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ABSTRACT
Background  Antitumor immunity is highly heterogeneous 
between individuals; however, underlying mechanisms 
remain elusive, despite their potential to improve 
personalized cancer immunotherapy. Head and neck 
squamous cell carcinomas (HNSCCs) vary significantly in 
immune infiltration and therapeutic responses between 
patients, demanding a mouse model with appropriate 
heterogeneity to investigate mechanistic differences.
Methods  We developed a unique HNSCC mouse model 
to investigate underlying mechanisms of heterogeneous 
antitumor immunity. This model system may provide 
a better control for tumor-intrinsic and host-genetic 
variables, thereby uncovering the contribution of the 
adaptive immunity to tumor eradication. We employed 
single-cell T-cell receptor (TCR) sequencing coupled with 
single-cell RNA sequencing to identify the difference in 
TCR repertoire of CD8 tumor-infiltrating lymphocytes (TILs) 
and the unique activation states linked with different TCR 
clonotypes.
Results  We discovered that genetically identical wild-
type recipient mice responded heterogeneously to the 
same squamous cell carcinoma tumors orthotopically 
transplanted into the buccal mucosa. While tumors 
initially grew in 100% of recipients and most developed 
aggressive tumors, ~25% of recipients reproducibly 
eradicated tumors without intervention. Heterogeneous 
antitumor responses were dependent on CD8 T cells. 
Consistently, CD8 TILs in regressing tumors were 
significantly increased and more activated. Single-cell 
TCR-sequencing revealed that CD8 TILs from both growing 
and regressing tumors displayed evidence of clonal 
expansion compared with splenic controls. However, top 
TCR clonotypes and TCR specificity groups appear to be 
mutually exclusive between regressing and growing TILs. 
Furthermore, many TCRα/TCRβ sequences only occur 
in one recipient. By coupling single-cell transcriptomic 
analysis with unique TCR clonotypes, we found that top 
TCR clonotypes clustered in distinct activation states in 
regressing versus growing TILs. Intriguingly, the few TCR 
clonotypes shared between regressors and progressors 
differed greatly in their activation states, suggesting a 

more dominant influence from tumor microenvironment 
than TCR itself on T cell activation status.
Conclusions  We reveal that intrinsic differences in the 
TCR repertoire of TILs and their different transcriptional 
trajectories may underlie the heterogeneous antitumor 
immune responses in different hosts. We suggest that 
antitumor immune responses are highly individualized and 
different hosts employ different TCR specificities against 
the same tumors, which may have important implications 
for developing personalized cancer immunotherapy.

INTRODUCTION
Antitumor immune responses can be highly 
heterogeneous—some hosts can eradicate 
their tumors, whereas others succumb to 
tumor progression. However, the mechanisms 
underlying the heterogeneity of antitumor 
immunity remain elusive. A better under-
standing of such mechanisms may profoundly 
impact the development of more effective 
personalized cancer immunotherapy. Prior 
studies have suggested potential mechanisms 
dictating heterogeneous antitumor immune 
responses, which include tumor-intrinsic 
heterogeneity (eg, different oncogenic 
drivers, different differentiation stage of 
cancers) and environmental factors (eg, host 
microbiome).1–3 However, it remains poorly 
understood whether intrinsic differences in 
the T cell receptor (TCR) repertoire of indi-
viduals can influence the outcome of anti-
tumor immunity by affecting the frequency 
and/or variety of tumor reactive CD8 tumor-
infiltrating lymphocytes (TILs).

Head and neck cancer is the sixth most 
common cancer type, manifesting primarily 
(90% of cases) as squamous cell carcinoma 
(HNSCC).4 5 Human HNSCC samples exhibit 
a wide range of mutational burden and 
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infiltration of T cells and other immune cells.6–9 Immune 
checkpoint inhibitors (ICIs), such as antibodies against 
programmed death-1 (PD-1), have been approved for 
HNSCCs but efficacy varies considerably in different 
patients and the response rate remains relatively low.10–17 
Variable responses to therapies may be partially attributed 
to the heterogeneous antitumor immune responses in 
patients with HNSCC, evidenced by a highly variable level 
of T cell infiltration before treatment.18 19 However, it 
is very difficult to model such heterogeneity in human 
patients due to many uncontrollable variables including 
completely different genetic backgrounds, distinct 
immune systems and vastly different tumors. Thus, a well-
controlled mouse model with appropriate heterogeneity 
is needed to investigate mechanistic differences in anti-
tumor immune responses in different individuals.

The commonly used syngeneic mouse tumor models, 
for example, B16 melanoma,20 21 MC38 colon cancer, 4T1 
breast cancer22 or LY2 or B4B8 squamous cell carcinomas 
(SCCs),23–25 grow aggressively in recipient mice on tumor 
inoculation, thereby failing to demonstrate heteroge-
neous antitumor immune responses. In addition, prior 
model systems tend to focus on tumor-intrinsic mecha-
nisms that were associated with heterogeneous antitumor 
responses.1 26 However, with confounding variables inves-
tigated at once (eg, different oncogenic mutations), 
many aspects of the tumor and tumor microenviron-
ment (TME) may vary; it becomes difficult to dissect 
contributions of the immune system. Hence, we need a 
model system that could largely minimize the effects of 
tumor-intrinsic factors, potentially allowing us to identify 
the fundamental principles shared between human and 
mouse that govern the heterogeneous antitumor immune 
responses in different individuals. However, such a model 
system has not been available until now.

