice as many fish as cats and dogs combined. How many pets does
Ed have in total?
Question (scenario): Sarah owns 4 bicycles, 2 skateboards, and three times as many pairs of rollerblades as
bicycles and skateboards combined. How many wheeled sports equipment items does Sarah have in total?

While it’s theoretically possible to provide all these principles to the model, in this study,
we opt to a more controlled approach. To balance the quantity of generated data for each
principle, we uniformly sample one principle at a time and input it to both the actor and
critic. The actor is instructed to follow the principle (e.g., restructuring the question) during
question generation. Similarly, the critic’s role is to evaluate the diversity, considering the
selected principle. It’s worth noting that the critic’s principle is worded slightly differently
from the exploration principle; for a detailed list, please refer to Appendix 9.8. Our method
is shown in Figure 9.2 and the algorithm is shown in Algorithm 6.

Exploratory AI has several attractive properties as an approach for facilitating AI supervision
in language models:

1. EAI can generate diverse AI supervision for learning, independently of human input,
making it more scalable compared with supervised finetuning or rejection sampling based
on human curated data.

2. EAI provides an interpretable window into the behavior and knowledge of the model. It
sheds light on how well the model possesses knowledge and its reasoning behind generating
novel questions. One can look at generations and their corresponding evaluations which
provide valuable insights about how model generates and evaluates.

3. EAI’s versatility allows for a fusion of the best aspects of supervised finetuning and

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 150

Algorithm 6: Exploratory AI for diverse AI supervision.
Required: One (or two) large language models M for actor and critic.
Replay Buffer B, empty or optionally initialized with pre-existing data.
Initialize
for i = 1 to max iterations do

Randomly sample data points from B
Use preassigned principle or sample one principle.
for i = j to max rounds do

Prompt the actor with the principle to generate content (a question and its answer)
that in the same domain but diverge from the sampled inputs (questions and answers)
sampled from B
Prompt the critic with the principle to evaluate the diversity of generated question
and correctness of answer, and decide whether to accept
if Accepted then

Save generated question and answer to B
break

else
Continue to prompt actor with the critique as additional input

end if
end for

end for

prompting. Users can prompt the model to focus on certain topics or aspects by directing
actor and critic with different prompting strategies.

4. EAI demonstrates its effectiveness by excelling in mathematical reasoning tasks, as we will
demonstrate in our experiments. Moreover, its capabilities are not limited to mathematics;
it holds promise for a broad spectrum of language-related tasks in principle.

In empirical experiments, we will evaluate the utility of EAI for mathematical reasoning and
analysis its effectiveness.

9.3 Setting
We evaluate our method on the mathematical reasoning tasks, and achieve better results that
EAI largely improve results and significantly outperforms prior state-of-the-arts.

Benchmarks. We evaluate our method on the mathematical reasoning tasks GSM8K and
MATH. GSM8K exams model’s mathematical reasoning capabilities, we finetune model on
the training split, and evaluate model on the test split. The GSM8k dataset includes around
7,500 training and 1,319 test math problems for high school-level students, involving basic

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 151

arithmetic operations. Problems typically require 2 to 8 steps for a solution. The MATH
dataset comprises 7,500 training and 5,000 challenging test problems from prestigious math
competitions (AMC 10, AMC 12, AIME) covering various academic domains, including
prealgebra, algebra, number theory, counting and probability, geometry, intermediate algebra,
and precalculus.

Baselines. We compare our approach with (a) Base model including Vicuna 7B, 13B, and
30B [61]. Vicuna is LLaMA2 finetuned on user conversations shared online (ShareGPT). We
use Vicuna as base model for all baselines and our method; (b) Supervised finetuning (SFT)
on training set of the original GSM8K or MATH, in which a language model is finetuned
on human written exemplars of questions–answers pairs. SFT has been widely used in prior
works for improving language models mathematical reasoning [165, 297, 217, inter alia] and
following user intention [97? , inter alia]. We also compare with WizardMath [194] which
does SFT on ChatGPT annotated questions and solutions, as well as MAmmoTH [329] which
uses GPT4 annotated solutions; (c) Rejection sampling finetuning (RFT) [327] which applies
supervised finetuning on rejection sampled model generated data. We provide baseline scores
for SFT and RFT from both their original papers and our implementations using Vicuna,
ensuring a fair and comprehensive comparison; (d) Proprietary models including GPT-4 [217],
ChatGPT [253], and Claude2 [12]. All baselines are evaluated by prompting them to output
step by step reasoning followed by final answers [318].

Generated data size. We sample roughly the same amount of data for each principle
outlined in Section 9.2. To optimize computational cost, we have set the number of interaction
rounds in Algorithm ?? to a maximum of two. Our preliminary experiments revealed that
this two-round interaction is typically sufficient for the actor to produce high-quality and
diverse data. For each of the four principles – ’rephrase question’, ’introduce a new topic’,
’restructure the question’, and ’introduce a new scenario’ – we generate approximately 25,000
samples for GSM8K and approximately 15,000 samples for MATH. The generation on 8
A100 80GB GPUs take from 40 to 200 hours depending on the model size and the specific
principles applied.

9.4 Results
Benchmarks on math reasoning. The results presented in the Table 9.1 demonstrate
the notable effectiveness of the method EAI in the context of pass@1 performance on the
GSM8k and MATH datasets. A key highlight is the absolute improvement of EAI over
previous state-of-the-art methods, emphasized in bold red numbers. Specifically, EAI exhibits
superior performance in two distinct scenarios: firstly, when ChatGPT is used to supervise
LLaMA2, and secondly, when Vicuna supervises itself. The table provides a comprehensive
comparison across various models and methods, including GPT-4, ChatGPT, Claude 2,
LLaMA2 (with and without SFT and RFT), and Vicuna. The performance of EAI, especially
in the LLaMA2 and Vicuna settings, shows marked improvements in both the GSM8K and

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 152

Table 9.1 Results of pass@1 (%) on GSM8k and MATH. In this study, to ensure equitable
and cohesive evaluations, we report the scores of all models under the same settings of
greedy decoding. Bold numbers in red are the absolute improvement of EAI over prior
state-of-the-arts. Notably, EAI outperforms state-of-the-arts both when using ChatGPT for
exploration to supervise LLaMA2 and when using Vicuna to supervise itself.

Finetune
Model Method AI supervision Data amount Params GSM8K MATH

-
GPT-4 - - - 92.0 42.5

ChatGPT - - - 80.8 34.1
Claude 2 - - - 88.0 32.5

LLaMA2

LLaMA2 - - 7B 14.6 2.5
13B 28.7 3.9

SFT - 7.5K 7B 41.6 -
13B 50.0 -

RFT LLaMA2 47K 7B 47.5 5.6
13B 54.8 9.6

WizardMath ChatGPT 96K 7B 54.9 10.7
13B 63.9 14.0

MAmmoTH GPT4 260K 7B 51.7 31.2
13B 61.7 36.0

EAI GPT4 96K 7B 56.6 (+1.7) 11.6 (+0.9)
13B 65.2 (+1.3) 15.1 (+1.1)

Vicuna

Vicuna - - 7B 24.4 2.6
13B 39.8 5.8

SFT - 7.5K 7B 42.0 4.6
13B 50.8 7.9

RFT Vicuna 48K 7B 48.1 5.9
13B 56.3 9.3

EAI Vicuna 48K 7B 52.9 (+4.8) 8.6 (+2.7)
13B 60.5 (+4.2) 11.4 (+2.1)

MATH datasets. For instance, in the LLaMA2 model, EAI achieves a significant gain in both
datasets, irrespective of the number of parameters (7B or 13B). This trend is consistent in the
Vicuna model as well, where EAI again shows superior performance compared to the baseline
Vicuna model. These results underscore the efficacy of EAI in leveraging AI supervision to
enhance model performance. The gains are prominent across model sizes, indicating EAI’s
scalability and effectiveness in handling complex AI models. This result on the GSM8k and
MATH datasets provides compelling evidence of the effectiveness of generating diverse AI
supervision by EAI to enhance complex problem-solving tasks.

Comparison of diversity. We evaluate EAI in terms of the diversity of generated data.
We compare RFT and EAI in terms of the submodularity diversity gain [32, 208]. This
metric serves as an indicator of the extent to which the generated data contribute to the
overall diversity of the dataset. A higher diversity gain suggests that the newly generated

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 153

questions exhibit greater dissimilarity from the existing dataset. We measure the gain over
GSM8K training set by varying the amount of generated content. We use OpenAI GPT
embedding text-embedding-ada-002 to encode the data. The results of diversity gain and
t-SNE are depicted in Figure 9.3 demonstrate that EAI consistently outperforms RFT in
terms of diversity, thereby providing a more diverse set of generated data.

Effect of sampled inputs. The Table 9.2 presents the results of an experiment examining the
impact of varying the number of samples on GSM8K and MATH. As the number of samples in-
creases from 0 to 8, we observe a steady incremental improvement on both GSM8K and MATH.

Table 9.2 Effect of different number of
samples from replay buffer.

Number 0 1 4 8

GSM8K 50.1 50.8 51.9 52.9
MATH 6.6 7.1 7.5 8.6

On GSM8K, the performance rises from 50.1 to
52.9. On MATH, the effect is more pronounced.
These results suggest that increasing the number
of samples has a positive effect on both GSM8K
and MATH, highlighting the significance of larger
sample size for in context exploration.

Scaling with generated data. We assess the
performance of EAI in terms of sample efficiency
on the GSM8K dataset. Our primary focus lies in understanding how the results evolve in
response to varying amounts of generated data. Sample efficiency holds paramount importance,
given that autoregressive data generation is inefficient. Enhanced sample efficiency broadens
the practical utility of our approach in real-world applications. The results depicted in
Figure 9.4 clearly illustrate a significant advantage for EAI over the previous state-of-the-art
RFT. Notably, as more data is employed, RFT exhibits improved performance, but its sample
efficiency lags behind EAI by a substantial margin. At just 16K data points, EAI outperforms
RFT’s performance at 48K data points, achieving more than a 3x higher level of sample
efficiency.

Figure 9.3 (Left): Comparison of diversity gains achieved by adding generated data to
the GSM8K training set. EAI outperforms other baselines in terms of diversity. (Right):
t-SNE comparison of human-curated GSM8K, RFT, and EAI-generated outputs, depicting
embeddings of questions.

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 154

Figure 9.4 Data scaling on GSM8K. Shown are GSM8K accuracy with different amount of
generated data. EAI generates high quality data for learning and scales well with data.

