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Abstract: We find a general formula for the two-loop renormalization counterterms of
a scalar quantum field theory with interactions containing up to two derivatives, extending
’t Hooft’s one-loop result. The method can also be used for theories with higher derivative
interactions, as long as the terms in the Lagrangian have at most one derivative acting
on each field. We show that diagrams with factorizable topologies do not contribute to
the renormalization group equations. The results in this paper will be combined with the
geometric method in a subsequent paper to obtain the counterterms and renormalization
group equations for the scalar sector of effective field theories (EFT) to two-loop order.
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1 Introduction

The general one-loop renormalization counterterms for scalar field theory were computed
by ’t Hooft [1] in dimensional regularization in the MS scheme.1 ’t Hooft’s formula applies
to theories with Lagrangians containing up to two derivatives in the fields, and a canonical
kinetic energy term. It allows for the computation of the one-loop renormalization constants
and anomalous dimensions by purely algebraic manipulations. The formula was extended
to arbitrary two-derivative Lagrangians using a geometrical method [2, 3] which exploits the
invariance of the S-matrix and physical observables under field redefinitions [4–8]. Field
redefinitions can be interpreted as coordinate transformations on the manifold on which

1The results are also valid in the MS scheme, where the parameter µ of the MS scheme is rescaled,
µ2 → µ2eγ/(4π), or the usual scheme in chiral perturbation theory, where µ2 → µ2e(γ−1)/(4π). We will
refer to all of these as the MS scheme.

– 1 –



the quantum fields live, and the renormalization counterterms can be written in terms of
geometric objects such as the Riemann curvature tensor of the scalar manifoldM.

The geometrical approach was used in [2, 3] to study the scalar sector of chiral pertur-
bation theory, the Standard Model Effective Field Theory (SMEFT), and Higgs Effective
Field Theory (HEFT). It was shown in refs. [2, 3] that deviations of longitudinal gauge
boson and Higgs cross sections from their SM values measure the Riemann curvature ofM.
The formalism was generalized to include gauge fields in [9, 10] and fermions in [11–13]. The
geometric approach reorganizes perturbation theory, and greatly simplifies the computation
of radiative corrections. The geometric approach uses an expansion in derivatives rather
than operator dimension, so one can include operators of arbitrary high dimension in an
EFT with a fixed number of derivatives. Applications of the method to chiral perturbation
theory, which also has a derivative expansion, were given in [3], and applications to SMEFT
were discussed in Ref. [14, 15]. Ref. [9] computed the one-loop renormalization group equa-
tions (RGE) in SMEFT to dimension eight using this method, obtaining some new results
as well as cross-checking some recent calculations [16–22]. There are also extensions of the
method to Lagrangians with higher derivatives [23–27], and to higher loops [28, 29].

In this paper, we compute two-loop counterterms and anomalous dimensions in scalar
theories with arbitrary interactions up to two derivatives. We find a general algebraic
formula for two-loop counterterms in the MS scheme, generalizing the well-known one-
loop result of ’t Hooft [1]. We show that a large class of factorizable diagrams do not
contribute to the two-loop anomalous dimensions, as they factor into the product of one-
loop diagrams. This simplification is hidden in the usual Feynman diagram calculation,
which organizes the terms by powers of the coupling constant, rather than topology. We
derive the formula for the anomalous dimensions in minimal subtraction and generalize
’t Hooft’s consistency relations [30] for counterterms to an arbitrary EFT for which the
renormalization group equations are non-linear. The results of this paper are combined
with the geometrical methods of [2, 3] in a second paper [27] (referred to as paper II),
which allows for the computation of two-loop renormalization of an arbitrary EFT with
terms up to two derivatives. It also applies to theories with more than two derivatives
provided higher order terms contain at most single derivatives acting on each field. At the
end of this paper, we explicitly evaluate the two-loop formula for the renormalizable O(n)

model, and verify that it produces the correct anomalous dimensions. The calculation for
the O(n) EFT which includes higher dimension operators is presented in paper II, since it
is more efficiently done using geometrical methods. The second paper uses the two-loop
counterterm formula to compute the two-loop anomalous dimensions for the scalar sector
of SMEFT to dimension six, and for chiral perturbation theory to order p6. It also explains
how the formalism applies to Lagrangians with higher derivative terms, provided there is
only a single derivative acting on each field, as for the p4 Lagrangian in chiral perturbation
theory.
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Figure 1. One-loop correction to the action. The solid line is the internal field η, and the dashed
lines represent external fields φ. There can be an arbitrary number of vertices, each of which has
two η lines. The right hand figure shows the corresponding skeleton graph, which can have an
arbitrary number of ηη vertex insertions in the loop.

2 Form of the Loop Corrections

In this section, we compute the general formula for the one-loop and two-loop counterterms
in a scalar theory, with terms containing up to two derivatives, in the presence of an
arbitrary background field. The one-loop corrections are given by writing the scalar field
φ→ φ+η in terms of a background field φ, and a quantum field η, which is integrated over
and only appears as internal lines in loop graphs. The generic one-loop graph is shown in
Fig. 1, and consists of a single η loop, with arbitrary insertions of external fields from η2

vertices. There are two generic connected one-particle irreducible two-loop graphs, shown
in Fig. 2, which involve either two insertions of η3 vertices, or one insertion of an η4 vertex.
Both types of graphs can have an arbitrary number of insertions of η2 vertices. These
results follow from the topological identity

(F − 2) + 2L =
∑
i

(Fi − 2) , (2.1)

where F is the total number of external fields in a Feynman graph, Fi are the number of
fields at each vertex, and L is the number of loops.2 In our case, there are no external
quantum fields, so F = 0. Consequently, the left-hand side of Eq. (2.1) for L = 1 and L = 2

is equal to zero and two, respectively. Thus, the one-loop graphs only contain quadratic
vertices, whereas the two-loop graphs either contain two cubic vertices or one quartic vertex.

We now summarize ’t Hooft’s calculation [1]. Starting with a Lagrangian L(φ), we
write the scalar field as the sum of a background field and a quantum field φ = φ+ η, and
expand in η.3 The general Lagrangian up to order η2 and two derivatives is

L =
1

2
∂µη

T∂µη + ∂µη
TNµη +

1

2
ηTXη , (2.2)

where ηa are real scalar fields, Nµ
ab and Xab are matrices which are functionals of the

background fields, and we use matrix notation for the index contractions. The background
2The topological identity was used previously to derive the power counting rule of naive dimensional

analysis, which gives a method of counting 4π factors associated to terms in the Lagrangian. A more
detailed discussion can be found in [31, 32]. The same identity was also used to determine factors of
coupling constants associated with a given loop graph [33].

3We focus on scalar fields. The method also works for gauge fields and fermions [1].
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(a) (b)

Figure 2. Skeleton graphs for two-loop corrections to the action. There can be an arbitrary
number of ηη vertex insertions, as in Fig. 1.

fields can be any kind of field, since they do not affect the evaluation of the loop integral over
η. Following [1], we assume the kinetic term is canonically normalized. The generalization
to an arbitrary kinetic term

L =
1

2
∂µη

T g ∂µη (2.3)

was given in [2, 3], and will be discussed in paper II. In Eq. (2.3), gab, the metric on
the scalar field manifold, is a function of the background fields. Eq. (2.2) corresponds to a
trivial scalar metric gab = δab. For this paper, the metric is trivial and we do not distinguish
between upper and lower flavor indices.

The indices a, b, . . . refer to flavor indices. Xab is symmetric in its flavor indices, Xab =

Xba. The Lagrangian can be shifted by a total derivative, which leaves the action unchanged.
Consider the shift

L → L+ ∂µ
[
ηTZµη

]
= L+ ηT (∂µZ

µ)η + (∂µη)TZµη + ηTZµ(∂µη) (2.4)

where Zµab = Zµba is a symmetric matrix. The last term can be rewritten as ηTZµ(∂µη) =

(∂µη)TZµη since Zµ is symmetric. The last two terms lead to a shift in the symmetric part
of Nµ, Nµ → Nµ + 2Zµ. Zµ can be chosen to remove the symmetric part of Nµ, so that
Nµ is antisymmetric, Nµ

ab = −Nµ
ba. The term ∂µZ

µ is symmetric, and can be absorbed into
a redefinition of X, X → X + 2∂µZ

µ. Thus in Eq. (2.2), we can always require Nµ to be
antisymmetric and X to be symmetric.

Define the covariant derivative

Dµη ≡ ∂µη +Nµη . (2.5)

Nµ plays the role of a background O(n) gauge field, since it is a real antisymmetric matrix.
The Lagrangian Eq. (2.2) is

L =
1

2
(Dµη)T (Dµη) +

1

2
ηT (X −NT

µ N
µ)η =

1

2
(Dµη)T (Dµη) +

1

2
ηT (X +NµN

µ)η (2.6)

which is equivalent to

L =
1

2
(Dµη)T (Dµη) +

1

2
ηTXη (2.7)

after further redefining X by X → X+NµN
µ. As noted by ’t Hooft, Eq. (2.7) has an O(n)

symmetry,

η → Oη , X → OXOT , Nµ → ONµO
T − ∂µOOT . (2.8)
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under which Nµ transforms as a gauge field. This O(n) symmetry greatly simplifies the
computation of the counterterm Lagrangian. Note that O(n) need not be a symmetry of
the original Lagrangian. The above method writes the fluctuation Lagrangian in an O(n)

symmetric form, even if the starting Lagrangian is not O(n) symmetric.
’t Hooft computed the one-loop counterterm Lagrangian

L(1)
c.t. =

1

16π2ε

[
−1

4
TrX2 − 1

24
TrYµνY

µν

]
(2.9)

in d = 4− 2ε dimensions in the MS scheme, where

Yµν = [Dµ, Dν ] = ∂µNν − ∂νNµ + [Nµ, Nν ] (2.10)

is the O(n) field-strength tensor constructed from Nµ. Yµν is antisymmetric in its Lorentz
indices Y µν

ab = −Y νµ
ab , as well as in its flavor indices, Y µν

ab = −Y µν
ba . The 1-loop counterterm

Lagrangian Eq. (2.9) is gauge-invariant under the O(n) symmetry of Eq. (2.7).
The two-loop corrections require terms cubic and quartic in η. Up to two derivatives,

the allowed terms are4

L = Aabcη
aηbηc +Aµa|bc(Dµη)aηbηc +Aµνab|c(Dµη)a(Dνη)bηc

+Babcdη
aηbηcηd +Bµ

a|bcd(Dµη)aηbηcηd +Bµν
ab|cd(Dµη)a(Dνη)bηcηd . (2.11)