CD8 T cells have been extensively studied in the context 
of antitumor immune responses due to their tumor killing 
capacity and strong correlation with patient survival and 
ICI response.27–29 Single cell analysis of CD8 TILs in 
patients with cancer has been extensively reviewed.30–32 
However, the significant differences between patients and 
their tumors have made it difficult to determine common 
fundamental principles that govern antitumor immune 
responses. In mouse tumor models, many studies exam-
ined tumor antigen-specific CD8 T cell responses by 
focusing on immunodominant antigens such as AH1 or 
PMEL33 34 and employing the corresponding transgenic 
T cells such as 1D4 and Pmel-1.35 36 Alternatively, to study 
tumor-specific CD8 T cell responses, a known antigen 
such as ovalbumin (OVA) was introduced into tumors 
and the corresponding antigen-specific OT-I T cells 
were transferred into recipients.37 However, such studies 
cannot address how the same T cell clone behaves in a 
different TME or how the variety of different T cell clones 
eventually shapes the outcome of antitumor immunity. 
Under physiological situations, antitumor immune 
responses are mediated by polyclonal T cells that may 
recognize different tumor antigens with various affinities. 

However, it remains poorly defined how polyclonal CD8 
T cell-mediated antitumor immune responses occur at a 
single-cell resolution in a well-controlled model system.

TCRs are generated via V(D)J recombina-
tion,38 39 a somatic DNA recombination process occurring 
in a random and stochastic manner in different individ-
uals. TCRs of most conventional T cells are composed 
of an alpha (α) chain and a beta (β) chain (encoded by 
TRA and TRB, respectively), linked by disulfide bonds. T 
cells can be grouped into different ‘clonotypes,’ which 
have unique TCRα and TCRβ chains with distinct V(D)J 
gene segments and complementarity-determining region 
3 (CDR3) that encompasses the highly divergent junc-
tion of V(D)J recombination and determines TCR spec-
ificity. It has been difficult to study the formation and 
diversity of the human TCR repertoire due to limited 
access to human thymus samples and non-feasibility to 
manipulate variables in vivo. Others have generated 
humanized mouse models by implanting immunodefi-
cient mice with human hematopoietic stem cells (HSCs) 
and human thymus from the same or different donors.40 
Despite animals having identical HSCs, thymi, genetic 
background and environment, the formation of human 
TCR repertoires is largely stochastic and TCR reper-
toires can be totally divergent.40 In short, this means that 
each individual, including identical twins, has an almost 
completely different TCR repertoire. However, it remains 
poorly understood how stochastic generation of the TCR 
repertoire and selection in the TME can together shape 
the outcome of antitumor immunity.

In the current study, we employed a unique mouse SCC 
model that behaved differently when transplanted into 
recipient mice with identical genetic background. While 
tumors initially grew in 100% of recipients and most 
developed aggressive tumors, about 25% of recipients 
reproducibly eradicated tumors without intervention. 
Heterogeneous antitumor responses were dependent on 
CD8 T cells. We performed single-cell TCR sequencing 
and single-cell RNA sequencing using CD8 TILs from 
both growing and regressing tumors. By coupling deep 
transcriptome analysis with unique TCR clonotypes, our 
study delineated the dynamic relationship of different 
CD8 TIL clones and the various activation states of CD8 
TILs. Our data reveal that intrinsic differences in the 
TCR repertoire usage of TILs and their different tran-
scriptional trajectories may underlie the heterogeneous 
antitumor immune responses in different hosts.

METHODS
Mouse work and tumor injection
Tumor cells were injected into C57BL6/J (wild-type 
(WT) B6), BALB/cJ or B6.129S2-Cd8atm1Mak/J (CD8−/−) 
(Stock no. 002665) mice that were bred in our mouse 
facility or obtained from Jackson Laboratories. Both male 
and female WT B6 and CD8−/− mice (4–7 weeks) were 
used for A223 tumor injection orthotopically into the 
buccal mucosa unless otherwise indicated. All mice were 
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maintained under specific pathogen-free conditions in 
the vivarium facility of University of Colorado AMC.

A223 tumors were described previously.41 LY2 and B4B8 
tumors were obtained from Dr Carter Van Waes (National 
Institutes of Health/National Institute on Deafness and 
Other Communication Disorders, MD). Tumors (A223, 
LY2, B4B8) were cultured in complete Dulbecco’s Modi-
fied Eagle Medium (DMEM) media (10% fetal bovine 
serum (FBS), 20 mM HEPES, 1× antibiotic-antimycotic) 
until 90% confluent. Cells were washed with phosphate-
buffered saline (PBS), trypsinized (0.05% for A223 or 
0.25% for LY2 and B4B8) (Fisher Scientific) and washed 
sequentially with complete or plain DMEM media (no 
FBS). Cells were counted, resuspended in plain DMEM 
and mixed in equal volume with Matrigel Basement 
Membrane Matrix (Corning) before tumor injection. 
For injections, 100 µL of cells in media/Matrigel were 
injected subcutaneously into both flanks of each mouse 
or into one cheek per mouse. For re-challenge exper-
iments, regressors (defined as mice that had rejected 
the first challenge of A223 tumors) were injected with 
A223 tumors (250 000) in the opposite cheek at least 
14 days after complete rejection of the first challenge. 
For subcloning experiments, A223 parental tumor cells 
were plated in 96-well plates at a limiting dilution (~50 
cells/plate). The presence of a single cell and the subse-
quent formation of single colonies were visually inspected 
under microscope. Subclones were obtained from wells 
with single colonies only, subsequently expanded and 
injected into naïve wild-type (WT) B6 mice (250 000 
cells/cheek). For passage experiments, two regressing 
and two growing A223 tumors were removed from mice, 
minced with razor blades and dissociated with 50 µg/
mL Liberase DL (Sigma-Aldrich) in DMEM media for 30 
min at 37°C. Cells were washed with complete media and 
plated on 10 cm plates. Cells were washed and passaged 
over 1 week to obtain enough tumor cells for reinjection. 
Passaged cells were injected into naïve WT B6 mice (250 
000 cells/cheek). Tumors were measured by calipers, and 
tumor volume was calculated as (length×width2)/2.