Table 9.3 Effect of different exploration principles on GSM8K and MATH.

rephrase new topic restructure new scenario GSM8K MATH

✓ ✓ ✓ ✓ 52.9 8.6

✗ ✓ ✓ ✓ 48.8 7.1
✓ ✗ ✓ ✓ 49.7 7.8
✓ ✓ ✗ ✓ 48.9 6.9
✓ ✓ ✓ ✗ 49.5 7.5

✓ ✗ ✗ ✗ 48.1 6.3
✗ ✓ ✗ ✗ 47.6 6.0
✗ ✗ ✓ ✗ 48.5 6.2
✗ ✗ ✗ ✓ 47.8 6.3

Evaluating the effect of exploration principles. The results of varying exploration
principles, as shown in Table 9.3, reveal some interesting insights. When all principles are
in place (✓ for rephrase, new topic, restructure, and new scenario), the model performs at
its best on GSM8K and MATH. This suggests that using all principles simultaneously leads
to the most favorable outcomes. Among the principles, the most critical ones appear to be
"rephrase" and "restructure", as seen when one of them is removed (✗). Without "rephrase"
the performance drops on both datasets, emphasizing that the ability to rephrase and generate
diverse content is crucial. Similarly, the omission of "restructure" leads to a significant drop
in MATH scores, highlighting the significance of introducing novel question-structuring
approaches for solving more challenging problems.

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 155

Evaluating the effect of critic. We remove the critic from the framework and evaluate
its performance. To ensure a fair comparison, we follow the same procedure as with the
default EAI and generate an equal amount of data. We evaluate on GSM8K, MATH, MBPP,
and HumanEval. All methods are based on LLaMA2 [297]. We compare EAI and EAI w/o
critic with Self-instruct [314] and RFT [327]. Self-instruct involves a loop of generation and
filtering which resembles EAI’s actor-critic, except that EAI comes with principles guided
in context exploration. Comparing EAI w/o critic with Self-instruct shows the effectiveness
of the principles guided in context exploration component in EAI framework. Comparing
EAI with EAI w/o critic can show the importance of the critic. RFT relies on sampling-
based exploration; comparing EAI w/o critic with it shows the effectiveness of in-context
exploration and comparing EAI with it further reveals the importance of the critic. The
results in Table 9.4 show that EAI w/o critic significantly outperforms all baselines, showing
the effectiveness of principles guided in context exploration. Adding the critic back to the EAI
framework further substantially improves the results, achieving significantly better results
than Self-instruct, RFT, and EAI w/o critic. A qualitative analysis provided in Appendix 9.7
reveals how the critic aids in guiding exploration. Both quantitative and qualitative results
show that the critic is important for achieving the best exploration; removing the critic leads
to substantially lower results.

Table 9.4 Evaluation of the effectiveness of critic.

LLaMA2 Self-Instruct RFT EAI w/o critic EAI

GSM8K (%) 14.6 43.4 47.5 50.5 52.9
MATH (%) 2.5 3.9 5.6 7.1 8.6
MBPP (%) 26.1 33.7 41.8 42.5 44.6
HumanEval (%) 11.9 12.8 13.9 14.5 15.8

Scaling with human annotation size. Figure 9.5 illustrates the results obtained when
utilizing varying amounts of human annotation data from the GSM8K training set. We
employ three different approaches in our experiments: SFT which directly finetunes the
base model, Vicuna-7B, on the provided data. RFT which leverages the provided data
to perform rejection sampling from the model. EAI which utilizes the provided data to
initialize a replay buffer and explore new content for training. The results consistently
demonstrate that EAI significantly outperforms all the baseline methods across various levels
of human annotation data, underscoring its efficacy in generating high-quality training data.
Remarkably, our experiments reveal that EAI performs admirably even in the absence of
any human annotations, hinting at the potential to entirely eliminate the need for human
intervention in the process.

Benchmark on code generation. Having evaluated the effectiveness of EAI in improving
mathematical reasoning, we further evaluate its application in a different domain: code

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 156

Figure 9.5 Performance on GSM8K with different amount of human annotated data. EAI
performs well even without human annotation and scales well with more human provided
annotations.

Table 9.5 Evaluations on code generation tasks. LLaMA2 and CodeLLaMA are pretrained
models. SFT, RFT, EAI are trained using MBPP training split. All methods are evaluated
using MBPP test split, and HumanEval dataset. Red numbers are absolute increase compared
with best performing baselines.

LLaMA2 LLaMA2+SFT LLaMA2+RFT LLaMA2+EAI

MBPP (%) 26.1 38.5 41.8 44.6 (+2.8)
HumanEval 11.9 13.2 13.9 16.2 (+2.3)

CodeLLaMA CodeLLaMA+SFT CodeLLaMA+RFT CodeLLaMA+EAI

MBPP (%) 52.5 54.3 55.6 58.9 (+3.3)
HumanEval 31.1 33.5 36.1 39.5 (+3.4)

generation. Unlike the math reasoning task, where the model generates the reasoning path
and final answer, in code generation the model needs to output a Python program in response
to a given question, such as ’Write a function to convert degrees to radians.’ Specifically, we
apply EAI to the MBPP task [13], following the same procedure as before. This task comprises
around 1,000 crowd-sourced Python programming problems designed to be solvable by entry-
level programmers. It covers programming fundamentals, standard library functionality,
and more. Each problem includes a task description, a code solution, and three automated
test cases. We collected 18,000 examples using EAI and RFT based on the MBPP training
split, respectively. We then compared EAI with supervised finetuning as well as RFT on the
training split. Subsequently, we evaluated the models on the MBPP test split and conducted

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 157

zero-shot evaluation on HumanEval [51]. For evaluation, we used LLaMA2 [297], which is
pretrained on text, and CodeLLaMA [248], which is further pretrained on code, representing
different model choices. Table 9.5 shows the results of 0-shot HumanEval and 3-shot MBPP.
EAI substantially outperforms the baselines and significantly improves both LLaMA2 and
CodeLLaMA. This confirms the effectiveness of EAI in exploration and in improving code
generation performance.

9.5 Related Work
Transformers [304] trained using next token prediction have gave rise to many state-of-
the-art AI systems [253, 217]. The remarkable AI results achieved with this generative
AI approach heavily hinge upon the availability of diverse and high-quality data. For
instance, state-of-the-art AI models including ChatGPT [253] and GPT4 [217] along with
a range of other open source models such as Vicuna, Koala, and Dolly [? 97, 61, inter
alia], require extensive finetuning through human demonstrations. This process involves
human conversations with ChatGPT or written demonstrations, demanding significant human
involvement and domain expertise. Previous research has explored various avenues to enhance
performance and sample efficiency, as well as alternative sources of supervision. To align
with human preferences, there has been active research into developing simple algorithms
for learning from human preferences [186, 328, 76, 297, inter alia]. In contrast to human
demonstrations or feedback, another line of work explores the utilization of environmental
feedback, such as unit test errors [157, 59, 268], which has demonstrated improved results in
coding tasks, or using using LLMs to provide AI supervision based exploration techniques
for applications in solving games [78, 307] and demonstrate improved results. Furthermore,
some prior research leveraged proprietary APIs to indirectly obtain high-quality human data,
enhancing model capabilities in areas like instruction following [314, 320, 287, 97, 61] and
mathematical reasoning [194, 207, 329, inter alia]. Another line of research explores the
use of models to supervise themselves [283, 199, 127, 18, 327], yielding improved results in
reasoning tasks and alignment with human preferences. Our work focuses on generating
diverse and high-quality data using AI models and we demonstrate applying our proposed
approach to enhance open-source models by having them self-generate learning data. Our
approach’s exploration technique is related to unsupervised RL based exploration [276, 178,
179, 44, 225, 209, 81, 222, 241, inter alia], however, our method does not require training
RL agent directly and relies on LLMs to explore. Additionally, some works have delved into
more detailed forms of human supervision [174], demonstrating that LLMs benefit more from
step-by-step process-based supervision than sparse outcome-based supervision. Our research
centers on the data dimension, with a specific emphasis on harnessing AI models to generate
diverse high-quality AI supervision. To this end, we introduce an actor-critic based approach
based with human provided principles for automating the exploration process.

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 158

9.6 Conclusion
In this work we propose an approach to automatically generate diverse, high-quality data
from AI models. Our approach Exploratory AI consists of prompting an actor model to
generate diverse contents that are different from existing contents, and using a critic model
for evaluating the novelty of generated data and providing critiques to guide the exploration
process. Experimental evaluations confirms the effectiveness of EAI, demonstrating its
capacity to generate diverse content and substantially enhance model performance on GSM8K
and MATH datasets.

In terms of future prospects, our approach of generating diverse content with AI models
opens up interesting possibilities, such as extending EAI to evaluate novelty across the
entire data buffer, employing either a brute force approach (evaluating all data through a
critic) or employing embedding similarity search techniques. Moreover, there’s potential in
extending EAI to incorporate multiple actor and critic models, or in experimenting with
various strategies to enhance exploration. It would also be interesting to apply our method
to proprietary APIs to source even more diverse and higher-quality data.