The terms are written in terms of covariant derivatives rather than ordinary derivatives, to
make use of the O(n) symmetry of the quadratic Lagrangian Eq. (2.7). This can always be
done by the replacement ∂µ → Dµ −Nµ, and absorbing the Nµ terms into redefinitions of
the lower derivative terms in Eq. (2.11). The A and B coefficients are arbitrary functionals
of the background fields. Terms with D2η can be converted to the form Eq. (2.11) by
integration by parts. Aabc is completely symmetric in abc, Babcd is completely symmetric in
abcd, Aµa|bc is symmetric in bc, Bµ

a|bcd is completely symmetric in bcd. The other coefficients
satisfy the symmetry relations Aµνab|c = Aνµba|c, B

µν
ab|cd = Bνµ

ba|cd = Bµν
ab|dc.Thus, the coefficients

are completely symmetric in flavor indices on each side of the vertical bar, with Lorentz
indices coupled to the flavor indices to the left of the bar. We will always assume these
symmetries on the coefficients. As in Eq. (2.4), we can add total derivatives

L → L+Dµ

[
Cµabcη

aηbηc
]

+Dµ

[
Fµabcdη

aηbηcηd
]

(2.12)

where Cµabc and F
µ
abcd are completely symmetric, which can be used to eliminate the totally

symmetric pieces in Aµa|bc and B
µ
a|bcd while shifting Aabc and Babcd. Thus one can eliminate

the totally symmetric parts of Aµabc and B
µ
a|bcd,

Aµa|bc +Aµb|ca +Aµc|ab = 0 ,

Bµ
a|bcd +Bµ

b|cda +Bµ
c|dab +Bµ

d|abc = 0 . (2.13)

4Note that the original Lagrangian need not be O(n) symmetric, but the fluctuations can still be written
in O(n) form. The vertical bar | separates the indices contracted with Dµη from those contracted with η.
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Dµ X Y µν A Aµ Aµν B Bµ Bµν

Mass dimension 1 2 2 1 0 −1 0 −1 −2

Table 1. Mass dimensions of the building blocks.

AA D2, X, Y

AµA D3 , XD, Y D

AµAµ D4, XD2, Y D2, X2, XY, Y 2

AµνA D4, XD2, Y D2, X2, XY, Y 2

AµνAµ D5, XD3, Y D3, X2D, XY D, Y 2D

AµνAµν D6, XD4, Y D4, X2D2, XY D2, Y 2D2, X3, X2Y, XY 2, Y 3

(2.15)

Table 2. Possible two-loop counterterms from Fig. 2(a). The first column gives the two cubic
vertices in the diagram. Each line gives the possible counterterms for those cubic vertices. For
instance, the first line means that allowed counterterms with two factors of A can either have two
factors of A and two derivatives, or two factors of A and one X, with all possible Lorentz and
flavor contractions. Y means there is no AAY counterterm allowed by the Lorentz and flavor
contractions. The counterterms with Aµν are not needed for our results. The explicit form for the
counterterms is given in Sec. 4.

Aµa|bc has three flavor indices, and so can be decomposed into irreducible representations of
the symmetric group on three elements, S3. Similarly Bµ

a|bcd is decomposed into irreducible
representations of S4. The irreducible representations of Sn are denoted by Young tableaux
with n boxes. The coefficients Aµa|bc and B

µ
a|bcd transform as the irreducible representations

with Young tableaux

Aµ ∼ Bµ ∼ (2.14)

under the symmetric group because of the constraints Eq. (2.13). We cannot simplify Aµν

and Bµν by adding total derivatives as in Eq. (2.12) without introducing terms with two
derivatives on a single η. We will assume that the coefficients have been put in a standard
form so that Eqs. (2.13) are satisfied.

The two-loop counterterms, from the graphs in Fig. 2, either have one quartic B-
vertex, or two cubic A-vertices. The possible two-loop counterterms can be determined by
dimensional analysis. The mass dimensions of the coefficients in Eqs. (2.7), (2.10) and (2.11)
are listed in Table 1. Since the theory has O(n) symmetry, the allowed factors from the
quadratic Lagrangian are X and Yµν . The possible structures for the two-loop counterterms
are given in Table 2 and Table 3. Some possible counterterms permitted by dimensional
analysis are not allowed, and have a line through them. For example, AAY is removed
because the Lorentz index contraction implies it must contain Y α

α = 0. The AAµD3 term
vanishes because Aµ has no completely symmetric flavor piece, from Eq. (2.13). The BD4

counterterm vanishes, since it is a total derivative. Terms such as BXD2 are not allowed
because the B-graphs factor into the product of two one-loop graphs, one of which is a
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B D4 , XD2 , Y D2 , X2, XY , Y 2

Bµ D5 , XD3 , Y D3 X2D, XY D, Y 2D

Bµν D6 , X2D2, XY D2, Y 2D2, X3, X2Y, XY 2, Y 3

(2.16)

Table 3. Possible two-loop counterterms from Fig. 2(b). The first column gives the single quartic
vertex in the diagram. Each line gives the possible counterterms for that quartic vertex. Some
counterterms with a line through them are not allowed because they are total derivatives, or because
the diagram factors into a product of one-loop graphs (see text). The explicit counterterms are
given in Sec. 4.

AAηη 1

AµAηη D

AµAµηη D2, X, Y

Bηη D2 , X, Y

Bµηη D3 , XD, Y D

Bµνηη D4 , XD2, Y D2, X2, XY , Y 2

(3.1)

Table 4. Possible one-loop subdivergence counterterms from Fig. 3. The first column gives the
two cubic vertices or the single quartic vertex in the one-loop diagram, as well as the two external
scalar fields η. Each line gives the possible counterterms for the given vertices and fields. Some
counterterms with a line through them are not allowed because they are total derivatives or vanish.
The explicit counterterms are given in Sec. 3.

scaleless power divergent integral which vanishes. The factorization property of B-graphs
leads to important consequences, and is discussed in Sec. 5.

There is one major simplification that we make at this point. We will see in pa-
per II that the cubic variation of the action does not generate the two-derivative term
Aµνabc(Dµη)a(Dνη)bηc if one uses Riemann normal coordinates, which were used in [3] to
simplify the one-loop calculation. We will therefore drop Aµν , which gets rid of many terms
in Table 2. A naive expansion using φ → φ + η does generate Aµν . Dropping Aµν greatly
simplifies the computation of the counterterm Lagrangian, and shows the advantages of a
geometrical approach. In a renormalizable theory, Aµa|bc, B

µ
a|bcd and Bµν

ab|cd vanish. In paper
II, we will see that Aµa|bc and B

µν
ab|cd start at dimension six, and Bµ

a|bcd at dimension eight.

3 One-Loop Subdivergences

The two-loop graphs in Fig. 2 contain subdivergences, which have to be subtracted by the
insertions of the one-loop counterterms vertices into one-loop graphs. These are generated
by the A and B vertices, and have two external η fields. The expressions for the one-loop
counterterms allowed by dimensional analysis are listed in Table 4. They can be computed
from the one-loop graphs in Fig. 3 using the Lagrangian Eq. (2.11) and Eq. (2.7) for the
interaction vertices.
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(a) (b)

Figure 3. One-loop subdivergence graphs from the η3 and η4 interactions. The external lines are
η fields.

There is an alternate algebraic way of computing the one-loop subdivergence countert-
erms which is instructive. Treat Eq. (2.7) plus Eq. (2.11) as the new Lagrangian, and repeat
the procedure used to obtain Eq. (2.9):

(a) Make a shift η → η + ζ of the quantum field η into a new background quantum field
η and quantum field ζ.

(b) Since we want the one-loop correction, expand the Lagrangian to quadratic order in
ζ.

Shifting the field η → η + ζ, expanding to O(ζ2), and dropping the bar over η, yields

L =
1

2
(Dµζ)a(Dµζ)a +

1

2
Xabζ

aζb + 3Aabcζ
aζbηc + 2Aµa|bc(Dµζ)aζbηc +Aµa|bc(Dµη)aζbζc

+ 6Babcdζ
aζbηcηd + 3Bµ

a|bcd(Dµζ)aζbηcηd + 3Bµ
a|bcd(Dµη)aζbζcηd

+Bµν
ab|cd(Dµη)a(Dνη)bζcζd + 4Bµν

ab|cd(Dµη)a(Dνζ)bζcηd +Bµν
ab|cd(Dµζ)a(Dνζ)bηcηd .

(3.2)

The last term gives a non-trivial spacetime metric for ζ

ηµνgab → ηµνδab +Bµν
ab|cdη

cηd (3.3)

on comparing with Eq. (2.2). This piece cannot be handled by ’t Hooft’s formula Eq. (2.9)
so it is treated separately. It can be included if we compute the diagrams explicitly, and is
included in the final expressions for the one-loop subdivergence counterterms.

(c) Remove the symmetric part of the ∂ζaζb term by adding a total derivative as in
Eq. (2.4).

(d) Determine the covariant derivative D, and mass term X for the resultant Lagrangian,
analogous to the terms in the original Lagrangian Eq. (2.7).

(e) Finally, compute the one-loop counterterms with two external η̄ fields from Eq. (2.9).
This procedure uses a double shift of the field φ to determine the counterterms, first by
η and then by ζ. The RGE commute with shifts in the field, i.e. computing the RGE
and shifting the field gives the same result as shifting the field and then computing
the RGE [34].

– 8 –



The symmetric part of (Dζ)ζ is moved to X by integration by parts, using the identity
as in Eq. (2.4),

(Dµζ)aζb + ζa(Dµζ)b = Dµ(ζaζb) . (3.4)

With this transformation, the Lagrangian Eq. (3.2) has the form

L =
1

2
(Dµζ)T (Dµζ) + (Dµζ)TUµζ +

1

2
ζT X̃ζ

=
1

2
(∂µζ +Nµζ + Uµζ)T (∂µζ +Nµζ + Uµζ) +

1

2
ζT
(
X̃ + UµU

µ
)
ζ (3.5)

where

Uµab = (Aµa|bc −A
µ
b|ac)η

c +
3

2
(Bµ

a|bcd −B
µ
b|acd)η

cηd + 2(Bνµ
ca|bd −B

νµ
cb|ad)(Dνη)cηd (3.6)

and

X̃ab = Xab + 6Aabcη
c + 2Aµc|ab(Dµη)c + 12Babcdη

cηd + 6Bµ
c|abd(Dµη)cηd + 2Bµν

cd|ab(Dµη)c(Dµη)d

−Dµ[(Aµa|bc +Aµb|ac)η
c]− 3

2
Dµ[(Bµ

a|bcd +Bµ
b|acd)η

cηd]− 2Dν [(Bµν
ca|bd +Bµν

cb|ad)(Dµη)cηd] .