Multispectral imaging of human HNSCC samples
Formalin-fixed paraffin-embedded (FFPE) tumor 
samples from patients with HNSCC were stained using 
Opal 7-Color Automation IHC Kit-50 Slide according to 
manufacturer’s instructions (Akoya Biosciences). Briefly, 
antigen retrieval was performed using AR6 buffer in a 
microwave at 100% power for 1 min and 10% power for 
15 min. Slide staining was performed in three cycles: (1) 
first cycle, antihuman CD20 primary antibody (1:400) 
and Opal 540 (1:50); (2) second cycle, antihuman CD8 
primary antibody (1:100) and Opal 650 (1:50); (3) third 
cycle, antihuman pan-cytokeratin primary (1:500) and 
Opal 690 (1:50). Slides were stained with DAPI for 5 min, 
washed and mounted and scanned using the Vectra 3 
system and Phenochart software. Acquired MSI images 
were unmixed and analyzed by inForm 2.0 software. 

Detailed antibody information is included in online 
supplemental table 8.

Neoantigen prediction
DNA or RNA samples of A223 tumors were submitted to 
Beijing Institute of Genomics for whole-exome sequencing 
(WES) or the University of Colorado Anschutz Genomics 
Core for bulk RNA sequencing using Illumina platform. 
FASTQ files were processed by Accura Science, who 
performed quality control using FastQC, read alignment 
to the mouse reference genome using BWA, variant-
calling using GATK (V.3.5), bam alignment processing 
using Picard Tools, putative variant identification using 
GATK HaplotypeCaller and variant annotation using 
SnpEff (V.4.1). We continued the analysis by filtering 
variants for those that caused missense mutations, and 
making a list of 8, 9 or 10 amino acid (a.a.) sequences 
spanning each mutated a.a. in every possible position 
(positions 1–10). The list of peptides was submitted to 
NetMHC V.4.042 43 for binding prediction to H2-Kb or 
H2-Db (strong binders have %rank <0.5, and weak binders 
have %rank <2). Peptides that bound major histocompat-
ibility complex (MHC) class I were then submitted to the 
Immune Epitope Database44 for prediction of immuno-
genicity, and scores >0 were considered to have putatively 
high immunogenicity.

Flow cytometry
Tumors were removed and processed for flow cytometry at 
14–21 days post injection. Flow cytometry antibodies were 
included in online supplemental table 8. Tumors were 
weighed, minced using razor blades and dissociated using 
liberase in RPMI (Corning) as described above. Digested 
tumors were mashed through 70 µm filters, washed with 
1×PBS (2% FBS) and lysed with red blood cell lysing 
buffer (Sigma-Aldrich) to prepare single cell suspension. 
Spleens were collected from tumor-bearing mice and 
single cell suspensions were prepared. Single-cell suspen-
sions were used for immediate staining with flow cytom-
etry antibodies, or for ex vivo stimulation followed by flow 
staining. For ex vivo stimulation, the single-cell suspen-
sion of tumors and TILs together was plated in a 12-well 
plate (2–5×106 cells/sample/well) and stimulated with 25 
ng/mL phorbol 12-myristate 13-acetate (Sigma-Aldrich), 
485 ng/mL ionomycin (Sigma-Aldrich) and 5 µg/mL 
brefeldin A (Biolegend) in complete DMEM media for 
4 hours at 37°C. Stimulated cells were harvested, washed 
and stained as follows. Flow cytometry staining proceeded 
with viability staining (Live/Dead Aqua) followed by 
surface staining, fixation/permeabilization and intracel-
lular or intranuclear staining. For surface staining, cells 
were incubated with surface antibodies (anti-CD8, CD45, 
CD4, LAG-3, PD-1, CD3, CD69, CD122, Ly6A, Ly6C and/
or TCRβ). For intracellular staining of interferon (IFN)-γ 
and tumor necrosis factor (TNF)-α, cells were fixed and 
permeabilized with the BD Fixation/Permeabilization 
kit. For intranuclear staining of T-bet, Nur77, Ki67 and 
EOMES, cells were fixed and permeabilized with the BD 

https://dx.doi.org/10.1136/jitc-2020-001615
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Mouse FoxP3 Buffer Set. Cells were analyzed using a BD 
LSRFortessa X-20 cytometer and data were analyzed by 
FlowJo software.