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 159

9.7 Case Study of EAI
We conduct a qualitative study how actor and critic accomplish exploration. On GSM8K,
we manually inspect 100 examples randomly sampled from EAI explored dataset to better
understand how does the exploration work. We observed that the critic excels at assessing
the novelty of generated questions, providing precise feedback to enhance them. The actor
effectively utilizes the critic’s feedback to refine the generated questions. Of the 100 samples
reviewed, in 24 instances, the critic initially found the questions lacking in novelty and
provided suggestions for improvement. Out of these, 19 were subsequently refined and
accepted after revisions. Below is a representative example of this interaction where the critic
offers advice to significantly differentiate the generated question. Here, the critic recommends
incorporating the mathematical concept of volumes and presenting an alternative scenario

[Critic guides exploration]
(First round)
Actor’s generation: Question: Jake is planning to buy a new skateboard which costs
$200. Jake only has a quarter of the money he requires. His brother decided to give
him $20 for it, and his uncle three times as much as his brother. How much more does
Jake need to raise to purchase the skateboard? (answer omitted)

Critic’s critique: The new question you’ve provided is somewhat similar in structure
to the existing questions, as it involves basic arithmetic operations (multiplication,
division, addition, and subtraction). While it introduces a different context with hats and
balls, the underlying math principles are similar to those used in the existing questions.
To make the new question substantially different, you could consider introducing more
complex mathematical concepts such as volumes or using a different scenario altogether.
✗

(Second round)

Actor’s generation: An artist is creating a sculpture using various geometric shapes.
The sculpture consists of a cube, a sphere, a cylinder, and a pyramid. The cube has a
side length of 6 units, the sphere has a radius of 4 units, the cylinder has a height of 8
units and a base radius of 3 units, and the pyramid has a base edge length of 5 units
and a height of 7 units. Calculate the total volume of the artist’s sculpture. A: omitted

Critic’s critique: The new question is substantially different from the existing
questions. It involves a slightly more complex problem-solving process. It is good to be
added to math questions. The decision is accept. ✓

We also conducted a study to determine how effective the critic is at evaluating the correctness
of answers. Of the 100 critiques assessed, the critic accurately identified incorrectness in
13 actor generations and offered critiques to correct 10 of them. However, there were 7
instances where the critic failed to recognize the errors. The remaining actor generations were
accurate. It’s worth noting that, due to the uniform usage of the four exploration principles,

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 160

out of the 100 actor generations, 50 were either paraphrased questions or questions with new
scenarios, these 50 were less prone to errors as they didn’t necessitate significant changes to
the mathematical structure. In fact, only 2 solutions among them were incorrect. On the
other hand, those that involved restructuring or tackled new topics were more error-prone: 7
from restructuring and 4 from new topics were incorrect. Intriguingly, the critic corrected 6
out of the 7 restructured ones, but only 1 out of the 4 new topics. This might suggest that
questions on new topics are more open-ended and might need multiple rounds of interactions
for accurate evaluation. Further refinement in this verification process will be the focus of
our future work.

Our analysis revealed that the critic excels in evaluation rather than generation. This
observation is exemplified in the quoted example, it can be seen that even when the model
cannot directly answer the question, it can effectively assess the correctness of the actor’s
response. This discovery is intriguing, as the actor’s response effectively serves as a ‘hint’.
This observation aligns with prior works that found models are better at evaluating answer
(or improving an answer) than generating it from scratch in various settings [59, 199, 186, 65,
inter alia].

[Critic cannot solve question directly]
Input: A magician has 5 hats, each with a different number of balls inside. The first
hat has 3 balls, the second hat has twice as many balls as the first, the third hat has
half as many balls as the second, the fourth hat has 5 balls, and the fifth hat has 4 times
as many balls as the fourth. How many balls are in the magician’s hats altogether?

Output: There are 3 + 2 * 3 = 7 balls in the first two hats. There are 5 - 2 = 3 balls
in the third hat. There are 4 * 3 = 12 balls in the fourth and fifth hats. In total, there
are 7 + 3 + 12 = 22 balls in the magician’s hats. Answer: 22. ✗

[Critic can evaluate actor’s answer]
Input: Please review whether the answer for the following question is correct. Q: A
magician has 5 hats, each with a different number of balls inside. The first hat has 3
balls, the second hat has twice as many balls as the first, the third hat has half as many
balls as the second, the fourth hat has 5 balls, and the fifth hat has 4 times as many
balls as the fourth. How many balls are in the magician’s hats altogether? A: There are
3 + 2 x 3/2 = 3 + 3 = 6 balls in the first two hats. There are 5 - 3/2 = 5 - 1.5 = 3.5
balls in the third hat. There are 4 x 5 = 20 balls in the fourth hat. In total, there are
6 + 3.5 + 20 = 29.5 balls. Since you can’t have a fraction of a ball, you would need
to round up to the nearest whole number of balls. Therefore, there are 29 balls in the
magician’s hats altogether.

Output: The magician has 5 hats, each with a different number of balls inside. The
first hat has 3 balls, the second hat has twice as many balls as the first, so it has 3 * 2
= 6 balls. The third hat has half as many balls as the second, so it has 6 / 2 = 3 balls.
The fourth hat has 5 balls. The fifth hat has 4 times as many balls as the fourth, so

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 161

it has 5 * 4 = 20 balls. In total, there are 3 + 6 + 3 + 5 + 20 = 37 balls. Since you
can’t have a fraction of a ball, you would need to round up to the nearest whole number
of balls. Therefore, there are 37 balls in the magician’s hats altogether. The answer
provided is incorrect. ✓

9.8 Prompt
The critic’s principle is based on the exploration principle but is worded slightly differently
from the actor’s exploration principle, in order to tell critic what kind of new questions are
diverse and acceptable. The critic will use the principle to evaluate diversity of questions and
evaluate the correctness of answer.

Principles for critique

A different topic is acceptable:
Question: Jack is stranded on a desert island. He wants some salt to season his fish. He collects 2
liters of seawater in an old bucket. If the water is 20% salt, how many ml of salt will Jack get
when all the water evaporates?
Question (topic): Samantha is designing a circular garden in her backyard. The garden has a
diameter of 8 meters. She wants to build a path around the garden that is 1 meter wide. What is
the area of the path, in square meters, that Samantha will need to pave with stones or concrete?
A question with different structure is acceptable:
Question: Dan owns an ice cream shop and every sixth customer gets a free ice cream cone. Cones
cost $2 each. If he sold $100 worth of cones, how many free ones did he give away?
Question (restructured): Dan owns an ice cream shop and every sixth customer gets a free ice
cream cone. Cones cost $x each. If he sold $100 worth of cones, how many free ones did he give
away? If we know the answer is 10, what is the value of x?
Rephrased question is acceptable:
Question: Joy can read 8 pages of a book in 20 minutes. How many hours will it take her to read
120 pages?
Question (rephrase): How many hours will Joy need to read 120 pages if she can read 8 pages in
20 minutes?
A different scenario is acceptable:
Question: Ed has 2 dogs, 3 cats and twice as many fish as cats and dogs combined. How many
pets does Ed have in total?
Question (scenario): Sarah owns 4 bicycles, 2 skateboards, and three times as many pairs of
rollerblades as bicycles and skateboards combined. How many wheeled sports equipment items
does Sarah have in total?

9.9 Experiment Details
We use a temperature of 0.7 for the actor during exploration as in prior work [65], and
we sample 10 actor generations for every batch of samples from the replay buffer. We

CHAPTER 9. EXPLORATION FOR DIVERSE AI SUPERVISION 162

use a temperature of 0.0 for the critic since we found that it performs best. Following
prior work [327], we filter out reasoning paths with incorrect answers or calculations—based
on Python evaluation—for the ’paraphrasing’ and ’new scenarios’ exploration categories.
However, we do not apply this filter to the ’restructuring’ or ’new topics’ exploration categories,
as we do not have ground truth answers for these two categories. The evaluations for all
baselines and our approach are conducted with deterministic sampling following prior work
and report maj1@1 (accuracy) across all experiments. We follow prior work by conducting
evaluations using deterministic sampling for both our approach and the baseline methods.
We report maj1@1 accuracy across all experimental setups. All models are trained with the
same hyperparameters: global batch size = 128, learning rate = 2e-5, epochs = 3, sequence
length = 2048. The training is done with 8x A100 80GB GPUs.

163

Chapter 10

Conclusion and Future Work

In this dissertation, our goal is to develop a machine capable of learning everything – that
includes learning from any existing data and discovering to go beyond existing data.

We show a series of research in Chapter 2, Chapter 3, Chapter 4, and Chapter 5 that fully
resolve the challenges of limited context size, enabling AI to learn from any existing data.

We show our research on discovering in Chapter 6, Chapter 7, Chapter 8, and Chapter 9
that enables AI to learn without human specifying domain knowledge, paving the road for
discovering and going beyond existing data.

Looking ahead, I plan to focus on advances in efficient scaling, reasoning, and discovering in
general domains.

10.1 Powerful reasoning and efficient scaling
Despite advancements allow handling of nearly infinite context sizes, akin to a Turing
machine’s infinitely large tape, current AI systems exhibit significant limitations in their
ability to utilize this context for effective step-by-step reasoning. This shortfall is crucial, as
it restricts the practical applicability of AI across various domains. Unlike the theoretical
capabilities of a Turing machine, which can perform extended computations over its tape,
AI systems struggle to translate the extensive data they can access into complex, logical
sequences of thought or action. Regarding scaling, the need for an efficient scaling paradigm
cannot be overstated – this is because the current scaling trend demands exponential amount
of compute and data for achieving tiny linear amount of improvement; a new paradigm is
required for achieving much more efficient reasoning.

CHAPTER 10. CONCLUSION AND FUTURE WORK 164

10.2 Generating data and learning in general domains
Current AI systems rely heavily on large, high-quality datasets, which are costly, may miss
certain scenarios, and can become outdated quickly. To address these challenges, there’s
increasing focus on creating autonomous learning frameworks that allow AI to generate its
own data through simulations or interactions with the environment. I aim to build on my
previous research on discovering in gameplay to advance discovering and learning in more
general domains. This could not only lead to a self-improving loop but also enable the
discovery of new knowledge that humans wouldn’t be able to achieve.

165

Bibliography

[1] Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep
reinforcement learning. arXiv preprint arXiv:1703.01732, 2017.

[2] Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational
option discovery algorithms. arXiv preprint arXiv:1807.10299, 2018.

[3] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G.
Bellemare. Deep reinforcement learning at the edge of the statistical precipice, 2021.

[4] Arize AI. Needle in a haystack - pressure testing llms. https://github.com/Arize-ai/
LLMTest_NeedleInAHaystack, 2023.

[5] Emanuele Aiello, Lili Yu, Yixin Nie, Armen Aghajanyan, and Barlas Oguz. Jointly
training large autoregressive multimodal models. arXiv preprint arXiv:2309.15564,
2023.

[6] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al.
Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

[7] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana
Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al.
Flamingo: a visual language model for few-shot learning. Advances in Neural Informa-
tion Processing Systems, 35:23716–23736, 2022.

[8] Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and
R. Devon Hjelm. Unsupervised state representation learning in atari. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 8766–8779, 2019.

[9] Kapathy Andrej. GitHub - karpathy/nanoGPT: The simplest, fastest
repository for training/finetuning medium-sized GPTs. — github.com.
https://github.com/karpathy/nanoGPT, 2023. [Accessed 16-May-2023].

https://github.com/Arize-ai/LLMTest_NeedleInAHaystack
https://github.com/Arize-ai/LLMTest_NeedleInAHaystack

BIBLIOGRAPHY 166

[10] Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight
experience replay. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 5048–5058, 2017.

[11] Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin,
Raphael Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michal-
ski, Sylvain Gelly, and Olivier Bachem. What matters in on-policy reinforcement
learning? a large-scale empirical study. arXiv preprint arXiv: Arxiv-2006.05990, 2020.

