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Abstract
State estimation is an important tool for continuously monitoring the power system and
aims to recover the underlying system voltage phasors, given supervisory control and data
acquisition (SCADA) measurements and a model that encompasses the system topology
and specifications. To ensure an accurate state estimation, it is essential to have the
capability of detecting bad data. Assuming that the network parameters are known and the
measurement devices are correctly calibrated, the main source of bad data is topological
errors in the model. In this dissertation, we propose a methodology for robust power
system state estimation (PSSE) modeled by AC power flow equations when there exists a
small number of topological errors. The developed technique utilizes the availability of a
large number of SCADA measurements and minimizes the ℓ1 norm of nonconvex residuals
augmented by a nonlinear, but convex, regularizer. Representing the power network by
a graph, we first study the properties of the solution obtained from the proposed NLAV
estimator and demonstrate that, under mild conditions, this solution identifies a small
subgraph of the network that contains the topological errors in the model used for the
state estimation problem. Then, we introduce a method that can efficiently detect the
topological errors by searching over the identified subgraph. In addition, we develop a
theoretical upper bound on the state estimation error to guarantee the accuracy of the
proposed state estimation technique.

The power flow equations are nonlinear, and may admit multiple solutions. In the past,
the conventional wisdom was to assume that the solution becomes unique by restricting it
to “realistic” or “physically realizable” values. However, various examples in the literature
show that multiple solutions may persist even after restricting either voltage magnitudes
or phase angle differences to “physically realizable” values. This dissertation establishes
sufficient conditions for the uniqueness of AC power flow solutions via the monotonic
relationship between real power flow and the phase angle difference. More specifically,
we prove that the P − Θ power flow problem has at most one solution for any acyclic
or GSP graph. In addition, for arbitrary cyclic power networks, we show that multiple
distinct solutions cannot exist under the assumption that angle differences across the
lines are bounded by some limit related to the maximal girth of the network. We also
introduce a series-parallel operator and show that this operator obtains a reduced and
easier-to-analyze model for the power system without changing the uniqueness of power
flow solutions.

In the next part of this dissertation, the above work is extended and we establish
general necessary and sufficient conditions for the uniqueness of P -Θ power flow solutions
in an AC power system using properties of the monotone regime and the power net-
work topology. We show that the necessary and sufficient conditions can lead to tighter
sufficient conditions for the uniqueness in several special cases. Our results are based
on the previously introduced notion of maximal girth and a new notion of maximal eye.
Moreover, we develop a series-parallel reduction method and search-based algorithms for
computing the maximal eye and maximal girth, which are necessary for the uniqueness
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analysis. Reduction to a single line using the proposed reduction method is guaranteed
for 2-vertex-connected Series-Parallel graphs.

In the final part of this dissertation, we present a methodology based on homotopy to
find the globally optimal solutions of nonconvex optimization problems. Optimal power
flow (OPF) is a fundamental problem in power systems analysis for determining the steady-
state operating point of a power network that minimizes the generation cost. In antic-
ipation of component failures, such as transmission line or generator outages, it is also
important to find optimal corrective actions for the power flow distribution over the net-
work. The problem of finding these post-contingency solutions to the OPF problem is
challenging due to the nonconvexity of the power flow equations and the large number of
contingency cases in practice. In this paper, we introduce a homotopy method to solve
for the post-contingency actions, which involves a series of intermediate optimization
problems that gradually transform the original OPF problem into each contingency-OPF
problem. We show that given a global solution to the original OPF problem, a global
solution to the contingency problem can be obtained using this homotopy method, under
some conditions. With simulations on Polish and other European networks, we demon-
strate that the effectiveness of the proposed homotopy method is dependent on the choice
of the homotopy path and that homotopy yields an improved solution in many cases.
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Chapter I

Background and Motivation

"The electric utility industry is probably the largest and most complex industry
in the world. The electrical engineer who works in that industry will encounter
challenging problems in designing future power systems to deliver increasing
amounts of electrical energy in a safe, clean, and economical manner [1]."

A power system is a large scale network deployed to supply, transfer, and use electric
power. Power systems around the globe are currently undergoing a major paradigm-shift
following the need for more resilient and secure systems, and our society’s commitment
towards a carbon-free and sustainable future. This transformation of the power grid is met
with many challenges. The already large-scale network is growing even bigger and more
fine-grained as new components and participants are added to the grid. Higher penetration
of renewable energy sources promotes sustainability, but it also brings more uncertainty
and instability to the grid. Increasing volumes of data are produced through sensors,
communication networks and human activities, which can bring great value in operating
the system but also contains the risk of derailing the system if noise, gross errors, and
malicious attacks are not dealt with properly. On top of all these issues, the innate nature
of AC power poses serious difficulties in various computational methods. As a result,
the design and operation of these systems needs major innovations in computational
techniques.

We take electricity for granted, but behind the scenes there are actually multiple
entities such as the independent system operators (ISOs), that solve various large-scale
and NP-hard optimization problems in order to make the power system functional. To give
you a few examples, an optimal power flow (OPF) problem aims to optimize generation
levels and power flow across the network in order to meet system demand in an economical
way. The state estimation problem aims to estimate complex valued voltages (in other
words the state of the power system) given noisy and tainted measurement values coming
from sensors. Also, there is the fundamental problem of solving power flow equations,
which involves solving a system of highly nonlinear equations to find steady-state voltages
given a power system set-point. Finally, there are also design and planning problems, where
the goal is to make decisions on long-term investments (such as transmission lines).

Many of these problems are solved on a large-scale system with up to millions of
variables and constraints and often with a tight time restriction. Therefore, the ability of
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computational methods that can efficiently come up with high-quality solutions is essential
in the safe, reliable and economic operations of the power grid. There are many factors
that make computational methods difficult for power systems. One of the most important
factor that is common to many problems stems from the nonlinear physics of power. For
optimization problems, the nonlinear laws of physics often results in nonconvex problems,
which has two types of solutions. A local solution is locally the best solution and is
relatively easy to find with modern optimization techniques but has a suboptimal cost. A
global solution has the smallest possible objective value but is difficult to find. Finding the
global solution is important because implementing a local solution can mean inefficient use
of resources and money, and can also mean large violations in the system constraints that
lead to insecure operations. For finding the root of a system of equations, nonlinearity
leads to multiple solutions, that can potentially grow exponentially with the size of the
network. This can lead to solutions that are isolated and far away from each other, causing
ambiguity in monitoring and controlling the system.

1 Nonlinear LAV Estimator for Topology Error De-
tection and Robust State Estimation

Topology error, a modeling misrepresentation of the power system network configuration,
can impair the quality of state estimation. The current industry practice for state es-
timation uses the most recent topology of the power system, previously determined by
the system operator. In a longer time frame, topology errors can be fixed by restoring
communication and observability on the system. However, state estimation is solved on
the time-frame of several minutes, and until the system operator obtains full recovery, the
state estimation tool itself could be the only resource available to detect and fix those
topology errors. Misrepresenting the system topology typically creates gross errors, which
can lead to significant state estimation errors across the entire network. Since the output
of state estimation is utilized for many other important applications such as real-time
nodal market and voltage stability analysis, the ability of state estimators to detect and
correct topology errors in real-time holds considerable value. In this paper, we propose a
new technique for robust state estimation in the presence of a small number of topological
errors for power systems modeled by AC power flow equations. The developed method
leverages the availability of a large volume of SCADA measurements and minimizes the ℓ1
norm of nonconvex residuals augmented by a nonlinear, but convex, regularizer. Noting
that a power network can be represented by a graph, we first study the properties of the
solution obtained by the proposed estimator and argue that, under mild conditions, this
solution identifies a small subgraph of the network that contains the topological errors in
the model used for the state estimation problem. Then, we propose a method that can
efficiently detect the topological errors by searching over the identified subgraph. Further-
more, we develop a theoretical upper bound on the state estimation error to guarantee
the accuracy of the proposed state estimation technique. The efficacy of the developed
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framework is demonstrated through numerical simulations on IEEE benchmark systems.

2 Uniqueness of Power Flow Solutions Using Mono-
tonicity and Network Topology

The AC power flow equations are nonlinear, and may admit multiple solutions. In the
past, the conventional wisdom was to assume that the solution becomes unique by re-
stricting it to “realistic” or “physically realizable” values. However, various examples in the
literature/industry show that multiple solutions may persist even after restricting either
voltage magnitudes or phase angle differences to “physically realizable” values. Therefore,
in principle, system operators may encounter operating points that are very different from
what they had expected. In order to avoid these situations, it is important to understand
whether or not there is a unique “physically realizable” power flow solution for real-world
power systems. This paper establishes sufficient conditions for the uniqueness of AC power
flow solutions via the monotonic relationship between real power flow and the phase angle
difference. More specifically, we prove that the P−Θ power flow problem has at most one
solution for any acyclic or GSP graph. In addition, for arbitrary cyclic power networks,
we show that multiple distinct solutions cannot exist under the assumption that angle
differences across the lines are bounded by some limit related to the maximal girth of the
network. In these cases, a vector of voltage phase angles can be uniquely determined (up
to an absolute phase shift) given a vector of real power injections within the realizable
range. The implication of this result for classical power flow analysis is that, under the
conditions specified above, the problem has a unique physically realizable solution if the
phasor voltage magnitudes are fixed. We also introduce a series-parallel operator and show
that this operator obtains a reduced and easier-to-analyze model for the power system
without changing the uniqueness of power flow solutions.

3 Uniqueness of Power Flow Solutions Using Graph-
theoretic Notions

This paper extends the uniqueness theory in the previous paper (Project 2) and establishes
general necessary and sufficient conditions for the uniqueness of P -Θ power flow solutions
in an AC power system using some properties of the monotone regime and the power
network topology. We show that the necessary and sufficient conditions can lead to tighter
sufficient conditions for the uniqueness in several special cases. Our results are based on
the existing notion of maximal girth and our new notion of maximal eye. Moreover, we
develop a series-parallel reduction method and search-based algorithms for computing the
maximal eye and maximal girth, which are necessary for the uniqueness analysis. Reduction
to a single line using the proposed reduction method is guaranteed for 2-vertex-connected
Series-Parallel graphs. The relations between the parameters of the network before and
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after reduction are obtained. It is verified on real-world networks that the computation of
the maximal eye can be reduced to the analysis of a much smaller power network, while
the maximal girth is computed during the reduction process.

4 An Efficient Homotopy Method for Solving the
Post-contingency Optimal Power Flow to Global
Optimality

Optimal power flow (OPF) is a fundamental problem in power systems analysis for deter-
mining the steady-state operating point of a power network that minimizes the generation
cost. In anticipation of component failures, such as transmission line or generator out-
ages, it is also important to find optimal corrective actions for the power flow distribution
over the network. The problem of finding these post-contingency solutions to the OPF
problem is challenging due to the nonconvexity of the power flow equations and the large
number of contingency cases in practice. A major drawback of current industry practice is
that the post-contingency variables are not optimized with respect to each corresponding
contingency configuration to minimize the violation of the constraints in case there is no
feasible operating point. It is important to find at least a locally optimal solution, if not a
globally optimal solution, because approximate solutions can be much more costly (higher
constraint violations) and can threaten the security of the power system. In this paper, we
introduce a homotopy method to solve for the post-contingency actions, which involves
a series of intermediate optimization problems that gradually transform the original OPF
problem into each contingency-OPF problem. We show that given a global solution to
the original OPF problem, a global solution to the contingency problem can be obtained
using this homotopy method, under some conditions. With simulations on Polish and
other European networks, we demonstrate that the effectiveness of the proposed homo-
topy method is dependent on the choice of the homotopy path and that homotopy yields
an improved solution in many cases.

The remainder of this dissertation is organized as follows. In the following Parts II–V,
we provide a detailed write-up explaining the methods and results of each corresponding
research project. Part VI provides further directions and research problems 1.
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Chapter II

Nonlinear LAV Estimator for
Topology Error Detection and
Robust State Estimation

1 Introduction

Safeguarding energy infrastructures against progressive failures of stressed components
is an important challenge in operating these systems and preventing blackouts [3, 2]. In
doing so, the power system condition should be continuously monitored so that, if needed,
required actions can be taken. This condition monitoring is performed through real-time
state estimation that aims to recover the underlying system voltage phasors, given supervi-
sory control and data acquisition (SCADA) measurements and a model that encompasses
the system topology and specifications [10, 14]. In fact, state estimation not only helps
prevent failures in the power network, but it also underpins every aspect of real-time power
system operation and control. To ensure an accurate state estimation, it is essential to
have the capability of detecting bad data. Assuming that the network parameters are
known and the measurement devices are correctly calibrated, the main source of bad data
is topological errors in the model. Topological errors refer to the inaccurate modeling of
the current network configuration and are often initiated by the misconception of the sys-
tem operator about the on/off switching status of a few lines in the network due to faults
or unreported network reconfigurations. Due to their significant impact on the accuracy
of state estimation, dealing with bad data and identifying topological errors have received
considerable attention in the past few years.

1.1 Previous studies on topological error detection

The existing topological error detection methods take either a statistical or a geometric
approach. Bayesian hypothesis testing [26], collinearity tests [25], and fuzzy pattern
machine [27] are examples of statistical approaches for topology error detection. These
methods usually need prior information about states and/or a decently-sized dataset from
previous measurements.

The geometric approaches, on the other hand, aim to design state estimation tech-
niques that are robust against topological errors and measurement noise. Using normalized
Lagrange multipliers of the least-squares state estimation problem is one such technique
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that has been shown to be effective in some cases [21], although it is a heuristic method.
Recent studies, such as the one proposed in [22], improve this technique; however, they
may fail to detect certain scenarios called ‘critical parameter and measurement pairs’.
Another important approach in this category is the least absolute value (LAV) estimator
introduced in [30] for power systems. By minimizing the ℓ1 norm of the linearized mea-
surement residual vector, the LAV is capable of finding a minimum set of measurements
free of large errors, thus rejecting bad data and yielding a robust estimate. Despite its
robustness, the LAV is vulnerable to leverage points as explained in [32, 33]. Further
investigation and suggestion of different methods to mitigate this issue have been pre-
sented in [34, 35]. In [31], the authors have shown that the effect of leverage points can
be eliminated if measurements consist only of phasor measurement units (PMUs). The
caveat of these methods is their reliance on a linearized DC model. Only few studies
have addressed the fully nonlinear, non-convex problem with power measurements, e.g.,
[23] where a semidefinite programming (SDP) relaxation is proposed to convexify the
nonlinear LAV state estimator; however, no theoretical guarantees have been developed
to ensure the recovery of a high-quality solution. Moreover, the computational demand of
solving the surrogate SDP problem may restrict the application of this method to small-
sized problems in practice. These issues motivate further research on developing robust
state estimation techniques with the capability of handling nonconvexities associated with
various types of measurements.

1.2 Contributions

In light of the recently developed theoretical guarantees for the ℓ2-norm to avoid spurious
local solutions in nonconvex optimization [15] and arising promises for the ℓ1-norm [17],
this study proposes a local search algorithm to find the global solution of the nonlinear
LAV (NLAV) state estimator. The proposed method provides a robust approach for esti-
mating the system’s states in presence of a modest number of topological errors as well as
detecting such errors. In doing so, the main contributions of this work can be summarized
as: (1) proposing an algorithm for detecting modest topological errors and finding the
state of the power system using an NLAV state estimator with local search algorithms, (2)
formulating a regularized NLAV state estimator to handle severe nonconvexities, (3) find-
ing error bounds and necessary properties for the regularization parameters. As explained
later in this paper, local search algorithms would efficiently find global solutions of the
underlying NLAV estimators given a sufficient number of noiseless measurements and a
proper initialization of the algorithm. Also, many of the implications provided in this paper
are all valid even if one uses an SDP relaxation of the proposed nonconvex estimators.
The remainder of this paper is organized as follows. Preliminary materials are presented
in Section 2, followed by formulation of the algorithm in Section 3. A comprehensive set
of numerical simulations on the IEEE 57-bus system is presented in Section 4. Concluding
remarks are drawn in Section 9. The proofs are provided in the Appendix.
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1.3 Notations

Throughout this paper, lower (resp. upper) case letters represent column vectors (resp.
matrices) and calligraphic letters stand for sets and graphs. The symbols R and C denote
the sets of real and complex numbers, respectively. RN and CN denote the spaces of
N -dimensional real and complex vectors, respectively; SN and HN stand for the sets of
N × N complex symmetric matrices and Hermitian matrices, respectively. The symbols
(·)T and (·)∗ denote the transpose and conjugate transpose of a vector or matrix. Re(·),
Im(·), rank(·) and Tr(·) denote the real part, imaginary part, rank and trace of a given
scalar or matrix. The notations ∥x∥1, ∥x∥2 and ∥X∥F denote the ℓ1-norm and ℓ2-norm of
vector x respectively, and the Frobenius norm of matrix X. The symbol ⟨X, Y ⟩ denotes
the Frobenius inner product of the matrices X and Y . The symbol |·| is the absolute
value operator if the argument is a scalar, vector, or matrix; otherwise, it is the cardinality
of a measurable set. The relation X ⪰ 0 means that the matrix X is Hermitian positive
semidefinite. The (i, j) entry of X is denoted by Xi,j. The notation X[S1,S2] denotes
the submatrix of X whose rows and columns are chosen from the index sets S1 and
S2, respectively. IN shows the N × N identity matrix. The symbol diag(x) denotes a
diagonal matrix whose diagonal entries are given by the vector x, whereas diag(X) forms
a column vector by extracting the diagonal entries of the matrix X. The imaginary unit
is denoted by j =

√
−1. The symbol 1 denotes a vector of all ones with appropriate

dimension. λi(X) denotes the i-th smallest eigenvalue of the matrix X. Given a graph
G, the notation G(V , E) implies that V and E are the vertex set and the edge set of this
graph, respectively.

2 Preliminaries

Consider an electric power network represented by a graph G(V , E), where V := {1, . . . , n}
and E := {1, . . . , r} denote the sets of buses and branches, respectively. Also, suppose
that the the slack bus is also the reference bus. Let vk ∈ C denote the nodal complex
voltage at bus k ∈ V , whose magnitude and phase are given as |vk| and ∡vk. The net
injected complex power at bus k is denoted as sk = pk + qkj. Define sl,f = pl,f + ql,f j
(resp. il,f ) and sl,t = pl,t + ql,tj (resp. il,t) as the complex power flows (resp. currents)
entering the line l ∈ E through the ‘from’ and ‘to’ end of the branch. Note that the
currents il,f and il,t may not add up to zero due to the existence of transformers and
shunt capacitors. Let v and i be the vectors of nodal complex voltages and net current
injections, respectively. The Ohm’s law dictates that

i = Y v, if = Yfv, and it = Ytv, (1)

where Y = G+Bj ∈ Cn×n is the admittance matrix of the power network, whose real and
imaginary parts are the conductance matrix G and susceptance matrix B, respectively.
Furthermore, Yf ∈ Cr×n and Yt ∈ Cr×n represent the ‘from’ and ‘to’ branch admittance
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matrices. The injected complex power can thus be expressed as p + qj = diag(vv∗Y ∗).
Let {e1, . . . , en} denote the canonical vectors in Rn. Define

Ek := eke
T
k , Yk,p :=

1

2
(Y ∗Ek + EkY ),

Yk,q :=
j

2
(EkY − Y ∗Ek).

(2)

Moreover, let {d1, . . . , dr} be the canonical vectors in Rr. Define Yl,pf , Yl,pt , Yl,qf and Yl,qt

associated with the l-th branch from node i to node j as

Yl,pf :=
1

2
(Y ∗

f dle
T
i + eid

T
l Yf ), Yl,pt :=

1

2
(Y ∗

t dle
T
j + ejd

T
l Yt)

Yl,qf :=
j

2
(ejd

T
l Yf − Y ∗

f dle
T
i ), Yl,qt :=

j

2
(ejd

T
l Yt − Y ∗

t dle
T
i )

(3)

The traditional measurable quantities can be expressed as

|vk|2= Tr(Ekvv
∗) (4a)

pk = Tr(Yk,pvv
∗), qk = Tr(Yk,qvv

∗) (4b)
pl,f = Tr(Yl,pfvv

∗), pl,t = Tr(Yl,ptvv
∗) (4c)

ql,f = Tr(Yl,qfvv
∗), ql,t = Tr(Yl,qtvv

∗) (4d)

These equations show that the nodal and line measurements can be expressed as simple
quadratic functions of the complex voltage vector v. In this paper, we only focus on
traditional voltage and power measurements. However, if we have linear PMU measure-
ments (e.g., certain entries of v and i), they can be regarded as quadratic equations with
a zero quadratic term and the results of this paper are all valid in this scenario as well.
To proceed with the paper, we lay out several definitions. First, we define the set of
measurement matrices based on (2)–(4):

Definition 2.1. Given a power system model Ω characterized by the tuple (Y, Yf , Yt) and
an index set of measurements M = {1, . . . ,m} specifying m measurements of the form
(4), the mapping from the measurement index set to the set of measurement matrices is
defined as

CΩ(M) ≜ {Mj(Ω)}j∈M (5)

where each Mj(Ω) corresponds to one of the matrices Ek, Yk,p, Yk,q, Yl,pf , Yl,pt , Yl,qf ,
Yl,qt defined in (2) and (3), depending on the type of measurement j.

Second, we define the real-valued state vector and the corresponding real-valued ma-
trices. This enables us to solve optimization problems involving complex voltages in the
real-domain. The dimension of the real-valued state vector is 2n− 1 because the voltage
angle at the slack/reference bus is fixed to be zero. Accordingly, the matrices also have
2n− 1 rows and columns.
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Definition 2.2. Given a complex-valued state vector v ∈ Cn, define
v̄ ≜ [Re{v[Q]T} Im{v[O]T}]T ∈ R2n−1 as the real-valued state vector of the power
system’s operating point with Q denoting the set of all buses and O indicating the set
of all buses except for the slack bus. Furthermore, define X̄ ∈ S2n−1 as the real-valued
symmetrization of X ∈ Hn. To further clarify this notation, note that a general n × n
Hermitian matrix can be mapped into a (2n−1)× (2n−1) real-valued symmetric matrix
as follows:

X̄ =

[
Re{X[Q,Q]} −Im{X[Q,O]}
Im{X[O,Q]} Re{X[O,O]}

]
(6)

Finally, we define an operator that maps the state vector to the vector of measurement
values, and also its Jacobian:

Definition 2.3. Given a system model Ω and a set of measurements M, define the
function hΩ(v̄) : R2n−1 → Rm as the mapping from the real-valued state of the power
system to the vector of noiseless measurement values:

hΩ(v̄) ≜ [vTM1(Ω)v · · · vTMm(Ω)v]
T (7)

= [v̄TM̄1(Ω)v̄ · · · v̄TM̄m(Ω)v̄]
T (8)

Furthermore, define JΩ(v̄) ∈ R(2n−1)×m to be the Jacobian of hΩ(v̄). In other words,

JΩ(v̄) = 2[M̄1(Ω)v̄ M̄2(Ω)v̄ · · · M̄m(Ω)v̄] (9)

3 Main Results

In this section, we first briefly discuss the most widely used nonlinear least-squares (NLS)
state estimation formulation and its limitations. Then, we present the NLAV formulation
and provide a theoretical upper bound on the state estimation error obtained by the NLAV
problem. Finally, we uncover certain properties of the vector of residual errors and develop
a novel algorithm that jointly performs state estimation and topology error detection.

3.1 Nonlinear least-squares state estimation

NLS is the most common state estimation technique, which was first proposed by Schweppe
[8, 9]. Recent studies have shown that local search algorithms, such as Gauss-Newton,
are able to find a global solution of this nonconvex problem in the case where the number
of measurements is relatively higher than the degree of the freedom of the system and
the measurements are noiseless [14, 15]. Similar to other estimators, this method requires
that the system’s measurement matrices (see Definition 2.1) be known. However, the
model that power system operators use may be different from the true system due to the
presence of topological errors arising from faults or recent changes in the switching status
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of some lines. The measurements at the vicinity of the incorrectly modeled lines are po-
tentially the outliers, which can impact the solution of the state estimation problem over
a large portion of the network. This is due to the incapability of the ℓ2-norm in dealing
with outliers and simulation results supporting this fact are shown in Figure 3 followed by
further discussions in Section 4.2. Despite the drawbacks of NLS, the work [26] develops
an effective tool for topology error detection using Bayesian-based hypothesis testing and
the covariance matrix of the states. The method that we propose in this paper does
not require the covariance information but takes advantage of the favorable aspects of
ℓ1-norm minimization.

3.2 Proposed NLAV formulation

A line whose presence in the system is misrepresented by the system operator is called
erroneous in the remainder of this paper, and the set of all erroneous lines is denoted
by Ξ. Let CΩ̃(M) be the set of measurement matrices corresponding to the model Ω̃
that the power system operator has access to, and CΩ(M) be the set of measurement
matrices corresponding to the true system Ω. Assume that Ω and Ω̃ are sparsely different
in the sense that there is a small subset of lines in the system for which the operator
misunderstands their on/off statuses. In this work, we only focus on sparse errors for two
reasons. If Ω and Ω̃ are relatively different, then the state is not observable from a static
set of measurements and dynamic time-stamped data is required. Second, topological
errors often occur due to low probability events and it is unlikely that the operator’s
model be significantly different from the true model. To design an algorithm that jointly
performs state estimation and sparse topological error detection, we propose the following
optimization problem:

min
v̄∈R2n−1

f(v̄) (10)

where

f(v̄) = v̄TM̄0v̄ + ρ

m∑
j=1

|v̄TM̄j(Ω̃)v̄ − bj| (11)

and bj is the jth element of the measurement vector b ∈ Rm that is

b = hΩ(z̄) + η. (12)

Here, z̄ ∈ R2n−1 denotes the true underlying state of the system and η is the noise vector.
Notice that the measurement values b are based on the true system Ω and the true system
state z̄. Also, M0 ∈ Sn is a regularization matrix and ρ is a regularization coefficient. As
will be discussed later, these two parameters assist with the convexification of the problem
for finding a robust solution using local search algorithms. From here on, we assume that
the measurement setM is observable. A necessary condition for observability is that the
Jacobian of the measurement equations (i.e. JΩ(z̄)) be full row rank [40]. Let v̄∗ denote
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a globally optimal solution of (10), as in

v̄∗ = argminv̄∈R2n−1f(v̄) (13)

Then, let ϵ ∈ R2n−1 be the state estimation error vector and r ∈ Rm be the residual error
vector, defined as

ϵ = v̄∗ − z̄ (14a)

rj = |v̄T∗ M̄j(Ω̃)v̄∗ − bj|, ∀j ∈M (14b)

The problem (10) aims to push the insignificant residual errors to hard zeros, while some
of the rj’s associated with the outlier measurements are expected to remain nonzero. This
phenomenon is supported empirically via an example in Figure 3(d). The performance
of this estimator has a striking contrast with that of the ℓ2 minimization (Figure 3(c))
where the residuals are spread out throughout all the measurements. In the remainder
of this article, we use this intuition to design an efficient topological error detection
algorithm. Note that, similar to the NLS state estimation, the objective function of (10)
is nonlinear and nonconvex, which makes local search algorithms prone to falling into
spurious local solutions. However, recent studies have shown that increasing the number
of redundant measurements helps with reducing the non-convexity of NLS problems and
hence, improves the likelihood of finding their global solutions using local search algorithms
[15, 14]. Therefore, having access to many measurements is the key for real-world state
estimation problems. This property is expected to hold for the NLAV estimator too, as
partially proven in [17]. The risk of becoming stuck at a local optimum is further avoided
by starting the algorithm close to the unknown state. This is possible because in power
systems, voltage magnitudes are kept close to 1 and voltage angles are maintained to be
small. Therefore, choosing the initial point to be the nominal point 1 would likely ensure
that it is relatively close to the true state.

3.3 Estimation error

Given a design matrix M0, we intend to prove a theoretical upper bound on the state
estimation error obtained by the NLAV problem (10). To this end, it is useful to introduce
the concept of dual certificate:

Definition 3.1. Given a positive-semidefinite regularization matrix M0 ∈ Sn, a system
model Ω, and a set of measurement matrices CΩ(M), define HΩ

µ ≜ M0+
∑m

j=1 µjMj(Ω).
A vector µ ∈ Rm is called a dual certificate for the voltage vector v ∈ Cn of the system
model Ω if it satisfies the following three conditions:

HΩ
µ ⪰ 0, HΩ

µ v = 0, rank{HΩ
µ } = n− 1 (15)

In essence, the existence of a dual certificate ensures that the second-smallest eigen-
value of HΩ

µ is strictly positive, which enables us to derive an upper-bound of the form
presented in the following theorem.
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(a) (b) (c)

(d)

Figure 1: (a) A power network, (b) the state estimation error graph S, (c) the extended
state estimation error graph S̃, and (d) the line residual graph RL. Unsolvable nodes
are marked with red crosses, the blue line is the only erroneous line, and the dotted lines
correspond to the edges added to S to obtain S̃. The graphic of the node residual graph
RN is omitted.

Theorem 3.1. Suppose that the power system operator has a network model Ω̃ and a
setM of measurement indices. For this model, assume that there exists a dual certificate
µ for the true state vector z. Also, consider a parameter ρ satisfying the inequality
ρ ≥ maxj∈M|µj|. Then, there exists a real-valued scalar β such that

∥v̄∗ − β · z̄∥22
∥v̄∗∥2

≤
√

4n · g(z̄, η, ρ)
λ2(H Ω̃

µ )
(16)

where g(z̄, η, ρ) is equal to

ρ

[∑
j∈N

|z̄T (M̄j(Ω)− M̄j(Ω̃))z̄|+
m∑
j=1

|ηj|

]
(17)

By recalling that z̄ and v̄∗ are, respectively, the true and recovered states of the system,
the above inequality quantitatively bounds the error of the state estimation. There are
several important characteristics of this bound.

First, if there is no topology error and the measurements are noiseless, NLAV recovers
a high-quality solution if not the actual state. On the other hand, if there are topology
error and measurement noise, the upper bound for the state estimation error increases
proportionally to the number of topology errors and the magnitude of noise. Furthermore,
the upper-bound is a decreasing function of the second smallest eigenvalue of the matrix
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S̃ S̃c

Ξ

Ξc RL

Figure 2: A diagram showing the relationship between different subgraphs. Each rect-
angle represents the intersection between two different sets. For example, the upper-left
rectangle represents Ξ ∩ S̃. RN is equivalent to the gray-colored area.

H Ω̃
µ , which acts as the Laplacian of a weighted graph obtained from the power network.

The second smallest eigenvalue of this matrix, also called the algebraic connectivity [36],
is a parameter that measures how well connected a weighted graph is. For example, a
complete graph has the algebraic connectivity of n while this value is equal to 2 for a
star graph and 2(1 − cosπ

n
) for a path graph (where n denotes the number of nodes in

the graph). In the special case when M0 reflects the connectivity of the original network
G (i.e., i ̸= j and (i, j) /∈ E =⇒ M0(i, j) = 0), the second smallest eigenvalue of H Ω̃

µ

represents the algebraic connectivity of the original network with different weights assigned
to different edges. Finally, note that the bound in equation (16) does not guarantee a
unique solution of the NLAV. For conditions that guarantee the uniqueness of solution,
the reader is referred to Theorem 3.3.

3.4 Sparse suspect-subgraph

As shown above, the quality of the state estimation deteriorates under the presence of
topological errors. Our approach for detecting and correcting these topological errors can
be summarized as follows. First, we solve (10) and use the pattern of the nonzero residuals
errors to find a (small) subset of lines that are potentially erroneous in the model. We call
this subset the suspect-subgraph, which we then efficiently search through to identify the
topological errors. This is followed by a correction of the model and a re-estimation of the
system states. To formalize this approach, we first introduce some relevant subgraphs.

Definition 3.2. A node i ∈ V is called unsolvable if ϵi is nonzero. On the other hand,
if ϵi is zero, node i is called solvable. Define the following four induced subgraphs2 of G:

1) The state estimation error graph S(VS , ES) is such that VS is the set of unsolvable
nodes.

2Note that, by definition, the edge set of an induced subgraph of G = (V, E) consists of all edges in
E that have both endpoints in the node set of the induced graph [37].
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2) The extended state estimation error graph S̃(VS̃ , ES̃) is such that VS̃ includes all
nodes in VS and also those nodes that are adjacent to any node in VS .

3) The node residual graph RN(VN , EN ) is such that VN is the set of nodes whose
associated entries in r are nonzero.

4) The line residual graph RL(VL, EL) is such that VL is the set of nodes that are
either at the ’from’ or ’to’ end of a line whose associated entry in r is nonzero.

In order to help the reader visualize the different subgraphs, we illustrate Definition 3.2
for a small system in Figure 9. In Theorem 3.2, we reveal how the set of erroneous lines,
namely Ξ, relates to these subgraphs.

Theorem 3.2. Suppose that the noise vector η is zero. In addition, assume that there do
not exist any two distinct vectors of voltages resulting in the same measurement values,
i.e.,

x̄ ̸= ȳ =⇒ ∥hΩ(x̄)− hΩ(ȳ)∥1 ̸= 0 (18)

Then,
RL ⊆ (Ξc ∩ S̃) (19)

Moreover, if no two erroneous lines share the same node, the following statements hold:

RN = S̃ ∪ Ξ (20)

The relationships between different subgraphs are illustrated in Figure 2. It is important
to note that due to the sparsity of the state estimation error (as shown in Figure 3(b)) and
the sparsity assumption on Ξ, most lines belong to the set S̃c∩Ξc. From the diagram, we
can also easily infer that Ξ ⊆ (RN \RL) ⊆ (S̃c∩Ξc)c. Therefore, the practical benefit of
Theorem 3.2 is that it enables us to develop a technique for efficiently detecting topological
errors by searching over a small subgraph of the original power network. We call this small
subgraph, namely (RN \ RL), the suspect-subgraph.

3.5 Algorithm

Based on the above results, we propose Algorithm 1 for topological error detection. This
algorithm initializes the set of detected erroneous lines, denoted by DL, with the empty
set. Then, the algorithm searches over all branches in the suspect-subgraph (RN \ RL),
and evaluates the effect of the presence of each line on the accuracy of the solution. In
doing so, the proposed method switches the line off if it is on in the model and vice versa,
updates the model based on this change, and re-solves the NLAV problem with the updated
model. If the norm of residual errors is decreased, the line is added to DL; otherwise,
the change of line status is rejected and the algorithm proceeds to check the next line or
terminates if all lines of (RN \ RL) have already been evaluated. Justification for using
such an algorithm is provided in the Appendix section 6.4. Algorithm 1 summarizes the
proposed topological error detection method.
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Algorithm 1 Subgraph search algorithm

Given: Hypothetical model Ω̃ and measurement vector b
Initialize: Set DL = ∅, ϵ > 0, δ > 0, µ > 0

and calculate CΩ̃(M) using Definition 2.1.
1. Solve NLAV problem (10) with Ω̃, CΩ̃(M) and b, and calculate the residual r
based on equation (14b).
2. Construct the suspect-subgraph (RN \ RL).
3. Set rt ← r.
while ∥rt∥2> δ do
Ωt ← Ω̃.
for line l ∈ (RN \ RL) do

Update Ωt to Ωt′by changing the on/off status of l.
Re-solve (10) with Ωt′ , CΩt′ (M) and b to obtain the outputs v̄update∗ and rupdate

if ∥rupdate∥2< ∥rt∥2 then
Add l to DL and set Ω̃← Ωt′ , rt ← rupdate.

end if
end for

end while
4. Return v̄update∗ and DL

3.6 Unpenalized NLAV estimator and unique solution

After all the topological errors have been detected and fixed, a final state estimation based
on the correct network topology can be performed. However, this does not necessarily
guarantee a recovery of the true state z̄. In this subsection, we disregard the regularization
term M0 for simplicity and call this the unpenalized NLAV problem (in other words, we
set M0 to 0). Without prior knowledge of the state, designing a favorable M0 penalty
term could be difficult, in which case setting M0 to zero makes logical sense. Theorem 3.3
provides a sufficient condition under which the unpenalized NLAV problem has a unique
solution. Since without M0, the state estimation error bound provided in Theorem 3.1 is
no longer valid, Theorem 3.3 also provides a new bound.

Definition 3.3. Given a system model Ω and a set of measurementsM, define the linear
map AΩ : Rn×n → Rm as

AΩ(X) = [⟨M1(Ω), X⟩ · · · ⟨Mm(Ω), X⟩]T (21)

Theorem 3.3. Given the true network model Ω and the measurement setM = {1, . . . ,m},
let AΩ be the mapping as defined in Definition 3.3. Then, v̄∗ obtained from solving the
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Figure 3: Noiseless state estimation error for (a) NLS, (b) NLAV; and residuals for (c)
NLS, (d) NLAV. Note that in (c) and (d), the x-axis shows the measurement tag, which is
not the same as the node or line number due to a random selection of line measurements.

NLAV problem (10) with M0 = 0 satisfies:

∥v̄∗v̄T∗ − z̄z̄T∥F≤
2

t
∥η∥1 (22)

where t is defined as the optimal objective value of the following optimization problem:

min
K∈Sn
∥AΩ(K)∥2

s.t. rank(K) = 2, ∥K∥F= 1 (23)

It is straightforward to verify that t > 0 if and only if there does not exist any set
of noiseless measurements for the model Ω that leads to non-unique exact solutions. In
other words, if t > 0, any global optimal of the NLAV is the true state that we wish
to find (note that this applies when all topological errors have been detected and fixed).
Therefore, t can be viewed as a quantification of the measurements’ quality for finding a
unique solution of the over-determined power flow equations. In addition, if t > 0, then
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condition( 18) is implied.
Recently, there has been some study on the connection between the property of no

spurious local minima and the restricted isometry property (RIP). A linear map A :
Rn×n → Rm is said to satisfy (r, δr)-RIP with constant 0 ≤ δr < 1 if there exists p > 0
such that for all rank-r matrices X: (1 − δr)∥X∥2F≤ 1

p
∥A(X)∥2≤ (1 + δr)∥X∥2F . If

A satisfies (2r, δ2r)-RIP with δ2r < 1, then finding a global optimum constitutes exact
recovery of the state [29]. However, this does not exclude the existence of spurious local
minima (local minima that are not globally optimal), which can be problematic when
using local search algorithms. In order to guarantee no spurious local minima, A suffices
to satisfy (2r, δ2r)-RIP with δ2r < 0.2, which is a strict condition [28]. A milder condition
on RIP for structured mappings (such as power subsystems) has been developed in [41].
The parameter t introduced above is clearly related to the RIP constant. In fact, t > 0 is
equivalent to having δ2r < 1, which implies that there is a unique global solution.

4 Simulation Results

In order to evaluate the efficacy of the proposed NLAV algorithm for detecting topological
errors, this section presents numerical simulations on the IEEE 57-bus system. To run the
simulations, we use MATPOWER data along with the MATLAB fmincon function as the
local search algorithm.

