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Abstract

Wirelength estimation techniques typically contain a site density function and an occupation probability func-

tion. SOC designs bring large IP blocks which form routing obstacles and deviate wirelength estimation. In this

paper we extend previous work of wirelength estimation in the presence of obstacles by considering feedthrough

channel effect and derive complete expressions for several cases of two obstacles. Our results are one step further

into the domain of wirelength estimation in the presence of multiple obstacles and towards finding equivalent ob-

stacle relations to facilitate a priori wirelength estimation schemes in chip planning tools, i.e., wireload models to

improve parasitic estimation accuracy and timing closure.
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1 Introduction

In deep submicron design, the importance of estimating interconnect parameters such as delay, power, wirelength

and routability increases; such estimates are part of the objectives of partitioning, placement and floorplanning tools.

Also, the EDA flow is experiencing a trend of combining front end planning and physical implementation to help

design convergence. In this process an efficient yet accurate predictor of interconnect parameters (resource usage,

performance, etc.) is crucial. The efficiency and accuracy of front end planning tools depend on the performance of

floorplanning, placement and partitioning tools, which in turn depend on that of the interconnect predictor.

RTL planning flows must constantly struggle with the chicken-egg conflict impasse (i) budgeting the path delays

within blocks and between blocks, and (ii) finding a (good) placement of the blocks. Typically, this impasse is broken

by using initial wireload models, i.e., statistically derived (or calibrated) estimates of routing lengths for given-sized

nets placed in given-sized regions. These wireload models are certainly needed within blocks (since the blocks have

not even been synthesized, let alone placed), and occasionally also between blocks (i.e., at the chip level); they are

always needed at some point in the design flow. In this paper, we target a priori (pre-placement) and on-line (during

placement) wirelength estimations.

Wirelength estimation was initiated by Landman and Russo’s paper [1] on Rent’s rule, which was the basis for

models of Donath [2], Davis et el. [3], and Stroobandt et el. [4]. A review of recent progress is given in [5]. Apart
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from techniques that estimate average wirelengths or wirelength distributions, individual net wirelength estimators

have also been studied. These techniques exploit individual net information such as bounding box dimensions or

number of terminals to yield more accurate estimates. Current industry tools use lookup tables of wirelength as

a function of number of terminals [6].1 The aspect ratio of the region or net bounding box is found to have a

considerable effect on the expected wirelength for nets with few terminals [8].

All of these papers are based on regularly placed circuits such as gate array or standard cell designs, with the

exception of [6] which considers a building block design methodology. With the trend toward IP-block-based System-

on-Chip (SOC) design, it is more likely that the presence of macro cells as obstacles (e.g., memories or noise-sensitive

memory blocks) may significantly lengthen wires and cause congestion. To the best of our knowledge, no work to

date has provided interconnect wirelength estimates in the presence of routing obstacles. In [6], routing obstacles are

handled by dividing routing area into small bins, applying global routing over bins and using lookup tables for each

bin.

Wirelength estimation in the presence of obstacles has been studied recently. Expected average wirelength is

provided in [16] and discrete wirelength distribution is presented in [17]. Our work is an extension of [17]. We

adopt the same generating polynomial techinique [15] as in [17] and investigate the feedthrough channel effect on

wirelength distribution.

Our paper is organized as follows. Section 2 present the related work and gives our definitions. Previous results in

[17] are reviewed in section 3 for the completeness of this paper. Section 4 presents our contribution of investigating

wirelength distribution and feedthrough channel effect in the presence of two obstacles in multiple cases - with

identical or covering x-spans. Experimental analysis and observations are made in section 5 and we conclude our

work in section 6.

2 Background and Definition

The well-known Rent’s rule presents a simple empirical power law relationship between the number of terminals T

and the number of gates N in a random logic network [1] [3] [5] [9] :

T = kN p (1)

with k the average number of terminals per gate and p the Rent exponent. The Rent exponent is an empirical constant

ranging from 0:2 to 1 across different architectures and different placement optimizations [10][11] [12] [13]. Micro-

processors, gate arrays and high performance computers have been reported to have Rent exponent values of 0:45, 0:5

and 0:63 respectively [14]. Circuits under good placement tend to have small Rent exponent values while randomly

placed logic networks have Rent exponent p = 1.