[12] Anthropic. Introducing claude, 2023. URL https://www.anthropic.com/index/
introducing-claude.

[13] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski,
David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis
with large language models. arXiv preprint arXiv:2108.07732, 2021.

[14] Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu,
Kalyani Marathe, Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al. Openflamingo:
An open-source framework for training large autoregressive vision-language models.
arXiv preprint arXiv:2308.01390, 2023.

[15] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

[16] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex
Vitvitskyi, Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming
the atari human benchmark. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 507–517. PMLR, 2020.

[17] Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot,
Steven Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andrew
Bolt, and Charles Blundell. Never give up: Learning directed exploration strategies. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[18] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion,
Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al.
Constitutional ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073,
2022.

[19] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in time: A joint
video and image encoder for end-to-end retrieval. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1728–1738, 2021.

https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude

BIBLIOGRAPHY 167

[20] David Barber and Felix V. Agakov. The im algorithm: A variational approach to
information maximization. In Advances in neural information processing systems, 2003.

[21] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado
Van Hasselt, and David Silver. Successor features for transfer in reinforcement learning.
arXiv preprint arXiv:1606.05312, 2016.

[22] André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, David
Silver, and Hado van Hasselt. Successor features for transfer in reinforcement learning.
In Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 4055–4065, 2017.

[23] Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel,
Daniel Mankowitz, Augustin Zidek, and Remi Munos. Transfer in deep reinforcement
learning using successor features and generalised policy improvement. In International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 501–510. PMLR, PMLR, 2018.

[24] André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast
reinforcement learning with generalized policy updates. Proceedings of the National
Academy of Sciences, 117(48):30079–30087, 2020.

[25] Andrew G Barto. Intrinsic motivation and reinforcement learning. In Intrinsically
motivated learning in natural and artificial systems, pages 17–47. Springer, 2013.

[26] Andrew G Barto, Satinder Singh, and Nuttapong Chentanez. Intrinsically motivated
learning of hierarchical collections of skills. In Proceedings of the 3rd International
Conference on Development and Learning, pages 112–19. Piscataway, NJ, 2004.

[27] J Beirlant. Nonparametric entropy estimation: An overview. International Journal of
the Mathematical Statistics Sciences, 6:17–39, 1997.

[28] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and
Remi Munos. Unifying count-based exploration and intrinsic motivation. In Advances
in Neural Information Processing Systems, pages 1471–1479, 2016.

[29] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research, 47:253–279, 2013.

[30] Irwan Bello. Lambdanetworks: Modeling long-range interactions without attention.
arXiv preprint arXiv:2102.08602, 2021.

[31] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document
transformer. arXiv preprint arXiv:2004.05150, 2020.

BIBLIOGRAPHY 168

[32] Jeff Bilmes. Submodularity in machine learning and artificial intelligence. arXiv preprint
arXiv:2202.00132, 2022.

[33] Christian Bischof. Parallel computing: Architectures, algorithms, and applications,
volume 15. IOS Press, 2008.

[34] Diana Borsa, André Barreto, John Quan, Daniel J. Mankowitz, Hado van Hasselt, Rémi
Munos, David Silver, and Tom Schaul. Universal successor features approximators. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[35] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-
Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy programs,
2018. URL http://github.com/google/jax.

[36] William Brandon, Aniruddha Nrusimha, Kevin Qian, Zachary Ankner, Tian Jin, Zhiye
Song, and Jonathan Ragan-Kelley. Striped attention: Faster ring attention for causal
transformers. arXiv preprint arXiv:2311.09431, 2023.

[37] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[38] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David
Schnurr, Joe Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and
Aditya Ramesh. Video generation models as world simulators. 2024. URL https:
//openai.com/research/video-generation-models-as-world-simulators.

[39] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[40] Yuri Burda, Harrison Edwards, Deepak Pathak, Amos J. Storkey, Trevor Darrell, and
Alexei A. Efros. Large-scale study of curiosity-driven learning. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019.

[41] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by
random network distillation. In International Conference on Learning Representations.
OpenReview.net, 2019.

[42] Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, and Sae-
hoon Kim. Coyo-700m: Image-text pair dataset. https://github.com/kakaobrain/
coyo-dataset, 2022.

http://github.com/google/jax
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://github.com/kakaobrain/coyo-dataset
https://github.com/kakaobrain/coyo-dataset

BIBLIOGRAPHY 169

[43] Victor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giró-i-Nieto,
and Jordi Torres. Explore, discover and learn: Unsupervised discovery of state-covering
skills. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pages 1317–1327. PMLR, 2020.

[44] Víctor Campos, Pablo Sprechmann, Steven Hansen, Andre Barreto, Steven Kapturowski,
Alex Vitvitskyi, Adria Puigdomenech Badia, and Charles Blundell. Beyond fine-tuning:
Transferring behavior in reinforcement learning. arXiv preprint arXiv:2102.13515, 2021.

[45] Víctor Campos, Pablo Sprechmann, Steven Stenberg Hansen, Andre Barreto, Charles
Blundell, Alex Vitvitskyi, Steven Kapturowski, and Adria Puigdomenech Badia. Cov-
erage as a principle for discovering transferable behavior in reinforcement learning,
2021.

[46] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Ar-
mand Joulin. Unsupervised learning of visual features by contrasting cluster assignments.
In Advances in Neural Information Processing Systems, 2020.

[47] Micah Carroll, Orr Paradise, Jessy Lin, Raluca Georgescu, Mingfei Sun, David Bignell,
Stephanie Milani, Katja Hofmann, Matthew Hausknecht, Anca Dragan, et al. Unimask:
Unified inference in sequential decision problems. arXiv preprint arXiv:2211.10869,
2022.

[48] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Re-
inforcement learning via sequence modeling. CoRR, abs/2106.01345, 2021. URL
https://arxiv.org/abs/2106.01345.

[49] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Rein-
forcement learning via sequence modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

[50] Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao,
and Dahua Lin. Sharegpt4v: Improving large multi-modal models with better captions.
arXiv preprint arXiv:2311.12793, 2023.

[51] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al.
Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

[52] Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and Ivan Laptev. History aware
multimodal transformer for vision-and-language navigation. Advances in Neural Infor-
mation Processing Systems, 34:5834–5847, 2021.

https://arxiv.org/abs/2106.01345

BIBLIOGRAPHY 170

[53] Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending
context window of large language models via positional interpolation. arXiv preprint
arXiv:2306.15595, 2023.

[54] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with
sublinear memory cost. arXiv preprint arXiv:1604.06174, 2016.

[55] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple
framework for contrastive learning of visual representations. In International conference
on machine learning, 2020.

[56] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple
framework for contrastive learning of visual representations. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning Research, pages 1597–1607.
PMLR, 2020.

[57] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E.
Hinton. Big self-supervised models are strong semi-supervised learners. In Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[58] Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel
Salz, Sebastian Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A
jointly-scaled multilingual language-image model. arXiv preprint arXiv:2209.06794,
2022.

[59] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large
language models to self-debug. arXiv preprint arXiv:2304.05128, 2023.

[60] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin
Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P.
Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality,
March 2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.

[61] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin
Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt quality. See https://vicuna.lmsys.org,
2023.

[62] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences
with sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[63] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser,
et al. Rethinking attention with performers. arXiv preprint arXiv:2009.14794, 2020.

https://lmsys.org/blog/2023-03-30-vicuna/

BIBLIOGRAPHY 171

[64] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). In 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016.

[65] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training
verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[66] Zichen Jeff Cui, Yibin Wang, Nur Muhammad, Lerrel Pinto, et al. From play to
policy: Conditional behavior generation from uncurated robot data. arXiv preprint
arXiv:2210.10047, 2022.

[67] W Dai, J Li, D Li, AMH Tiong, J Zhao, W Wang, B Li, P Fung, and S Hoi. Instructblip:
towards general-purpose vision-language models with instruction tuning. arxiv. Preprint
posted online on June, 15:2023, 2023.

[68] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length
context. arXiv preprint arXiv:1901.02860, 2019.

[69] Anthony Danalis, Ki-Yong Kim, Lori Pollock, and Martin Swany. Transformations to
parallel codes for communication-computation overlap. In SC’05: Proceedings of the
2005 ACM/IEEE conference on Supercomputing, pages 58–58. IEEE, 2005.

[70] Anthony Danalis, Lori Pollock, Martin Swany, and John Cavazos. Mpi-aware compiler
optimizations for improving communication-computation overlap. In Proceedings of the
23rd international conference on Supercomputing, pages 316–325, 2009.

[71] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness. Advances in Neural
Information Processing Systems, 35:16344–16359, 2022.

[72] Peter Dayan. Improving generalization for temporal difference learning: The successor
representation. Neural Computation, 5(4):613–624, 1993.

[73] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale
distributed deep networks. Advances in neural information processing systems, 25,
2012.

[74] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, pages 4171–4186, 2018. doi: 10.18653/v1/N19-1423.

BIBLIOGRAPHY 172

[75] Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan
Liu, Maosong Sun, and Bowen Zhou. Enhancing chat language models by scaling
high-quality instructional conversations. arXiv preprint arXiv:2305.14233, 2023.

[76] Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan, Shizhe Diao, Jipeng Zhang,
Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

[77] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929, 2020.

[78] Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel,
Abhishek Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning
with large language models. arXiv preprint arXiv:2302.06692, 2023.

[79] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter
Abbeel. Rl2: Fast reinforcement learning via slow reinforcement learning. arXiv
preprint arXiv:1611.02779, 2016.

[80] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-
resolution image synthesis. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 12873–12883, 2021.

[81] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all
you need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070,
2018.

[82] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is
all you need: Learning skills without a reward function. In International Conference
on Learning Representations, 2019.

[83] Facebook. Fully Sharded Data Parallel: faster AI training with fewer GPUs — engineer-
ing.fb.com. https://engineering.fb.com/2021/07/15/open-source/fsdp/, 2023.
[Accessed 16-May-2023].

[84] Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter
Abbeel, Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement
learning for fine-tuning text-to-image diffusion models. Advances in Neural Information
Processing Systems, 36, 2024.

[85] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity. The Journal of Machine
Learning Research, 23(1):5232–5270, 2022.

https://engineering.fb.com/2021/07/15/open-source/fsdp/

BIBLIOGRAPHY 173

[86] Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierar-
chical reinforcement learning. In International Conference on Learning Representations.
OpenReview.net, 2018.

[87] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl:
Datasets for deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219,
2020.

[88] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement
learning. Advances in neural information processing systems, 34:20132–20145, 2021.

