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RESEARCH

Caterpillar movement mediates 
spatially local interactions and determines 
the relationship between population density 
and contact
Brendan D. Carson1*, Colin M. Orians1 and Elizabeth E. Crone1,2 

Abstract 

Background While interactions in nature are inherently local, ecological models often assume homogeneity 
across space, allowing for generalization across systems and greater mathematical tractability. Density-dependent 
disease models are a prominent example of models that assume homogeneous interactions, leading to the predic-
tion that disease transmission will scale linearly with population density. In this study, we examined how the scale 
of larval butterfly movement interacts with the resource landscape to influence the relationship between larval con-
tact and population density in the Baltimore checkerspot (Euphydryas phaeton). Our study was inspired by the recent 
discovery of a viral pathogen that is transmitted horizontally among Baltimore checkerspot larvae.

Methods We used multi-year larvae location data across six Baltimore checkerspot populations in the eastern U.S. 
to test whether larval nests are spatially clustered. We then integrated these spatial data with larval movement data 
in different resource contexts to investigate whether heterogeneity in spatially local interactions alters the assumed 
linear relationship between larval nest density and contact. We used Correlated Random Walk (CRW) models and field 
observations of larval movement behavior to construct Probability Distribution Functions (PDFs) of larval dispersal, 
and calculated the overlap in these PDFs to estimate conspecific contact within each population.

Results We found that all populations exhibited significant spatial clustering in their habitat use. Subsequent larval 
movement rates were influenced by encounters with host plants and larval age, and under many movement sce-
narios, the scale of predicted larval movement was not sufficient to allow for the “homogeneous mixing” assumed 
in density dependent disease models. Therefore, relationships between population density and larval contact were 
typically non-linear. We also found that observed use of available habitat patches led to significantly greater contact 
than would occur if habitat use were spatially random.

Conclusions These findings strongly suggest that incorporating larval movement and spatial variation in larval inter-
actions is critical to modeling disease outcomes in E. phaeton. Epidemiological models that assume a linear relation-
ship between population density and larval contact have the potential to underestimate transmission rates, especially 
in small populations that are already vulnerable to extinction.
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Background
Interactions among organisms are inherently local. 
Nonetheless, many models of ecological dynamics start 
with the assumption of homogeneous interactions 
among individuals across space. Incorporating spatially 
local interactions can change model outcomes in many 
circumstances (e.g. [59, 62, 67, 68]), but adding complex-
ity also makes models less broadly applicable, somewhat 
undermining the goal of describing general ecological 
principles [28]. Furthermore, including spatially explicit 
interactions is not always necessary to accurately cap-
ture system dynamics. For example, after rigorously 
measuring the effect of local competitive interactions 
among annual plants to parameterize a dynamic com-
munity model, Pacala and Silander [64] found that the 
scale of seed dispersal was large enough to eliminate 
any observable effect of local competition over time. In 
subsequent work, the same authors showed that local 
interactions were drivers of species distributions among 
woody plants, where the relatively small scale of disper-
sal allowed local interactions to predominate [63]. Thus, 
even though spatial heterogeneity is a near-universal 
phenomenon, its relative effect depends on the scale of 
movement in the system of interest.

Density-dependent disease models are a prominent 
example of the use of the assumption that interactions 
are spatially homogeneous. The assumption that each 
host has an equal probability of encountering every other 
host in a given population [33, 40] results in a linear rela-
tionship between population density and conspecific 
contact rates, and therefore disease transmission [2, 6]. 
This simplification allows for straightforward estimation 
of key disease parameters and predictions about disease 
dynamics [2, 6].

Recently, more attention has been given to the influ-
ence of local interactions on disease outcomes. In the 
well-studied badger-bovine TB system, network clus-
tering created by badger social structure creates dis-
proportionally high levels of contact within clusters, 
disrupting the relationship between population density 
and transmission [8, 90, 92]. Similarly, non-linearities 
between population density and contact can also arise 
through spatial clustering in habitat use [93]. Clearly, a 
better understanding of the circumstances under which 
increasing population density results in more contact 
can improve our understanding of disease risk, and 
improve wildlife management decisions [24, 94]. How-
ever, understanding when spatially local interactions 

alter the relationship between density and contact 
requires work grounded in host movement behavior 
that spans multiple populations.