(3.7)

The new covariant derivative and mass term are given by the replacement in Eq. (2.7)

Dµ → Dµ + Uµ = ∂µ +Nµ + Uµ,

X → X̃ + UµU
µ, (3.8)

with the new field-strength

Yµν → Yµν +DµUν −DνUµ + [Uµ, Uν ] , (3.9)

where Dµ is the old covariant derivative (without Uµ). Using ’t Hooft’s formula Eq. (2.9),
and retaining the terms quadratic in A or linear in B gives the results listed below in
Eq. (3.12) and Eq. (3.13).

3.1 One-Loop Subdivergence Counterterms

The B counterterms are computed from the graph 3(b) using the η4 terms in Eq. (2.11).
Since the two-loop graph factorizes into the product of one-loop graphs, it is convenient to
first compute one-loop counterterms from a single insertion of the η2 interaction Lagrangian

Lint = Cabη
aηb + Cµab(Dµη)aηb + Cµνab (Dµη)a(Dνη)b (3.10)

treated as a perturbation added to the Lagrangian Eq. (2.7). This computes the expectation
value of η bilinears

〈
ηaηb

〉
,
〈
Dµη

aηb
〉
and

〈
Dµη

aDνη
b
〉
in the presence of X and Nµ fields

and gives the counterterms

Lc.t. =
1

16π2ε

{
−CabXba −

1

2
CµabDµXba +

1

6
CµabDαY

αµ
ba

− 1

12
Cµµab D

2Xba −
1

12
Cµνab {Dµ, Dν}Xba −

1

12
Cµνab D

2Y µν
ba +

1

4
Cµµab XbcXca

+
1

4
Cµµab (Y µν

bc Xca +XbcY
µν
ca ) +

1

12
Cµνab Y

µα
bc Y

να
ca −

1

4
Cµνab Y

να
bc Y

µα
ca +

1

24
Cµµab Y

αβ
bc Y

αβ
ca

}
(3.11)
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The allowed terms are (schematically) 〈ηaηb〉 → Xab, 〈Dµηaηb〉 → DµXab, DαY
αµ
ab ,

〈DµηaDνηb〉 ∼ D2X,D2Y,X2, XY, Y 2. 〈ηη〉 cannot produce a Yµν , because the Lorentz
indices would have to be contracted, and Yαα = 0. This explains some of the missing
entries in Table 3. Eq. (3.2) will be needed for some results in paper II.

The one-loop B subdivergence counterterms are

L(B,1)
c.t. =

1

16π2ε

[
−6BabcdXcdη

aηb − 3Bµ
a|bcdXcd(Dµη)aηb −Bµν

ab|cdXcd(Dµη)a(Dνη)b

− 3

2
Bα
a|bcd(DαX)abη

cηd − 2Bαν
ac|bd(DαX)ab(Dνη)cηd

+
1

4
(DµYµα)ba

(
Bα
a|bcd −B

α
b|acd

)
ηcηd +

1

3
(DµYµα)ba

(
Bαν
ac|bd −B

αν
bc|ad

)
(Dνη)cηd[

− 1

12
(D2X)abB

αα
ab|cd −

1

12
({Dµ, Dν}X)abB

µν
ab|cd −

1

12
Bµν
ab|cd(D

2Y µν)ba

+
1

4
Bαα
ab|cdXaeXeb +

1

12
Bµν
ab|cdY

να
be Y

µα
ea −

1

4
Bµν
ab|cdY

µα
be Y

να
ea +

1

24
Bµµ
ab|cdY

αβ
be Y

αβ
ea

]
ηcηd

]
.

(3.12)

These can be obtained by starting with the B Lagrangians Eq. (2.11), choosing two η fields
to be in the loop, and using Eq. (3.11) for the result of the loop graph. The coefficients
in Eq. (3.12) differ from those in Eq. (3.11) by the combinatorial factor for picking two η
fields out of a η4 vertex. The results in the first three rows were also obtained by applying
’t Hooft’s method, which gives the same result. The results in the last two rows could not
be computed using ’t Hooft’s method because they arise from terms in Eq. (3.3) giving a
non-trivial spacetime metric.

The one-loop subdivergence counterterms from the A-type terms were computed from
the one-loop graphs, and by ’t Hooft’s method, both of which give the result

L(A,1)
c.t. =

1

(16π2)

1

ε

[
−9AcabAdabη

cηd + 6Aabc(DµA
µ
a|bd)η

cηd + 18AabcA
µ
a|bdη

c(Dµη)d

+ 2Dµ

(
Aµa|bdη

d
)

(Aνd|ab(Dνη)d −Aµc|abA
ν
d|ab(Dµη)c(Dνη)d +

1

6
Dα

(
Aµa|bcη

c
)
Dα

(
Aµa|bdη

d
)

− 2

3
Dµ

(
Aµa|bcη

c
)
Dν

(
Aνa|bdη

d
)

+
1

2

(
Aµa|bcη

c
)
Xaf

(
Aµf |bdη

d
)

+
1

2

(
Aµa|bcη

c
)
Xbf

(
Aµa|fdη

d
)

− 1

6
Dα

(
Aµa|bcη

c
)
Dα

(
Aµb|adη

d
)
− 1

3
Dµ

(
Aµa|bcη

c
)
Dν

(
Aνb|adη

d
)
−
(
Aµa|bcη

c
)
Xaf

(
Aµb|fdη

d
)

+
2

3
Y µν
ab A

ν
b|ecA

µ
e|adη

cηd − 1

3
Y µν
ab A

µ
a|ecA

ν
b|edη

cηd − 1

3
Y µν
ab A

µ
e|acA

ν
e|bdη

cηd

]
. (3.13)

The one-loop counterterms with quantum fluctuations Eq. (3.12) and Eq. (3.13) are
auxiliary results needed for the computation of two-loop counterterms to the original La-
grangian. They are not included in the counterterms for the original theory. The one-loop
counterterms for the original theory were already given in Eq. (2.9). The results Eq. (3.12)
and Eq. (3.13) can be obtained from Eq. (2.9) by making the replacement φ → φ + η and
expanding to quadratic order in the quantum fields.
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4 Two-Loop Counterterms

The two-loop counterterms are computed from the graphs in Fig. 2 and the one-loop graphs
with one-loop counterterm vertices computed in the previous section. The resulting two-
loop divergences are local, with the non-local pieces all cancelling between the two-loop
graphs and the one-loop subdivergence graphs. This cancellation provides a non-trivial
check on the computation. The details of the calculational method are given in Appendix A.

4.1 Quartic B terms

The B-type two-loop counterterms from the figure eight topology Fig. 2(b) are

L(B,2)
c.t. =

1

(16π2)2ε2

[
3BabcdXabXcd +

3

2
Bα
a|bcd(DαX)abXcd +

1

2
Bα
a|bcd(DµYµα)abXcd

+
1

12
Bαα
ab|cd(D

2X)abXcd +
1

12
Bµν
ab|cd({Dµ, Dν}X)abXcd +

1

12
Bµν
ab|cd(D

2Y µν)abXcd

− 1

4
Bαα
ab|cdXaeXebXcd +

1

4
Bµν
ab|cd(XaeY

µν
eb + Y µν

ae Xeb)Xcd

− 1

12
Bµν
ab|cdY

µα
ae Y

να
eb Xcd +

1

4
Bµν
ab|cdY

να
ae Y

µα
eb Xcd −

1

24
Bαα
ab|cdY

µν
ae Y

µν
eb Xcd

+
1

2
Bµν
ab|cd(DµX)ac(DνX)bd +

1

18
Bµν
ab|cd(DαY

αµ)ac(DβY
βν)bd +

1

6
Bµν
ab|cd(DµX)ac(DβY

βν)bd

]
.

(4.1)

The graphs factor into two one-loop integrals, so the counterterms can be determined by
using eq (3.11) for each loop, and including combinatorial factors for grouping four η fields
into two groups of two fields each.

4.2 Cubic A terms

The two-loop graphs from the sunset topology in Fig. 2(a) plus the associated subdiver-
gence graphs give local counterterms. The symmetry relation Eq. (2.13) is used to simplify
the final results, and put the counterterm operators in a standard form. The possible coun-
terterms are shown in Table 2. To avoid integration by parts ambiguities, we choose to
eliminate all derivatives on X and Yµν , so the derivatives act only on the A vertices. Many
flavor contractions can be eliminated by systematically applying Eq. (2.13). We give one
example, and leave the analysis of the other cases to the reader. The identity Eq. (2.13) is
represented graphically in Fig. 4. Consider a two-loop graph with two Aµ vertices, where
X is inserted on one η line, and Yµν on a different η line. The allowed contractions are
shown in Fig. 5. In each figure, the left η3 vertex is Aµ and the right vertex is Aν , and the
lines show the flavor index contractions, which generate operators of the form AµAνXYµν .
The possible contractions shown in the figure can be denoted as a matrixc11 c12 c13

c21 c22 c23

c31 c32 c33

 . (4.2)
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+ + = 0

Figure 4. Graphical representation of the symmetry relation Aµa|bc +Aµb|ca +Aµc|ab = 0. The lines
from top to bottom correspond to the flavor indices a, b, c, and the line with the open circle denotes
the first index of Aµ, which is contracted with (Dµη).

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

Figure 5. Allowed flavor contractions for AµAνXY with X and Y on different lines.

