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Abstract

Despite its remarkable importance in the arena of drug design, serotonin 1A receptor (5-HT1A) has 

been elusive to the x-ray crystallography community. This lack of direct structural information not 

only hampers our knowledge regarding the binding modes of many popular ligands (including 

endogenous neurotransmitter – serotonin), but also limits the search for more potent compounds. 

In this paper we shed new light on the 3D pharmacological properties of the 5-HT1A receptor by 

using a ligand-guided approach (ALiBERO) grounded in the Internal Coordinate Mechanics 

(ICM) docking platform. Starting from a homology template and set of known actives, the method 

introduces receptor flexibility via Normal Mode Analysis and Monte Carlo sampling, to generate a 

subset of pockets that display enriched discrimination of actives from inactives in retrospective 

docking. Here, we thoroughly investigated the repercussions of using different protein templates 

and the effect of compound selection on screening performance. Finally, the best resulting protein 

models were applied prospectively in a large virtual screening campaign, in which two new active 

compounds were identified that were chemically distinct from those described in the literature.
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1. INTRODUCTION

Ligand-guided receptor optimization has become a crucial tool in the search for new drugs 

for targets with an unknown experimental structure.1–3 The rationale underlying this 

approach is to reshape a similar (by homology) protein structure to accommodate known 

ligands. Within this context, the ICM-docking community has embraced the ALiBERO 

method (grounded in Ligand-guided Backbone Ensemble Receptor Optimization),4 a 

heuristic search method that maximizes the discrimination power of actives from inactives of 

a subset of pockets.5

In this paper, we used ALiBERO methodology to shed new light on the computational 

modeling of the 5-hydroxytryptamine 1a receptor (5-HT1AR),6–24 a therapeutic target for 

central nervous system drugs25,26 with no x-ray structure deposited to date. Sharing similar 

modeling difficulties with other class-A GPCRs,1–3 here we addressed several fundamental 

questions that affect the final Virtual Screening (VS) performance.

On the protein side, we examined the effect of using different initial templates on different 

aspects of screening performance. Until recently, homology models of 5-HT1AR were 

constructed based on bovine rhodopsin templates,9,27–32 which were replaced in recent years 

by the β2AR crystal structure (2RH1) – a first choice for homology modeling.20,33,34 

Recently, Cappelli et al.35 also used β1-adrenergic and A2A adenosine receptor crystal 

structures as templates.36,37 In the course of this investigation, the crystal structure of the 5-

HT1B receptor (4IAR) was determined,38 and since then it has been used as a template for 5-

HT1AR models.39–45

Because ligand-guided approaches rely on a careful selection of “seed” actives, on the ligand 

side we investigated: (i) impact of the selection of active compounds, (ii) importance of truly 

inactive compounds used in training of the VS workflow and (iii) impact of the training set 

composition (active/inactive compounds ratio).

Although most of the questions raised were answered by carefully designed retrospective 

screening experiments, the best ensemble of models was successfully applied to a 

prospective screening campaign of 6.4 M compounds from seven commercial databases. As 

demonstrated by the results, the present analysis represents another successful application of 

ALiBERO in recent virtual screening campaigns.46–50
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2. MATERIALS AND METHODS

2.1. Homology Modeling/Receptor preparation

All models were based on two templates, the β2 adrenergic receptor (Protein Data Bank ID 

2RH1, antagonist bound state – inactive conformation of the receptor) and the closest 

homologue (50.34% identity between whole protein sequences; 42.80% for β2R) of 5-

HT1AR, serotonin 1B receptor (PDB ID 4IAR, agonist bound state – semi-active 

conformation) crystal structures.34,38

Receptor Preparation—Receptors were prepared using the default ICM settings.51 

Protein atom types were assigned, hydrogens and missing heavy atoms were added, and zero 

occupancy or added side chains and polar hydrogen atoms were optimized and assigned to 

the lowest energy conformation. Protein atom types and parameters were taken from a 

modified version of the ECEPP/3 force field. The binding pocket was described by five 0.5 

Å spacing potential grid maps representing van der Waals potentials for hydrogens and 

heavy atoms, electrostatics, hydrophobicity, and hydrogen bonding. A truncated soft van der 

Waals potential was introduced, and the other potentials were rescaled accordingly to avoid 

atom overlap.

