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Abstract

This paper presents the modified method of characteristics for simulating multidimensional

transient radiative heat transfer in emitting, absorbing and scattering media. The method is

based on the method of characteristics that follows photons along their pathlines. It makes

use of a fixed set of points, and unlike the conventional method of characteristics, it follows

the photons backward in space. Test problems involving diffuse irradiation in 1-D and 3-D

participating media and collimated irradiation in 1-D participating media were considered.

The results show good agreement with analytical and numerical solutions reported in liter-

ature. The scheme is fast and was able to capture the sharp discontinuities associated with

the propagation of a radiation front in transient radiation transport.

Keywords: transient radiative transfer, method of characteristics, scattering, turbid

media, tomography, biological tissues
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NOMENCLATURE

c speed of light in vacuum = 2.998 × 108m/s

g scattering anisotropy factor in the Henyey-Greenstein phase function

I radiation intensity

L length

Nx number of nodes in the x-direction

Ny number of nodes in the y-direction

Nz number of nodes in the z-direction

Nθ number of discrete polar angles for θ varying from 0 to π

Nφ number of discrete azimuthal angles for φ varying from 0 to 2π

q heat flux

s geometric path length

S source term in the radiative transfer equation

t time

tc time at which the peak of an ultra-short pulse occurs

tp pulse width

∆t time step

ŝ direction unit vector

x, y, z Cartesian coordinates

∆z element size along z axis

Greek symbols

β extinction coefficient ( = σs + κ)
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θ polar angle

κ absorption coefficient

λ wavelength

µ direction cosine ( = cos θ)

σ Stefan-Boltzman constant = 5.67 × 10−8W/m2K4

σs Scattering coefficient

τ optical distance ( =
z∫
0

βdz)

φ azimuthal angle

Φ scattering phase function

ω scattering albedo ( = σs/β)

Ω solid angle

Subscripts

b refers to blackbody behavior

c refers to collimated intensity

d refers to diffuse intensity

L value at location z = L

w value at the boundary

λ at a given wavelength λ, or per unit wavelength
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1 INTRODUCTION

Traditional analysis of radiation transfer neglects the transient effect of light propagation

due to the large speed of light compared to the local time and length scales [1]. Of late, with

the advent of ultra-short pulsed lasers, this assumption is no longer valid as the temporal

width of the input pulse is similar to the order of the radiation propagation time in the

system and usually of the order of pico- and femto- seconds. Ultra-short pulsed lasers

are used in a wide variety of applications such as thin film property measurements, laser

assisted micro-machining, laser removal of contamination particles from surfaces, optical data

storage, optical ablation and ablation of polymers [2]. Ultra-short pulsed lasers are also used

in remote sensing of the atmosphere, combustion chambers and other environments which

involve interaction of the laser beam with scattering and absorbing particles of different sizes.

Particle size distributions and their optical properties can be reconstructed from measuring

transmitted and reflected signals from short-pulsed lasers [2]. Another interesting application

of short-pulsed lasers is in biomedical optical tomography where their use can potentially

provide physiological and morphological information about the interior of living tissues and

organs in a non-intrusive manner. Yamada [3] has described a technique to compute the

properties of a tissue based on temporal intensity measurements and an inverse method in

order to determine the health of the tissue [3].

All the applications described above require models to predict transient radiation trans-

port in participating media. In the past, various analytical studies and numerical models

of transient radiative transfer have been reviewed by Mitra and Kumar [4]. They examined

the transport of light pulses through absorbing-scattering media with different approximate
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mathematical models. They have shown that the propagation speed of scattered radiation,

the magnitudes of the transmitted and backscattered fluxes and the temporal shape of the

optical signals are dependent on the model used. This is because, the speeds of propagation

are obtained by averaging over different lines of sight oriented at different angles from the pri-

mary direction of propagation [4]. The diffusion approximation has been extensively used in

biomedical applications [5,6] in order to simplify the radiative transfer problem. However, its

validity for transient light transport in heterogeneous biological tissues with nonscattering or

low-scattering regions has been questioned [7]. Indeed, Elaloufi et al. [7] have shown that the

diffusion approximation fails to describe both short-time and long-time radiation transport

in optically thin slabs. In the case of optically thick slabs, the diffusion approximation fails

for short times. The authors have also shown that the diffusion theory always fails to predict

the long-time behavior of transmitted pulses in thin slabs whose optical depth, defined by

τL = σs(1 − g)L, is less than eight. This issue has also been discussed by Guo and Kim [8]

in the transport of ultra-fast laser pulses in biological tissues. As a result, alternatives to the

diffusion approximation need to be formulated for accurately predicting transient transport

in optically thin and heterogeneous media.