We can switch the two η3 vertices in each figure. This swaps the Lorentz indices µ, ν,
and swaps the flavor indices in X and Yµν . Both X and Yµν are symmetric under the
combined swap of Lorentz and flavor indices. Thus the matrix is symmetric, cab = cba,
because transposing the graph transposes the location of the open circle. The symmetry
relation Eq. (2.13) implies that each row and each column of the matrix add to zero, as can
be seen from Fig. 4. The elements of a 3× 3 symmetric matrix with each row and column
adding to zero can all be determined from the three diagonal elements cii, so we write the
9 possible contractions in terms of the three independent ones. One can similarly analyze
the other cases. Two structures in Table 2 are not allowed. AAYµν vanishes because the
only Lorentz index contraction is AAYµµ. AµAD3 vanishes because the only flavor index
contraction is AabcA

µ
a|bc which vanishes using the symmetry relation Eq. (2.13).5

5Covariant derivatives maintain the symmetry properties of a tensor.
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The independent counterterms are

L(A,2)
c.t. =

1

(16π2)2

[
a1,1DµAabcDµAabc + a2,1AabcXcdAabd

+ a3,1DµA
µ
a|bcAabdXcd + a3,2A

µ
a|bcDµAabdXcd + a4,1DνA

µ
a|bcAabdY

µν
cd + a4,2A

µ
a|bcDνAabdY

µν
cd

+ a5,1D
2Aµa|bcD

2Aµa|bc + a5,2DαDµA
µ
a|bcDαDνA

ν
a|bc

+ a6,1D
2Aµa|bcA

µ
a|bdXcd + a6,2D

2Aµc|abA
µ
d|abXcd + a6,3DαA

µ
a|bcDαA

µ
a|bdXcd + a6,4DαA

µ
c|abDαA

µ
d|abXcd

+ a6,5DµA
µ
a|bcDνA

ν
a|bdXcd + a6,6DµA

µ
c|abDνA

ν
d|abXcd + a6,7DνA

µ
a|bcDµA

ν
a|bdXcd

+ a6,8DνA
µ
c|abDµA

ν
d|abXcd + a6,9DνDµA

µ
a|bcA

ν
a|bdXcd + a6,10DνDµA

µ
c|abA

ν
d|abXcd

+ a7,1DαA
µ
a|bcDαA

ν
a|bdY

µν
cd + a7,2DαA

µ
c|abDαA

ν
d|abY

µν
cd + a7,3DµA

α
a|bcDνA

α
a|bdY

µν
cd

+ a7,4DµA
α
c|abDνA

α
d|abY

µν
cd + a7,5DµA

α
a|bcDνA

ν
a|bdY

µα
cd + a7,6DµA

α
c|abDνA

ν
d|abY

µα
cd

+ a7,7DνA
α
a|bcDµA

ν
a|bdY

µα
cd + a7,8DνA

α
c|abDµA

ν
d|abY

µα
cd + a7,9A

α
a|bcDµDνA

ν
a|bdY

µα
cd

+ a7,10A
α
c|abDµDνA

ν
d|abY

µα
cd + a7,11DµDνA

α
a|bcA

ν
a|bdY

µα
cd + a7,12DµDνA

α
c|abA

ν
d|abY

µα
cd

+ a8,1A
µ
c|abA

µ
d|abXceXed + a8,2A

µ
a|bcA

µ
a|bdXceXed + a8,3A

µ
a|bcA

µ
e|bdXaeXcd + a8,4A

µ
a|bcA

µ
a|deXbdXce

+ a9,1A
µ
c|abA

ν
d|ab(XceY

µν
ed + Y µν

ce Xed) + a9,2A
µ
a|bcA

ν
a|bd(XceY

µν
ed + Y µν

ce Xed)

+ a9,3A
µ
a|bcA

ν
e|bdXaeY

µν
cd + a9,4A

µ
a|bcA

ν
a|deXceY

µν
bd + a9,5A

µ
a|bcA

ν
e|bdXcdY

µν
ae

+ a10,1A
µ
c|abA

µ
d|abY

αβ
ce Y

αβ
ed + a10,2A

µ
a|bcA

µ
a|bdY

αβ
ce Y

αβ
ed + a10,3A

µ
c|abA

ν
d|abY

µα
ce Y

να
ed

+ a10,4A
µ
a|bcA

ν
a|bdY

µα
ce Y

να
ed + a10,5A

µ
c|abA

ν
d|abY

να
ce Y

µα
ed + a10,6A

µ
a|bcA

ν
a|bdY

να
ce Y

µα
ed

+ a10,7A
µ
a|bcA

µ
e|bdY

αβ
ae Y

αβ
cd + a10,8A

µ
a|bcA

µ
a|deY

αβ
bd Y

αβ
ce + a10,9A

µ
a|bcA

ν
e|bd(Y

µα
ae Y

να
cd + Y να

ae Y
µα
cd )

+ a10,10A
µ
a|bcA

ν
a|de(Y

µα
bd Y

να
ce + Y να

bd Y
µα
ce ) + a10,11A

µ
a|bcA

ν
b|ed(Y

µα
ae Y

να
cd − Y να

ae Y
µα
cd )

]
.

(4.3)

There are two additional AµAνY D2 operators

a7,13D
2Aµa|bcA

ν
a|bdY

µν
cd + a7,14D

2Aµc|abA
ν
d|abY

µν
cd . (4.4)

These can be written in terms of the other a7 operators and a10,11 using the Bianchi identity

DαYβγ +DβYγα +DγYαβ = 0 . (4.5)

The coefficients of the two-loop counterterms are determined from the sunset graphs in
Fig. 2(a), and are listed in Table 5.

The calculation of Eq. (4.3) involves the evaluation of at most four-point Feynman
integrals. These are sufficient to compute the two-loop running of EFT operators with an
arbitrary number of external legs. The usual diagrammatic computation requires computing
higher point graphs, which is more difficult.
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a1,1 = − 3
4ε , a2,1 = 9

2ε2
− 9

2ε ,

a3,1 = 3
2ε2
− 15

4ε , a3,2 = 9
2ε2
− 9

4ε , a4,1 = − 3
2ε2

+ 7
4ε , a4,2 = − 3

2ε2
− 5

4ε ,

a5,1 = 1
64ε , a5,2 = − 1

48ε ,

a6,1 = 1
36ε2

+ 25
216ε , a6,2 = 13

72ε2
− 107

432ε , a6,3 = − 5
36ε2

+ 37
216ε , a6,4 = 2

9ε2
− 2

27ε ,

a6,5 = 1
36ε2
− 5

216ε , a6,6 = − 5
72ε2
− 65

432ε , a6,7 = 1
36ε2
− 5

216ε , a6,8 = 13
72ε2
− 11

432ε ,

a6,9 = − 1
9ε2

+ 5
54ε , a6,10 = 1

36ε2
− 59

216ε ,

a7,1 = − 1
48ε , a7,2 = − 13

96ε , a7,3 = 1
18ε2

+ 1
432ε , a7,4 = − 1

72ε2
− 41

864ε ,

a7,5 = − 1
36ε2

+ 13
432ε , a7,6 = 5

72ε2
− 191

864ε , a7,7 = 1
36ε2
− 13

432ε , a7,8 = 13
72ε2
− 61

864ε ,

a7,9 = − 1
36ε2
− 17

432ε , a7,10 = 5
72ε2
− 149

864ε , a7,11 = 1
36ε2
− 19

432ε , a7,12 = 13
72ε2
− 139

864ε ,

a8,1 = − 5
16ε2

+ 19
96ε , a8,2 = 1

8ε2
− 11

48ε , a8,3 = − 1
4ε2

+ 5
8ε , a8,4 = − 1

2ε2
+ 1

8ε ,

a9,1 = 13
72ε2
− 11

432ε , a9,2 = 1
36ε2
− 5

216ε , a9,3 = − 19
36ε2

+ 5
216ε , a9,4 = 11

36ε2
+ 17

216ε ,

a9,5 = 11
36ε2
− 145

216ε ,

a10,1 = 35
1152ε −

5
96ε2

, a10,2 = 1
48ε2
− 25

576ε , a10,3 = 13
144ε2

+ 251
1728ε a10,4 = 1

72ε2
+ 11

864ε ,

a10,5 = 13
144ε2

− 217
1728ε , a10,6 = 1

72ε2
− 25

864ε , a10,7 = 1
72ε2
− 67

864ε , a10,8 = 1
36ε2
− 25

1728ε ,

a10,9 = − 29
144ε , a10,10 = 19

288ε , a10,11 = − 1
8ε

Table 5. Table of coefficients for the two-loop counterterms.

5 Factorizable Topologies

A factorizable graph G is a graph which is the union of two subgraphs, G = G1∪G2, where
the intersection of the two subgraphs G1∩G2 is a single vertex, and each subgraph contains
at least one loop. The two subgraphs in a factorizable graph do not have any propagators
in common. The Feynman integral for such graphs can be written as the product of the
Feynman integrals for each subgraph. The two-loop B-graphs are factorizable graphs,
give purely 1/ε2 counterterms in the MS scheme, and do not contribute to the two-loop
anomalous dimension. This is a general feature of factorizable diagrams in the MS scheme;
they can be omitted if one is only interested in computing the RGE of the theory. Consider
the general graph Fig. 2(b) with arbitrary insertions of the external field vertices, which
can insert momentum. Let k and l be the loop momenta, p1, . . . , pr the incoming momenta
from vertices on the k loop, and q1, . . . , qs the incoming momenta from vertices on the l
loop. The two-loop integral has the product form

I = I
{α}
1 (k, {p}) I{α}2 (l, {q}) , (5.1)
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where momentum conservation implies
∑
pr +

∑
qs = 0. The superscript {α} denotes

possible indices contractions between the two loops. I1 only depends on the momenta in I2

through the momentum conservation relation, and does not depend on the momenta of the
individual lines in I2. Each graph integral can be evaluated separately, and has a divergent
piece, denoted as I∞/ε, and a (possibly non-local) finite piece, denoted as If . The full
integral I reads

I =

[
1

ε
I
{α}
1∞ ({p}) + I

{α}
1f ({p})

] [
1

ε
I
{α}
2∞ ({q}) + I

{α}
2f ({q})

]
. (5.2)

The two-loop graph integral has two possible one-loop subdivergences. Because of the prod-
uct form Eq. (5.1), the subdivergence in each loop is exactly equal to I∞. The subdivergence
subtraction is

Isub = −
[

1

ε
I
{α}
1∞ ({p})

] [
1

ε
I
{α}
2∞ ({q}) + I

{α}
2f ({q})

]
−
[

1

ε
I
{α}
1∞ ({p}) + I

{α}
1f ({p})

] [
1

ε
I
{α}
2∞ ({q})