The tools available to integrate disease ecology and 
animal movement vary among taxa. Long-term move-
ment data obtained through geolocated transmit-
ters have been particularly useful for illuminating the 
host–pathogen contact process in vertebrate taxa such 
as deer, racoons, zebra, impala, and wildebeest [30, 38, 
41, 86]. However, because the majority of mobile spe-
cies are too small to tag with a transmitter [51], rely-
ing on these methods creates a taxonomic bias in our 
understanding of the processes underlying disease 
transmission. Advancing our understanding of move-
ment-mediated contact in insects in particular presents 
an opportunity in disease ecology: many insect patho-
gens are well-studied, and the recent use of molecular 
methods have revealed a suite of previously cryptic 
insect pathogens (Corey and Myers 2004), [1, 29, 34, 37, 
56, 57, 73, 79]. Insects play an enormous role in ecolog-
ical processes, comprising much of the planet’s animal 
diversity [85, 91]. Moreover, because insect herbivores 
often feed on plants that have patchy distributions, they 
present an ideal system for examining the relationship 
between spatial heterogeneity in habitat use, popula-
tion density, movement, and conspecific contact.

For insects, there is a long tradition of studying 
movement by tracking individual animals over short 
time periods using direct observation, then scaling to 
long-term dispersal using a correlated random walk 
(CRW) model [48, 76, 88]. Because herbivorous insects 
often exhibit CRW movement while searching for suit-
able food or oviposition sites [12, 16, 39], foraging dis-
persal can be modeled as a diffusion process. In this 
study, we use a CRW approach to understand the role 
of spatially local interactions and larval movement to 
contact rates in the Baltimore checkerspot butterfly 
(Euphydryas phaeton). Several aspects of E. phaeton’s 
life history make it a particularly tractable study system 
(e.g., [12, 13, 75, 80–83]. Adult females lay their eggs 
in batches, which suggests that more frequent inter-
actions may occur among larval groups from adjacent 
oviposition locations. The disjunct nature of E. phae-
ton populations allows for an examination of the rela-
tionship between habitat use, population density, and 
conspecific contact across independent populations. 
Finally, a densovirus (JcDV) was recently found in E. 
phaeton populations in New England [57], providing a 

Keywords Disease ecology, Densovirus, Checkerspot butterfly, Heterogeneity, Clustering, Contact rates, Density 
dependence, Correlated random walk, Resource availability, Habitat use, Larval stage
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strong motivation for understanding contact processes 
in the caterpillar host.

In this study, we integrate observations of caterpillar 
movement behavior with observed larval nest locations 
to estimate proportional conspecific contact within dif-
ferent E. phaeton populations spanning a range of pop-
ulation sizes and densities. Specifically, we ask: (a) How 
clustered are Baltimore checkerspot oviposition sites 
(nests) within available habitat patches?; (b) Given the 
scale of predicted larval movement, does the observed 
scale of heterogeneity in habitat use influence predicted 
larval contact?; and (c) Do observed patterns of habitat 
use lead to a linear relationship between population den-
sity and conspecific contact (i.e. as assumed in simple 
disease models)?

Methods
Study system
Euphydryas phaeton occurs throughout much of eastern 
north America, where it is associated with wetland and 
old-field habitats. This species is of conservation concern 
in much of its range, and population sizes are known to 
fluctuate widely, largely for unknown reasons [22]. This 
species has one generation per year. Female E. phaeton 
lay eggs in clusters in mid-summer, using either Chelone 
glabra or Plantago lanceolata as oviposition host plants 
in the Northeastern United States [9]. Early instar (1st–
4th) larvae are gregarious and form silk webs (hereafter 
“nests”) containing ~ 90–150 sibling larvae [11]. These 
nests are easily surveyed during late summer and early 
fall before larval diapause. Larvae overwinter as 4th 
instars under the leaf litter of their natal nests. After 
overwintering, post-diapause larvae disperse from their 
natal sites as non-gregarious foragers, feeding on a suite 
of plants containing iridoid glycosides [3, 9] and encoun-
tering larvae from other nest groups in the process.

Foraging at the postdiapause larval stage likely plays 
an important role in horizontal disease transmission: 
viral particles are present in infected larval frass and 
decomposing cadavers (B. Carson unpubl. data; [57]), 
and feeding on JcDV-contaminated host plants leads to 
infection, substantial mortality in post-diapause larvae, 
and can impact population demographic rates (B. Car-
son unpubl. data). JcDV can persist on the leaves of food 
plants for several weeks, but in a separate experiment we 
found that viral loads decayed by ~ 3 orders of magnitude 
over a 6-week period, presumably through exposure to 
UV radiation (B. Carson unpubl. data). Thus in this sys-
tem, as found in other systems, pathogen transmission 
is dependent on larvae occupying the same location in 
space, though not necessarily at the same time [30]. Our 
study was motivated by the possible implications of nest 
clustering and spatially local interactions for transmission 

of JcDV. While understanding drivers of disease was the 
impetus for this analysis, the nest location data we used 
were collected before we were aware of JcDV’s presence.