This empirical relationship forms the foundation of most traditional wirelength estimators. The probability den-

sity function n(l), defined as the percentage of wires with length l, is generally used to express the wirelength dis-

tribution [3] [5] [15]. It contains two main parts, a site function f (l) that enumerates all possible shortest paths of

length l between points in a grid and an occupation probability function occ(l) that assigns to each path a probability

to occur depending on its length. In other words [?],

n(l) =
N(l)

Ntotal

=

f (l)occ(l)

∑lmax

l=1 f (l)occ(l)
(2)

1Also, global routing may be used as a constructive estimator. Indeed, proponents of global routing – notably Scheffer and Nequist [7]

– have argued that interconnect estimation can only be performed constructively. This is in some sense a religious issue (e.g., contrast with

Monterey Design emphasis on non-constructive prediction and estimation). We believe that the door is still open to development of strong

non-constructive, a priori interconnect estimation methods; this is the motivation for our present work.
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with

occ(l) � p(1� p)2p�1l2p�4
: (3)

This probability density function n(l) can then be used to derive various kinds of interconnect parameter estima-

tions. For example, the average wirelength can be obtained as

l̄ =∑
l

n(l)l (4)

and the probability to have all N wires shorter than l0 is

Prob(l(p) < l0 j 8p 2 P; jPj= N) = (∑
l<l0

n(l))N
: (5)

Previous publications do not take obstacle effects into account when computing the site function f (l). In this

paper, we adopt an enumeration technique based on generating polynomials [?] which allows us to augment current

wirelength estimation techniques with our analysis of obstacle effects. In a row based layout the site function is a

discrete distribution and the generating polynomial technique is used to express the site function as a polynomial by

taking a summation of xl(p) for each path p between two terminals with length l(p) over the finite set P of shortest

paths between all possible terminal-pairs in the layout. In other words, the site function f (l) can be expressed in a

polynomial

V (x) =∑
l

f (l)xl
= ∑

p2P

xl(p)
: (6)

We are the first to distinguish between several effects of rectangular routing obstacle on wirelength distribution

site functions. We observe that the presence of an obstacle reduces the number of possible terminal-pairs by restricting

the set of all possible terminal locations. Obstacles also introduce detours around the obstacle and increase the lengths

of some wires. We thus separate an obstacle’s effect into terminal redistribution effect and blockage effect, and define

the following scenarios to screen out each individual effect.

Definition 1 (Intrinsic wires) Intrinsic wires 2 are shortest paths between all possible terminal-pairs in a rectangu-

lar array of placement locations without any obstacle.

Definition 2 (Redistribution wires) Redistribution wires are shortest paths between all possible terminal-pairs in a

rectangular array of placement locations with ’transparent’ obstacles within which terminals cannot be located but

through which wires can pass.

Definition 3 (Blockage wires) Blockage wires are shortest paths between all possible terminal-pairs in a rectangu-

lar array of placement locations with opaque obstacles within which terminals cannot be located and through which

wires cannot pass.

The difference between redistribution wires and intrinsic wires is due to the redistribution effect of the obstacles, and

the difference between blockage wires and redistribution wires is due to the blockage effect. In the rest of this paper,

these differences are respectively called redistribution change and blockage change.

2Following virtually all previous literature, we study only two-terminal nets in this paper. Wirelengths of multi-terminal nets could be

defined as the length of the Steiner minimal tree, minimum spanning tree or another length, depending on the actual router. However, they

may not have a closed-form formula. A lookup table of Steiner minimum tree intrinsic lengths is presented in [6] and extended in [8] for a

rectangular layout region of arbitrary aspect ratio.
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3 Related Work

3.1 Single Obstacle

In this section we briefly go over the previous work in [16] and [17] for completeness of our derivation. We analyze

an array of m�n placement locations (with x indices from 0 to n�1 and y indices from 0 to m�1) in the presence of

a rectangular obstacle spanning between (but not including) x indices a and b and y indices c and d (0� a < b� n�1

and 0 � c < d � m� 1). The distance between two horizontally (vertically) adjacent placement locations is w (h) 3

. We use polynomials VI(m;n;w;h), VR(m;n;a;b;c;d;w;h) and VB(m;n;a;b;c;d;w;h) respectively to express the site

function of intrinsic, redistribution and blockage wires in this scenario based on the generating polynomials technique.