4.1 Simulation setup

In this study we focus on two types of topological errors. Type I error is when a trans-
mission line is switched off in the true system while it is switched on in the hypothetical
model that is accessible to the power system operator; Type II error is when a branch is
switched on in the true model while it is switched off in the hypothetical model. Our nu-
merical evaluations consist of multiple cases where we vary the number of erroneous lines
and the percentage of line measurements that are available. The procedure of running
the simulations is as follows: (1) For a given number of erroneous lines and line measure-
ment percentage, we run 20 simulations; (2) In each simulation the erroneous lines are
randomly chosen and checked to ensure that they satisfy the system’s observability and
that they do not share common buses; (3) The type of topological error is also randomly
assigned to each selected erroneous line; (4) In all simulations full nodal measurements
(pk, qk and |vk|) are considered; (5) The line measurements are randomly selected from
the intact lines and no measurements are taken from the erroneous ones; (6) To generate
a legitimate state, we assume that the voltage magnitudes are close to unity and the
angles are small.

In order to assess the performance of the algorithm, we calculate the true/false positive
rates and the suspect rate as:

True positive rate = |DL ∩ Ξ|/|Ξ| (24a)
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(a) True positive rate (b) False positive rate

(c) Suspect rate (d) Number of checked lines

Figure 4: Simulation results on the IEEE 57-bus system. Each value represents the average
over 20 simulations.

False positive rate = |DL ∩ Ξc|/|Ξ| (24b)

Suspect rate = |(RN \ RL) ∩ Ξ|/|Ξ| (24c)

Finally, we also report the number of lines that the algorithm checks before termination,
which is simply the cardinality of the set (RN \ RL).

4.2 Example: Sparse residuals for NLAV

Before analyzing the bulk of simulations data, we focus on a single example to graphically
illustrate the ideas discussed in Section 3. This example is under a scenario with two
erroneous lines (lines 8 and 67) and 30% line measurements. Figures 3(a) and 3(c) show
the state estimation errors and residuals of NLS when topological errors exist. It follows
from these plots that there is a lack of sparsity pattern, and the high peaks are not even
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associated with the end points of the erroneous lines. This implies that one needs to search
over all possible combinations of lines to find the erroneous ones, which is numerically
intractable for large systems. In contrast, the state estimation errors and the residuals
after the first run of the NLAV are shown in Figure 3(b) and 3(d). The highest peaks of
the residual vector in this plot correspond to the nodes/lines that are directly connected
to the erroneous lines. This implies that the erroneous lines can be found by searching
over only the lines that are associated with the highest peaks of the residual vector. By
doing so, as stated in Algorithm 1, both erroneous lines are correctly detected without
any false positive detection. In the following subsection, we present a summary of the
extensive simulations conducted on the IEEE 57-bus system.

4.3 57-bus system

For the 57-bus system, we consider {1, 3, . . . , 15} as the discretized range for the possible
number of erroneous lines and {0%, 10%, 20%, . . . , 100%} as the discretized range for
the possible line measurement percentage. Combining these two sets gives the total of
88 scenarios for this system.

Figure 4 shows heat maps of the performance statistics for the above-mentioned 88
scenarios. Figure 4(c) shows that an erroneous line is in the suspect subgraph with high
probability. In fact, all of the values are above 0.98, which illustrates that the assumptions
made in Theorem 3.2 are reasonable. Figure 4(a) implies that Algorithm 1 is able to detect
most of the erroneous lines given a sufficient number of measurements, and Figure 4(b)
indicates that there is close to zero false positives. We can also see that detecting
topological errors becomes more difficult as the number of such errors grows. However,
note that the number of lines that need to be checked grows only linearly with respect to
the number of erroneous lines. More specifically, Figure 4(d) shows that the number of
lines to be checked is approximately twice the number of erroneous lines. These results
imply that the proposed algorithm is capable of accurately detecting topological errors
and therefore provides a tool for robust state estimation if the number of measurements
is large enough.

5 Conclusion

This paper proposes a new technique to solve the state estimation problem for power
systems in the presence of a modest number of topological errors and to detect such
modeling errors. The developed method minimizes a nonconvex function of the ℓ1-norm
of the state estimation residual errors plus a convex quadratic penalty term. It is shown
that, under mild conditions, the proposed method can efficiently detect the topological
errors by searching over the lines of a (small) suspect-subgraph of the network inferred
by the solution of the estimator. Two upper bounds are derived on the estimation errors,
and the results are demonstrated on a benchmark system.
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6 Appendix

6.1 Proof of Theorem 1

Before going into the proof, we impose the following two conditions for M0:

Assumption 1. The regularizer matrix M0 satisfies the following properties:
1. M0 ⪰ 0
2. M0 · 1 = 0

Also, we define the set of erroneous measurements:

Definition 6.1. DefineN ∈M as the set of indices of the measurements that correspond
to the erroneous lines.

Consider the NLAV problem (10). One can create lower and upper bounds on the
optimal objective value as follows:

v̄T∗ M̄0v̄∗ + ρ
m∑
j=1

|v̄T∗ M̄j(Ω̃)v̄∗ − z̄TM̄j(Ω)z̄|−ρ
m∑
j=1

|ηj|

(a)

≤ v̄T∗ M̄0v̄∗ + ρ
m∑
j=1

|v̄T∗ M̄j(Ω̃)v̄∗ − z̄TM̄j(Ω)z̄ − ηj|

(b)

≤ z̄TM̄0z̄ + ρ
m∑
j=1

|z̄TM̄j(Ω̃)z̄ − z̄TM̄j(Ω)z̄ − ηj|

(c)

≤ z̄TM̄0z̄ + ρ
∑
j∈N

|z̄TM̄j(Ω̃)z̄ − z̄TM̄j(Ω)z̄|+ρ
m∑
j=1

|ηj|

where (a) is due to the triangle inequality and (b) is due to the optimality of v∗. The
equality (c) follows from M̄j(Ω̃) = M̄j(Ω) whenever j /∈ N . Combining the above lower
and upper bounds leads to

v̄T∗ M̄0v̄∗ − z̄TM̄0z̄ + ρ

m∑
j=1

|v̄T∗ M̄j(Ω̃)v̄∗ − z̄TM̄j(Ω)z̄|

≤ ρ
∑
j∈N

|z̄TM̄j(Ω̃)z̄ − z̄TM̄j(Ω)z̄|+2ρ
m∑
j=1

|ηj| (25)

By adding and subtracting z̄TM̄j(Ω̃)z̄ in the absolute value of the left-hand side, one can
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write:

v̄T∗ M̄0v̄∗ − z̄TM̄0z̄ + ρ
m∑
j=1

|v̄T∗ M̄j(Ω̃)v̄∗ − z̄TM̄j(Ω̃)z̄|

≤ 2ρ

{∑
j∈N

|z̄T (M̄j(Ω̃)− M̄j(Ω))z̄|+
m∑
j=1

|ηj|

}
= 2g(z̄, η, ρ) (26)

Now, consider the following optimization problem that serves as a tool for deriving a lower
bound:

min
y

v̄T∗ M̄0v̄∗ − z̄TM̄0z̄ + ρ
m∑
j=1

|v̄T∗ M̄j(Ω̃)v̄∗ − z̄TM̄j(Ω̃)z̄|

Here y is a fictitious variable with a dimension of choice, and we call the objective of the
above problem as f . By introducing a new variable t ∈ Rm, an equivalent formulation
can be written as

min
t

v̄T∗ M̄0v̄∗ − z̄TM̄0z̄ + ρ
m∑
j=1

tj

s.t. v̄T∗ M̄j(Ω̃)v̄∗ − z̄TM̄j(Ω̃)z̄ ≤ tj, ∀j ∈M
−v̄T∗ M̄j(Ω̃)v̄∗ + z̄TM̄j(Ω̃)z̄ ≤ tj, ∀j ∈M

(27)

Let p+j ’s and p−j ’s be the nonnegative Lagrange multipliers for the first and second sets
of constraints. The Lagrangian can be written as

L(t, p+, p−) = v̄T∗ M̄0v̄∗ − z̄TM̄0z̄ +
m∑
j=1

(ρ− p+j − p−j )tj

+
m∑
j=1

{(p+j − p−j )(v̄
T
∗ M̄j(Ω̃)v̄∗ − z̄TM̄j(Ω̃)z̄)} (28)

By defining d(p+, p−) = mint L(t, p+, p−) and noting that p+j + p−j = ρ for every j ∈M
at optimality, we have

d(p+, p−) = v̄T∗

(
M̄0 +

m∑
j=1

(p+j − p−j )M̄j(Ω̃)

)
v̄∗ − z̄T

(
M̄0 +

m∑
j=1

(p+j − p−j )M̄j(Ω̃)

)
z̄

(29)

Note that d(p+, p−) gives a lower bound on f . By assumption, there exists a dual
certificate µ ∈ Rm. We can find a set of vectors p+∗ and p−∗ such that they satisfy the
previous constraint p+∗ + p−∗ = ρ · 1 and also a new constraint p+∗ − p−∗ = µ. Then,
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d(p+∗ , p
−
∗ ) also gives a lower bound to f . Using the fact that H Ω̃

µ z = 0 and defining
X = v̄∗v̄

T
∗ , we can establish the following:

d(p+∗ , p
−
∗ ) = v̄T∗ H

Ω̃
µ v̄∗ − z̄TH Ω̃

µ z̄ = Tr{H Ω̃
µ v̄∗v̄

T
∗ } = Tr{H Ω̃

µX} (30)

The rest of the proof can be adopted from [45] (Appendix, Proof of Theorom 2). Con-
sider an eigen-decomposition of H Ω̃

µ = UΛUT , where Λ = diag(λ2n−1, ..., λ1) such that
λ2n−1 ≥ · · · ≥ λ1 and U is a unitary matrix whose columns are the corresponding eigen-
vectors. Define

X̆ :=

[
X̃ x̃
x̃T α

]
= UTXU (31)

where X̃ is the (2n− 2)th-order leading principle submatrix of X̆, x̃ is the (2n− 2)× 1
leftover vector and α is a scalar. It is known that

Tr(H Ω̃
µX) = Tr(UΛUTUX̆UT ) = Tr(ΛX̆) ≥ λ2(H

Ω̃
µ )Tr(X̃) (32)

Combining (32) and (26) leads to

Tr(X̃) ≤ 2 · g(z̄, η, ρ)/λ2(H
Ω̃
µ ) (33)

Define z̃ = z̄/∥z̄∥2 and ṽ∗ = v̄∗/∥v̄∗∥2. Since H Ω̃
µ is positive-semidefinite and the eigen-

vector corresponding to the smallest eigenvalue (i.e. zero) is z̄, the matrix X can be
decomposed as

X = UX̆UT =
[
Ũ z̃

] [
X̃ x̃
x̃T α

] [
ŨT

z̃T

]
= ŨX̃ŨT + Ũ x̃z̃T + z̃x̃T ŨT + αz̃z̃T (34)

Since X̆ ⪰ 0, Schur complement dictates the relationship X̃ − α−1x̃x̃T ⪰ 0. Using
the fact that α = Tr(X)− Tr(X̃), one can write

∥x̃∥22≤ αTr(X̃) = Tr(X)Tr(X̃)− Tr2(X̃) (35)

Therefore,

∥X − αz̃z̃T∥2F = ∥ŨX̃ŨT + Ũ x̃z̃T + z̃x̃T ŨT∥2F
(d)
= ∥ŨX̃ŨT∥2F+2∥z̃x̃T ŨT∥2F

(e)
= ∥X̃∥2F+2∥x̃∥22≤ ∥X̃∥2F−2Tr2(X̃) + 2Tr(X)Tr(X̃)

(f)

≤ 2Tr(X)Tr(X̃)
(g)

≤ 4g(z̄, η, ρ)

λ2(H Ω̃
µ )

Tr(X) (36)

where (d) follows from the fact that Ũ ∗ z̃ = 0, (e) is due to ŨT Ũ = I2n−2 and (f) comes
from the fact that ∥X̃∥F≤ Tr(X̃). Finally, (g) results from substituting equation (33).
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Plugging back in X = v̄∗v̄
T
∗ yields that

∥X−αz̃z̃T∥2F= ∥v̄∗v̄T∗ −
α

∥z̄∥22
z̄z̄T∥2F≤

4g(z̄, η, ρ)

λ2(H Ω̃
µ (M̄0))

Tr(v̄∗v̄T∗ ) (37)

By defining β = α/∥z̄∥22 and realizing that Tr(v̄∗v̄T∗ ) = ∥v̄∗∥22, the above inequality reduces
to

∥v̄∗v̄T∗ − βz̄z̄T∥2F≤
4g(z̄, η, ρ)

λ2(H Ω̃
µ (M̄0))

∥v̄∗∥22 (38)

By notational simplicity, we denote x(i) as the i-th element of a vector x. Notice that

∥v̄∗v̄T∗ − βz̄z̄T∥F =

√∑
i,j

[v̄∗(i)v̄∗(j)− β · z̄(i)z̄(j)]2 ≥
√∑

i

[v̄∗(i)2 − β · z̄(i)2]2

(h)

≥
√∑

i

[v̄∗(i)− β · z̄(i)]4
(i)

≥ 1√
n

∑
i

[v̄∗(i)− β · z̄(i)]2

=
1√
n
∥v̄∗ − β · z̄∥22 (39)

where (h) and (i) are due to Cauchy-Schwarz and Holder’s inequality, respectively. Now
combining this inequality with (38) leads to

∥v̄∗ − β · z̄∥22≤
√
n · ∥v̄∗v̄T∗ − βz̄z̄T∥F≤

√
4g(z̄, η, ρ) · n

λ2(H Ω̃
µ )

∥v̄∗∥2

which completes the proof.

6.2 Proof of Theorem 2

Define N(k) to be the set of nodes adjacent to node k, including k itself. We will focus
on a line l ∈ E that connects two nodes i and j.
(1) First, consider the case when l ∈ S̃c ∩ Ξ. The fact that l /∈ S̃ implies that all nodes
in the set N(i) ∪N(j) are solvable. Also, since l ∈ Ξ, the nodal residual at nodes i and
j are nonzero, which means that i, j ∈ VN . Finally, noting that l /∈ RL because there is
no line measurement for an erroneous line, we can conclude that l ∈ (RN \ RL).
(2) Second, consider the case when l ∈ S̃c ∩ Ξc. Again, the fact that l /∈ S̃ implies that
all nodes in the set N(i) ∪ N(j) are solvable. Also, since l ∈ Ξc, the nodal residuals at
nodes i and j are zero, and the line residuals on line l is zero. Therefore, we can conclude
that l /∈ (RN ∪RL).
(3) Third, consider the case when l ∈ S̃ ∩ Ξc. Since l ∈ S̃, at least one node in N(i)
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and at least one node in N(j) are unsolvable. From here, two different scenarios can
happen. Scenario one is when at least one of nodes i and j is unsolvable. In this case,
using the fact that there do not exist two distinct set of voltages that result in the same
measurement values, we can easily conclude that l ∈ RL ∩ RN . Scenario two is when
both nodes i and j are solvable. In this scenario, the nodal residual at nodes i and j are
nonzero but the line residual at l is zero. Therefore, l ∈ (RN \ RL).
(4) Finally, consider the case when l ∈ S̃ ∩Ξ. Since l ∈ S̃, at least one node in N(i) and
at least one node in N(j) are unsolvable. Also, since l ∈ Ξ, the nodal residual at nodes
i and j are nonzero, which means that i, j ∈ VN . Finally, noting that l /∈ RL because
there is no line measurement for an erroneous line, we can conclude that l ∈ (RN \RL).
From (1)–(4), we can deduce that l ∈ RL =⇒ l ∈ (Ξc ∩ S̃), which proves the first part
of the theorem. Furthermore, we can see that l ∈ S̃ ∪ Ξ =⇒ l ∈ RN . Finally, from (2)
specifically, we also know that if l ∈ S̃c ∩ Ξc =⇒ l /∈ RN . This concludes the fact that
RN = S̃ ∪ Ξ.

6.3 Proof of Theorem 3

Proof. Consider equation (26) and set M̄0 = 0, ρ = 1. With some basic algebraic
manipulations, one can write

2
∑
j∈N

|z̄T (M̄j(Ω̃)− M̄j(Ω))z̄|+2
m∑
j=1

|ηj| ≥ ∥AΩ(v̄∗v̄
T
∗ − z̄z̄T )∥1 ≥ ∥AΩ(v̄∗v̄

T
∗ − z̄z̄T )∥2

Therefore, if t is nonzero

t · ∥v̄∗v̄T∗ − z̄z̄T∥F ≤ 2
∑
j∈N

|z̄T (M̄j(Ω̃)− M̄j(Ω))z̄|+2
m∑
j=1

|ηj|= 2g(z̄, η, 1) = 2∥η∥1

The last equality follows because all of the topological errors have been detected and
fixed. This completes the proof.

6.4 Theorem 4 and its proof

Theorem 6.1. Denote f 1(·) as the objective function of an NLAV problem (i.e., equation
(11)) with Ξ1 as the set of erroneous lines and M as the index set of measurements.
Similarly, denote f 2(·) as the objective function of another NLAV problem with Ξ2 as the
set of erroneous lines andM as the index set of measurements. Without loss of generality,
suppose that |Ξ1|< |Ξ2|. Furthermore, assume that for any two vector of voltages, x̄ and
ȳ, and a measurement index j, the following holds:

|x̄TM̄j(Ω̃)x̄− ȳM̄j(Ω)ȳ|> |x̄TM̄j(Ω)x̄− ȳM̄j(Ω)ȳ| (40)
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Then, minv̄ f
1(v̄) < minv̄ f

2(v̄)

Proof. Let v̄1 and v̄2 be the global minimizer of f 1(·) and f 2(·), respectively. Also, let
M1 and M2 be the set of measurement indices pertaining to the erroneous lines in Ξ1

and Ξ2, respectively. Then, the following inequalities hold:

f 2(v̄2) = v̄T2 M̄0v̄2 + ρ

m∑
j=1

|v̄T2 M̄j(Ω̃)v̄2 − z̄TM̄j(Ω)z̄|

(a)
= v̄T2 M̄0v̄2 + ρ

∑
j∈M2

|v̄T2 M̄j(Ω̃)v̄2 − z̄TM̄j(Ω)z̄|+ρ
∑

j∈M\M2

|v̄T2 M̄j(Ω)v̄2 − z̄TM̄j(Ω)z̄|

= v̄T2 M̄0v̄2 + ρ
∑
j∈M1

|v̄T2 M̄j(Ω̃)v̄2 − z̄TM̄j(Ω)z̄|+ρ
∑

j∈M\M1

|v̄T2 M̄j(Ω)v̄2 − z̄TM̄j(Ω)z̄|

+ ρ
∑

j∈M2\M1

|v̄T2 M̄j(Ω̃)v̄2 − z̄TM̄j(Ω)z̄|−ρ
∑

j∈M2\M1

|v̄T2 M̄j(Ω)v̄2 − z̄TM̄j(Ω)z̄|

(b)

≥ f 1(v̄1) + ρ
∑

j∈M2\M1

|v̄T2 M̄j(Ω̃)v̄2 − z̄TM̄j(Ω)z̄|−ρ
∑

j∈M2\M1

|v̄T2 M̄j(Ω)v̄2 − z̄TM̄j(Ω)z̄|

(c)
> f 1(v̄1)

where (a) follows from the fact that M̄j(Ω̃) = M̄j(Ω) if j /∈ M2, (b) follows from the
fact that v̄1 is the global minimum of f 1(·) and (c) follows from the assumption made in
equation (40).
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Chapter III

Uniqueness of Power Flow
Solutions Using Monotonicity and
Network Topology

1 Introduction

The AC power flow equations fundamentally underpin every aspect of power systems: from
day-to-day operations in contingency analysis, security-constrained dispatch of electricity
markets and yearly capacity planning for peak load, to decades-long transmission expansion
and renewable integration. The purpose of AC power flow problem is to solve for the
complex voltages, described by their magnitudes and phase angles, given a power system
set-point. The power flow equations are nonlinear, and may admit multiple solutions.
In the past, the conventional wisdom was to assume that the solution becomes unique
by restricting it to “realistic” or “physically realizable” values. However, various examples
in the literature show that multiple solutions may persist even after restricting either
voltage magnitudes or phase angle differences to “physically realizable” values [6], [7], [5,
Section IV]. For the former, we present an example in Section 5 where multiple solutions
exist despite having fixed voltage magnitudes for all buses. For the latter, it is possible
to construct a two-bus example — one slack bus and one PQ bus — that admits a high-
voltage solution within standard operating limits, and another low-voltage solution with
a large phase angle difference of 49.9 degrees that is still below the steady-state limit of
90 degrees [1]. Therefore, in principle, system operators may encounter operating points
that are very different from what they had expected. In order to avoid these situations, it
is important to understand whether or not there is a unique “physically realizable” power
flow solution for real-world power systems. The goal of this paper is to develop sufficient
conditions on top of the “realism” that will guarantee a unique solution to the AC power
flow equations.

1.1 Monotonicity between phase angles and power flow

Mathematical tools that are often used to prove uniqueness results include the fixed point
theorem with contraction mapping and the inverse function theorem. In this paper, we use
the notion of monotonicity to prove uniqueness of the power flow solution under certain
conditions. The results that we present stem from a simple idea that is best explained
via an example. Consider a two-bus, lossless one-line system, with the line reactance X.
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Voltage magnitude and angle are specified at one of the buses (“slack bus"), whereas
real power injection and voltage magnitude are specified at the other bus (“PV bus").
Then, the power transfer between the two buses is given with respect to the two voltage
magnitudes |v1|, |v2| and the angular difference θ1 − θ2 as a sinusoid:

P = |v1|·|v2|· sin(θ1 − θ2)/X.

Even in this simple toy example, we can see that the power flow solutions are not unique:
every value of P satisfying |P |< |v1|·|v2|/X can be attained by two choices of θ1 − θ2.
However, if we restrict θ1 − θ2 to take on what we will call physically realizable values
within the steady-state stability limit of |θ1−θ2|< π/2, then the solution becomes unique.
Indeed, this follows from the fact that P is monotonically increasing with respect to
θ1 − θ2 within this range. Formally, if we define f(x) = (|v1|·|v2|/X) sinx as the power
flow function and Ω = [−π/2,+π/2] as the range of acceptable values for x, then the
strictly increasing property of f guarantees the following inequality:

(f(x)− f(y))(x− y) > 0 ∀x ̸= y, x, y ∈ Ω.

The inequality forces the nonlinear equation f(x) = P to have no more than one solution
x ∈ Ω, because a different y ∈ Ω satisfying f(y) = P would contradict the inequality.
Hence, the phase angles θ1 and θ2 can be uniquely determined (up to an absolute phase
shift) given a value of P within the realizable range |P |< |v1|·|v2|/X. This paper extends
this idea to an arbitrary power network using a multi-dimensional generalization of the
monotonicity property.

1.2 Main results

The major contribution of this paper is the identification of sufficient conditions under
which the power flow equations have a unique “realistic” solution. For the remainder of
the paper, we focus on the relationship between voltage angle differences and real power
injections, referred to as the P−Θ problem in the literature [3]. Analogous to the two-bus
case, a set of phase angles are physically realizable for a lossless system if the angular
difference across every line lies within the stability limit of π/2. Under the constraint that
phase angles are physically realizable and smaller than a certain limit that depends on
the network topology, we extend the notion of monotonicity that was illustrated for the
earlier two-bus example to high-dimensional networks. The contributions of this paper are
summarized below:

• We show that all acyclic networks have at most one P − Θ power flow solution
under certain conditions on voltage angles. Furthermore, the set of feasible real
power injections (for non-slack buses) on these graphs is a convex set.

• We show that cyclic networks cannot have multiple distinct P −Θ power flow solu-
tions under certain conditions on voltage angles. These conditions can be checked
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offline and provide a certificate for ruling out multiple solutions. The certificate is
easier to satisfy for graphs with smaller maximal girth.

• We show that the uniqueness of P−Θ power flow solutions is preserved under series-
parallel reduction. A natural corollary to this is that power systems with Generalized
Series-Parallel graphs have at most one P−Θ power flow solution under some angle
conditions. Loosely speaking, these are graphs that can be constructed entirely out
of series and parallel terminal connections in circuit theory, plus dangling vertices.
Any tree or cycle graph is a Generalized Series-Parallel graph.

The implication of these results for classical power flow analysis is that, under the condi-
tions specified above, the problem has a unique physically realizable solution if the phasor
voltage magnitudes are fixed. This occurs, for example, if all buses except the slack bus
are modeled as PV buses. In practice, tightly controlled voltage magnitudes are enforced
by operating limits, and are usually achieved through the availability of dispersed and
controllable reactive sources. The assumption is commonly used in the power industry
and is implicit in the DC power flow equations.

1.3 Related work

The paper [22] is one of the first to study the solution set of the power flow equations,
which contrary to the conjecture at that time constructed an example showing the gen-
eral non-uniqueness of decoupled power flow solutions. A more thorough study was later
presented in the paper [10], which derived the estimate number of solutions and charac-
terized the stability region for the power flow problem. However, the results are limited
to lossless transmission networks consisting of only PV buses. Soon after, [8] formulated
the coupled power flow equations in rectangular coordinates and described a set of linear
necessary conditions for the solution of the power flow problem, which helped systemati-
cally investigate the problem feasibility. Subsequently, researchers have tried to explicitly
characterize conditions under which the power flow solution exists and is unique. For
example, the work [9] derived conditions under which the reactive power-voltage problem
has a unique solution under decoupling assumptions. Then, [3] extended these results
by deriving conditions for the real power-phase angle problem under the same decoupling
assumptions. Note that in this paper, we consider the real power-phase angle problem as
in [3], but discard the decoupling assumptions because it fails to accurately capture the
true physics when transmission lines are not purely inductive. Furthermore, we consider a
general lossy network.

Researchers have also observed that information about the topology of the power
system network can be utilized to derive stronger results. Without making decoupling
assumptions, the paper [6] investigated the number of power flow solutions in a radial
network and showed that, for practical system parameters, the solution always exists and
is unique. The results were extended to unbalanced three-phase distribution networks
in [11]. Adding to these results, the work in [31] shows that several algorithms, using
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the fixed-point, convex relaxation and the energy function approaches, converge to the
unique high-voltage solution for radial networks. In the more recent study [13], the authors
studied the power flow problem and its relationship to optimization in tree networks by
mainly analyzing the injection region of the power network. While these results are limited
to tree graphs, our current work characterizes a wider class of topologies under which the
power flow solution is unique. Finally, the work in [2] used the network topology to upper
bound the number of power flow solutions.

The most widely used tool to prove existence and uniqueness of power flow solutions
is the fixed point technique. The work [23] was the first to apply the fixed point technique
developed for nonlinear circuits to power flow. In [4] and [12], a fixed point formulation of
the power flow problem was used to specify a domain around a feasible point and derive
sufficient conditions for a unique solution. In the recent works [24] and [25], the authors
developed a new fixed point formulation of the lossless power flow equations that includes
both PQ and PV buses, and for radial networks derived network parametric conditions
that guarantee the existence and uniqueness of a high-voltage solution. Extensions of the
conditions to multi-phase distribution systems appear in [35] and new sufficient conditions
using a fixed point technique on the complex domain appear in [34].

Moving away from fixed point techniques, the work [14] developed a semidefinite
programming based procedure to characterize the domain of voltages over which the power
flow operator is monotone. In a similar but different spirit, this paper utilizes monotonicity
to rule out multiple solutions. Furthermore, we take advantage of the network topology
information to derive less conservative sufficient conditions. The recent work [32] presents
a unifying framework for network problems on the n-torus while introducing the concept of
winding cell that is used to partition solutions. The framework can be applied to the AC
power flow problem under the lossless setting and their monotonicity assumptions share
close resemblance to our approach. In this work, we provide a more general result on
arbitrary networks with losses.

The remainder of this paper is organized as follows. Section 2 lays out the basic
notations used in this paper. In Section 2.1, we define the P − Θ power flow problem
formulation. Section 4 establishes the condition under which strict monotonicity holds
over a single line and presents favorable properties that arise from the monotonicity. The
properties are used to prove that there is at most one power flow solution for acyclic
networks. Section 5 extends this result to general cyclic networks. We present additional
(voltage) angular conditions under which cyclic graphs cannot have multiple distinct power
flow solutions. This condition is closely related to the maximal girth of the underlying
graph. Section 6 shows that series-parallel reduction on a graph preserves the uniqueness
of power flow solutions, and arrive at the conclusion that Generalized Series-Parallel net-
works have at most one solution under additional angle constraints. Section 7 develops a
linear-time algorithm for a subset of Generalized Series-Parallel graphs. Finally, Section 8
provides numerical and simulation results that support the ideas developed in the paper.
All the proofs will be delineated in the Appendix.

33



2 Notations

We start with some mathematical notations. For a given vector x, let xk denote its k-th
element. When notation is overloaded, x(k) will sometimes take on the role of xk. The
symbol j denotes the unit imaginary number. The notations (·)T and (·)H denote the
transpose and Hermitian transpose of a matrix, respectively. For a complex number z,
|z| denotes its magnitude and for a set X, the symbol |X| denotes its cardinality. ℜ(·)
denotes the real part of a given argument.

Power system topology is specified by an undirected graph G = (V,E) and we assume
that this graph is simple and connected. For an undirected graph G = (V,E), V is the set
of vertices (buses) and E ⊆ V× V is the set of undirected edges (lines). If the edges of
an undirected graph are weighted with the weights captured by a set W, then the graph is
represented as G = (V,E,W). For a directed graph (digraph) D = (V, Ẽ,W), Ẽ ⊆ V×V
denotes the set of directed edges. The undirected edge e connecting two vertices k and
ℓ is denoted by a set notation e = {k, ℓ}, whereas a = (k, ℓ) denotes a directed edge
a coming out of vertex k and going into ℓ. Depending on the context, an edge can be
denoted by either e or {k, ℓ}. The same goes for directed edges. The series element of
the equivalent Π-model of each line {k, ℓ} is modeled by admittance Gkℓ − jBkℓ, where
Gkℓ, Bkℓ ≥ 0. Let d denote the vector of degrees, where its k-th element d(k) stands for
the degree of vertex k ∈ V. Similarly, limited to directed graphs, let d+ and d− denote
the vectors of out-degrees and in-degrees, respectively. Moreover, let G[V′] and E[V′]
denote the subgraph and edge-subset of G that are induced by a given vertex set V′ ⊆ V,
respectively. The symbol 1 is the vector of ones. Finally, Kn denotes the complete graph
on n vertices.

3 P-Theta problem formulation

As mentioned in the introduction, we focus our attention to the relationship between
the voltage phasor angles and the real power injections. To this end, we will study the
mapping from angles to real powers. Let the slack bus (also the reference bus) be indexed
by 1, unless defined otherwise. Let v ∈ Cn be the vector of complex bus voltages. The
complex voltage at bus k can be expressed in polar form, vk = |vk|ejθk , where |vk| and θk
denote the voltage magnitude and phase angle at bus k, respectively. For convenience,
we also define θkℓ = θk − θℓ to be the angle difference across line {k, ℓ}.

The P − Θ power flow problem assumes that all buses except the slack bus are PV
buses. This means that the voltage magnitudes V = (|v1|, . . . , |vn|)T are fixed at all
buses, and the net real power injections are fixed at all buses except the slack bus. We
denote the specified real power injection vector as P = (p2, . . . , pn)

T . The unknown
variable is Θ = (θ2, . . . , θn)

T because bus 1 is the reference bus and θ1 is fixed at zero.
Although the voltage magnitudes are considered fixed at all buses, we make no assumption
about their particular values. For example, the magnitude could be low as in the two-bus
example mentioned in Section 1. Finally, assuming that the shunt elements of the model
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have zero real part, we can neglect the admittance of the shunt elements without loss of
generality. That is, we assume that the shunt elements are purely reactive.

Let i ∈ Cn be the vector of complex currents, where ik is the total current flowing
out of bus k into the rest of the network. Given a complex admittance matrix Y ∈ Cn×n,
the equation i = Y v holds due to Ohm’s law and Kirchoff’s Current Law. Furthermore,
the complex power injected at bus k is equal to sk = pk + jqk = vki

H
k where pk and qk

denote the net real and reactive power injections at bus k, respectively. Therefore, we
can write the equation for the real power injections as: pk = ℜ{(Y v)Hk vk}. Since voltage
magnitudes are known parameters, the injection vector P is only a function of Θ and we
can define the following injection operator that describes the P −Θ problem.

Definition 3.1. Define P̂k : Rn−1 → R as the map from the vector of phasor angles to
the real power injection at bus k:

P̂k(Θ) = ℜ{(Y v)Hk vk}. (41)

Moreover, define the injection operator P̂ : Rn−1 → Rn−1 as

P̂ (Θ) = [P̂2(Θ), . . . , P̂n(Θ)]. (42)

The goal of the P − Θ problem is, given P ∈ Rn−1, to find Θ ∈ Rn−1 such that
P̂ (Θ) = P .

4 Acyclic Networks

In this section, we derive conditions under which the P − Θ problem has at most one
solution for a power system represented by an acyclic graph. In particular, a straightforward
generalization of the elementary angle assumption that is necessary for a single line network
to have at most one solution is sufficient for any acyclic network to have at most one
solution.

4.1 Single line properties

We begin the analysis with a single line. Consider any line {k, ℓ} ∈ E and the real power
flow from bus k to bus ℓ, denoted by pkℓ. Elementary calculations show that:

pkℓ = Gkℓ(|vk|2−|vk|·|vℓ|cos θkℓ) +Bkℓ|vk|·|vℓ|sin θkℓ (43)

Therefore, given the line properties and the voltage magnitude at both ends, the flow pkℓ
depends only on the voltage angle difference θkℓ. Hereby, we define the function p̂kℓ(·)
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for every {k, ℓ} ∈ E such that pkℓ = p̂kℓ(θkℓ). Taking the derivative

∂p̂kℓ
∂θkℓ

(θkℓ) = Gkℓ|vk|·|vℓ|· sin θkℓ +Bkℓ|vk|·|vℓ|· cos θkℓ

concludes that pkℓ is monotonically increasing in θkℓ if:

Gkℓ|vk|·|vℓ|· sin θkℓ +Bkℓ|vk|·|vℓ|· cos θkℓ ≥ 0.

A strict inequality of the above equation is obtained if:

− tan−1(Bkℓ/Gkℓ) < θkℓ < π − tan−1(Bkℓ/Gkℓ).

Similarly, pℓk is strictly monotonically decreasing in θkℓ if:

tan−1(Bkℓ/Gkℓ)− π < θkℓ < tan−1(Bkℓ/Gkℓ).

Combining these observations, both pkℓ and pℓk are strictly monotonic functions of θkℓ as
long as:

|θkℓ|< tan−1(Bkℓ/Gkℓ), (44)

which corresponds to the region of steady-state stability of the line {k, ℓ} considered
individually. We refer to tan−1(Bkℓ/Gkℓ) as the steady-state stability limit for line e =
{k, ℓ} ∈ E and will restrict attention to angles that satisfy (44) for each line {k, ℓ} in the
system. In what follows, we will give the definitions on the set of allowable angles and
set of allowable injections.

Definition 4.1. For a power system G = (V,E), let G = (V,E,W) indicate a weighted
version of the power system network. For each line e = {k, ℓ} ∈ E, there is a correspond-
ing angle limit (weight) wkℓ ∈ W such that ωkℓ < tan−1(Bkℓ/Gkℓ). Note that ωkℓ can
be written in an equivalent notation, ωe. The set W is called the ‘set of allowable limits.’
The ‘set of allowable angles’ for a power system G = (V,E,W) is defined as:

Θ(G) = {Θ ∈ Rn−1 : θ1 = 0 and |θkℓ|< ωkℓ ∀{k, ℓ} ∈ E}.

Furthermore, for a given Θ ∈ Θ(G), define P(G,Θ) ∈ Rn−1 to be the vector of net
injections (at all buses except for the slack bus) realized by Θ. We define P(G,Θ(G)) ⊆
Rn−1 to be the set of all possible net injections for allowable angles and refer to it as the
“set of allowable injections."

We acknowledge that there is no one-to-one correspondence between the notion of
stability of a line considered individually in isolation and the steady-state and transient
stability of an actual power system, particularly where there are additional control feedback
loops such as “power system stabilizers.” However, limiting angles to satisfy (44) results
in some convenient properties of power flow solutions. These properties are explained in
the following lemma:
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Lemma 4.1. Define p
kℓ
= p̂kℓ(−ωkℓ) and pkℓ = p̂kℓ(ωkℓ). Then for each pkℓ ∈ (p

kℓ
, pkℓ)

there exists a unique θkℓ with |θkℓ|< ωkℓ such that pkℓ = p̂kℓ(θkℓ). In fact, there is an
explicit expression for the solution θkℓ:

θkℓ = θ̂kℓ(pkℓ) = sin−1

(
pkℓ −Gkℓ|vk|2

|vk|·|vℓ|Zkℓ

)
− γkℓ (45)

where Zkℓ =
√

G2
kℓ +B2

kℓ and γkℓ = tan−1(−Gkℓ/Bkℓ). Furthermore, if we define
r̂kℓ(·) = p̂ℓk(−θ̂kℓ(·)), then

pℓk = r̂kℓ(pkℓ) (46)

where r̂kℓ is a strictly decreasing function.

Previously, we established that p̂kℓ(·) is a strictly increasing function of θkℓ over the
range |θkℓ|< ωkℓ. By using the Browder–Minty theorem in its proof, Lemma 4.1 states
that the inverse of the function p̂kℓ(·) is well-defined. In fact, the inverse function θ̂kℓ(·) is
also an increasing function, of pkℓ over (p

kℓ
, pkℓ). Moreover, given pkℓ ∈ (p

kℓ
, pkℓ), there

is a uniquely determined corresponding value for the flow pℓk coming from the opposite
direction. This enables us to express pℓk as a well-defined function of pkℓ as in (46).

4.2 Tree networks

In this subsection, we build on the results for a single line to prove uniqueness of the P−Θ
power flow problem for tree networks. We also show that the set of allowable injections
is a convex set. Although a tree network is not realistic for transmission systems, this will
provide important results that will be used for the general case of a mesh. Some of the
results that we mention here are already well known in the existing literature. However,
we organize the proof of this existing result around the monotonicity property, with the
goal of generalizing the arguments to mesh networks.

We will write T ⊆ V×V for a collection of lines that form a tree and consider power
systems with graphs G = (V,T,W). Recall that the reference/slack bus is indexed by
1. A key observation about tree topology is that for any bus k ∈ V there is a unique
path Ek ⊆ T of successive lines between bus k and bus 1, which we consider to be the
root of the tree. Define the “distance” c(k) between bus k and bus 1 to be the number
of lines in the unique path Ek between bus k and bus 1 in T. We define E1 = ∅ and
c(1) = 0. Generically, results for such networks could be proved by beginning with leaves
and proceeding towards bus 1 by using an induction argument on the decreasing distance
to bus 1. By following such approach, the next theorem can be obtained.