We surveyed E. phaeton nests at three sites in Mary-
land and four sites in Massachusetts over multiple years 
(Additional file  1: Supplement 1.1, Table  S1). All three 
Maryland populations used C. glabra as their host 
plants. In Massachusetts, the Appleton population used 
C. glabra, the Harvard populations used C. glabra and P. 
lanceolata, and the Upton population used P. lanceolata. 
E. phaeton habitat is variable in the abundance and distri-
bution of host plant resources, which may influence for-
aging movement in post-diapause larvae. Movement path 
data in this study were collected in two habitat contexts: 
the Upton field population, which had low host plant 
density, and an old-field site on Tufts’ campus, which had 
a high host plant (P. lanceolata) density.

Larval nest distributions
Each site was visited multiple times during the larval pre-
diapause period in late summer, and nests were surveyed 
using a sight-resight protocol similar to that detailed 
in Iles et al. [44], as described by Brown et al. [11]. The 
surveyor slowly walked over the entirety of the site, and 
when nests of larvae were found they were recorded 
and geolocated. This species has one generation per 
year, and no temporal overlap between the various life-
stages. Therefore, the larval nests represent the entire E. 
phaeton population within a site during the year of the 
survey. Pre-diapause nest locations indicate the starting 
positions of the mobile post-diapause stage, during which 
larvae are most susceptible to JcDV transmission. We did 
not assess the number of larvae in most nests, because 
this process is invasive and can impact larval survival. 
However, previous surveys of larval nests show that prior 
to diapause, nests have ~ 10–200 larvae (median = 50), 
and about half of these survive to the following spring 
(Supplement 1.7; see [11, 13]). For the analysis presented 
in this paper, we use a simple metric of contact that does 
not depend on nest size (see Larval contact index, below).

The habitat available for larval use at each site was 
determined using field observations of adult butterflies, 
host plants, and larval nest occurrences (cf. [10]). Briefly, 
we delineated habitat patch polygons in the field with a 
GPS, and computed the area within each habitat polygon 
in ArcGIS. To assess whether each site-years’ larval nest 
point pattern was more clustered than would be expected 
by chance, we used a Clark-Evans test with a Cumulative.

Distribution Function (CDF) correction (spatstat 
package; [4]). This Clark-Evans metric (CE-R) assesses 
the degree to which points patterns are aggregated, ran-
domly, or evenly dispersed within each sites’ habitat pol-
ygon compared to a Poisson process point distribution. 
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The nest density of each site-year was calculated by 
dividing the number of nests found at that site that year 
by that site’s available habitat area (nests/m2). We used 
nest density as a proxy for butterfly population den-
sity, because during late summer the entire population 
is within pre-diapause nests and can be easily surveyed 
[11]. The two Harvard populations were separated by a 
forest, and adult butterflies were occasionally (but not 
frequently) observed moving between the two patches of 
meadow during mark-recapture studies [13]. However, 
these two sites are discontinuous at the scale of larval dis-
persal (E. Crone, pers. obs) and thus treated as separate 
populations in our study.

Larval movement
We collected individual larval movement path data from 
post-diapause 4th–6th instar larva during May and June 
2020. Larval paths were observed in situ at the Upton E. 
phaeton population and ex situ at an old field on Tufts 
Medford campus. Host plant availability differed substan-
tially between these two sites, and by collecting move-
ment path data under a range of resource densities we 
hoped to capture a range of larval movement behaviors. 
121 paths were observed on 21 separate days, and at the 
end of each observation we measured each larva’s head 
capsule width to determine its instar. Larvae released at 
Tufts for path observation were collected from the Upton 
population on the preceding day. Each larva was fol-
lowed for 20 min, and at one-minute intervals we placed 
a sequentially numbered flag next to the larvae to mark 
its position. We also noted larva-host plant encounters 
and feeding bouts, and qualitatively noted larval behavior 
as they approached host plants. After 20 min, we photo-
graphed the path alongside a compass and meter stick.

Each movement path photo was uploaded to ImageJ 
FIJI processing software, and we measured the length 
between each movement step and the turning angle 
between each move (Fig.  1). These measurements were 
then used to calculate each movement step’s length (cm), 
and cosine and sine of the turning angle as in Turchin 
[89]. Movement path photos were also used to quan-
tify the density of host plants surrounding each larval 
path. Because individual P. lanceolata rosettes variable 
substantially in their size, we estimated the number of 
leaves/m2.