[89] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation
error in actor-critic methods. In Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning Research, pages 1582–1591. PMLR,
2018.

[90] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv
Taigman. Make-a-scene: Scene-based text-to-image generation with human priors. In
European Conference on Computer Vision, pages 89–106. Springer, 2022.

[91] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster,
Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb
dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

[92] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overop-
timization. In International Conference on Machine Learning, pages 10835–10866.
PMLR, 2023.

[93] Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang,
Pan Lu, Conghui He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual
instruction model. arXiv preprint arXiv:2304.15010, 2023.

[94] Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama. URL:
https://github. com/openlm-research/open_llama, 2023.

[95] Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, may 2023.
URL https://github. com/openlm-research/open_llama, 2023.

[96] Xinyang Geng, Hao Liu, Lisa Lee, Dale Schuurams, Sergey Levine, and Pieter Abbeel.
Multimodal masked autoencoders learn transferable representations. arXiv preprint
arXiv:2205.14204, 2022.

[97] Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wallace, Pieter Abbeel, Sergey Levine,
and Dawn Song. Koala: A dialogue model for academic research. Blog post, April, 1,
2023.

BIBLIOGRAPHY 174

[98] Andrew Gibiansky. Bringing hpc techniques to deep learning. Baidu Research, Tech.
Rep., 2017.

[99] gkamradt. Needle in a haystack - pressure testing llms. https://github.com/
gkamradt/LLMTest_NeedleInAHaystack/tree/main, 2023. [Online; accessed 7-Feb-
2024].

[100] Aaron Gokaslan and Vanya Cohen. Openwebtext corpus, 2019. URL http://
Skylion007.github.io/OpenWebTextCorpus.

[101] Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic
control. arXiv preprint arXiv:1611.07507, 2016.

[102] Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic
control. In International Conference on Learning Representations, 2017.

[103] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent
memory with optimal polynomial projections. Advances in neural information processing
systems, 33:1474–1487, 2020.

[104] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with
structured state spaces. arXiv preprint arXiv:2111.00396, 2021.

[105] Pierre-Louis Guhur, Shizhe Chen, Ricardo Garcia, Makarand Tapaswi, Ivan Laptev, and
Cordelia Schmid. Instruction-driven history-aware policies for robotic manipulations.
arXiv preprint arXiv:2209.04899, 2022.

[106] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Yee Whye Teh and Mike Titterington,
editors, Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, volume 9 of Proceedings of Machine Learning Research, pages 297–
304, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL https:
//proceedings.mlr.press/v9/gutmann10a.html.

[107] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of
Machine Learning Research, pages 1856–1865. PMLR, 2018.

[108] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International Conference on Machine Learning, 2018.

https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://proceedings.mlr.press/v9/gutmann10a.html
https://proceedings.mlr.press/v9/gutmann10a.html

BIBLIOGRAPHY 175

[109] Steven Hansen, Will Dabney, André Barreto, David Warde-Farley, Tom Van de Wiele,
and Volodymyr Mnih. Fast task inference with variational intrinsic successor features.
In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[110] Steven Hansen, Will Dabney, André Barreto, David Warde-Farley, Tom Van de Wiele,
and Volodymyr Mnih. Fast task inference with variational intrinsic successor features.
In International Conference on Learning Representations, 2020.

[111] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,
585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL https:
//doi.org/10.1038/s41586-020-2649-2.

[112] Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient
maximum entropy exploration. In International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 2681–2691. PMLR,
2019.

[113] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum
contrast for unsupervised visual representation learning. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020, pages 9726–9735. IEEE, 2020. doi: 10.1109/CVPR42600.2020.00975.

[114] Olivier J. Hénaff. Data-efficient image recognition with contrastive predictive coding. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-
18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,
pages 4182–4192. PMLR, 2020.

[115] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
math dataset. arXiv preprint arXiv:2103.03874, 2021.

[116] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver.
Rainbow: Combining improvements in deep reinforcement learning. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 3215–3222. AAAI Press, 2018.

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

BIBLIOGRAPHY 176

[117] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[118] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention
in multidimensional transformers. arXiv preprint arXiv:1912.12180, 2019.

[119] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Grit-
senko, Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al.
Imagen video: High definition video generation with diffusion models. arXiv preprint
arXiv:2210.02303, 2022.

[120] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi,
and David J. Fleet. Video diffusion models. arXiv preprint arXiv:2204.03458, 2022.

[121] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[122] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai,
Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan
Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae,
Oriol Vinyals, and Laurent Sifre. Training compute-optimal large language models.
arXiv preprint arXiv: Arxiv-2203.15556, 2022.

[123] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter
Abbeel. Curiosity-driven exploration in deep reinforcement learning via bayesian neural
networks. 2016.

[124] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter
Abbeel. Vime: Variational information maximizing exploration. In Advances in Neural
Information Processing Systems, pages 1109–1117, 2016.

[125] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models.
arXiv preprint arXiv:2106.09685, 2021.

[126] Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time.
In International Conference on Machine Learning, pages 9099–9117. PMLR, 2022.

[127] Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and
Jiawei Han. Large language models can self-improve. arXiv preprint arXiv:2210.11610,
2022.

[128] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen,
HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training

BIBLIOGRAPHY 177

of giant neural networks using pipeline parallelism. Advances in neural information
processing systems, 32, 2019.

[129] Joshua Hursey and Richard L Graham. Building a fault tolerant mpi application: A
ring communication example. In 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum, pages 1549–1556. IEEE, 2011.

[130] Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Leon Song,
Samyam Rajbhandari, and Yuxiong He. Deepspeed ulysses: System optimizations
for enabling training of extreme long sequence transformer models. arXiv preprint
arXiv:2309.14509, 2023.

[131] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and
Joao Carreira. Perceiver: General perception with iterative attention. In International
conference on machine learning, pages 4651–4664. PMLR, 2021.

[132] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one
big sequence modeling problem. Advances in neural information processing systems, 34:
1273–1286, 2021.

[133] Edwin T Jaynes. Information theory and statistical mechanics. Physical review, 106(4):
620, 1957.

[134] Jiantao Jiao, Weihao Gao, and Yanjun Han. The nearest neighbor information estimator
is adaptively near minimax rate-optimal. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 3160–3171, 2018.

[135] Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Chia-Yuan Chang, and Xia
Hu. Growlength: Accelerating llms pretraining by progressively growing training length.
arXiv preprint arXiv:2310.00576, 2023.

[136] Yang Jin, Kun Xu, Liwei Chen, Chao Liao, Jianchao Tan, Bin Chen, Chenyi Lei,
An Liu, Chengru Song, Xiaoqiang Lei, et al. Unified language-vision pretraining with
dynamic discrete visual tokenization. arXiv preprint arXiv:2309.04669, 2023.

[137] Ryan Julian, Benjamin Swanson, Gaurav S Sukhatme, Sergey Levine, Chelsea Finn,
and Karol Hausman. Never stop learning: The effectiveness of fine-tuning in robotic
reinforcement learning. arXiv e-prints, pages arXiv–2004, 2020.

[138] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf
Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko,
et al. Highly accurate protein structure prediction with alphafold. Nature, 596(7873):
583–589, 2021.

BIBLIOGRAPHY 178

[139] Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, pages 1094–1099. Citeseer,
1993.

[140] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell,
Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine,
Afroz Mohiuddin, Ryan Sepassi, George Tucker, and Henryk Michalewski. Model
based reinforcement learning for atari. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020.

[141] Kacper Kielak. Do recent advancements in model-based deep reinforcement learning
really improve data efficiency? arXiv preprint arXiv:2003.10181, 2020.

[142] Changyeon Kim, Younggyo Seo, Hao Liu, Lisa Lee, Jinwoo Shin, Honglak Lee, and
Kimin Lee. Guide your agent with adaptive multimodal rewards. Advances in Neural
Information Processing Systems, 36, 2024.

[143] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In Yoshua Bengio and Yann LeCun, editors, International Conference on Learning
Representations, 2015. URL http://arxiv.org/abs/1412.6980.

[144] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd
International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings, 2014.

[145] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451, 2020.

[146] Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil
Mustafa, Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling:
Training mixture-of-experts from dense checkpoints. arXiv preprint arXiv:2212.05055,
2022.

[147] Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch,
Mohammad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in
large transformer models. arXiv preprint arXiv:2205.05198, 2022.

[148] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need:
Regularizing deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649,
2020.

[149] Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J Gershman. Deep
successor reinforcement learning. arXiv preprint arXiv:1606.02396, 2016.

http://arxiv.org/abs/1412.6980

BIBLIOGRAPHY 179

[150] Taehwan Kwon. Variational intrinsic control revisited. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
P0p33rgyoE.

[151] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind
Srinivas. Reinforcement learming with augmented data. arXiv:2004.14990, 2020.

[152] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised
representations for reinforcement learning. In International Conference on Machine
Learning, 2020.

[153] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: contrastive unsupervised
representations for reinforcement learning. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research, pages 5639–5650. PMLR, 2020.

[154] Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine
Cang, Lerrel Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning
benchmark. arXiv preprint arXiv:2110.15191, 2021.

[155] Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine
Cang, Lerrel Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning
benchmark, 2021. URL https://openreview.net/forum?id=lwrPkQP_is.

[156] Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie
Steigerwald, DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context
reinforcement learning with algorithm distillation. arXiv preprint arXiv:2210.14215,
2022.

[157] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong
Hoi. Coderl: Mastering code generation through pretrained models and deep reinforce-
ment learning. Advances in Neural Information Processing Systems, 35:21314–21328,
2022.

[158] Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier,
Pieter Abbeel, Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-
image models using human feedback. arXiv preprint arXiv:2302.12192, 2023.

[159] Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu,
Sergio Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, et al. Multi-game
decision transformers. arXiv preprint arXiv:2205.15241, 2022.

[160] Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan
Salakhutdinov. Efficient exploration via state marginal matching. arXiv preprint
arXiv:1906.05274, 2019.

https://openreview.net/forum?id=P0p33rgyoE
https://openreview.net/forum?id=P0p33rgyoE
https://openreview.net/forum?id=lwrPkQP_is

BIBLIOGRAPHY 180

[161] Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric P. Xing, Sergey Levine, and
Ruslan Salakhutdinov. Efficient exploration via state marginal matching. CoRR,
abs/1906.05274, 2019.

[162] Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the
search for novelty alone. Evolutionary computation, 19(2):189–223, 2011.