Theorem 4.2. Suppose that the power system G = (V,T,W) has a tree topology.
Then,

1. For each P ∈ P(G,Θ(G)), there is a unique Θ ∈ Θ(G) such that P = P̂ (Θ).

2. P(G,Θ(G)) is a convex set.
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Note that by Part 1 of Theorem 4.2, for a given power system G with a tree topology,
there is a well-defined function Θ̂ such that for each P ∈ P(G,Θ(G)), the unique value
Θ ∈ Θ(G) with the property P = P̂ (Θ) satisfies Θ = Θ̂(P ). That is, Θ̂(•) is the inverse
of P̂ (Θ).

5 Cyclic Networks

For networks with cycles, restricting the voltage angles to the set of allowable angles is not
enough to guarantee that the P −Θ problem has at most one solution. Hence, we begin
this section by analyzing a simple example on a cycle to illustrate the need for additional
conditions on voltage angles in guaranteeing a unique solution.

In Fig. 5, we have a six-bus lossless network where all the real power injections are set
to be zero. Under this setting, we can see that there are at least two solutions: one with
zero flow in all lines and another one with a nonzero flow around the cycle, corresponding
to a π/3 angle difference across each line. This example is similar to the one in [22]
and is essentially due to the fact that the sum of angle differences from bus 1 to bus 6
(i.e. θ12 + θ23 + θ34 + θ45 + θ56) is less than −π and therefore becomes equivalent to
π/3 (mod 2π), allowing a positive amount of power to flow from bus 1 to bus 6 and then
back to bus 1. In this example, if the absolute value of θ12 + θ23 + θ34 + θ45 + θ56 were to
be restricted below π, there would be no possibility of multiple solutions. We state this
formally in the following lemma.

Lemma 5.1. Consider a power network G = (V,E,W) with V = {1, . . . , N} and
E = {{1, 2}, . . . , {N − 1, N}, {N, 1}}. For every P ∈ P(G,Θ(G)) there is a unique
solution Θ ∈ Θ(G) such that P = P̂ (Θ) if:

ω12 + ω23 + · · ·+ ωN−1,N < π/2. (47)

Lemma 5.1 applies to only a single cycle network. However, this will be extended to
any arbitrary network below. The main idea behind the development of this result is to
associate a digraph to every possible distinct solution based on its deviation from a baseline
solution. We call two solutions distinct if every two corresponding elements of these
solutions are different. If an angle constraint similar to equation (47) is met for every such
digraph (named the residual-digraph), then there cannot be multiple distinct power flow
solutions (i.e., distinctly unique). In this section, we prove results on distinct uniqueness,
but the same methodology can also be readily used to prove results on uniqueness (in
the common sense) by substituting the digraph with a hybrid graph that contains both
directed and undirected edges. In addition, if there are two non-distinct solutions, then
one can delete the edges with the same flows in the two solutions and then compensate
for the nodal injections at the endpoints of all such removed edges in order to arrive at
a subgraph that has two distinct solutions. In other words, having only unique distinct
solutions for the subgraphs of the network implies the uniqueness of the solution for the
original network. As a result, we only focus on studying distinct solutions in this section.
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Figure 5: Cycle example showing multiple solutions. The two graphs show two different
solutions that satisfy the power flow equations. In the top solution, there is no flow going
around the cycle. In the bottom solution, there is a clockwise flow going around the cycle.

For the rest of this paper, we also assume that the digraphs under consideration do not
have self-loops. Furthermore, in order to satisfy the power balance equations, there must
be at least one incoming and one outgoing edge at each non-slack bus of the residual-
digraph. This merits introducing the concept of feasible orientation, which we define
below.

Definition 5.1. (Feasible Orientation) Consider a general power network G = (V,E,W).
Let D = (V, Ẽ,W) be a digraph that is created by assigning a specific orientation Ẽ to
the original undirected edges E of graph G. The digraph D is called a ‘feasible orientation’
of the underlying undirected graph if:

d+(k) ≥ 1, d−(k) ≥ 1 ∀k ∈ V \ {1}

The set of all feasible orientations for graph G is called the ‘set of feasible orientations’
and is denoted by Df (G).

The condition in Definition 5.1 simply requires that each bus have in-degree and
out-degree greater than or equal to one. Now, we are ready to state the theorem that
generalizes Lemma 5.1. From here on, we will use the word ‘vertex’ more often in place
of the word ‘bus.’

Theorem 5.2. Consider an arbitrary power network G = (V,E,W). Suppose that for
every feasible orientation D ∈ Df (G), there exists a directed cycle C with its vertex set
denoted as Vdc = {u(1), . . . , u(|Vdc|)} ⊆ V such that

|Vdc|−1∑
i=1

ωu(i),u(i+1) < π/2. (48)

Then, for each P ∈ P(G,Θ(G)) there cannot be multiple distinct solutions satisfying
P = P̂ (Θ).
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Note that condition (48) becomes less restrictive if there exists a short directed cycle
for every feasible orientation of the underlying graph. In the graph theory literature, the
length of the smallest directed cycle of digraph D is called the girth of D, which we denote
by δ(D). Therefore, to rephrase the earlier statement, having a small girth for all of the
possible feasible orientations is crucial. This calls for a new notion of maximal girth of an
undirected graph, in addition to the girth, which we define below.

Definition 5.2. For a given undirected graph G, define the ‘maximal girth’ ∆(G) as
follows:

∆(G) = max
D∈Df (G)

δ(D) (49)

Corollary 5.3. Given an arbitrary power network G = (V,E,W), suppose that

ωkℓ <
π

2 · (∆(G)− 1)
∀{k, ℓ} ∈ E. (50)

Then, for each P ∈ P(G,Θ(G)) there cannot be multiple distinct solutions satisfying
P = P̂ (Θ).

Note that for cyclic networks, P(G,Θ(G)) is in general a nonconvex set, and there
have been recent works that address the issue via convex restrictions [36]. So far, we have
shown that finding a directed cycle satisfying condition (48) for all feasible orientations
corresponds to certifying that the P −Θ problem cannot have multiple distinct solutions.
Furthermore, Corollary 5.3 has introduced the concept of maximal girth to show that if
the allowable limits are uniformly less than the upper-bound in (50), then the P − Θ
problem cannot have multiple distinct solutions. The smaller the value of ∆(G), the more
freedom there is for angle differences over lines. The question arises as to whether we can
calculate or upper-bound ∆(G). For the example in Fig. 5, it is relatively easy to see that
∆(G) = 6. However, for a graph with m edges, the number of feasible orientations is on
the order of 2m, and calculating or even proving an upper-bound on ∆(G) is a difficult
task. Most of the existing results provide bounds that are on the order of n/s where s
is the minimum out-degree of a digraph [27], which is not useful for our purpose since
s = 1 for feasible orientations.

Here, we upper-bound the maximal girth by using another property of the underlying
undirected graph, namely the length of its longest chordless cycle, which we denoted by
κ(G). The basic idea behind the proof is that any directed cycle with a chord can be
further decomposed into two cycles, one of which is again a directed cycle. The formal
statement with its proof is provided in Lemma 10 of the Appendix. With this upper-bound
on maximal girth, condition (50) can be substituted by the following new condition:

ωkℓ <
π

2 · (κ(G)− 1)
∀{k, ℓ} ∈ E (51)

A major benefit of this result comes from the fact that κ(G) can be computed in a
relatively straightforward fashion. For the example in Fig. 5, the value of κ(G) is equal
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to the value of ∆(G). The procedure for the computation of κ(G) and its values for
several IEEE test cases are reported in Section 8.2. For complete graphs, κ(G) = 3
because all vertices are connected by an edge. In connection with Corollary 5.3, this
implies that complete graphs cannot have multiple distinct solutions if angle differences
are restricted below π/4, which is often the case in real-world power operations due to
security considerations. It is acknowledged, however, that power system graphs are not in
practice complete graphs and are, in fact, sparse.

6 Series-Parallel Reduction

This section shows that under the assumption that voltage angles lie within the allow-
able limits, the uniqueness of P − Θ problem solutions is preserved under series-parallel
reduction, with appropriate updates on the set of allowable limits, namely W. These
updates are involved with the dangling vertex, highway-path and parallel edges of the
graph, which will be explained in detail throughout the section. We conclude the section
with a recognition that all graphs that are reducible (via series-parallel reduction) to a K2

have a unique power flow solution if the updated allowable limit on the remaining single
line is less than π/2. These graphs turn out to be equivalent to a group of graphs called
Generalized Series-Parallel (GSP) that includes any tree or cycle graph. In fact, every
outer-planar graph is GSP [20]. This result has practical implications because real-world
transmission and distribution systems are not far away from this type of topology. We
begin by defining series-parallel reduction and GSP graphs. As detailed in [20], one of the
equivalent definitions of a GSP graph is as follows:

Definition 6.1. A graph is a Generalized Series-Parallel (GSP) graph if it can be reduced
to a single edge graph (K2) by a sequence of the following three operations:

1. Replacement of a pair of parallel edges with a single edge that connects their com-
mon endpoints.

2. Replacement of a pair of edges incident to a vertex of degree 2 with a single edge.

3. Deletion of a dangling (degree 1) vertex.

Any sequence of these three operations will be called a “series-parallel reduction".

To help visualize how the three operations work, in Fig. 6, we illustrate a reduction
example on the IEEE 14-bus network. Starting from the original network (a), the graph is
subsequently reduced to (d) via a sequence of series-parallel reductions. Going from (a)
to (b) represents an example of operation 3, where the dangling vertex (numbered by 8
in the figure) is deleted. The process from (b) to (c) is an example of operation 2, where
two edges incident to a vertex of degree 2 is replaced by a single edge. Finally, the process
from (c) to (d) is an example of operation 1, where two parallel edges are replaced by a
single edge.
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Figure 6: A simple diagram illustrating a sequence of series-parallel reductions for the
IEEE 14-bus system.

It turns out that the analysis of conditions (48–51) for the original power network
can be performed on a “series-parallel reduced" network that could be far smaller than
the original graph. Let us revisit the example in Fig. 6. In the original network (a),
edge {7, 8} cannot be part of any cycle because vertex 8 has degree 1. Therefore,
this edge can be omitted from the analysis of directed cycles. In network (b), edges
{6, 12} and {12, 13} have to be either both part of a cycle or both not part of any cycle.
Therefore, the two edges can be replaced by a single edge {6, 13} with a new allowable
limit, ω̃6,13 = ω6,12 + ω12,13. A similar implication follows if we replace the two parallel
edge in (c), connecting vertex 6 and 13, by a single edge with a new allowable limit that
is of maximum value among the replaced edges. Before we present the formal statement
of this observation, we define what a highway-path is below.

Definition 6.2. An induced path P of G with vertex set

Vh = {s, uh(1), uh(2), . . . , uh(H), t} (52)
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from vertex s to vertex t is called a highway-path if:

d(uh(i)) = 2 ∀i ∈ {1, . . . , H} (53)

and uh(i) is a non-slack vertex for every i ∈ {1, . . . , H}.

Note that a single edge is also considered a highway-path. By building on the previous
observations and using the above definition, we show that the problem of determining the
uniqueness of the power flow solutions for the original meshed network can be reduced
to determining the uniqueness of solutions on a smaller graph that excludes a dangling
vertex, a highway-path or a parallel edge.

Theorem 6.1. Consider a power network G = (V,E,W).

1. If G contains two parallel edges e1, e2 ∈ E both connecting the same pair of vertices,
define

V̄ = V, Ē = E \ {e2},

W̄ = {w̄e | w̄e = we, ∀e ∈ Ē \ {e1}, ω̄e1 = max{we1 , we2}}

2. If G contains a highway-path P, let Vh be the vertex set of P as described in (52).
Define

V̄ = V \ {uh(1), . . . , uh(H)}, Ē = E[V̄] ∪ {{s, t}},

W̄ = {w̄e | w̄e = we, ∀e ∈ E[V̄], ω̄s,t =
∑

e∈E[Vh]

ωe}

3. If G contains a dangling (degree 1) vertex u, define

V̄ = V \ {u}, Ē = E[V̄], W̄ = {w̄e | w̄e = we, ∀e ∈ Ē}

Let the reduced graph Gr be defined by Gr = (V̄, Ē, W̄). Then, the P − Θ power flow
problem for the original graph G has at most one solution if condition (50) is satisfied for
Gr.

Theorem 6.1 implies that deleting the graph’s dangling vertex, or contracting multiple
edges that are connected in series, or eliminating one of the two parallel edges do not
influence the uniqueness of power flow solutions as long as the set of allowable limits
W is updated appropriately. One major advantage of Theorem 6.1 is that the analyses
pertaining to directed cycles, maximal girth and longest chordless cycle introduced in
Section 5 can now be applied to a smaller reduced network. For instance, checking
condition (48) is time-dependent on the number of vertices, edges, and simple cycles
of a graph. As the graph becomes larger, this computation can be daunting since the
number of simple cycles can grow exponentially in the number of vertices. The effect of
series-parallel reduction on several IEEE test cases is illustrated in Section 8.1.
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Finally, it is no coincidence that these three reduction procedures are equivalent to
the three operations that are allowed and required to turn a GSP graph into a K2 graph
(see Definition 6.1). In other words, any GSP graph can be reduced to a single line after
undergoing a sequence of reduction procedures delineated in Theorem 6.1. The absence
of cycles suggests that Theorem 5.2 is unnecessary in this case, and warrants a simpler
result, which is given as a corollary below. The corollary states that the P −Θ problem on
GSP graphs has at most one solution if the final updated allowable limit for the reduced
single line is less than π/2.

Corollary 6.2. Suppose that the power system G = (V,E,W) has a GSP topology. Let
L = (V̄, Ē, W̄) be a K2 graph (containing the slack bus) that is series-parallel reduced
from G, where W̄ = {ω} represents the ‘allowable limit’ on the remaining line that is
updated according to the procedures in Theorem 6.1. If ω < π/2, then there is a unique
Θ ∈ Θ(G) such that P = P̂ (Θ) for each P ∈ P(G,Θ(G)).

7 Algorithm

In this section, we design an algorithm for finding the unique solution of the P−Θ problem
when the graph has a GSP structure. In general, the P −Θ equations constitute a system
of nonlinear equations and are prone to complex and chaotic behavior. Conventional
algorithms such as Newton’s method may fail to converge when a bad initial guess is
provided or if the system is close the its security margins. In the special case where the
injection operator P̂ (Θ) is strictly monotone, leading to a unique (if there exists) P −Θ
problem solution, a fixed point iteration approach will converge to the correct solution
with a convergence rate that depends on the monotonicity constant and Lipschitz constant
of the operator in question. However, requiring the injection operator to be monotonic
over a feasible region is quite restrictive. In our case, the uniqueness of the P −Θ power
flow problem for GSP graphs emerges from a repetitive reduction process of the network
and its flow set in a parameterized way that is not amenable to conventional numerical
methods. The power flow algorithm that we propose for the GSP networks, therefore,
will emulate this reduction process.

7.1 Linear-time algorithm

We begin with a simple example illustrating the idea behind the algorithm. Fig. 7 shows
a GSP network with four buses and five lines, where bus 1 is the slack bus as usual. Let
W = {ω1,2, ω2,3, ω1,3, ω1,4, ω3,4} denote the set of allowable limits for this network.
Suppose that the assumption in Corollary 6.2 is met, meaning that the network can be
reduced to a single edge connecting vertices 1 and 4 via series-parallel reduction and the
updated allowable limit for that edge is less than π/2. More specifically, this means that
ω̄1,4 < π/2, where ω̄1,4 equals the left-hand side of the following expression:
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max
{
ω1,4 , max{ω1,2 + ω2,3 , ω1,3}+ ω3,4

}
< π/2 (54)

Now, set the variable x to represent the real power flow from vertex 1 to vertex 2, i.e.
x = p12. Due to power balance at each vertex and the fact that vertex 2 has a degree
of two, p23 is an increasing function with respect to x. Furthermore, due to Lemma 4.1
and the allowable angle assumptions that we made, this means that θ12 and θ23 are also
increasing functions of p12. It follows that θ13 = θ12+ θ23 is also an increasing function of
x. Finally, due to the assumption on ω̄1,4 in (54), we know that ω1,3 <

π
2
, which implies

that p13 is an increasing function of θ13 and also of x.
Similarly, the flow variables expressed as bold arrows in Fig. 7 are all monotonically

increasing with respect to x. Furthermore, once x is known, all the other flow variables
can be calculated sequentially. We will call this flow variable x the primary flow. This
sequential process is illustrated below:

1. Set x = x0.

2. Calculate: p23 = p2 − r̂12(x)

3. Calculate θ12 and θ23. Then, add them up to obtain θ13.

4. Calculate p13 = p̂13(θ13).

5. Calculate: p34 = p3 − r̂23(p23)− r̂13(p13).

6. Calculate: p41 = p4 − r̂34(p34).

These steps will be embedded in the algorithm proposed in this section. Each iteration
of the algorithm will involve the above calculation of the flow variables, followed by an
update on the value of the primary flow. Notice that at each step of the process, all
the necessary information is already calculated in the preceding steps. Also, none of the
steps involves solving a separate optimization problem and just requires simple algebraic
calculations. Before delving into the full algorithm, we introduce a concept of outer-cycles.

Definition 7.1. An induced cycle C of G is called an outer-cycle if the following two
conditions are met:

1. C contains two highway-paths such that the union of the two paths is C and the
intersection is {s, t}. One of the paths (arbitrarily chosen), denoted by Sp, will be
called the principal-path and has vertex set Vp. The other path, named Sa, will be
called the auxiliary-path and has vertex set Va. Let the vertex sets be denoted as
follows:

Vp = {s, up(1), up(2), . . . , up(N), t} (55)
Va = {s, ua(1), ua(2), . . . , ua(M), t} (56)
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Figure 7: A two-cycle network sharing an edge

2. All the vertices except for s and t have degree 2 and are non-slack buses.

The concept of an outer-cycle is useful because it corresponds to a cycle that is reduced
via a combination of operations 1 and 2 of the series-parallel reduction (Definition 6.1). For
example, in Fig. 6, the outer-cycle with vertices {6, 12, 13} is reduced as it is transformed
from sub-figure (b) to (d). The order in which outer-cycles and dangling vertices are
deleted essentially define the series-parallel reduction. In our algorithm, it also corresponds
to the order in which the flows are calculated starting from the primary flow. Theorem 7.1
states that for a subset of GSP graphs, the exemplary steps above can work and the P−Θ
power flow problem can be solved in linear time. Here, we will use the notation G→ Gr

to signify the series-parallel reduction from graph G to Gr.

Theorem 7.1. For Corollary 6.2, suppose that O = {C1, . . . ,CR} is the sequence of
outer-cycles reduced in the process G → L. Let Ej denote the edge set for cycle Cj.
Then, there is a linear-time algorithm with complexity O(|E|·log(1/ϵ)) to find the unique
solution of the P −Θ power flow problem, given a desired precision level ϵ, if the following
condition holds:

| ( ∪
i<j

Ei) ∩ Ej |≤ 1 ∀j = {1, . . . , R} (57)

The linear-time algorithm is given in Algorithm 1. The algorithm makes use of the
fact that for each line, there is one direction for which the flow increases with respect to
the primary flow and another for which the flow decreases with respect to the primary
flow. Let F+ denote the set of ordered pair of indices (k, ℓ) such that pkℓ is monotonically
increasing with respect to the primary flow. Also, for notation reasons, let p(k, ℓ) also
denote the flow from bus k to ℓ in addition to pkℓ. Below, we define a type of projection
operator Π that allows the iterative sequence to stay in the allowable sets arising from our
angle difference assumptions. Here, xiter denotes the iterth iteration value of the primary
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Figure 8: A simple diagram of the IEEE 14-bus system. Buses are marked in plain
numbers, while the flow variables are marked in parenthesized numbers in the order in
which they are calculated in Algorithm 1. Nodal real power injections are not shown in
order to simplify the diagram.

flow x. Furthermore, we make use of several MATLAB functions: break means to break
out of all the for-loops, and find(A == a) returns the index of an array A for which the
value is equal to a.

Π(xiter, pkℓ) =


xiter+1 = x+xiter

2
and break if pkℓ ≥ pkℓ

xiter+1 = xiter+x
2

and break if pkℓ ≤ p
kℓ

θkℓ = θ̂kℓ(pkℓ) otherwise

Each iteration of Algorithm 1 involves calculating all the flows in the set F+ based
on the current value of the primary flow. This process is done sequentially in the same
order in which the original graph is reduced to the final K2 graph. Based on these
values, the primary flow is updated by the bisection method until the solution is found. In
Section 8.3, a set of representative numerical examples are generated and the performance
of this proposed algorithm is illustrated.

7.2 Graphs that do not satisfy the assumption in Theorem 7.1

Theorem 7.1 states that if a power system network with GSP topology satisfies (57),
then the power flow problem can be solved efficiently. Equation (57) essentially requires
that any chordless cycle can only share at most one edge with all the previous reduced
cycles. Obviously, this result weakens once the assumption is not met. We will illustrate
the difficulties that arise using the IEEE 14-bus system, which has a GSP topology but
does not satisfy (57).

Consider the system drawn in Fig. 8 and notice that p6,12 is selected as the primary flow.
Given the primary flow value, the flows (2)–(5) can be easily calculated as delineated in
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Section 7.1. The first difficulty arises when trying to calculate the next unknown, flow (6).
This is because the assumption of Theorem 7.1 breaks down: cycle {6, 13, 14, 9, 10, 11, 6}
and cycle {5, 6, 11, 10, 9, 4, 5} share three edges. Therefore, even though we know θ6,9
from the previous calculations, i.e. by doing θ69 = θ̂6,13(p6,13)+ θ̂13,14(p13,14)+ θ̂14,9(p14,9),
finding flow (6) requires solving an additional implicit function. Noting that p11,10 =
P11 − r̂6,11(p6,11) and p10,9 = P10 − r̂11,10(p11,10) = P10 − r̂11,10(P11 − r̂6,11(p6,11)), the
implicit function to be solved is:

θ̂6,11(p6,11) + θ̂11,10(P11 − r̂6,11(p6,11))

+ θ̂10,9(P10 − r̂11,10(P11 − r̂6,11(p6,11))) = θ6,9

where the only variable is now p6,11. This equation is monotonically increasing in p6,11
and can be solved in log(1/ϵ). After having found the value for flow (6), flows (7)–(9)
can be found by simple arithmetic calculations. Similarly, p9,7 can be found by solving
another monotonic implicit function. This is because the nodal injection at bus 8 gives a
unique p7,8 that acts as an additional negative injection at bus 7. After this, p9,4 and p7,4
can be calculated by explicit arithmetic equations. The next difficulty arises after these
steps. At this point, buses 5 and 4 both have three lines where the flows are unknown,
which means that there is no easy way to calculate the remaining flow variables of the
network. The only thing left to do is to solve a sub-problem on a subsystem of the
original network, which is depicted in Fig. 8 as dotted lines. For this sub-problem, it
is important to update the original nodal real power injections at bus 5, namely P5, by
P5 − r̂6,5(p6,5). Likewise, the original nodal real power injections at bus 9, namely P9, by
P9 − r̂10,9(p10,9)− r̂14,9(p14,9). Also, update injection at bus 4 in a similar manner. Now,
observe that this subsystem satisfies all the assumptions made in Theorem 7.1 and hence
the sub-problem can be solved in linear time.

The example above illustrates the fact that violating the assumptions corresponds
to an increase in the algorithm’s complexity. Suppose that the original graph G can be
divided into two subgraphs: the first part containing all the difficulties and the second part
satisfying the assumptions made in Theorem 7.1. Then, the complexity of the algorithm
will become O

(
{m1c1log(1/ϵ)} ·m2log(1/ϵ)

)
= O

(
c1m1m2log

2(1/ϵ)
)

where mi’s are
the number of edges for each subgraph and c1 is the number of additional implicit functions
that have to be solved for the first subgraph.

8 Numerical and simulation results

In this section, we use simulation and computation to numerically verify and support the
ideas that have been developed in the paper. We start with visualizing how series-parallel
reduction works on actual power systems. Then, we calculate the longest chordless cycle –
which provides an upper bound on maximal girth – of benchmark power systems. Finally,
we apply Algorithm 1 to a class of networks in order to demonstrate its performance.
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8.1 Series-parallel reduction of IEEE test cases

In Section 6, we introduced series-parallel reduction and showed that analyzing the unique-
ness of the P −Θ problem solution can be performed on a smaller ‘series-parallel reduced’
network. In Fig. 9, we illustrate how these reductions visualize when applied to actual
IEEE test cases (note that here the slack bus was not necessarily selected as bus 1).
Figures 9(a) and (c) represent the graphs before the reduction and figures 9(b) and (d)
represent the graphs after the series-parallel reduction. We can see that the reduced
graphs are much smaller and contain the core information of the original graph. These
reductions make Theorem 5.2 more practical to use because condition (48) is much easier
to check on a smaller network.

κ(G) κ̃(G)
case5 4 4
case14 6 6
case30 11 8
case39 17 8

Table 1: Upper-bounds on maximal girth for IEEE test cases.

8.2 Calculation of κ(G)

In Section 5, we introduced κ(G) as an upper-bound on the maximal girth ∆(G), which
is computationally more tractable than ∆(G). To find the value of κ(G), we first use a
function built in Sage [33] to calculate all simple cycles of the graph, and then narrow
them down to chordless cycles. Ultimately the length of the longest chordless cycle is
obtained. The values are calculated for several IEEE standard test cases and reported
in Table 1. A tighter bound can be found by observing that chordless cycles are not
entirely immune to further decomposition. For example, consider the IEEE 39-bus network
depicted in Fig. 9(c). One of the chordless cycles that are found using our implementation
is {1, 2, 3, 4, 14, 13, 12, 11, 6, 7, 8, 9, 39, 1}, which has length thirteen (note that this is not
the longest chordless cycle). This is a chordless cycle because there is no edge directly
connecting any two vertices of the cycle. However, as we can observe from Fig. 10, this
cycle can be further partitioned into three smaller chordless cycles by the three edges in
its interior. Furthermore, depending on the orientation of these three edges, at least one
of the three smaller cycles is again a directed cycle if the big cycle is oriented. The tighter
bound achieved from this process is denoted by κ̃(G) and also reported in Table 1. Now,
Corollary 5.3 can be used to study when the power flow equations have a unique solution.

8.3 Performance of linear-time algorithm

In order to verify the effectiveness of the proposed algorithm, we analyze its performance
along with the performance of Newton-Raphson method as a standard algorithm used to
solve power-flow in practice. To implement this standard algorithm, we use the MAT-
POWER [30] runpf function with the ‘Newton-Raphson (NR)’ option. Furthermore, in
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Figure 9: (a) IEEE 30-bus system before reduction, (b) IEEE 30-bus system after re-
duction, (c) IEEE 39-bus system before reduction, and (d) IEEE 39-bus system after
reduction.

order to satisfy the assumptions in equation (57), we create a class of triangulated net-
works of varying sizes (see Appendix J. for figure) using the MATPOWER casefile format
(mpc). The allowable set of angles is enforced by setting the 12th and 13th columns of the
field “branch" in the casefile to the steady-state stability limit (refer to Definition 4.1).
Note that the matpower-NR algorithm cannot enforce additional angle constraints, such
as (54), whereas Algorithm 1 does by design. Note that matpower-NR can be modified
to incorporate these constraints if we formulate the power flow problem as an optimal
power flow (OPF) problem, but then this becomes a constrained nonconvex optimization
problem which introduces its own difficulties and is not the subject of this paper (even
finding a feasible point to such optimization problem is a challenge). The following steps
describe the experiments:

1) Generate a random Θ∗ that belongs to the set Θ(G). This is the true set of angles
that we wish to recover via the above algorithms.
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Figure 10: Further decomposition of a directed chordless cycle. The solid arrows represent
the original directed chordless cycle. The dotted arrows represent a possible orientation
of the three edges that lie in the interior of the cycle.

2) Calculate the real power injection vector P , using Θ∗.

3) Taking P as input, solve the P − Θ power flow problem using both Algorithm 1
and matpower-NR method. The voltage angles retrieved from each algorithm are
denoted by Θ1 and ΘNR, respectively.

4) Calculate the errors ∥Θ1 −Θ∗∥2 and ∥ΘNR −Θ∗∥2.

For the initial point that is provided to the MATPOWER solvers, we generate a ran-
dom point around the true solution via Θinit = Θ∗ + Θnoise, where Θnoise is a random
vector whose elements are independent and normally distributed with mean µ. For the ini-
tialization of Algorithm 1, a random value is chosen between the minimum and maximum
allowable real power flow. In order to highlight the performance of the two algorithms
as the initial point deviates away from the true solution, we test three different values of
µ = {0.1, 1, 10}. The experiments are performed on an increasing number of buses and
20 independent simulations are carried out for each fixed network.

Fig. 11 shows the results of these experiments. The top three figures plot the average
2-norm error (for varying values of µ) and the bottom three figures plot the average
solver time (for varying values of µ) as a function of the network size. From the top
three figures, it can be observed that matpower-NR performs relatively well and is able
to recover Θ∗ when the initial point is close enough to Θ∗. However, as Θinit deviates
further away from Θ∗, matpower-NR fails to reliably recover Θ∗. In fact, for most cases
with initial values far from the true solution, the matpower-NR algorithm does not even
converge within the maximum iteration limit. For µ = 10, the matpower-NR method
successfully converged for only 36 out of the 400 simulations. Fig. 12 plots the errors
for these 36 convergent cases. It can be seen that several of these display high errors
despite the successful convergence, implying that the algorithm converged to a different
solution. Furthermore, it is demonstrated that Algorithm 1 does not converge to any of
these different solutions and is capable of recovering Θ∗ irrespective of the initial point
or the number of buses. Finally, from the bottom three figures, we can observe that the
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solving time for Algorithm 1 has a very slow growth in the size of the network and therefore
can be used to solve large-scale problems. Note that Algorithm 1 was implemented in
MATLAB with no strenuous efforts at optimizing the solving time and the purpose of
Fig. 11 is only to demonstrate linear-time complexity of the proposed algorithm.
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Figure 11: Comparison of average errors and solving times for Algorithm1 and matpower-
NR. The first three figures plot the average error for different values of µ = 0.1, 1, 10
(from top to bottom). The last three figures plot the average solving time for different
values of µ = 0.1, 1, 10 (from top to bottom)

9 Conclusion

In this paper, we establish sufficient conditions for the uniqueness of power flow solutions
(if it exists) in an AC power system via the monotonic relationship between real power
flows and voltage phase angles. We extend a simple observation made for a single line
network – that angle differences bounded by their stability limit will give monotonicity and
uniqueness – to the general network with multiple lines. More specifically, we prove that
the P − Θ power flow problem has at most one solution for any acyclic or GSP graphs.
These conditions guarantee the uniqueness of power flow solution, if it exists. In addition,
for arbitrary power networks, we show that multiple distinct solutions cannot exist under
the assumption that angle differences across the lines are bounded by some limit related
to the maximal girth of the network. It is also shown that the series-parallel reduction on a
graph does not alter the uniqueness of P −Θ problem solutions and therefore the analysis
for a large network can be performed on a much smaller “reduced" network. Finally, we
develop a efficient algorithm for a subset of the GSP graphs that work reliably, irrespective
of the initial point.
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Figure 12: Errors for the 36 (out of 400) simulations when matpower-NR converged
successfully for µ = 10.

10 Appendix

10.1 Proof of Lemma 4.1

proof. The equation for the real power flow from node k to node ℓ over line {k, ℓ} is given
in equation (43). After combining the cosine and sine functions into one sine function,
we obtain a simpler equation for both flows:

pkℓ = Gkℓ|vk|2+|vk|·|vℓ|Zkℓ sin(θkℓ + γkℓ) (58)

With a simple rearrangement:

sin(θkℓ + γkℓ) =
pkℓ −Gkℓ|vk|2

|vk|·|vℓ|Zkℓ

(59)

Using the assumption made on the angle differences and the definition of γkℓ, we deduce
the following bounds on θkℓ + γkℓ:

θkℓ + γkℓ ≥ − tan−1(Bkℓ/Gkℓ) + tan−1(−Gkℓ/Bkℓ)

= −
(π
2
− tan−1(Gkℓ/Bkℓ)

)
− tan−1(Gkℓ/Bkℓ) = −

π

2
θkℓ + γkℓ ≤ tan−1(Bkℓ/Gkℓ) + tan−1(−Gkℓ/Bkℓ)

=
π

2
− 2 tan−1(Gkℓ/Bkℓ) ≤

π

2

In summary, the angle θkℓ + γkℓ belongs to the range [−0.5π, 0.5π] and therefore there
exists a unique value of θkℓ+ γkℓ that satisfies equation (59), leading to a unique value of
θkℓ. To prove the second part of the lemma, recall that the equation for the real power
flow from node k to node ℓ over line {k, ℓ} is given in equation (43). Similarly, the real
power flow in the opposite direction (from node ℓ to k) is given by:

pℓk = Gkℓ(|vℓ|2−|vk|·|vℓ|cos θkℓ)−Bkℓ|vk|·|vℓ|sin θkℓ (60)
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After combining the cosine and sine functions into one sine function, we arrive at a simpler
equation similar to equation (58):

pℓk = Gkℓ|vℓ|2−|vk|·|vℓ|Zkℓ sin(θkℓ − γkℓ) (61)

Furthermore, we can derive bounds on θkℓ−γkℓ similar to those on θkℓ+γkℓ shown above:

θkℓ − γkℓ ≥ − tan−1(Bkℓ/Gkℓ)− tan−1(−Gkℓ/Bkℓ)

= −π

2
+ 2 tan−1(−Gkℓ/Bkℓ) ≥ −

π

2
θkℓ − γkℓ ≤ tan−1(Bkℓ/Gkℓ)− tan−1(−Gkℓ/Bkℓ)

=
(π
2
− tan−1(Gkℓ/Bkℓ)

)
+ tan−1(Gkℓ/Bkℓ) =

π

2

Therefore, taking note of the fact that θkℓ+γkℓ and θkℓ−γkℓ are bounded by [−0.5π, 0.5π],
pkℓ and pℓk are increasing and decreasing functions of θkℓ, respectively. It can be concluded
that pℓk is a decreasing function of pkℓ for pkℓ ∈ (p

kℓ
, pkℓ).

10.2 Proof of Theorem 4.2

(a) Let P ∈ P(G,Θ(G)). We show by construction that the specification of P uniquely
determines Θ ∈ Θ(G) such that P = P̂ (Θ). Note that since the power system has a tree
topology, there is a unique path Ek between any bus k and bus 1 (consisting of successive
lines) and that the distance c(k) is therefore well-defined. Let c = maxk∈V c(k). We
prove the result by using an induction argument on the decreasing distance ĉ. That is,
the induction starts at ĉ = c and then considers successively smaller values of ĉ.

First, consider the case with distance ĉ = c. Consider each bus k with c(k) = c. Note
that each such bus k is a leaf of the tree and that the injection pk at this bus equals
pkℓ(θkℓ), where {k, ℓ} ∈ T is the unique line connected to bus k and θkℓ is the angle
difference across this line. By Lemma 4.1, this means that pk uniquely determines θkℓ.
Consequently, we can also evaluate pℓk(−θkℓ), i.e., the power fow from bus ℓ into the line
at the other end.

Now, suppose that for each bus k with c(k) = ĉ, we have that the injections pk for
each bus k ∈ V \ {1} with c(k) ≥ ĉ uniquely determines θkℓ, where {k, ℓ} ∈ T is the
unique line connected to bus k such that c(ℓ) = c(k) − 1 = ĉ − 1. Consider any bus k′

with c(k′) = ĉ − 1 and suppose that {k′, ℓ′} ∈ T is the unique line connected to bus k′

such that c(ℓ′) = c(k) − 2 = ĉ − 2. By power balance at bus k′, pk′,ℓ′(θk′,ℓ′) equals the
injection pk′ minus the sum of the flows onto each other line {k′, ℓ′′} incident to bus k′.
However, by assumption, c(ℓ′′) ≥ ĉ and so the flow on each such line {k′, ℓ′′} is uniquely
determined by the injections pk for each bus with c(k) ≥ ĉ. In turn, this means that
the flow pk′,ℓ′(θk′ℓ′) and the corresponding angle θk′ℓ′ are both uniquely determined by
pk′ together with the injections pk for each bus with c(k) ≥ ĉ. That is, the angle θk′ℓ′
and the flow pk′,ℓ′(θk′ℓ′) are uniquely determined by the injections pk for each bus with
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c(k) ≥ ĉ− 1.
The induction continues to the root of the tree; that is, to bus 1. Hence, for all

{k, ℓ} ∈ T, the injections pk for each bus k ∈ V uniquely determines both pkℓ(θkℓ) and the
corresponding angle θkℓ and pℓk(−θkℓ). Now, note that the angle θ1 = 0. Therefore, since
each angle difference is uniquely specified, this means that the corresponding angles are
also uniquely determined. As a result, there is a unique Θ ∈ Θ(G) such that P = P̂ (Θ).

(b) Suppose that P a, P b ∈ P(G,Θ(G)), with the corresponding flows also labeled by
superscript a and b, and let λ ∈ [0, 1] be given. Let Θa,Θb ∈ Θ(G) be the unique angles
satisfying P a = P(G,Θa) and P b = P(G,Θb). Consider the injection P ⋆ = λP a + (1−
λ)P b. To prove convexity of P(G,Θ(G)), it is enough to show that P ⋆ ∈ P(G,Θ(G)),
which will involve constructing an angle Θ⋆ ∈ Θ(G) such that P ⋆ = P(G,Θ⋆). By
a similar argument to Part 1, first consider injections at buses k with c(k) = c and
let {k, ℓ} ∈ T be the unique line connected to bus k. Note that, by definition, P ⋆

k =
λP a

k + (1− λ)P b
k and therefore the corresponding flow p⋆kℓ is the convex combination of

the corresponding injections. In other words,

p⋆kℓ = P ⋆
k

= λP a
k + (1− λ)P b

k , by definition of P ⋆
k ,

= λpkℓ(θ
a
kℓ) + (1− λ)pkℓ(θ

b
kℓ)

The first and third equations come from the fact that {k, ℓ} ∈ T is the unique line
connected to bus k. Now, note that the values of flows pkℓ(θ

a
kℓ) and pkℓ(θ

b
kℓ) belong to

[p
kℓ
, pkℓ], which is a convex set. Thus, we also have that p⋆kℓ ∈ [p

kℓ
, pkℓ]. Therefore, there

exists a unique |θ⋆kℓ|≤ tan−1(Bkℓ/Gkℓ) such that p⋆kℓ = pkℓ(θ
⋆
kℓ). We proceed as in Part

1 by using an induction argument on the decreasing distance ĉ. That is, the induction
starts at ĉ and shows that for each {k, ℓ} ∈ T, the corresponding angle difference θ⋆kℓ with
injections P ⋆ satisfies |θ⋆kℓ|≤ tan−1(Bkℓ/Gkℓ). Proceeding to bus 1, and again noting that
θ1 = 0 is specified, it can be concluded that there is a uniquely defined Θ⋆ ∈ Θ(G) such
that P ⋆ = P(G,Θ⋆). Therefore, P(G,Θ(G)) is convex.