SINGLE-CELL RNA SEQUENCING
Tumors from three regressor and three progressor mice 
were processed as above to generate single-cell suspen-
sions. Cells were washed, stained with antibodies against 
CD8, CD4, CD45, TCRβ, CD3, Live/Dead Green or just 
Live/Dead Green, and sorted using the FACSAria Fusion 
flow sorter (regressors and progressors #1–2) or the Sony 
MA900 (regressor and progressor #3). All sequenced 
samples including regressor TIL, progressor TIL and 
splenic CD8 T cells were described in online supplemental 
table 1 including the staining and sorting strategies (eg, 
sorted for Live, CD45+, TCRβ+/CD3+, CD8+CD4− cells to 
isolate CD8 T cells), 10× Genomics chemistry including 3’ 
expression, 5’ expression and TCR VDJ sequencing, the 
number of cells sequenced and the abbreviations for each 
sample. Sorted samples were submitted to the University 
of Colorado at Anschutz Genomics and Microarray Core 
for single cell capture and library preparation. Cells were 
loaded into a 10× Genomics Single-cell chip A for 5’VDJ 
captures and Chip B for the 3’ captures. Single-cell gene 
expression libraries were prepared using Chromium 
Single Cell 5’ Library & Gel Bead Kit (#1000014) or Chro-
mium Single Cell 3’ Library & Gel Bead Kit (#1000092) 
according to the manufacturer’s instructions; 5' libraries 
were split in half, one for sequencing and another half 
was enriched for TCR sequencing using the Chromium 
Single Cell V(D)J Enrichment Kit (Mouse T Cell). 
Samples were sequenced on the Illumina NovaSeq 6000 
platform for an estimated read depth of 100 000 reads per 
cell (3' samples), 50 000 reads per cell (T cell 5' expres-
sion) or 5000 reads per cell (TCR VDJ). After sequencing, 
reads were mapped to the mm10 genome using the 10× 
Genomics CellRanger (V.2.0.2, V.3.0.2 and V.3.1.0) count 
pipeline and the VDJ sequencing reads were mapped to 
the GRCm38 reference dataset using CellRanger VDJ 
(V.3.0.1, V.3.0.2, V.3.1.0).

Single-cell VDJ analysis
Five TIL samples (RT1, RT2, RT3, GT2, GT3) and three 
spleens (RS2, RS3, GS3) were sequenced for TCR VDJ 
region (online supplemental table 1). VDJ analysis was 
conducted on the filtered_contig_annotations output file 
from the 10× Genomics CellRanger VDJ pipeline. In R, 
cells were filtered for those with only full length, produc-
tive, high-confidence V and J segments. Cells were then 
filtered for those containing only one TCRβ chain, and 
only one or two TCRα chains (to allow for the lack of 
allelic exclusion in the TCRα locus). Cells with the same 
DNA sequences for both TCRα and TCRβ were consid-
ered to be the same clone, while cells with the same 
peptide sequence for the CDR3 of both TCRα and TCRβ 
were considered to be the same clonotype. Clonotypes 
were quantified to calculate the per cent in each sample 

(% of a given clonotype=# cells with that clonotype/# 
total cells in the sample), and clonotypes above 1% in 
any of the five TIL samples were used for analysis of ‘top 
clonotypes’ in further analyses.

Single-cell transcriptome analysis
Initial analysis was performed on Regr1-TIL and 
Grow1-TIL samples using Seurat V.245 to identify CD8 
T cells in these samples. Cells with <200 genes detected 
or >5% mitochondrial RNA content were removed from 
further analysis. After filtering, Regr1-TIL and Grow1-TIL 
samples were processed using the functions Normalize-
Data, FindVariableGenes and ScaleData. The two samples 
were combined by running canonical correlation analysis 
using RunCCA and then AlignSubspace. The cells from 
both samples were then plotted using RunTSNE using 
the aligned CCA dimensions 1:21 and clustered using 
FindClusters. CD8 T cell clusters were identified based on 
the cluster’s overall expression of Cd3e, Cd8, Cd3d, Gzmb 
and the lack of Cd4 and Foxp3. A list of cell identifica-
tion barcodes for all cells in the CD8 T cell clusters were 
extracted for further analysis.

All further analysis of the gene expression was performed 
using Seurat V.3.45 The nine samples (Regr1-TIL, 
Grow1-TIL, Regr2-TIL, Grow2-TIL, Regr3-TIL, 
Grow3-TIL, Regr2-Spln, Regr3-Spln, Grow3-Spln) (online 
supplemental table 1) were each filtered to remove low-
quality cells (<500 genes or >5% mitochondrial RNA). 
Presumed doublets were removed by excluding outliers 
in the scatter plot between the number of genes per cell 
(nFeature) and the number of total molecules per cell 
(nCount). VDJ information for each cell (CDR3α and 
CDR3β sequences; see above) was added as metadata 
for each cell, and gene expression was normalized using 
the NormalizeData function. The nine samples were 
combined and batch-corrected using Seurat’s functions 
FindIntegrationAnchors and IntegrateData. Cells were 
scored for S and G2/M cell cycle stages using the CellCy-
cleScoring function. The data were converted to z-scores 
using ScaleData, regressing against the mitochondrial 
RNA content, S score and G2M score. Finally, dimension-
ality reduction was performed by first running principal 
component analysis, and then running UMAP analysis on 
the first 30 principal components. Integrated data were 
input into Monocle 3-beta46–48 to evaluate a differentia-
tion trajectory between cells, and UMAP coordinates from 
Monocle analysis are displayed in the figures. For differ-
ential gene expression between progressor and regressor 
top clonotypes, Seurat’s FindConservedMarkers function 
was employed, controlling for cohort (cohort 1=regressor 
1 and progressor 1; cohort 2=regressor 2 and progressor 
2; cohort 3=regressor 3 and progressor 3). Using this 
function, differential gene expression was calculated 
for cells in one cohort at a time, and then results were 
consolidated by taking the most conservative p value and 
average ln(fold change). Fold changes were calculated as 
eln(fold change) if ln(fold change)>0, and −1/eln(fold change) if 
ln(fold change)<0.

