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Meetings

Improving collaborations
between empiricists and
modelers to advance grassland
community dynamics in
ecosystem models

Climate change, increasing atmospheric CO2, and land use change
havealteredbiogeochemical andhydrologic cyclesworld-wide,with
grassland systems being particularly vulnerable to resulting vegeta-
tion shifts (Komatsu et al., 2019). Therefore, incorporating plant
community dynamics into ecosystemmodels is critical for accurate
forecasting of ecosystem responses to global change (Levine, 2016).
Process-based ecosystem models, which simulate the biogeochem-
ical transfers of mass and energy among biota, the subsurface, and
atmosphere, require representation of dynamic composition of
organisms within ecosystems. For example, these models simulate
leaf and plant-level characteristics, such as electron transport rate
and allometry of carbon (C) allocation, to predict how net primary
productivity and other ecosystem processes respond to abiotic
drivers. These models are particularly useful in scaling from
organismal to ecosystem levels but are still underdeveloped in their
ability to capture community change, especially in grassland
ecosystems. To represent compositional changes, these models
must simulate competition, mortality, establishment, and repro-
duction of plant populations within communities. Yet, current
ecosystem modeling approaches to forecast plant community
change have derived from studies of forested systems and are either
too coarse to capture fine-scale community dynamics (e.g. dynamic
global vegetation models (DGVMs)) or too complex to be used at
large spatial scales (e.g. forest gap models).

Community ecology often relies on statistical models describing
population dynamics or the abundance/frequency of individual
species to identify linkages between community dynamics and
ecosystem processes. For example, there is a vast literature linking
species richness to ecosystem function using statistical models
(Hooper et al., 2005; Cardinale et al., 2006). Yet, statistical models
are rarely able to scale leaf and plant-level characteristics to
ecosystem levels owing to data constraints and the fact that they do
not incorporate process knowledge. Process-based ecosystem
models are thus needed to predict whole ecosystem function,
especially under novel environmental conditions. Yet, as already
mentioned, these models often struggle to link plant characteristics
to local-scale community dynamics.

To better represent community dynamics in ecosystem models,
scientists must identify: (1) how physiological and morphological

traits of plant species or functional types, and their diversity, can
drive changes in community structure (Fig. 1, arrow 1); and (2)
how community dynamics alter the distribution of traits across the
entire community (Fig. 1, arrow 2); leading to (3) improved ability
to simulate shifts in community structure and their concurrent
effects on ecosystem functioning (Fig. 1, arrows 6 and 7).
Additionally, ecosystem processes, as forced by abiotic drivers,
should alter the competitive balance in community dynamics that
are sensitive to the coupling between their physiological/morpho-
logical traits and the abiotic drivers (Fig. 1, grey arrow). Integration
across organismal, community, and ecosystem ecology, as well as
between empirical and process-based modeling approaches, is
necessary to address this issue. Toward this end, we (K. Komatsu,
M. Avolio, K. Wilcox) led a working group funded by the Long-
Term Ecological Research Network from 2017 to 2019, where we
gathered scientists from diverse fields (C2E Consortium) to
identify challenges and formulate directions for better integration
of community dynamics in land surface models (LSMs).

Modelers and empiricists have similar goals

Whether simulating ecosystem processes or conducting field
studies, our goal in ecology is often the same: to provide predictions
of ecological states and processes under a variety of environmental
conditions. Many studies of community dynamics do not collect
the data necessary to parameterize process-based models, and
models do not represent many of the processes that empiricists
consider fundamental. This is often due to limited communication
between process-based modelers (hereafter ‘modelers’) and ‘em-
piricists’ who collect biotic and abiotic data, where both modelers
and empiricists lack familiarity with the needs of the other’s
approaches. Though there are existing channels of communication,
there is room formore discussion betweenmodelers and empiricists
focusing on population, community, and ecosystem dynamics.
During our meetings, participant modelers and empiricists agreed
on three existing knowledge gaps that should be prioritized by the
scientific community to better represent critical processes control-
ling ecosystem dynamics: (1) resource competition; (2) community
and population dynamics; and (3) grassland plant processes. To fill
these knowledge gaps, empiricists should seek input frommodelers
when designing experiments, and modelers should consult
empiricists when altering or developing models. In other words,
let’s all talk more.

