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ABSTRACT Increasing data volumes on high-throughput sequencing instruments such
as the NovaSeq 6000 leads to long computational bottlenecks for common metage-
nomics data preprocessing tasks such as adaptor and primer trimming and host re-
moval. Here, we test whether faster recently developed computational tools (Fastp and
Minimap2) can replace widely used choices (Atropos and Bowtie2), obtaining dramatic
accelerations with additional sensitivity and minimal loss of specificity for these tasks.
Furthermore, the taxonomic tables resulting from downstream processing provide bio-
logically comparable results. However, we demonstrate that for taxonomic assignment,
Bowtie2’s specificity is still required. We suggest that periodic reevaluation of pipeline
components, together with improvements to standardized APIs to chain them together,
will greatly enhance the efficiency of common bioinformatics tasks while also facilitating
incorporation of further optimized steps running on GPUs, FPGAs, or other architectures.
We also note that a detailed exploration of available algorithms and pipeline compo-
nents is an important step that should be taken before optimization of less efficient
algorithms on advanced or nonstandard hardware.

IMPORTANCE In shotgun metagenomics studies that seek to relate changes in micro-
bial DNA across samples, processing the data on a computer often takes longer than
obtaining the data from the sequencing instrument. Recently developed software
packages that perform individual steps in the pipeline of data processing in principle
offer speed advantages, but in practice they may contain pitfalls that prevent their
use, for example, they may make approximations that introduce unacceptable errors
in the data. Here, we show that differences in choices of these components can
speed up overall data processing by 5-fold or more on the same hardware while
maintaining a high degree of correctness, greatly reducing the time taken to inter-
pret results. This is an important step for using the data in clinical settings, where
the time taken to obtain the results may be critical for guiding treatment.
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The universal first step in processing metagenomic and metatranscriptomic data is
quality filtering and trimming (i.e., removing low-quality reads and removing

sequences introduced as technical artifacts such as sequencing adaptors and PCR pri-
mers), so that only high-quality data that correspond to nucleic acid sequences in the
original samples are retained. For samples derived from humans, or where host DNA
dominates over microbial DNA (for example, biopsy specimens, surface swabs from
skin or plants, etc.), filtering out sequences that are derived from the host rather than
microbes is also important for ethical and/or technical reasons. Increasing data vol-
umes with newer sequencing instrumentation have transformed these steps from
minor nuisances to efforts that require major computation, typically involving clusters
or cloud computing solutions.

A widely used combination for quality filtering, trimming, and host filtering is
Atropos (1) plus Bowtie2 (2), both of which are popular and widely used tools for these
tasks. A few of the many examples of publications that have used either tool for these
tasks include comparisons of multiple pipelines for nucleic acid extraction (3), analysis
of a large Finnish cardiac risk cohort (4), the popular KneadData preprocessing tool (5),
and a recent paper examining the metavirome of the mosquito Aedes aegypti (6).

As data sets have scaled rapidly, the need for near-real-time processing to support
clinical applications, such as choice of antibiotics in sepsis, determination of respiratory
symptoms as bacterial or viral (including novel pathogens such as SARS-CoV-2), and
choice of anticancer medications, have prompted exploration of hardware acceleration
approaches such as GPUs (7), FPGAs (8), and in-memory computing approaches (9) for
key analysis steps, including alignment. Driven by weeks- to months-long delays in
processing data from large projects, in the DARPA-sponsored JUMP-CRISP project, we
sought to benchmark and characterize the slow steps in the popular Atropos plus
Bowtie2 pipeline. However, prior to proceeding directly to implementation of this
pipeline on an alternative architecture, we sought to determine whether other CPU-
based tools might provide sufficient performance improvement and/or provide a bet-
ter candidate for acceleration.

Here, we explored other combinations of popular methods and found that the com-
bination of Fastp (10) (trimming) and Minimap2 (11) (host-filtering) performed best.
We then demonstrated that this faster combination of processing produces outputs
that are quantitatively similar to previous conventional methods in both data-driven
simulation data and real data derived from a broad set of extraction kits and sample
types.

