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ABSTRACT
We consider the problem of estimating the lifetime distributions of
survival times subject to a general censoring scheme called “middle
censoring”. The lifetimes are assumed to follow a parametric family of
distributions, such as theGammaorWeibull distributions, and is applied
to caseswhen the lifetimes comewith covariates affecting them. For any
individual in the sample, there is an independent, random, censoring
interval. Wewill observe the actual lifetime if the lifetime falls outside of
this censoring interval, otherwise we only observe the interval of cen-
soring. This censoring mechanism, which includes both right- and left-
censoring, hasbeencalled “middle censoring”(see Jammalamadakaand
Mangalam, 2003). Maximum-likelihood estimation of the parameters as
well as their large-sample properties are studied under this censoring
scheme, including the case when covariates are available. We conclude
with an application to a dataset from Environmental Economics dealing
with ContingentValuation of natural resources.

1. Introduction

Our aim in this paper is to estimate the lifetime distribution or its complement, the survival
function, for data that is subject to middle censoring. Middle censoring occurs when a data
point becomes unobservable if it falls inside a random interval. This is a generalization of left-
and right-censored data and is quite distinct from the case of doubly censored data. We con-
sider two families of distributions that are common tomany applications, namely the Gamma
distribution and the Weibull distribution.

Middle censoring was first introduced by Jammalamadaka and Mangalam (2003) for non
parametric estimation of the lifetime distributions, and was studied further in Jammala-
madaka and Iyer (2004). Middle-censored data were analyzed in Iyer et al. (2008) when the
lifetimes are exponentially distributed, whereas Jammalamadaka andMangalam (2009) study
such censoring in the context of circular data. Gamma and Weibull distributions are natural
and the most widely used choices for modeling lifetimes in many applications. Not only does
the consideration of these more general models extend the earlier results for the exponential
distribution in Iyer, Jammalamadaka, and Kundu (2008), but the current work also discusses
how the presence of covariates can be handled nicely in the form of accelerated failure time
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Research supported in part by UGC CAS.
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(AFT) modeling (see Section 3). We derive the maximum-likelihood estimators (MLEs) for
the parameters and showhow the computation of theMLEs can be done via the EMalgorithm.
We then establish their large-sample properties.

Let us denote the “actual” lifetimes of n individuals by t1, . . . , tn, and not all of them are
observable. For each individual there is a random period of time [�i, ri] for which the lifetime
of the ith individual is unobservable. Thus, the actual lifetime is observed if ti /∈ [�i, ri] and
if ti ∈ [�i, ri] then only the interval is observed. Hence, the observed data are given by

(xi, δi) =
{

(ti, 1) i f ti /∈ [�i, ri]
([�i, ri] , 0) otherwise

(1)

Based on observed data of this type, the goal is to estimate the lifetime distribu-
tion function. The lifetimes are assumed to be independent and identically distributed
(i.i.d.) from an unknown distribution function F (·). Additionally, the censoring intervals,
[L1, R1] , . . . , [Ln, Rn], are assumed to be i.i.d. fromanunknownbivariate distribution func-
tion G (·, ·). Finally, the lifetimes and the censoring intervals are taken to be independent of
each other, as is common in survival analysis.

In Section 2, we consider the MLE of the parameters for these two models under middle
censoring, discuss the EM algorithm needed for their computation, and establish asymptotic
properties like consistency and asymptotic normality of these estimators. In Section 3, we
consider estimation under middle-censoring in the presence of covariates employing AFT
modeling. Extensive simulations illustrate the robustness of these MLEs even under heavy
censoring.

2. Maximum-likelihood estimation

The lifetimes are assumed to follow either aGammaor aWeibull distributionwhose respective
probability density functions are given by

f1(t| a, b) = ba

�(a)
ta−1e−bt f or t > 0, (2)

f2(t| a, b) = aba ta−1 exp [−ba ta] f or t > 0, (3)

and (a, b) ∈ � = [0, ∞)2.The unknown censoring distributionG is then assumed to be sup-
ported on [0, ∞)2. The data can be re-arranged so that the first n1 observations are uncen-
sored and the last n2 observations are censored. Then the respective log-likelihood functions
for these two models are given by

l1n(a, b) = an1 ln b− n1 ln (�(a)) + (a − 1)
n1∑
i=1

ln (ti) − b
n1∑
i=1

ti

+
n1+n2∑
i=n1+1

ln [F1 (ri| a, b) − F1 (li| a, b)] . (4)

where F1(t| a, b) is the cumulative distribution function (CDF) of a Gamma (a, b)
distribution.