3.1.1 Intrinsic Wires

Applying generating polynomial and convolution techniques [15]

VI(m;n;w;h) =

n�1

∑
x1=0

n�1

∑
x2=0

m�1

∑
y1=0

m�1

∑
y2=0

xjx1�x2jw+jy1�y2jh

= f1(n;w) f1(m;h)

f1(n;w) =

n�1

∑
x1=0

n�1

∑
x2=0

xjx1�x2jw

=

n�1

∑
x1=0

(

x1

∑
x2=0

x(x1�x2)w
+

n�1

∑
x2=x1+1

x(x2�x1)w
)

=

2x(n+1)w
�nx2w

�2xw
+n

(xw
�1)2

: (7)

3.1.2 Redistribution Wires

By subtracting from intrinsic wires all paths with any terminal within the transparent obstacle, the site function

VR(m;n;a;b;c;d;w;h) of redistribution wires is given by:

VR(m;n;a;b;c;d;w;h)

=

n�1

∑
x1=0

n�1

∑
x2=0

m�1

∑
y1=0

m�1

∑
y2=0

xjx1�x2jw+jy1�y2jh
�2

b�1

∑
x1=a+1

n�1

∑
x2=0

d�1

∑
y1=c+1

m�1

∑
y2=0

xjx1�x2jw+jy1�y2jh

+

b�1

∑
x1=a+1

b�1

∑
x2=a+1

d�1

∑
y1=c+1

d�1

∑
y2=c+1

xjx1�x2jw+jy1�y2jh

= f1(n;w) f1(n;h)�2 f2(a;b;n;w) f2(c;d;m;h)+ f1(b�a�1;w) f1(d� c�1;h) (8)

where

f2(a;b;n;w)

3Thus placement locations are located at absolute coordinates 0;w;2w; : : : ;(n� 1)w in the x direction and 0;h;2h; : : : ;(m� 1)h in the y

direction. The obstacle spans from aw+ ε to bw� ε in the x direction and from ch+ ε to dh� ε in the y direction.
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=

b�1

∑
x1=a+1

n�1

∑
x2=0

xjx1�x2jw

=

x(b+1)w
+ x(n�a)w

� x(a+2)w
� x(n�b+1)w

� (b�a�1)x2w
+(b�a�1)

(xw
�1)2

3.1.3 Blockage Wires

Blockage wires are obtained by counting detour length for corresponding redistribution wires. We identify the redis-

tribution wires that need a detour of length l, and use VR(l) to express the distribution of these wires.

We notice that a horizontal detour of length l only occurs when at least one terminal of the wire is located on y

index c+ l
2h

or d� l
2h

(this implies l
2h

is an integer) and the other terminal of the wire is located between y indices

c+ l
2h

and d� l
2h

since the obstacle spans between but does not include y indices c and d (Fig. ??). By enumerating

over all terminal-pairs with one terminal on y index c+ l
2h

or d� l
2h

and the other terminal between y indices c+ l
2h

and d� l
2h

on the other side of the obstacle (thus four combinations are formed as the first terminal can be on y index

c+ l
2h

or d� l
2h

and on the left or right side of the obstacle), subtracting the cases when both terminals are on y index

c+ l
2h

or d� l
2h

(which we double-counted) and counting a coefficient 2 for terminal permutation, the site function

V h
R (l;m;n;a;b;c;d;w;h) of the redistribution wires with horizontal detour of length l is given by:

V h
R (l;m;n;a;b;c;d;w;h)

= 2(4
a

∑
x1=0

c+ l
2h

∑
y1=c+ l

2h

n�1

∑
x2=b

d� l
2h

∑
y2=c+ l

2h

xjx1�x2jw+jy1�y2jh
�2

a

∑
x1=0

c+ l
2h

∑
y1=c+ l

2h

n�1

∑
x2=b

c+ l
2h

∑
y2=c+ l

2h

xjx1�x2jw+jy1�y2jh

�2
a

∑
x1=0

d� l
2h

∑
y1=d� l

2h

n�1

∑
x2=b

c+ l
2h

∑
y2=c+ l

2h

xjx1�x2jw+jy1�y2jh
)

=

x(n+1)w
� x(n�a+1)w

� x(b+2)w
+ x(b�a+2)w

(xw
�1)2

(8
x(d�c+1)h�l

�1

xh
�1

�4�4x(d�c)h�l
):

Using the symmetry in the problem, the redistribution wires with detour length l can be expressed as