10.3 Lemma 10.1 and its proof

For each pair of vertices k, ℓ ∈ V, we define Θ̂kℓ = Θ̂k− Θ̂ℓ. Note that we do not require
that {k, ℓ} ∈ T in the definition of Θ̂kℓ and in the next lemma:

Lemma 10.1. Suppose that the power system G = (V,T) has a tree topology. Then,
for each k ∈ V \ {1} and ℓ ∈ V and for each P ∈ P(G,Θ(G)), we have ∂Θ̂kℓ

∂pk
(P ) ≥ 0.

proof. Consider the path Ek from bus k to bus 1 and the path Eℓ from bus ℓ to bus 1.
Note that Θ̂k =

∑
(k′,ℓ′)∈Ek

Θ̂k′ℓ′ and Θ̂ℓ =
∑

(k′,ℓ′)∈Eℓ
Θ̂k′ℓ′ , because θ1 = 0. Moreover,

Θ̂kℓ =
∑

(k′,ℓ′)∈Ek
Θ̂k′ℓ′ −

∑
(k′,ℓ′)∈Eℓ

Θ̂k′ℓ′ . Now, observe that changes in injection at bus
k can only affect flows, and therefore angle differences, in the path between bus k and
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bus 1. Moreover, changes in flows and angles differences in the common part of the path
Ek ∩ Eℓ affect the angle at both buses k and ℓ equally. Define Ekℓ = Ek \ (Ek ∩ Eℓ).
That is, Ekℓ is the path from bus k to the bus that is common to both Ek and Eℓ and
furthest from bus 1. Then:

∂Θ̂kℓ

∂pk
(P ) =

∑
(k′,ℓ′)∈Ekℓ

∂Θ̂k′ℓ′

∂pk
(P ).

We now observe that the relationship between injection at bus k and angle differences at
lines in this path Ekℓ are all monotonic. That is, ∂Θ̂kℓ

∂pk
(P ) ≥ 0. According to Lemma 10.1,

we can see that the angle difference between any non-slack bus k and any other bus ℓ is a
monotonically increasing function of the real power injection at bus k when the injection
vector P is within the set of allowable injections.

10.4 Proof of Lemma 5.1

Suppose that there are two distinct vectors of voltage angles, Θ∗,Θ∗∗ ∈ Θ(G) that satisfy
the power flow equations. Without loss of generality, assume that θ∗∗12 > θ∗12. Then, due
to power balance at buses 2, . . . , N and Assumption 4.1, a simple induction argument
shows that

θ∗∗i,i+1 − θ∗i,i+1 > 0 ∀i = {1, . . . , N}, (62)

where bus N + 1 is again bus 1. Furthermore, we have that

θ∗∗i,i+1 − θ∗i,i+1 < π ∀i = {1, . . . , N}, (63)

which can be shown using the same logic followed to derive equation (67). Finally, by
definition,

θ∗∗1,N − θ∗1,N =
N−1∑
i=1

(θ∗∗i,i+1 − θ∗i,i+1) > 0 (64)

and also,

θ∗∗1,N − θ∗1,N =
N−1∑
i=1

(θ∗∗i,i+1 − θ∗i,i+1) ≤
N−1∑
i=1

|θ∗∗i,i+1 − θ∗i,i+1|

≤
N−1∑
i=1

(|θ∗∗i,i+1|+|θ∗i,i+1|)

<
N−1∑
i=1

ω∗∗
i,i+1 +

N−1∑
i=1

ω∗
i,i+1 < π.
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This is a contradiction to equation (63) and therefore there cannot be two distinct solu-
tions.

10.5 Proof of Theorem 5.2

In order to prove by contraction, suppose that there are two distinct solutions to the power
flow problem, denoted as Θ∗,Θ∗∗ ∈ Θ(G). Now, we define a digraph Dr(G) = Dr(V,Ar)
where the direction of each directed edge in Ar is based on the difference (residual)
between these two solutions. Hereby, we define the residual incidence matrix Lr for
Dr(G) below:

Lr(a, k) =


−1 if a = (k, ℓ) ∈ Ar and θ∗∗k,ℓ > θ∗k,ℓ
1 if a = (ℓ, k) ∈ Ar and θ∗∗k,ℓ > θ∗k,ℓ
1 if a = (k, ℓ) ∈ Ar and θ∗∗k,ℓ < θ∗k,ℓ
−1 if a = (ℓ, k) ∈ Ar and θ∗∗k,ℓ < θ∗k,ℓ

(65)

Note that because of power balance at each node, this orientation has to be a Feasible
Orientation. By assumption, for this fixed feasible orientation Dr(G) ∈ Df (G), there
exists a directed cycle C satisfying the inequality in (48). Without loss of generality,
assume that θ∗∗u(1),u(2) > θ∗u(1),u(2). Then, because C is a directed cycle, it holds that

θ∗∗u(i),u(i+1) − θ∗u(i),u(i+1) > 0 ∀i = {1, . . . , N}, (66)

where the (N + 1)th bus is again the 1st bus. Furthermore,

θ∗∗u(i),u(i+1) − θ∗u(i),u(i+1) < π ∀i = {1, . . . , N}, (67)

which is due to the following inequalities:

θ∗∗u(i),u(i+1) − θ∗u(i),u(i+1) ≤ |θ∗∗u(i),u(i+1) − θ∗u(i),u(i+1)|
≤ |θ∗∗u(i),u(i+1)|+|θ∗u(i),u(i+1)|< 2 · ωu(i),u(i+1) < π
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However, by definition,

θ∗∗u(1),u(N) − θ∗u(1),u(N) =
N−1∑
i=1

(θ∗∗u(i),u(i+1) − θ∗u(i),u(i+1))

≤
N−1∑
i=1

|θ∗∗u(i),u(i+1) − θ∗u(i),u(i+1)|

≤
N−1∑
i=1

|θ∗∗u(i),u(i+1)|+
N−1∑
i=1

|θ∗u(i),u(i+1)|

<
N−1∑
i=1

ωu(i),u(i+1) +
N−1∑
i=1

ωu(i),u(i+1) < π

which is a contradiction to equations (66) and (67). Therefore, there cannot be two
distinct vectors Θ∗,Θ∗∗ ∈ Θ(G) that satisfy P = P̂ (Θ).

10.6 Proof of Theorem 5.3

Suppose that equation (50) is satisfied. In other words, to restate the equation here,

ωkℓ <
π

2 · (∆(G)− 1)
∀{k, ℓ} ∈ E. (68)

Defining ωmax
kℓ = max{k,ℓ}∈E ωkℓ, we also have that

ωmax
kℓ <

π

2 · (∆(G)− 1)
∀{k, ℓ} ∈ E. (69)

Multiplying both sides of the equation by (∆(G)− 1) yields

(∆(G)− 1) · ωmax
kℓ <

π

2
. (70)

Now, using the definition of ∆(G), the following holds true for every D ∈ Df (G):

(δ(D)− 1) · ωmax
kℓ <

π

2
. (71)

Since δ(D) represents the length of the smallest directed cycle of D, let us denote this
smallest directed cycle by C and its vertex set by Vdc = {u(1), . . . , u(|Vdc|)} ⊆ V. Then,
the above inequality becomes equivalent to the following:

(|Vdc|−1) · ωmax
kℓ <

π

2
. (72)

58



This implies that
|Vdc|−1∑
i=1

ωu(i),u(i+1) <
π

2
. (73)

Therefore, we have satisfied condition (48) of Theorem 5.2 and as a result can conclude
that for each P ∈ P(G,Θ(G)) there cannot be multiple distinct solutions for the P =
P̂ (Θ) problem.

10.7 Lemma 10.2 and its proof

Lemma 10.2. For a given graph G = (V,E), the following inequality holds:

∆(G) ≤ κ(G) (74)

Proof. Consider an arbitrary feasible orientation on graph G, and denote it as D = (V,A).
We will first show that the shortest directed cycle in D must by chordless. Recall that
because the feasible orientation enforces every vertex to have at least one incoming arc
and one outgoing arc, there always exists a sequence of arcs in D that form a directed
cycle. To put this in another way, there is at least one directed cycle in D(G). Let us
call the shortest of these directed cycles, C0 and denote its vertices using the ordered
set {u(1), . . . , u(N)}. In other words, (u(i), u(i + 1)) ∈ A ∀i ∈ {1, . . . , N − 1} and
(u(N), u(1)) ∈ A. In order to prove by contradiction, assume that C0 contains a chord
with two endpoints u(k), u(ℓ) and k < ℓ. Then, this chord divides C0 into two cycles
C1 and C2 such that the symmetric difference of the two becomes C0. Depending on
whether (u(k), u(ℓ)) ∈ A or (u(ℓ), u(k)) ∈ A, exactly one of C1 and C2 again becomes
a directed cycle. This is a contradiction to C0 being the shortest directed cycle. So far,
we have established that the shortest directed cycle of a given digraph is a chordless cycle
of its underlying undirected graph G. It follows naturally that the length of this shortest
directed cycle is less than the length of the longest chordless cycle in G:

δ(D) ≤ κ(G) for any D ∈ Df (G)

Taking the maximum over D ∈ Df (G) on both sides of the inequality and using the
definition of maximal girth in (49), we arrive at the desired conclusion.

10.8 Proof of Theorem 6.1

(a) Consider a graph G = (V,E,W) with a dangling vertex k. See Figure 14 for an
example, where k = 1 is the dangling vertex. By definition, vertex k cannot be part of
any cycle. Therefore, if there exists a directed cycle C that satisfies condition (50) for
Gr = (V̄, Ē, W̄), the same cycle also satisfies condition (50) for G = (V,E,W).

(b) Consider a graph G = (V,E,W) with a highway-path. See Figure 15 for an
example, where the vertex set {1, 2, 3, 4} specify the highway-path. Denote the vertex
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set of the highway-path P as the following:

Vh = {s, uh(1), uh(2), . . . , uh(H), t} (75)

For Gr = (V̄, Ē, W̄), suppose that condition (50) is satisfied for a directed cycle Cr that
includes the edge {s, t}. This implies that for G = (V,E,W), condition (50) is satisfied
for a directed cycle C that includes the edges {s, uh(1)}, {uh(1), uh(2)}, . . . , {uh(H −
1), uh(H)} and {uh(H), t}. This is because the edges in a highway-path must either all
be part of a cycle or all not be part of any cycle.

(c) Consider a graph G = (V,E,W) with a pair of parallel edges e1 and e2, both
connecting the two end-points s and t. For Gr = (V̄, Ē, W̄), suppose that condition (50)
is satisfied for a directed cycle Cr that includes the edge {s, t}. This implies that for
G = (V,E,W), condition (50) is satisfied for a directed cycle C that either (i) includes
only edge e1 but not e2, (ii) includes only edge e2 but not e1, or (iii) includes both edges
e1 and e2.

10.9 Proof of Theorem 7.1

We prove that there is a linear-time algorithm by construction. Denote the vertex set of
the auxiliary path of the jth outer-cycle by:

Va
j = {sj, ua

j (1), u
a
j (2), . . . , u

a
j (Nj), tj}

Set the primary flow to be p(sj, u
a
j (1)) and initialize its value to be the average-value of

the range
[p(sj, u

a
j (1)), p̄(sj, u

a
j (1))]

. Here, we again abuse some notation so that p(k, ℓ) denotes the real power flow from
vertex k to ℓ. Then, because all of the intermediate nodes ua

j (1), . . . , u
a
j (Nj) have degree

two, the subsequent flows on the auxiliary path can be calculated by simple arithmetic.
Furthermore, due to the allowable angle assumption, we can uniquely determine the angle
difference across every edge that is part of the auxiliary path. Summing them up will
also provide the value for θsj ,tj . Also, because of the assumption made in (57), the
principal path consists of a single edge. The flow on this edge can be calculated by
using the previously calculated θsj, tj. Finally, note that the flows that we calculated
so far are all increasing functions of the primary flow. This process can be repeated for
all outer-cycles in O until the last cycle CR. For CR, instead of calculating θsR,tR and
then using it to calculate p(sR, tR), do the following: p(sR, tR) = ptR − p(uR(NR), tR).
Finally, calculate all the angle differences using these flow values and add them around
the cycle. If the angle sum is greater than zero, reduce the range of the primary flow to
[p(sj, u

a
j (1)), p(sj, u

a
j (1))] and restart the process; otherwise, if the angle sum is greater

than zero, reduce the range of the primary flow to [p(sj, u
a
j (1)), p̄(sj, u

a
j (1))] and restart

the process. We repeat this process until the range is less than ϵ. Calculating all flows

60



takes O(|E|) time and this is repeated for log(1/ϵ) times if we want ϵ-accuracy. This
concludes the proof.

10.10 Additional Figures
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Figure 13: A test network consisting of triangles
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Figure 14: A simple graph with dangling vertex
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Figure 15: A simple graph with multiple edges in series
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Algorithm 1: Linear-time GSP algorithm
Initialize: Set ϵ, δ0 > ϵ, P and iter = 0
Delete dangling vertex k and add injection value of −r̂k,ℓ(pk) to its unique adjacent
bus ℓ: Pℓ = Pℓ − r̂k,ℓ(pk). Do this for all dangling vertices.
Set reduction order: Find the sequence of outer-cycles that are eliminated during the
sp-reduction process. ⇒ O = {C1, . . . ,CR}
For each cycle Cj ∈ O: set the principal (Sp

j) and auxiliary (Sa
j ) paths of Cj so that Sp

j

be the path with one edge.
Order the vertices in Sa

j as Va
j = {ua

j (1), . . . , u
a
j (Mj)} so that (ua

j (1), u
a
j (2)) ∈ F+.

Set primary flow x to represent p(ua
1(1), u

a
1(2)). Then, do

x = p(ua
1(1), u

a
1(2)), x = p(ua

1(1), u
a
1(2)), x

0 = 1
2
(x+ x), ua

0(1) = ua
1(1)

while |δiter|> ϵ do
for j=1:R do

z = find(Va
j == ua

j-1(1))
for f = 1 : z-1 do

k = ua
j (z − f), ℓ = ua

j (z − f + 1), q = ua
j (z − f + 2),

p(k, ℓ) = r̂k,ℓ(Pℓ − p(ℓ, q)), Π(xiter, p(k, ℓ))

end

for f = z : Mj-2 do
k = ua

j (f + 1), ℓ = ua
j (f + 2), q = ua

j (f),
p(k, ℓ) = Pk − r̂q,k(p(q, k)) Π(x

iter, p(k, ℓ))

end

wj =
∑Mj−1

k=1 θua
j (k),u

a
j (k+1), p(ua

j (1), u
a
j (Mj)) = p̂ua

j (1),u
a
j (Mj)(wj),

Pua
j (1)

= Pua
j (1)
− p(ua

j (1), u
a
j (2)),

Pua
j (Mj) = Pua

j (Mj) + p(ua
j (Mj − 1), ua

j (Mj))

Delete dangling vertex k, and add injection value of −r̂k,ℓ(pk) to its
unique adjacent bus ℓ: Pℓ = Pℓ − r̂k,ℓ(pk)

end

p(ua
R(MR), u

a
R(1)) = Pua

R(MR) − p(ua
R(MR − 1), ua

R(MR))
Π(xiter, p(ua

R(MR), u
a
R(1))), δiter = wR + θua

R(MR),ua
R(1)

if δiter > 0 then
x = xiter, xiter+1 = 1

2
(x+ x)

else
x = xiter, xiter+1 = 1

2
(x+ x)

end

iter = iter + 1

end
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Chapter IV

Uniqueness of Power Flow
Solutions Using Graph-theoretic
Notions

1 Introduction

The AC power flow problem plays a crucial role in various aspects of power systems, e.g.,
the daily operations in contingency analysis and security-constrained dispatch of electricity
markets. In essence, the goal of the AC power flow problem is to solve for the complex
voltage of each bus that determines the power system set-point. However, the presence of
sinusoidal functions in the AC power flow equations makes it difficult to analytically solve
the equations, if not impossible. Moreover, the periodicity of sinusoidal functions destroys
the uniqueness of the AC power flow solution, even when either voltage magnitudes or
phase angle differences are limited to the “physically realizable” regime [28, 6, 7, 5]. Hence,
unexpected operating points may appear for some system conditions and can jeopardize
the normal operations of power systems. Conditions that ensure the existence of a unique
“physically realizable” power flow solution are important but not fully understood.

For a special case of the AC power flow problem, the uniqueness property of the P -Θ
power flow problem [3] has been studied in [28]. In the P -Θ power flow problem, the
magnitude of the complex voltage at each node is given and the objective is to find a
set of voltage phases such that the power flow equations are satisfied. The “physically
realizable” constraint requires that the angular difference across every line lies within the
stability limit of π/2 for lossless networks. Sufficient conditions (on the angular differences)
that depend on the topological properties of the power network are established in [28].
Specifically, the authors proposed the notion of monotone regime and an upper bound on
the angular differences based on the power network topology, which together can ensure
the uniqueness of solutions. However, due to the nonlinear property of sinusoidal functions
and the low-rank structure of angular differences, it is unclear to what extent the sufficient
conditions given in [28] are necessary.

The goal of this paper is to provide more general necessary and sufficient conditions
for the uniqueness, using the notion of maximal eye defined in Section 3 and the notion
of maximal girth introduced in [28]. The paper also designs algorithms to compute these
graph-theoretic parameters.
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1.1 Main results

In this paper, we extend the uniqueness theory of P -Θ power flow problem proposed
in [28]. We focus on the uniqueness of the power flow problem in a stronger sense
and derive general necessary and sufficient conditions that depend only on the choice of
the monotone regime and network topology. Under certain circumstances, the general
conditions can be simplified to obtain tighter sufficient conditions. In addition, some
algorithms for computing the maximal eye and the maximal girth of undirected graphs are
proposed. A reduction method is designed to reduce the size of graphs and accelerate the
computation process. More specifically, the contributions of this paper are three-folds:

• We extend the uniqueness theory of P -Θ problem to a stronger sense. In [28], two
solutions for cyclic graphs are are treated as different if all phase angle vectors are
different (this is referred to as weak uniqueness). In contrast, in this paper, we
consider the uniqueness in the usual sense, i.e., two solutions are different if they
are different in at least one phase angle (this is referred to as strong uniqueness).
A constant called the maximal eye is developed to classify all network topology
that ensure strong uniqueness. Numerical results show that the maximal eye gives
more reasonable constraints compared to its counterpart for weak uniqueness, which
is known as the maximal girth. Moreover, for 2-vertex-connected Series-Parallel
graphs, we prove that the maximal eye is equal to the maximal girth.

• We propose general necessary and sufficient conditions for both the strong and the
weak uniqueness. The conditions are derived by Farka’s Lemma, which gives the
dual problem with simpler solutions. Sufficient conditions for the weak uniqueness
in [28] and their counterparts for the strong uniqueness are derived directly from the
general conditions. In the special case when the power network is a single cycle or is
lossless, stronger necessary and sufficient conditions that do not contain sinusoidal
functions are derived.

• Finally, we develop a reduction method, named the SSPR method, that can ac-
celerate the computation of the maximal eye and the maximal girth. The SSPR
method is proved to reduce 2-vertex-connected Series-Parallel graphs to a single
line, independent of the choice of the slack bus. The relationship between the max-
imal eye (girth) of graphs before and after the reduction is unveiled. When applying
the SSPR method to real-world examples, the maximal eye is usually not changed
over the reduction process, while the maximal girth is already computed during
the reduction process. We also design search-based algorithms for computing the
maximal eye and the maximal girth, which are able to compute the exact value for
graphs with up to 100 nodes before reduction.

In summary, this paper constitutes a substantial generalization of the uniqueness theory
in [28]. A stronger notion of uniqueness is proposed and general necessary and sufficient
conditions are proposed. These two combined provides a tool for analyzing large-scale
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power networks and enables a deeper understanding of the uniqueness of the P -Θ power
flow problem.

1.2 Related work

The study of solutions to the power flow problem has a long history dating back to [22],
which gave an example showing the general non-uniqueness of solutions for the power
flow problem. Then, the number of solutions of the power flow problem was estimated
in [10], which also characterized the stability region for the power flow problem. However,
these early works only considered lossless transmission networks consisting of PV buses.
Under the assumption that resistive losses are negligible, conditions for the existence and
uniqueness of both real power-phase (P -Θ) problem, and reactive power-voltage (Q-V )
problem were derived in [9, 3].

In another line of work, the topology structure of the power network was also considered
to derive stronger conditions for the uniqueness. The number of solutions was estimated
for radial networks in [6, 11], and later for general networks. Moreover, a more recent
work [31] gave several algorithms to compute the unique high-voltage solution. In this
paper, we consider the P -Θ problem [3] for general lossy power networks and utilize the
topology information. We refer to [28] for a more detailed review of the existing literature.

The fixed-point technique is often used for proving the existence and uniqueness of
equations. For the power flow problem, the fixed-point technique was first utilized in [23]
and was further developed by several works [12, 4, 24, 25, 35, 34]. Another more recently
applied approach is to treat the P -Θ power flow problem as a rank-1 matrix sensing
problem and solve its convex relaxation counterpart [44, 45]. The work [14] also considered
the domain of voltages over which the power flow operator is monotone. However, the
relation between the rank-1-constrained problem and its convexification is not clear for
general power networks.

The work [32] presented a unifying framework for network problems on the n-torus.
The framework applies to the AC power flow problem when the power networks are lossless.
The idea of considering the regime when the power flow on each line is monotone was
extended to lossy power networks in [28]. The regime where the power flow on a line
increases monotonically with the angle difference across the line – called the monotone
regime in this paper – was proposed. In [28], it was also shown that the solution of
P -Θ problem is unique under the assumption that angle differences across the lines are
bounded by some limit related to the maximal girth of the network [46].

The existing algorithms in the literature cannot be directly used to compute maximal
eye (introduced in Section 3) or maximal girth. A related problem is computing the
maximal chordless cycle as an upper bound to these parameters. The computation of
maximal chordless cycles was proved to be NP-complete in [43]. Efficient algorithms
for enumerating chordless cycles were proposed in [41, 42] and both take linear time to
enumerate a single chordless cycle. The algorithms for enumerating maximal chordless
cycles can be easily modified to compute the minimal chordless cycle containing a given
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edge. Series-parallel reduction method was introduced as an alternative definition of
Generalized Series-Parallel (GSP) graphs in [20]. Under the assumption that the slack
bus is the last bus to be reduced, all GSP graphs can be reduced to a single line [28].
However, whether the series-parallel reduction method can still reduce GSP graphs without
the assumption on the slack bus is not known. In this paper, we show that 2-vertex-
connected3 Series-Parallel graphs can be reduced to a single line without the assumption.

1.3 Notations

We start with some mathematical notations. We use N,Z,R,C to denote the set of all
natural numbers, integers, real numbers and complex numbers, respectively. We denote
[n] := {1, . . . , n} for any n ∈ N. The symbol j denotes the unit imaginary number.
The notations (·)T and (·)H denote the transpose and Hermitian transpose of a matrix,
respectively. For a complex number z, |z| denotes its magnitude and for a set X, the
symbol |X| denotes its cardinality. ℜ(·) denotes the real part of a given scalar or matrix.

For an undirected graph, the set of vertices and the set of edges are denoted as V
and E, respectively. If the edges of an undirected graph are weighted with the weights
captured by a matrix W ∈ {±1}|V|×|V|, then the graph is represented as (V,E,W ). For
a directed graph (V,E, A), the matrix A ∈ R|V|×|V| gives the orientation of each line.
The undirected edge connecting two vertices k and ℓ is denoted by a set notation {k, ℓ},
whereas (k, ℓ) denotes a directed edge coming out of vertex k and going into ℓ. For
parallel edges, we use {k, ℓ, i} to represent different edges connecting k and ℓ, where
i ∈ Z+ is the index of each parallel edge.

A power network G = (V,E, Y ) consists of two parts: the underlying undirected graph
(V,E) and the complex admittance matrix Y ∈ Cn×n, where n is the number of vertices
in the underlying graph. The underlying graph is assumed to be a simple and connected
graph. The set of vertices V and the set of edges E correspond to the set of buses and
the set of lines of the power network. The series element of the equivalent Π-model of
each line {k, ℓ} is modeled by admittance Ykℓ = Gkℓ − jBkℓ, where Gkℓ, Bkℓ ≥ 0.

We denote v ∈ Cn as the vector of complex bus voltages. The complex voltage at bus
k can be written in the polar form using its magnitude and phase angle vk = |vk|ejΘk for
all k ∈ [n], where |vk|∈ R and Θk ∈ R denote the voltage magnitude and phase angle,
respectively. We denote Θkℓ := Θk − Θℓ ∈ [−π, π) as the phase difference modulus by
2π for all {k, ℓ} ∈ E. In the rest of the paper, we use the corresponding values in [−π, π)
for phase differences.

1.4 Paper organization

The remainder of this paper is organized as follows. Section 2 gives the necessary back-
ground knowledge about the P -Θ power flow problem and the existing uniqueness theory
for the P -Θ problem. The notions of strong uniqueness and weak uniqueness are also

3A graph is called 2-vertex-connected if it is connected after the deletion of any single vertex.
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introduced. In Section 3, we propose the general analysis framework of the uniqueness
theory that only depends on the monotone regime and the topological structure. We show
that necessary and sufficient conditions can be fully characterized by a feasibility problem,
which has fewer variables than the P -Θ problem. Sufficient conditions for uniqueness are
derived and it is shown that the uniqueness conditions in [28] follow as a natural corol-
lary. Then, we consider three special cases in Section 4 by assuming specific topological
structures for the underlying graph or a specific monotone regime. In these special cases,
the necessary and sufficient conditions are simplified and the intricate sinusoidal functions
are avoided in the verification of those conditions. Furthermore, the sufficient conditions
proposed in Section 3 are proved to be tight when no information beyond the monotone
regime and the topological structure is available. Finally, a reduction method and search-
based algorithms for computing the maximal girth and maximal eye are given in Section
5. Proofs are delineated in the technical report [29].

2 Preliminaries

2.1 P -Θ problem formulation

As mentioned in the introduction, we focus our attention to the P -Θ problem, which
describes the relationship between the voltage phasor angles and the real power injections.
We assume that the slack bus and the reference bus are bus 1, and that all other buses
except the slack bus are PV buses. Recall that the following injection operator describes
the P -Θ problem, where the shunt elements are assumed to be purely reactive.

Definition 2.1. Define P̂k : {0} × Rn−1 → R as the map from the vector of phasor
angles to the real power injection at bus k:

P̂k(Θ) := ℜ{(Y v)Hk vk} ∀Θ ∈ {0} × Rn−1.

Moreover, define the injection operator P̂ : {0} × Rn−1 → Rn−1 as

P̂ (Θ) := [P̂2(Θ), . . . , P̂n(Θ)].

The goal of the P -Θ problem is, given P ∈ Rn−1, to find the voltage phasor angles
Θ ∈ {0} × Rn−1 such that

P̂ (Θ) = P. (76)

2.2 Monotone regime and allowable sets

We are interested in the uniqueness property of the solution to problem (76). In general,
the number of solutions to problem (76) is hard to estimate because of the periodic
behavior of sinusoidal functions, especially when there is no symmetrical structure in the
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power network. Thus, we limit the phase angle vectors to the monotone regime, within
which the real power flow from bus k to bus ℓ increases monotonically with respect to the
phase difference Θkℓ for each line {k, ℓ} ∈ E. The monotone regime is defined in [28] as
follows.

Definition 2.2. The monotone regime of a power network (V,E, Y ) is the set

{Θ ∈ Rn | Θ1 = 0,Θkℓ ∈ [−γkℓ, γkℓ],∀{k, ℓ} ∈ E},

where γkℓ := tan−1(Bkℓ/Gkℓ) ∈ [0, π/2] for all {k, ℓ} ∈ E.

Restricting the voltage phase angle vectors to the monotone regime is necessary for
the uniqueness of solution to problem (76) and facilitates the theoretical analysis. The
constraint that the angular difference across every line lies within the stability limit of
[−γkℓ, γkℓ] is equivalent to the steady-state stability limit if each line is considered indi-
vidually. As shown in [28], the phase angle vectors of leaf buses except the slack bus are
uniquely determined by the phase angle vectors of non-leaf buses in the monotone regime.
Hence, we assume that all vertices in the underlying graph except vertex 1 have degree
at least 2.

Assumption 2. The graph (V,E) is connected. All vertices except vertex 1 in the graph
(V,E) have degree at least 2.

We focus on finding a neighborhood of a solution in which there is no other solution
to the P -Θ problem. The neighborhood is defined as follows.

Definition 2.3. The set of allowable perturbations is defined as

W := {ωkℓ ≥ 0 | ∀{k, ℓ} ∈ E}.

Suppose that Θ is a solution to the P − Θ problem in the monotone regime. Then, the
set of neighboring phases is defined as

N (G,Θ,W) := {Θ̃ ∈ Rn | Θ̃1 = 0,

Θ̃kℓ ∈ [−γkℓ, γkℓ] ∩ [Θkℓ − ωkℓ,Θkℓ + ωkℓ],∀{k, ℓ} ∈ E}.

We note that Θ̃kℓ refers to the value of Θ̃k − Θ̃ℓ modulo 2π. Without loss of generality,
we assume that ωkℓ ≤ 2γkℓ for all {k, ℓ} ∈ E, since the width of the monotone regime is
2γkℓ and setting ωkℓ > 2γkℓ will not enlarge the set of neighboring phases compared to
setting ωkℓ = 2γkℓ.

It is desirable to analyze the uniqueness of the solution in the neighborhoodN (G,Θ,W).
In [28], the authors considered the set of allowable angles, which is defined as

{Θ̃ ∈ Rn|Θ̃1 = 0, Θ̃kℓ ∈ [−ωkℓ/2, ωkℓ/2],∀{k, ℓ} ∈ E}.
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Note that the set of allowable angles is a special case of the set of allowable perturbations,
since any two phase vectors in the set of allowable angles are in the corresponding sets of
neighboring phases of each other. In this paper, we use the set of allowable perturbations
but the sufficient conditions we derive can be naturally applied to using the set of allowable
phases.

2.3 Notions of weak and strong uniqueness

Informally, we say that the P -Θ problem (76) has a unique solution Θ under the allowable
perturbation set W , if there exists at most one solution in the set N (G,Θ,W). We give
two different definitions of uniqueness. Firstly, we introduce the uniqueness in the weak
sense.

Definition 2.4. We say that a solution Θ to the P -Θ problem (76) is weakly unique
with the given set of allowable perturbations W , if for any solution Θ̃ ∈ N (G,Θ,W),
there exists a line {k, ℓ} ∈ E such that Θkℓ = Θ̃kℓ.

In other words, two solutions are different according to Definition 2.4 if and only if
they have different phase differences for every line. Next, we extend the definition of weak
uniqueness to a stronger sense that is also more useful and usual.

Definition 2.5. We say that a solution Θ to the P -Θ problem (76) is strongly unique
with the given set of allowable perturbationsW , if for any solution Θ̃ ∈ N (G,Θ,W) and
any {k, ℓ} ∈ E, we have Θkℓ = Θ̃kℓ.

In other words, two solutions are different according to Definition 2.5 if and only if
the phase differences are different on at least one line. We mention that two different
solutions to problem (76) according to Definition 2.5 correspond to two different solutions
to problem (76) according to Definition 2.4 for a “power sub-network”. To understand
this, suppose that Θ1 and Θ2 are two different solutions according to Definition 2.5 and
let ∆kℓ := Θ1

kℓ −Θ2
kℓ be the difference between the solutions on each line {k, ℓ} ∈ E. If

∆kℓ = 0 for some line {k, ℓ} ∈ E, then we can create another power system by removing
the line {k, ℓ} such that Θ1 and Θ2 become the solutions to the new power system. This
can be achieved by adding a generator or a load at bus k that matches the power flow
from ℓ to k and adding a generator or a load at bus ℓ that matches the power flow from
k to ℓ. Note that the original solutions Θ1 and Θ2 still solve the power flow equations
for the sub-network with some generators or loads added and the line removed. We can
repeat this process until the difference ∆kℓ becomes nonzero for all remaining lines {k, ℓ}.
If some bus becomes a singleton, we can omit it since it does not affect the uniqueness
of power flow solutions. If the slack bus becomes a singleton, we can choose another
arbitrary bus as the new slack bus, since the real power injection is the same for both
solutions at PV buses. Now, the two solutions are different according to Definition 2.4
on the “power sub-network” of the original power network. Hence, the strong uniqueness
can be implied if we ensure the weak uniqueness on all “possible sub-networks”.

72



3 Uniqueness Theory for General Graphs

In this section, we derive necessary and sufficient conditions on the set of allowable per-
turbations W such that the solution to problem (76) becomes strongly or weakly unique.
In particular, we aim to analyze the impact of the power system topology and the size of
the monotone regime on the uniqueness property. Namely, given the topological structure
and the monotone regime, we aim to find conditions on W such that the uniqueness
of solutions holds. To achieve this, we need to derive conditions under which all power
networks with the same topological structure and monotone regime have unique solutions.
To formalize the problem, we fix the underlying graph (V,E) and the angles specifying
the monotone regime Γ := {γkℓ ∈ (0, π/2] | {k, ℓ} ∈ E}. We define the set of possible
admittances with the same monotone regime as

S(γ) := {(C cos(γ), C sin(γ)) | C > 0} ∀γ ∈ [0, π/2].

The set of complex admittance matrices with the same monotone regime is defined as

Y(V,E,Γ) := {Y is an admittance matrix |
Ykℓ = Gkℓ − jBkℓ, (Gkℓ, Bkℓ) ∈ S(γkℓ), {k, ℓ} ∈ E}.

Then, we define the set of power networks with the same topological structure and same
monotone regime as

G(V,E,Γ) := {G = (V,E, Y ) | Y ∈ Y(V,E,Γ)},

or simply G if there is no confusion about V, E and Γ. Hence, the problem under study
in this paper can be stated as follows:

• What are the necessary conditions and sufficient conditions on the allowable per-
turbations W such that the solution to problem (76) is unique within the set of
allowable perturbations for any power network G ∈ G?

The necessary conditions and the sufficient conditions provide two sides on the uniqueness
theory. The sufficient conditions give a guarantee for the uniqueness of solutions for any
single power network with the given topological structure and monotone regime, while the
necessary conditions bound the optimal conditions we can derive only using the knowledge
of topological structure and monotone regime. We first give an equivalent characterization
of strong and weak uniqueness.

Lemma 3.1. (Necessary and Sufficient Conditions for Uniqueness) Given the set of power
networks G(V,E,Γ) and the set of allowable perturbations W , the following two state-
ments are equivalent:

1) For any power network G ∈ G(V,E,Γ) and any power injection P ∈ R|V|−1 such
that problem (76) is feasible in the monotone regime, the solution to problem (76)
in the monotone regime is strongly unique in N (G,Θ,W).
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2) For any power network G ∈ G(V,E,Γ) and any two phase angle vectors Θ1,Θ2 in
the monotone regime with the property Θ2 ∈ N (G,Θ1,W), there exists a vector
y ∈ R|V| such that y1 = 0 and

sin(γkℓ +Θ1
kℓ/2 + Θ2

kℓ/2) · yk (77)
≥ sin(γkℓ −Θ1

kℓ/2−Θ2
kℓ/2) · yℓ

∀{k, ℓ} ∈ E s.t. Θ1
kℓ −Θ2

kℓ > 0,

where at least one of the inequalities above is strict.

The equivalence between statements 1 and 2 still holds true even after replacing strong
uniqueness with weak uniqueness in statement 1, provided that the phase angle vector Θ2

in statement 2 is required to satisfy Θ1
kℓ ̸= Θ2

kℓ for all {k, ℓ} ∈ E.

Intuitively, the above lemma studies the uniqueness of solutions through its dual form.
The dual form is preferred since the dual problem has fewer variables and its solution is
easier to construct. We then derive several sufficient conditions using Lemma 3.1. We
first show that we only need to verify statement 2 in Lemma 3.1 for two phase angle
vectors Θ1 and Θ2 that induce a (weakly) feasible orientation, which we will define below.
We define the orientation induced by two phase angle vectors.

Definition 3.1. Suppose that Θ1 and Θ2 are two phase angle vectors of the graph.
Then, we define the induced orientation of ∆ := Θ1 −Θ2 as Akℓ := sign(∆kℓ) for all
{k, ℓ} ∈ E, where the sign function sign(·) is defined as

sign(x) :=


+1 if x > 0

0 if x = 0

−1 if x < 0

.

In the definition of induced orientations, we assign one of the three directions +1,−1, 0
to each edge. The first two directions are “normal” directions for directed graphs. An
edge with direction +1 or −1 is called a normal edge. Edges with direction 0 are viewed
as an undirected edge and reachable in both directions. In addition, edges with direction
0 are not considered when computing the in-degree and the out-degree. We only need
to consider orientations induced by two different phase angle vectors Θ1,Θ2 such that
P̂ (Θ1) = P̂ (Θ2). However, a precise characterization of those orientations is difficult and
we consider a larger set that contains those orientations.

Definition 3.2. An orientation assigned to an undirected graph is called a feasible
orientation if all edges are normal and each vertex except vertex 1 has nonzero in-degree
and out-degree.

According to the analysis in [28], the induced orientation of two solutions Θ1 and Θ2

in the monotone regime that are different according to Definition 2.4 must be a feasible
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orientation. Then, we give the definition of weakly feasible orientations as the counterpart
for strong uniqueness.

Definition 3.3. An orientation assigned to an undirected graph is called a weakly fea-
sible orientation if two properties are satisfied: (i) there exists at least one normal edge,
and (ii) the in-degree and the out-degree of any vertex except vertex 1 are both zero or
both nonzero.

Edges with direction 0 are lines with the same angular difference in two phase angle
vectors. By the same discussion as in Section 2, we can view a weakly feasible orientation
as a feasible orientation for the sub-graph that only has normal edges. The next lemma
shows that we only need to consider weakly feasible orientations or feasible orientations
when checking the conditions in statement 2 of Lemma 3.1.

Lemma 3.2. If two different phase angle vectors Θ1−Θ2 in the monotone regime satisfy
Θ2 ∈ N (G,Θ1,W) and the induced orientation of Θ1 − Θ2 is not weakly feasible, then
there exists a vector y ∈ R|V| such that statement 2 of Lemma 3.1 holds. The result
holds true for the weak uniqueness property as well, provided that the induced orientation
of Θ1,Θ2 is not a feasible orientation.

Combining Lemmas 3.1 and 3.2, we obtain sufficient conditions for strong uniqueness
and weak uniqueness.