The governing equation for radiation transfer in a participating medium is the radiative

transfer equation (RTE). The RTE expresses an energy balance in a unit solid angle of dΩ

about the direction ŝ within a wavelength interval dλ about λ. It can be written as [1],

1

c

∂Iλ

∂t
+ (ŝ · ∇)Iλ = κλIbλ − κλIλ − σsλIλ +

σsλ

4π

∫
4π

Iλ(ŝi)Φλ(ŝi, ŝ)dΩi (1)

where Iλ is the intensity in the ŝ direction and c, the speed of light in the medium. The

linear absorption and scattering coefficients are denoted by κλ and σsλ, respectively. The

6



first term on the right-hand side represents the contribution from emission in the ŝ direction;

the second and third terms represent attenuation by absorption and scattering, respectively.

Finally, the last term on the right hand side corresponds to the augmentation of radiation

due to in-scattering. The scattering phase function Φλ(ŝi, ŝ) represents the probability that

radiation propagating in the solid angle dΩi direction around ŝi be scattered into the cone

dΩ around the direction ŝ.

As can be seen from Equation (1), the RTE is an integro-differential equation involving

seven independent variables: (i) the wavelength of radiation λ, (ii) three space coordinates x,

y, and z, (iii) two coordinates describing the direction of travel, polar angle θ and azimuthal

angle φ, and (iv) time t. Various other factors like geometry, temperature fields, and the

radiation characteristics of the medium make radiative transfer problems difficult to solve.

The analysis is further complicated by the fact that radiation characteristics σsλ, κλ, and

Φλ of materials may depend on wavelength, temperature, and location. Moreover, they are

difficult to measure and often display irregular behavior [1]. Because of the nature of the

radiative transfer equation and various effects described above, exact solutions of the RTE

are difficult and exact analytical solutions exist for only a few simple cases [1].

The commonly used methods to solve the transient radiative transfer equation are the

Monte Carlo method, the integral equation solution, the finite volume method (FVM), the

radiation element method (REM), and the discrete ordinates method (DOM).

The Monte Carlo method is often used to simulate problems involving radiative heat

transfer because of its simplicity, the ease by which it can be applied to arbitrary configura-

tions and its ability to capture actual and often complex physical conditions [9]. The Monte

Carlo technique has been used by Guo et al. [9] to simulate short-pulsed laser transport

7



in anisotropically scattering and absorbing media. The authors studied the effects of pulse

width, medium properties, and the effects of Fresnel reflection on the transmissivity and

reflectivity of the medium. The Monte Carlo method has also been widely used in biomed-

ical optics to simulate steady-state laser transport in biological tissue [10]. Jacques used a

Monte Carlo model to simulate the propagation of femtosecond and picosecond laser pulses

within turbid tissues [11]. However, the method has inherent statistical errors due to its

stochastic nature [1]. It is also computationally time consuming and demands a lot of com-

puter memory as the histories of the photons have to be stored at every instant of time [9].

Thus, the Monte-Carlo method is ruled out in practical utilizations such as real-time clinical

diagnostics where computational efficiency and accuracy are major concerns [12].

The backward or reverse Monte Carlo has been developed as an alternative approach

when solutions are needed only at particular locations and times [13, 14]. The method is

similar to the traditional Monte Carlo method, except that the photons are tracked in a

time-reversal manner. The photon bundles are traced backward from the detector to the

source rather than forward from the source to the detector as in the conventional Monte Carlo

method. There is no need to keep track of photons which do not reach the detector and so the

reverse Monte Carlo method is much faster than the traditional Monte Carlo method [13].

The method was successfully applied by Lu and Hsu [14] to simulate transient radiative

transport in a non-emitting, absorbing, and anisotropically scattering one-dimensional slab

subjected to ultra-short light pulse irradiation.

Analytical solutions of the radiation transfer equation in integral form for inhomogeneous

and non-scattering medium have been obtained by Pomraning [15] and Munier [16–19]. Wu

and co-workers [20, 21] and Tan and Hsu [22] have also used the integral equation formula-
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tion to solve the transient radiative transfer problem. Wu [20] used the integral equation

to compute the temporal reflectivity and transmissivity of 1-D absorbing and isotropically

scattering slabs with various scattering albedos and optical thicknesses which compared well

with results obtained using the Monte Carlo method. Tan and Hsu [22] used the formu-

lation to simulate radiative transport in 1-D absorbing and isotropically scattering media

with black boundaries exposed to diffuse or collimated irradiation. The authors extended

the method to solve the same problem in 3-D geometries [23].