VR(l;m;n;a;b;c;d;w;h)

= f3(a;b;n;w) f4(c;d;h;
l

2h
)+ f3(c;d;m;h) f4(a;b;w;

l

2w
) (9)

where

f3(a;b;n;w) =

x(n+1)w
� x(n�a+1)w

� x(b+2)w
+ x(b�a+2)w

(xw
�1)2

f4(c;d;h;k) =

(

8 x(d�c�2k+1)h
�1

xh
�1

�4�4x(d�c�2k)h : 0 � k � b

d�c
2
c and k is an integer;

0 : otherwise:

By adding detour length into the corresponding redistribution wires, the site function VB(m;n;a;b;c;d;w;h) of

blockage wires is given by
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VB(m;n;a;b;c;d;w;h)

= VR(m;n;a;b;c;d;w;h)+

Lmax(a;b;c;d)

∑
l=0

(xl
�1)VR(l;m;n;a;b;c;d;w;h)

= VR(m;n;a;b;c;d;w;h)+ f3(a;b;n;w)( f5(c;d;h)� f6(c;d;h))

+ f3(c;d;m;h)( f5(a;b;w)� f6(a;b;w)) (10)

where

f5(c;d;h) =

lmax(c;d;h)

∑
k=0

x2kh f4(c;d;h;k)

= (lmax(c;d)+1)(8
x(d�c+1)h

xh
�1

�4x(d�c)h
)� (4+

8

xh
�1

)

x2(lmax(c;d)+1)h
�1

x2h
�1

;

f6(c;d;h) =

lmax(c;d;h)

∑
k=0

f4(c;d;h;k)

= (8
x(d�c+1)h

xh
�1

�4x(d�c)h
)

x�2(lmax(c;d)+1)h
�1

x�2h
�1

� (lmax(c;d)+1)(4+
8

xh
�1

);

Lmax(a;b;c;d) = Max(bb�ac;bd� cc);

lmax(c;d;h) = b

d� c

2h
c:

In the following section we give some numerical examples and make observations regarding the effects of obstacle

and layout region aspect ratio on the site functions of intrinsic, redistribution and blockage wires.

3.2 Multiple Obstacles

3.2.1 Redistribution Wirelengths

Redistribution wires can be derived for multiple obstacles by subtracting from intrinsic wires all the wires with at

least one terminal in an obstacle. We have the following general expression4 :

VR(m;n;a1;b1;c1;d1; : : : ;ak;bk;ck;dk;w;h)

= VI(m;n;w;h)�2
k

∑
i=1

f2(ai;bi;n;w) f2(ci;di;m;h)+
k

∑
i=1

k

∑
j=1

f7(ai;bi;a j;b j;w) f7(ci;di;c j;d j;h)

(11)

where

f7(ai;bi;a j;b j;w) =

bi�1

∑
x1=ai+1

b j�1

∑
x2=a j+1

xjx1�x2jw

=

x(b j�ai)w
� x(b j�bi+1)w

� x(a j�ai+1)w
+ x(a j�bi+2)w

(xw
�1)2

:

4This follows the polynomial expansion (I�∑k
i=1 si)

2
= I2

�2∑k
i=1 ISi+∑k

i=1 ∑k
j=1 SiS j .
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(a) (b) 

(c) (d) 

Figure 1: Two obstacles with different relative locations (a) with disjoint x/y-spans, (b) with a zero-width feedthrough,

(c) with a non-zero-width feedthrough and (d) with covering x-spans.

3.2.2 Obstacles with Disjoint Spans

However the blockage wires depend on the relative location of the obstacles. For two obstacles with disjoint x- and

y-spans [17] (Fig. 1 (a)), blockage is made by each obstacle individually, and the overall blockage effect is the sum

of each obstacle’s effect. So we have the following expression for redistribution wires with detour length l:

VR(l;m;n;a1;b1;c1;d1;a2;b2;c2;d2;w;h)

= f3(a1;b1;n;w) f4(c1;d1;h;
l

2h
)+ f3(c1;d1;m;h) f4(a1;b1;w;

l

2w
)+

f3(a2;b2;n;w) f4(c2;d2;h;
l

2h
)+ f3(c2;d2;m;h) f4(a2;b2;w;

l

2w
): (12)