We limited our statistical analyses to movement paths 
that contained at least 4 movement steps (Upton n = 31; 
Tufts n = 58). We used linear mixed effects models in R 
(lme package; [5]) with date and individual larvae ID as 
random factors to investigate whether the movement 
path parameters of step length, cosine and sine of the 
turning angle were influenced by larval instar or data col-
lection site. Prior to conducting analyses, we transformed 

the cosines and sines of the turning angles prior to analy-
sis by dividing by two and adding 0.5 [77], and examined 
the residuals of each independent variable for normality. 
We conducted marginal hypothesis testing to evaluate 
model terms and dropped non-significant interactions 
(Crawley 2012). Terms in the final model were evaluated 
using marginal likelihood ratio tests, implemented with 
the car,;Anova() function in R. The variables in the final 
model for each movement parameter were then used to 
generate the diffusion coefficients as described below.

As a secondary analysis, we evaluated whether host 
plant encounters altered larval movement behavior. We 
tested each movement parameter using linear mixed 
effects models with date and larvae ID as random factors, 
and a fixed effect of whether the larvae had yet encoun-
tered a host plant in each movement trial. We limited 
this analysis to the Tufts dataset, because the host plant 
encounter rate at Upton was too low to provide sufficient 
data for statistical inference (15 out of 356 movement 
steps at Upton occurred after host plant encounters, vs. 
115 out of 507 movement steps at Tufts).

We compared the CRW-predicted and observed larval 
displacements (Additional file 1: Figure S1) and found the 
CRW diffusion approximation, although slightly lower, 
was a reasonable approximation of larval displacement 

Fig. 1 An example of a larval movement path from a 5th instar 
larva recorded at Tufts’ campus. The larva traversed the entire 
path over a 20-min period, and each circular disc is on a metal pin 
that indicates the larva’s location in one-minute intervals. Each 
movement step is represented by an arrow. In this path, the arrow 
between points A and B represents the tenth movement step. The arc 
between the final movement step and the dotted line (C) indicates 
the turning angle between movement step 18 and movement step 
19. N indicates north
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and therefore an appropriate model for E. phaeton lar-
val movement (Supplement 1.3). Because larval instar 
and path observation site were both significant predic-
tors of movement step length (see Results), we gener-
ated diffusion coefficients using site specific step length 
parameters:

where D is the diffusion coefficient, � is the mean cosine 
of the turning angle, m1 is the site and instar-specific 
mean step length and m2 is the site and instar specific 
mean squared step length and t is the time spent in mov-
ing in a given instar [89],Table 2).

Larval contact index
We used the instar-specific diffusion coefficients to gen-
erate two-dimensional Gaussian Probability Distribu-
tion Functions (PDF) centered on each larval nest site 
(Additional file 1: Supplement 1.4, Figure S2). The PDF’s 
standard deviation is 

√
2tD where t is the time spent dis-

persing during a given post-diapause instar (estimated 
from field data; Supplement 1.5) and D is the instar and 
rate-specific diffusion coefficient calculated above. The 
PDF for 4th, 5th and 6th instars accounted for dispersal 
that would have occurred during previous post-diapause 
instars by using an average diffusion coefficient weighted 
by mean number of days spent in each instar (estimated 
from experimental data; Supplement 1.6). To estimate the 
population-wide proportional contact for a given year, we 
generated a metric to describe likely contact among nests 
by quantifying the amount of overlap between each larval 
nest’s PDF using Schoener’s Index [74, 78]:

where p(x) and p(y) represent the two PDFs, and index 
values of 0 and 1 indicate no overlap or complete overlap, 
respectively.

We used the fMultivar package in R [95] to simulate a 
grid of 1 × 1 m cells (i), projected each PDF on the grid so 
that each cell’s z value represented the probability associ-
ated with each PDF. As a simple metric of relative con-
tact rates for each site-year, we computed the Schoener’s 
overlap between every pair of larval nests at each instar 
stage (see Supplement 1.4). Then we summed each nest’s 
total overlap. A site-year’s contact index is the average 
of each of these nest-level contact estimates. This analy-
sis was performed once using movement parameters 
estimated from Upton movement paths and again using 
Tufts movement parameters.