l2n(a, b) = n1 ln a + n1a ln b+ (a − 1)
n1∑
i=1

ln (ti) − ba
n1∑
i=1

tai
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+
n1+n2∑
i=n1+1

ln
(
exp

[−balai
] − exp

[−barai
])

(5)

Let θ = (a, b) denote the unknown parameter vector. The MLE θ̂ of θ is the value of the
parameter which maximizes the function in (4) and (5), respectively, for the case of the
Gamma and Weibull distributions. We first discuss the large-sample properties of these esti-
mators followed by computational aspects.

2.1. Large-sample properties of theMLEs

Our approach in this section is similar to that of Jammalamadaka and Mangalam (2009).
Recall that the censoringmechanism is independent of the lifetime distributions. Conditional
on the censoring interval (�, r), define the censoring probability by

pi(θ, �, r) = P(T ∈ (�, r)) =
∫ r

�

fi(t|θ )dt, i = 1, 2. (6)

Let θ0 denote the true value of the parameter. For convenience, we will work with the param-
eter b replaced by c−1. Define the functions

g1(θ, �, r) = −a ln(c) − ln (�(a)) +
∫
t /∈(�,r)

ln
(
ta−1e−t/c) f1(t|θ0)dt

+ p1(θ0, �, r) ln
(∫ r

�

ta−1e−t/cdt
)

, (7)

g2(θ, �, r) = ln(a) − a ln(c) +
∫
t /∈(�,r)

ln
(
ta−1e−ta/ca

)
f2(t|θ0)dt

+ p2(θ0, �, r) ln
(∫ r

�

ta−1e−ta/cadt
)

(8)

Define the function

hi(θ ) =
∫

gi(θ, �, r)dG(�, r), i = 1, 2. (9)

Lemma 2.1. For i = 1, 2, we have 1
n l

i
n(θ ) → hi(θ ), Pθ0−a.s.

Proof. For k = 1, 2, . . ., define the sequences of random variables

X1
k = −a ln(c) − ln (�(a)) + δk ln

(
ta−1
k e−tk/c

) + (1 − δk) ln
(∫ rk

�k

ta−1e−t/cdt
)

, (10)

X2
k = ln(a) − a ln(c) + δk ln

(
ta−1
k e−tak /ca

)
+ (1 − δk) ln

(∫ rk

�k

ta−1e−ta/cadt
)

. (11)

The above two sequences are i.i.d. withmean hi(θ ) i = 1, 2, respectively, under Pθ0 . The result
thus follows from the law of large numbers.

The following lemma is a restatement of Lemma 3.3 in Jammalamadaka and Mangalam
(2009). �
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Lemma 2.2. If � and r are two distinct arbitrary points in (0, ∞), then gi(θ, �, r) ≤ gi(θ0, �, r)
i = 1, 2, for all θ ∈ � with equality holding only when θ = θ0.

Theorem 2.3. If the identifiability condition

p(θ0) = Pθ0 (T ∈ (L,R)) < 1,

holds, then θ̂ → θ0, Pθ0−a.s.

Proof. From Lemma 2.2, it follows that hi(θ ) ≤ hi(θ0) for all θ ∈ � with equality holding
only when θ = θ0.
Fix ε > 0 sufficiently small such that ε < c0 and restrict the range of c to (ε, ∞). By integrat-
ing over the full range of the second integrals in (7) and 8), we obtain

g1(θ, �, r) ≤ (−a ln(c) − ln (�(a)))(1 − p1(θ0, �, r)) + u(θ, �, r),
g2(θ, �, r) ≤ (ln(a) − a ln(c))(1 − p2(θ0, �, r)) + v(θ, �, r),

where u, v are the first integrals on the right in (7) and (8), respectively. Under the identifia-
bility condition, pi(θ0, �, r) < 1 on a set of positive G measure. Hence, gi(θ, �, r) and hence
hi(θ ) → ∞ as |θ | → ∞ in [0, ∞) × [ε, ∞), for i = 1, 2. Let �i

0 be the set of Pθ0 measure
1 where 1

n l
i
n(θ ) → hi(θ ), i = 1, 2. The argument below holds for both i = 1, 2 and hence we

suppress the index i. Fix anyω ∈ �0. If θ̂n � θ0, then there is a subsequence nk throughwhich
θ̂n → θ1 = (a1, b1), where (a1, b1) ∈ [0, ∞] × [ε, ∞].