[163] Joel Lehman and Kenneth O Stanley. Novelty search and the problem with objectives.
In Genetic programming theory and practice IX, pages 37–56. Springer, 2011.

[164] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping
Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models
with conditional computation and automatic sharding. arXiv preprint arXiv:2006.16668,
2020.

[165] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al.
Solving quantitative reasoning problems with language models. Advances in Neural
Information Processing Systems, 35:3843–3857, 2022.

[166] Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Jingkang Yang, and Ziwei
Liu. Otter: A multi-modal model with in-context instruction tuning. arXiv preprint
arXiv:2305.03726, 2023.

[167] Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph E. Gonzalez,
Ion Stoica, Xuezhe Ma, and Hao Zhang. How long can open-source llms truly promise on
context length?, June 2023. URL https://lmsys.org/blog/2023-06-29-longchat.

[168] Dacheng Li, Rulin Shao, Anze Xie, Eric P Xing, Joseph E Gonzalez, Ion Stoica, Xuezhe
Ma, and Hao Zhang. Lightseq: Sequence level parallelism for distributed training of
long context transformers. arXiv preprint arXiv:2310.03294, 2023.

[169] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and generation. In Inter-
national Conference on Machine Learning, pages 12888–12900. PMLR, 2022.

[170] KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang,
Limin Wang, and Yu Qiao. Videochat: Chat-centric video understanding. arXiv
preprint arXiv:2305.06355, 2023.

[171] Shenggui Li, Jiarui Fang, Zhengda Bian, Hongxin Liu, Yuliang Liu, Haichen Huang,
Boxiang Wang, and Yang You. Colossal-ai: A unified deep learning system for large-scale
parallel training. arXiv preprint arXiv:2110.14883, 2021.

https://lmsys.org/blog/2023-06-29-longchat

BIBLIOGRAPHY 181

[172] Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang You. Sequence
parallelism: Long sequence training from system perspective. In Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 2391–
2404, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.
18653/v1/2023.acl-long.134. URL https://aclanthology.org/2023.acl-long.134.

[173] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al.
Competition-level code generation with alphacode. Science, 378(6624):1092–1097,
2022.

[174] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy
Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by
step. arXiv preprint arXiv:2305.20050, 2023.

[175] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-
val Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. In International Conference on Learning Representations, 2016.

[176] Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and Li Yuan. Video-llava:
Learning united visual representation by alignment before projection. arXiv preprint
arXiv:2311.10122, 2023.

[177] Fangchen Liu, Hao Liu, Aditya Grover, and Pieter Abbeel. Masked autoencoding for
scalable and generalizable decision making. arXiv preprint arXiv:2211.12740, 2022.

[178] Hao Liu and Pieter Abbeel. Aps: Active pre-training with successor features. In
International Conference on Machine Learning, pages 6736–6747. PMLR, 2021.

[179] Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training.
In Advances in Neural Information Processing Systems, 2021.

[180] Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training.
arXiv preprint arXiv:2103.04551, 2021.

[181] Hao Liu and Pieter Abbeel. APS: active pretraining with successor features. In
International Conference on Machine Learning, 2021.

[182] Hao Liu and Pieter Abbeel. Emergent agentic transformer from chain of hindsight
experience. International Conference on Machine Learning, 2023.

[183] Hao Liu and Pieter Abbeel. Blockwise parallel transformer for large context models.
Advances in neural information processing systems, 2023.

https://aclanthology.org/2023.acl-long.134

BIBLIOGRAPHY 182

[184] Hao Liu, Lisa Lee, Kimin Lee, and Pieter Abbeel. Instruction-following agents with
jointly pre-trained vision-language models. arXiv preprint arXiv:2210.13431, 2022.

[185] Hao Liu, Tom Zahavy, Volodymyr Mnih, and Satinder Singh. Palm up: Playing in
the latent manifold for unsupervised pretraining. Advances in Neural Information
Processing Systems, 35:35880–35893, 2022.

[186] Hao Liu, Carlo Sferrazza, and Pieter Abbeel. Chain of hindsight aligns language models
with feedback. arXiv preprint arXiv:2302.02676, 2023.

[187] Hao Liu, Wilson Yan, and Pieter Abbeel. Language quantized autoencoders: Towards
unsupervised text-image alignment. Advances in neural information processing systems,
2023.

[188] Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length
video and language with ringattention. arXiv preprint arXiv:2402.08268, 2024.

[189] Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers
for near-infinite context. International Conference on Learning Representations(ICLR),
2024.

[190] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with
visual instruction tuning. arXiv preprint arXiv:2310.03744, 2023.

[191] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning.
arXiv preprint arXiv:2304.08485, 2023.

[192] Xiaoran Liu, Hang Yan, Shuo Zhang, Chenxin An, Xipeng Qiu, and Dahua Lin. Scaling
laws of rope-based extrapolation. arXiv preprint arXiv:2310.05209, 2023.

[193] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[194] Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo
Geng, Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering
mathematical reasoning for large language models via reinforced evol-instruct. arXiv
preprint arXiv:2308.09583, 2023.

[195] Ruipu Luo, Ziwang Zhao, Min Yang, Junwei Dong, Minghui Qiu, Pengcheng Lu, Tao
Wang, and Zhongyu Wei. Valley: Video assistant with large language model enhanced
ability. arXiv preprint arXiv:2306.07207, 2023.

[196] Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig,
Jonathan May, and Luke Zettlemoyer. Mega: moving average equipped gated attention.
arXiv preprint arXiv:2209.10655, 2022.

BIBLIOGRAPHY 183

[197] Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-
chatgpt: Towards detailed video understanding via large vision and language models.
arXiv preprint arXiv:2306.05424, 2023.

[198] Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. Count-based exploration
with the successor representation. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intel-
ligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages
5125–5133. AAAI Press, 2020.

[199] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah
Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine:
Iterative refinement with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

[200] Luckeciano C Melo. Transformers are meta-reinforcement learners. In International
Conference on Machine Learning, pages 15340–15359. PMLR, 2022.

[201] Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax.
arXiv preprint arXiv:1805.02867, 2018.

[202] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral
normalization for generative adversarial networks. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018.

[203] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[204] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518
(7540):529, 2015.

[205] Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation
for intrinsically motivated reinforcement learning. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 2125–2133, 2015.

[206] MosaicML. Introducing mpt-7b: A new standard for open-source, commercially usable
llms, 2023. URL https://www.mosaicml.com/blog/mpt-7b.

[207] Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid
Palangi, and Ahmed Awadallah. Orca: Progressive learning from complex explanation
traces of gpt-4. arXiv preprint arXiv:2306.02707, 2023.

https://www.mosaicml.com/blog/mpt-7b

BIBLIOGRAPHY 184

[208] Kevin P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023.
URL http://probml.github.io/book2.

[209] Mirco Mutti, Lorenzo Pratissoli, and Marcello Restelli. A policy gradient method for
task-agnostic exploration. arXiv preprint arXiv:2007.04640, 2020.

[210] Sharan Narang, Hyung Won Chung, Yi Tay, William Fedus, Thibault Fevry, Michael
Matena, Karishma Malkan, Noah Fiedel, Noam Shazeer, Zhenzhong Lan, et al. Do
transformer modifications transfer across implementations and applications? arXiv
preprint arXiv:2102.11972, 2021.

[211] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream:
Generalized pipeline parallelism for dnn training. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 1–15, 2019.

[212] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia.
Memory-efficient pipeline-parallel dnn training. In International Conference on Machine
Learning, pages 7937–7947. PMLR, 2021.

[213] Ansong Ni, Jeevana Priya Inala, Chenglong Wang, Alex Polozov, Christopher Meek,
Dragomir Radev, and Jianfeng Gao. Learning math reasoning from self-sampled correct
and partially-correct solutions. In The Eleventh International Conference on Learning
Representations, 2022.

[214] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[215] OpenAI. Learning dexterous in-hand manipulation. CoRR, abs/1808.00177, 2018.

[216] OpenAI. Solving rubik’s cube with a robot hand. ArXiv, abs/1910.07113, 2019.

[217] OpenAI. Gpt-4 technical report, 2023.

[218] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre,
Razvan Pascanu, and Soham De. Resurrecting recurrent neural networks for long
sequences. arXiv preprint arXiv:2303.06349, 2023.

[219] Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Rémi Munos. Count-
based exploration with neural density models. In International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 2721–2730.
PMLR, 2017.

[220] Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of
computational approaches. Frontiers in neurorobotics, 1:6, 2009.

http://probml.github.io/book2

BIBLIOGRAPHY 185

[221] Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems
for autonomous mental development. IEEE transactions on evolutionary computation,
11(2):265–286, 2007.

[222] Seohong Park, Kimin Lee, Youngwoon Lee, and Pieter Abbeel. Controllability-aware
unsupervised skill discovery. arXiv preprint arXiv:2302.05103, 2023.

[223] Keiran Paster, Sheila A McIlraith, and Jimmy Ba. Planning from pixels using inverse
dynamics models. arXiv preprint arXiv:2012.02419, 2020.

[224] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 8024–8035, 2019.

[225] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven
exploration by self-supervised prediction. In International conference on machine
learning, volume 70 of Proceedings of Machine Learning Research, pages 2778–2787.
PMLR, PMLR, 2017.

[226] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via
disagreement. In International Conference on Machine Learning, 2019.

[227] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via
disagreement. In Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 5062–5071. PMLR, 2019.

[228] Suraj Patil, William Berman, Robin Rombach, and Patrick von Platen. amused: An
open muse reproduction. arXiv preprint arXiv:2401.01808, 2024.

[229] Xue Bin Peng, P. Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic:
Example-guided deep reinforcement learning of physics-based character skills. ACM
Trans. Graph., 37:143:1–143:14, 2018.

[230] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Pa-
pers), pages 2227–2237, New Orleans, Louisiana, 2018. Association for Computational
Linguistics. doi: 10.18653/v1/N18-1202.

BIBLIOGRAPHY 186

[231] Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum
entropy gain exploration for long horizon multi-goal reinforcement learning. In Interna-
tional Conference on Machine Learning, pages 7750–7761. PMLR, 2020.

[232] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus,
Yoshua Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger
convolutional language models. arXiv preprint arXiv:2302.10866, 2023.

[233] Ben Poole, Sherjil Ozair, Aäron van den Oord, Alex Alemi, and George Tucker.
On variational bounds of mutual information. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pages 5171–5180. PMLR, 2019. URL
http://proceedings.mlr.press/v97/poole19a.html.

[234] Martin L Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

[235] Markus N Rabe and Charles Staats. Self-attention does not need o(n2) memory. arXiv
preprint arXiv:2112.05682, 2021.