4 Feedthrough Channel Effects

In this section we extend previous discussion into two obstacle cases. We investigate feedthrough channel effect in the

presence of multiple obstacles, specifically, we investigate two obstalces with identical or covering x-spans. The two

obstacles (a1;b1;c1;d1) and (a2;b2;c2;d2) are located in an array of m�n placement locations (with x indices from 0

to n�1 and y indices from 0 to m�1). Obstacle A(B) spans between (but not include) x indices a1(a2) and b1(b2) and

y indices c1(c2) and d1(d2). The distance between two horizontally(vertically) adjacent placement locations is w(h).
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4.1 Zero Width Feedthrough Channel

In this subsection we study a single obstacle with a zero-width feedthrough channel, or say, two obstacles abut of

location (a;b;c; l) and (a;b; l;d) respectively (Fig. 1 (b)). The redistribution wires with detour length l can be

expressed as

VR(l;m;n;a;b;c;d; f ;w;h)

= f3(a;b;n;w) f4(c; f ;h;
l

2h
)+ f3(a;b;n;w) f4( f ;d;h;

l

2h
)+ f3(c;d;m;h) f4(a;b;w;

l

2w
): (13)

4.2 Non-Zero Width Feedthrough Channel

Similarly, a feedthrough channel with width c2 � d1 or two obstacles (a;b;c1;d1) and (a;b;c2;d2) (Fig. 1 (c)) have

the following redistribution wires around with detour length l:

VR(l;m;n;a;b;c1;d1;c2;d2;w;h)

= f3(a;b;n;w) f4(c1;d1;h;
l

2h
)+ f3(a;b;n;w) f4(c2;d2;h;

l

2h
)+ f3(c1;d2;m;h) f4(a;b;w;

l

2w
): (14)

The blockage wirelengths are obstained by adding detour lengths with the redistribution wirelengths as:

VB(m;n;a;b;c1;d1;c2;d2;w;h)

= VR(m;n;a;b;c1;d1;c2;d2;w;h)+

Lmax(a;b;c1;d1;c2;d2)

∑
l=0

(xl
�1)VR(l;m;n;a;b;c1;d1;c2;d2;w;h)

= VR(m;n;a;b;c1;d1;c2;d2;w;h)+ f3(a;b;n;w)( f5(c1;d1;h)� f6(c1;d1;h))

+ f3(a;b;n;w)( f5(c2;d2;h)� f6(c2;d2;h))+ f3(c1;d2;m;h)( f5(a;b;w)� f6(a;b;w)) (15)

with

Lmax(a;b;c1;d1;c2;d2) = Max(bb�ac;bd1 � c1c;bd2� c2c): (16)

4.3 Two Obstacles with Covering X-Spans

Next we consider two obstalces with one obstalcle’s x-span covering the other’s (two obstacles (a1;b1;c1;d1) and

(a2;b2;c2;d2) with a1 < a2 < b2 < b1 and c1 < d1 < c2 < d2) (Fig. 1 (d)). In this case blockage is made only by each

obstalce individually, the same as in section 3.2.2, but we need to remove some area occupied by the obstacles when

counting the redistribution wires with detour length l. The redistribution wires with detour length l are as follows:

VR(l;m;n;a1;b1;c1;d1;a2;b2;c2;d2;w;h)

= f3(a1;b1;n;w) f4(c1;d1;h;
l

2h
)+ f3(a2;b2;n;w) f4(c2;d2;h;

l

2h
)+

f3(c1;d1;m;h) f4(a1;b1;w;
l

2w
)+ f3(c2;d2;m;h) f4(a2;b2;w;

l

2w
)�

f11(a1;a2;b2;b1;w;
l

2w
) f12(0;c1;c2 +1;d2�1;h)�

f11(a2;a2 +
l

2w
;b2�

l

2w
;b2;w;

l

2w
) f12(0;d1 �1;d2;m�1;h) (17)
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where

f11(a1;a2;b2;b1;w;k) =

a1+k

∑
x1=a1+k

b2�1

∑
x2=a2+1

xjx1�x2jw
+

b1�k

∑
x1=b1�k

b2�1

∑
x2=a2+1

xjx1�x2jw

=

(

x(b2�a1�k)w
�x(a2�a1�k+1)w

+x(b1�a2�k)w
�x(b1�b2�k+1)w

xw
�1

: k � a2�a1 and k � b1�b2;

x(b2�a1�k)w
+x(a1�a2+k)w

+x(b1�a2�k)w
+x(b2�b1+k)w

�2xw
�2

xw
�1

: k � a2�a1 and k � b1�b2:

f12(c1;d1;c2;d2;h) =

d1

∑
y1=c1

d2

∑
y2=c2

xjy1�y2jh

=

1

(xh
�1)2

(x(d2�c1+2)h
� x(d2�d1+1)h

� x(c2�c1+1)h
+ x(c2�d1)h

):