If |θ1| < ∞, then from Lemma 2.1, 1
nk
lnk (θ̂nk ) → h(θ1). However, 1

nk
lnk (θ̂nk ) ≥

1
nk
lnk (θ0) → h(θ0) leading to the conclusion that h(θ1) ≥ h(θ0), thus contradicting

Lemma 2.2.
If |θ1| = ∞, then 1

nk
lnk (θ̂nk ) = limθ→θ1 h(θ ) = −∞. Again, 1

nk
lnk (θ̂nk ) ≥ 1

nk
lnk (θ0) →

h(θ0) leading to a contradiction. �

Theorem 2.4. Let 
1 be the dispersion of (
∂Xi

1
∂a ,

∂Xi
1

∂b ), i = 1, 2, where Xi
1 is defined in (10),

(11). Under the identifiability condition given in Theorem 2.3, we have
√
n(θ̂n − θ0) ⇒

N2(0, 
(θ0)), where 
(θ ) = [h′′(θ )]−1
1(θ )[h′′(θ )]−1.

Proof. The proof is fairly straightforward (see for example the proof of Theorem 3.2 in Jam-
malamadaka and Mangalam, 2009) and so we omit it. �

2.2. Computation of theMLEs

To compute theMLEs, we need tomaximize Equations (4) in the case of the Gamma distribu-
tion and (5) if the underlying distribution is Weibull. We first describe the EM algorithm and
address the issue of convergence of the algorithm for a much wider class of distributions than
the ones considered in this paper. Computation of theMLEwhen the lifetimes are distributed
according to the Weibull distribution using the EM algorithm has been considered in Kundu
and Pradhan (2014).

Suppose that x1, . . . , xn1, (ln1+1, rn1+1), . . . , (ln1+n2, rn1+n2 ) is the observed middle-
censored data from a continuous exponential family distribution with kparameters, namely
they have probability density function

f (x|φ) = h (x) c (φ) exp

⎡
⎣ k∑

j=1

w j (φ) v j (x)

⎤
⎦ , (12)
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where h (x) , v j (x) , c (φ) , andw j (φ) are continuous functions. Note that φ =
(φ1, . . . , φk) is a k-dimensional vector of parameters. This results in the following complete
log-likelihood:

l (φ) = n log [c (φ)] +
n1∑
i=1

⎧⎨
⎩log [h (ti)] +

k∑
j=1

w j (φ) v j (ti)

⎫⎬
⎭

+
n1+n2∑
i=n1+1

⎧⎨
⎩log [h (ti)] +

k∑
j=1

w j (φ) v j (ti)

⎫⎬
⎭ (13)

We wish to solve for the MLE of φ, which will be done by implementing the EM algorithm.
More specifically, wewill find the initial estimates forφ = (φ1, . . . , φk) from the uncensored
data, and the estimates of φ will be updated using the following procedure:

� Step 1: Suppose that φ( j) = (φ1, . . . , φk)( j) is the jth estimate
� Step 2: Compute T∗

i by calculating E
[
Ti|ai < Ti < bi, φ = φ( j)

]
� Step 3: Solve Equation (13) with the T∗

i ’s imputed for the censored observations for its
maximum and set φ( j+1) as the values that maximizes that equation.

� Step 4: Repeat until convergence criteria is met
We are now ready to prove that this algorithm does indeed converge.

Theorem 2.5. Let x1, . . . , xn1,
(
ln1+1, rn1+1

)
, . . . ,

(
ln1+n2, rn1+n2

)
, be the observed middle-

censored data from a continuous exponential family distribution

f (x|φ) = h (x) c (φ) exp

⎡
⎣ k∑

j=1

w j (φ) t j (x)

⎤
⎦

such that h (x) , t j (x) , c (φ) , andw j (φ) are all continuous functions. Then the EMalgorithm
will converge for these data.