[236] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving
language understanding by generative pre-training. 2018.

[237] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[238] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision. In International conference
on machine learning, pages 8748–8763. PMLR, 2021.

[239] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lilli-
crap. Compressive transformers for long-range sequence modelling. arXiv preprint
arXiv:1911.05507, 2019.

[240] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory
optimizations toward training trillion parameter models. In SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis, pages
1–16. IEEE, 2020.

[241] Sai Rajeswar, Pietro Mazzaglia, Tim Verbelen, Alexandre Piché, Bart Dhoedt, Aaron
Courville, and Alexandre Lacoste. Mastering the unsupervised reinforcement learning
benchmark from pixels. 2023.

http://proceedings.mlr.press/v97/poole19a.html

BIBLIOGRAPHY 187

[242] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman,
Emanuel Todorov, and Sergey Levine. Learning complex dexterous manipulation with
deep reinforcement learning and demonstrations. In Proceedings of Robotics: Science
and Systems (RSS), 2018.

[243] Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel,
Tom Sercu, and Alexander Rives. Msa transformer. In International Conference on
Machine Learning, pages 8844–8856. PMLR, 2021.

[244] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed:
System optimizations enable training deep learning models with over 100 billion param-
eters. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 3505–3506, 2020.

[245] Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control
and reinforcement learning by approximate inference. Proceedings of Robotics: Science
and Systems VIII, 2012.

[246] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander
Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias
Springenberg, et al. A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

[247] Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee, and Gary Bradski. Kornia:
an open source differentiable computer vision library for pytorch. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pages 3674–3683,
2020.

[248] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen
Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open
foundation models for code. arXiv preprint arXiv:2308.12950, 2023.

[249] Kiersten M Ruff and Rohit V Pappu. Alphafold and implications for intrinsically
disordered proteins. Journal of Molecular Biology, 433(20):167208, 2021.

[250] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function
approximators. In Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop
and Conference Proceedings, pages 1312–1320. JMLR.org, 2015.

[251] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent
Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
et al. Mastering atari, go, chess and shogi by planning with a learned model. arXiv
preprint arXiv:1911.08265, 2019.

BIBLIOGRAPHY 188

[252] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wight-
man, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman,
et al. Laion-5b: An open large-scale dataset for training next generation image-text
models. Advances in Neural Information Processing Systems, 35:25278–25294, 2022.

[253] J. Schulman, B. Zoph, C. Kim, J. Hilton, J. Menick, J. Weng, J. F. C. Uribe, L. Fedus,
L. Metz, M. Pokorny, R. G. Lopes, S. Zhao, A. Vijayvergiya, E. Sigler, A. Perelman,
C. Voss, M. Heaton, J. Parish, D. Cummings, R. Nayak, V. Balcom, D. Schnurr,
T. Kaftan, C. Hallacy, N. Turley, N. Deutsch, and V. Goel. Chatgpt: Optimizing
language models for dialogue. OpenAI Blog, 2022. URL https://openai.com/blog/
chatgpt.

[254] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz.
Trust region policy optimization. In Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR
Workshop and Conference Proceedings, pages 1889–1897. JMLR.org, 2015.

[255] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In International
Conference on Learning Representations, 2016.

[256] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[257] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. Advances in Neural Information Processing
Systems, 2017.

[258] Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and
Philip Bachman. Data-efficient reinforcement learning with self-predictive representa-
tions. In International Conference on Learning Representations, 2021.

[259] Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State
entropy maximization with random encoders for efficient exploration. In International
Conference on Machine Learning, 2021.

[260] Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and
Pieter Abbeel. Masked world models for visual control. arXiv preprint arXiv:2206.14244,
2022.

[261] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep
learning in tensorflow. arXiv preprint arXiv:1802.05799, 2018.

[262] Nur Muhammad Mahi Shafiullah, Zichen Jeff Cui, Ariuntuya Altanzaya, and Lerrel
Pinto. Behavior transformers: Cloning k modes with one stone. arXiv preprint arXiv:
Arxiv-2206.11251, 2022.

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

BIBLIOGRAPHY 189

[263] Dhruv Shah, Blazej Osinski, Brian Ichter, and Sergey Levine. Lm-nav: Robotic
navigation with large pre-trained models of language, vision, and action. arXiv preprint
arXiv:2207.04429, 2022.

[264] Claude E Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

[265] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman.
Dynamics-aware unsupervised discovery of skills. In International Conference on
Learning Representations, 2020.

[266] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman.
Dynamics-aware unsupervised discovery of skills. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[267] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer. arXiv preprint arXiv:1701.06538, 2017.

[268] Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent
with dynamic memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

[269] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models
using model parallelism. arXiv preprint arXiv:1909.08053, 2019.

[270] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways
for robotic manipulation. In Conference on Robot Learning, pages 894–906. PMLR,
2022.

[271] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. Nature, 550(7676):354, 2017.

[272] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Artfhur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al.
A general reinforcement learning algorithm that masters chess, shogi, and go through
self-play. Science, 362(6419):1140–1144, 2018.

[273] Özgür Simsek and Andrew G. Barto. An intrinsic reward mechanism for efficient
exploration. In Machine Learning, Proceedings of the Twenty-Third International
Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006, volume
148 of ACM International Conference Proceeding Series, pages 833–840. ACM, 2006.
doi: 10.1145/1143844.1143949.

BIBLIOGRAPHY 190

[274] Harshinder Singh, Neeraj Misra, Vladimir Hnizdo, Adam Fedorowicz, and Eugene
Demchuk. Nearest neighbor estimates of entropy. American Journal of Mathematical
and Management Sciences, 23(3-4):301–321, 2003.

[275] Harshinder Singh, Neeraj Misra, Vladimir Hnizdo, Adam Fedorowicz, and Eugene
Demchuk. Nearest neighbor estimates of entropy. American journal of mathematical
and management sciences, 23(3-4):301–321, 2003.

[276] Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg. Intrinsically
motivated reinforcement learning: An evolutionary perspective. IEEE Transactions on
Autonomous Mental Development, 2(2):70–82, 2010.

[277] Aravind Srinivas and Pieter Abbeel. Unsupervised learning for reinforcement learning,
2021. URL https://icml.cc/media/icml-2021/Slides/10843_QHaHBNU.pdf.

[278] Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, and
Jürgen Schmidhuber. Training agents using upside-down reinforcement learning. arXiv
preprint arXiv:1912.02877, 2019.

[279] Tom Stepleton. The pycolab game engine. https://github.com/deepmind/pycolab,
2017.

[280] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation
learning from reinforcement learning. In International Conference on Machine Learning,
2021.

[281] DJ Strouse, Kate Baumli, David Warde-Farley, Vlad Mnih, and Steven Hansen. Learning
more skills through optimistic exploration. CoRR, abs/2107.14226, 2021. URL https:
//arxiv.org/abs/2107.14226.

[282] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu.
Roformer: Enhanced transformer with rotary position embedding. Neurocomputing,
568:127063, 2024.

[283] Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Cox,
Yiming Yang, and Chuang Gan. Principle-driven self-alignment of language models
from scratch with minimal human supervision. arXiv preprint arXiv:2305.03047, 2023.

[284] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
Press, 2018.

[285] Ruo Yu Tao, Vincent François-Lavet, and Joelle Pineau. Novelty search in repre-
sentational space for sample efficient exploration. arXiv preprint arXiv:2009.13579,
2020.

https://icml.cc/media/icml-2021/Slides/10843_QHaHBNU.pdf
https://github.com/deepmind/pycolab
https://arxiv.org/abs/2107.14226
https://arxiv.org/abs/2107.14226

BIBLIOGRAPHY 191

[286] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable
instruction-following model. Stanford Center for Research on Foundation Models.
https://crfm. stanford. edu/2023/03/13/alpaca. html, 3(6):7, 2023.

[287] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-
following llama model, 2023.

[288] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas,
David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind
control suite. arXiv preprint arXiv:1801.00690, 2018.

[289] Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven
Bohez, Josh Merel, Tom Erez, Timothy Lillicrap, and Nicolas Heess. dm_control:
Software and tasks for continuous control. arXiv preprint arXiv:2006.12983, 2020.

[290] Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won Chung, William Fedus, Jinfeng
Rao, Sharan Narang, Vinh Q Tran, Dani Yogatama, and Donald Metzler. Scaling laws
vs model architectures: How does inductive bias influence scaling? arXiv preprint
arXiv:2207.10551, 2022.

[291] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A
survey. ACM Computing Surveys, 55(6):1–28, 2022.

[292] Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani,
Avishkar Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian
Collister, et al. Human-timescale adaptation in an open-ended task space. arXiv
preprint arXiv:2301.07608, 2023.

[293] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac,
Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini:
a family of highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[294] Emanuel Todorov. General duality between optimal control and estimation. In 2008
47th IEEE Conference on Decision and Control, pages 4286–4292. IEEE, 2008.

[295] Marc Toussaint. Robot trajectory optimization using approximate inference. In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML
2009, Montreal, Quebec, Canada, June 14-18, 2009, volume 382 of ACM International
Conference Proceeding Series, pages 1049–1056. ACM, 2009. doi: 10.1145/1553374.
1553508.

[296] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,

BIBLIOGRAPHY 192

et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

[297] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

[298] Michael Tschannen, Josip Djolonga, Paul K. Rubenstein, Sylvain Gelly, and Mario
Lucic. On mutual information maximization for representation learning. In 8th Inter-
national Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
rkxoh24FPH.

[299] Szymon Tworkowski, Konrad Staniszewski, Mikołaj Pacek, Yuhuai Wu, Henryk
Michalewski, and Piotr Miłoś. Focused transformer: Contrastive training for con-
text scaling. arXiv preprint arXiv:2307.03170, 2023.

[300] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double q-learning. In Thirtieth AAAI conference on artificial intelligence, pages
2094–2100. AAAI Press, 2016.

[301] Hado van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models
in reinforcement learning? arXiv preprint arXiv:1906.05243, pages 14322–14333, 2019.

[302] Hado P van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and David Silver.
Learning values across many orders of magnitude. Advances in Neural Information
Processing Systems, 29:4287–4295, 2016.

[303] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[304] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30:5998–6008, 2017.

[305] Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo,
Han Zhang, Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, and Dumitru
Erhan. Phenaki: Variable length video generation from open domain textual description.
arXiv preprint arXiv:2210.02399, 2022.

https://openreview.net/forum?id=rkxoh24FPH
https://openreview.net/forum?id=rkxoh24FPH
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

BIBLIOGRAPHY 193

[306] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev,
et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature,
575(7782):350–354, 2019.