https://dx.doi.org/10.1136/jitc-2020-001615
https://dx.doi.org/10.1136/jitc-2020-001615
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GLIPH TCR analysis
Analysis of TCR specificity groups was conducted using 
the GLIPH algorithm49 that was published using a human 
reference database. Thus, a mouse reference database 
was constructed from the list of unique CDR3β sequences 
in all 8 of our TCR samples (TILs and spleen) combined 
with supplementary data from a prior study,50 totaling 116 
541 unique mouse CDR3 sequences (the default human 
reference database consists of 162 165 unique sequences). 
CDR3 sequences from each of our five TIL TCR samples 
were input into GLIPH using the constructed mouse 
reference database. After GLIPH clustered the sequences 
into convergence groups, the abundance (% of a CDR3β 
sequence in each sample) was applied to each member 
of the groups, then groups were ranked by the sum of 
the abundance of each CDR3β sequence in the group. 
The clone network output from GLIPH was used to 
create network plots, where all members of each group 
were included in one plot. Each node represents a TCRβ 
CDR3 sequence in the group, and each line represents 
a global (thick line) or local (thin line) similarity to 
another CDR3 sequence. Node size for each plot was 
calculated as 100×((% in RT1)+(% in RT2)+(% in 
RT3)+(% in GT2)+(% in GT3)). Node color (‘relative 
ratio’) was calculated as ((% in GT2)+(% in GT3))/((% 
in RT1)+(% in RT2)+(% in RT3)+(% in GT2)+(% in 
GT3)), where red nodes are sequences only in progressor 
samples and blue nodes are sequences only in regressor 
samples. Values in both regressors and progressors were 
graded from red (1.0) to purple to blue (0.0) according 
to the ratio. Network plots were constructed using the 
networkD3 package.

RESULTS
Heterogeneous immune infiltration in patients with HNSCC
To investigate the immune profile of HNSCCs, we 
employed the multispectral imaging (MSI) approach to 
stain FFPE slides of patient samples with HNSCC with 
DAPI and antibodies for CD8, CD20 and pan-cytokeratin. 
Most of these samples were characterized and published 
previously with diagnosis, tumor staging and RNA-
sequencing and mutation data available.51 We found 
that HNSCC tumors were strikingly diverse in immune 
infiltration in both the tumor invasive margin and tumor 
core, ranging from poorly infiltrated (figure  1A top, 
CUHN041, online supplemental figure 1A) to highly 
infiltrated (figure 1A bottom, CUHN024, online supple-
mental figure 1B). We profiled 18 samples and stratified 
them by the per cent of CD8 infiltration into tumor and 
stroma compartments. Consistently, we found that CD8 
T cell infiltration was highly heterogeneous in these 
HNSCC samples (figure 1B).

A model system for studying tumor heterogeneity and 
mechanistic differences in antitumor responses
To elucidate the underlying mechanisms of hetero-
geneous antitumor responses, we employed a 

KrasG12DSmad4−/− SCC cell line that was previously charac-
terized,41 52 53 termed A223. A223 tumors were orthotopi-
cally transplanted into genetically identical WT C57BL/6 
(B6) recipient mice. While tumors initially grew in 100% 
of recipients and continued to grow aggressively in most 
recipients, 20%–30% of recipients eradicated tumors 
without intervention, regardless of the cell number of 
tumors injected or the location of injection (figure 1C–D, 
online supplemental figure 1C-F). These data suggest 
that tumor eradication did not appear to be attributed 
to different levels of tumor burden. Additionally, tumor 
eradication did not correlate with age or sex of the recipi-
ents (data not shown). This phenomenon of spontaneous 
tumor eradication appeared unique to the A223 SCCs, 
since other SCC lines that have been used to study HNC, 
including LY224 and B4B8,25 grew out in all recipients and 
were not spontaneously eliminated (online supplemental 
figure 1G-H). Thus, we conclude that genetically iden-
tical WT B6 mice responded heterogeneously to the same 
A223 tumors.

Next, we investigated whether A223 tumors could be 
potentially immunogenic by harboring neoantigens. 
A223 tumors were sequenced using WES to detect 
non-synonymous mutations in exomes and bulk RNA-
sequencing to confirm the expression of these mutations. 
Two thousand two hundred sixty-seven missense vari-
ants were identified in both WES and RNA-sequencing 
datasets that could potentially serve as neoantigens, and 
from those, 1731 peptides were predicted to bind MHC 
class I, 438 were predicted to bind strongly and 237 were 
predicted to have ‘high immunogenicity’ (figure  1E). 
Thus, A223 tumors contain ample possibility for 
presenting neoantigens; however, it remained intriguing 
that tumors were not eliminated in all recipients.

Spontaneous tumor eradication depends on CD8 T cells
To determine the mechanisms underlying the hetero-
geneous antitumor responses against A223 SCCs, we 
performed flow cytometry analysis on the TILs of growing 
versus regressing tumors of varying sizes. While tumor 
volume inversely correlated with the per cent of CD45+ 
and CD4+ cells in tumors (online supplemental figure 
2A,B), it correlated more strongly with CD8+ cell infil-
tration (figure 2A). In addition, CD8+ T cells expressed 
a lower level of PD-1 and LAG-3 in regressing tumors 
compared with growing tumors (figure  2B), suggesting 
that the T cells in regressing tumors were less exhausted. 
We next examined the effector functions of CD8 TILs 
by stimulating them ex vivo for 4 hours and found that 
CD8 TILs in regressing tumors expressed more IFN-γ 
and TNF-α than those in growing tumors (figure  2C). 
While the per cent of CD8+IFN-γ+ or CD8+TNF-α+ popu-
lation inversely correlated to tumor volume (online 
supplemental figure 2C,D), the per cent of double 
producers, that is, CD8 TILs producing both IFN-γ and 
TNF-α, inversely correlated best with tumor volume 
(figure  2D). We also performed flow cytometry experi-
ments to examine CD8 T cell markers of activation and 
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memory. In particular, we found that regressor CD8 TILs 
expressed more T-bet, Nur77, Ly6A, Ly6C, CD122, CD69 
and CD244 than progressor CD8 TILs; moreover, the 
expression of these genes inversely correlated with tumor 
volume (figure 2E–J, online supplemental figure 2E-L). 
We also examined other markers including NKG2D, Ki67, 
Eomes, CD44, CD62L, KLRG1 and CD49d, whose expres-
sion level did not exhibit obvious correlation with tumor 
volume or with either regressor or progressor CD8 TILs.