Theorem 3.3. (Sufficient Conditions for Uniqueness) Given the set of allowable per-
turbations W , suppose that for any two different phase angle vectors Θ1 and Θ2 in the
monotone regime satisfying Θ2 ∈ N (G,Θ1,W), the induced orientation of Θ1−Θ2 is not
a weakly feasible orientation. Then, the solution to problem (76) is strongly unique for
all power networks in G. The result holds true for the weak uniqueness as well, provided
that the induced orientation of Θ1 −Θ2 is not a feasible orientation.

The sufficient condition given above is a generalization of Theorem 4 in [28], which
ensures the weak uniqueness of solutions in the set of allowable phases. Using Theorem
3.3, we can derive a corollary similar to Theorem 4 in [28].

Corollary 3.4. Consider an arbitrary set of allowable perturbations W . The solution to
problem (76) in the monotone regime is strongly unique for any power network G ∈ G if
for any weakly feasible orientation of the underlying graph (V,E), there exists a directed
cycle (k1, . . . , kt) containing at least one normal edge such that the allowable perturbations
satisfy the inequality ∑

{ki,ki+1} is normal

ωkiki+1
< 2π,

where kt+1 := k1. The same result holds true for the weak uniqueness if we substitute
weakly feasible orientations with feasible orientations.
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Now, we consider a special case where all constants ωkℓ in the set of allowable per-
turbations are equal, i.e., there exists a constant ω ≥ 0 such that the set of allowable
perturbation is

Wω := {ωkℓ = ω,∀{k, ℓ} ∈ E}.

The problem we consider in this case is:

• What is the sufficient condition on ω such that the solution to problem (76) is
unique with the allowable perturbation set Wω?

We derive an upper bound on the constant ω to guarantee the uniqueness. We first define
the maximal eye and the maximal girth of an undirected graph.

Definition 3.4. Consider an undirected graph (V,E). For any weakly feasible orientation
assigned to the graph (V,E), we define the minimal length of directed cycles that contain
at least one normal edge as the size of eye of this orientation, where edges with direction
0 are considered as bi-directional edges. We define the maximal eye of the graph (V,E)
as the maximum of the size of eye over all possible weakly feasible orientations. We denote
the maximal eyes of the graph (V,E), a power network G and a group of power networks
G as e(V,E), e(G) and e(G), respectively.

Remark 1. There always exists a directed cycle containing normal edges when the un-
derlying graph is under a weakly feasible orientation. To understand this, we first choose
an arbitrary normal edge (k1, k2) ∈ E. Since the vertex k2 has nonzero in-degree, it also
has nonzero out-degree. Hence, there exists another vertex k3 such that (k2, k3) ∈ E.
Continuing this procedure will result in the existence of a vertex kt such that vt = ks for
some s < t. This generates a directed cycle (ks, ks+1, . . . , kt−1) containing only normal
edges. Hence, the size of eye is well-defined.

The counterpart of the maximal eye, known as the maximal girth, is defined in [28]
and we restate the definition below.

Definition 3.5. Consider an undirected graph (V,E). For any feasible orientation as-
signed to the underlying graph (V,E), we define the minimal size of directed cycles as the
girth of this feasible orientation. We define the maximal girth of the graph (V,E) as
the maximum of the girth over all feasible orientations. We denote the maximal girths of
the graph (V,E), a power network G and a group of power networks G as g(V,E), g(G)
and g(G), respectively.

Remark 2. Similar to the discussion in Remark 1, there exists at least one directed
cycle when the graph is under a feasible orientation. The maximal eye can be equivalently
defined as the maximum of the maximal girth over all sub-graphs that do not have degree-1
vertices.

We provide an upper bound for ω using the maximal eye and the maximal girth, which
follows from Corollary 3.4.
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Corollary 3.5. If the inequality

ωkℓ <
2π

e(G)
∀{k, ℓ} ∈ E, (78)

is satisfied, then the solution to problem (76) in the monotone regime is strongly unique
for any power network G ∈ G. The same result holds true for weak uniqueness, provided
that e(G) in (78) is substituted by g(G).

In Section 5, we design search-based algorithms to calculate the maximal eye and the
maximal girth. However, computing the maximal eye or the maximal girth is challenging
for graphs with more than 100 nodes. Hence, we seek upper bounds and lower bounds for
the maximal eye and the maximal girth. In this paper, we obtain a simple upper bound for
both the maximal girth and the maximal eye. We define κ(G) and κ(G) as the sizes of the
longest chordless cycles of the underlying graph of the power network G and any power
network in the power network class G, respectively. The upper bound on the maximal
girth and eye will be provided below.

Theorem 3.6. For any power network G, it holds that

g(G) ≤ e(G) ≤ κ(G) (79)

and that g(G) ≤ e(G) ≤ κ(G).

We note that although computing the longest chordless cycle is NP-complete [43],
the computation of the longest chordless cycle is faster than the computation of the
maximal eye and the maximal girth in practice.

4 Uniqueness Theory for Three Special Cases

In this section, we consider three special cases. For each case, the power network either
has a special topological structure or a special monotone regime. In the first two cases,
the underlying graph of the power network is a single cycle or a 2-vertex-connected Series-
Parallel (SP) graph. When the underlying graph is a single cycle, the sufficient conditions
in Corollary 3.4 are also necessary. If the underlying graph is a 2-vertex-connected SP
graph, we prove that the sufficient conditions for the weak uniqueness in Corollary 3.5
also ensure the strong uniqueness. In the last case, the power network is assumed to be
lossless. In this case, the monotone regime of each line reaches the maximum possible
size [−π/2, π/2]. Sinusoidal functions can then be avoided in statement 2 of Lemma 3.1,
and therefore the verification of conditions is easier.
4.1 Single cycles

We first consider the case when the underlying graph (V,E) is a single cycle. We first
show that the weak uniqueness is equivalent to the strong uniqueness in this case.
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Lemma 4.1. Suppose that the underlying graph is a single cycle with the edges
(1, 2), (2, 3), . . . , (n, 1). Then, given the set of allowable perturbationsW , the solution to
problem (76) in the monotone regime is weakly unique if and only if it is strongly unique.

Next, we prove that the sufficient conditions derived in Corollary 3.4 are also necessary
for a single cycle with non-trivial monotone regime.

Theorem 4.2. Suppose that the underlying graph is a single cycle with the edges
(1, 2), (2, 3), . . . , (n, 1), and that the set of allowable perturbations satisfies 0 < ωi,i+1 ≤
γi,i+1 for all i ∈ [n], where γn,n+1 := γn,1 and ωn,n+1 := ωn,1. The solution to problem
(76) in the monotone regime is strongly unique for any power network G ∈ G(V,E,Γ)
and any power injection P ∈ Rn−1 that makes problem (76) feasible if and only if the set
of allowable perturbations W satisfies

n∑
i=1

ωi,i+1 < 2π,

where ωn,n+1 := ωn,1.

In contrast to requiring ωi,i+1 > 0 in the above theorem, the condition that ωi,i+1 = 0
for some i is sufficient but not necessary for the uniqueness of solutions. Under this
condition, two solutions Θ1 and Θ2 in the monotone regime such that Θ2 ∈ N (G,Θ1,W)
must satisfy Θ1

i,i+1 = Θ2
i,i+1. Hence, any solution is strongly unique with this set of

allowable perturbations. However, by Theorem 4.2, this condition is not necessary for the
uniqueness of solutions.

4.2 Series-Parallel graphs

In this subsection, we consider another special class of graphs, namely, the 2-vertex-
connected SP graphs. The objective is to find an upper bound on the constant ω to
guarantee that the solution to problem (76) is unique. Corollary 3.5 shows that the solution
is strongly unique if ω < 2π/e(G) and is weakly unique if ω < 2π/g(G). However, for a
2-vertex-connected SP graph, we can prove a stronger theorem. We first prove that the
maximal eye is equal to the maximal girth for a 2-vertex-connected SP graph. The main
tool is the ear decomposition of an undirected graph [38].

Definition 4.1. An ear of an undirected graph (V,E) is a simple path or a single cycle.
An ear decomposition of an undirected graph (V,E), denoted as D := (L0, . . . , Lr−1),
is a partition of E into an ordered sequence of ears such that one or two endpoints of each
ear Lk are contained in an earlier ear, i.e., an ear Lℓ with ℓ < k, and the internal vertices
of each ear do not belong to any earlier ear. We call D a proper ear decomposition if
each ear Lk is a simple path for all k = 1, . . . , r − 1. A tree ear decomposition is a
proper ear decomposition in which the first ear is a single edge and for each subsequent
ear Lk, there is a single ear Lℓ with ℓ < k, such that both endpoints of Lk lie on Lℓ. A
nested ear decomposition is a tree ear decomposition such that, within each ear Lℓ,
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the set of pairs of endpoints of other ears Lk that lie within Lℓ forms a set of nested
intervals.

The following theorem in [39] provides an equivalent characterization of 2-vertex-
connected SP graphs through the ear decomposition.

Theorem 4.3. A 2-vertex-connected graph is series-parallel if and only if it has a nested
ear decomposition.

With the help of the nested ear decomposition, we will prove that the maximal girth
is equal to the maximal eye for 2-vertex-connected SP graphs. The intuition behind the
proof is that we first choose two vertices as the “source” and the “sink” for the power flow
network, and then assign a normal direction to each edge with direction 0 according to
the directed path that contains this edge and goes from the “source” to the “sink”. This
makes the first inequality in (79) holds as equality.

Lemma 4.4. Suppose that (V,E) is a 2-vertex-connected SP graph. Then, the following
equality holds true:

g(V,E) = e(V,E).

Therefore, combining the above lemma with Corollary 3.5, we obtain a stronger suf-
ficient condition for 2-vertex-connected SP graphs. This result implies that the sufficient
conditions for the weak uniqueness in Corollary 3.5 also guarantee the strong uniqueness.

Theorem 4.5. Suppose that the underlying graph (V,E) is a 2-vertex-connected SP
graph. The solution to problem (76) is strongly unique for any power network G ∈ G in
the monotone regime if

ω <
2π

g(G)
.

4.3 Lossless networks

Finally, we consider the case when the power network is lossless, namely, when γkℓ = π/2
for all {k, ℓ} ∈ E. In this case, we prove that the strong uniqueness holds if and only
if there does not exist another solution in the set of neighboring phases such that the
induced orientation has strictly more strongly connected components than weakly con-
nected components. This results makes it possible to avoid nonlinear sinusoidal functions
in statement 2 of Lemma 3.1, and therefore the uniqueness of solutions becomes easier
to verify. We first define the sub-graph induced by two phase angle vectors.

Definition 4.2. Suppose that Θ1 and Θ2 are two different phase angle vectors, and that
the orientation A is the induced orientation of Θ1 −Θ2. Then, the induced sub-graph
of Θ1 −Θ2 is constructed as a directed sub-graph of (V,E, A) by first deleting all edges
with direction 0 and then deleting all degree-1 vertices.
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In what follows, we establish a necessary and sufficient condition for the uniqueness
of the solution that does not contain sinusoidal functions.

Theorem 4.6. Consider a that the set of allowable perturbations W . If the monotone
regime satisfies γkℓ = π/2 for all {k, ℓ} ∈ E, then the following two statements are
equivalent:

1) For any power network G ∈ G(V,E,Γ) and any power injection P ∈ R|V|−1 such
that problem (76) is feasible, the solution to problem (76) in the monotone regime
is strongly unique in N (G,Θ,W).

2) For any power network G ∈ G(V,E,Γ) and any two phase angle vectors Θ1 and
Θ2 in the monotone regime with the property Θ2 ∈ N (G,Θ1,W), the induced
sub-graph of Θ1−Θ2 has strictly more strongly connected components than weakly
connected components.

The equivalence between statements 1 and 2 still holds true even after replacing strong
uniqueness with weak uniqueness in statement 1, provided that the phase angle vectors
Θ2 in statement 2 is required to satisfy Θ1

kℓ ̸= Θ2
kℓ for all {k, ℓ} ∈ E.

The result of the above theorem is stronger than the sufficient conditions in Theo-
rem 3.3. This is because any (weakly) infeasible orientation has strictly more strongly
connected components than weakly connected components. Hence, the sufficient condi-
tions in Theorem 3.3 ensure that all induced orientations are (weakly) infeasible. Then,
statement 2 of this theorem holds true and the solution becomes strongly (weakly) unique.

5 Algorithms and Numerical Results

In the preceding sections, we have shown that the maximal eye and the maximal girth
play important roles in the uniqueness theory. However, computing the maximal eye or
maximal girth is cumbersome for large graphs. Hence, we develop a successive reduction
method to design a reduced graph, and then prove the relationship between the maximal
eye or the maximal girth of the original graph and those of the reduced graph. Next, we
test the performance of those algorithms on real-world problems. Search-based algorithms
for computing the maximal eye and the maximal girth are given in appendix.

5.1 Successive Series-Parallel Reduction method

In this subsection, we propose a successive reduction method, named as the Successive
Series-Parallel Reduction (SSPR) method, that can reduce the size of the underlying
graph. for computing the maximal eye and maximal girth. The SSPR method is different
from the Series-Parallel Reduction (SPR) method introduced in [28] in two aspects. First,
the purpose of the SSPR method is to accelerate the computation of the maximal eye
and the maximal girth, while the focus of SPR method is to facilitate the verification of
uniqueness conditions. Second, we prove that all 2-vertex-connected SP graphs can be
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reduced to a single edge (K2) without making the assumption in [28] that the slack bus
is the last bus to be reduced.

Before introducing the SSPR method, we extend the definition of the maximal eye
and the maximal girth to weighted graphs with “multiple slack buses”. This generalized
class of graphs appear during the reduction process. By defining the length of a cycle as
the sum of the weights of the edges on the cycle, the maximal eye and the maximal girth
can be generalized to weighted graphs. Next, we define (weakly) feasible orientations for
graphs with “multiple slack buses”, namely, the slack nodes.

Definition 5.1. For a weighted undirected graph (V,E,W ), a subset of vertices Vs ⊆ V
is called the set of slack nodes. An orientation A assigned to the graph is called a
weakly feasible orientation if each edge has one of the directions {+1,−1, 0} and
each vertex not in Vs either has nonzero in-degree and nonzero out-degree, or has zero
in-degree and zero out-degree. An orientation A assigned to the graph is called a feasible
orientation if each edge has one of the directions {+1,−1} and each vertex not in Vs

has nonzero in-degree and nonzero out-degree.

Now, we can define the maximal eye for graphs with slack nodes by taking the maxi-
mum of the size of eye over weakly feasible orientations. The maximal girth can be defined
in a similar way. For power networks, the only slack node is the slack bus of the power
network. Hence, the extended definitions of the maximal eye and the maximal girth are
consistent with their original definitions. The SSPR method is based on three types of
operations:

• Type I Operation. Replacement of a set of parallel edges with a single edge
that connects their common endpoints. The weight of the new single edge is the
minimum over the weights of the deleted parallel edges.

• Type II Operation. Replacement of the two edges incident to a degree-2 vertex
with a single edge, if the vertex has exactly two neighboring vertices and is not a
slack node. The weight of the new edge is the sum of the weights of the two deleted
edges.

• Type III Operation. Deletion of a vertex that has only a single neighboring vertex.
If the deleted vertex is a slack node, or if the deleted vertex has degree at least 2 for
the problem of computing the maximal girth, then we define its neighboring vertex
as a slack node.

The update scheme of weights and slack nodes is designed to control the change of the
maximal eye or the maximal girth. The SSPR method successively reduces the size of the
graph by applying Type I-III Operations; the pseudo-code of the SSPR method is given
in Algorithm 2.

We note that after the reduction process, there is no parallel edge or pendant (degree-
1) vertex in the reduced graph. Ignoring the weights of the edges and the set of the
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Algorithm 2 Successive Series-Parallel Reduction (SSPR) method

Given: Undirected unweighted graph (V,E), slack bus k
Output: Reduced undirected weighted graph (VR,ER,WR), two constants α1, α2

defined in Theorems 5.2 and 5.4, set of slack nodes Vs.
1. Set the initial weight for each edge to be 1.
2. Set the initial set of slack nodes as Vs ← {k}.
while at least one operation is implementable do

if Type I Operations are implementable then
Implement Type I Operation.
Update values α1, α2 according to their definitions in Theorems 5.2 and 5.4.
continue

end if
if Type II Operations are implementable then

Implement Type II Operation.
continue

end if
if Type III Operations are implementable then

Implement Type III Operation.
Update values α1, α2 according to their definitions in Theorems 5.2 and 5.4.
Update the set of slack nodes Vs.
continue

end if
end while
Return reduced graph (VR,ER,WR), set of slack nodes Vs and values α1, α2.

slack nodes, the operations in the SSPR method can cover the operations in the classical
series-parallel reduction [20], which are defined as

• Type I’ Operation. Replacement of parallel edges with a single edge that connects
their common endpoints.

• Type II’ Operation. Replacement of the two edges incident to a degree-2 vertex
with a single edge.

• Type III’ Operation. Deletion of a pendant vertex.

Hence, the SSPR method can be viewed as a generalization of the classical series-
parallel reduction.

Now, we study the maximal eye of the graph before and after the reduction. We first
consider the change of the maximal eye after each operation.

Lemma 5.1. Given a weighted undirected graph (V,E,W ), let e denote its maximal eye.
Assume that one of Type I-III Operations is implemented on the graph. By denoting the
new graph and its maximal eye as (Ṽ, Ẽ, W̃ ) and ẽ, the following statements hold:
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• If Type I Operation is implemented, then

ẽ ≤ e ≤ max{ẽ,Wmax +Wmin},

where Wmax and Wmin are the maximal and minimal weights of the deleted parallel
edges, respectively.

• If Type II Operation is implemented, then e = ẽ.

• If Type III Operation is implemented and the deleted vertex has degree 1, then
e = ẽ.

• If Type III Operation is implemented and the deleted vertex has degree larger than
1, then

e = max{ẽ,Wmax +Wmin},

where Wmax and Wmin are the maximal and minimal weights of the deleted parallel
edges, respectively.

Using the above lemma, we have the following theorem.

Theorem 5.2. Given a power network with the underlying graph (V,E), let e denote
the maximal eye of the graph. Denote the graph after reduction and its maximal eye as
(VR,ER,WR) and eR, respectively. Then, we have

max{eR, α2} ≤ e ≤ max{eR, α1, α2},

where α1 and α2 are the maximum of Wmax+Wmin over Type I and Type III Operations,
respectively. Here, Wmax,Wmin are defined in Lemma 5.1. If Type I or Type III Operations
is not implemented, then we set α1 or α2 to 0.

Similarly, we can prove the relation between the maximal girth of the original graph
and that of the reduced graph. We first show the change of the maximal girth after each
operation.

Lemma 5.3. Given a weighted undirected graph (V,E,W ), let g denote its maximal
girth. Assume that one of Type I-III Operations is implemented on the graph. By denoting
the new graph and its maximal girth of new graph as (Ṽ, Ẽ, W̃ ) and g̃, the following
statements hold:

• If Type I Operation is implemented, then

g̃ ≤ g ≤ max{g̃,Wmax +Wmin},

where Wmax and Wmin are the maximal and minimal weights of the deleted parallel
edges, respectively.
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• If Type II Operation is implemented, then g = g̃.

• If Type III Operation is implemented and the deleted vertex has degree 1, then
g = g̃.

• If Type III Operation is implemented, the deleted vertex is a slack node and has
degree larger than 1, then

g̃ ≤ g ≤ max{g̃,Wmax +Wmin},

where Wmax and Wmin are the maximal and minimal weights of the deleted parallel
edges, respectively.

• If Type III Operation is implemented, the deleted vertex is not a slack node and has
degree larger than 1, then

g = min{g̃,Wmax +Wmin},

where Wmax and Wmin are the maximal and minimal weights of the deleted parallel
edges, respectively.

By the above lemma, the relationship between the maximal girth of the original graph
and that of the reduced graph will be discovered below.

Theorem 5.4. Given a power network with the underlying graph (V,E), let g denote
its the maximal girth. By denoting the graph after reduction and its maximal girth as
(VR,ER,WR) and gR, we have

min{gR, α2} ≤ g ≤ min{max{gR, α1}, α2},

where α1 is the maximum of Wmax+Wmin over Type I Operations and the second case of
Type III Operations, and α2 is the minimum of Wmax+Wmin over the third case of Type
III Operations. Here, Wmax,Wmin are defined in Lemma 5.1. If operations for computing
α1 or α2 are not implemented, then we set α1 to 0 or α2 to +∞.

Based on the numerical results in Tables 2 and II in [29] for large power networks, the
values of α1 and α2 in Theorems 5.2 and 5.4 are usually smaller than eR and gR. Hence,
we have the approximation

e ≈ eR, g ≈ α2. (80)

The above relations imply that for large power networks, computing the maximal eye is
equivalent to computing the maximal eye of a reduced graph, while the maximal girth is
already computed during the reduction process. Finally, we prove that 2-vertex-connected
SP graphs can be reduced to a single edge by the SSPR method.
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Theorem 5.5. If the underlying graph (V,E) of a power network is a 2-vertex-connected
SP graph, then the SSPR method reduces the underlying graph to a single edge.

For an undirected graph without slack nodes, the classical series-parallel reduction
(Type I’-III’ Operations) can reduce the graph to a single edge if and only if the graph
is a Generalized Series-Parallel (GSP) graph [20]. We note that 2-vertex-connected SP
graphs are a special class of GSP graphs and it is unclear whether the reduction guarantee
for theSSPR method can be extended to any GSP graphs in the presence of slack nodes.

5.2 Numerical results

In this subsection, we verify the theoretical results of this work and test the performance of
the proposed algorithms. First, we show that, using the SSPR method, the computation
of the maximal eye can be reduced to a smaller graph, while the computation of the
maximal girth is finished during the process of reduction. Then, we show that Corollary
3.5 gives a valid sufficient condition for strong uniqueness. We use IEEE power networks
in MATPOWER [30] to perform experiments.

We first consider the computation of the maximal eye. The results are listed in Table
2. Here, we use ‘-’ to denote the case when this value does not exist, and use ‘TLE’ (Time
Limit Exceeded) to denote the case when the algorithm does not find any leaf node in
two days. The lower bounds for the maximal eye are derived by stopping the algorithm
before it terminates. It can be observed that the SSPR method can largely reduce the size
of the graph, and therefore can accelerate the computing process. Moreover, the values
of α1 and α2 are small compared to the maximal eye of the reduced graph. Hence, the
approximation in equation (80) holds and the maximal eye of the original graph is equal
to the maximal eye of the reduced graph. Although the algorithm achieves acceleration
compared to the brute-force search method, we are only able to compute the maximal
eye for graphs with up to 118 vertices. Note that since graph problems have exponential
complexities, solving them for graphs having as low as 200 nodes is still beyond the
current computational capabilities. However, this does not undermine the usefulness of
the introduced graph parameters, since it is shown in this work that those parameters
accurately decide whether the power flow problem has a unique solution.

Next, we consider the computation of the maximal girth. We use the same algorithms
and the results are listed in the technical report [29]. In this case, it can be observed that
α2 is equal to 3 for large power networks. This is because the underlying graphs of large
power networks considered in the table have “pendant triangles”. Pendant triangles are
triangles that have only one vertex connected to the rest of the graph. Furthermore, the
approximation in Theorem 5.4 holds and the maximal girth of the original graph is equal
to α2 = 3. Hence, the maximal girth can be computed during the reduction process.
This shows that the conditions for the weak uniqueness is significantly loose and requiring
ωkℓ to be at most 2π/3 for all edges {k, ℓ} is enough. However, for 2-vertex-connected
SP graphs, we have shown that the maximal girth is equal to the maximal eye and the
requirement for the weak uniqueness is the same as that for the strong uniqueness.
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Power Network Original Size Reduced Size α1 α2 eR
Case 14 (14,20) (2,1) 6 3 0
Case 30 (30,41) (8,13) 4 3 8
Case 39 (39,46) (8,12) 4 5 8
Case 57 (57,78) (22,39) 4 - 23
Case 118 (118,179) (44,83) 5 - 13
Case 300 (300,409) (109,196) 8 4 ≥10
Case 1354 (1354,1710) (263,500) 9 8 TLE
Case 2383 (2383,2886) (499,949) 11 5 TLE

Table 2: Number of vertices and edges before and after the SSPR method for maximal
eye along with values computed during the reduction process.

Finally, we validate the results in Corollary 3.5, i.e., showing that there does not exist
a different solution in the monotone regime with the set of allowable perturbations being
W2π/e(G). Given a power network in MATPOWER data set, we randomly generate power
systems with the same network topology and monotone regime. Then, we construct
several random solutions and use MATPOWER runpf to check if there are different
solutions in the neighborhood of the constructed ground truth solution. For power systems
with at most 118 buses, the ground truth solution is the only solution found in the
neighborhood of the ground truth. Hence, we know the strong uniqueness holds for those
power networks. More details about the experiment are given in technical report [29].

6 Conclusion

In this paper, we extend the uniqueness theory of P -Θ power flow solutions developed
in [28] for an AC power system. The notion of strong uniqueness is introduced to charac-
terize the uniqueness in the common sense. We propose a general necessary and sufficient
condition for the uniqueness of the solution, which depends only on the monotone regime
and the network topology. These conditions can be greatly simplified in certain scenarios.
When the underlying graph of the power network is a single cycle, sufficient conditions
in [28] are proved to be necessary. For 2-vertex-connected SP graphs, we show that the
maximal eye is equal to the maximal girth, which means that the sufficient condition
for the weak uniqueness also implies the strong uniqueness. When the power network is
lossless, we derive a necessary and sufficient condition that does not contain sinusoidal
functions and its sufficient part is stronger than the general sufficient conditions. A reduc-
tion method, named the SSPR method, is proposed to reduce the size of power network
and accelerate the computation of the maximal eye and the maximal girth. The SSPR
method is proved to reduce a 2-vertex-connected SP graph to a single edge and the re-
lation between the graphs before and after the reduction is analyzed. Some algorithms
based on the DFS method with pruning are designed to compute the maximal eye and
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maximal girth.

7 Appendix

7.1 Algorithms for computing maximal eye and maximal girth

In the appendix, we propose search-based algorithms for computing the maximal eye and
the maximal girth. Our approach is based on the Depth-First Search (DFS) method and
utilized the pruning technique to accelerate the computing process. We first describe a
common sub-procedure that will be used in both algorithms. The sub-procedure computes
the minimal directed chordless cycle containing a given edge. Given a truncation length
T ≥ 1, the sub-procedure returns the truncation length if there does not exist a directed
chordless cycle that contains the given edge and has length at most T . The sub-procedure
is also based on the DFS method with pruning and borrows the idea of blocking from [40]
to accelerate the searching process. The pseudo-code of the sub-procedure is listed in
Algorithm 3.

The search space of the sub-procedure is the set of directed chordless paths with
length at most T . When the current directed chordless path is a directed chordless cycle,
the length of the cycle is recorded and the minimal length of known directed chordless
cycles is updated. By searching over all chordless paths, we find the length of the minimal
directed chordless cycle. The DFS method is initialized with the given edge, denoted as
(k, ℓ), and extends the directed chordless path by adding a neighbouring vertex of the end
point other than k to the path. The pruning technique becomes effective and delete the
end point other than k from the path if one of the following cases occurs:

• The length of the directed chordless path is larger than T or the known minimal
length of directed chordless cycles;

• All neighbouring vertices have been searched or will introduce a chord if added to
the path.

Using the idea of blocking, one can efficiently check whether adding a vertex to the path
will introduce a chord. This approach is based on the following observation: if the path
(k1, . . . , kt) is chordless, then any vertex ks can only be in the neighborhood of ks−1, ks+1.
We construct an array and, for each vertex, we record the number of vertices on the path
that are in the neighborhood of the vertex. The array is updated whenever the path is
updated. If there are at least two vertices on the path in the neighbourhood of a vertex
not on the path, then adding the vertex to the path will introduce a chord. Hence, the cost
of checking this condition for each potential vertex not on the path is a single evaluation
of an array.
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Algorithm 3 Truncated Minimal Chordless Cycle
Given: Directed weighted graph (V,E,W ), selected edge (k, ℓ), truncation length
T
Output: Length of minimal chordless cycle c
1. Construct the neighbourhood of each vertex N : V 7→ 2V.
2. Initialize blocked array block[i]← 0 for all vertices i ∈ V.
3. Set the length of minimal cycle recorded c← T .
4. Set current length Lcur ← Wkℓ.
5. Set the path P ← [k, ℓ].
6. Set block[k]← 1, block[ℓ]← 1.
if Lcur ≥ T then

return c
end if
while the length of P is at least 2 do

Get the endpoint i← P [−1].
Increase block for vertices in N [j] by 1.
Get the minimal vertex j ∈ N [i] such that block[j] ≤ 1 and Lcur +WP [−1]j < v.
if no such vertex j exists then

Find the maximal index h such that P [h] /∈ {k, ℓ, i} and P [h+ 1] is not the
maximal vertex in N [P [h]].
if no such h exists then

break
else

Remove P [h+ 1], . . . , P [−1] from path P .
Decrease block of N [P [h]], . . . , N [P [−1]] by 1.
Add the next smallest vertex in N [P [h]] to P .
Update Lcur to be the length of path P .
continue

end if
else

Add vertex j to P and update Lcur.
if k ∈ N [j] then

Calculate length ccur ← Lcur +Wjk.
if ccur > 0 then

Update c← min{c, ccur}.
end if
Recursion similarly as above.

else
continue

end if
end if

end while
return c
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Next, we propose the algorithms for computing the maximal eye and the maximal
girth. Since the algorithm of maximal girth is similar to the algorithm for maximal eye, we
only present the algorithm for computing the maximal eye and offer the other one in [29].
The algorithm is also based on the DFS method with pruning, and the pseudo-code is
provided in Algorithm 4. We first order all edges and gradually assign one of the directions
{0,−1,+1} to each edge following the ordering of the edges. The search space consists
of the orientations for the first several edges (intermediate states) and the orientations
for the entire graph (final states). One can verify that all intermediate states and final
states form a trinomial4 tree, since each orientation for the first k < |E| edges leads to
three different orientations for the first k + 1 edges. Then, the algorithm for computing
the maximal eye searches in the same way as the classical DFS method on a directed
tree. For each node, we consider the sub-graph consisting of those edges that have been
assigned a direction. We compute the length of the minimal directed chordless cycle in
the sub-graph, which contains the last edge in the sub-graph, using the sub-procedure
(Algorithm 3). The truncation length can be decided as follows. Since a DFS method is
implemented on a trinomial tree, there exists a directed path from the root node of the
trinomial tree to the current node. The truncation length can be chosen as the minimal
length computed on the preceding nodes of the path. When the search reaches a leaf
node, we obtain an orientation for the entire graph, and the size of the eye becomes the
minimal length on the path to the root node. By searching over all leaf nodes, we find
the maximal eye. Similarly, one can use the pruning technique to reduce the search space.
The current node is pruned if it can not be extended to a weakly feasible orientation for
the entire graph, or the size of the eye of the sub-graph is smaller than the known maximal
size of the eye.

4A directed tree is called a trinomial tree if there is a root node and each non-leaf node has exactly
three descendant nodes.

89



Algorithm 4 Algorithm for Computing The Maximal Eye
Given: Undirected weighted graph (V,E,W ), slack bus k
Output: Maximal eye e
1. Set the maximal eye e← 0.
2. Assign an order to the set of edges E and denote edges as {k1, ℓ1}, . . . , {km, ℓm}.
3. Initialize the set of edges E0 ← {{k1, ℓ1}}.
4. Initialize the set of orientations Ak1,ℓ1 ← −1.
loop

Check the weak feasibility with current orientation.
if weak feasibility fails then

Get the maximal index j such that Akj ,ℓj ̸= 1.
if no such j exists then

break
else

Remove {kj+1, ℓj+1}, . . . , {km, ℓm} from E0.
Change orientation Akj ,ℓj ← Akj ,ℓj + 1.
continue

end if
end if
Compute the size of eye ecur under E0 and A using Algorithm 3. The truncation
length is set to be the size of eye of the precedent state.
if ecur < e then

Recursion in the same way.
end if
Get the next edge {ki, ℓi} that is not in E0.
if no such edge then

Update e← max{e, ecur}.
Recursion in the same way.

else
Add the next edge {ki, ℓi} that is not in E0.
Assign Akj ,ℓj ← −1.
continue

end if
end loop
return e

7.2 Proof of Lemma 3.1

Proof. We only prove the strong uniqueness part since the proof for weak uniqueness is
similar. For a given power network, we define the real power flow along the line {k, ℓ} ∈ E
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from bus k in the direction of bus ℓ as

p̃kℓ(Θ) := −Gkℓ|vk||vℓ|cos(Θkℓ) +Bkℓ|vk||vℓ|sin(Θkℓ).

By definition, it follows that

P̂k(Θ) =
∑

ℓ:{k,ℓ}∈E

p̃kℓ(Θ) ∀k ∈ V.

Proof of sufficiency We first show by contradiction that statement 2 of the lemma is
sufficient for statement 1. In particular, suppose that statement 2 holds, but the solution
is not strongly unique for some graph G ∈ G and some real power injection P while
problem (76) is feasible. Then, there exist two different phase angle vectors Θ1,Θ2 such
that Θ2 ∈ N (G,Θ1,W) and P̂ (Θ1) = P̂ (Θ2). For each line {k, ℓ} ∈ E, there exists a
constant Ckℓ > 0 such that

Bkℓ = Ckℓ sin(γkℓ), Gkℓ = Ckℓ cos(γkℓ).

We calculate the change of power flow from k to ℓ as

p̃kℓ(Θ
1)− p̃kℓ(Θ

2) = −Gkℓ|vk||vℓ|[cos(Θ1
kℓ)− cos(Θ2

kℓ)] +Bkℓ|vk||vℓ|[sin(Θ1
kℓ)− sin(Θ2

kℓ)]

= −Ckℓ cos(γkℓ)|vk||vℓ|[cos(Θ1
kℓ)− cos(Θ2

kℓ)] + Ckℓ sin(γkℓ)|vk||vℓ|[sin(Θ1
kℓ)− sin(Θ2

kℓ)]

= (− cos(γkℓ)[cos(Θ
1
kℓ)− cos(Θ2

kℓ)] + sin(γkℓ)[sin(Θ
1
kℓ)− sin(Θ2

kℓ)]) · |vk||vℓ|Ckℓ

= 2[cos(γkℓ) sin(Θ
1
kℓ/2 + Θ2

kℓ/2) + sin(γkℓ) cos(Θ
1
kℓ/2 + Θ2

kℓ/2)] · sin(∆kℓ/2)|vk||vℓ|Ckℓ

= 2 sin(γkℓ +Θ1
kℓ/2 + Θ2

kℓ/2) · sign(sin(∆kℓ/2)) · |sin(∆kℓ/2)||vk||vℓ|Ckℓ

:= δkℓ · |sin(∆kℓ/2)vkvℓ|Ckℓ,

where

∆kℓ := Θ1
kℓ −Θ2

kℓ, (81)
δkℓ := 2 sin(γkℓ +Θ1

kℓ/2 + Θ2
kℓ/2)sign(sin(∆kℓ/2)).

Note that the third equality in (81) is due to the following triangular identities:

cos(η)− cos(φ) = −2 sin[(η − φ)/2] sin[(η + φ)/2],

sin(η)− sin(φ) = 2 sin[(η − φ)/2] cos[(η + φ)/2].

Since P̂k(Θ
1) = P̂k(Θ

2) for all k ̸= 1, we obtain

P̂k(Θ
1)− P̂k(Θ

2) =
∑

ℓ:{k,ℓ}∈E

[
p̃kℓ(Θ

1)− p̃kℓ(Θ
2)
]
=

∑
ℓ:{k,ℓ}∈E

δkℓ · |sin(∆kℓ/2)vkvℓ|Ckℓ = 0
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for all k ̸= 1. Let the set E0 be the subset of edges such that ∆kℓ ̸= 0 for all {k, ℓ} ∈ E0;
we assign an order to elements in E0. Define the matrix M ∈ R|V|×|E0| and the vector
g ∈ R|E0| as

Mki := δkℓ, Mℓi := δℓk, gi := |sin(∆kℓ/2)vkvℓ|Ckℓ,

where {k, ℓ} is the i-th edge in the set E0. Since ∆kℓ ̸= 0 for all {k, ℓ} ∈ E0 and
∆kℓ ≤ 2γkℓ ≤ π, it holds that

|sin(∆kℓ/2)|> 0 ∀{k, ℓ} ∈ E0.

Then, the vector g is a solution to the linear feasibility problem

find x ∈ R|E0| s.t. (Mx)2:|V | = 0, x > 0.

where (y)i:j := (yi, yi+1, . . . , yj) includes the i-th to the j-th entries of the vector y and
inequality x > 0 means that xk > 0 holds for all entries of the vector x. The notation
x ≥ 1 is defined in the same way. The above feasibility problem is equivalent to

find x ∈ R|E0| s.t. (Mx)2:|V | = 0, x ≥ 1.

Then, by Farka’s Lemma, the dual feasibility problem

find y ∈ R|V| s.t. MTy ≥ 0, 1TMTy > 0, y1 = 0

is infeasible. However, the conditions in the dual problem are the same as the conditions
in statement 2 of Lemma 3.1. This contradicts the claim in statement 2 that there exists
a vector y satisfying these conditions. Thus, statement 1 must hold true.

Proof of necessity Next, we again show by contradiction that statement 2 of the
lemma is necessary for statement 1. Assume that statement 1 holds true, and that
there exist two different phase angle vectors Θ1,Θ2 in the monotone regime such that
Θ2 ∈ N (G,Θ1,W) while there does not exist y satisfying the conditions in statement
2. We define E0 as the set of edges such that ∆kℓ ̸= 0, where ∆kℓ := Θ1

kℓ − Θ2
kℓ for all

{k, ℓ} ∈ E0. We construct the matrix M ∈ R|V|×|E0| as

Mki := δkℓ, Mℓi := δℓk,

where {k, ℓ} is the i-th edge in the set E0 and

δkℓ := sin(γkℓ +Θ1
kℓ/2 + Θ2

kℓ/2)sign(sin(∆kℓ/2)).
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By the same analysis, the conditions in statement 2 turn out to be equivalent to the
feasibility of the linear feasibility problem

find y ∈ R|V| s.t. MTy ≥ 0, 1TMTy > 0, y1 = 0.

By our assumption, the above problem is infeasible. By Farka’s Lemma, there exists a
solution g ∈ R|E0| to the feasibility problem

find x ∈ R|E0| s.t. (Mx)2:|V | = 0, x ≥ 1

and also to the feasibility problem

find x ∈ R|E0| s.t. (Mx)2:|V | = 0, x > 0.

We define the matrix C ∈ R|V|×|V| as

Ckℓ := |sin(∆kℓ/2)vkvℓ|−1gi ∀{k, ℓ} ∈ E0,

where {k, ℓ} is the i-th edge in the set E0, and

Ckℓ := 1 ∀{k, ℓ} ∈ E\E0, Ckℓ := 0 ∀{k, ℓ} /∈ E.