[307] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu,
Linxi Fan, and Anima Anandkumar. Voyager: An open-ended embodied agent with
large language models. arXiv preprint arXiv:2305.16291, 2023.

[308] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo,
Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to
reinforcement learn. arXiv preprint arXiv:1611.05763, 2016.

[309] Junxiong Wang, Jing Nathan Yan, Albert Gu, and Alexander M Rush. Pretraining
without attention. arXiv preprint arXiv:2212.10544, 2022.

[310] Shibo Wang, Jinliang Wei, Amit Sabne, Andy Davis, Berkin Ilbeyi, Blake Hechtman,
Dehao Chen, Karthik Srinivasa Murthy, Marcello Maggioni, Qiao Zhang, et al. Overlap
communication with dependent computation via decomposition in large deep learning
models. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 1, pages 93–106,
2022.

[311] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer:
Self-attention with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[312] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning
through alignment and uniformity on the hypersphere. In International Conference on
Machine Learning, pages 9929–9939. PMLR, 2020.

[313] Yi Wang, Yinan He, Yizhuo Li, Kunchang Li, Jiashuo Yu, Xin Ma, Xinhao Li, Guo
Chen, Xinyuan Chen, Yaohui Wang, et al. Internvid: A large-scale video-text dataset
for multimodal understanding and generation. arXiv preprint arXiv:2307.06942, 2023.

[314] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel
Khashabi, and Hannaneh Hajishirzi. Self-instruct: Aligning language model with self
generated instructions. arXiv preprint arXiv:2212.10560, 2022.

[315] David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen,
and Volodymyr Mnih. Unsupervised control through non-parametric discriminative
rewards, 2018.

[316] David Warde-Farley, Tom Van de Wiele, Tejas D. Kulkarni, Catalin Ionescu, Steven
Hansen, and Volodymyr Mnih. Unsupervised control through non-parametric discrimi-
native rewards. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

BIBLIOGRAPHY 194

[317] Christopher Watkins. Learning from delayed rewards. 01 1989.

[318] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language
models. Advances in Neural Information Processing Systems, 35:24824–24837, 2022.

[319] Philipp Wu, Arjun Majumdar, Kevin Stone, Yixin Lin, Igor Mordatch, Pieter Abbeel,
and Aravind Rajeswaran. Masked trajectory models for prediction, representation, and
control. arXiv preprint arXiv:2305.02968, 2023.

[320] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang
Tao, and Daxin Jiang. Wizardlm: Empowering large language models to follow complex
instructions. arXiv preprint arXiv:2304.12244, 2023.

[321] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake Hechtman, Yanping Huang,
Rahul Joshi, Maxim Krikun, Dmitry Lepikhin, Andy Ly, Marcello Maggioni, et al.
Gspmd: general and scalable parallelization for ml computation graphs. arXiv preprint
arXiv:2105.04663, 2021.

[322] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual
continuous control: Improved data-augmented reinforcement learning, 2021.

[323] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning
with prototypical representations. arXiv preprint arXiv:2102.11271, 2021.

[324] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning
with prototypical representations. In International Conference on Machine Learning,
2021.

[325] Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessan-
dro Lazaric, and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory
data for offline reinforcement learning. arXiv preprint arXiv:2201.13425, 2022.

[326] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay
Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregres-
sive models for content-rich text-to-image generation. arXiv preprint arXiv:2206.10789,
2(3):5, 2022.

[327] Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and Chang
Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv preprint arXiv:2308.01825, 2023.

[328] Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang.
Rrhf: Rank responses to align language models with human feedback without tears.
arXiv preprint arXiv:2304.05302, 2023.

BIBLIOGRAPHY 195

[329] Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and
Wenhu Chen. Mammoth: Building math generalist models through hybrid instruction
tuning. arXiv preprint arXiv:2309.05653, 2023.

[330] Tom Zahavy, Andre Barreto, Daniel J Mankowitz, Shaobo Hou, Brendan O’Donoghue,
Iurii Kemaev, and Satinder Baveja Singh. Discovering a set of policies for the worst
case reward, 2021.

[331] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping
reasoning with reasoning. Advances in Neural Information Processing Systems, 35:
15476–15488, 2022.

[332] Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen Huang, Hanlin Goh, Ruix-
iang Zhang, and Josh Susskind. An attention free transformer. arXiv preprint
arXiv:2105.14103, 2021.

[333] Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual
language model for video understanding. arXiv preprint arXiv:2306.02858, 2023.

[334] Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng
Li, Peng Gao, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models
with zero-init attention. arXiv preprint arXiv:2303.16199, 2023.

[335] Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
Moefication: Transformer feed-forward layers are mixtures of experts. arXiv preprint
arXiv:2110.01786, 2021.

[336] Rui Zhao, Yang Gao, Pieter Abbeel, Volker Tresp, and Wei Xu. Mutual information
state intrinsic control. arXiv preprint arXiv:2103.08107, 2021.

[337] Kaizhi Zheng, Xiaotong Chen, Odest Chadwicke Jenkins, and Xin Wang. Vlmbench:
A compositional benchmark for vision-and-language manipulation. Advances in Neural
Information Processing Systems, 35:665–678, 2022.

[338] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping
Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. Alpa: Au-
tomating inter-and {Intra-Operator} parallelism for distributed deep learning. In 16th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 22),
pages 559–578, 2022.

[339] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with
mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685, 2023.

BIBLIOGRAPHY 196

[340] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4:
Enhancing vision-language understanding with advanced large language models. arXiv
preprint arXiv:2304.10592, 2023.

[341] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum
entropy inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago,
IL, USA, 2008.

[342] Simiao Zuo, Qingru Zhang, Chen Liang, Pengcheng He, Tuo Zhao, and Weizhu Chen.
Moebert: from bert to mixture-of-experts via importance-guided adaptation. arXiv
preprint arXiv:2204.07675, 2022.

	Contents
	List of Figures
	List of Tables
	Introduction
	Long-Term Vision
	Modeling for Learning from Any Existing Data
	BlockwiseTransformer Chapter 2
	RingAttention Chapter 3
	Large World Model Chapter 4
	Agentic Transformer Chapter 5
	Related Research

	Discovering for Going Beyond Existing Knowledge
	Unsupervised Active Pretraining (APT) Chapter 6
	Active Pretraining with Successor Features (APS) Chapter 7
	Contrastive Intrinsic Control Chapter 8
	Exploration with Principles Chapter 9
	Related Research

	BlockwiseTransformer to Reduce Transformer Memory Cost
	Introduction
	Memory Bottleneck of Transformer
	Blockwise Parallel for Large Context Models
	Analysis of Memory Cost
	Why Blockwise Parallel
	Implementation

	Setting
	Results
	Evaluation of Context Length
	Evaluation on Throughput and Speed
	Evaluation on Reinforcement Learning

	Related Work
	Conclusion
	Evaluation of Memory
	Evaluation of Throughput
	Evaluation on RL

	RingAttention Scales BlockwiseTransformer to Infinite Context
	Introduction
	Large Context Memory Constraint
	RingAttention with Blockwise Transformers
	Setting
	Results
	Evaluating Max Context Size
	Evaluating Model Flops Utilization
	Impact on In Context RL Performance
	Impact on LLM Performance

	Related Work
	Conclusion
	Code
	Experiment Details
	Evaluation of context length
	Evaluation of MFU
	Evaluation on line retrieval

	Inference requirement
	Training FLOPs Scaling of Context Size

	Large World Model on Million-Length Video and Language
	Introduction
	Overview
	Stage I: Learning Long-Context Language Models
	Extending Context
	Training Steps
	Chat Fine-tuning for Long-Context Learning
	Language Evaluation Results

	Stage II: Learning Long-Context Vision-Language Models
	Architectural Modifications For Vision
	Training Steps
	Vision-Language Evaluation Results

	Further Details
	Related Works
	Conclusion
	More Single-Needle Retrieval Results
	More Video Understanding Examples
	More Image Understanding Examples
	More Video Generation Examples
	More Image Generation Examples
	Training Hyperparameters

	Agentic Transformer for In-context Action
	Introduction
	Preliminaries
	Reinforcement Learning
	Transformers
	Transformer based Behavior Cloning

	Method
	Experiments
	D4RL results
	ExoRL results
	Evaluation of Agency
	Model Variations

	Related Work
	Transformer for Decision-Making
	Learning from Hindsight Experience
	Supervised and Meta RL

	Conclusion

	Unsupervised Active Pretraining
	Introduction
	Problem Setting
	Unsupervised Active Pre-Training for RL
	Particle-Based Entropy Maximization
	Learning Contrastive Representations

	Related Work
	Results
	Discussion
	General Implementation Details
	Atari Details
	DeepMind Control Suite Details
	Asymptotic Behavior of Intrinsic Reward
	DeepMind Control Suite Sparse Environments
	Scores on the full 57 Atari games

	Active Pretraining with Successor Features
	Introduction
	Related Work
	Preliminaries
	Successor Features

	Method
	Variational Intrinsic Successor Features (VISR)
	Unsupervised Active Pretraining (APT)
	Empirical Evidence of the Limitations of Existing Models
	Active Pre-training with Successor Features
	Implementation Details

	Results
	Analysis
	Conclusion
	Acknowledgment
	Experiment Details
	Scores Breakdown on 57 Atari games

	Contrastive Intrinsic Control
	Introduction
	Background and Notation
	Motivation
	Method
	Contrastive Intrinsic Control

	Practical Implementation
	Experimental Setup
	Results
	Conclusion
	Acknowledgements
	Competence-based Exploration Algorithms
	Deep Deterministic Policy Gradient (DDPG)
	Baselines
	Relation to Prior Skill Discovery Methods
	Hyper-parameters
	Raw Numerical Results
	Toy Example to Illustrate the Need for Larger Skill Spaces
	Qualitative Analysis of Skills
	OpenAI Gym vs. DeepMind control: How Early Termination Leaks Extrinsic Signal
	CIC vs Other Types of Contrastive Learning for RL
	On estimates of Mutual Information
	Limitations

	Exploration for Diverse AI Supervision
	Introduction
	Exploratory AI for Diverse AI Supervision
	Setting
	Results
	Related Work
	Conclusion
	Case Study of EAI
	Prompt
	Experiment Details

	Conclusion and Future Work
	Powerful reasoning and efficient scaling
	Generating data and learning in general domains

	Bibliography