ALiBERO runs—Altogether, 22 different ALiBERO runs were performed, resulting in 20 

final different receptor ensembles (See Tables 1 and 2). For all runs, the typical ALiBERO 

iterative procedure was applied.5 From each initial homology model, 100 random receptor 

pockets were generated. All of these 100 pockets were subjected to an unrestrained flexible-

ligand static-receptor VS docking, that was repeated 3 times to account for ICM-VS intrinsic 

stochasticity. After the docking, up to 5 pockets (we set the maximum number of 

complementary pockets to 5) for which more than 75% of the active compounds formed 

charge-assisted H-bond with Asp116 (3.32 according to Ballesteros-Weinstein notation)52 

that at the same time improved “uphill” NSQ_AUC values and the average docking score for 

the best half of the actives, (i.e., “nsaplus” fitness function in ALiBERO) were selected for 

additional side chain refinement. These pockets underwent to a round of Monte Carlo-based 

refinement together with the 3 top-scoring ligands, allowing for side chain flexibility. During 

the refinement step, a receptor-ligand distance restraint was imposed between the 

Asp116(3.32) oxygen(s) and a N+ in the ligand. After the refinement step, unrestrained VS 

were again performed, and the same selection criteria (see above) was applied. The best 

performing ensemble is then passed to the next generation. This iterative process was 

repeated 10 times (typically the best ensembles were generated in the first five repeats) to 

ensure that successive iterations no longer improved the results.

Single models—In parallel to the ALiBERO approach, single models on both templates 

were also prepared in ICM (runs 15 and 16). Since VS docking of known binders was 

problematic and only for a few ligands interactions with Asp116(3.32) were observed, these 

models were further optimized. At first, Asn386(7.39) and Tyr390(7.43) side chains were 

substituted with alanine, and a set of arylpiperazine ligands were docked into this alanine-

mutated model. Next, the Ala386(7.39)Asn and Ala390(7.43)Tyr were mutated back to the 

wild type sequence, and the 10 top-scored LR complexes of a highly active arylpiperazine 
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derivative NBUMP (4-[4-(1-noradamantanecarboxamido)butyl]-1-(2-

methoxyphenyl)piperazine, (Ki = 0.1 nM))53 were refined by applying the refinement option 

in ICM-Pro and used in runs 17 and 18. As the optimization protocol uses potent ligand as a 

guide for receptor model refinement, it resembles both an induced fit docking approach and 

a ligand-guided model selection first proposed by Evers et al.54

2.2. Ligand Selection and Preparation

2.2.1. Training sets—All compounds with measured activity towards 5-HT1AR were 

fetched from the ChEMBL database40 utilizing a previously described approach.23 The 

ligands were defined as active when their binding constant was lower than or equal to 100 

nM; the threshold of inactivity was set at 1000 nM. Finally, the resulting sets consisted of 

3616 active (due to sparse data on agonistic/antagonistic properties available in ChEMBL 

database, functional profile was not considered) and 438 inactive (decoy) compounds. The 

full chemical space of 5-HT1A ligands was investigated using three clustering methods: 

manual, MOLPRINT 2D fingerprint based (M2D) and ICM clustering. The manual and 

M2D approaches have been described previously.56,57 M2D clustering was performed using 

the Hierarchical Clustering tool in Canvas under default settings.58,59 For all clusters 

generated, only centroids were used in the experiments (27 from manual clustering, 35 from 

M2D and 28 from ICM clustering). All inactives were also clustered in Canvas (using the 

Kelly criterion),60 resulting in 69 non-singleton clusters. From this set, depending on the 

experiment, 27, 28, 35, or the full set of 69 cluster centroids were chosen to compose the 

training set of inactives. If the number of inactives needed to compose such a set was less 

than 69, the compounds were selected using the diversity-based selection tool in Canvas 

(similarity metric – Soergel distance; compound selection algorithm – sphere exclusion; 

sphere size – 0.5; initialization – random with random seed).