While implementing the host-filtering benchmarks, we discovered a read count li-
mitation with Bowtie2. When used on large sequencing data sets, the reads after 232

were not included in Bowtie2's output, prohibiting successful application of host-filter-
ing on full NovaSeq lanes. We subsequently fixed this, and the update is available in
Bowtie2 v2.4.2 or later. We used this updated version in our benchmarks.

To evaluate runtime performance, we used the popular CAMI-Sim package (12), one of
the important outputs of the CAMI (Critical Assessment of Metagenome Interpretation)
project (13), to generate simulated data sets containing known amounts of host genome
contamination. The simulated data contained 150-bp reads sampled from 10 microbial
and 1 human reference genome (see Table S1 in the supplemental material). Errors were
simulated into the reads with ART (14) using Illumina default error profiles. Minimap2 (pre-
set for short reads), Bowtie2 (which allows several preset modes that trade sensitivity for
speed), and BWA MEM (15) (no presets, so defaults were used) were run with 12 threads
to align the simulated reads to a different human reference (T2T CHM13). Figure 1 docu-
ments the reduction in read misclassification (Fig. 1A) and false negatives (Fig. 1B) of host
filtering by Minimap2 and BWA MEM over Bowtie2. Minimap2 provides a 1.6- to 8.3-fold
improvement in speed of computation on the same data, compared to the most sensitive
version of Bowtie2, while offering 10.5- to 44.3-fold improvement over BWA (Fig. 1C).
Compared to Bowtie2, Minimap2’s runtime performs more favorably with the amount of
host contamination, making it suitable for even highly host-contaminated samples, such
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as tissue biopsy specimens, saliva, nasal cavity, skin, and vaginal samples, which can con-
tain .90% host DNA (16, 17). It is also notable that while Bowtie2 and BWA MEM process
reads at a relatively constant rate across all the tested read counts, Minimap2 does not
achieve optimal performance until it operates on a larger number of reads (Fig. 1D). For
runtime, we have focused on the host-filtering step because it took the bulk of the time,

FIG 1 Minimap2 provides improved error, sensitivity, and runtime for host filtering over the current open-source pipeline. Comparison of aligners for
host filtering on 1 million CAMI-Sim simulated reads by error (a) and human reads (b) failed to align to the reference (false-negative rate). (c and d)
Time (c) and processing rate (d) comparison across aligners of 1 million, 10 million, and 50 million CAMI-Sim simulated reads. Minimap2 is shown for
100 million and 250 million reads. (e) False-negative rate of host filtering on data with real reads combined from separate exome sequencing and
nonhuman metagenomics studies.
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and the results of trimming are largely unchanged between Fastp and Atropos (Fig. S1A).
When comparing the widely used combination of Atropos plus Bowtie2 to the new fastest
approach of Fastp plus Minimap2, we note that the overall pipeline, including trimming
and filtering components, was accelerated overall by a factor of 5.6 (Fig. S1B), which may
come at the cost of increased memory usage (Fig. S1C).

To further validate the results between Bowtie2, BWA MEM, and Minimap2 on real
sequencing data, we created in silico mock mixtures of data from known sources. We
first obtained IGSR phase 3 (18) human exome sequencing data (Table S2) that are
likely free of microbial genomic contamination compared to whole-genome sequenc-
ing, which can be contaminated with microbial reads (16, 17). We then obtained soil
rhizosphere and mouse fecal metagenomics sequencing data, free of any human ge-
nome contamination. From these two data sets we produced benchmarking samples
of 1,000, 100,000, and 1 million total sequences with various proportions of microbial
versus human-derived sequencing data ranging from 0 to 100% human. The samples
were then processed by Bowtie2 (very sensitive), BWA MEM, and Minimap2. As
observed in the simulation data, under all conditions Minimap2 and BWA MEM outper-
formed the most sensitive version of Bowtie2 in allowing fewer human sequences to
pass read filtering (Fig. 1E).