Proof. The result follows by an application of the second theorem in Wu (1983) on the EM
algorithm. Note that the complete log-likelihood is proportional to

l (φ) ∝ n log [c (φ)] +
n1∑
i=1

k∑
j=1

w j (φ) t j (xi) +
n1+n2∑
i=n1+1

k∑
j=1

w j (φ) t j (xi)

Also, observe that

E
[
t j (xi) |φ∗, ai < xi < bi

] =
∫ bi

ai
t j (xi) h (xi) c (φ∗) exp

⎡
⎣ k∑

j=1

w j (φ
∗) t j (xi)

⎤
⎦ dxi

is a continuous function. Thus,

E
[
l
(
φ|complete data

) |φ∗, censored data
] ∝ n log [c (φ)] +

n1∑
i=1

k∑
j=1

w j (φ) t j (xi)

+
n1+n2∑
i=n1+1

k∑
j=1

w j (φ)E
[
t j (xi) |φ∗, ai < xi < bi

]
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is a continuous function in both φ and φ∗. Thus by Theorem 2 of Wu (1983), it follows that
the EM algorithm will converge. We now move on to specific examples.

We first consider the case of the Gamma distribution. In this case the log-likelihood can
be written as

l(α, β) = an1 ln b− n1 ln (�(a)) + (a − 1)
n1∑
i=1

ln (ti) − b
n1∑
i=1

ti

+
n1+n2∑
i=n1+1

ln [F (ri| a, b) − F (li| a, b)] (14)

where and F(t| a, b) is the CDF of a Gamma (a, b) distribution.We now need the conditional
expectations for the incomplete data in order to use the EM algorithm. The two necessary
expectations are

E[T |L < T < R] =
∫ R
L t ba

�(a)t
a−1e−btdt

F1(R| a, b) − F1(L| a, b) (15)

E[lnT |L < T < R] =
∫ R
L ln t ba

�(a)t
a−1e−btdt

F2(R| a, b) − F2(L| a, b) (16)

The above equation does not have a closed-form solution and so we solve numerically to
obtain the solution. This can be used in the E-Step in the EM algorithm, and then the pseudo
log-likelihood will be

l∗(θ ) = an ln b− n ln (�(a)) + (a − 1)

[ n1∑
i=1

ln (ti) +
n1+n2∑
i=n1+1

ln
(
t∗i

)]

−b

[ n1∑
i=1

ti +
n1+n2∑
i=n1+1

t∗i

]
(17)

where the t∗i ’s are found using Equations (15) and (16).
Thus, the EM Algorithm can be set up as follows. Choose (a, b)(0) to be the MLE of the

uncensored data. Update the estimates with the following steps:
� Step 1: Suppose that (a, b)( j) is the jth estimate.
� Step 2: Compute T∗

i using Equation (15) and 16 with (a, b) = (a, b)( j).
� Step 3: Solve Equation (17) for its maximum and set (a, b)( j+1) as that maximum.
� Step 4: Repeat until convergence criteria are met.
Since there is no explicit form for the MLEs of a Gamma distribution, the maximummust

either be solved iteratively or with a built-in numerical solver.
The same procedure works for the case of theWeibull distribution.We re-label ba as bwhile

carrying out the simulations. In this case the log likelihood for the Weibull lifetimes is given
by

l(a, b) = n1 ln a + n1 ln b+ (a − 1)
n1∑
i=1

ln (ti) − b
n1∑
i=1

tai

+
n1+n2∑
i=n1+1

ln
(
exp

[−blai
] − exp

[−brai
])

(18)
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The desired conditional expectations are given by

E[Ta|L < T < R] =
∫ R
L ta ab ta−1 exp [−bta] dt
exp

[−blai
] − exp

[−brai
] (19)

E[lnT |L < T < R] =
∫ R
L ln t ab ta−1 exp [−bta] dt
exp

[−blai
] − exp

[−brai
] (20)

This will lead to the following pseudo log-likelihood

l∗(a, b) ∝ n ln a + n ln b+ (a − 1)

[ n1∑
i=1

ln (ti) +
n1+n2∑
i=n1+1

ln
(
t∗i

)]

−b

[ n1∑
i=1

tai +
n1+n2∑
i=n1+1

(
t∗i

)a] (21)