2.2.2. Test sets—Each scenario was evaluated in the same retrospective screening 

experiment with 100 diverse 5-HT1AR ligands (centroids of non-singleton clusters) that 

were not used in the training set and 900 DUD-like decoys selected from the ZINC database 

using an in-house script.61,62 All DUD-like decoys possessed protonable nitrogen – the most 

characteristic structural feature of aminergic GPCR ligands.

An additional set of 40 5-HT1A receptor ligands (arylpiperazines, indoles and tetralines; see 

Supplementary Information) with a putative binding mode proposed in the 

literature27–30,33,35,63–78 were docked to the top-scoring ensemble of pockets. The binding 

modes were analyzed using SIFt methodology.79,80

All compounds were ionized at pH=7.4, and all possible tautomers were generated prior to 

docking.

2.3. ICM Docking

Each docking experiment was performed as a standard ICM-VS docking procedure. ICM 

ligand docking uses biased probability Monte Carlo (BPMC) optimization of the ligand 

internal variables in the set of grid potential maps of the receptor.34 Flexible ligands are 

automatically placed into the binding pocket in several random orientations used as starting 
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points for Monte Carlo optimization. The optimized energy function includes the ligand 

internal strain and a weighted sum of the grid map values in the ligand atom centers. The 

ligand binding poses were evaluated with an all-atom ICM ligand binding score that had 

been derived from a multi-receptor screening benchmark as a compromise between the 

approximated Gibbs free energy of binding and numerical errors.35 To improve the 

convergence of the docking predictions, three independent runs of the docking procedure 

were performed. In total, every ALiBERO run comprises 10 gen × 100 models × 3 

repetitions = 3000 independent VS. All calculations were performed at our local cluster 

(mostly Intel Xeon X3370 3.00GHz) located at the San Diego Supercomputer Center. 

Screened compounds scores from individual pockets were merged, numerically sorted, and 

only the best score was kept to compute discrimination of active compounds from inactives/

decoys.81,82 Such discrimination is quantified by AUC – the area under the receiver 

operating characteristics (ROC) curve. This parameter characterizes the cumulative ability of 

the docking protocol to correct the classification of instances. The AUC ranges from 1.0 

(perfect performance) to 0.0 (inverse classification), whereas 0.5 indicates random activity 

class assignment. Recently, the Normalized Square root AUC (NSQ_AUC) metric was 

introduced,83 which is especially sensitive for early hit enrichment. This parameter utilizes 

the effective area under the curve (AUC*) which is defined for the ROC curve plotted with 

the abscissa coordinate calculated as the square root of the false positive rate (ratio between 

number of inactives classified as actives and all inactives). NSQ_AUC values range from 1.0 

(perfect separation) to 0.0 (random selection). The NSQ_AUC is calculated as follows:

2.4. In vitro pharmacology

2.4.1. Cell culture and preparation of cell membranes—HEK293 cells stably 

expressing human 5-HT1AR, 5-HT2AR, 5-HT6R or 5-HT7bR (prepared using Lipofectamine 

2000) were maintained at 37 °C in a humidified atmosphere with 5% CO2 and grown in 

Dulbecco’s Modified Eagle’s Medium containing 10% dialyzed fetal bovine serum and 500 

μg/ml G418 sulfate. For membrane preparations, the cells were subcultured in 10-cm-

diameter dishes, grown to 90% confluence, washed twice with phosphate-buffered saline 

(PBS), pre-warmed to 37 °C and pelleted by centrifugation (200 g) in PBS containing 0.1 

mM EDTA and 1 mM dithiothreitol. Prior to the membrane preparations, the pellets were 

stored at −80 °C.