(1)D = m2 + 2m
2

1
∗

�

1−�
/(4t)

(2)1−
1

2

n
∑

i=1

|p(x)i − p(y)i|

After calculating the mean contact index for each site-
year, we evaluated site-year means of Schoener’s over-
lap index using mixed effects models (lme4 package, 
[5]) with movement rate (Upton vs. Tufts), larval instar, 
number of nests, nest density, and the Clark-Evans clus-
tering metric as fixed-effect predictors, and site as a ran-
dom factor. Because nest density was calculated using 
nest number, these factors are collinear and should not 
be included in the same model [96]. Therefore, we first 
constructed two separate full-interaction models using 
each of these parameters and compared them using delta 
AIC. We then removed nonsignificant interactions from 
the best model (nest density vs. nest number). Terms in 
the final model were evaluated using type II marginal 
likelihood ratio tests, implemented with the car::Anova() 
function in R.

To investigate the effect of observed spatial clustering 
on larval contact, we generated 20 replicates of simulated 
Poisson-process point patterns at the same densities as 
observed nests for each site-year. We combined the over-
lap data resulting from these simulated nest distributions 
with overlap data from observed nest distributions and 
then used a mixed effect model to test for the effect of 
movement rate, larval instar, and point pattern source 
(observed or simulated), with site as a random factor 
using the model selection approach described above.

Results
Larval nest distributions
The number of Baltimore checkerspot nests detected 
ranged from a low of four (Harvard East in 2019) to a high 
of 309 (Upton in 2019; Fig. 1F; Additional file 1: Table S1). 
Available habitat ranged from 1190  m2 (Alesia) to 21,821 
 m2 (Harvard West; Additional file  1: Supplement 1.2, 
Table S1). The Clark-Evans R values for all site-years were 
below 1.0, suggesting that nests were more clustered than 
expected by chance (Fig. 2). Larval nest distributions in 
fourteen of the 20 site-years were significantly more clus-
tered within available habitat than expected by chance 
(Additional file 1: Table S1); the remaining six sites-years 
had too few observed nests to conduct a significance test 
using the Clark-Evans method.

Larval movement
The best model of step length included the covariates of 
larval instar and observation site without interactions. 
Movement lengths ranged from 0.6 to 58.5  cm per one 
minute step interval, with larvae traversing Euclidian dis-
tances between 0.1 and 9.5 m over the 20-min observa-
tion period. Movement step lengths increased with larval 
ontogeny (χ2 = 4.95, df = 1, P = 0.03), and Upton move-
ment paths had longer step lengths than those observed 
at the Tufts campus site (χ2 = 26.81, df = 1 P < 0.001) across 
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all instars. There was variability in step length between 
individual larvae (larvae ID random effect sd = 3.4). The 
sine and cosine of movement path turning angles did not 
differ as a function of any predictor variables. Movement 

parameter means and confidence intervals are provided 
in Table  1, and the results of the likelihood ratio tests 
used to evaluate each movement parameter can be found 
in Supplement 1.2 (Additional file 1: Table S2).

Fig. 2 Top panel: A Spatial clustering within the E. phaeton populations surveyed in this study. The y axis depicts the Clark Evans clustering 
metric (CE-R), in which values closer to zero indicate a higher degree of clustering. Each point denotes a year of survey: all sites were surveyed 
in 2018 and 2019, and the Harvard sites were also surveyed from 2013 to 2016. Figure legend indicates the state of origin, nest density (nests/
m2), and oviposition host plants used at the site. The points corresponding to sites-years in bottom panel are indicated with year labels. Bottom 
panel: An example of nest spatial distributions corresponding to different CE-R values: B The observed nest distribution of the Harvard East 
population in 2016 (n = 32); C The observed nest distribution of the Harvard East population in 2013 (n = 46); D A simulated Poisson point-pattern 
within the Harvard East habitat polygon (n = 46); E The observed nest distribution of the Upton population in 2018; F The observed nest distribution 
of the Upton population in 2019; G A simulated Poisson-process point pattern within the Upton habitat polygon (n = 44)
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P. lanceolata was less abundant at Upton than Tufts 
(means of 15.9 (95% CI 0–50.8) leaves/m2 and 102.7 (95% 
CI 82.2–123.2) leaves/m2 respectively). In our analysis 
of the Tufts campus data, larvae decreased step lengths 
(χ2 = 38.19, df = 1, P < 0.001) and increased time between 
movement steps (χ2 = 15.27, df = 1, P < 0.001) after their 
first encounter with a host plant.

Larval contact index
Larval density was a better predictor of contact than 
population size (ΔAIC = 146.2). In this model, density, 
clustering, movement rate, instar, and 3-way interac-
tions between Density, Clustering and Instar and Den-
sity, Clustering, and Rate significantly affected contact 
(Table  2). The site-wide contact index increased with 
dispersal rate and larval instar stage (significant posi-
tive main effects, Table 2; Fig. 3). The contact index also 
increased with nest density and clustering (significant 
positive main effects, Table  2). Although we did not 
attempt to interpret each interaction, one clear pattern 

was that the importance of nest density (i.e. slope of 
contact vs. nest density) increased with greater dis-
persal (Fig.  4A). Conversely, the importance of clus-
tering (i.e. slope of nest clustering vs. nest clustering) 
decreased with greater dispersal (Fig. 4B).