Overall, these data show that CD8 T cell activation 
may play a critical role in mediating tumor eradication. 
To further test this notion, we injected A223 tumors 
into CD8−/− mice and found that these mice were inca-
pable of eradicating tumors (figure 3A), demonstrating 
that CD8 T cells were essential for tumor eradication. 
To further test whether tumor eradication is mediated 
by adaptive immunity, we evaluated whether mice that 
eradicated A223 tumors develop immunological memory 

Figure 1  Heterogeneous immune responses in head and neck cancer. (A) Fomalin-fixed paraffin-embedded (FFPE) tumor 
sections from patients with head and neck cancer were stained with antibodies to CD8 (T cells), CD20 (B cells), pan-cytokeratin 
(tumor cells) and DAPI, followed by Opal fluorophores for multispectral immunofluorescence. Images were taken with Vectra3 
microscope (20×) and fluorophores were unmixed using InForm software (Akoya Biosciences). Representative unmixed images 
of tumor invasive margin and tumor core from patient CUHN041 (poorly infiltrated) and CUHN024 (highly infiltrated) are shown. 
(B) Eighteen tumor samples from patients with HNSCC were stained as described above and grouped into ‘poorly infiltrated’, 
‘moderately infiltrated’ or ‘highly infiltrated’ based on CD8 T cell infiltration into stroma and tumor compartments. (C, D) A223 
squamous cell carcinomas (SCCs) were eliminated in ~20%–25% of recipients regardless of the number of tumor cells injected. 
(C) Tumors were orthotopically transplanted in the buccal (cheek) cavity of wild-type (WT) B6 mice at 4–7 weeks of age. (D) Left 
panel: 1 million cells injected, 3 out of 15 recipients rejected (2 independent experiments). Middle panel: 250 000 cells injected, 
15 out of 51 recipients rejected (6 independent experiments). Right panel: 30 000 cells injected, 3 out of 13 recipients rejected 
(2 independent experiments). (E) A223 SCCs potentially harbor neoantigens. Whole-exome sequencing and RNA sequencing 
were performed on A223 SCCs to evaluate neoantigen load. Sequencing reads were mapped to the mouse reference genome 
(C57BL/6J) and variants were filtered for those that produced missense peptides. Peptides spanning each mutation were input 
into NetMHC4.0 for major histocompatibility complex (MHC) class I binding prediction (weak or strong) and those that bound 
were input into Immune Epitope Database (IEDB) for prediction of immunogenicity.
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Figure 2  Tumor regression correlates to CD8 T cell-mediated antitumor immune response. A223 tumors were implanted into 
wild-type (WT) B6 mice and tumor volume was measured (mm3). Tumors were digested to single cell suspension and analyzed 
by flow cytometry. (A) Tumor volume inversely correlated with the percentage of CD8 tumor-infiltrating lymphocytes (TILs) 
within the single-cell gate (R2=0.6809) (n=34, across eight independent experiments). (B) CD8 TILs in growing tumors (right) 
express more programmed death-1 (PD-1) and LAG-3 than those in regressing tumors (left). Data are representative of eight 
independent experiments. (C) The percentage of CD8 TILs expressing interferon (IFN)-γ or both IFN-γ and tumor necrosis factor 
(TNF)-α is higher in regressing tumors (left) than growing tumors (right). TILs were stimulated ex vivo with phorbol 12-myristate 
13-acetate (PMA) and ionomycin in the presence of brefeldin A (BFA). (D) The percentage of CD8 TILs expressing both IFN-γ 
and TNF-α inversely correlated best with tumor volume (mm3) (R2=0.8333) (n=12, across two independent experiments). (E) 
A higher percentage of CD8 TILs expressing T-bet in regressing tumors (left) than growing tumors (right). (F) The percentage 
of CD8 TILs expressing T-bet inversely correlated with tumor volume (R2=0.5555) (n=39, two independent experiments). (G) 
A higher level of Nur77 expression on CD8 TILs in regressing tumors (blue) than growing tumors (red). (H) Normalized Nur77 
expression inversely correlated with tumor volume (R2=0.3305). Nur77 expression was normalized by dividing the geometric 
mean fluorescence intensity (MFI) of Nur77 expression on CD8 TILs with Nur77 MFI on splenic CD8 controls. (I) A higher 
percentage of CD8 TILs expressing Ly6A in regressing tumors (left) than growing tumors (right). (J) The percentage of CD8 TILs 
expressing Ly6A inversely correlated with tumor volume (R2=0.4196) (n=37, two independent experiments).
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Figure 3  Tumor-extrinsic and tumor-intrinsic factors influencing heterogeneous growth pattern of A223. (A) CD8 T cells 
were required for tumor eradiation. A223 squamous cell carcinomas (SCCs) were orthotopically transplanted into the cheek 
of CD8α−/− recipient mice (n=19, across four independent experiments). (B–C) Regressors developed antitumor memory 
responses. Wild-type (WT) B6 mice were injected with A223 tumors (n=40, three independent experiments). (B) Left panel: 
29 out of 40 mice were progressors (tumor growing out). Right panel: 11 out of 40 mice were regressors (tumor eliminated). 
Regressors were re-challenged with A223 and rejected tumors rapidly (n=9) (C). (D–F) A223 was subcloned into single colonies. 
Subclones were each tested by injection into WT B6 recipients. Growth from three independent subclones are shown—1C12 
(n=19; two independent experiments) (D), 1H10 (n=19, two independent experiments) (E) and 1D4 (n=20, two independent 
experiments) (F). (G–J) Passaged A223 tumors still exhibited heterogeneous growth pattern regardless of the originator tumors. 
(G) Original tumor growth of each passage. A total of 250 000 A223 cells were injected into WT B6 mice. (H) Experimental 
scheme for passaging tumors. Two regressing and two growing tumors were removed from original mice, passaged in vitro 
and 250 000 cells were injected into the cheek of naïve WT B6 mice. (I) Tumor growth in WT B6 naïve mice that received a 
regressing passage (250 000 cells injected). Three out of 10 mice rejected tumors (two independent cohorts). (J) Tumor growth 
in naïve mice that received a growing passage (250 000 cells injected). Six out of 15 mice rejected tumors (two independent 
cohorts).
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against A223 tumors. In the original cohort (n=40 WT B6 
mice), 11 eradicated their tumors (regressors) while 29 
did not (progressors) (figure 3B), leading to ~25% long-
term survival (online supplemental figure 2M). In the 
second cohort, 9 of the 11 regressors were re-challenged 
with A223 tumors, and all of them rapidly eradicated 
tumors with faster kinetics than during the first exposure 
(figure  3C). Consistently, 100% of re-challenged mice 
survived (online supplemental figure 2N). As parallel 
controls, we injected 11 age-matched naïve WT B6 mice 
that encountered tumors for the first time and showed 
a lower level of survival than re-challenged mice (online 
supplemental figure 2N-O). We conclude that regres-
sors developed an immunological memory response that 
quickly eradicated a second tumor challenge.