Finite volume methods developed by Raithby and Chui [24] to solve the steady-state RTE

have also been employed by Chai and co-workers [25, 26] to solve the transient RTE. They

used the finite volume technique with the “step” and CLAM spatial discretization schemes

to model transient radiative transfer in 1-D and 3-D geometries [25,26]. The authors found

that the CLAM scheme captures the penetration depths of radiation more accurately than

the “step” scheme for the same grid.

Moreover, Guo and Kumar [27] used the radiation element method to solve the tran-

sient RTE in 1-D absorbing and scattering media exposed to both diffuse and collimated

irradiation.

Finally, the discrete ordinates method has been used by various researchers to solve

the transient RTE. Sakami et al. [28] used the DOM to analyze the ultra-short light pulse

propagation in an anisotropically scattering 2-D medium. Guo and Kumar [12] used it

to simulate short-pulse laser transport in two-dimensional anisotropically scattering turbid

media. They later extended the technique to solve for 3-D geometries and compared the

results with Monte Carlo simulations [29]. They found that the transient discrete ordinates

method cannot capture the abrupt changes in the transmittance as predicted by the Monte
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Carlo method. Guo and Kim [8] further used the DOM in 3-D geometries to model ultrafast

laser pulses in heterogeneous biological tissues for the purpose of detecting inhomogeneities

in otherwise homogeneous tissue. Quan and Guo [30] also used the same technique to model

transport of fluorescence in tissue to detect tumors.

This paper aims at presenting the modified method of characteristics as a means of solving

the transient radiative transfer equation. First, a description of the method is given, followed

by simulations of test cases for which exact and numerical solutions have been reported in

the literature.

2 MODIFIED METHOD OF CHARACTERISTICS

The conventional method of characteristics (or direct marching method) is commonly used

to solve hyperbolic partial differential equations which often occur in compressible fluid

flow [31]. It is based on the Lagrangian formulation, which identifies photons or particles in

general, at initial time t = t0 and follows them along the characteristic at subsequent times

as they are transported. Characteristics are pathlines of photons in physical space along

which information propagates. Though the direct method results in accurate solutions, it

has several disadvantages. Time increments along different characteristic curves may be

different and so the solution may be obtained at different times on each characteristic curve.

Also, the characteristic curves may coalesce or spread apart due to non-uniform velocities

resulting in a highly distorted grid [31].

The modified method of characteristics on the other hand, follows photons backward in

space and uses any arbitrary pre-specified set of points. Thus, the solution is obtained at
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the same times at all points and overcomes the problems related to grid deformation [31,32].

The modified method of characteristics has been successfully used for predicting high speed

three-dimensional single phase inviscid flows in subsonic and supersonic propulsion nozzles

[33, 34] and combined with the finite element method for solving unsteady incompressible

Navier-Stokes equations [32]. Recently, Pilon and co-workers used the modified method of

characteristics to solve the population balance equation for bubbles and solid particles [35–37]

as well as for phonons [38].

The present study aims at applying the modified method of characteristics to the transient

radiative transfer equation. Consider a Cartesian coordinate system, the characteristic curve

in physical space is defined by

dx

dt
= c sin θ cos φ (2)

dy

dt
= c sin θ sin φ (3)

dz

dt
= c cos θ (4)

By definition, the total derivative of Iλ(x, y, z, t) can be written as

DIλ

Dt
=

∂Iλ

∂t
+

dx

dt

∂Iλ

∂x
+

dy

dt

∂Iλ

∂y
+

dz

dt

∂Iλ

∂z
(5)

Then, along the characteristic curves in (x, y, z, t) space, the RTE [Equation (1)] simplifies

to

1

c

DIλ

Dt
= −κλIλ − σsλIλ + κλIbλ +

σsλ

4π

∫
4π

Iλ(ŝi)Φλ(ŝi, ŝ)dΩi (6)