The contact index estimated from observed nest loca-
tions also differed significantly from randomly distrib-
uted nests. The mean contact index across all dispersal 
scenarios was 4.42 (95% CI 3.16–5.68) for observed 
point patterns and 1.07 (95% CI 0–2.32) for simulated 
random point patterns. Contact indices were always 
higher for observed than random nest locations (χ2 = 
35.44,  df = 1,  P < 0.001), and, as expected, increased 
with larval instar (χ2 = 112.74,  df = 2,  P < 0.001), and 
movement rate (χ2 = 10.15,  df = 1,  P = 0.002). This dif-
ference between observed and random nest locations 
was more important in conditions with less move-
ment, as reflected by a significant interaction between 
nest data source (observed vs simulated) and instar 
(χ2 = 4.19, df = 2, P < 0.001).

Table 1 Mean movement parameters estimated from movement path data

*Larval movement lmer models described in methods

**Estimated using Eq. 5.3 from Turchin  [89]: D = (m2 +
(

2m
2

1

)

∗
(

�
1−�

)

)/(4t)

Parameter* Mean Lower CL Upper CL SE Degrees of 
Freedom (df)

Sine of turning angle 0.01 − 0.05 0.06 0.03 15.9

Cosine of turning angle 0.32 0.19 0.45 0.06 18.4

Step time (s) 102 92 113 4.90 15.2

Step length (cm)

 Instar 4 Upton 6.69 0.00 14.9 4.00 26.08

 Instar 5 Upton 12.03 6.83 17.2 2.17 6.51

 Instar 6 Upton 12.01 7.91 16.10 1.72 6.76

 Instar 4 Tufts 4.03 3.03 5.02 0.45 10.50

 Instar 5 Tufts 4.24 3.35 5.13 0.42 16.60

 Instar 6 Tufts 7.62 5.96 9.28 0.79 21.50

Step  Length2 (cm)

 Instar 4  Length2 Upton 113 0.00 391 135.40 27.20

 Instar 5  Length2 Upton 267 86.60 447 67.30 4.40

 Instar 6  Length2 Upton 201 74.00 327 52.10 6.19

 Instar 4  Length2 Tufts 22.50 4.59 40.50 8.06 10.00

 Instar 5  Length2 Tufts 25.30 8.96 41.70 7.81 18.20

 Instar 6  Length2 Tufts 103.30 71.25 135.30 15.90 15.90

Diffusion coefficient (D)**

 Instar 4 D Upton 0.38 0.14 1.11

 Instar 5 D Upton 0.99 0.45 1.43

 Instar 6 D Upton 0.82 0.49 1.35

 Instar 4 D Tufts 0.09 0.07 0.15

 Instar 5 D Tufts 0.10 0.08 0.16

 Instar 6 D Tufts 0.39 0.19 0.46
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Discussion
E. phaeton larval nests were spatially clustered enough to 
affect contact among larvae. Under most conditions, spa-
tially local interactions disrupted the linear relationship 
between population density and contact. These results 
are intuitive: higher population density only results in 
more contact when individuals in a population move 
enough to encounter each other. Conversely, when move-
ment is low, only near neighbors come into contact, and 
spatial structuring strongly influences contact rates. Spa-
tially local interactions can influence ecological processes 
including disease, predation, and resource competition 
[28], and other authors have also found that movement 
is a key determinate of how local interactions scale up 
to population-level effects (eg. [52, 54, 64]). Our results 
further illustrate how understanding the relative scales of 
habitat heterogeneity and animal movement is critical to 
determining how spatially local interactions impact eco-
logical dynamics.