So

VB(m;n;a1;b1;c1;d1;a2;b2;c2;d2;w;h)

= VR(m;n;a1;b1;c1;d1;a2;b2;c2;d2;w;h)+

Lmax(a;b;c1;d1;c2;d2)

∑
l=0

(xl
�1)VR(l;m;n;a;b;c1;d1;c2;d2;w;h)

= VR(m;n;a1;b1;c1;d1;a2;b2;c2;d2;w;h)

+ f3(a1;b1;n;w)( f5(c1;d1;h)� f6(c1;d1;h))+ f3(a2;b2;n;w)( f5(c2;d2;h)� f6(c2;d2;h))

+ f3(c1;d1;m;h)( f5(a1;b1;w)� f6(a1;b1;w))+ f3(c2;d2;m;h)( f5(a2;b2;w)� f6(a2;b2;w))

� f13(a1;a2;b2;b1;w) f12(0;c1;c2 +1;d2�1;h)� f13(a2;a2;b2;b2;w) f12(0;d1 �1;d2;m�1;h)

(18)

where

f13(a1;a2;b2;b1;w)

=

lmax(c;d;w)

∑
k=0

(x2kw
�1) f11(a1;a2;b2;b1;w;k)

= (

xa2�a1+1
�1

x�1
�

x�(a2�a1+1)
�1

x�1
�1

)

xb2�a1
� xa2�a1+1

+ xb1�a2
� xb1�b2+1

x�1
+

(

xlmax+1
� xa2�a1+1

x�1
�

x�(lmax+1)
� x�(a2�a1+1)

x�1
�1

)

xb2�a1
+ xb1�a2

x�1
+

(

x3(lmax+1)
� x3(a2�a1+1)

x3
�1

�

xlmax+1
� xa2�a1+1

x�1
)

xa1�a�2
+ xb2�b1

x�1
�

(

x2(lmax+1)
� x2(a2�a1+1)

x2
�1

� (lmax�a2+a1))
2x+2

x�1

5 Experiments and Numerical Examples

To experimentally verify our theoretical analysis and extend our study to multiple obstacles, we have developed a

program to observe the redistribution and obstacle wirelengths. The program takes as inputs a set of obstacles and
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Figure 2: Wirelength distribution with different feedthrough locations y = f .

their dimensions and locations, as well as the number of net terminals. For calculation of the redistribution wirelength,

obstacles are treated as areas where net terminals are not allowed but wires can pass through. For the calculation of the

blockage wirelength, routing is prohibited inside the obstacle areas. The site functions are obtained over uniformly

random terminal sets, and the probability density functions are obtained over random terminal sets with the l2p�4

wirelength distribution. All results are over 10,000 or more random sets per run.

5.1 Feedthrough Location

In this experiment an 20�80 obstacle is located at the center of a 100�100 array of placement locations (i.e., m= n=

101;a = 40;b = 60;c = 10;d = 90;w = h = 1). A feedthrough channel divides the obstacle by a horizontal line y= l.

Fig. 2(left) presents the blockage wirelength distributions with different feedthrough locations (l = 10;20;30;40;50);

Fig. 2(right) gives the blockage changes Vb. The dotted lines in Fig. 2(left) are experimental data from running our

simulation code. They match well with the solid lines from previous expressions and verify the correctness of our

theoretical analysis.

From Fig. 2 we further make the following observation:

Observation 1 Feedthroughs reduce blockage. The closer is a feedthrough to the center of the obstacle, the larger is

its effect.

5.2 Feedthrough Width

In this experiment the same obstalce (m = n = 101;a = 40;b = 60;c = 10;d = 90;w = h = 1) as previous is studied.