By the definition, it follows that Ckℓ > 0 for all {k, ℓ} ∈ E. We construct a graph G with
the complex admittance matrix

Ykℓ := Ckℓ cos(γkℓ)− jCkℓ sin(γkℓ) ∀{k, ℓ} ∈ E.

Then, for all k ̸= 1, we have

P̂k(Θ
1)− P̂k(Θ

2) =
∑

ℓ:{k,ℓ}∈E

[
p̃kℓ(Θ

1)− p̃kℓ(Θ
2)
]

=
∑

ℓ:{k,ℓ}∈E

δkℓ · |sin(∆kℓ/2)vkvℓ|Ckℓ = (Mg)k = 0.

This implies that Θ1 and Θ2 are both solutions to problem (76) in the monotone regime
when the real power injection is

P := P̂ (Θ1).

This contradicts statement 1 that the solution is strongly unique for any real power
injection. Hence, the conditions in statement 2 must be satisfied.

7.3 Proof of Lemma 3.2

Proof. We only prove the strong uniqueness part since the proof for weak uniqueness is
similar. Since the induced orientation A is not a weakly feasible orientation, there exists
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a vertex i ̸= 1 such that it has nonzero out-degree and zero in-degree, or it has nonzero
in-degree and zero out-degree. Without loss of generality, assume that the vertex i has
nonzero out-degree and zero in-degree. We prove that the i-th unit vector y := ei satisfies
the conditions in statement 1 of Lemma 3.1. It is straightforward that y1 = 0. We only
need to show that the inequalities in (77) hold and at least one of them is strict. We
consider any edge (k, ℓ) such that ∆kℓ > 0. First, if k ̸= i and ℓ ̸= i, then both sides of
the inequality (77) are zero. Next, if k ̸= i and ℓ = i, then the condition ∆ki > 0 implies
that Aki = +1, which contradicts the assumption that i has zero in-degree. Finally, if
k = i and ℓ ̸= i, the goal is to prove that

sin(γiℓ +Θ1
iℓ/2 + Θ2

iℓ/2) · yi > sin(γiℓ −Θ1
iℓ/2−Θ2

iℓ/2) · yℓ.

Since yi = 1 and yℓ = 0, the above inequality is equivalent to

sin(γiℓ +Θ1
iℓ/2 + Θ2

iℓ/2) > 0.

Recalling the assumption that Θ1
iℓ and Θ2

iℓ are in the monotone regime [−γiℓ, γiℓ], one
can write

γiℓ +Θ1
iℓ/2 + Θ2

iℓ/2 ∈ [0, 2γiℓ] ⊂ [0, π].

Hence, it is enough to show that

γiℓ +Θ1
iℓ/2 + Θ2

iℓ/2 ∈ (0, 2γkℓ) ⊂ (0, π).

If γiℓ +Θ1
iℓ/2 + Θ2

iℓ/2 = 0, then it holds that

Θ1
iℓ = Θ2

iℓ = −γiℓ.

This contradicts the inequality ∆iℓ = Θ1
iℓ −Θ2

iℓ > 0. If γiℓ +Θ1
iℓ/2 +Θ2

iℓ/2 = 2γkℓ, then
it holds that

Θ1
iℓ = Θ2

iℓ = γiℓ,

which also contradicts the inequality ∆iℓ > 0. Combining the two cases, we obtain that
sin(γiℓ +Θ1

iℓ/2 + Θ2
iℓ/2) > 0 and the inequality

sin(γiℓ +Θ1
iℓ/2 + Θ2

iℓ/2) · yi > sin(γiℓ −Θ1
iℓ/2−Θ2

iℓ/2) · yℓ.

holds strictly. It follows that y = ei satisfies the conditions in statement 2 of Lemma
3.1.

7.4 Proof of Corollary 3.4

Proof. We only prove the strong uniqueness part since the proof for weak uniqueness is
similar. Suppose that Θ1 and Θ2 are two solutions to problem (76) in the monotone
regime such that Θ2 ∈ N (G,Θ1,W). Using the results of Theorem 3.3, we only need to
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show that the induced orientation of Θ1 − Θ2 is not weakly feasible. Assume conversely
that the induced orientation A is a weakly feasible orientation. Then, by hypothesis, there
exists a directed cycle (k1, . . . , kt) containing at least one normal edge such that∑

kiki+1 is normal

ωkiki+1
< 2π, (82)

where kt+1 := k1. We denote ∆kℓ := Θ1
kℓ −Θ2

kℓ and it follows that

0 < ∆kiki+1
≤ ωkiki+1

∀i s.t. {ki, ki+1} is normal, (83)
∆kiki+1

= 0 ∀i s.t. {ki, ki+1} is not normal,

where the right part of the first inequality is because Θ2 ∈ N (G,Θ1,W). Combining
inequalities (82) and (83) yields that

0 <
t∑

i=1

∆kiki+1
=

∑
kiki+1 is normal

∆kiki+1
≤

∑
kiki+1 is normal

ωkiki+1
< 2π. (84)

However, by the definition of ∆kℓ and Θkℓ, one can write

t∑
i=1

∆kiki+1
=

t∑
i=1

Θ1
kiki+1

−
t∑

i=1

Θ2
kiki+1

=
t∑

i=1

[
Θ1

ki
−Θ1

ki+1

]
−

t∑
i=1

[
Θ2

ki
−Θ2

ki+1

]
= 0,

where the second last equality is the congruence relation module 2π and the last equality
is because (k1, . . . , kt) is a cycle. This contradicts equation (84). Thus, the induced
orientation is not a weakly feasible orientation and the strong uniqueness holds.

7.5 Proof of Theorem 3.6

Proof. To prove the first inequality, we only need to notice that any feasible orientation is
also a weakly feasible orientation and the size of eye is equal to the girth when all edges
are normal.

Then, we consider the second inequality. Assume conversely that the maximal eye is
attained by a directed cycle with chords in the weakly feasible orientation A. Without
loss of generality, assume that the directed cycle (1, . . . , t) attains the maximal eye with
fewest chords, where t ≥ e(G) and {1, i} ∈ E is a chord for some i ∈ {3, . . . , t− 1}. We
consider four different cases:

1. A1,i = 0: Consider the directed cycle

(1, i, i+ 1, . . . , t),

which has at most e(G) normal edges and strictly fewer chords than (1, . . . , t). This
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contradicts the assumption that the cycle (1, . . . , t) is a directed cycle that attains
the size of eye with fewest chords.

2. A1,i = +1: and there exists at least one normal edge among {1, 2}, . . . , {i− 1, i}:
The directed cycle

(1, i, i+ 1, . . . , t)

has at most e(G) normal edges and strictly fewer chords than (1, . . . , t). This also
contradicts the assumption on (1, . . . , t).

3. A1,i = +1 and edges {1, 2}, . . . , {i − 1, i} are not normal: Consider the directed
cycle

(1, i, i− 1, . . . , 2),

which has exactly one normal edge and strictly fewer chords. By the definition of
the maximal eye, we know e(G) ≥ 1 and the cycle (1, i, i − 1, . . . , 2) has at most
e(G) ≥ 1 normal edges. Hence, this contradicts the assumption on (1, . . . , t).

4. A1,i = −1: Consider the orientation Ã defined as

Ãkℓ := −Akℓ ∀{k, ℓ} ∈ E

and use the discussion in the first three cases.

Combining the above four cases concludes that the maximal eye of the power network G
must be attained by a chordless cycle. Hence, the maximal eye is upper bounded by the
longest chordless cycle.

7.6 Proof of Lemma 4.1

Proof. By the definition of strong uniqueness and weak uniqueness, if a solution to problem
(76) is strongly unique, than it is also weakly unique. We only need to consider the
other direction. Assume conversely that there exists a solution Θ1 in the monotone
regime that is weakly unique but not strongly unique. Then, there exists another solution
Θ2 ∈ N (G,Θ1,W) that is different from Θ1 according to Definition 2.5. Then, the phase
difference of some line is different for the two solutions. Considering the power injection
balance at each bus, we know that the phase difference is different at all lines.

This means that the two solutions Θ1 and Θ2 are different according to Definition 2.4,
which contradicts the assumption that Θ1 is weakly unique.
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7.7 Proof of Theorem 4.2

Proof. The sufficient part is proved in Corollary 3.4 and we only prove the necessary part.
In this proof, bus n+ 1 is defined as bus 1. We assume that

n∑
i=1

ωi,i+1 ≥ 2π

We construct a power network G ∈ G and power injection P such that there exist two
different solutions Θ1,Θ2 in the monotone regime and Θ2 ∈ N (G,Θ1,W). Without loss
of generality, assume that

n∑
i=1

ωi,i+1 = 2π.

This is because the construction for

W̃ :=

{
2π∑n

j=1 ωj,j+1

· ωi,i+1 : i ∈ [n]

}
.

also works for the original W = {ωi,i+1 : i ∈ [n]} if
∑n

j=1 ωj,j+1 ≥ 2π. We define two
phase angle vectors as

Θ1
1 := 0, Θ1

i :=
i∑

j=2

ωj,j+1 ∀i ∈ {2, . . . , n},

Θ2
i := 0 ∀i ∈ [n].

Then, it follows that

Θ1
i,i+1 = ωi,i+1, Θ2

i,i+1 = 0 ∀i ∈ [n],

which means that Θ1 and Θ2 are both in the monotone regime. Since ωi,i+1, γi,i+1 ∈
(0, π/2], we know that γi,i+1+ωi,i+1 ∈ (0, π] and therefore, by the monotonicity of cos(·)
in [0, π], we have

cos(γi,i+1 + ωi,i+1) < cos(γi,i+1).

For each line {i, i+ 1}, we define the positive constant

Ci,i+1 := |vivi+1|−1[− cos(γi,i+1 + ωi,i+1) + cos(γi,i+1)]
−1

and the complex admittance

Bi,i+1 := sin(γi,i+1)Ci,i+1, Gi,i+1 := cos(γi,i+1)Ci,i+1.
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We use p̃i,i+1(Θ) to denote the real power flow from bus i to bus i + 1 given the phase
angle vectors Θ. Then, we can calculate that

p̃i,i+1(Θ
1)− p̃i,i+1(Θ

2) =−Gi,i+1|vivi+1|[cos(Θ1
i,i+1)− cos(Θ2

i,i+1)]

+Bkℓ|vivi+1|[sin(Θ1
i,i+1)− sin(Θ2

i,i+1)]

= − cos(γi,i+1)Ci,i+1|vivi+1|[cos(ωi,i+1)− 1]

+ sin(γi,i+1)Ci,i+1|vivi+1|sin(ωi,i+1)

= Ci,i+1|vivi+1|·[− cos(γi,i+1 + ωi,i+1) + cos(γi,i+1)] = 1.

It follows that

P̂i(Θ
1)− P̂i(Θ

2) =
[
p̃i−1,i(Θ

1)− p̃i−1,i(Θ
2)
]
−
[
p̃i,i+1(Θ

1)− p̃i,i+1(Θ
2)
]

=1− 1 = 0.

If we choose P := P̂ (Θ1), then Θ1 and Θ2 are two different solutions to problem (76) in
the monotone regime such that Θ2 ∈ N (G,Θ1,W) and that the strong uniqueness does
not hold.

7.8 Proof of Lemma 4.4

Proof. For the notational simplicity, we denote the maximal eye and the maximal girth
of the graph (V,E,W ) as e and g, respectively. Since the graph is 2-vertex-connected,
there does not exist a degree-1 vertex.

By Lemmas 5.1 and 5.3, Type II Operations do not change the maximal eye and
the maximal girth of the graph. Moreover, the graph has a nested ear decomposition
{L0, L1, . . . , Lr−1} by Theorem 4.3. Hence, we can assume that there is no degree-2
vertex except the slack bus. Assume conversely that graph (V,E,W ) is the 2-vertex-
connected SP graph with minimal number of ears such that e > g. We will show that
there must exist another graph with fewer ears in the ear decomposition and e > g. This
will lead to a contradiction with our assumption that this graph has the minimal number
of ears. If the graph has at most two ears, then the graph is a single line of a cycle and
we know e = g. Hence, there exist at least three ears in the graph (V,E,W ).

Step 1 In this step, we prove that the graph has a pair of parallel edges that contains
a leaf ear, which we will define below. Since a nested ear decomposition is also a tree
decomposition, we can assign a directed tree structure to ears in the decomposition.
Here, we call an ear Lk a descendant ear of Lℓ if Lk is a descendant node of Lℓ on
the directed tree, or equivalently, both endpoints of ear Lk are on Lℓ and at least one
of them is different from the endpoints of Lℓ. We also call ear Lℓ the precedent ear
of Lk. For any ear Lℓ, we say that ear Lk is a smallest descendant ear of Lℓ if Lk

is a descendant ear of Lℓ and there does not exist another ear Li such that Li is also
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a descendant ear of Lℓ and the interval formed by the endpoints of Li on Lℓ is a strict
subset of the interval formed by the endpoints of Lk. We note that each ear may have
multiple smallest descendant ears. We say that an ear is a leaf ear if it is the smallest
descendant ear of some ear and has no descendant ear. We denote the set of leaf ears
as L. Considering the directed tree structure of the ear decomposition, we know that the
set L is not empty.

Suppose that Lk is a leaf ear with the endpoints k1, k2 and that Lℓ is the precedent
ear of Lk. Since we have deleted all degree-2 vertices except the slack bus, ear Lk is either
a single line {k1, k2} or two edges {k1, k3} and {k2, k3} connecting the endpoints to the
slack bus k3. Similarly, the path connecting the two endpoints of Lk on the precedent ear
Lℓ, which we denote as Pk, is either a single line or contains the slack bus. Considering the
ear Lk and the path Pk, there are two cases: two parallel edges with endpoints {k1, k2},
or one is a single line and the other is two edges with the slack bus. If the first case occurs,
we have a pair of parallel edges containing a leaf ear. Now, we consider the second case.
If we exchange the two paths, i.e., let Pk be a leaf ear and Lk be a path on the precedent
ear, then the structure of nested ear decomposition is not changed. Hence, without loss
of generality, assume that Lk is a single line and Pk contains the slack bus. If there exists
an ear Lj different from Lℓ that also contains leaf ears, then by the uniqueness of slack
bus, the first case occurs for leaf ears on ear Lj.

Hence, we simply need to consider the case when Lℓ is the only ear that contains leaf
ears. We consider the root ear L0. By the definition of tree ear decomposition, we know
that L0 is a single line; let ℓ1, ℓ2 be the two endpoints of L0. Since all vertices except the
slack bus have degree at least 3 and the slack bus is not an endpoint of ears, both ℓ1 and
ℓ2 have degree at least 3. This implies that the root ear L0 has at least 2 descendant ears
and all descendant ears have endpoints ℓ1, ℓ2. Let Lk1 , Lk2 , . . . , Lkm be the descendant
ears of L0. For each Lki , we define a sub-graph of (V,E,W ) consisting of ear L0 and
ears that are descendant nodes of Lki in the directed tree of ears. We can verify that
each sub-graph also has a nested ear decomposition and therefore contains at least one
leaf ear, which implies that ear Lℓ belongs to all sub-graphs. On the other hand, due to
the tree structure, the intersection of two different sub-graphs is ear L0 and is not a leaf
ear. Hence, the leaf ears in different sub-graphs are different and Lℓ = L0. It follows
that all descendant ears of L0 are leaf ears and they form at least a pair of parallel edges
containing a leaf ear.

Step 2 In this step, we construct a nested ear decomposition of the graph (V,E,W )
such that there exists a pair of parallel edges that contains the root ear L0 and that all
edges are ears in the ear decomposition. According to Step 1, there exists a pair of parallel
edges that contains a leaf ear. We denote the leaf ear in the pair of parallel edges as Lk.
We consider the (undirected) cycle containing L0 and Lk. Suppose that the cycle has a
non-empty edge intersection with ears Lk0 , . . . , Lkt , where k0 = 0, kt = k and Lks+1 is
a descendant ear of Lks for s = 0, 1, . . . , t − 1. Notice that the endpoints of each ear
Lks are on the cycle. Now, we construct a new nested ear decomposition L̃0, . . . , L̃m−1
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such that Lk = L̃0 is the root ear. We define L̃0 := Lk and L̃k as the remaining part of
the cycle. For ears Lks with 1 ≤ s ≤ t − 1, we define L̃ks as the ear Lks with edges on
the cycle deleted. For ears that do not intersect with the cycle, we define L̃i := Li. It
is desirable to show that with the new set of ears still forms a nested ear decomposition.
To this end, we analyze three cases:

• Case I. First, it can be verified that ears L̃k1 , . . . , L̃kt−1 are nested ears on L̃kt .
Hence, ears L̃k0 , . . . , L̃kt still form a nesting structure.

• Case II. Next, we consider an ear L̃i = Li that is not changed and has both
endpoints on Lks for some s ∈ {0, 1, . . . , t − 1}. Since Lks+1 is a descendant ear
on Lks , by the definition of nested ear decomposition, we know that the endpoints
of L̃i are either both on L̃ks or both on L̃kt . For the first case, Li is an ear on
L̃ks and ears on L̃ks have the same nesting structure as Lks . For the second case,
both endpoints of Lk locate on L̃kt and are nested between the endpoints of L̃ks

and L̃ks−1 . We note that for the case when s = 0, both endpoints are equal to the
endpoints of L0 and they form the smallest possible interval on L̃kt . Hence, ears
on L̃kt also have a nested structure.

• Case III. Finally, we consider ears that are not changed and do not have endpoints
on Lks for any s = 0, . . . , t. These ears still form a nested structure on the original
precedent ear and the nested ear decomposition structure is not changed.

Combining the above three cases concludes that the new set of ears is also a nested ear
decomposition. Moreover, the topological structure of the graph is not changed. Hence,
in the new ear decomposition, the root ear L̃0 = Lk has parallel edges. Finally, we observe
that the parallel edges of the root ear are also ears in the ear decomposition.

Step 3 Suppose that the maximal eye is achieved by the weakly feasible orientation
A. In this step, we show that we can modify A such that each edge with direction 0
is incident to a degree-0 vertex and the size of eye is not changed. Here, the degree is
calculated for the directed graph with orientation A and all edges with orientation 0 are
not counted towards the degree. We define a partition of vertices as

V1 := {k ∈ V | deg(k) > 0 or k is the slack bus},
V2 := {k ∈ V | deg(k) = 0 and k is not the slack bus}

and a partition of edges as

E1 := {{k, ℓ} ∈ E | Akℓ ∈ {+1,−1}},
E2 := {{k, ℓ} ∈ E | Akℓ = 0, k ∈ V1 and ℓ ∈ V1},
E3 := {{k, ℓ} ∈ E | Akℓ = 0, k ∈ V2 or ℓ ∈ V2}.
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Then, the objective is to show that there exists a weakly feasible orientation such that the
size of eye is still e and the set E2 is empty. For any edge {k, ℓ} ∈ E2, we can arbitrarily
assign direction +1 or −1 to the edge and the orientation is still weakly feasible. This is
because for vertices in V1, the requirement on in-degree and out-degree is satisfied by other
edges. More specifically, if the degree of k or ℓ is nonzero, then by the definition of weakly
feasible orientation, the vertex already has nonzero in-degree and out-degree. Otherwise,
if k or ℓ is the slack bus, then the in-degree and out-degree can be arbitrary. Thus, we
can arbitrarily assign directions +1 or −1 to all edges in E2 and the new orientation is
still weakly feasible. We define a new orientation as

Ãkℓ :=

{
+1 if k > ℓ

−1 otherwise
∀{k, ℓ} ∈ E2,

Ãkℓ := Akℓ ∀{k, ℓ} ∈ E1 ∪ E3.

We prove that with orientation Ã, the size of eye is not changed. Let (k1, . . . , kt) be a
directed cycle in the graph with orientation Ã. If some edges of this cycle are in E1 ∪E3,
then this cycle also exists in the graph with A. By assigning directions ±1 to edges
with direction 0, the lengths of the cycles are not decreased and therefore the length of
(k1, . . . , kt) is at least e under the orientation Ã.

If all edges of this cycle are in E2, then we choose the minimal index in {k1, . . . , kt},
which is assumed to be k1 without loss of generality. By the definition of Ã, the edge
{k1, k2} has orientation Ãk1k2 = −1, which contradicts the fact that (k1, . . . , kt) is a
directed cycle with Ã. Combining the above two cases, it can be inferred that the size of
eye with orientation Ã is at least e. On the other hand, e is defined to be the maximal
eye. Hence, the size of eye with orientation Ã is equal to e.

Step 4 In this step, we prove that the maximal eye is equal to the maximal girth. Sup-
pose that the maximal eye is achieved by the weakly feasible orientation A and orientation
A satisfies the conditions in Steps 2-3. We consider the set of parallel edges containing
the root ear, which we denote as {k, ℓ, 1}, . . . , {k, ℓ, t} for some t ≥ 2. We analyze two
different cases:

• Case I. If there exists at least one parallel edge having direction 0, then by the
conditions in Step 3, we know that at least one of the endpoints k, ℓ has degree
0. This means that all parallel edges have direction 0. We construct another graph
(Ṽ, Ẽ, W̃ ), where the parallel edges {k, ℓ, 1}, . . . , {k, ℓ, t} are substituted by a single
edge {k, ℓ} and the weight of the new edge is the minimal weight among all parallel
edges, i.e.,

W̃kℓ := min
s∈[t]

Wk,ℓ,s.

Other edges are the same as those in the original graph. We construct a weakly
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feasible orientation Ã for the new graph. For the edge {k, ℓ}, we define

Ãkℓ := 0.

For other edges, we define

Ãk1ℓ1 := Ak1ℓ1∀{k1, ℓ1} ∈ E\{{k, ℓ, 1}, . . . , {k, ℓ, t}}.

Since the orientations Ã and A have the same degree at each node, Ã also becomes
weakly feasible. Moreover, the size of eye of the graph with Ã is also equal to e,
which implies that the maximal eye of the new graph ẽ is at least e. Since the new
graph (Ṽ, Ẽ, W̃ ) has t − 1 fewer ears, the induction assumption implies that the
maximal girth of the new graph g̃ satisfies

g̃ = ẽ ≥ e.

Hence, we can choose a feasible orientation Ãg such that the girth is equal to g̃.
Now, we extend the feasible orientation Ãg to be a feasible orientation of the original
graph (V,E,W ). We define

Ag
k1ℓ1

:= Ãg
k1ℓ1
∀{k1, ℓ1} ∈ E\{{k, ℓ, 1}, . . . , {k, ℓ, t}}

and
Ag

k,ℓ,s := Ãg
kℓ ∀s ∈ [t].

Since the in-degree and out-degree at points k, ℓ are still nonzero for the orientation
Ag, it can be concluded that Ag is a feasible orientation for the original graph.
Moreover, the girth of the original graph with orientation Ag is equal to g̃. It
follows that the maximal girth g is at least g̃ ≥ e. This contradicts the assumption
that e > g.

• Case II. Next, we consider the case when all parallel edges {k, ℓ, 1}, . . . , {k, ℓ, t}
are normal edges. In this case, the goals is to construct a feasible orientation with
the same size of eye by assigning directions to edges with direction 0. We first
construct a feasible orientation Ã. Assume that L0 = {k, ℓ, 1} is the root ear, and
define

Ãk,ℓ,1 := Ak,ℓ,1, Ãk,ℓ,s := −Ak,ℓ,1 ∀s ∈ {2, . . . , t}.

Then, we inductively define the directions of other ears using the directed tree
structure of ears. For any ear Lk that has been assigned a direction, we assign its
descendant ear Lℓ with the parallel direction as the path formed by the endpoints
of Lℓ on Lk. In this way, the orientation Ã is defined for all ears and the definition
is unique because of the directed tree structure. Considering the structure of the
nested ear decomposition, we also know that all directed cycles in orientation Ã
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must contain the root ear. In addition, the orientation Ã is feasible. This is because
all internal vertices of ears have nonzero in-degree and nonzero out-degree. The
only vertices that are not internal vertices of ears are the endpoints of the root ear.
For the endpoints of the root ear, they also have nonzero in-degree nonzero and
out-degree by the definition of directions on parallel edges. Hence, the constructed
orientation Ã is feasible.

We then define an orientation that combines orientations A and Ã as follows:

Ag
kℓ :=

{
Akℓ if Akℓ ∈ {+1,−1}
Ãk,ℓ if Akℓ = 0,

∀{k, ℓ} ∈ E.

We prove that Ag is a feasible orientation and the girth of orientation Ag is at least e.
For any vertex k that has a nonzero degree in orientation A, the vertex k has nonzero
in-degree and out-degree by the definition of weakly feasible orientation. Hence, the
vertex k also has nonzero in-degree and out-degree in the new orientation. If the
vertex has degree 0 in the orientation A, then all edges incident to the vertex k has
the same direction as in Ã. Since the orientation Ã is feasible, the vertex k has
nonzero in-degree and nonzero out-degree in the new orientation Ag. Combining
the two cases, it can be concluded that the orientation Ag is feasible. Now, we
estimate the girth of orientation Ag. We consider any directed cycle C in Ag. If
the cycle C has normal edges in the original orientation A, then the length of cycle
C is not decreased in the new orientation and therefore is at least e. If the cycle
C does not have normal edges in the original orientation A, then all edges of C
have the same direction as in Ã and therefore is also a cycle in in Ã. This implies
that the root ear L0 is on the cycle C. However, the root ear is a normal edge
in orientation Ã and this contradicts the assumption that none of the edges of the
cycle C are normal. Thus, the girth of Ag is at least e. On the other hand, the
girth of a feasible orientation is bounded by the maximal girth g. This contradicts
the assumption that e > g.

Combining the above two cases and using the induction method, it can be concluded
that the maximal eye of a 2-vertex-connected SP graph is equal to its maximal girth.

7.9 Proof of Theorem 4.6

Proof. We only prove the strong uniqueness part since the proof for the weak uniqueness
is similar. We only need to show that statement 2 of this theorem holds if and only if
statement 2 of Lemma 3.1 holds.

Proof of sufficiency We assume conversely that there exist two sets of phase angle
vectors Θ1 and Θ2 satisfying statement 2 of Lemma 3.1 such that the induced sub-graph of
Θ1−Θ2 denoted as (V0,E0, A0) has the same number of strongly connected components
and weakly connected components.
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Let y be a vector that satisfies conditions in statement 2 of Lemma 3.1. We prove that
if vertices k and ℓ are in the same connected component, then yk = yℓ. By the definition
of strongly connected components, there exist directed paths from k to ℓ and from ℓ to
k. We first consider the directed path from k to ℓ, which we denote as (k, k1, . . . , kt, ℓ).
Considering the edge {k, k1} and inequality (77), one can write

sin(π/2 + Θ1
k,k1

/2 + Θ2
k,k1

/2) · yk ≥ sin(π/2−Θ1
k,k1

/2−Θ2
k,k1

/2) · yk1 . (85)

By the same analysis in Lemma 3.2, the condition ∆k,k1 > 0 implies that Θ1
k,k1

/2 +
Θ2

k,k1
/2 ∈ (−π/2, π/2), which leads to

sin(π/2 + Θ1
k,k1

/2 + Θ2
k,k1

/2) = sin(π/2−Θ1
k,k1

/2−Θ2
k,k1

/2) > 0. (86)

Combining the relations in (85) and (86), we obtain yk ≥ yk1 . Considering edges
{k1, k2}, . . . , {kn, ℓ} and using the same analysis, we have

yk ≥ yk1 ≥ yk2 ≥ · · · ≥ ykt ≥ yℓ,

and therefore yk ≥ yℓ. Similarly, the existence of a directed path from yℓ to yk implies
that yℓ ≥ yk. Combining the two directions, we obtain yk = yℓ. If we further assume
{k, ℓ} ∈ E0 and ∆kℓ > 0, then the relation in (86) implies that inequality (77) holds with
equality for {k, ℓ}. By the definition of weakly connected components, there does not
exist any edge in E0 connecting different connected components. Hence, the endpoints of
all edges in E0 are in the same connected component and therefore inequality (77) holds
with equality for all {k, ℓ} ∈ E0 such that ∆kℓ > 0. Finally, by the definition of induced
sub-graph, E0 contains all edges {k, ℓ} ∈ E such that ∆kℓ > 0. It follows that inequality
(77) holds with equality for all {k, ℓ} ∈ E such that ∆kℓ > 0. This contradicts statement
2 of Lemma 3.1 that there exists at least one strict inequality in the set of inequalities
(77). Hence, statement 2 of this theorem holds.

Proof of necessity Assume that the conditions in statement 2 of this theorem hold.
We denote the strongly connected components as C1, . . . , Cm. Now, we define a tree
structure for the set {C1, . . . , Cm}. For two different strongly connected components Cs
and Ct, if there exists a directed path from Cs to Ct, we define a directed edge from Ct
to Cs. Considering all strongly connected components pairs, we obtain a directed graph
with the vertex set {C1, . . . , Cm}. By the definition of strongly connected components,
we know that there does not exist directed cycle in this directed graph and therefore this
directed graph is a directed tree. Using the directed tree structure, we can choose m real
numbers c1, . . . , cm such that if there exists a directed path from Ct to Cs, then it holds
that ct > cs. Moreover, if vertex 1 belongs to some strongly connected component Cs,
then we can shift ct for all t ∈ [m] such that cs = 0 and the relation between all ct’s is
not changed. If vertex 1 does not belong to any strongly connected component, we do
not change the value of ct.
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We construct a vector y ∈ R|V| by

yk :=

{
cs if k is in Cs
0 if k ∈ V\V0.

Note that the set of strongly connected components gives a disjoint partition of the set
V0. Hence, the vector y is well-defined. By the choice of {c1, . . . , cm}, the vector y
satisfies y1 = 0. Suppose that the edge {k, ℓ} belongs to E and ∆kℓ > 0. We verify that
inequality (77) holds for {k, ℓ}, namely,

sin(π/2 + Θ1
kℓ/2 + Θ2

kℓ/2) · yk ≥ sin(π/2−Θ1
kℓ/2−Θ2

kℓ/2) · yℓ.

Recalling that the relation (86) holds for all {k, ℓ} such that ∆kℓ > 0, we only need to
verify

yk ≥ yℓ ∀{k, ℓ} ∈ E0 s.t. ∆kℓ > 0. (87)

By the definition of induced sub-graph, the condition ∆kℓ > 0 implies that {k, ℓ} ∈ E0.
Thus, vertices k and ℓ must belong to certain strongly connected components. If k and ℓ
belong to the same strongly connected component Cs, then yk = yℓ = cs and inequality
(87) holds. Otherwise, we assume that k and ℓ belong to two different strongly connected
components Cs and Ct, respectively. Since (k, ℓ) is a directed path from Cs to Ct, one can
write

yk = cs > ct = yℓ

and inequality (87) holds strictly. By the assumption that there are strictly more strongly
connected components than weakly connected components, there exists at least one edge
{k, ℓ} ∈ E0 such that k and ℓ belong to different strongly connected components. Without
loss of generality, assume that ∆kℓ > 0. Then, the inequality (87), or equivalently the
inequality (77), holds strictly for {k, ℓ}. This shows that y is a vector that satisfies
conditions in statement 2 of Lemma 3.1.

7.10 Proof for Successive Series-Parallel Reduction Method

7.11 Proof of Lemma 5.1

Proof. We prove the four claims separately.

Type I Operation We first consider the inequality on the right. We denote the two
endpoints as k, ℓ and the parallel edges connecting them as {k, ℓ, 1}, . . . , {k, ℓ, t} for some
t ≥ 2. Without loss of generality, assume that the weights of parallel edges satisfy

Wmin = Wk,ℓ,1 ≤ · · · ≤ Wk,ℓ,t = Wmax.
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Suppose that the maximal eye of graph (V,E,W ) is achieved by the weakly feasible
orientation A. If there exist different directions among these parallel edges when orien-
tation A is assigned, then we choose the first edge {k, ℓ, 1} and another edge {k, ℓ, s}
such that the direction of {k, ℓ, s} is different from the direction of {k, ℓ, 1}. Hence,
{k, ℓ, 1} and {k, ℓ, s} form a directed cycle and two edges have different directions.
Then, at least one edge is a normal edge, i.e., an edge with direction +1 or −1. The
weight of the cycle is bounded by Wk,ℓ,1 +Wk,ℓ,s ≤ Wmax +Wmin. Thus, it holds that
e ≤ Wmax +Wmin in this case. Otherwise, assume that all parallel edges have the same
direction when orientation A is assigned. Considering a directed cycle that contains the
edge {k, ℓ, s} for some s ∈ {2, . . . , t}, we can substitute the edge {k, ℓ, s} with edge
{k, ℓ, 1} and the length of the directed cycle is not increased. Hence, if we delete edges
{k, ℓ, 2}, . . . , {k, ℓ, t}, the size of eye is not changed. On the other hand, the deletion of
edges {k, ℓ, 2}, . . . , {k, ℓ, t} is equivalent to the Type I Operation on the set of parallel
edges {k, ℓ, 1}, . . . , {k, ℓ, t}. Hence, we obtain e = ẽ in this case. Combining the two
cases, it follows that e ≤ max{ẽ,Wmax +Wmin}.

We now prove the inequality on the left. Suppose that the maximal eye of the new
graph (Ṽ, Ẽ, W̃ ) is achieved by the weakly feasible orientation Ã. By the definition of
Type I Operations, the weight W̃k,ℓ is equal to the weight Wk,ℓ,1. We consider the inverse
operation of Type I Operation. Namely, we add parallel edges {k, ℓ, s} with weight Wk,ℓ,s

to the new graph and define the direction Ãk,ℓ,s := Ãk,ℓ,1 for all s ∈ {2, . . . , t}. Then,
the orientation Ã becomes a weakly feasible orientation for the original graph. By the
discussion for the inequality on the right, the inverse operation will not change the size of
eye. Therefore, we have a weakly feasible orientation for (V,E,W ) and the size of eye is
ẽ, which implies that e ≥ ẽ.

Type II Operation We consider the case when a Type II Operation is implemented.
We denote the deleted degree-2 vertex as k. By the definition of Type II Operations,
vertex k has two neighbouring vertices and we denote the two neighbouring vertices as
ℓ1 ̸= ℓ2. If A is a weakly feasible orientation for (V,E,W ), then the direction Aℓ1,k must
be equal to the direction Ak,ℓ2 . Hence, treating the two edges {ℓ1, k} and {k, ℓ2} as a
single edge with weight Wℓ1,k +Wk,ℓ2 will not change the size of eye. Noticing that the
claim is true for any weakly feasible orientation A, we know that e = ẽ.

Type III Operation with a pendant vertex Removing a pendant vertex will not
affect the maximal eye, since any directed cycle does not contain pendant vertices. Thus,
we conclude that e = ẽ.

Type III Operation with a non-pendant vertex Finally, we consider the case when
the deleted vertex has degree at least 2. We denote the deleted vertex as k and denote
the only neighbouring vertex as ℓ. The parallel edges connecting k and ℓ are denoted as
{k, ℓ, 1}, . . . , {k, ℓ, t} for some t ≥ 2. Similar to the Type I Operation case, assume that
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the weights of parallel edges satisfy

Wmin = Wk,ℓ,1 ≤ · · · ≤ Wk,ℓ,t = Wmax.

We can split the deletion of vertex k into two operations. We first substitute parallel edges
{k, ℓ, 1}, . . . , {k, ℓ, t} with a single edge {k, ℓ} with weight Wk,ℓ,1. Then, we delete the
pendant vertex k. The two operations can be viewed as Type I and Type III Operations,
respectively. Using the results in the first case and the third case, one can write

ẽ ≤ e ≤ max{ẽ,Wmax +Wmin}.

Hence, it remains to prove that e ≥ Wmax+Wmin. We can construct a weakly feasible
orientation such that size of eye is Wmax +Wmin. Specifically, we define

Ak,ℓ,s := +1 ∀s ∈ {1, . . . , t− 1}, Ak,ℓ,t := −1

and all other edges are assigned the direction 0. Then, vertices k and ℓ have nonzero
in-degree and out-degree, while other vertices have zero in-degree and out-degree. Hence
the orientation A is weakly feasible. Now, consider directed cycles with at least one normal
edge. Since parallel edges {k, ℓ, 1}, . . . , {k, ℓ, t} are the only normal edges, the directed
cycle must contain at least one of these parallel edges. Using the facts that ℓ is the only
neighbouring vertex of k and directed cycles do not have repeated vertices, vertices k and
ℓ are the only two vertices of the directed cycle. Hence, the size of eye should be the the
minimal length of such directed cycles, which is Wk,ℓ,1 +Wk,ℓ,t = Wmax +Wmin. Thus,
it follows that e ≥ Wmax +Wmin.

Combining the two parts yields that e = max{ẽ,Wmax +Wmin}.

7.12 Proof of Lemma 5.3

Proof. The first three claims can be proved in the same way as Lemma 5.1 and we only
prove the last two claims. We denote the deleted vertex as k and its only neighboring
vertex as ℓ. The parallel edges connecting k and ℓ are denoted as {k, ℓ, 1}, . . . , {k, ℓ, t}
for some t ≥ 2. Without loss of generality, assume that the weights of parallel edges
satisfy

Wmin = Wk,ℓ,1 ≤ · · · ≤ Wk,ℓ,t = Wmax.

Type III Operation for slack node We first consider the case when the deleted vertex
is a slack node. By discussing whether parallel edges {k, ℓ, 1}, . . . , {k, ℓ, t} have the same
direction as in the first claim in Lemma 5.1, it holds that g ≤ max{g̃,Wmax +Wmin}.

We prove the other inequality g̃ ≤ g by constructing a feasible orientation A such that
the girth is g̃. Suppose that the maximal girth of the new graph (Ṽ, Ẽ, W̃ ) is achieved
by the feasible orientation Ã. We define directions for deleted parallel edge such that the
orientation Ã becomes a feasible orientation of the original graph (V,E,W ). We note
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that, by the definition of Type III Operations, the vertex ℓ is a slack node in the new
graph and it may not satisfy the condition on in-degree and out-degree. If the vertex ℓ in
the new graph with orientation Ã has nonzero in-degree, then we define

Ãk,ℓ,s := −1 ∀s ∈ {1, . . . , t}.

Then, the vertex ℓ has both nonzero in-degree and nonzero out-degree. Since the vertex
k is a slack node, the orientation Ã becomes a feasible orientation for the original graph
(V,E,W ). By the construction of Ã, the vertex k only has nonzero in-degree and therefore
there does not exist any directed cycle containing parallel edges {k, ℓ, 1}, . . . , {k, ℓ, t}. It
follows that the girth is not changed and is equal to g̃. If the vertex ℓ in the new graph
with orientation Ã has nonzero out-degree, then we can similarly define

Ãk,ℓ,s := +1 ∀s ∈ {1, . . . , t}.

The orientation Ã also becomes a feasible orientation for the original graph and the girth
is g̃. Combining the two cases concludes that e ≥ g̃.