In our study, heterogeneity in spatially local interac-
tions resulted from initial clustering of larval aggrega-
tions within available habitat patches. Our larval nest 
surveys demonstrate that the degree of habitat-use heter-
ogeneity can vary widely between different populations, 
suggesting that the relative importance of spatially local 
interactions is context-dependent. We did not attempt 
to explain the underlying cause of clustered nest loca-
tions, but many factors can influence female butterfly 
oviposition, including floral resource distribution [58], 

host-plant abundance, and intraspecific host-plant vari-
ability [42, 69, 72]. Smaller E. phaeton populations tended 
to exhibit the highest degree of clustering, which may be 
tied to the use of highest-quality habitat patches by fewer 
individuals. Anecdotally, when the Harvard population 
was declining from 2016 to 2019 (cf. [22]), we found nests 
in a relatively small proportion of the available habitat, 
despite the widespread availability of host plants. More 
generally, numerous past studies have evaluated the rela-
tionship between maternal oviposition preference and 
offspring performance [35, 36, 53, 87]. Most of these 
studies have focused on offspring performance in relation 
to food quality; our results suggest that oviposition pref-
erence also affects the extent of spatial clustering, and 
therefore the frequency of larval interactions.

The relative importance of spatial clustering in E. 
phaeton was determined by the scale of larval move-
ment throughout their ontogeny. Our inference about 
movement is based on a simple model of diffusion coef-
ficients estimated from correlated random walks (CRW). 
These models have a long history of use with insects [21, 
25, 48–50], especially butterflies (e.g., [12, 13, 32, 48, 76, 
88], and at least one previous study used CRW models to 
evaluate larval butterfly movement (the Oregon silvers-
pot, [7]). Our goal was to obtain a rough estimate of the 
scale of movement in relation to clustering, and, as such, 
this model is appropriate for our study. However, CRW, 
like any model, is a simplification of real movement, and 
may be especially prone to underestimating long-distance 

Table 2 Summary statistics from analysis of contact  index1

1 Non-significant interactions from the full model are shown in italics. Other statistics are from the reduced model with these terms removed

Random effects Variance SD

Site 16.80 4.09

Residual 6.46 2.54

Marginal hypothesis tests Chisq Df P value

Density 181.33 1  < 0.001

Clustering 33.71 1  < 0.001

Rate 57.94 1  < 0.001

Instar 46.15 2  < 0.001

Density:Clustering 0.05 1 0.831

Density:Rate 22.36 1  < 0.001

Clustering:Rate 5.51 1 0.016

Density:Instar 18.07 2  < 0.001

Clustering:Instar 4.44 2 0.108

Density:Clustering:Rate 11.29 1  < 0.001

Density:Clustering:Instar 9.52 2 0.008

Density:Rate:Instar 2.78 2 0.249

Clustering:Rate:Instar 0.83 2 0.660

Density:Clustering:Rate:Instar 1.74 2 0.419
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movement [45, 70]. One incidental result of our study 
was variation among parameters estimated for individual 
animals. Exploring the source of this variation would be 
a valuable next step, because persistent behavioral differ-
ences could lead some individuals to act as “superspread-
ers” (cf. [84]). Another interesting step would be to build 
spatially explicit individual based models [86] or network 
models [92] of this system once we know more about the 
biology of JcDV transmission, its effects on larval sur-
vival, and the possibility of shared reservoir hosts (e.g., 
[56, 57, 60, 71]).

We estimated an index of contact based on the over-
lap of larval probability distribution functions (PDFs) fol-
lowing each stage of larval dispersal. In addition to the 
CRW model constructed from movement path data, the 

PDFs incorporated the amount of time larvae spent mov-
ing, as well as estimates of how long post-diapause larvae 
spent in each instar. The former estimates were based on 
field observations, while instar duration was measured 
in a lab setting. Our lab conditions did not incorporate 
the temperature variation found in nature, and this could 
have influenced larval development. In a separate field 
experiment on Tufts campus, the development time from 
emergence to pupation ranged from 38 to 59 days in 171 
butterflies over two years. The mean time from 4th instar 
emergence from diapause to pupation in a lab (42 days) 
was within this range, but the time in each instar may 
be skewed in the field: cool temperatures early in the 
spring would lengthen the time spent in the 4th instar, 
and warmer temperatures later in the season could mean 

Fig. 3 The mean per-nest estimated contact for observed nest distributions (black) and simulated random nest distributions (grey) plotted 
against nest density. The top three panels (A–C) show expected overlap following 4th, 5th, and 6th instar dispersal using movement parameters 
from Tufts campus (i.e. slow) movement path data, and the bottom three panels (D–F) show expected mean overlap following 4th, 5th, 
and 6th instar dispersal using movement parameters from Upton (i.e. fast) data. We competed linear (Contact ~ Density) and log-linear 
(Contact ~ log(Density)) fit lines using AIC. Best fit lines are included where they significantly fit the data (p < .05). Error estimates of points and best 
fit lines show 95% confidence intervals
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less time spent in later instars. However, our finding that 
variation in larval movement was the main driver of con-
tact is robust to this amount of variability in development 
time.