The effect of tumor-intrinsic factors on tumor eradication
We next aimed to test whether the heterogeneous anti-
tumor responses are also attributed to tumor-intrinsic 
factors. We subcloned A223 tumors to test if progression 
versus regression was due to variability between subclones 
in the parental cell line. We found that subclones elic-
ited variable responses—subclone 1C12 grew out consis-
tently in all recipients (figure  3D), whereas subclone 
1H10 exhibited a similar regression rate as the parental 
line (20%, figure 3E) and subclone 1D4 showed an even 
higher regression rate (50%, figure  3F). The variety in 
response suggests a potential role of tumor-intrinsic 
mechanisms, for example, subclones may lose or acquire 
different neoantigens. Nevertheless, the heterogeneous 
antitumor responses in a single subclone still suggest that 
there are tumor-extrinsic mechanisms involved in tumor 
eradication.

Next, we addressed whether tumors differentiated in 
vivo into aggressive or weak subtypes and maintained 
their states. We harvested growing and regressing tumors 
in vivo (figure  3G), passaged them in vitro for a short 
duration and re-injected these tumors into naïve mice 
(figure  3H). We found that naïve mice similarly eradi-
cated secondary tumors, regardless of the originating 
tumor states. Thirty per cent of mice that received the 
‘regressing passage’ eradicated tumors (figure 3I), indi-
cating that these tumor cells still were able to grow out 
in naïve mice. Notably, 40% of mice that received the 
‘growing passage’ also eradicated tumors (figure  3J), 
suggesting that the aggressive phenotypes were not main-
tained in secondary recipients. Thus, we conclude that 
tumor eradication is highly dependent on host-intrinsic 
differences, despite possible variations in the tumor cells.

Top TCR clonotypes appear to be mutually exclusive in 
regressing versus growing CD8 TILs
Given that CD8 T cells were required for tumor eradi-
cation, we hypothesized that the differences in the TCR 
repertoire of CD8 TILs contribute to the heterogeneous 
antitumor immune responses in genetically identical 
B6 mice, due to the fact that B6 mice harbor a stochas-
tically generated TCR repertoire via random V(D)

J recombination. To determine whether and how the 
CD8 T cells differ between progressors and regressors, 
we sequenced CD8 T cells from six mice (progressors 
1–3 and regressors 1–3; figure  4A, left) using coupled 
single-cell RNA-sequencing and single-cell TCR V(D)J 
sequencing so that we could link the unique TCR clono-
types with matched transcriptome analysis for individual 
T cells (figure 4A, right). We performed single-cell TCR 
sequencing for CD8 TILs isolated from regressor 1–3 
and progressor 2–3 and splenic CD8 T cells isolated from 
regressor 2–3 and progressor 3 (see details in online 
supplemental table 1, including cell number sequenced 
per sample). All five CD8 TIL samples demonstrated 
clonal expansion regardless of regressor or progressor 
state, whereas splenic CD8 T cells showed little clonal 
expansion (figure  4B). The top 10 TCR clonotypes 
(including VDJ usage and CDR3 sequences of TCRα and 
TCRβ) and their abundance in each sample are shown 
in online supplemental table 2. Intriguingly, there were 
few TCR clonotypes shared between samples, indicated 
by colored pie slices (figure 4B). While most shared TCR 
clonotypes were only found in up to two samples in high 
abundance, one TCR clonotype was present in four out 
of five TIL samples, denoted as ‘Shared Clonotype 1’ 
and indicated by yellow color in the pie charts (figure 4B 
and online supplemental table 3). Of note, splenic CD8 
T cell samples contained some of the top TCR clono-
types identified in TIL samples of the two regressors 
at a relatively high abundance (figure  4B, top, Regr#2 
Spleen and Regr#3 Spleen); however, the splenic CD8 
T cell sample of the progressor did not (figure 4B, top, 
Grow#3 Spleen). Taken together, the clonal expansion 
of CD8 TILs observed in both regressors and progressors 
suggests that tumor antigen recognition likely occurred 
in all recipients, led to activation of CD8 TILs, of which 
some may be tumor-reactive.