Type III Operation for non-slack node We then consider the case when the deleted
vertex is not a slack node. Suppose that the maximal girth of the original graph (V,E,W )
is achieved by the feasible orientation A. Since the vertex k has nonzero in-degree and
nonzero out-degree, there must exist different directions among parallel edges
{k, ℓ, 1}, . . . , {k, ℓ, t}. Hence, by the same analysis as the first claim in Lemma 5.1, it
holds that g ≤ Wmax +Wmin. Now, we consider restricting the orientation A to the new
graph(Ṽ, Ẽ, W̃ ). Since the vertex ℓ is a slack node in the new graph and the orientation
A is not changed for other vertices, the orientation A becomes a feasible orientation for
the new graph. Then, by the definition of the maximal girth, there exists a directed cycle
in the new graph with length at most g̃. Hence, we conclude that g ≤ g̃. Combining the
two inequalities, it follows that g ≤ min{g̃,Wmax +Wmin}.

Now, it remains to prove g ≥ min{g̃,Wmax + Wmin}. Suppose that the maximal
girth of the new graph (Ṽ, Ẽ, W̃ ) is achieved by the feasible orientation Ã. We extend
the orientation Ã to be an orientation for the original graph by defining

Ak,ℓ,s := +1 ∀s ∈ {1, . . . , t− 1}, Ak,ℓ,t = −1.

Since both vertices k, ℓ have nonzero in-degree and nonzero out-degree and the orientation
at other vertices is not changed, the orientation A becomes a feasible orientation for the
original graph. Now, we calculate the girth of the original graph. For any directed cycle
that does not contain parallel edges {k, ℓ, 1}, . . . , {k, ℓ, t}, it is also a directed cycle in the
new graph and has length at least g̃. For any directed cycle that contains at least one of
those parallel edges, vertices k and ℓ are the only two vertices of the directed cycle, since
there does not exist repeated vertices on directed cycles. Hence, the length of the directed
cycle is at least Wk,ℓ,1+Wk,ℓ,t = Wmax+Wmin. Combining the two cases yields that the

108



girth is at least min{g̃,Wmax +Wmin} and therefore g ≥ min{g̃,Wmax +Wmin}.

7.13 Proof of Theorem 5.5

Proof. We prove that Type I-II Operations are enough for reducing a 2-vertex-connected
SP graph to a single edge. Since Type I-II Operations do not introduce new slack nodes,
there exists at most one slack node in the graph throughout the reduction process. By
the assumption that the graph is a 2-vertex-connected SP graph, Theorem 4.3 implies
that there exists a nested ear decomposition (L0, . . . , Lr−1) of the graph. We use the
induction method on the number of ears in the ear decomposition. If there are only one
ear or two ears in the ear decomposition, then the result holds trivially. We assume that
any 2-vertex connected SP graphs with at most r − 1 ears in the ear decomposition can
be reduced to a single edge with Type I-II Operations.

Now, we consider the case when there are r ears in the ear decomposition. We first
implement Type II Operations until there is no degree-2 vertices except the slack bus. Since
Type II Operations will not change the structure of the nested ear decomposition, the new
graph still has a nested ear decomposition with at most r ears in the decomposition. By
the first step in the proof of Theorem 4.4, there exists a set of parallel edges containing
the root ear or a leaf ear. We analyze two different cases:

Case I Assume that there exists a set of parallel edges containing a leaf ear. We denote
the leaf ear as Ls = {k, ℓ}. Let Lt be the precedent ear of Lt. Then, then set of parallel
ears consists of the segment kℓ on ear Lt and leaf ears on Lt. We can apply a Type I
Operation to substitute the set of parallel edges with a single edge. We can view the new
edge as the segment kℓ on ear Lt. Then, at least leaf ear is deleted and the new graph
has a nested ear decomposition with at most r−1 ears. By the induction assumption, the
new graph can be reduced to a single edge with Type I-II Operations. Thus, the original
graph can be reduced to a single edge with Type I-II Operations.

Case II Assume that there exists a set of parallel edges containing the root ear. Then
by the same construction in the second step in the proof of Theorem 4.4, we can change
the root ear to a leaf ear. Hence, we obtain a set of parallel edges containing a leaf ear
and we can apply the discussion in Case I.

Combining the two cases, it follows that the result is true when there are r ears in
the ear decomposition. By the induction method, the result is true for any r ≥ 1 and the
SSPR method can reduce a 2-vertex-connected SP graph to a single edge.

7.14 Numerical results of SSPR method for computing the
maximal girth
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Power Network Original Size Reduced Size α1 α2 gR
Case 14 (14,20) (2,1) 6 3 0
Case 30 (30,41) (9,14) 4 3 3
Case 39 (39,46) (10,14) 4 3 3
Case 57 (57,78) (22,39) 4 - 23
Case 118 (118,179) (44,83) 5 - 4
Case 300 (300,409) (110,197) 8 3 ≥7
Case 1354 (1354,1710) (271,509) 9 3 ≥3
Case 2383 (2383,2886) (500,950) 11 3 ≥3

Table 3: Number of vertices and edges before and after the SSPR method for maximal
girth along with values computed during the reduction process.
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7.15 Algorithm for Computing The Maximal Girth

Algorithm 5 Algorithm for computing the maximal girth
Given: Undirected weighted graph (V,E,W ), slack bus k
Output: Maximal girth g
1. Set the maximal girth g← 0.
2. Assign an order to the set of edges E and denote edges as {k1, ℓ1}, . . . , {km, ℓm}.
Initialize the set of edges.
E0 ← {{k1, ℓ1}}.
Initialize the set of orientations Ak1,ℓ1 ← −1.

loop
Check the feasibility with current orientation.
if feasibility fails then

Get the maximal index j such that Akj ,ℓj ̸= 1.
if no such j exists then

break
else

Remove {kj+1, ℓj+1}, . . . , {km, ℓm} from E0.
Change orientation Akj ,ℓj ← −Akj ,ℓj .
continue

end if
end if
Compute the girth gcur under E0 and A using Algorithm 3. The truncation
length is set to be the girth of the precedent state.
if gcur < g then

Recursion in the same way.
end if
Get the next edge {ki, ℓi} that is not in E0.
if no such edge then

Update g← max{g, gcur}.
Recursion in the same way.

else
Add the next edge {ki, ℓi} that is not in E0.
Assign Akj ,ℓj ← −1.
continue

end if
end loop
return g
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7.16 More details and results of numerical experiments

We give a more detailed description of the experiment that verifies the uniqueness con-
dition in Corollary 3.5. A random power flow set point is generated by first choosing a
random vector of voltages. The voltage magnitudes and angles are randomly sampled
from a uniform distribution ranging from user-set min/max values.

|v0i |∼ U(Vmin, Vmax) for all i ∈ V

|Θ0
i |∼ U(Θmin,Θmax) for all i ∈ V

The voltage angles are rejected and discarded if they do not belong to the monotone
regime. A new random sample is chosen until the angles belong to the the monotone
regime. Finally, once we have a voltage profile belonging to the monotone regime, we use
the information to calculate the real power injections, P 0. The values of |v0| and P 0 are
provided as an input to the power flow algorithm. Note that Θ0 is always a solution to
the P -Θ problem P̂ (Θ) = P 0. In this sense, we refer to Θ0 the ground truth solution.
There are usually other solutions and the goal of this experiment is to analyze where those
other solutions are with respect to the ground truth solution.

In order to explore different parts of the solution space, we randomly sample an initial
point around the ground truth Θ0 and provide it to MATPOWER. The current setting is
to consider a normal distribution around the ground truth, with some specified standard
deviation. Intuitively, if the random initial point is close enough to the ground truth
solution, then the algorithm will converge to the ground truth solution. However, if we
start the algorithm with a suitably far initial point, then the power flow algorithms may
converge to a different solution. Note that initializing too far way can lead to convergence
issues of the algorithm.

Next, we define a metric that can capture the distance between two solutions of the
P -Θ problem. Consider a solution of the P -Θ problem, Θi, where i corresponds to the
random initialization number (i ∈ R = {1, . . . , 10, 000}). Let Θi

k denote the voltage
angle at bus k for the i-th experiment. We define dist(Θi) to be the distance between
the particular solution Θi and the ground truth solution, characterized in terms of their
angle differences:

dist(Θi) = max
(k,ℓ)∈E

|Θi
k,ℓ −Θ0

k,ℓ|

Now, define distm(G) to be the smallest nonzero distance among all solutions in the
monotone region for a given power system G. The symbolM represents the set of indices
i such that the solution Θi belongs to the monotone region defined in the paper:

distm(G) = min
i∈M∩R

dist(Θi) s.t. dist(Θi) ̸= 0.

As a specific scenario, we consider the case when all the line properties are the same
and the voltage magnitudes are fixed to be one. In other words, Vmax = Vmin = 1.
Furthermore, the lines are close to being lossless. We note that when we experimented with

112



(significantly) lossy lines, different solutions were not found within the monotone region.
The values of dist(Θi) and distm are calculated for different networks and are summarized
in Table 4. The last column shows the upper bound on the allowable perturbations used
in Corollary 3.5. In order to validate our theoretical results, it suffices to observe that
distm is greater than the values in the final column.

Power Networks distm 2π/e
Case 14 ∞ ∞
Case 30 71.8 45
Case 39 53.8 45
Case 57 37.8 15.7
Case 118 66.1 27.7

Table 4: Distance measure for different test cases.
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Chapter V

An Efficient Homotopy Method for
Solving the Post-contingency
Optimal Power Flow to Global
Optimality

1 Introduction

Optimal power flow (OPF) is a fundamental tool for power system network analysis,
where the goal is to find a low-cost production of the committed generating units while
satisfying the technical constraints of the system [73]. The main challenges in solving
the OPF arise from the fact that it is a nonconvex optimization problem on a large-scale
network that must be solved every few minutes. In order to overcome these challenges, the
common practice in the electric power industry is to use a linearized approach called the
DC-OPF approximation [74, 75], as opposed to the original AC-OPF problem. However,
such methods simplify important aspects of the power flow physics and cannot guarantee
attaining any optimal solution of the original problem. Improvements in interior-point
methods have also provided an effective tool for solving the OPF problem, but they only
guarantee convergence to a locally optimal solution [76, 77, 78]. Despite its difficulty,
finding a global optimum for a large-scale OPF problem modeled with AC power flow
equations is crucial for the reliable and efficient operation of power systems.

Initiated by the work [10], conic optimization has been extensively studied in recent
years and proven to be a powerful technique for solving OPF to global or near-global
optimality. The paper [10] has indeed shown that a semidefinite programming (SDP)
relaxation is able to find a global minimum of OPF for a large class of practical systems,
and [11] has discovered that the success of this method is related to the underlying
physics of power systems. [9] and [8] have developed different sufficient conditions under
which the SDP relaxation provides zero duality gap. Moreover, [7] has found an upper
bound on the the rank of the minimum-rank solution of the SDP relaxation, which is
leveraged in [6] to find a near globally optimal solution of OPF via a penalized SDP
technique in the case where the SDP relaxation fails to work. These ideas have been
refined in many papers to improve the relaxations via branch-and-cut approaches, conic
hierarchies, and valid inequalities [5, 4, 3, 12]. In order to tackle the computational burden
of solving large-scale SDP relaxations, the authors of [79] proposed strong second-order

117



cone programming (SOCP) relaxations, which produce high-quality feasible solutions for
the AC-OPF problem in a short amount of time. The reader is referred to the survey
paper [47] for more details.

Recently, there has been elevated interest in studying the robust operations of power
systems that can withstand element failures (contingencies) in the network. Power oper-
ators are required to solve the security-constrained OPF (SCOPF) instead of an idealistic
OPF problem [90, 68]. SCOPF is formulated by adding extra constraints to the clas-
sic OPF discussed above. These constraints impose additional limits on line flows and
nodal voltages for a predetermined set of post-contingency configurations. In other words,
SCOPF can be regarded as a more conservative version of the classic OPF that leads to
a higher level of system security. This means that SCOPF inherits the challenges of clas-
sic OPF and furthermore, invites new challenges. It has been shown in [6] that SDP
relaxations are able to obtain high-quality solutions of SCOPF. However, since SCOPF
is a gigantic problem with an enormous number of variables, conic relaxations and even
simple local search methods may be ineffective for real-world systems [63]. There are
two primary methods to address the huge size of the SCOPF problem. One approach
is to reduce the number of contingencies to a subset of binding contingencies that will
lead to the same solution as the full set of contingencies [64, 65, 91]. If the number of
binding contingencies is not sufficiently small enough to satisfy computational require-
ments, then we must make use of the second method, which is to simplify the SCOPF
formulation. There have been many proposed methods to simplify the model of post-
contingency states in SCOPF, such as Benders decomposition, linearization of the power
flow equations, Lagrangian relaxation, and network compression [66, 67, 89, 69]. These
contingency selection, approximation, and decomposition techniques can be combined to
generate heuristic solutions to large-scale SCOPF problems, as in [83, 84]. Additionally,
recent research has applied approaches from distributed control, stochastic programming,
and machine learning to solve the SCOPF problem [85, 86, 87, 88].

The outputs of such methods include the optimal (or approximately optimal) val-
ues of the pre-contingency operating variables and possibly feasible values for the post-
contingency variables for each contingency. The major drawback is that the post-contingency
variables are not optimized with respect to each corresponding contingency configura-
tion to minimize the violation of the constraints in case there is no feasible operating
point. Currently, there is a rather limited literature that attempts to optimize the post-
contingency settings. In the classic work [68], the optimal post-contingency actions were
modelled as sub-problems and explicitly included in the SCOPF formulation. In order
to overcome the complexity of this two-level optimization problem, an algorithm based
on Bender’s decomposition was developed, for which convergence is not guaranteed for
general nonconvex problems. More recently, the work in [80] proposed an approach to
determine an optimal combination of preventive and corrective actions taking into the
account the system dynamics, while [70] introduced a hybrid computational strategy to
solve the pre-contingency and post-contingency OPF problems. To the best of our knowl-
edge, none of the previous works have ventured into finding the global optimum of each
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of the post-contingency OPF problems (from here on called ‘contingency-OPF’), mainly
because applying a computationally burdensome algorithm (such as SDP) to each of the
contingency scenarios is unrealistic.

Nevertheless, it is important to find a globally optimal solution because local solutions
can be much more costly. In this paper, we develop a computationally efficient homotopy
method to improve the quality of the contingency-OPF solution. Constraint violations in
the case of a contingency are very expensive to deal with, and under our formulation, a
global solution corresponds to the minimum violation. Instead of solving for the solution to
a contingency-OPF problem directly, we generate and solve (using local search algorithms)
a series of intermediate optimization problems wherein we gradually remove a set of
components of the power system. We show that the effectiveness of homotopy to find
a global solution of the contingency-OPF problem is dependent on the homotopy path,
and therefore, we characterize desirable homotopy paths. In doing so, we prove that
the contingency-OPF generically has a unique global minimum. Furthermore, we prove
that the complexity of implementing such homotopy scheme is on the order of solving
O(log(1/ϵ)) convex quadratic optimization problems.

The remainder of the paper is organized as follows. In Section 2, we provide a literature
review on homotopy methods and explain how it relates to our approach. In Section 3,
we present the formulation of the two-stage Security-constrained Optimal Power Flow
that can be decomposed into the base-OPF and contingency-OPF. Next, in Section 4,
we introduce the homotopy method that connects contingency-OPF to base-OPF via
parametrization. In Section 5, we develop theoretical results to characterize cases when
homotopy will lead to a global solution of the deformed problem. Finally, in Section 6 we
implement the homotopy method on actual test cases and verify its effectiveness. The
proofs and additional simulation results appear in the Appendix.

1.1 Notations

The symbol RN denotes the space of N -dimensional real vectors and (·)T denotes the
transpose of a matrix. Re{·} and Im{·} denote the real and imaginary parts of a given
scalar or matrix. The symbol |·| is the absolute value operator if the argument is a scalar,
vector, or matrix; otherwise, it is the cardinality of a measurable set. Given a function
f(x, ·), ∇xf(x, ·) and ∇2

xf(x, ·) denote the Jacobian and Hessian of f with respect
to x, respectively. The symbol ⊙ denotes the elementwise multiplication between two
vectors. Let 1n and 0n denote the n-dimensional vectors of ones and zeros, respectively.
Furthermore, 1k

n denotes an n-dimensional vector of ones except for the k-th element that
is zero. The imaginary unit is denoted by j =

√
−1. Let the power network be defined by a

graph G(V , E), where V is the node set and E is the edge set. For notational simplicity, we
assume that there is one generator at each node, but this formulation is easily generalizable
to the case when there are multiple generators at each node (the case with no generator
at a bus can be modeled by setting the upper and lower bounds on generation to zero).
Each node i ∈ V has an associated complex voltage vi, a fixed demand P d

i + jQd
i , and
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an unknown generation pgi + jqgi , and we assume that the nodal shunt admittance is
zero. The complex voltage vi can be expressed in polar form, vi = |vi|ejθi , where |vi|
and θi denote the voltage magnitude and phase angle at bus i, respectively. With a
slight abuse of notation, |v| denotes the vector of all voltage magnitudes. In addition, we
define θij = θi − θj. The set of neighboring nodes of node i is denoted by N (i). Each
line connecting two nodes i and j is represented by a standard Π-model with a series
admittance yij = gij + jbij and a shunt admittance ysh

ij = gsh
ij + jbshij . Then, the nodal

admittance matrix Y is defined as

Yij =


∑

k∈N (i) yik +
1
2
ysh
ik for j = i

−yij for j ∈ N (i)

0 otherwise
(88)

whose (i, j) element is denoted as Yij = Gij + jBij. Finally, pij and qij are the real and
reactive power flows from bus i to j, respectively.

2 Homotopy for Optimization

Homotopy methods have been used to improve the convergence of optimization problems.
The benefit of homotopy methods compared to other iterative methods is that homotopy
methods may yield global rather than local convergence. These methods are most useful
for problems where convergence to a global solution is heavily dependent on a good initial
point, which can be hard to obtain. More recently, probability-one homotopy methods
have been applied to solving optimization problems, such as optimal control [36, 34]
and statistical learning [33]. Typically, the homotopy methods in optimization focus on
parametrizing the first-order optimality conditions [13, 32] or the objective function ([17,
15]). Homotopy methods have also been applied in the field of power systems, primarily
to solve the power flow (PF) problem for cases that do not converge [14, 31, 18, 16, 39].

While convergence to a global minimum with probability one is guaranteed for a
convex optimization problem [17], this is generally not true for nonconvex problems. In
order to understand when homotopy can be effective in finding a global solution for
nonconvex optimization, we explore a minimization problem of the form: minx f(x) where
f : Rn → R is a nonconvex function of x ∈ Rn. This problem is named (P o). Note that
the function f(·) can incorporate exact/inexact penalty functions to enforce constraints
on x, implying that this formulation is general for both unconstrained and constrained
optimization [46]. We refer to (P o) as the “base-case” problem. A deformed version of
the base-case, which is also a nonconvex minimization problem, is denoted by (P f ) and
defined as minx f̃(x). For our application, (P o) corresponds to the base-OPF problem and
(P f ) corresponds to the contingency-OPF problem (the definition of these two problems
are provided in the next section). We consider two possible methods for solving the
deformed problem that are based on local search algorithms:
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Figure 16: Evaluating the performance of homotopy on one-dimensional unconstrained
minimization problems. The figure compares two different samples (1) and (2), with two
different methods (a) and (b). The dotted lines show how the solution from the previous
iteration is used in local search algorithms to solve the next problem. The red dots show
the solution at each iteration using the position of the dotted lines as the initial point.
For the one-shot method (a), the solution of P o is used as the initial point for P f . For
the homotopy method (b), the base problem P o is gradually transformed to P f over three
iterations, updating the initial point as the solution to the previous problem.

a) One-shot method: Use the solution of P o as the initial point for any descent numer-
ical algorithm to solve P f .

b) Homotopy method: Generate a (discretized) homotopy map from P o to P f . Use
the solution of P o as the initial point, but update it at each step of the homotopy by
solving an intermediate problem using local search that is initialized at the solution
of the previous step. A linear (non-discretized) homotopy map can be defined as:
P (λ) = minx

{
λf̃(x) + (1− λ)f(x)

}
, 0 ≤ λ ≤ 1, with the property that P (0) =

P o and P (1) = P f .

Depending on f(x) and f̃(x), homotopy may or may not lead to better results than
solving the deformed problem in one shot. In Figure 16, we see an example where ho-
motopy is effective in finding the global minimum of a deformed problem and another
example where it leads to a non-global local minimum. Knowing when homotopy will be
effective is highly dependent on understanding how the shape of the function changes
from the base-case to the deformed problem. In the current literature, there is a lack
of theoretical results to characterize the performance of homotopy in finding a global
optimum. While [17] presents algorithms that make use of homotopy to solve noncon-
vex, unconstrained minimization problems, these algorithms are similar to other stochastic
search methods in that they do not guarantee convergence to the global minimum.
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3 Formulation of Two-stage Security-constrained Op-
timal Power Flow

In this section, we present the mathematical formulation of the two-stage security-constrained
OPF which is decomposed into the base-OPF and the contingency-OPF. The base-OPF
resembles the conventional SCOPF that finds a base-case operational point which is robust
against potential contingencies. The contingency-OPF focuses on a single contingency
and attempts to find an adjusted operating point that minimizes constraint violations.

3.1 Base-case Optimal Power Flow

Recall that the classic optimal power flow problem (without security considerations) min-
imizes operating costs subject to technical limits, such as the power flow equations and
explicit bounds on variables. The decision variables x = (|v|, θ, pg, qg) ∈ R4|V| represent
the vector of voltage magnitudes, voltage phase angles, real power generations and reac-
tive power generations, corresponding to the pre-contingency base-case configuration of
the network.

Now, suppose that there is a set of possible contingencies, namely K, where each con-
tingency corresponds to a line or generator outage. Each contingency k ∈ K introduces
a new set of variables xk, and therefore, for a network with |V| buses and |K| contingen-
cies, the SCOPF problem will involve optimizing over 4|V|(|K|+1) scalar variables. The
contingencies also add operational constraints of their own. In addition, there are physical
limitations on how the post-contingency network can adapt from the base-case, and these
limits are added as constraints that are functions of the base-case variables.

Since this extremely high-dimensional problem is cumbersome to solve, in practice the
contingency constraints are approximated via methods such as LODF and PTDF [43].
In essence, this approximates the contingency variable xk as a function of the base-case
variable x. Therefore, post-contingency equality constraints for contingency k are approx-
imated by a composite function of the form hk(x) ≜ tk(ak(x)), where ak(x) represents
the control actions that are taken in the event of a contingency. The same goes for
post-contingency inequality constraints, represented by gk(x).

Finally, another important consideration is how SCOPF performs when the problem is
infeasible. Therefore, we model some operational limits using soft constraints with extra
variables that capture the amount of violation. The objective function that is minimized
is the sum of real power generation costs in the base-case as well as a weighted sum of
equality constraint violation penalties in the contingencies. The standard optimization
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form is presented below:

[ base-OPF ] min
x,{σk}

f(x) +

|K|∑
k=1

ϕk(σk)

s.t. h(x) = 0, g(x) ≤ 0

hk(x) = σk, gk(x) ≤ 0, ∀k ∈ {1, . . . , |K|}

(89)

where ϕk(·) represents the penalty functions for the violations. We denote this problem
as the base-OPF.

3.2 Post-contingency Optimal Power Flow

The base-OPF solves for the base-case operating point by taking into account the possible
failures in the network. In the process, it approximates the relationship between the
contingency operation point xk and the base-case operating point x. However, it does
not actually solve for the optimal xk’s. Therefore, for each contingency we propose to solve
a contingency-OPF problem to find the best operating point for the specific contingency
scenario, given the base solution.

We model a contingency, such as a line or generator outage, by changing the system
parameters from their base values. For example, a line outage physically means that
power cannot flow over that connection, which can be modeled by setting the resistance
of the line to infinity or its conductance to zero. In the event of a line outage, the
power is re-routed through other paths and therefore the amount of loss in the system
changes. However, the difference in loss is small enough such that there is often no need
for additional participation from other generators, unlike in the scenario of a generator
outage. Therefore, we fix the real power generation to be equal to the base-case values
and solve for the remaining variables such that the violations for the bus balance equations
are small and spread out as much as possible (note that the proposed method can handle
generator participation, if needed). This is because a large concentrated violation in a few
buses can result in serious issues for the power network, whereas small power mismatches
can be taken care of by real-time feedback controllers. Taking these into consideration,
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each contingency-OPF under study is given as

min
|v|,θ,qg ,σp,σq

ϕ(σp, σq)

s.t. P g
i −

|V|∑
j=1

|vi||vj|(G̃ij cos θij + B̃ij sin θij) = P d
i + σp

i ∀i ∈ V

qgi −
|V|∑
j=1

|vi||vj|(G̃ij sin θij − B̃ij cos θij) = Qd
i + σq

i ∀i ∈ V

|vi|= |vi|base ∀i ∈ V \ Vq

Qmin
i ≤ qgi ≤ Qmax

i ∀i ∈ V
V min
i ≤ |vi|≤ V max

i ∀i ∈ Vq

|θi − θj|≤ Θmax
ij ∀(i, j) ∈ E

(90)

Here, Vq is the set of buses that hit their upper or lower reactive power generation
bounds in the base-case, and |vi|base is the voltage magnitude of bus i in the base-case.
The notations G̃ij and B̃ij reflect the potential change in the admittance matrix from
the base-case values Yij = Gij + jBij. Note that real power generation is now a fixed
parameter obtained from a solution of the base-OPF and therefore has been denoted by
capital P g. In the above formulation, constraints on the power flow over transmission lines
are modeled as constraints on the angle differences between buses, which is a common
practice [7]. However, the proposed method is general and can accommodate other types
of line flow constraints.

For generator outage contingencies, there is an additional aspect to consider. A
generator outage corresponds to setting the real power generation at that generator to
zero. However, in order to compensate for the lost generation, the system operator
needs to increase the power generation at other generators that participate in the outage
response. The above framework is general enough to incorporate this difference: simply
set P g = P g,f and G̃ij = Gij, B̃ij = Bij for all (i, j) ∈ E , where P g,f is the new setpoint
for the real power generation. Denoting x = [|v|, θ, qg, σp, σq] as the combined variable,
contingency-OPF in a standard optimization form would be:

[ contingency-OPF ] min
x

f(x)

s.t. h(x) = 0, g(x) ≤ 0
(91)

Note that f(·) is not the same objective function used for the base-OPF but merely a
simplified notation for ϕ(σp, σq). With no loss of generality, we focus on the case when
ϕ(σp, σq) =

∑
i{c

p
i (σ

p
i )

2 + cqi (σ
q
i )

2}, where cpi and cpi are cost coefficients. Similarly, h(·)
is the not the same as the constraint functions used for the base-OPF.

If the optimal objective value of the contingency-OPF is zero, it means that the solution
of the base-case could be modified to stay feasible in case of the contingency. However,
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the primary focus of this paper is on hard instances with a nonzero optimal cost, meaning
that some of the constraints must be violated to accommodate the outage. In these
cases, since taking corrective actions to deal with nodal power violations is expensive, it
is essential to find a global solution.

4 Methods

In the following subsections, we present a homotopy method that parametrizes the contingency-
OPF to model a gradual line or a generator outage.

4.1 Homotopy Method for a Line Outage

In order to solve the contingency-OPF problem, we propose a homotopy method that
gradually changes certain parameters of the problem from the base-OPF, rather than
abruptly changing the structure of the network. For a line outage contingency, we intro-
duce an aggregate homotopy parameter λ = [γ, β, γsh, βsh] corresponding to the series
admittance and the shunt admittance, where γ, β, γsh, βsh ∈ R|E|. To be more precise,
we parametrize the admittance in the contingency-OPF as follows:

yij(λ) = gijγij + jbijβij ∀(i, j) ∈ E (92a)

ysh
ij (λ) = gsh

ij γ
sh
ij + jbshijβ

sh
ij ∀(i, j) ∈ E (92b)

which creates a family of OPF problems, named Hλ, written in the standard form of:[
homotopy-OPF

Hλ

] min
x

f(x, λ)

s.t. h(x, λ) = 0, g(x, λ) ≤ 0
(93)

Now, let ℓ ∈ E be a line that connects buses i and j, and consider a contingency
scenario in which the line ℓ is out. Notice that λo = [1|E|,1|E|,1|E|,1|E|] corresponds to
the original network before the line outage, and λf = [1ℓ

|E|,1
ℓ
|E|,1

ℓ
|E|,1

ℓ
|E|] corresponds to

the post-contingency network after the line outage. By varying λ from λo to λf , the
homotopy map allows us to create fictitious power networks that constitute a series of
intermediate OPF problems.

4.2 Homotopy Method for a Generator Outage

For a generator outage, our proposed homotopy map gradually decreases the real power
generation at the generators that are out and gradually increases the real power generation
at the generators participating in the contingency response. For the simplicity of presen-
tation, consider contingencies associated with a single generator (generator k) outage.
This is common practice in power systems and is referred to as the N − 1 criterion. Yet,
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note that the proposed method can easily be extended to multiple generator outages and
is incorporated in Algorithm 7.

Let P g,o ∈ R|V| be the real power generated at all generators in the base-case. Using
the participation factors of generators that are still active in the contingency, we can
compute P g,f ∈ R|V|, the real power generated at all generators after the contingency.
Since generator k is down in this contingency scenario, P g,f

k = 0. One possible method to
choose the participation factors that determine P g,f is provided in the Appendix. Similar to
what we did for line outage contingencies, we introduce an aggregate homotopy parameter
λ = [γ, β] with γ, β ∈ R|V| to create the following homotopy map:

P g(γ) = P g,o ⊙ γ + P g,f ⊙ (1|V| − γ) (94a)

Qd(β) = Qd,o ⊙ β +Qd,f ⊙ (1|V| − β) (94b)

Focusing on the first equation where we parametrize the real power generation, notice
that λo = [1|V|,1|V|] corresponds to the original network before the generator outage, and
λf = [0|V|,0|V|] corresponds to the post-contingency network after the generator outage.
By varying λ from λo to λf , the homotopy map allows us to trace a gradual generator
outage. Equation (94b) parametrizes the reactive power demand, and we will set the
value Qd,f ≃ Qd,o. Although the justification for this extra parametrization is not clear
for the moment, we will explain later that the parametrization needs to be of high enough
dimension in order for the homotopy method to be effective. The series of homotopy
problems have the same form as those for the line outage, given by Equation (93).

4.3 Implementation of Homotopy-OPF

The global minimum of the base-OPF is also a global minimum of Hλo because at λ = λo,
the parameters of the homotopy-OPF corresponds to the pre-contingency network, for
which the violations are zero. Starting with a solution to the base-OPF, we aim to
iteratively solve a series of homotopy-OPF problems along a path of λ to eventually arrive
at the contingency-OPF. Our implementation of solving a series of homotopy-OPF, as
presented in the previous section, can be viewed as a one-parametric optimization problem
by defining f̃(x, t) = f(x, λ(t)), h̃(x, t) = h(x, λ(t)) and g̃(x, t) = g(x, λ(t)), where λ(t)
is a continuous function in t such that λ(0) = λo and λ(1) = λf . The trajectory of λ’s
tracing from λ(0) to λ(1) is called the homotopy path. Then, the problem reduces to
solving the following problem for a suitable discretized partition of t in the range [0, 1],
namely 0 = t1 ≤ t2 ≤ · · · ≤ tT = 1:[

homotopy-OPF
Ht

] min
x

f̃(x, t)

s.t. h̃(x, t) = 0, g̃(x, t) ≤ 0
(95)

We make the following assumptions for the development of the results of this section:
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Algorithm 6 Homotopy-OPF for Line Outages
Given: Contingency set K with line outages Lk ⊂ E for each k ∈ K
Initialize: Solve base-OPF problem to find a globally optimal solution
(|v|∗, θ∗, pg∗, qg∗ , {σk∗}).
Formulate the contingency-OPF problem:

1. Fix real power generation to base-case solution: P g := pg∗
2. Find Vq based on qg∗ .

for k ∈ K do
Set up homotopy-OPF family HΛ for given line outages Lk.
Initialize (|ṽ|, θ̃, q̃g, σ̃p, σ̃q) as the solution of base-OPF.
for i ∈ {1, ..., T} do

Solve HΛi using initial point (|ṽ|, θ̃, q̃g, σ̃p, σ̃q), and obtain new solution
(|v|, θ, qg, σp, σq).
Update (|ṽ|, θ̃, q̃g, σ̃p, σ̃q)← (|v|, θ, qg, σp, σq)

end for
Return (|v|, θ, qg, σp, σq) and violation cost ϕ(σp, σq).

end for

(A1) There exists a continuous function x∗(t) : [0, 1]→ R5|V| such that x∗(t) is a global
minimizer for Ht. Moreover, x∗(0) is unique and known.

(A2) There exists a neighborhood U of {(x∗(t), t)} ⊂ R5|V| × [0, 1] such that for all
(x, t) ∈ U , the functions f̃ and h̃ are twice continuously differentiable with respect
to x.

(A3) Linear independence constraint qualification (LICQ) and strong second-order suffi-
cient conditions (SSOC) are satisfied at x∗(t) for every t ∈ [0, 1].

Note that the discretization of homotopy path can also be represented by the set Λ :=
{Λ1, . . . ,ΛT}, where Λi = λ(ti) for i = 1, . . . , T , Λ1 = λ(t1) = λo and ΛT = λ(tT ) = λf .
In other words, Hti = HΛi . The SSOC is similar to the second-order sufficient conditions
for local optimality but with the addition of the strict complementary slackness condition
and the linear independence of the active constraints [54]. Furthermore, Assumptions
(A2) and (A3) together imply that the Lagrange multipliers associated with x∗(t) are
uniquely determined for every t ∈ [0, 1]. We will later discuss that these assumptions are
mild.

To begin, the first homotopy-OPF problem Ht1 is initialized as the solution to the
base-OPF problem. The series of homotopy-OPF problems are then solved sequentially,
where the solution to the previous homotopy-OPF problem Hti is utilized as the initial
point for a local search algorithm solving Hti+1 . Please refer to Algorithms 6 and 7 for
complete details of the method.
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Algorithm 7 Homotopy-OPF for Generator Outages
Given: Contingency set K with generator outages Rk ⊂ V for each k ∈ K
Initialize: Solve base-OPF problem to find a globally optimal solution
(|v|∗, θ∗, pg∗, qg∗ , {σk∗}).
for k ∈ K do

Formulate the contingency-OPF problem:
Define P g

r as the fixed real power generation at r ∈ V
Define ∆P g

k as the total lost real power generation at k: ∆P g
k :=

∑
r∈Rk

pg∗,r
1. Find Vq.
2. Remove real power generation for generators in Rk: P g

r ← 0 ∀r ∈ Rk

3. Compute participation factors αg
r for r ∈ V \ Rk (see Algorithm 8 in the

Appendix)
4. Add real power generation for participating generators:
for r ∈ V \Rk do

if αg
r > 0 then

P g
r ← max{αg

r∆P g
k , P

max
r − pg∗,r}

end if
end for
Set up homotopy-OPF family HΛ for given generator outages Rk.
Let P g,o := pg∗ and P g,f := P g

Initialize (|ṽ|, θ̃, q̃g, σ̃p, σ̃q) as the solution of base-OPF.
for i ∈ {1, ..., T} do

Solve HΛi using initial point (|ṽ|, θ̃, q̃g, σ̃p, σ̃q) and obtain new solution
(|v|, θ, qg, σp, σq)
Update (|ṽ|, θ̃, q̃g, σ̃p, σ̃q)← (|v|, θ, qg, σp, σq)

end for
Return (|v|, θ, qg, σp, σq) and violation cost ϕ(σp, σq)

end for

In this paper, we assume that the base-OPF has a unique global minimum that is
available (known). The availability of a global minimum is a reasonable assumption
because a good initial point is usually provided for the base-OPF, and also because more
time is allocated to solving it compared to a large number of contingency-OPF problems
for different outages, allowing the use of various convex relaxation techniques for the
base-OPF. If the optimal violation cost for Hλo is nonzero, the global minimum will be
unique with overwhelming probability. Furthermore, even if the violation cost is zero, it
will immediately become nonzero during the next homotopy iteration if removing a line or
generator introduces inflexibilities that the network cannot accommodate. In fact, these
near-infeasible problems where a contingency will make the system “stressed" are the cases
where homotopy can be useful and are the focus of this paper. Later in the paper, we will
present a rigorous result showing that the uniqueness of the global minimum is a generic
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property for Hλ.

5 Analysis of Homotopy Paths

In Section 2, we offered two examples of nonconvex optimization: one in which the
homotopy method resulted in the global minimum and another in which the homotopy
method resulted in a non-global local minimum (see Figure 16). In this section, we
describe a theoretical framework that describes when homotopy can be used to obtain a
global minimum. We apply this framework to analyze the performance of homotopy-OPF
in finding the global solution of the contingency-OPF. The results developed in this section
have implications for homotopy methods in a broad range of optimization problems.

Theorem 5.1. Let x̄(ti, z) denote the stationary point of Hti that a local search algorithm
converges to when initialized at point z. Set z1 = x∗(t1) := x∗(0) and consider the
sequence of points {x(ti)}Ti=1 generated by the following update rule:

x(ti) = x̄(ti, zi) (96)

zi+1 = x(ti) (97)

Moreover, define ∆t := supi=1,...,T−1(t
i+1−ti). Under Assumptions (A1), (A2) and (A3),

a sufficiently small ∆t will ensure that x(ti) is a global minimizer of Hti for i = 1, . . . , T .

Theorem 5.1 states that if we can solve each Ht exactly, then a sufficiently small
stepsize in the parameter t (or equivalently λ) can track the global minimizer from the
base-OPF all the way to the contingency-OPF. However, an exact solution to each Ht (or
equivalently Hλ) is generally unattainable in practice. Furthermore, the interplay between
the accuracy of solving each Ht and the number of discretization contribute to the overall
complexity of solving homotopy-OPF. We will show that it suffices to find an approximate
solution with not a necessarily high accuracy. This will significantly reduce the complexity
of solving the parametric homotopy-OPF.

5.1 Convergence and Complexity of Homotopy-OPF

In this subsection, we analyze the complexity of solving the contingency-OPF using the
proposed homotopy method. The results here are based on a specific local search algo-
rithm called Wilson’s method. However, there are many other methods, such as Robinson’s
method, that can achieve the same results [71]. Let µ and ζ denote the Lagrange multi-
pliers for the constraints h̃(x, t) = 0 and g̃(x, t) ≤ 0, respectively. For every instance of
Ht, we determine a local minimizer and its Lagrange multipliers, w(t) = (x(t), µ(t), ζ(t))
by using the following Wilson’s method: Start with an initial point w0, and solve the op-
timization problem W (wk, t) in order to find the next iterate wk+1 for k ∈ {0, 1, 2, . . .},
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where the problem W (wk, t) is defined below.