]
,

(5.3)

and the subdivergence subtracted two-loop graph integral is

Itot ≡ I + Isub = − 1

ε2
I
{α}
1∞ ({p})I{α}2∞ ({q}) + I

{α}
1f ({p})I{α}2f ({q}) . (5.4)

Notice that the 1/ε pieces exactly cancel. Therefore, the two-loop counterterm is purely
1/ε2,

Ic.t. =
1

ε2
I
{α}
1∞ ({p}) I{α}2∞ ({q}) , (5.5)

and equals the product of the individual counterterms −I∞/ε of each subgraph. The finite
part is given by the product of the finite parts of the individual subgraphs,

If = I
{α}
1f ({p}) I{α}2f ({q}) . (5.6)

The argument is generalizable to factorizable graphs with arbitrary loops. Consider first a
fully factorizable L graph, i.e. one which factors into L one-loop subgraphs. The divergence
of the subtracted L loop graph is (−1)L−1 times the individual divergences, and is purely
1/εL. The finite part is the product of the finite parts of the individual subgraphs, and
there are no 1/εk pieces for k ≥ 1, k 6= L,

Itot = (−1)L−1 1

εL
I
{α}
1∞ . . . I

{α}
L∞ + I

{α}
1f . . . I

{α}
Lf ,

Ic.t. = (−1)L
1

εL
I
{α}
1∞ . . . I

{α}
L∞ . (5.7)

The argument also applies to partially factorizable graphs, which factor into nnf non-
factorizable subgraphs, which can each have more than one loop. The proof is the same
as for fully factorizable graphs where one or more of the simple one-loop parts are re-
placed by subdivergence subtracted (non-factorizable) higher-loop graphs. In this case, for
a subtracted L loop graph, the lowest pole is not 1/εL, but instead 1/εnnf where nnf is the
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(a) (b)

Figure 6. Two-loop graphs renormalizing the φ4 interaction. Graph (a) does not contribute to the
anomalous dimension of λ.

number of non-factorizable parts (nnf = 1 for a non-factorizable graph). Thus factorizable
topologies do not contribute to the anomalous dimensions, which depend only on the 1/ε

pole.
For example, the anomalous dimension for the scalar quartic coupling in a general

renormalizable theory was computed in Ref. [35]. There are two topologies of scalar loops
for the quartic term, shown in Fig. 6. Graph (a) has a factorizable topology, and should not
contribute to the anomalous dimension according to the argument above, while graph (b)
should contribute. To see this explicitly, let us compare the flavor contractions appearing
in each graph. For a φ4 coupling defined as

L = − 1

4!
λabcd φ

aφbφcφd , (5.8)

the type of flavor contractions from graph (a) is λabefλefghλghcd, and from graph (b) is
λabefλceghλdfgh. The first type is absent from the RGE for λabcd given in Ref. [35, (4.3)],
showing indeed that graph (a) does not contribute to the RGE of the quartic coupling.
Usually, Feynman graphs are grouped by powers of coupling constant, and both graphs in
Fig. 6 are O(λ3). The method of this paper groups the graphs by topology rather than
coupling constant, which makes the absence of some type of flavor contractions manifest.

There is one subtlety in the above argument — evanescent operators [36–38]. Consider
the two-loop case where I1,2 each have two Lorentz indices. If Iα1α2

1 and Iα1α2
2 have terms

proportional to ηα1α2 , then their product gives terms of the form ηαα = d = 4 − 2ε. The
order ε piece in the Lorentz contraction multiplied by the 1/ε2 divergence from the integral
leads to a 1/ε piece. In our calculation, the only terms where this happens are Bαα terms
when Bµν is proportional to ηµν . Here the ηαα contraction arises from one of the loops in
Fig. 2(b), when both internal η lines are the Dη fields in Eq. (2.11), 〈DµηDνη〉 → ηµν . In
this case, the one-loop subgraph has the form

ηαα

[
1

ε
I1∞({p}) + I1f ({p})

]
=

[
4

ε
I1∞({p}) + d I1f ({p})− 2I1∞({p})

]
. (5.9)

The usual minimal subtraction procedure subtracts the 4I∞({p})/ε term. The two-loop
graph has the form

I = ηαα

[
1

ε
I1∞({p}) + I1f ({p})

] [
1

ε
I2∞({q}) + I2f ({q})

]
. (5.10)
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Subtracting the subdivergences gives

Itot = ηαα

[
1

ε
I1∞({p}) + I1f ({p})

] [
1

ε
I2∞({q}) + I2f ({q})

]
−
[

4

ε
I1∞({p})

] [
1

ε
I2∞({q}) + I2f ({q})

]
− d

[
1

ε
I1∞({p}) + I1f ({p})

] [
1

ε
I2∞({q})

]
= − 4

ε2
I1∞({p})I2∞({p}) + 4I1f ({p})I2f ({p})− 2I1∞({p})I2f ({p}) +O(ε) , (5.11)

which has no 1/ε term. Thus the B-terms in Eq. (4.1) do not contribute to the anomalous
dimensions, and ηαα pieces in Bαα are taken to be 4.

A more interesting case is when factors of ε are generated only after combining the
loops. For example, if each loop produces a ηµν , then the factor of d is produced only
when the loops are combined, not in an individual loop. In this case, the factorizable
topologies can produce 1/ε terms. However, it is possible to remove them by an additional
finite subtraction, analogous to that used for evanescent operators [37]. This was noted in
some examples in Refs. [39, 40], and the argument is completely general. Consider what
happens when we apply the two-loop counterterm formula to a Lagrangian where we split
the interaction part6 into a four-dimensional and an evanescent part

Lint = L̄int + L̂int , (5.12)

where in L̄int all Lorentz indices take values in 0, .., 3 and L̂int contains evanescent opera-
tors. Insertions of L̄int into factorizable graphs will only generate η̄µµ = 4. Equivalently, in
Eq. (4.1), L̄int will contribute to Bµν only terms which are proportional to η̄µν . Therefore
L̄int does not give rise to 1/ε poles via factorizable graphs. Such factors of ε are now gen-
erated by insertions of evanescent operators through η̂µµ = −2ε. But in a renormalization
scheme where counterterms of physical operators are adjusted to compensate finite effects
of evanescent insertions in addition to divergent parts, the evanescent operators do not
contribute to the anomalous dimensions [37]. The key observation in Ref. [37] which makes
this possible is that these additional pieces, analogous to the −2I1∞({p}) in Eq. (5.9), are
local, since they are proportional to divergent parts. As a result, in such a scheme factor-
izable graphs never contribute to the anomalous dimensions. They also do not contribute
in the evanescence-free scheme where the couplings of the evanescent operators are set to
zero [41]. Finally we note that even though the argument is most evident when one uses
L̄int, it also holds in a scheme where operators are defined in d dimensions, since that would
only shift the coefficients of the evanescent operators.

An explicit example calculation is the double-penguin graph in Ref. [40], shown in
Fig. 7, where the ε pieces arise from the trace of Dirac matrices in the two-loop diagram.
Ref. [40] showed that this graph does not contribute to the anomalous dimension using an
additional finite subtraction beyond MS.

6The kinetic term must be kept in d dimensions to regulate the loop integrals. All other terms can be
included in Lint. Bµν only receives contributions from nonrenormalizable interactions and is part of Lint.
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Figure 7. . The double penguin graph due to the insertion of (ψγµψ)(ψγµψ).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Skeleton graphs for three-loop corrections to the action. There can be an arbitrary
number of ηη vertex insertions, as in Fig. 1.

(a) (b)

Figure 9. . (a) L loop non-factorizable graph with an L + 1 field vertex. (b) L loop factorizable
graph with a 2L-field vertex.

The graph factorization argument extends to arbitrary loop order. The skeleton three-
loop graphs are shown in Fig. 8. The graphs (e,f,g,h) in Fig. 8 do not contribute to the
three-loop anomalous dimensions. The three-loop graphs in Fig. 8 have vertices with up to
6 fields. If one is only interested in the RGEs, which depend on the non-factorizable graphs,
then only vertices with up to 4 fields are needed. This makes the RGE computation much
simpler than that of the full counterterm Lagrangian, which requires an expansion up to 6
fields. At four loops, the RGE requires vertices up to 5 fields, whereas the full counterterm
calclulation requires an expansion up to 8 fields. In general at L loops, one needs vertices
with up to L + 1 fields for the RGE from graphs such as Fig. 9(a), and vertices up to 2L

fields for the full L loop correction from graphs such as Fig. 9(b).
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6 Anomalous Dimensions and Consistency Conditions

In this section, we generalize ’t Hooft’s computation of anomalous dimensions and consis-
tency conditions [30] to an EFT, where the renormalization structure is non-linear. Consider
a general EFT Lagrangian in d = 4−2ε dimensions. Scalar and gauge fields have dimension
1 − ε, and fermion fields have dimension 3/2 − ε. An operator Oi with a total number of
fields Fi has fractional dimension −fiε, where fi ≡ Fi − 2. The Lagrangian is

L =
∑
i

C
(b)
i O

(b)
i =

∑
i

µfiεCiOi + c.t. , (6.1)

where C(b)
i are the bare couplings, O(b)

i are the bare operators, Ci are the renormalized
couplings, and µfiε are included to get the correct dimensions for L in d dimensions. The
coefficients Ci include couplings in the dimension-four part of the Lagrangian, as well as
higher dimension coefficients in the EFT. In scalar theory, for example, the interaction term
is −µ2ελφ4/4!. Similarly, gauge and Yukawa couplings, which are cubic interactions, come
with a factor µε. The factor fi counts the factors of 4π associated with an operator in naive
dimensional analysis [31–33]. If an L loop graph with insertions of Oj produces an operator
Oi, then there is a topological identity [32, (12)] which implies the naive dimensional analysis
counting given in Eq. (2.1),

fi + 2L =
∑
j

fj , (6.2)

where fi + 2 are the number of external fields in Oi.
In the MS scheme, counterterms are poles in ε. Since the EFT is non-linear the general

renormalization structure is

C
(b)
i µ−fiε = Ci +

∞∑
k=1

a
(k)
i ({Cj})

εk
, (6.3)

where a(k)
i ({Cj}) is a product of coefficients Cj1 . . . Cjn , and a given Cj can appear multiple

times. The usual gauge, Yukawa, and scalar self-couplings are included in the {Cj}. The
counterterms satisfy EFT power counting. The counterterms a(k)

i have a loop expansion,

a
(k)
i =

∑
L

a
(k,L)
i . (6.4)

We define the loop operator L by

L a
(k)
i ≡

∑
L

La
(k,L)
i . (6.5)

Each vertex Cj comes with a factor µfjε. The identity Eq. (6.2) shows that the product of
the µfjε factors at the individual vertices gives the µfiε factor needed for the operator Oi,
as well as an additional µ2Lε factor. Each loop integral has fractional dimension −2ε, so
the L-loop integral gives (p2)−Lε, where p is a generic mass or external momentum. The
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two contributions combine into the dimensionless ratio (µ2/p2)Lε, which gives logarithms
of µ2/p2 when expanded in ε.