2.4.2. Radioligand binding assays—Cell pellets were thawed and homogenized in 20 

volumes of assay buffer using an Ultra Turrax tissue homogenizer and centrifuged twice at 

35000 g for 20 min at 4 °C, with incubation for 15 min at 37 °C in between rounds of 

centrifugation. The composition of the assay buffers was as follows: for 5-HT1AR: 50 mM 

Tris–HCl, 0.1 mM EDTA, 4 mM MgCl2, 10 μM pargyline and 0.1% ascorbate; for 5-

HT2AR: 50 mM Tris–HCl, 0.1% ascorbate, 4 mMCaCl2; for 5-HT6R: 50 mM Tris–HCl, 0.5 

mM EDTA and 4 mM MgCl2; for 5-HT7bR: 50 mM Tris–HCl, 4 mM MgCl2, 10 μM 

pargyline and 0.1% ascorbate.
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All assays were incubated in a total volume of 200 μl in 96-well microliter plates for 1 h at 

37 °C, except for 5-HT1AR, which was incubated at room temperature for 1 h. The process 

of equilibration was terminated by rapid filtration through Unifilter plates with a 96-well cell 

harvester, and the radioactivity retained on the filters was quantified on a Microbeta plate 

reader.

For the displacement studies, the assay samples contained the following as radioligands: 1.5 

nM [3H]-8-OH-DPAT (187 Ci/mmol) for 5-HT1AR; 1.0 nM [3H]-Ketanserin (52 Ci/mmol) 

for 5-HT2AR; 2 nM [3H]-LSD (85.2 Ci/mmol for 5-HT6R; 0.6 nM [3H]-5-CT (39.2 Ci/

mmol) for 5-HT7bR.

Non-specific binding was defined with 10 μM 5-HT in the 5-HT1AR and 5-HT7bR binding 

experiments, whereas 10 μM methiothepin and 1 μM (+)butaclamol were used for 5-HT6R, 

and 100 μM mianserin for5-HT2AR binding. The purchased compounds were initially 

screened using two compound concentrations: 10−6 and 10−7 M. The active compounds 

were then tested in triplicate at 7 different concentrations (10−11–10−4 M). The inhibition 

constants (Ki) were calculated from the Cheng-Prusoff equation.84 The results are expressed 

as the means of at least two separate experiments.

3. RESULTS AND DISCUSSION

3.1 Impact of the training set and crystal template

Three different approaches to active compounds selection based on different clustering 

methods (manual, M2D and ICM) and two different templates for pockets generation were 

applied with actives/inactives ratio set at 1:1. Inactives were selected from a set of 69 

centroids of inactives as the most diverse. The outcomes of the ALiBERO models obtained 

with different sets of active compounds as well as different crystal templates for a homology 

modeling step were evaluated in retrospective screening experiments with DUD-like decoys. 

The overall performance of the runs confirmed the value of the ALiBERO approach, which 

reached ~0.8 AUC and ~0.6 NSQ_AUC, being significantly better than random 

classification (Table 1, runs 1–6). The spread of the obtained screening parameters varied 

from 6% for AUC to 18% when using NSQ_AUC. Among the three clustering methods, 

M2D and manual were the most useful, yet the difference varied between runs and for 

different templates. In addition, VS data do not demonstrate the superiority of either of the 

templates used – both top and bottom ranked complexes were derived from the 5-HT1BR 

template.

3.2 Impact of the training set composition

These experiments were aimed to evaluate the impact of the ratio between varying subsets of 

active compounds and full representation of inactives on the retrospective screening 

performance. The performed runs (Table 1, runs 1–12) differed in terms of the number of 

active compounds used, whereas the inactives encompassed the whole chemical space of 

known low affinity to non-binders. The obtained average NSQ_AUC values ranged from 

0.526 to 0.657. Typically, models trained on actives/inactives ratio of 1 outperformed those 

developed using the complete set of inactives. The only exception was observed for the 
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approach utilizing ICM clustering and the 5-HT1B template (4IAR), which reached one of 

the highest values of NSQ_AUC. Within runs 7–12, the β2AR template (2RH1) was more 

useful even when the manual clustering procedure was applied. Among the clustering 

approaches it was again hard to choose the best one – the best and the worst approach was 

based on the same method of grouping compounds – (ICM clustering).