In our study, Baltimore checkerspot movement rates 
depended on habitat context: larvae at the Tufts site 
moved more slowly after they encountered host plants. 
Larvae also exhibited substantially greater movement 
rates at Upton than Tufts, and these differences may 
have been caused by the resource landscape at each site. 
Specifically, sites with a high density of host plants, and 
thus slower larval movement, are expected to result in 
stronger local interactions. Many animals move more 
slowly when they encounter resources, e.g., adult butter-
flies moving through host plant patches [23, 32, 76], lady 
beetles near aphid prey [49], and wading birds in relation 
to tidal flat invertebrates (Dias et al. 2009). From this we 
would predict that in a disease context, slower move-
ment in resource-dense patches will facilitate pathogen 
accumulation in resource hotspots [30, 41, 65] but mini-
mize population-wide transmission. Conversely, lower 
resource density will lead to greater movement through-
out a habitat, resulting in a more evenly distributed dis-
ease load in the environment and among individuals. This 
interplay between resource density and movement could 
also contribute to a feedback between population density 
and larval contact: higher population densities can lead 
to faster resource consumption, subsequently resulting 

in faster movement as larvae search for additional food 
sources.

The site-based differences we observed in larval 
movement influenced the shape of the relationship 
between population density and conspecific contact. 
In conditions with slower movement, the relationship 
between density and contact was relatively weak, and 
showed a decelerating (asymptotic) trend. The rela-
tionship between contact and density directly influ-
ences disease transmission patterns [2, 40, 65], and 
analyses of wildlife epidemiological data often find 
that an asymptotic relationship between population 
density and transmission best describes observed dis-
ease spread [40]. While an asymptotic pattern could 
result from individual variation in disease susceptibil-
ity [14, 65] or vector-based transmission [6], non-linear 
relationships between contact and population den-
sity could also drive these results [30, 38, 40, 90, 92]. 
Our work demonstrates that spatially heterogeneous 
local interactions can similarly create non-linearities 
between contact and population density when move-
ment is limited. With greater larval dispersal, contact 
in our study was more strongly proportional to popula-
tion density. These high-movement scenarios approach 
the homogenous mixing assumed by density-dependent 
disease models [27, 33], resulting in a linear relation-
ship between density and contact. However, even when 
the relationship between contact and nest density was 

Fig. 4 The slopes of Contact vs. Density and Contact vs. Clustering in response to the degree of larval dispersal, calculated from the statistical 
model shown in Table 2. The x-axis is the standard deviation of the probability distribution of larval locations at the end of each instar
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linear, our index of contact based on observed nest dis-
tributions was always higher than the index calculated 
for a random distribution of nests on the landscape.

Our study was motivated by the possible implica-
tions of nest clustering and spatially local interactions 
for transmission of a viral disease, JcDV [57]. Because 
the minimum population density required to sustain 
pathogen spread  (SR0) is directly proportional to the 
estimated transmission rate β, and β is proportional 
to the contact rate, the increase in contact caused by 
clustering could lower the population threshold allow-
ing for disease persistence [27, 40, 55]. Fofana and 
Hurford [33] show that changes in host movement can 
influence the rate of disease spread in a hypothetical 
host–pathogen system, but introducing spatial hetero-
geneity is necessary to alter  SR0. If a threshold density 
is estimated assuming a homogenous host distribution, 
it may overestimate the minimum population that will 
sustain pathogen spread (Connor and Miller, 2004). 
This last point is important, because small populations 
that appear to be below the threshold required to sus-
tain transmission are already vulnerable to extinction 
from Allee effects and stochastic perturbations [24, 26, 
66].

In the Baltimore checkerspot-JcDV system, spatial 
clustering of larval nests is likely to affect disease trans-
mission, both qualitatively and quantitatively. Our find-
ings also suggest that different populations of the same 
species can have different relationships between trans-
mission and density. Disease loads differ among Bal-
timore checkerspot populations in our region [57], 
and an exciting next step would be to determine if this 
variation is associated with spatial clustering of habitat, 
resource density, or larval movement dynamics. Devel-
oping a broader framework of how abiotic and biotic 
determinates influence habitat use and subsequent dis-
ease transmission would greatly advance our ability to 
predict outcomes in specific wildlife populations. Finally, 
this study reinforces that homogeneous mixing models 
of local transmission between individual hosts are best 
applied at scales determined by host movement, rather 
than defining a ‘patch’ by the amount of contiguous habi-
tat. More generally, our work shows the power of linking 
spatial pattern and animal movement to inform the con-
ditions under which spatially local interactions are likely 
to drive ecological dynamics.
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