Differentiating Eq. (6.3) w.r.t. logµ gives

−fiε

[
Ci +

∞∑
k=1

a
(k)
i ({Cj})

εk

]
= Ċi +

∑
j

∞∑
k=1

1

εk
∂a

(k)
i

∂Cj
Ċj (6.6)

where Ċj ≡ µdCj/dµ. The order ε terms match on the two sides if

Ċi = −εfiCi + γi , (6.7)

where γi is independent of ε. Matching the order 1 term gives

0 = γi + fia
(1)
i −

∑
j

∂a
(1)
i

∂Cj
fjCj , (6.8)

and matching the order 1/εs term gives

0 = fia
(s+1)
i −

∑
j

∂a
(s+1)
i

∂Cj
fjCj +

∑
j

∂a
(s)
i

∂Cj
γj , s ≥ 1 . (6.9)

The identity Eq. (6.2) implies ai satisfies

a
(k)
i ({λfjCj}) = λfi+2La

(k)
i ({Cj}) , (6.10)

where λ = µε is a scale factor. Differentiating Eq. (6.10) w.r.t. λ and setting λ = 1 gives
Euler’s theorem on homogeneous functions

∑
j

fjCj
∂a

(k)
i

∂Cj
= (fi + 2L)a

(k)
i . (6.11)

Substituting this relation for k = 1 into Eq. (6.8) gives

γi = 2La
(1)
i . (6.12)

Substitution into Eq. (6.9) gives

2La
(k+1)
i =

∑
j

γj
∂a

(k)
i

∂Cj
= µ

d

dµ
a

(k)
i , (6.13)

which is a consistency relation for the higher order poles. The 1/ε2 pole is given in terms
of the 1/ε poles by

2La
(2)
i =

∑
j

γj
∂a

(1)
i

∂Cj
= 2

∑
j

(
La

(1)
j

) ∂a(1)
i

∂Cj
. (6.14)
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Including a superscript L for the loop order as in Eq. (6.5), one obtains the two-loop order
results for Eq. (6.12) and Eq. (6.14)

γ
(L=1)
i = 2a

(1,L=1)
i , γ

(L=2)
i = 4a

(1,L=2)
i ,

a
(2,L=1)
i = 0 , a

(2,L=2)
i =

1

2

∑
j

a
(1,L=1)
j

∂a
(1,L=1)
i

∂Cj
, (6.15)

since the 1/ε2 poles begin at two-loop order.
Equation (6.12) gives the anomalous dimension in terms of the 1/ε pole, and Eq. (6.13)

is the generalization of ’t Hooft’s consistency condition for higher order poles. The anoma-
lous dimension γi ({Cj}) can be non-linear — in SMEFT, the dimension-eight evolution has
terms proportional to the product of dimension-six coefficients, etc. The usual anomalous
dimension γ(g) in QCD also can be viewed as non-linear in g. The usual forms of ’t Hooft’s
anomalous dimension and consistency equations in QCD involve terms such as g ∂a(k)/∂g

which is simply 2La(k) since the L loop contribution is order g2L. Writing the results as
Eq. (6.12) and Eq. (6.13) gives a simple form which generalizes to an arbitrary EFT with
non-linear counterterms and RGE.

Consistency relations for the field anomalous dimension can be derived similarly. In
paper II, we will see an example of an EFT with an infinite field anomalous dimension.7

To allow for this possibility, we take γφ to have an expansion in powers of 1/ε,

γφ = γ
(0)
φ +

∞∑
k=1

1

εk
γ

(k)
φ , (6.16)

and Zφ to have the expansion

Zφ = 1 +

∞∑
k=1

z
(k)
φ ({Cj})

εk
. (6.17)

Solving the equation Żφ = 2Zφγφ gives

−Lz(1)
φ = γ

(0)
φ

−2Lz
(k+1)
φ +

∂z
(k)
φ

∂Cj
γj − 2γ

(0)
φ z

(k)
φ = 2

[
γ

(k)
φ +

k−1≥1∑
r=1

γ
(r)
φ z

(k−r)
φ

]
, k ≥ 1 (6.18)

The first equation in Eq. (6.18) determines the finite part of the field anomalous dimension
γ

(0)
φ . Requiring the l.h.s. of the second equation to vanish is the consistency condition for

the field anomalous dimension. The failure of the consistency relations is given by the r.h.s.
and comes from the divergent contributions to γφ.

In the presence of evanescent operators, it is convenient to pick the subtraction scheme
of Ref. [37], where insertions of evanescent operators do not contribute to S-matrix elements.
This scheme involves subtracting additional finite contributions in Eq. (6.3). This changes
the formulæ for the renormalization group equations and consistency conditions [37]. The
generalization of these formulæ to a general EFT are presented in Sec. A.

7Some recent examples (which include the SM) are discussed in refs. [42–44]. In the examples in paper
II, the coupling constant anomalous dimensions are all finite.
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7 The O(n) Model

A detailed discussion of the application of our results to EFTs will be given in paper II,
where we show how the geometric method greatly simplifies the computation. Here we give
a simple application of our results to the (renormalizable) O(n) model, which illustrates
the use of the formulæ. The Lagrangian is

L =
1

2
(∂µφ) · (∂µφ)− Λ− 1

2
m2(φ · φ)− 1

4
λ(φ · φ)2 , (7.1)

where (φ·φ) = (φaφa), a = 1, . . . , n. The two-loop anomalous dimensions for this theory can
be obtained from the general two-loop anomalous dimensions computed in Ref. [35, 45, 46],
which provides a check on our method. The shift φ → φ + η leads to Lagrangian terms
quadratic, cubic, and quartic in η, respectively, given by

Lη2 =
1

2
(∂µη) · (∂µη)− 1

2
m2(η · η)− λ

2

[
(φ · φ)(η · η) + 2(φ · η)2

]
, (7.2)

Lη3 = −λ(φ · η)(η · η) , Lη4 = −1

4
λ(η · η)2 . (7.3)

Comparing with Eq. (2.7) and Eq. (2.11) gives the quadratic coefficients

Nµ
ab = 0, Xab = −m2δab − λ [δab(φ · φ) + 2φaφb] , (7.4)

the cubic coefficients

Aabc = −1

3
λ [δabφc + δbcφa + δcaφb] , Aµa|bc = 0 , (7.5)

and the quartic coefficients

Babcd = − 1

12
λ [δabδcd + δacδbd + δadδbc] , Bµ

a|bcd = 0, Bµν
ab|cd = 0 . (7.6)

Yµν = 0 since Nµ = 0. The one-loop counterterm from Eq. (2.9) is

L(1)
c.t. =

1

16π2ε

[
−1

4
nm4 − 1

2
(n+ 2)λm2(φ · φ)− 1

4
(n+ 8)λ2(φ · φ)2

]
, (7.7)

and the two-loop counterterm from Eq. (4.1) and Eq. (4.3) is

L(2)
c.t. =

1

(16π2)2

{
−n(n+ 2)λm4

4ε2
− (n+ 2)λ2

4ε
(∂φ · ∂φ)−

[
(n+ 5)

ε2
− 3

ε

]
(n+ 2)λ2m2

2
(φ · φ)

−
[

(n+ 8)2

ε2
− 2(5n+ 22)

ε

]
1

4
λ3(φ · φ)2

}
. (7.8)

From these counterterms, we get the renormalization group equations and anomalous di-
mensions up to two-loop order

µ
d

dµ
Λ = γΛ , µ

d

dµ
logZφ = 2γφ ,
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µ
d

dµ
m2 = γm2 , µ

d

dµ
λ = γλ , (7.9)

with

γΛ =
λ

16π2

1

2
nm4 ,

γφ =
λ2

(16π2)2
(n+ 2) ,

γm2 =
λ

16π2
2(n+ 2)m2 − λ2

(16π2)2
10(n+ 2)m2 ,

γλ =
λ2

16π2
2(n+ 8)− λ3

(16π2)2
12(3n+ 14) . (7.10)

The anomalous dimensions given above only depend on the 1/ε counterterms. The 1/ε2

two-loop counterterms are related to the 1/ε one-loop counterterms by consistency condi-
tions [30], which are satisfied. The anomalous dimensions agree with known results [35, 45,
46], which can be conveniently cross-checked with RGBeta [47].

8 Conclusions

We have presented the two-loop counterterms for scalar loops in a general EFT with inter-
actions up to two derivatives in Eq. (4.1) and Eq. (4.3). These counterterms formulae give
the two-loop renormalization group equations. We found that factorizable graphs do not
contribute to the RGE (with a possible finite subtraction in some cases). This is a general
observation which extends to arbitrary loop order. The results were applied to the renor-
malizable O(n) model to obtain the two-loop RGE and to check the consistency conditions.
We find agreement with the well-known results in the literature.

The power of the formulæ derived here is their application to effective field theories,
which include higher dimension operators. We present a geometric formalism in paper II,
which allows for an efficient use of our results. We apply them to compute the two-loop
renormalization for the O(n) EFT, the scalar sector of SMEFT to dimension six, and chiral
perturbation theory to order p6.

The results presented here are for scalar loops. ’t Hooft showed in ref. [1] that the
scalar results could be used to also obtain the results for fermions and gauge bosons. The
geometric method has been extended to fermion and gauge loops at one-loop order [9–13].
The same procedure can be used at two-loops, but the algebra is more involved.
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A Extraction of UV divergences

We describe how we obtain the UV divergences of nonfactorizing graphs, which, after
subtraction of subdivergences, leads to the results in Table 5. The method, introduced in
[48], rewrites the propagator using the identity

1

(k + p)2 −M2
=

1

k2 −m2
+
M2 − p2 − 2pk −m2

k2 −m2

1

(k + p)2 −M2
(A.1)

where M is a mass in the theory, k a linear combination of loop momenta and p a linear
combination of external momenta. m is an auxiliary mass introduced in intermediary steps
of the calculation. Eq. (A.1) is useful because the first term on the right-hand side is simpler
and the second term has reduced degree of divergence. The decomposition Eq. (A.1) allows
one to express a two-loop integral in terms of simpler integrals which isolate the divergent
parts, and more complicated expressions which are UV finite.