Because ALiBERO is a heuristic algorithm, the best run achieved (Run 1) was repeated two 

more times to test the repeatability of the results and to evaluate the variability of the 

average NSQ values. The results varied from 0.610 to 0.670, with the initial value in 

between (Table 1 Runs 13–14).

3.4 Raw and pre-optimized input models vs ALiBERO ensembles

These experiments were designed to compare raw 5-HT1AR models (runs 15, 16, two 

templates applied) and those optimized with NBUMP (a compound with subnanomolar (Ki 

= 0.1 nM) affinity toward the target,53 runs 17, 18) with ALiBERO-generated pocket 

ensembles, both of which are described above (runs 1–14), and those obtained for raw 

templates (runs 19, 20 and 21, 22, respectively; Table 2). The results demonstrated the 

superiority, in most cases, of the ALiBERO ensembles. Because they are random samples of 

a conformational space in the receptor, the raw models (15, 16) did not provide optimal 

discriminating efficiency. The results showed, however, that pre-optimized models (run 17) 

could compete with the ALiBERO ensembles (e.g., runs 3, 7, 10 and 12, Table 1). It is also 

worth noting that, in case of pre-optimized models, the β2AR template resulted in a better 

model than the ALiBERO method, yet the model was not suitable input for pocket 

generation because it led to subsequent algorithm failure (less than 75% of the active 

compounds formed charge-assisted H-bond with Asp3.32).

3.5 Binding mode and conformational space of the pockets

A set of 40 5-HT1A receptor ligands (arylpiperazines, indoles and tetralines) with putative 

binding modes proposed in the literature was docked to the top-scoring ensemble of pockets 

(Run 1). The binding modes were analyzed using Structural Interaction Fingerprints (SIFt) 

profiles methodology.79,80 All interactions present in less than 50% of the complexes were 

discarded.

SIFt profiles were constructed for both training and literature sets, first to evaluate the 

consistency of ligand-receptor interactions, and second, to compare the obtained complexes 

with the data in the literature. The results revealed a high level of consistency for the 

obtained binding modes, however, not all interactions described in the literature were found 

(e.g., with T5.39, Table 3 and Figure 1).

Serotonin, a representative of indole-like ligands was docked in accordance to the binding 

mode described by Seeber and interacted with TM3, TM5 and TM6.27 A strong, charge-

assisted hydrogen bond was formed between the NH3
+ group and D3.32. The OH group 

interacted with T5.39; however, contacts with S5.42 were also detected. The indole moiety 

formed face-to-edge stacking with F6.52. Buspirone, a member of a vast group of 

arylpiperazines, was docked in a similar way to the pose proposed by Bronowska and Sylte 

(Figure 2).74,77 The protonated nitrogen atom created a charge-assisted hydrogen bond with 
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D3.32. The pyrimidine moiety was located between TM5 and TM6, but the interactions with 

TM6 were weak. The azaspirone part was more directed toward TM7 than described in 

previously published complexes, forming a hydrogen bond with N7.39. The 8-OH-DPAT, a 

tetraline-containing ligand, was docked in a pose rather similar to that proposed by Sylte 

than the binding mode described by Seeber.27,74 The tetralin moiety was perpendicular to 

the membrane surface and formed a face-to-edge stacking interaction with the aromatic 

cluster from TM6. The OH group interacted with TM5 (S5.42). The protonated nitrogen 

atom created a charge-assisted hydrogen bond with D3.32, whereas the n-propyl chains had 

contacts with Y7.43 and EL2.