Thus, the spatio-temporal partial integro-differential Equation (1) is converted into 3 ordi-

nary differential equations in time, [Equations (2) to (4)] and 1 temporal integro-differential

equation [Equation (6)]. Figure 1 shows a 3-D computational cell in Cartesian coordinates.
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The modified method of characteristics consists of determining the coordinates (xn, yn, zn)

of the point in space from where the particles located at the grid point (xa, yb, zc) at time

t + ∆t originate from at time t while travelling in direction of polar angle θn and azimuthal

angle φm. In other words, for each point of a specified grid, the pathline is projected rear-

ward along the characteristic curve to the initial data surface to determine the initial data

point. For example, in Figure 1, the point (xa, yb, zc) is the point (xi+1, yj+1, zk+1). The solid

line represents the section of the characteristic curve along which the photon traveled from

location (xn, yn, zn) to location (xa, yb, zc) during the time interval between t and t+∆t. The

general block diagrams of the numerical procedures for solving the RTE using the modified

method of characteristics is shown in Figure 2.

To solve Equations (2) to (6), the radiation intensities and temperatures are initialized

at all points in the computational domain. Then, for a given polar angle θn, an azimuthal

angle φl, and for all internal grid points (xa,yb,zc) where photons are present at time t + ∆t,

the position of the photon at time t is calculated as

xn = xa − c sin θn cos φl∆t (7)

yn = yb − c sin θn sin φl∆t (8)

zn = zc − c cos θn∆t (9)

The values of the variables Iλ at (xn, yn, zn) and time t are obtained by Lagrangian interpo-

lation using their values at time t at the eight corners of the computational cell in which the

point (xn, yn, zn) is located (Figure 1). Then, Equation (6) is solved forward in time by the

fourth order Runge-Kutta method at location (xa, yb, zc) and time t + ∆t. The integral on

the right hand side of Equation (6) is estimated by the 3/8 Simpson numerical integration
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with intensity values at time t. Finally, the boundary conditions are imposed in directions

pointing toward the medium depending on whether the boundary is black, specularly or

diffusely reflecting. For directions leaving the computational domain (outflow), the intensi-

ties at the boundary are computed just like any other internal point. The calculations are

repeated for all the discretized values of polar and azimuthal angles.

The modified method of characteristics has the following main advantages:

• Unlike finite volume techniques which propagate the information along the coordinate

axis, the modified method of characteristics propagates information along the photon

pathlines. Like the Monte Carlo method, it respects the physics of radiative transport

resulting in accurate numerical results.

• Since the method uses any arbitrary pre-specified set of points, it can be easily coupled

with other numerical techniques such as finite volume, finite element or finite difference

schemes. This is a valuable feature in situations involving multiple transport processes,

for example, ultra-short pulse laser heating of metals [39].

• It does not require any outflow boundary conditions. The radiative transport equation

is a hyperbolic equation and information propagates with finite speed, i.e., the speed

of light in the medium. In such equations, the solution at a point is determined only

by the characteristics from the upstream portion of the solution domain [31].

There are also a few disadvantages in using the modified method of characteristics to solve the

RTE. The backward projected characteristic curves do not necessarily intersect the known

solution surface at the pre-specified grid points and so the initial data at the backward
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projected characteristics must be determined by interpolation. This takes up computational

effort and introduces interpolation errors into the solution.

The method described above could be considered as a hybrid method between the tradi-

tional discrete ordinates and the ray tracing methods. It is similar to the discrete ordinates

method in that the RTE is solved along arbitrary directions. However, the modified method

of characteristics converts the RTE into ordinary differential equations in time and solved

along the characteristics, as opposed to the conventional implementation of the DOM [1],

where the RTE in the form of a partial differential equation is solved along the grid lines.

The present approach is comparable to that used by Coelho [40] to solve the RTE using the

discrete ordinates method. The author determined the dependent variable Iλ by the values

at points located at the intersection of the direction of propagation of radiation with the

grid lines or surfaces, as opposed to directly using the grid nodes in the conventional DOM.

The present method also differs from that used by Coelho in the sense that, the photons are

traced back a distance which they would travel in one time step rather than all the way to

the grid lines or surfaces.