We will refer to denominators of the form k2−m2, which contain the auxiliary mass m
and no external momenta as tadpole denominators. Eq. (A.1) converts denominators into
tadpole denominators plus terms which fall off faster for large k.

At two loops, Feynman integrals can generally have double poles which are local (i.e.
polynomial in the external scales), and single poles which can contain non-local functions of
the external scales, such as log(p2/µ2). In [48] and [49, 50], where a review of the method
is given, the UV divergent parts are expressed purely in terms of tadpole integrals with
universal mass

T (n1, n2, n3) = µ4ε

∫
k1,k2

1

(k2
1 −m2)n1(k2

2 −m2)n2((k1 + k2)2 −m2)n3
(A.2)

which generate non-local terms of the form log(m2/µ2). In contrast to [48] and [49], we
use a modified version of the method, which evaluates additionally terms non-local in the
external scales (such as log(p2/µ2)) explicitly, and checks the cancellation of these terms
against one-loop diagrams with counterterm insertions.

After discussing some fundamentals in Sec. A.1, we apply our method to an explicit
example in Sec. A.2 before describing the general algorithm in Sec. A.3.

A.1 Fundamentals

Let k1 and k2 be loop momenta and pk and Mk be external momenta and internal particle
masses. The auxiliary mass introduced by the algorithm is m. A generic two-loop tensor
integral from Fig. 2(a) has the form

I = µ4ε

∫
k1,k2

kµ11 ...k
µr1
1 kν12 ...k

νr2
2[ b1∏

i=1

(
(k1 + p1,i)2 −M2

1,i

) ][ b2∏
i=1

(
(k2 + p2,i)2 −M2

2,i

) ][ b3∏
i=1

(
(k3 + p3,i)2 −M2

3,i

) ]
(A.3)

with k3 = k1 +k2. There can be multiple propagators because the internal lines in Fig. 2(a)
can have arbitrary insertions of quadratic vertices which can insert momentum. Let Ci for
i ∈ {1, 2, 3} denote the chain of propagators which only depends on the loop momentum ki
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corresponding to the three internal lines in Fig. 2(a). I is UV finite if all subgraphs have
negative superficial degree of divergence.8 Let D1 be the degree of divergence for k1 →∞
with k2 fixed, D2 for k2 → ∞ with k1 fixed, D3 for k1 → ∞ with k1 + k2 fixed, and DG

for all ki → ∞ simultaneously. D1, D2, D3 are the degrees of divergence associated with
the three subgraphs, and DG is the overall degree of divergence. One therefore finds the
following criterion for UV finiteness: I is UV finite if D1, D2, D3 and DG are all negative.
The values of Di are9

D1 = 4 + r1 − 2b1 − 2b3

D2 = 4 + r2 − 2b2 − 2b3

D3 = 4 + r1 + r2 − 2b1 − 2b2

DG = 8 + r1 + r2 − 2b1 − 2b2 − 2b3 .

(A.4)

Following [49] we can think of Eq. (A.1) as the action of an identity tadpole expansion
operator

1i = Si + Fi (A.5)

acting on a propagator of chain Ci with Si and Fi producing the first and second terms on
the l.h.s. of Eq. (A.1) respectively.

When acting recursively with tadpole expansion operators, it is possible that the recur-
sion does not converge to just tadpole integrals and UV finite parts. We discuss an example
in Sec. A.2. We show in Sec. A.2 that this can be traced to stagnation in one of the degrees
of divergence during repeated application of Fi. At this point we apply the disentangle
identities

1

(k1 + q2)2 −M2
=

1

k2
1 −m2

+
M2 − q2

2 − 2k1q2 −m2

k2
1 −m2

1

(k1 + q2)2 −M2
(A.6)

1

(q1 + k2)2 −M2
=

1

k2
2 −m2

+
M2 − q2

1 − 2q1k2 −m2

k2
2 −m2

1

(q1 + k2)2 −M2
(A.7)

where q1 is k1 plus a linear combination of external momenta, and similarly for q2. These
identities reduce the number of k1 + k2 propagators in the UV divergent part.

Under application of these decompositions, the degrees of divergence (A.4) generally
change. For example, applying Eq. (A.1) with q = k1, the first term on the r.h.s. has
unchanged degree of divergences compared to the l.h.s., but in the second term D1 decreases
by 1, D2 remains unchanged, D3 decreases by 1 and DG decreases by one. We write
this behaviour as 102030G0 + 1−203−G−. In table 6, we summarize the behaviour of the
decompositions Eq. (A.1), Eq. (A.6), Eq. (A.7) used in the reduction algorithm. Note that
in Eq. (A.6) and Eq. (A.7), the first term on the r.h.s. has no propagator which depends on
k1 + k2. Therefore these terms lead towards factorized integrals. Note also that Eq. (A.6)
and Eq. (A.7) increase some degrees of divergence. An important trick in the construction
of the algorithm is to apply Eq. (A.6) and Eq. (A.7) only in situations where the maximum

8The graph itself is also treated as a subgraph.
9The ri terms arise from the degree of divergence of the numerator of Eq. (A.3). If the numerator is more

complicated, one has to determine its behaviour in the various scaling limits. For example a numerator
k1 + k2 contributes 1 to D1, D2, and DG, but 0 to D3.
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decomposition behaviour

Eq. (A.1) with k = k1 102030G0 + 1−203−G−

Eq. (A.1) with k = k2 102030G0 + 102−3−G−

Eq. (A.1) with k = k1 + k2 102030G0 + 1−2−30G−

Eq. (A.6) 102++3−−G0 + 1−2++30G0

Eq. (A.7) 1++203−−G0 + 1++2−30G0

Table 6. Behavior of degrees of divergence Di under application of the decomposition formulæ in
the worst case scenario.

degree of divergence does not change under Eq. (A.6) and Eq. (A.7). In other words, before
applying Eq. (A.6) and Eq. (A.7) we make sure that the Di which increases is sufficiently
low so the maximum degree of divergence does not change. The algorithm discussed in
Sec. A.3 is constructed in a way such that this is always the case.

A.2 An example

Before giving the general recipe we provide an example. Consider the integrand

I0 =
1[

k2
1 −M2

1

]
[k2

2 −M2
2

]
[(k1 + k2)2 −M2

3

] . (A.8)

We would like to extract the UV divergent part of the integral I. The result is

I =µ4εe2γε

∫
dDk1

πD/2
dDk2

πD/2
I0 = −M

2
1 +M2

2 +M2
3

2 ε2

+
1

ε

[
−3

2

(
M2

1 +M2
2 +M2

3

)
+ M2

1 log
M2

1

µ2
+M2

2 log
M2

2

µ2
+M2

3 log
M2

3

µ2

]
+O(ε0).

(A.9)
In our algorithm, the non-local terms logM2

i /µ
2 come from factorized integrals generated

by the algorithm. They cannot come from the tadpole integrals, since tadpole integrals
never produce logs of external scales, only logarithms of the auxiliary mass.

I has D1 = 0, D2 = 0, D3 = 0 and DG = 2. We now apply the tadpole decomposition
Eq. (A.1) to each chain, one by one,

I0 = 111213I = (S1 + F1)(S2 + F2)(S3 + F3)I0 (A.10)

producing among other summands a term

F1S2S3I0 =
M2

1 −m2[
k2

1 −m2
][
k2

1 −M2
1

]
[k2

2 −m2
]
[(k1 + k2)2 −m2

] (A.11)

which has D1 = −2, D2 = 0, D3 = −2, DG = 0. Observe how D2 did not change under
application of F1. Indeed, continued application of (S1+F1) yields a simple tadpole integral
from S1 but from F1 a term

F1F1S2S3I0 =
(M2

1 −m2)2[
k2

1 −m2
]2[
k2

1 −M2
1

]
[k2

2 −m2
]
[(k1 + k2)2 −m2

] (A.12)
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which has D1 = −4, D2 = 0, D3 = −4 and DG = −2. While D1, D3 and DG decrease
under the action of F1, D2 remains zero. Continued application of (S1 +F1) does not help,
and neither does (S2 +F2) or (S3 +F3). The reason is that the k2 and k1 +k2 denominators
are already in tadpole form, so the identity Eq. (A.5) acts trivially, and leaves the integrand
unchanged.

However, because D1 is low enough, we can now afford to apply the disentangle identity
Eq. (A.7) even though it increases D1 by two units. After application of Eq. (A.7) on
Eq. (A.12), D1 is still negative. The second term is UV finite, and the first term is

(M2
1 −m2)2[

k2
1 −m2

]2[
k2

1 −M2
1

][
k2

2 −m2
]2 , (A.13)

which is a product of two one-loop integrals. It evaluates to

1

ε

[
m2 +M2

1

(
−1 + log

M2
1

µ2
− log

m2

µ2

)]
+O(ε0), (A.14)

where the log involving M1 matches the one in Eq. (A.9). The other non-local M2 and M3

pieces are similarly generated by disentangle identities in terms where D1 or D3 stagnates.
This is a general feature of our method: non-local terms in external scales are generated
by general (i.e. non-tadpole type) factorized integrals. In the end, the true divergence is
recovered and all dependencies on the auxiliary mass cancel.

A.3 The recursion step

Our algorithm consists of recursive application of a reduction step, which we define in
the following. Each reduction step takes as input a two-loop integral I and outputs a
sum of integrals Ji resulting from the application of a certain decomposition on I. The
recursion proceeds until we end up with tadpole integrals, factorized integrals and UV
finite remainders. The goal is to pick the decomposition so that each resulting Ji satisfies
at least one of the criteria:

(i) Ji is more tadpole-like than I (it has less denominators containing external scales)

(ii) Ji is more disentangled than I (it has less k1 + k2 denominators)

(iii) Ji is more finite than I (it has reduced maximum degree of divergence)

whilst not becoming worse than I in any of the other criteria. This can be achieved by the
following recipe:

Case 1 If max {D1, D2, D3, DG} = D1:

Case 1.1 If there is a non-tadpole k1 or a non-tadpole k1 + k2

denominator, apply Eq. (A.1) to it.
Case 1.2 Else if D2 < D1−2 apply Eq. (A.6) on ((k1 +k2)2−m2)−1

Case 1.3 Else apply Eq. (A.1) on a non-tadpole k2 denominator.