3.7 Virtual screening

Seven commercial databases (ChemBridge, ChemDiv, Enamine, Maybridge, Specs, 

UORSY, VitasM) containing approximately 6.4 M compounds were utilized for the virtual 

screening campaign. All compounds were ionized at pH=7.4, and all possible tautomers 

were generated. The applied protocol (Figure 3) consisted of the following three filters: 

physicochemical, similarity to known 5-HT1AR ligands and docking protocol.

First, the criterion of the strongest basic pKa >5 was applied (Calculator Plugins, JChem)86 

which narrowed down the number of ligands to 800 K. Removal of 75% of the most 

dissimilar compounds to any known 5-HT1A receptor ligands (stored in ChEMBL) resulted 

in 200 K structures with a Tanimoto similarity metric greater than 0.534. After generation of 

the 3D structures (Ligprep, Schrödinger)87 for the remaining 200 K compounds, they were 

docked to the best models ensemble (Run 1). Eighty nine compounds with an ICMscore <

−32 were clustered (Hierarchical Clustering Tool, Canvas)58 resulting in 15 groups 

(including a doubleton and two singletons). The clusters were evaluated by the team 

members to select the structures with the most diverse and novel chemotypes for biological 

investigation (for this reason singletons, doubleton and three clusters of common 5-HT1AR 

scaffolds were excluded). Finally, 16 compounds, covering 89% of the clustered structures, 

were purchased and biologically evaluated (Table 4.). Among them, two compounds 

(6216810 and 5464140) showed significant affinity for 5-HT1A receptor (Ki = 221 and 364 

nM, respectively). Moreover, compound 6216810 is a dual ligand that acts also on the 5-HT6 

receptor (Ki = 37 nM). Among the remaining 14 structures, one strong 5-HT2AR binder was 

identified (39866030, Ki = 21 nM).

4. CONCLUSIONS

As mentioned above, ALiBERO is a robust and convenient workflow for structure-based 

drug design.5 The algorithm addresses the issue of insufficient conformational space of a 

single homology model or a crystal structure leading to VS that is either insufficiently or 

excessively strict in terms of active/inactive discrimination.40 The present findings show, that 

an ensemble of binding pockets provides conformational pseudoflexibility to accommodate 

multiple distinct classes of active compounds that is superior to single models.

In addition, a number of different factors affecting the screening performance of ALiBERO 

were evaluated, including the composition of the training and test sets and the template 

selection. The results demonstrate that the composition of the training set is of great 
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importance. The optimal actives to inactives ratio value of 1 indicates the significance of the 

difference between docking and method like machine learning, in which unbalanced sets 

generated the best models.88

The choice of the template does not have as much of an impact as in other methods,40 the 

differences in VS performances do not allow to point one of significant preference. The 

optimization of the structure and adaptation to the training compounds, underlying 

ALiBERO algorithm, allows neglecting the spatial orientation of the different crystal 

structures.

The ensembles of pockets obtained using this method are quite diverse (RMSD between 

conformations varied from 1.36 to 1.6 Å2, with maximum displacement of atoms of 5 Å), 

yet the binding modes were very consistent between the training and literature sets. The 

poses selected for each “classical” compound corresponded to the literature data and 

previously published binding modes.

The best ensemble of receptors was used as a final filter in a prospective virtual screening 

campaign picking up two active compounds. These novel structures (the Tanimoto similarity 

coefficient to any compound with defined 5-HT1AR affinity is 0.73 for 5464140 and 0.56 for 

6216810 are a good foundation for further optimization. It is also worth noting that 

similarity of the found hits to ligands of other serotonin receptors was relatively low (Tc ≤ 

0.69), except high similarity of 6216810 (Tc ≤ 0.91) to 1-methyl-4-(4-

nitrophenyl)piperazines reported by Tasler et al. as 5-HT6R ligands.89 Indeed, compound 

6216810 displayed high 5-HT6R affinity (Ki = 37 nM), so it could be classified as a dual 5-