Finally, unlike ray-tracing methods, the modified method of characteristics does not trace

photon bundles from the source to the absorption point or to the boundaries. Instead photon

bundles are traced backward in space only for the time interval between t and t + ∆t. At a

new time step, new photon bundles are traced back from all grid points and this procedure

is repeated for all time steps.
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3 RESULTS AND DISCUSSION

For validation purposes, the numerical results obtained with the modified method of char-

acteristics for a set of test cases have been compared with analytical solutions or numerical

results reported in the literature using different numerical schemes. For the sake of clarity,

spectral dependencies were not considered in these cases but could have been included with-

out any modifications in the methodology. The spectral dependencies can be accounted for

by using the modified method of characteristics at multiple wavelengths or in combination

with band models [1]. The test cases considered consist of simulations of transient radiation

transfer in absorbing and isotropically scattering cold media namely, (1) a plane parallel slab

exposed to diffuse irradiation, (2) three-dimensional media exposed to diffuse irradiation, (3)

a plane parallel slab irradiated by continuous collimated radiation, (4) and a plane parallel

slab irradiated by pulsed collimated radiation.

For 1-D problems, a discretization of Nz points along the z−direction and Nθ discrete

directions for θ varying from 0 to π was used. In the case of 3-D problems, a discretization

of Nx×Ny ×Nz along the x, y and z−directions respectively was used and the angular space

of θ varying from 0 to π and φ varying from 0 to 2π was discretized into Nθ ×Nφ directions.

3.1 1-D transient radiative transfer in scattering, absorbing, and

emitting media exposed to diffuse irradiation

Let us consider the case of a plane-parallel slab of a non-emitting, absorbing and isotropically

scattering medium of thickness L. It is subjected to a transient unit step function emissive

power on one side (z = 0) and the other side (z = L) is cold. The slab’s optical thickness
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τL defined as τL =

L∫
0

βdz is equal to 1.0 where β = σs + κ and the scattering albedo

ω =
σs

β
= 0.5. Initially, the medium is assumed to be at 0K and initial intensities everywhere

in the medium are zero. Then, at t=0 a diffuse intensity I(z = 0, µ > 0, t) = 1.0 W/m2sr is

imposed. The time interval ∆t is equal to ∆z/c where ∆z = L/100. After solving for the

intensities in all directions at every grid point, the heat flux can be calculated from

q =

∫
4π

I(ŝ)ŝdΩ (10)

Figure 3 compares the radiative flux distribution as a function of time obtained with the

modified method of characteristics and the integral equation solution reported by Tan and

Hsu [22]. A converged solution was obtained for a grid size Nz = 101 and Nθ = 25 angular

directions. The CPU time for this calculation on a Pentium 4, 2.80 GHz machine for 360

time steps was about 6 seconds. Note that Tan and Hsu [22] reported an execution time of

about 1800 seconds on a Pentium-Pro 200 MHz PC with 100 elements and 400 time steps.

The error in the radiative flux computed by the present method with a grid size of

Nz = 101 and Nθ = 25 angles and that reported by Tan and Hsu [22] was less than 1.3% for

all values of t/∆t except at the radiation front where it went up to 3% for t/∆t = 30, 6%

t/∆t = 60 and 10% at a single point for t/∆t = 90.

The same problem was solved by Chai [25] using the finite volume method. The author

used two different spatial discretization schemes, namely the “step” and the CLAM scheme

to solve the transient RTE with 300 control volumes and Nθ = 40. The CLAM scheme

resulted in better accuracies than the “step” scheme for the same grid size. According to

the author, “both schemes predict the incident radiation and the radiative flux accurately

once the radiation reaches the opposite side (z/L = 1) of the slab. For t = ∆tc ≤ 90, the
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step scheme overpredicts both the radiative flux and the incident radiation at the radiation

front” [25]. On the other hand, the modified method of characteristics captures the radiation

front accurately even for t = ∆t ≤ 90 and with fewer control volumes (see Figure 3).

3.2 3-D transient radiative transfer in scattering, absorbing, and

emitting media exposed to diffuse irradiation

The same analysis done for the one-dimensional case can be extended to 3-D geometries and

applied to a cubic enclosure with one hot wall. The optical thickness of the medium defined

by τL = βL was set at 1.0 and the scattering albedo ω was 0.1. Initially, the medium is

assumed to be at a temperature of 0K and initial intensities everywhere in the medium are

zero. Then, at t=0, the intensity at the wall, z = 0.0 in all directions pointing into the

medium is set to 1.0 W/m2sr. The remaining walls are black and cold (T = 0K).

A grid size of 35 × 35 × 35 points along the x, y and z−directions was used. The entire

angular space of θ varying from 0 to π and φ varying from 0 to 2π was divided into 30× 24

discrete directions. Tan and Hsu [23] solved the same problem using the integral solution.