Case 2 If max {D1, D2, D3, DG} = D2:
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Case 2.1 If there is a non-tadpole k2 or a non-tadpole k3 denomi-
nator, apply Eq. (A.1) to it.
Case 2.2 Else if D1 < D2−2 apply eq (A.7) on ((k1 +k2)2−m2)−1.
Case 2.3 Else apply Eq. (A.1) on a non-tadpole k1 denominator.

Case 3 If max {D1, D2, D3, DG} = D3:

Case 3.1 If there is a non-tadpole k1 or a non-tadpole k2 denomi-
nator, apply Eq. (A.1) to it.
Case 3.2 If r1 ≤ r2 shift k1 → −k1 − k2 and go to Case 2,
Case 3.3 else shift k2 → −k2 − k1 and go to Case 1

Case 4 If max {D1, D2, D3, DG} = DG:

Apply Eq. (A.1) on any non-tadpole k1, k2 or k3 denominator.

A few remarks:

1. We assumed that all bi > 0 because if any of the bi is non-positive we have a factorized
integral.

2. In Case 1.2, we assumed the existence of a k1 +k2 tadpole denominator. If this is not
the case (and the conditions for 1.1 are not satisfied), there is no k1 +k2 denominator
at all (neither tadpole type nor non-tadpole type), so we have a factorized integral,
so nothing remains to be done. We have also assumed the presence of a non-tadpole
k2 denominator in Case 1.3 if there is neither a non-tadpole k1 nor a non-tadpole
k1 + k2 denominator. If this is not the case, we have a tadpole integral. The same
reasoning applies to the assumptions made in Case 2.2 and Case 2.3.

3. In Case 4 we assumed the existence of at least one non-tadpole k1, k2 or k1 + k2

denominator. If neither of these is present, the integral in question is a tadpole
integral.

4. In Case 1.3 applying Eq. (A.1) on a non-tadpole k2 denominator results in a reduction
of D2 while the maximum degree of divergence is D1. Therefore the terms generated
in this case are not better than the original integral in terms of the conditions (i) –
(iii). However, since application of Eq. (A.1) on a non-tadpole k2 denominator does
not introduce any new k1 + k2 denominators, they are also not worse in (i) – (iii).
Any term fulfilling the criteria for Case 1.3 will continue to do so until the action of
Case 1.3 has lowered D2 enough, so that Case 1.2 applies. Now Case 1.2 makes
each term more disentangled, meaning reducing the amount k1 + k2 denominators.
Thus, in this case, it takes a finite number of steps to improve in (i) – (iii). The same
reasoning applies to Case 2.3.

In summary, through application of the reduction step we have rewritten a general
two-loop integral as a series of terms. Each such term is no worse in criteria (i) – (iii)
than the original integral. Each term is also better in at least one of those aspects, with
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the exception of the case discussed in remark 4 above, where improvement in at least one
aspect takes not one, but a finite number of steps. After a finite number of recursive steps,
we will thus end up with tadpoles, factorized integrals and UV finite remainders which can
be discarded. By construction of the reduction step, the convergence is guaranteed.

In our calculation, we use qgraf [51] to generate diagrams and Mathematica to ma-
nipulate expressions. The library Package-X [52, 53] is employed for evaluation of general
one-loop integrals; for the two-loop tadpole integrals we implement our own Mathematica
routines following [48]. In the evaluation of the Green functions AµAνXY and AµAνY Y ,
we use FORM [54, 55] to deal with the large number of terms generated before the cancellation
of subdivergences.

B Evanescent Operators

In this appendix, we extend the results of Sec. 6 to include evanescent operators. We
will use the scheme of ref. [37], in which evanescent operator insertions do not contribute
to physical S-matrix elements. The scheme requires making additional finite subtractions
beyond the usual subtraction of 1/ε poles, which changes the anomalous dimensions and
consistency conditions.

Divide the operators Oi in the Lagrangian into physical operators Pa and evanescent
operators Eα,

L = C(P )
a Pa + C(E)

α Eα . (B.1)

The physical operators are linearly independent in d = 4 dimensions, and the evanescent
operators vanish in d = 4. At tree-level, the S-matrix is given by computing graphs with
insertions of Pa and Eα. Any graph with one or more Eα insertions vanishes in d = 4, so
the S-matrix only depends on C

(P )
a , and we can drop C

(E)
α . The amplitude from n-loop

graphs (including the counterterm insertions) is schematically

(P + E)

[
1

εn
+ . . .+

1

ε
+ f

]∏
C(P )
a + (εP + E)

[
1

εn
+ . . .+

1

ε
+ f

]∏
C(P )
a

∏
α≥1

C(E)
α .

(B.2)

where α ≥ 1 means the term has at least one evanescent coefficient. The first term is the
contribution of graphs with only physical operator insertions to a scattering amplitude. It
can have singular terms in ε up to order 1/εn, and a finite piece denoted as f . The graphs can
generate physical amplitudes which are non-zero in d = 4 as well as evanescent amplitudes.
The second term is the contribution of graphs with at least one evanescent operator insertion
to scattering amplitudes, which can again contribute to physical or evanescent amplitudes.
The 1/εk terms are local, but the finite part f can be non-local. The key observation is
that if an insertion of E generates P , it must vanish in d = 4 and so is proportional to
ε, as shown explicitly in the second term. Multiple insertions of evanescent operators do
not necessarily have higher powers of ε. For example, if µ̂ is a fractional dimension index,
gµ̂µ̂ = −2ε and gµ̂ν̂gµ̂ν̂ = −2ε is still order ε.
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In the scheme of ref. [37], the counterterm is given by subtracting all the 1/ε poles
(which are local), including the εP piece in the second term, which gives a finite subtraction
when multiplied by the 1/ε divergence. The finite amplitude after adding the counterterm
is

(P + E) f
∏

C(P )
a + (εP + E) f

∏
C(P )
a

∏
j≥1

C(E)
α . (B.3)

In d = 4, the second term vanishes, so the S-matrix is again given only by C(P )
a , and we can

drop C(E)
α . This is the main advantage of the scheme of ref. [37] — evanescent coefficients

do not contribute to physical scattering amplitudes in d = 4.
The extra finite subtraction in terms involving C(E)

α changes the formulæ for the anoma-
lous dimensions and consistency conditions given in Sec. 6. Eq. (6.3) is replaced by

C(b)
a µ−faε = Ca + a(0)

a ({Cj}) +

∞∑
k=1

a
(k)
a ({Cj})

εk
,

C(b)
α µ−fαε = Cα +

∞∑
k=1

a
(k)
α ({Cj})

εk
, (B.4)

where a(0)
a is the additional finite subtraction which is only non-zero for physical operators.

The coefficients a(k)
α ({Cj}) must contain at least one evanescent coefficient. Taking the

derivative µ d
dµ of Eq. (6.3) yields

−faε

Ca + a(0)
a +

∑
k≥1

a
(k)
a

εk

 = Ċa +
∑
j

∂a
(0)
a

∂Cj
Ċj +

∑
j

∑
k≥1

1

εk
∂a

(k)
a

∂Cj
Ċj

−fαε

Cα +
∑
k≥1

a
(k)
α

εk

 = Ċα +
∑
j

∑
k≥1

1

εk
∂a

(k)
α

∂Cj
Ċj (B.5)

where the sum on j is over physical and evanescent indices, j = {b, β}. Let Ċi = −fiεCi +

σiε+ γi where σi and γi do not depend on ε. Let

M
(k)
ij =

∂a
(k)
i

∂Cj
M (k) =

M (k)
PP M

(k)
PE

M
(k)
EP M

(k)
EE

 (B.6)

where the block diagonal form is in the space of physical and evanescent indices. For k = 0,

M (0) =

M (0)
PP M

(0)
PE

0 0

 , M = 1 +M (0), (B.7)

since a(0)
i is only non-zero if i is a physical index. The matrix M is useful in deriving the

renormalization group equations. Its inverse is

M−1 =

(1 +M
(0)
PP )−1 −(1 +M

(0)
PP )−1M

(0)
PE

0 1

 (B.8)
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with vanishing EP block. Using the loop identity Eq. (2.1), the order ε pieces of Eq. (B.5)
give 2La

(0)
a

0

 = M

σa
σα

 , (B.9)

the order one pieces give 2La
(1)
a

2La
(1)
α

 = M

γa
γα

+M (1)

σa
σα

 , (B.10)

and the 1/εk pieces give2La
(k+1)
a

2La
(k+1)
α

 = M (k)

γa
γα

+M (k+1)

σa
σα

 . (B.11)

The solution of Eq. (B.9) isσa
σα

 = M−1

2La
(0)
a

0

 =

(1 +M
(0)
PP )−1 (2La

(0)
a )

0

 . (B.12)

The evanescent coefficients have Ċ(E)
α = −fαC(E)

α with order ε contribution −fα, but the
order ε term in the physical coefficient is modified, Ċ(P )

a = (−faC(P )
a + σa)ε with σa given

by Eq. (B.12).
The anomalous dimensions are obtained from Eq. (B.10),γa

γα

 = M−1

2La
(1)
a

2La
(1)
α

−M−1M (1)M−1

2La
(0)
a

0

 (B.13)

using Eq. (B.12), and the consistency conditions from Eq. (B.11) are

2La
(k+1)
a

2La
(k+1)
α

 = M (k)

γa
γα

+M (k+1)

(1 +M
(0)
PP )−1 (2La

(0)
a )

0

 . (B.14)

Using Eq. (B.8), the anomalous dimensions Eq. (B.13) becomeγa
γα

 =

(1 +M
(0)
PP )−1 −(1 +M

(0)
PP )−1M

(0)
PE

0 1


2La

(1)
a

2La
(1)
α

 −
M (1)

PP (1 +M
(0)
PP )−1(2La

(0)
a )

M
(1)
EP (1 +M

(0)
PP )−1(2La

(0)
a )


(B.15)

which is far more complicated than Eq. (6.12). The two-loop version of Eq. (B.15) was
derived in ref. [56]. Eq. (B.15) reproduces the two-loop anomalous dimensions for the weak
interactions given in ref. [37]. In deriving the RGE for this case, note that the physical
couplings involve not only the weak interaction coefficients but also the QCD gauge coupling
g.
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