The rest of the procedure is identical to the previous case. �

3. Accelerated failure timemodels

In this section, we will consider the problem ofMLE of the parameters of a p−parameter AFT
model where the baseline distribution is exponential, gamma orWeibull distributed. TheAFT
models are known to bemore robust to the estimation of covariate effects (e.g. see Keiding and
Andersen, 1997), and are more easy to interpret than hazard rates. For instance in a clinical
trial where mortality is the endpoint, one could translate the result as a certain percentage
increase in future life expectancy on the new treatment compared to the baseline. As before
suppose the middle-censored data are in the form

t1, . . . , tn1,
(
ln1+1, rn1+1

)
, . . . ,

(
ln1+n2, rn1+n2

)
Associated with each observation is an observed vector Zi representing the covariates. The
MLE is done as earlier using the EM algorithm, which requires the conditional expectation
of the unobserved data given that it falls in a particular interval. As before, the convergence
of the EM algorithm is a consequence of the continuity of the log-likelihood function. The
respective probability density function of the observations for the three models, namely the
exponential, Gamma and Weibull are given below:

f (t|Z, a) = exp
[
θTZi

]
exp

{−a exp
[
θTZi

]
t
}
, t > 0, (22)

f (t|Z, a, b) = 1
� (a)

(
b exp

[−θTZ
])a ta−1 exp

[
−t

b exp
[−θTZ

]
]

, t > 0, (23)

f (t|Z, a, b) = a
(
b exp

[
a θTZ

])
ta−1 exp

[− (
b exp

[
a θTZ

])
ta

]
, t > 0. (24)
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Table . Numerical results for Gamma (a = 2, b = 1) lifetimes.

(α, β) (, ) (., .) (., ) (., .)

n
 a est . . . .

b est . . . .
MSE a . . . .
MSE b . . . .

Censored (., .) (., .) (., .) (., .)
 a est . . . .

b est . . . .
MSE a . . . .
MSE b . . . .

Censored (., .) (., .) (., .) (., .)
 a est . . . .

b est . . . .
MSE a . . . .
MSE b . . . .

Censored (., .) (., .) (., .) (., .)

4. Simulation study

To illustrate and validate the procedure, we simulate data under the assumption that the left
end point and the length of the censoring intervals are independent and exponentially dis-
tributed with parameters α and β , respectively. For each sample size n, N = 1000 samples
were simulated. Each sample was then censored, and the EM algorithm was applied to the
censored data. The a and b estimates reported are the average value of the N = 1000 esti-
mates obtained.

See Table 1 for the results of these simulations when the lifetimes are from a Gamma dis-
tribution. The row Censored in the table provides the smallest proportion of censoring and
largest proportion of censoring in theN = 1000 simulated samples. The simulation results for
the Weibull case are summarized in Table 2. The estimates for the Weibull model also appear
to converge very well. The procedure performs reasonably well even with a large proportion
of censored observations.

Table . Numerical results for Weibull (a = 2, b = 1) lifetimes.

(α, β) (, ) (., .) (., ) (., .)

n
 a est . . . .

b est . . . .
MSE a . . . .
MSE b . . . .

Censored (., .) (., .) (., .) (., .)
 a est . . . .

b est . . . .
MSE a . . . .
MSE b . . . .

Censored (., .) (., .) (., .) (., .)
 a est . . . .

b est . . . .
MSE a . . . .
MSE b . . . .

Censored (., .) (., .) (., .) (., .)
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Figure . Goodness of fit using the Gamma distribution.

Also examined was the goodness of fit of the estimated model. To study this, a sample
of size n = 100 was created from a Gamma distribution. Using the aforementioned pro-
cess, these data were middle-censored, resulting in 25% of the data being censored. The
MLEs were calculated using the proposed EM algorithm. The empirical CDF of the uncen-
sored data and fitted CDF are given in Figure 1. The two curves appear to be very similar.
Furthermore, a Kolmogorov Smirnov test was performed using the fitted Gamma dis-
tribution and uncensored data which yielded a p-value of 0.433 indicating no lack of
fit.