However we increase the feedthrough width by turning more obstacle area into feedthrough channel. The redictri-

bution and blockage wirelength distribution with different feedthrough width are plotted in Fig. 3)(left); blockage

change is presented in Fig. 3)(right). Our observation is :

Observation 2 As more obstacle area change into feedthrough, redistribution wires, blockage wires and blockage

change all decrease.
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Figure 3: Wirelength distribution with different feedthrough width w (by turning obstacle area into feedthrough).
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Figure 4: Wirelength distribution with different feedthrough width w (by shifting obstacles).

5.3 Feedthrough Width with Fixed Obstacle Area

In this experiment an obstacle with fixed area is seperated by a feedthrough channel. The two parts of the obstacle

(each of dimension 20� 20) are moved away from the center of the placement locations to change the feedthrough

width. Fig. 4 (left) shows redistribution wirelengths decrease due to obstacle displacement; Fig. 4 (right) gives

blockage changes with different feedthrough width.

Observation 3 Blockage change decrease slowly as feedthrough channel getting wider.

5.4 Obstacle Width

An Obstacle of fixed height 80 is located at the center of the 100� 100 placement locations. The observation from

the wirelengths in Fig. 5 (left) and blockage changes in Fig. 5 (right) is:

11



0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12
x 10

5

wire length

w
ir
e

 n
u

m
b

e
r

V
R

(obw=20) 

V
B
(obw=20) 

V
R

(obw=40) 

V
B
(obw=40) 

V
R

(obw=60) 

V
B
(obw=60) 

V
R

(obw=80) 

V
B
(obw=80) 

V
I
 

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

5

wire length

w
ir
e

 n
u

m
b

e
r

V
b
(obw=20)

V
b
(obw=40)

V
b
(obw=60)

V
b
(obw=80)

Figure 5: Wirelength distribution with different obstacle width obw (shifting).
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Figure 6: Wirelength distribution with different obstacle height obh.

Observation 4 Blockage change is independent on obstacle width.

However with wider obstacles the wires taking detour become a little longer.

5.5 Obstacle Height

We change the height of an obstacle of width 20 located at the center of the placement locations. Fig. 7 (left) gives the

number of redistribution and blockage wires decrease as the obstacle area increases; Fig. 7 (right) presents blockage

changes Vb and the blockage wirelength decreases ∆VB caused by feedthrough.

Observation 5 Obstacles with larger height have larger blockage changes. Feedthrough channels have larger effect

when the obstacle has larger height.
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Figure 7: Wirelength distribution with different obstacle width obw1 and obw2.

5.6 Obstacles with Covering X-Spans

In this experiment we have an 20�80 obstacle at the center of the placement locations, with a horizontal zero-width

feedthrough channel at y = 50 (case 1). We first change the width of the bottome part of the obstacle into 40 (case 2),

then change the width of the top part into 40 also (case 3). We observe the redistribution and blockage wires of case

2 is the average redistribution and blockage wires of case 1 and case 3, respectively (Fig. 7 (left))5. We also observe

the blockage change of case 2 is between that of case 1 and base 3 (Fig. 7 (right)).

6 Conclusions

Wirelaod models have been widely adopted to provide a priori interconnect parameter estimates, but their poor

accuracy has been detrimental to convergence of modern design methodologies. In System-on-a-chip (SOC) designs

embedded IP blocks form routing blockages and further deviate wirelength estimation. We extend the previous

work of wirelength estimation in the presence of obstalces and investigate feedthrough channel effect and wirelength

distributions for several multiple obstacle cases.

Expression for redistribution wirelength in the presence of multiple obstacles can be derived in a form of poly-

nomial expansion; while blockage wires are much complicated: it depends on introduction of feedthrough channels,

overlaps between obstacles and obstacle displacement. In this paper we study the feedthrough channel effect. Com-

plete theoretical wirelength distribution expressions for many two obstalce cases are provided and help us better

understand wirelength distributions in the presence of multiple obstacles.

Several parameters influence the feedthrough channel effect on the wirelengths: feedthrough location,

feedthrough width, obstacle height, obstacle width and obstacle shape. Our experimental observations verify our

theoretical anaylsis, give a clear understanding on feedthrough channel effect and help to guide SOC designs.

Our work is one step further into the domain of wirelength estimation in the presence of multiple obstacles. It

aims to form the foundation of finding an equivalent obstacle for a group of small obstacles in order to facilitate the

table-lookup of wireload models, make them more accurate and effective and helps design convergence.

5This is intuitive from symmetry.
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