HT1A/5-HT6R ligand. Moreover, one of the tested compounds (39866030) is a potent 5-

HT2AR ligand (Ki = 21 nM) with the new scaffold (Tanimoto similarity coefficient to any 

known 5-HT2AR binder is 0.5). It has to be stressed, that none of those three 5-HTR ligands 

were classified as PAINS, and only one of the tested VS hits (G500-0869) was recognized as 

potential PAINS.90,91

Given the above findings, ALiBERO bears great potential as a universal structure-based 

design tool. The repeatability of runs and immunity to template selection for homology 

models renders this all-in-one workflow capable of returning viable VS hits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
SIFt profile generated for the training set docking results. Residue colors correspond to 

dominating interactions (Table 3.): blue – polar, green – hydrophobic, orange – aromatic.
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Figure 2. 
Binding pose of buspirone in the ensemble of the best models of 5-HT1AR (run 1). The 

compound is rendered as a ball and stick representation. A solid, transparent compound 

surface was generated. Only residues situated less than 4Å from the partial agonist are 

shown.
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Figure 3. 
Workflow for the virtual screening protocol. The best ensemble derived from run 1 (Table 1) 

was used for docking.
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Table 3

A comparison between binding modes determined from ALiBERO runs and literature data (see Supporting 

Information for detailed data about reference ligands interacting with particular residue).

Residue positiona Frequency of 
contacts (training)b

Frequency of 
contacts (literature)c Specific interactiond Interaction from literature data

A932.60x60 0.70 0.70 Hydrophobic vdW27,64

Y962.63x63 0.80 0.88 Aromatic vdW64

AFE64

Q972.64x64 0.74 0.78 Polar vdW27

N100 ecl1 <0.50 0.53 Polar

F1123.28x28 0.89 0.85 Aromatic
AFE28,74,77

AFF76

vdW27,72

D1163.32x32 1.00 0.97 H-bond H-bond9,27,28,29,33,35,63, 64,66,67,70,72,73,74,76,77,78

V1173.33x33 0.96 0.97 Hydrophobic vdW27,63,64,70,74,77

C1203.36x36 0.93 0.95 Hydrophobic vdW9,63,64,70,72

H-bond63

T1213.37x37 0.85 0.93 Polar H-bond9,64,67,78

I1243.40x40 0.67 0.78 Hydrophobic

I1674.56x56 0.65 0.53 Hydrophobic

C187 ecl2 0.56 <0.50 Polar vdW70

T188 ecl2 0.65 0.53 Polar vdW63,64

I189 ecl2 0.93 0.95 Hydrophobic vdW63,64

S1995.43x43 0.80 0.93 Polar H_bond27,28,33,66,67,76,78

vdW9,27, 63,73,74

T2005.44x44 0.78 0.90 Polar vdW27,63,74

H-bond28,66,67,78

A2035.46x461 0.87 0.95 Hydrophobic vdW63,64,74

W3586.48x48 0.98 0.90 Aromatic
AFE28,64

H-bond28

vdW63,72

F3616.51x51 0.98 0.97 Aromatic AFE28,29,63,64,70,74,77

vdW72

F3626.52x52 0.93 0.97 Aromatic AFE9,27,33,35,63,64,73,74,76

A3837.35x35 0.59 0.68 Hydrophobic

N3867.38x38 1.00 0.93 Polar vdW27,35,70,72,73,74,77

H-bond9,27,64,67

W3877.39x39 0.56 0.53 Aromatic AFE28

H-bond9,66,76

Y3907.41x41 1.00 0.97 Aromatic
vdW27,63,70,72,74,77

H-bond9,64,76

AFE28,29

a
Residue positions use sequence numbers and GPCRdb generic numbers in superscript.85 Some positions from publications did not match the 

current GPCRdb positions; in such cases, the latter were used (see Discussion).
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b
The most frequently interacting residues for the training set.

c
The most frequently interacting residues for the literature set.

d
Specific contacts from the literature.
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