Resource dynamics in dynamic global vegetation
models

CurrentDGVMs are based on the integration of physical (e.g. light
penetration through plant canopies, water transport across soil
layers), biophysical (coupling of photosynthesis and transpiration),
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and biogeochemical (e.g. allocation of C to growth, uptake of
available nutrients by plant roots) processes (Fig. 1, arrows 5 and6).
Whereas leaf biophysics are currently well-modeled in most
ecosystem models, scaling up from the leaf to the canopy is
challenging. Accounting for demography, plasticity, and other
resource dynamics (e.g. nitrogen and water) and their trade-offs is
less well developed. For example, stress-tolerant species can
outcompete fast-growth species under low resources (sensu R*
theory, Tilman, 1982; Fig. 1, arrow1). Although this phenomenon
would be represented in the demographic component of many
models if the process-based physics of C uptake, respiration, and
allocation to growth were perfectly described for different species,
even the most advanced demographic components of current
models struggle to show R*-type dynamics due to insufficient data
to parameterize the differences between plant types. To enable
ecosystemmodels to better represent plant diversity in resource use
and competitive trade-offs, empiricists need to provide modelers
with additional data on species characteristics (e.g. demography,
physiology, morphology) that define the strategies and trade-offs
among plant traits anddifferential sensitivity to core environmental
variables (e.g. soil moisture, temperature) at different temporal
scales: sub-diurnally for sensitivity of biota to environmental
drivers, daily to seasonally for growth and senescence timing and
rates, and interannually for community change. These data will
allow formodels to better represent differential species responses to

environmental drivers in their acquisition of resources, and how
this translates to community structure and ecosystem function.

Community dynamics in models

Plant community dynamics can have strong impacts on ecosystem
function, which has been demonstrated both theoretically (Smith
et al., 2009; Langley & Hungate, 2014; Polley et al., 2014) and
empirically (Isbell et al., 2013;Reich&Hobbie, 2013; Avolio et al.,
2014; Smith et al., 2015; Xu et al., 2015; Fig. 1, arrow 4).
Ecosystem function can be altered when community dynamics
result in a systemhaving a different collection of plant physiological
and morphological traits. Thus, incorporation of community
dynamics related to species identities and their traits into process-
based models is critical for accurately forecasting ecosystem
processes.

The need to incorporate community dynamics into process-
basedmodels has been recognized by the scientific community, and
increasing efforts are being made to achieve this goal for LSM-
coupled DGVMs (Moorcroft, 2006; Evans, 2012; Scheiter et al.,
2013; Levine, 2016). Ecosystem models represent community
change in a few different ways: DGVMs define suites of traits
associated with broad functional groups; gapmodels assign traits to
individual organisms to allow species and cohorts to compete for
resources; and trait-basedmodels allow traits to vary plastically with

structure

environmental drivers

statistical models models

func�on

Fig. 1 Conceptual figure showing how ecologists bridge hierarchical scales (ovals) using both statistical and process-based models to predict how ecosystem
function will respond to shifts in environmental drivers, with arrow thickness representing our interpretation of the general level of understanding and/or
frequency of scaling attempts in the field. These scaling attempts focus on various processes and biotic characteristics (examples in italics). Traditionally,
statistical models have been used to assess how variation in environmental drivers results in variation in ecosystem function (large gray arrow), as well as how
differences in community structure (biodiversity, species composition) result in differences in ecosystem function. Process-basedmodels use information about
plant characteristics (i.e. traits)within ecosystems to determinewater, energy, and biogeochemical fluxes (arrow7), sometimes incorporating direct impacts of
shifts in abundance of plant functional types or cohorts (arrow 6). More recently, capacity for species-level responses to environmental drivers has been built
into process-basedmodels (arrow 5), yet our understanding of how species-level physiological responses translates to changes in community structure (arrow
1), and how these changes alter the physiological/morphological traits of the ecosystem (arrow 2), is still lacking. We propose that future research strives to
increase our mechanistic understanding of how organismal responses lead to shifts in community structure so that thesemechanisms can be incorporated into
process-based models.
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environmental conditions without explicit representation of
species (Fisher et al., 2018). Each of these methods provides
unique strengths and challenges. For example, community shifts
within functional groups (e.g. shift in dominance fromoneC4 grass
to another C4 grass) can have large impacts on ecosystem function
(Wilcox et al., 2016), which would not be captured by DGVMs;
gap-basedmodels do well to represent cohort competition for light
after disturbance, yet they struggle to represent competition for
resources such as water and nutrients (Powell et al., 2013); and
global or regional-scale trait–environment relationships used
within trait-based approaches often make assumptions about
space-for-time substitutions, which can be problematic (Burke
et al., 1997). Thus, better understanding and representation of
mechanisms behind intra-functional group dynamics within
ecosystem models is important to improve accuracy of temporal
projections under chronically altered environmental scenarios.
This requires expanding the number of species or functional groups
represented within ecosystemmodels and a better parameterization
of these species/groups.