The authors verified the reliability of the integration scheme, namely the DRV method, by

comparing their results with those obtained by using the YIX method. They used a grid size

of 17×17×17 volume elements in the x, y and z−directions respectively in all the cases and

1982 angular quadrature points for the YIX method. Similarly, Chai et al. [26] solved this

problem using the finite volume method. Figure 4 compares the heat flux along the center

of the cube obtained using the present method with those obtained by (i) Tan and Hsu [23]

with the integral solution using the DRV scheme and (ii) Chai et al. [26] using a grid size
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of 17 × 17 × 17, an angular discretization of 16 × 12 and making use of the CLAM scheme.

In order to quantify the relative difference in the numerical results, we assumed that the

values reported by Tan and Hsu [23] are converged and correspond to the exact solution.

For steady-state, the relative error for the results reported by Chai et al. [26] compared to

Tan and Hsu [23] was less than 2.5% while they were less than 6% for the present method.

For the intermediate transients, the results reported by Chai et al. [26] result in infinite

errors beyond the wavefront. Chai et al. [26] found that the finite volume method suffers

from false scattering and cannot capture the wavefront accurately. In contrast, the present

method is able to accurately capture the wavefront. However, there were large errors of up

to 83% at the point right before the wavefront. It was less than 6% at all other points. This

could be attributed to the fact that the solution was not converged in terms of the grid size

or the number of directions. In order to minimize the error, a further refinement in the grid

size was attempted, but was out of bounds in terms of memory and processing power for the

single processor computer used. It is anticipated that a refinement in grid size and directions

will reduce the error.

3.3 1-D transient radiative transfer with collimated irradiation

To solve the radiative transport equation for collimated irradiation, the intensity is split

into two parts, (i) the radiation scattered away from the collimated radiation and (ii) the

remaining collimated beam after partial extinction by absorption and scattering along its

path. The contribution from emission is usually negligible compared to the incident and
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scattered intensity. Thus, the intensity for a gray medium is written as [1],

I(r, ŝ, t) = Ic(r, ŝ, t) + Id(r, ŝ, t) (11)

The incident irradiation is Ii(rw, t), where rw is the location on the bounding surface of the

medium where the radiation is incident. The collimated intensity Ic, remnant of this incident

irradiation, obeys the equation of transfer

1

c

∂Ic(r, ŝ, t)

∂t
+ ŝ · ∇Ic(r, ŝ, t) = −βIc(r, ŝ, t) (12)

subject to the boundary condition

Ic(rw, ŝ, t) = Ii(rw, t)δ[ŝ − ŝc(rw)] (13)

The solution of these equations is given by [15],

Ic(r, ŝ, t) = Ii(rw, t − s/c)δ[ŝ − ŝc(rw)] × exp

[
−

∫ s

0

β(r − s′ŝ)ds′
]

H(t − s/c) (14)

where s = |r − rw| and H is the Heaviside step function [H(u) = 0 if u < 0 and H(u) = 1

if u ≥ 0]. Substituting Equations (11) and (12) into Equation (1) for a gray medium gives

the governing equation for the noncollimated radiation intensity Id,

1

c

∂Id(r, ŝ, t)

∂t
+ ŝ · ∇Id(r, ŝ, t) = −β(r)Id(r, ŝ, t) + κ(r)Ib(r, ŝ, t)

+
σs(r)

4π

∫
4π

Id(r, ŝi, t)Φ(ŝi, ŝ)dΩi + σs(r)Sc(r, ŝ, t) (15)

where Sc(r, ŝ, t) is the source term given by

Sc(r, ŝ, t) =
1

4π

∫
4π

Ic(r, ŝi, t)Φ(ŝi, ŝ)dΩi (16)
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Note that Equations (12) and (15) sum up to give Equation (1). Moreover, the heat flux is

computed using

q =

∫
4π

Id(ŝ)ŝdΩ + Ii(rw, t − s/c) exp

[
−

∫ s

0

β(r − s′ŝc)ds′
]

H(t − s/c)ŝc (17)

Consider a plane parallel slab of an absorbing and isotropically scattering medium with

constant and uniform optical properties exposed to time-dependent collimated radiation. In

this case, Equation (14) simplifies to

Ic(z, ŝ, t) = Ii(t − z/c)δ[ŝ − ŝc]e
−βz (18)

where ŝc corresponds to cos θ = 1. Moreover, the source term defined in Equation (16)

simplifies to

Sc(z, t) =
1

4π
Ii(t − z/c)e−βzH(t − z/c) (19)

Equation (6) then becomes

1

c

DId(z, ŝ, t)

Dt
= −βId(z, ŝ, t) +

σs

4π

∫
4π

Id(z, ŝi, t)dΩi +
σs

4π
Ii(t − z/c)e−βzH(t − z/c) (20)

with ŝ dependent only on the polar angle θ, and the boundary conditions being Id(z =

0, cos θ > 0, t) = 0 and Id(z = L, cos θ < 0, t) = 0.