W (wk, t) : min
x
∇xf̃(x

k, t)T (x− xk) +
1

2
(x− xk)T∇2

xL̃(w
k, t)(x− xk) (98a)

s.t. h̃i(x
k, t) +∇xh̃i(x

k, t)T (x− xk) = 0, ∀i ∈ I (98b)

g̃j(x
k, t) +∇xg̃j(x

k, t)T (x− xk) ≤ 0, ∀j ∈ J (98c)

where I and J denote the set of indices for the equality constraints and inequality
constraints, respectively, and L̃(wk, t) = f̃(xk, t) +

∑
i µ

k
i h̃i(x

k, t) +
∑

i ζ
k
i g̃i(x

k, t). Fur-
thermore, let a global minimizer of Ht and its corresponding Lagrange multipliers be
denoted by w∗(t) = (x∗(t), µ∗(t), ζ∗(t)). In this problem, we solve for the optimization
variable x and the Lagrange multipliers associated with (98b) and (98c) to be able to
find a primal-dual solution. Let us define the function ŵ(wk, t) as the exact solution to
W (wk, t). Then, wk+1 numerically approximates ŵ(wk, t). The process is repeated for
increasing values of k until a predefined criteria is met, and the final iterate of {wk} is
returned as an approximate solution to w(t).

Theorem 5.2. Suppose that Assumptions (A1), (A2) and (A3) hold. Consider the fol-
lowing algorithm for a constant number M : Given w0 = w∗(t1) := (x∗(t1), µ∗(t1), ζ∗(t1)),
compute wi as the solution to Hti using M Wilson’s iterations starting at wi−1 for
i = 1, . . . , T . There exist positive constants r̂ and ∆t such that for every sufficiently
small ϵ > 0, the algorithm generates points {w′

i}Ti=1 with ∥w′
i − w∗(ti)∥< ϵ whenever

ti+1− ti ≤ ∆t for i = 1, 2, . . . , T , provided that M is chosen to be larger than log (r̂/ϵ).
In particular, the Wilson complexity (total number of Wilson steps) of finding an almost
globally optimal solution with ϵ error for HtT is O(log(1/ϵ)).

The above theorem implies that given a global minimizer for the initial problem Ht1 ,
we can simply solve a small number of convex quadratic programs for each Hti and
keep track of its global minimizers. In particular, the quadratic program (98) is convex
because the SSOC holds at the global minimizers. Furthermore, the number of parameter
discretizations needed is upper bounded by a constant for small values of ϵ. This result
is aligned with the complexity analysis of interior-point methods [72]. More insight is
provided in the proof.

Remark 3. Our assumptions imply that Ht along λ(t) has a unique global solution
satisfying SSOC. In the next subsection, we argue that this is a reasonable assumption
to make. In addition, this assumption on the global solution can be replaced by the
“connectivity" of the set of all global solutions (this allows having infinitely many possible
solutions for post-contingency OPF with zero violation cost). In what follows, we show
that the uniqueness of the global minimum is a generic property for Ht.
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5.2 Genericity of Unique Global Minimizer with SSOC

Recall that a set S ⊂ Rn has (Lebesgue) measure zero if for every ϵ > 0, S can be covered
by a countable union of n-cubes, the sum of whose measures is less than ϵ. A property that
holds except on a subset whose Lebesgue measure is zero is said to be satisfied generically
or hold for almost all. In this subsection, we will show that the homotopy-OPF generically
has a unique global minimizer that satisfies SSOC .

Consider the following family of problems, which adds a linear perturbation to the
objective of the homotopy-OPF:

[
Hλ,ω

] min
x∈Ψ

f(x, λ) + ωTx

s.t. h(x, λ) = 0
(99)

where f : R5|V| × Rℓ → R, h : R5|V| × Rℓ → R2|V| are smooth functions and the
parameters (λ, ω) belong to an open set U ⊂ Rℓ × R5|V|. The set Ψ ⊂ R5|V| is defined
as below:

Ψ =

{
(|v|, θ, qg, σp, σq)

∣∣∣∣∣
Qmin

i ≤qgi ≤Qmax
i ∀i∈V

V min
i ≤|vi|≤V max

i ∀i∈Vq

|θi−θj |≤Θmax
ij ∀(i,j)∈E

|vi|=|vi|base ∀i∈V\Vq

}
(100)

This formulation is possible by noticing that the inequality constraints of homotopy-OPF
are independent of the parameter λ. We call this problem the extended homotopy-OPF.
Here, ℓ represents the dimension of the parameter λ, which can be equal to either 4|E|
(for line contingencies) or 2|V| (for generator contingencies). Then, using the results
from [54], we can easily derive the following lemma:

Lemma 5.3. Suppose that the following two conditions are satisfied:

1. The function λ→ h(x, λ) is of full rank 2|V| for all x ∈ Ψ at every λ 5.

2. The set Ψ is a cyrtohedron and the set U is an open set.

Then, for almost all (λ, ω) except those in a set U′ ⊂ U of measure zero, Hλ,ω has a
unique global minimizer satisfying SSOC. In fact, for every (λ, ω) ∈ U \ U′, Hλ,ω cannot
achieve the same objective value at any two distinct critical points.

The concept of a cyrtohedra was first introduced in [51] and it captures a class of sets
whose boundaries are a union of countably many smooth manifolds pieced together. A
few main examples of cyrtohedra include polyhedral convex sets, submanifolds, subman-
ifolds with boundaries, and manifolds with corners. In our case, the set Ψ is naturally
a cyrtohedra and therefore we only have to verify the first condition. The next lemma
proves that the condition can be easily verified for the line outage contingency.

5The rank of a differentiable mapping is the rank of its Jacobian.
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Lemma 5.4. Define the matrix J =

[
J1 0
0 J2

]
∈ R2|E|×2|V| as

J1
(i,j),k =

{
−1

2
gsh
ij |vk|2 for k = i or j, j ∈ N (i)

0 otherwise

J2
(i,j),k =

{
1
2
bshij |vk|2 for k = i or j, j ∈ N (i)

0 otherwise

where the column and row indices represent the lines and the nodes of the power system,
respectively. If J has full column rank, then the function λ→ h(x, λ) associated with the
line outage homotopy method is of full rank 2|V|.

A similar result holds for generator outage contingencies, as shown below.

Lemma 5.5. Define the matrix M =

[
M1 0
0 M2

]
∈ R2|V|×2|V| as

M1
i,j =

{
P g,o
i − P g,f

i for j = i

0 otherwise

M2
i,j =

{
Qd,o

i −Qd,f
i for j = i

0 otherwise

where both the column and row indices represent the nodes of the power system network.
If M has full rank, then the function λ → h(x, λ) associated with the generator outage
homotopy method is of full rank 2|V|.

The result implies that the first condition of Lemma 5.3 is satisfied if: (i) the pre-
contingency real power generations and the post-contingency real power generations are
different and (ii) the pre-contingency reactive power demands and the post-contingency
reactive power demands are different. Note that this does not necessarily hold true because
some real power generations are supposed to be fixed even after the contingency (same
for reactive power demand). However, we can address this issue by allowing P g,f

i (Qd,f
i )

to take on a value within a small interval around P g,o
i (Qd,o

i ) whenever we want the two
values to be close to each other.

Note that the linear perturbation term in Hλ,ω is a mathematically necessary device
that allows us to prove generic uniqueness of a family of nonlinear optimization problems.
Ultimately, we will only consider very small perturbations so that Hλ,ω closely resembles
Hλ. Using the lemmas above, we arrive at the following corollary:

Corollary 5.6. Let U(δ) = {(λ, ω) | λ ∈ S, ω ∈ B(δ)}, where S is an open set such
that [0, 1]m ⊂ S and B(δ) is an open n-dimensional ball around the origin with radius δ.
Suppose that J and M have full column rank. Then, for every δ > 0, Hλ,ω has a unique
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Figure 17: An example of the set U′ (blue) and an effective homotopy path (red) that
can reach the origin without passing through a point in U′.

global minimizer satisfying SSOC for all (λ, ω) ∈ U(δ) \ U′(δ), where U′(δ) ⊂ U(δ) is of
measure zero.

In other words, the uniqueness of a global minimizer satisfying SSOC is a generic
property of Hλ, and thus supporting the assumptions made in this paper (specifically
Assumptions (A1) and (A3)).

5.3 Geometry of the homotopy path: Two-bus example

In order to illustrate the previous ideas, we consider a simple homotopy-OPF example on
a two-bus system. The line connecting the two buses has the admittance y = Gγ− jBβ,
and there is a lower bound Qmin on the reactive power injections at both buses. In this
two-bus example, we consider the objective function (σp

1)
2+c(σp

2)
2. Furthermore, assume

that:

1. |v1|= |v2|= 1

2. −∆′ ≤ θ1 − θ2 ≤ ∆′

3. 0 < Qmin < q(∆′)

where ∆′ = tan−1(Bβ/Gγ) and q(·) denotes the reactive power injection as a function of
solely the angle difference, which is due to the fact that voltage magnitudes are fixed. Note
that the second constraint on the angle difference is reasonable for the secure operation of
power systems and is also used in [8] in order to restrict the two-bus real power injection
region to be the Pareto front of the original feasible region. Geometrically, the feasible set
of the two-bus injection region is the Pareto front of an ellipse, which is partially removed
due to the reactive power constraints (the details can be found in [8]). Let P g,b

i denote
the real power generation at bus i obtained from the base-OPF solution. The following
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lemma characterizes the set of homotopy parameters for which there are at least two
global solutions.

Lemma 5.7. Denote α = cos−1
(

−Qmin+Bβ
|y|

)
, and define two polynomial functions of

λ = (γ, β) as follows:

Ω1(γ, β) =
2Bβ

|y|
(Bβ · sinα + α ·Gγ) (101)

Ω2(γ, β) = 2Gγ − 2Gγ

|y|
(−Gγ · sinα + α ·Bβ) (102)

Then, the set of parameters leading to multiple global minimizers, U′, can be characterized
as:

U′ = {λ ∈ R2 | (1− c) · Ω1(γ, β) · Ω2(γ, β)

− 2(P g,b
1 − P d

1 ) · Ω1(γ, β) + 2c(P g,b
2 − P d

2 ) · Ω1(γ, β) = 0}
(103)

The set U′ in Lemma 5.7 for a particular instance of the example is depicted in
Figure 17. As we can observe, U′ is a measure zero set in the two-dimensional parameter
space, and it is possible to design an effective homotopy path. Note that the linear
perturbation term in Hλ,ω is a mathematical device used to prove generic uniqueness of
the global minimizer for a family of problems. The characterization of U′ in Lemma 5.7
did not require the linear perturbation. However, this means that particular instances
of the example may not lead to the result that we desire. For instance, if c = 1 and
P g,b
1 − P d

1 = P g,b
2 − P d

2 in the above example, U′ is no longer a measure-zero set.

6 Simulations

In this section, we illustrate the success of the homotopy method in finding the global
solution of the contingency-OPF. In doing so, we present simulations of different line and
generator outage scenarios on various networks. We also evaluate the performance using
different homotopy paths and discretizations, and verify our earlier theoretical results.

In these simulations, we consider N − 1 contingencies wherein there is one line or
generator out as well as N − 2 and N − 3 contingencies wherein there are multiple
outages. Although N − 1 contingencies occur more frequently in practice, N − 2 and
N − 3 contingencies are catastrophic events that are worth considering as they are harder
to correct. Extreme weather events, attacks, or component aging could cause these N−k
(where k ≥ 2) contingency scenarios to occur [82]. Adding uncertain renewable energy
sources such as wind energy to power networks increases the probability of correlated
faults and thus the possibility of N − 2 and N − 3 contingencies [81]. Additionally, these
multi-contingency scenarios can capture cascading failures that occur in a short window
where corrective action is not possible between contingencies [81].

134



In order to implement the contingency-OPF within the MATPOWER format [59], we
introduce virtual generators that model the violations of real and reactive power balance
equations (σp and σq). Virtual generators are modelled so that they only generate or
consume (virtual) power when there is a nonzero violation in the respective power balance
equation. Therefore, by penalizing the virtual generation in the modified objective func-
tion, we fully implement the contingency-OPF as formulated in Section III.B. To solve
each of the homotopy simulations, we use the MATPOWER Interior Point Solver (MIPS)
[60].

For both line and generator outages, we solve the corresponding contingency-OPF
problems via both homotopy and the one-shot method. The one-shot method uses the
solution for the base-OPF as the initial point for directly solving the contingency-OPF.
We compare various homotopy discretization schemes to the one-shot method. Note that
the one-shot method is equivalent to solving the contingency-OPF problem via interior
point methods and thus represents the current state-of-the-art.

For the line outages, we consider three different homotopy paths. If we take the line
connecting buses i and j to be out, then the three homotopy paths are given by:

• Scheme 1: Uniformly decrease (γij, βij) from (1, 1)→ (0, 0)

• Scheme 2: Decrease γij from 1→ 0, then βij from 1→ 0

• Scheme 3: Decrease βij from 1→ 0, then γij from 1→ 0

These schemes can be applied to multiple line outages by simultaneously modifying
γij and βij for each line (i, j) ∈ E that is out. For line outage scenarios on the 3375-
bus and 3120-bus Polish networks, Figures 18 and 19 show the evolution of the violation
cost over these homotopy schemes (with a 10-iteration discretization) compared to the
violation cost of the one-shot method [59]. Next, we consider changing the discretization
of homotopy scheme 1 in a line outage scenario. Figure 20 shows line outage scenarios
on the 3375-bus and 3120-bus Polish networks using homotopy scheme 1 with a varying
number of iterations [59].

For generator outages, we implement a homotopy path that decreases λ from [1|V|,1|V|]
to [0|V|,0|V|] uniformly throughout the iterations. For this homotopy path, we also con-
sider varying the discretization of the path. Figure 21 shows generator outage scenarios
on the 89-bus and 1354-bus PEGASE networks [61, 62]. From these figures, we can see
that the final violation cost obtained using the given homotopy paths can vary significantly
depending on the number of iterations (i.e. ∆λ) of homotopy-OPF.

In some of the examples from Figures 18, 20, and 22, we can see that solving the
contingency-OPF problems with our homotopy method results in a lower violation cost
than solving the same problems via the one-shot method. We also considered how far the
bus voltages in the contingency-OPF problem were from the base-case voltages when we
solved the problem with homotopy versus one-shot methods, as shown in Figure 23 and 24.
The results show that with homotopy we can obtain a solution that is relatively close to
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Figure 18: Performance of proposed homotopy method on the 3375-bus Polish network
(case3375wp with real and reactive power demand scaled up by 10%) with single line
outages. Homotopy schemes 1 through 3 are tested with 10 iterations. In the top figure
(line out ID: 3596), we have a case where all three homotopy schemes outperform the
one-shot method, and in the middle figure (line out ID: 3551), we have a case where only
homotopy schemes 1 and 3 significantly outperform the one-shot method. In the bottom
figure (line out ID: 268), we have a case where the one-shot method performs the same
as all three homotopy methods. This was the most common case for our experiments on
the 3375-bus network, representing about 95% of 4161 tested single line outages. While
homotopy in general yielded the same solution as the one-shot method, in cases where it
outperformed the one-shot method, the results were often better by a factor of 105, as
seen in the top two figures. Note that all solutions shown here are convergent, compared
to the cases for the 3120-bus Polish network shown in Figure 19 which have some non-
convergent solutions.
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Figure 19: Performance of proposed homotopy method on the 3120-bus Polish network
(case3120sp with real and reactive power demand scaled up by 10%) with a multiple line
outages. Homotopy schemes 1 through 3 are tested with 10 iterations. By introducing
multiple line outages, we make the contingency-OPF problem more difficult to solve,
which makes it a good candidate for the proposed homotopy method. In both of these
cases, homotopy schemes 1 and 2 find a convergent solution while the one-shot method
does not. In the top figure, the IDs of the outed lines are 438, 439, and 3150, and in the
bottom figure, the IDs of the outed lines are 2056 and 3082.

that of the base-case, while the solution obtained without homotopy can be unnecessarily
far away from that of the base-case.

In other cases from Figures 19, 20, and 21, solving the contingency-OPF problems via
the one-shot method results in non-convergence while the homotopy method can find a
convergent solution.

In order to formally compare the performance of homotopy versus the one-shot method,
we say that homotopy “outperforms” the one-shot method if either of the following are
true:

1. If the homotopy scheme converges and the one-shot method does not converge.

2. If the homotopy scheme converges to a value that is better than that of the one-shot
method by at least 0.01% of the optimal base-OPF cost.

For the 1354-bus PEGASE network, we tested 1, 2, and 3 line and generator outages,
testing 100 simulations of each type of outage. The homotopy paths for these line and
generator outages are the same as those described for the simulations in Figures 20, 21
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Figure 20: Performance of proposed homotopy scheme 1 tested with a varying number of
iterations. The top figure shows the 3375-bus Polish network (case3375wp with real and
reactive power demand scaled up by 10%) with a single line outage (line out ID: 3551). In
this case, we see that the 2, 5, and 10-iteration homotopy methods converge to a solution
that is much better than that obtained by the one-shot method. The bottom figure shows
the 3012-bus Polish network (case3012wp with real and reactive power demand scaled
up by 8%) with a single line outage (line out ID: 1604). In this case, we see that the 2,
5, and 10-iteration homotopy methods result in a convergent solution while the one-shot
method does not. For both scenarios, by introducing even a 2-iteration homotopy scheme,
we outperform the one-shot method.

and 22. The percent of simulations where homotopy outperformed the one-shot method
is given in Table 5 for the network with base-level demand and with demand scaled
up by 10%. It can be observed that for the line outage contingencies, the homotopy
methods appear to be more useful when the demand is higher. This is likely because the
increased demand makes the problem harder, and thus homotopy is more useful. However,
the inverse appears true for the generator outage scenarios, i.e. the homotopy methods
appear to be more useful when demand is at the base-level. This could be because the
removal of a generator could lead to many possibilities for operating the post-contingency
network in a lower demand scenario, which may introduce bad local minima.

Although the percent of simulations where homotopy outperforms the one-shot method
is less than 20% for the considered cases, it is important to note that in these cases
the homotopy method can lead to a significant reduction in the violation cost during
a contingency scenario or to a convergent solution when the one-shot method fails to
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Figure 21: Performance of proposed homotopy method for generator outages. The top
figure shows a 2 generator outage (generator out IDs: 4 and 7) in the 89-bus PEGASE
network (case89pegase). The bottom figure shows a 1 generator outage (generator
out ID: 30) in the 1354-bus PEGASE network (case1354pegase). In these cases, the
homotopy method can be used to find a convergent solution when the one-shot method
fails to find one.

Figure 22: Performance of proposed homotopy method on the 3375-bus Polish network
(case3375wp with real and reactive power demand scaled up by 10%) with a single
generator outage. The figure (generator out ID: 100) shows a case where all homotopy
discretization schemes result in a violation cost much lower than that obtained by the
one-shot method.

converge. For the cases where the proposed homotopy method does not outperform the
one-shot method, the homotopy method typically is at least as good as the one-shot
method.

7 Conclusions

This paper studies the contingency-OPF problem, which is used to find an optimal operat-
ing point in the case of a line or generator outage. Unlike the base-OPF problem that is a
single optimization problem, there are many contingency-OPF problems that should all be
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Figure 23: Comparison of solution for homotopy and one-shot methods for the 3375-bus
Polish network (case3375wp with real and reactive power demand scaled up by 10%) with
a single generator outage (generator out ID: 100). The twenty generator buses with the
largest variation from the base-case voltage magnitude are shown here. In this case, all
three homotopy methods converge to the same solution, as shown in Figure (22), so we
only compare the solution from the 3-iteration method to that obtained by the one-shot
method. For this test case, the homotopy method gradually deforms the base-case to
yield a solution that is much closer to the base-case while the one-shot method yields a
solution that is far from the base-case.

Table 5: Percent of simulations where 5-iteration homotopy scheme outperformed
one-shot method for 1354-bus PEGASE network

Type of Base-level 10% greater
contingency power demand power demand
1 line outage 10% 12%
2 line outage 7% 12%
3 line outage 12% 15%

1 generator outage 9% 7%
2 generator outage 10% 9%
3 generator outage 17% 12%

solved in a short period of time. Recognizing that the contingency-OPF problem is a chal-
lenging variant of the classical OPF problem, we introduce a new homotopy method to find
the best solution of the contingency-OPF problem. This method involves solving a series
of intermediate homotopy-OPF problems using simple local search methods, and we study
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Figure 24: Comparison of solution for homotopy and one-shot methods for the 3375-bus
Polish network (case3375wp with real and reactive power demand scaled up by 10%)
with a single generator outage (generator out ID: 100). The twenty load buses with the
largest variation from the base-case voltage magnitude are shown here. See Figures (22)
and (23) for more details on this case.

conditions that guarantee convergence to a global solution of the contingency-OPF. We
perform simulations on real-world networks and show that the proposed homotopy method
can result in a lower value of the objective.
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8 Appendix

8.1 Proof of Theorem 5.1

Due to the continuity of λ(t), we can equivalently prove that a sufficiently small ∆λ
will ensure the desired result, where ∆λ := supi=1,...,T−1(Λ

i+1 − Λi). Let x∗
1 denote the

unique global solution satisfying SSOC for the problem HΛ1 . Using an argument relying
on the implicit function theorem [55], it follows that for each (x∗

1,Λ
1) pair, there exist a

neighborhood U1 around Λ1 and a neighborhood X1 around x∗
1, and there is a differentiable

function x1(λ) defined for λ ∈ U1 such that

1. x1(Λ
1) = x∗

1

2. For each λ ∈ U1, x1(λ) is the unique point in X1 satisfying the SSOC for Hλ.

Now, suppose that ∆λ is small enough so that Λ2 ∈ U1. Then, since x1(λ) is a continuous
function and there is no λ on the path λ(t) = 0 such that Hλ has more than one global
minimizer, x1(Λ

2) becomes the unique global minimizer satisfying SSOC for the next OPF
problem, HΛ2 . The same logic can be applied for all Λi, and by induction we have proved
the result.

8.2 Proof of Theorem 5.2

We begin by defining the radius of convergence for Wilson’s method for solving Ht in a
neighborhood of a local minimizer w(t).

Definition 8.1.

r(t, w(t)) = sup{r | for all w0 satisfying ∥w0 − w(t)∥≤ r, starting Wilson’s method with w0

provides a sequence {wi} converging to w(t)}. (104)

The following lemma is a natural corollary of Theorem 3.2.1 in [71]. We do not state
the proof of this lemma here but the derivation uses properties of the Wilson’s method.

Lemma 8.1. Suppose that Assumptions (A1), (A2) and (A3) hold. Then, there exists
a real number r̂ > 0 such that

r(t, w(t)) ≥ r̂ for all w(t), t ∈ [0, 1] (105)

Let us consider the sequence {w′
i}Ti=1 such that

∥w′

1 − w∗(t1)∥< ϵ, (106)

∥w′

i − ŵM(w
′

i−1, t)∥< ϵ
′
, i = 2, . . . , T, (107)
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where 0 < ϵ
′ ≪ ϵ and ŵM(w

′

k, t) denotes the true (or exact) KKT point after applying
M Wilson’s steps starting from w

′

k. The choice of w′
1 satisfying (106) is possible because

of the known initial global minimizer assumption in (A1). From the proof of Theorem
3.2.1 in [71], we also know that there is a constant r̂ > 0 such that ∥ŵ(w, t)−w∗(ti)∥≤
1
2
∥w − w∗(ti)∥ whenever ∥w − w∗(ti)∥≤ r̂. Now, we choose ϵ > 0 and η > 0 such that

the following condition is satisfied:
ϵ+ η < r̂ (108)

Due to the assumption on the continuity of the global minimizers (A1), there is a ∆t > 0
such that

∥w∗(t̃)− w∗(t)∥< η, for all t̃, t ∈ [0, 1] with ∥t̃− t∥≤ ∆t (109)

Given tk and w
′

k with ∥w′

k − w∗(tk)∥< ϵ for some k ∈ {1, . . . , T − 1}, we obtain

∥w′

k − w∗(tk+1)∥≤ ∥w′

k − w∗(tk)∥+∥w∗(tk)− w∗(tk+1)∥< ϵ+ η < r̂ (110)

Hence, the point w′

k is in the region of convergence and therefore,

∥ŵM(w
′

k, t)− w∗(tk+1)∥≤
(
1

2

)M

(ϵ+ η) (111)

Furthermore, we obtain

∥w′

k+1−w∗(tk+1)∥≤ ∥w′

k+1− ŵM(w
′

k, t)∥+∥ŵM(w
′

k, t)−w∗(tk+1)∥≤ ϵ
′
+

(
1

2

)M

(ϵ+η)

(112)
To find M , we need to ensure that the equation (112) can be upper bounded by ϵ:

ϵ
′
+

(
1

2

)M

(ϵ+ η) ≤ ϵ (113)

Solving for M , we obtain the condition

M ≥ log2
ϵ+ η

ϵ− ϵ′
(114)

Noting that r̂ > ϵ + η from equation (108) and ϵ
′ ≪ ϵ, we observe that M satisfies the

condition (114) if M ≥ log2
r̂
ϵ
. We can continue this logic until k = T − 1 and arrive

at the conclusion that the number of Wilson’s method that will enable the algorithm to
keep track of the global minimizers is on the order of O(log (r̂/ϵ)) · 1

∆t
. Finally, we claim

that 1/∆t is upper bounded by a constant for sufficiently small ϵ. This is because ∆t
only needs to be small enough so that η satisfies equation (108). Therefore, if we have
a constant ∆t corresponding to some value η̄ satisfying the condition for a given ϵ̄, the
same ∆t (and equivalently η̄) will satisfy the condition for any ϵ smaller than ϵ̄. This
concludes that the overall complexity of solving homotopy-OPF is O(log (r̂/ϵ)), which is
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equivalent to O(log (1/ϵ))

8.3 Proof of Lemma 5.3

By Proposition 4 of [54], the family of optimization problems

min
x∈Ψ

f̄(x, λ, ω)

s.t. h(x, λ) = 0

has a unique global minimizer satisfying SSOC for all parameters (λ, ω) ∈ U except on a
set of measure zero if (i) for all x1 ̸= x2, and for all ω, the function ω → f̄(x1, λ, ω) −
f̄(x2, λ, ω) is of rank one at all λ, (ii) the function λ → h(x, λ) is of full rank 2|V| for
all x at every ω, and (iii) the fixed set Ψ is a cyrtohedron and U is an open set. It is
straightforward to check that if f̄(x, λ, ω) = f(x, λ) + ωTx, condition (i) is satisfied.
Conditions (ii) and (iii) are given as assumptions, which completes the proof.

8.4 Proof of Lemma 5.4

The rank of the function λ → h(x, λ) is the rank of its Jacobian (w.r.t. λ). Therefore,
we analyze the Jacobian of h(x, λ) = h(x, [γ, β, γsh, βsh]) with respect to [γ, β, γsh, βsh].
From Section 3.2 and 4.1, we know that h consists of two types of functions, h1 and h2

(corresponding to the real power flow equations and the reactive power flow equations,
respectively), whose i-th elements are defined by:

h1
i (x, [γ, β, γ

sh, βsh]) = P g
i − P d

i − σp
i −

∑
j∈N (i)

gsh
ij γ

sh
ij

2
|vi|2

−
∑

j∈N (i)

gijγij(|vi|2−|vi||vj|cos θij)− bijβij|vi||vj|sin θij

h2
i (x, [γ, β, γ

sh, βsh]) = qgi −Qd
i − σq

i +
∑

j∈N (i)

bshijβ
sh
ij

2
|vi|2

+
∑

j∈N (i)

bijβij(|vi|2−|vi||vj|cos θij)− gijγij|vi||vj|sin θij

We focus on the submatrix of the Jacobian that consists only of the derivatives of h1
i

and h2
i with respect to γsh and βsh (denote this as J). This is because if this submatrix

has full column rank, then the full Jacobian also has full column rank. First, we notice
that the Jacobian of h1 with respect to βsh and the Jacobian of h2 with respect to γsh

are equal to zero. Therefore, J can be expressed as a 2 × 2 block matrix of the form
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J =

[
J1 0
0 J2

]
∈ R2|E|×2|V|, where J1 corresponds to the Jacobian of h1 with respect

to γsh and J2 corresponds to the Jacobian of h2 with respect to βsh.
For line outage contingencies, γsh and βsh are parameters indexed by the line number.

Hereby, let J1
((i,j),k) refer to the element of J1 that is located at the (i, j)-th row and the

k-th column (the row index representing the line and the column index representing the
bus number). For example, J1

((i,j),k) denotes the partial derivative of the real power flow
equation at bus k with respect to the shunt susceptance parameter at line (i, j). The
same goes for J2.

Then, directly from basic calculus, we can derive the following form for the matrix J :

J1
(i,j),k =

{
−1

2
gsh
ij |vk|2 for k = i or j, j ∈ N (i)

0 otherwise

J2
(i,j),k =

{
1
2
bshij |vk|2 for k = i or j, j ∈ N (i)

0 otherwise

Therefore, if J has full column rank, so will the Jacobian of the function λ → h(x, λ),
which completes the proof.

8.5 Proof of Lemma 5.5

Similar to the proof of Lemma 5.4, we analyze the Jacobian of h(x, λ) = h(x, [γ, β])
with respect to [γ, β]. From Section 3.2 and 4.1, we know that h consists of two types
of functions, h1 and h2 (corresponding to the real power flow equations and the reactive
power flow equations, respectively), whose i-th elements are defined by:

h1
i (x, [γ, β]) = P g,o

i γi + P g,f
i (1− γi)− P d

i − σp
i

−
∑

j∈N (i)

gijγij(|vi|2−|vi||vj|cos θij)− bijβij|vi||vj|sin θij

−
∑

j∈N (i)

gsh
ij γ

sh
ij

2
|vi|2

h2
i (x, [γ, β]) = qgi −Qd,o

i βi −Qd,f
i (1− βi)− σq

i

+
∑

j∈N (i)

bijβij(|vi|2−|vi||vj|cos θij)− gijγij|vi||vj|sin θij

+
∑

j∈N (i)

bshijβ
sh
ij

2
|vi|2
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First, we notice that the Jacobian of h1 with respect to β and the Jacobian of h2 with
respect to γ are equal to zero. Therefore, M can be expressed as a 2× 2 block matrix of

the form M =

[
M1 0
0 M2

]
∈ R2|V|×2|V| where M1 corresponds to the Jacobian of h1

with respect to γ and M2 corresponds to the Jacobian of h2 with respect to β.
For generator outage contingencies, γ and β are parameters indexed by the bus number

(because we assume each bus has exactly one generator). Hereby, let M1
i,j refer to the

element of M1 that is located at the i-th row and the j-th column. In other words, M1
i,j

denotes the partial derivative of the real power flow equation at bus i with respect to the
γ parameter at bus j. The same goes for M2.

Then, directly from basic calculus, we can derive the following form for the matrix M :

M1
i,j =

{
P g,o
i − P g,f

i for j = i

0 otherwise

M2
i,j =

{
Qd,o

i −Qd,f
i for j = i

0 otherwise

Therefore, if M has full column rank, so will the Jacobian of the function λ → h(x, λ),
which completes the proof.

8.6 Proof of Corollary 5.6

The first statement on Hλ,ω having a unique global minimizer satisfying SSOC follows
directly from applying Lemma 5.3. The functions λ → h(x, λ) is of full rank 2|V| due
to Lemmas 5.4 and 5.5, and this in turn satisfies the first condition of Lemma 5.3. As
discussed in Section 5, the set Ψ is a cyrtohedron, and the set U is defined to be an
open set for any ϵ > 0 by the assumptions of this theorem. In other words, the second
condition of Lemma 5.3 is also satisfied. Therefore, we can conclude that for any value
of ϵ > 0, Hλ,ω has a unique global minimizer satisfying SSOC for every (λ, ω) ∈ U \ U′

where U′ ⊂ U is of measure zero.

8.7 Proof of Lemma 5.7

Let us start with the equation for the reactive power injections. Let θ1 and θ2 denote
the voltage phasor angles at buses 1 and 2, respectively. Let the real and reactive power
injections at bus i be denoted by pinj

i and qinj
i , respectively. In this two-bus example, we

consider the objective function: (σp
1)

2+ c(σp
2)

2. Then after denoting θ = θ1−θ2, we have
the following:

qinj
1 = Bβ −Gγ · sin θ −Bβ · cos θ
qinj
2 = Bβ +Gγ · sin θ −Bβ · cos θ
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A lower bound of Qmin on qinj
1 results in the following:

Qmin ≤ Bβ −Gγ · sin θ −Bβ · cos θ

Then, after rearranging and using trigonometry, we arrive at

−Qmin +Bβ ≥ Gγ · sin θ +Bβ · cos θ

=
√
(Gγ)2 + (Bβ)2 · cos (θ −∆) where ∆ = tan−1

(
Gγ

Bβ

)
.

After dividing both sides by
√

(Gγ)2 + (Bβ)2, we have

cos (θ −∆) ≤ −Qmin +Bβ√
(Gγ)2 + (Bβ)2

which implies

θ ≥ cos−1

(
−Qmin +Bβ√
(Gγ)2 + (Bβ)2

)
+∆ or θ ≤ − cos−1

(
−Qmin +Bβ√
(Gγ)2 + (Bβ)2

)
+∆

(115)

From the lower bound on qinj
2 , we can perform a similar derivation and arrive at

θ ≥ cos−1

(
−Qmin +Bβ√
(Gγ)2 + (Bβ)2

)
−∆ or θ ≤ − cos−1

(
−Qmin +Bβ√
(Gγ)2 + (Bβ)2

)
−∆.

(116)

Therefore, combining inequalities (115) and (116) leads to

θ ≥ cos−1

(
−Qmin +Bβ√
(Gγ)2 + (Bβ)2

)
+∆ or θ ≤ − cos−1

(
−Qmin +Bβ√
(Gγ)2 + (Bβ)2

)
−∆.

(117)

Furthermore, we assume that

− tan−1

(
Bβ

Gγ

)
≤ θ ≤ tan−1

(
Bβ

Gγ

)

which is equivalent to
−
(π
2
−∆

)
≤ θ ≤

(π
2
−∆

)
(118)
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Figure 25: An example of two-bus network for which there are two global solutions to an
instance of the homotopy-OPF.

Combining (117) and (118) and using the definition of α yields the final constraint on θ:

α +∆ ≤ θ ≤

(
π

2
−∆

)
or −

(
π

2
−∆

)
≤ θ ≤ −α−∆. (119)

This feasible region of θ is reflected in the feasible region of the real power injections, as
shown in the bolded part of the ellipse in Figure 25. As illustrated in the figure, the two
red points are real power injections, corresponding to θ = α +∆ and θ = −α −∆. Let
the first red point, (pinj

1 , pinj
2 ), be generated by θ = α +∆. Then, one can write:

pinj
1 = Gγ +Bβ · sin θ −Gγ · cos θ

= Gγ +Bβ · sin (α +∆)−Gγ · cos (α +∆)

= Gγ +Bβ · (sinα · cos∆ + α sin∆)−Gγ · (α cos∆− sinα · sin∆)

= Gγ +
Bβ

|y|
(Bβ · sinα + α ·Gγ)− Gγ

|y|
(α ·Bβ −Gγ · sinα)

Similarly, if we let the second red point (p̄inj
1 , p̄inj

2 ), be generated by θ = −α−∆, we have

p̄inj
1 = Gγ − Bβ

|y|
(Bβ · sinα + α ·Gγ)− Gγ

|y|
(α ·Bβ −Gγ · sinα)
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Moreover, note that due to symmetry, pinj
2 = p̄inj

1 and p̄inj
2 = pinj

1 . Define the following two
functions:

Ω1(γ, β) ≡ pinj
1 − p̄inj

1 =
2Bβ

|y|
(Bβ · sinα + α ·Gγ),

Ω2(γ, β) ≡ pinj
1 + p̄inj

1 = 2Gγ − 2Gγ

|y|
(−Gγ · sinα + α ·Bβ).

Recall that P g,b
i denotes the real power generation at bus i obtained from the base-

OPF solution. If the two points (pinj
1 , pinj

2 ) and (p̄inj
1 , p̄inj

2 ) are both globally optimal, their
objective values must be equal. In other words,

(pinj
1 −(P

g, b
1 −P d

1 ))
2+c(pinj

2 −(P
g, b
2 −P d

2 ))
2 = (p̄inj

1 −(P
g, b
1 −P d

1 ))
2+c(p̄inj

2 −(P
g, b
2 −P d

2 ))
2.

Rearranging the terms leads to

(1− c){(pinj
1 )2 − (p̄inj

1 )2} − 2(P g, b
1 − P d

1 )(p
inj
1 − p̄inj

1 ) + 2c(P g, b
2 − P d

2 )(p
inj
1 − p̄inj

1 ) = 0

Finally, substituting the definition of Ω1 and Ω2, we arrive at

(1− c) · Ω1(γ, β) · Ω2(γ, β)− 2(P g, b
1 − P d

1 ) · Ω1(γ, β) + 2c(P g, b
2 − P d

2 ) · Ω1(γ, β) = 0

This completes the proof.

8.8 Computation of Participation Factors for Generator Out-
age

During the outage of one or more generators, a collection of other generators will increase
their power generation in order to respond to the outage and meet power demand. The
“participation factor” of a generator determines the portion of the generation response
that is assigned to that generator. There are a variety of ways to compute participation
factors, including scaling the participation factors based on the remaining power capacity.
In Algorithm 8, we present one method for computing participation factors which is based
on the topology of the network, i.e. it redirects generation from the outed generators to
generators that supply the same set of buses as the outed generators in the base-OPF.
This method is based on the work [48]. In our simulations of generator outages, we use
this method for computing participation factors with Algorithm 7.
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Algorithm 8 Calculation of Participation Factors for Power Redistribution at Contingency
k

Given: (i) solution to base-OPF problem (|v|, θ, pg, qg, {σk})
(ii) generators out in contingency k: Rk ⊂ V

Compute real power flow for all (i, j) ∈ E in the base-case:
pij = Gij|v|2i−Gij|v|i|v|jcos(θij) +Bij|v|i|v|jsin(θij)

Generate a directed graph D(V ,A) based on direction of power flow: (i, j) ∈ A if
pij ≥ 0
Use shortest path algorithm to compute the domain of each generator
Group the buses supplied by the same set of generators into commons C (see [48])
Use algorithm in [48] to determine the contribution Crj of each generator r to
common j
Remove contribution of generators that are out:

Crj ← 0 ∀r ∈ Rk, ∀j ∈ C
Distribute lost generation over generations that supply the same common:
for j ∈ C do

Define Cj =
∑

r Crj

if Cj ̸= 0 then
for r ∈ V do
Crj ← Crj/Cj

end for
end if

end for
Initialize participation factors: αg

r = 0 for all r ∈ V
Define participation factors based on contribution to common:
for r ∈ Rk do

for j ∈ C do
αg
t ← αg

t + Ctj for all generators t in common j
end for

end for
Normalize the participation factors αg so that

∑
r∈V α

g
r = 1
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