Grasslands are not well represented in land surface
models

Grasslands, in addition to driving the evolution and rise of
hominids (Bobe, 2004; Uno et al., 2016), cover c. 40% of the
Earth’s ice-free terrestrial surface (White et al., 2000) and provide
vital ecosystem services, such as forage production,C sequestration,
and agriculture (Sala & Paruelo, 1997). Yet, many ecosystem
models were initially designedbased on forest dynamics and so have
difficulty representing important dynamics in grasslands, including
C3 vs C4 competition, the distribution ofmixed grass–tree systems,
and intra-functional group competition. Some reasons for these
difficulties are variable grassland phenology and grass allometry,
and inadequate representation of key drivers of grassland dynamics,
such as fire and grazing.

Through our discussions, we identified some important consid-
erations for overcoming current limitations of representing
grasslands in ecosystem models. First, grasses and trees have
fundamentally different growth forms, and models need to move
beyond current approaches that incorporate grasses as either
miniature trees or as a green carpet. Instead, ecosystem models
should represent the unique attributes of grasses, including strong
water limitation, fast tissue turnover rates, multiple aboveground
stems from one belowground organ system, and a high prevalence
of vegetative reproduction. These are major distinctions important
for theCbalance and total biomass of grasses. Additionally,moving
beyond a ‘green carpet’ approach may be important for accurate
representation of surface roughness in grasslands. Going forward,
vegetation demographic models (Moorcroft et al., 2001) are
emerging as an approach to solve the potential pitfalls of scaling
from individuals to the ecosystem level, as well as from ecosystem
patches to the global scale. This approach could be particularly
applicable to grasslands, where the number of individuals per
square meter makes modeling interactions among individuals
computationally unreasonable. Second, the way that fire – a key
driver of grassland form and function (Bond & Keeley, 2005) – is

currently modeled in LSMs has also been built with forested
ecosystems inmind, leading to poor representation of this driver for
grassland ecosystems. For example, although fire can result in
mortality in forest systems, thus ‘resetting’ the ecosystem, fire in
grasslands often does not kill individuals, and many dominant
grassland species are promoted by frequent fire (Hulbert, 1988).

Leveraging existing coordinated experiments

One exciting opportunity to realize better understanding and
forecasts of community-to-ecosystem linkages is to leverage
existing coordinated experiments. Coordinated experiments
implement the same experimental design at many sites around
the globe, typically involving teams of investigators at each site.
Coordination with these existing teams could allow for the
measurement of necessary environmental and species physiologi-
cal/morphological trait data around the globe, which may then be
incorporated into models. Examples of such coordinated networks
include the Nutrient Network (NutNet; Borer et al., 2014),
Drought Network (DroughtNet), and Forest Geological Obser-
vatory (ForestGEO; Anderson-Teixeira et al., 2015). For these
networks to be leveraged, prioritization of measurements is needed
to prevent overloading of network investigators, as these experi-
ments have been designed to limit time investment by any one
investigator. Alternatively, the network can be leveraged without
relying on many individual investigators if outside funding is
available for a small team tomakemanymeasurements acrossmany
sites. By highlighting the common goals of empiricists and
modelers for investigators within coordinated networks, and
developing protocols for field measurements of key model
parameters, the goal of improved understanding of how commu-
nity dynamics drive ecosystem processes can be made more
achievable.

Conclusions

Working together, empiricists andmodelers can overcome some of
the limitations of isolated empirical studies (relatively short
timescale, small spatial extent, costs of measuring everything
required tomechanistically explain responses) andmodeling efforts
(unreasonable/simplistic assumptions, limited representation of
environmental heterogeneity and ecological complexity). Thismay
be done using data collected from empirical studies for model
initialization and parameterization, using updated models to
quantitatively test and develop mechanistic ecological hypotheses,
and to help explain the processes causing observed community
dynamics. We have identified three core areas where both
empiricists and modelers could work together to improve under-
standing of community and ecosystem processes: first, trait
diversity in resource use and trade-offs; second, better representa-
tion of mechanisms controlling community dynamics; and third,
more accurate representation of key grassland processes. Achieving
these core goals will require an iterative process where empiricists
and modelers work together to develop hypotheses about com-
munity dynamics and ecosystem processes, design experiments to
generate data to test these hypotheses, and incorporate these data
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into ecosystem models for evaluation, which can lead to develop-
ment of new hypotheses. These types of collaborative research
cycles will allow scientists to greatly increase understanding and
forecasting capabilities of ecological patterns and processes at broad
scales.
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