Two cases of incident radiation profiles were considered for comparison with solutions

reported in literature.

Continuous collimated pulse

The first case is a continuous collimated pulse corresponding to Ii(t) = 0, t < 0 and Ii(t) = 1.0

W/m2sr, t ≥ 0. A converged solution was reached for a spatial discretization of Nz = 101
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points and an angular discretization of Nθ = 25 directions. The time interval ∆t is equal

to ∆z/c where ∆z = L/100. The CPU time taken was about 6 seconds on a Pentium 4,

2.80 GHz machine for 360 time steps. Figure 5 compares the radiative heat fluxes obtained

with the present technique with those obtained by (i) Tan and Hsu [22] using the integral

solution and by (ii) Chai [25], using the finite volume technique with the CLAM scheme and

the present technique. As can be seen, the modified method of characteristics captures the

sharp discontinuities better than the finite volume technique. It should also be noted that

Chai [25] used 300 control volumes and 20 × 1 angles per quadrant equivalent to Nθ = 40

angles for θ varying from 0 to π compared to 101 nodes and Nθ = 25 in the present study.

Ultra-short collimated pulse

The second incident radiation profile is a truncated Gaussian distribution with a peak in-

tensity at t = tc and pulse width tp expressed as

Ii(t) = I0 exp

[
−4 ln(2)

(
t − tc

tp

)2
]

, 0 < t < 2tc (21)

Ii(t) = 0 t ≥ 2tc (22)

Numerical convergence was achieved with a discretization of Nz = 101 and Nθ = 25 for the

case of τL = 0.5 and Nz = 201 and Nθ = 25 for the case of τL = 5.0. The time interval ∆t

had little effect on the numerical results as long as ∆t ≤ ∆z/c. Thus, it was set equal to

∆z/c where ∆z = L/(Nz − 1) and Nz is the number of gridpoints in the z−direction. After

solving for the intensities in all directions at every grid point, the hemispherical reflectance

R(t) and transmittance T (t) are computed using the following formulae,

R(t) = −2π

∫ 0

−1

Id(0, µ, t)µdµ/I0 (23)
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and

T (t) = [2π

∫ 1

0

Id(L, µ, t)µdµ + Ii(t − L/c)e−βLH(t − L/c)]/I0 (24)

The integrals in the formulae for hemispherical reflectance and transmittance are computed

using the 3/8 Simpson numerical rule. The CPU time taken for computing the transmittance

for the case of τL = 5.0 and ω = 1.0 using a spatial discretization of Nz = 201 points and

an angular discretization of Nθ = 25 was about 41 seconds for a total dimensionless time

t∗ = 40 defined by t∗ = βct. The CPU time taken for computing the reflectance for the case

of τL = 0.5 and ω = 0.95 using a spatial discretization of Nz = 101 points and an angular

discretization of Nθ = 25 directions per octant was about 21 seconds for a total dimensionless

time of t∗ = 8.

Figures 6 and 7 compare the transmittance and reflectance of homogeneous absorbing

and isotropically scattering slabs obtained by Wu [20] from the numerical solution of the

integral equation with those obtained with the modified method of characteristics. Figure

6 corresponds to the temporal transmittance of a slab of optical thickness τL = 5.0 and

scattering albedos ω = 1.0 and ω = 0.5. Figure 7 corresponds to the reflectance from a

slab of optical thickness τ = 0.5 and scattering albedos of ω = 0.95 and ω = 0.5. Good

agreement is observed for both the transmittance and reflectance, and the mean error was

less than 5% in all cases. Thus the modified method of characteristics can be used to simulate

transport of collimated radiation in a fast and accurate manner. It can be seen from Figure