A simulation study was performed to illustrate the usefulness of the approach outlined
above for theAFTmodels. Simulationswere carried out inRusingN = 1000 replicationswith
a common sample size of n = 100. The censoring mechanism is the same as used previously.
Specifically, the left endpoint of the censored interval is Exponentially distributed with mean
1; the length of the censored interval is also Exponentially distributed with mean 1. Three
covariate values were used. The first two covariates, Z1 &Z2, were generated from a Binomial
distribution with one trial and probability of success equal to 0.5. The third covariate, Z3, was
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Table . Numerical results for exponential AFT model.

a θ1 θ2 θ3

True value    
MLE . . . .
MSE . . . .
True value    
MLE . . . .
MSE . . . .
True value    
MLE . −. . .
MSE . . . .

Table . Numerical results for Gamma AFT model.

a b θ1 θ2 θ3

True value     
MLE . . . . .
MSE . . . . .
True value     
MLE . . . −. .
MSE . . . . .
True value     
MLE . . . . .
MSE . . . . .

generated from a StandardNormal distribution. Similar to Pan (1999), three cases for the true
covariate effects were considered. They are θ = (1, 1, 1), θ = (1, 0, 0), and θ = (0, 0, 1).
These three cases were chosen since they represent the case where all covariates have an equal
effect, where only one Bernoulli covariate has an effect, and where only the Normally dis-
tributed covariate had an effect. In the exponential case, between 7% and 36% of the observa-
tions were censored, between 9% and 42% in the case of the Gamma distribution and between
8% and 40% in the Weibull case. Tables 3–5 report the results from these simulations. The
MLEs of all the parameters in all cases are very close to the actual value, and themean-squared
errors are also small.

Finally we evaluate the theoretical convergence to normality of the estimators via simula-
tions. For this purpose, we simulate N = 100 samples of size n = 100 each from the Gamma
AFT and Weibull AFT models described in the previous paragraph. We compute the MLEs
for the samples in the usual fashion. The Q-Q plots of the estimated values for the shape and

Table . Numerical results for Weibull AFT model.

a b θ1 θ2 θ3

True value     
MLE . . . . .
MSE . . . . .
True value     
MLE . . . −. .
MSE . . . . .
True value     
MLE . . −. . .
MSE . . . . .
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Figure . Q − Q plot of MLEs from Gamma AFT model.

scale parameters, and first and third elements of θ are displayed in Figures 2 and 3. These plots
seem to indicate a fairly good fit to normality.

5. Data analysis

To highlight the usefulness of the methods developed in the previous sections, we will now
consider a dataset from Environmental Economics. The data studied is from a Contingent
Valuation study conducted by Cecilia Hakansson from Sweden and Katja Parkkila from Fin-
land in 2004. People in Finland were asked how much they were willing-to-pay (WTP) to
increase the salmon stock in a particular river basin. Participants were allowed to either give
an exact amount that they were WTP or provide an interval which contained their WTP if
they preferred.

A total of 205 Finnish subjects provided data for theirWTP and income.Of the 205 respon-
ders, 57 gave intervals, and thus 27.8% of the data are middle censored. We fit a Weibull AFT
model to these data, using Equation (24) with 1 covariate. The fitted values for this are as
follows: â = 1.4407, b̂ = 0.0149, θ̂ = −0.1610. To transform the parameter value onto the
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Figure . Q − Q plot of MLEs fromWeibull AFT model.

WTP scale, we must look at exp[θ̂] = 0.8513. In this dataset, this means that people with
higher incomes have a lower WTP.

6. Conclusion

In conclusion, we prove that the MLEs from a large family of distributions will converge in
the case of middle censoring, and we give their large-sample properties. Additionally, we also
consider the case of parametric models with the presence of covariates and again provide the
large-sample properties of these estimators. In both cases, simulation studies are presented
illustrating the usefulness and accuracy of these methods.

The MLEs of the regression coefficients are very close to the true value in all cases, but the
MLEs of the parameters from the Gamma distribution are slightly off. Again, in all cases, the
mean-squared errors are small for all parameters except for âMLE . Table 5 reports the results
from these simulations. The MLEs of the regression coefficients are very close to the true
value in the case of equal effects of all covariates, but the estimates are slightly when only one
covariate has an effect. The MLEs of the parameters from the Weibull distribution are fairly
good, but âMLE was consistently underestimated. Again, in all cases, the mean-squared errors
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are quite small for all the parameters, demonstrating that the estimation proceduresworkwell.
Finally, this methodology is very flexible and applicable to many different areas of research,
as demonstrated by the Contingent Valuation example.
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