Although these results on simulated data were encouraging, it is critical to bench-
mark new techniques on real-world data. We therefore used one of our recently pub-
lished data sets comparing different nucleic acid extraction methods, which provided a
built-in way of comparing any differences of biological interpretation between the pre-
viously established end-to-end pipeline and the new, fastest combination of Fastp and
Minimap2. These kit comparison data sets contain samples from a range of biospeci-
men types with differing host DNA loads (3). Across the three extraction conditions
tested in that paper, the total number of reads recovered from each sample was essen-
tially identical between the Atropos/Bowtie2 and the Fastp/Minimap2 pipelines
(Fig. 2A), and the alpha diversity estimates within each sample were also essentially
identical (Fig. 2B). The sample pairs with different host-filtering methods were also
extremely similar in unweighted and weighted ordination results (Fig. 2C), with differ-
ences between individual specimens run through both pipelines (connected by lines)
typically much smaller than differences between different specimens, even of the
same biospecimen types. Finally, the overlap of taxonomic calls at the phylum, genus,
and species levels was perfect between the two pipelines (Fig. 2D).

Given the dramatic improvement in preprocessing and host filtering, we further
sought to test whether Minimap2 is suitable for taxonomic assignment with similar
speed advantages compared to Bowtie2, which is used in the Woltka pipeline (19).
Using Woltka benchmarking data sets for taxonomic assignment (Text S1), we found
Minimap2 performs comparatively poorly, with a reduced F1 score (Fig. S2A). This is
potentially attributed to the higher false-positive rate of Minimap2 (Fig. S2B), since it
will result in more alternate alignments between similar genomes, which detract from
Woltka's accuracy. Therefore, research into accelerating this part of the overall analysis
pipeline for shotgun metagenomics data should focus on accelerating other methods
rather than Minimap2.

Taken together, our results suggest several important principles for optimization of shot-
gun metagenomics workflows. First, even widely used pipeline components should be peri-
odically reevaluated to test whether more efficient implementations or better algorithms
are available and can be replaced with substantial speed improvements. This benchmarking
is facilitated by standardized options and interfaces and standardized data sets, and we
make the data sets we produced here available for reuse. Second, before investing substan-
tial effort in developing nonstandard hardware or approaches to accelerate a specific algo-
rithm, it is worth checking whether a better CPU-based algorithm is available and then, if it
is, optimizing that other algorithm instead. Finally, caution is warranted in generalizing
which pipeline steps a given algorithm or implementation is used for. Although Minimap2
and Bowtie2 both fundamentally perform the same task (approximate string match to a
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FIG 2 When comparing broad sets of extraction kits and sample types, Minimap2/Fastp processing results do not
differ in biological interpretation compared to current processing methods. (a and b) Comparison of total reads
passing the filter (a) and Faith's phylogenetic diversity (b) for Fastp/Minimap2 (y axes) and Atropos/Bowtie2 (x
axes) colored by sample type. (c) Principal coordinate analysis (PCoA) on unweighted (left) and weighted (right)
UniFrac compared between Fastp/Minimap2 (circles) and Atropos/Bowtie2 (cross) colored by sample source
environment. (d) Comparison of shared features between processing methods fastp/Minimap2 and Atropos/
Bowtie2 at the phylum, genus, and species taxonomic levels.
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database, albeit with different mechanisms), Minimap2’s failure on the taxonomic assign-
ment task warrants further investigation to test whether the algorithm could be adapted to
this task or whether there are fundamental limitations.

Our current work therefore provides an important practical improvement with a
speedup in common metagenomics preprocessing tasks, which we have already made
available to the community via incorporation into Qiita (20). Future work will be
needed to assess and adapt alignment-free approaches, which often provide improve-
ments in runtime over alignment methods, for both host-filtering and taxonomic
assignment tasks. These advancements also point the way toward further optimization
that will allow real-time or near-real-time use of metagenomic and/or metatranscrip-
tomic data in clinical decision making, where time is often of the essence.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TEXT S1, DOCX file, 0.01 MB.
FIG S1, TIF file, 2.4 MB.
FIG S2, TIF file, 2.7 MB.
TABLE S1, XLSX file, 0 MB.
TABLE S2, XLSX file, 0.02 MB.
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