6 that the temporal distribution of transmittance has two local maxima for large values of

the scattering albedo (ω = 1.0). The first peak occurs as soon as the direct pulse or the

unscattered radiation reaches the other end of the slab. The second peak is due to the
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scattered radiation and so appears only in media where the scattering albedo is large. In

media where the scattering albedo is not as large, the contribution to the transmittance from

scattering is not large enough to produce a second peak [20]. The reflectance on the other

hand depends only on the back-scattered radiation and so has only one peak (see Figure 7)

while the peak corresponding to the direct pulse or unscattered radiation is absent unlike

the plot of the transmittance. Figure 7 also shows that there is a cusp in the reflectance and

occurs at about the same time for both values of scattering albedo. This cusp appears as

there is no medium to back-scatter the radiation once the pulse reaches the other end of the

slab. It occurs at about the time it takes for the peak of the pulse to travel back and forth

between the two faces of the slab. Since the peak occurs at t = 3tp and it takes 2L/c time

to travel from one end of the medium and return, the total time taken is 3tp + 2L/c or in

dimensionless form, 3βctp + 2τL = 1.45 as shown in Figure 7.

4 Discussion

The results presented confirm the validity of the numerical scheme and its capability in

handling various transient problems. It has been shown that the modified method of charac-

teristics is a fast and accurate technique to simulate transient radiative transfer in absorbing

and scattering media. It can also be easily modified to handle various other geometries and

phase functions, thus enabling it to simulate radiative transfer in more complex situations

such as those for biomedical applications. The computer program used to implement the

described method has not been optimized neither has a thorough error and stability analysis

been done. Instead, the study has been aimed at demonstrating the applicability of the
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method to a range of problems encountered in transient radiation transfer. A careful study

of the errors introduced due to the Lagrangian interpolation should be performed. This

would be helpful in comparing the accuracy of this method to other methods like the finite

volume method which is prone to false scattering [26]. Also, various improvements can be

made to decrease the computational time:

• The number of discrete directions can be reduced or replaced by quadrature as com-

monly used in the discrete ordinate method to accelerate the computation of the in-

scattering term. For example, in situations which involve strong forward scattering, a

quadrature with more angles in the forward direction compared to other directions can

be made use of thus making the scheme more efficient. This has not been done here

for the sake of accuracy, but could be easily implemented.

• To further accelerate the computations, the radiation wavefront can be tracked and

computations be performed only at points through which the wave has passed.

• Though the case of a diffusely reflecting boundary condition was not discussed here,

it can be easily implemented as done by Rukolaine et al. [41]. Also, specularly re-

flecting boundaries using the modified method of characteristics have been successfully

implemented recently for phonon transport [38]. A similar treatment can be applied

to partially reflecting and transmitting boundaries.

• Also, since the method is fully explicit it can be easily adapted for parallel computing.

This could be a useful feature in inverse problems for biomedical diagnostics or other

remote sensing applications.
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5 Concluding Remark

The modified method of characteristics has been presented as a scheme for solving the ra-

diative transport equation. It has been shown that the method can handle various problems

including multidimensional, transient radiative transport in media exposed to both colli-

mated or diffuse irradiation. The method is fast and accurate and compares well with those

obtained using other methods and reported in literature. In particular, the method was able

to capture the sharp spatial discontinuities associated with transient radiative transport.

Also, since the method makes use of any arbitrary fixed grid, it can be coupled easily with

other methods to solve simultaneously occurring transport phenomena like in the case of

short-pulse laser heating of metals [39].
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FIGURE AND TABLE CAPTIONS

Figure 1. Typical computational cell used for inverse marching method containing the

pathline of the photons.

Figure 2. Block diagram of the numerical procedure for solving the RTE by the modified

method of characteristics.

Figure 3. Radiative flux distribution at different times in a 1-D homogeneous medium with

a diffusely emitting boundary.

Figure 4. Radiative flux distribution at different times in a 3-D homogeneous medium with

a diffusely emitting boundary for τ = 1.0 and ω = 0.1 using different techniques.

Figure 5. Radiative flux distribution at different times in a 1-D homogeneous medium

exposed to continuous collimated irradiation.

Figure 6. Time-resolved hemispherical transmittance for τL = 5.0, tc/tp = 3 and βctp =

0.33.

Figure 7. Time-resolved hemispherical reflectance for τL = 0.5, tc/tp = 3 and βctp = 0.15.
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Figure 1: Typical computational cell used for inverse marching method containing the path-

line of the photons.
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Figure 2: Block diagram of the numerical procedure for solving the RTE by the modified

method of characteristics.
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Figure 3: Radiative heat flux distribution at different times in a 1-D homogeneous medium

with a diffusely emitting boundary.
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