Despite the few shared clonotypes between samples, 
the top TCR clonotypes (abundance >1% of a given 
sample) appeared mutually exclusive between regressor 
and progressor TIL samples (figure 4C). A vast majority 
of these top TCR clonotypes were only identified in one 
mouse, and <5% of these clonotypes were present in 
more than one mouse (online supplemental figure 3A). 
We performed a Fisher’s exact test (p<0.0001) to deter-
mine whether clonotypes observed in progressors are also 
observed in regressors at a similar frequency, and vice 
versa. Our results showed that progressor TCR clonotypes 
were much more frequently observed in progressors than 
in regressors, and vice versa, thereby further supporting 
our observations and confirming the mutual exclusivity 
of progressor versus regressor clonotypes (online supple-
mental figure 3G). Consistently, when TCRα or TCRβ 
CDR3 sequences were analyzed separately, the top TCRα 
and TCRβ CDR3 sequences also appeared mutually exclu-
sive between regressing versus growing TILs, with only a 
few exceptions (online supplemental figure 3B,C). These 
data collectively suggest a highly individualized antitumor 
immune response.
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Figure 4  Top T-cell receptor (TCR) clonotypes and TCR specificity groups appear to be mutually exclusive between regressing 
and progressing tumor-infiltrating lymphocytes (TILs). (A) Left panel: tumor growth pattern of regressors (blue) and progressors 
(red) (n=3 for each group). A total of 250 000 A223 tumor cells were injected into wild-type (WT) B6 mice (n=6). Right panel: 
experimental scheme. Tumors were removed and CD8 T cells were isolated by sorting and subjected for single-cell 5’ RNA 
sequencing and TCR sequencing. (B) TCR clonotype distribution in eight sequenced samples including three splenic CD8, 
three regressor CD8 TIL and two progressor CD8 TIL samples. In each sample, cells containing the same TCR (one ‘clonotype’) 
are shown as a single pie slice representing the per cent of these cells in the entire sample. Clonotypes shared between 
samples are colored, where the yellow denotes the most shared clonotype (‘Shared Clonotype 1’). (C) Cells were grouped into 
clonotypes based on the paired amino acid (a.a.) sequences of their CDR3α and CDR3β regions. Top clonotypes are shown in a 
heatmap sorted by average abundance in progressors versus average abundance in regressors. (D) Heatmap of top 20 GLIPH 
groups identified in five TIL samples based on TCRβ CDR3 sequences. Groups are ordered based on their average per cent in 
regressor samples (RT1, RT2, RT3) versus average per cent in progressor samples (GT2, GT3). Only group 1 is present in all five 
TIL samples, whereas most groups occurred only in one sample. (E) Network plots of GLIPH groups 1–6. Each node represents 
a TCRβ CDR3 sequence, and each line represents a global (thick line) or local (thin line) similarity to another CDR3 sequence. 
Node sizes represent overall abundance in samples and nodes are colored based on the relative ratio between their per cent in 
growing samples (red) versus their per cent in regressing samples (blue). Relative ratio is calculated as (% in progressors)/(% 
in progressors+% in regressors). The shared clonotype’s node in group 1 is colored blue-purple and labeled with its CDR3 a.a. 
sequence.
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Although tumor-bearing mice did not frequently share 
specific TCR clonotypes in the TIL samples, we noted 
that the most abundant CDR3α and CDR3β sequences in 
regressor TILs shared similarities in a.a. sequence (online 
supplemental figure 3D,E), converging on a consensus 
that is identical to the ‘Shared Clonotype 1’ (online supple-
mental table 3). These data suggest that CDR3 sequences 
similar to that of ‘Shared Clonotype 1’ may be useful for 
recognizing A223 tumor antigens. To better explain why 
regressor CD8 TILs controlled tumor growth more effec-
tively, we hypothesized that regressor TILs might have 
more TCR clonotypes shared in certain strong, antitumor 
specificity groups. To test our hypothesis, we employed the 
GLIPH algorithm49 to determine if the TCR clonotypes 
of the TIL samples were sharing specificities (for antigen 
binding), despite not having identical CDR3 sequences. 
GLIPH analysis identified the top 10 groups of TCRβ 
CDR3 sequences based on overall abundance (online 
supplemental table 4). However, none of the 10 groups 
suggested a common specificity to either regressors or 
progressors, because most of them were largely mutually 
exclusive in individual mice (figure 4D–E, online supple-
mental figure 3F, online supplemental table 4). These 
data are consistent with the notion that a highly individu-
alized antitumor immune response develops in different 
regressors or progressors. One exception was the speci-
ficity ‘group 1’ that contained CDR3β sequences from all 
5 TIL samples and was clustered by the GLIPH algorithm 
to include the CDR3β of the ‘Shared Clonotype 1’ and 
38 other sequences (figure  4D–E, online supplemental 
table 4). Group 1 appeared slightly more prevalent in 
regressor samples; however, the difference was not signif-
icant. Thus, the potential of tumor antigen recognition 
might be strongest with clonotypes in group 1; however, 
the presence of these likely tumor-reactive clonotypes 
alone is not sufficient to elicit tumor eradication.

To obtain a higher-level overview of whether TCR 
determinants are associated with tumor regression versus 
progression, we assessed germline Vα-Jα or Vβ-Jβ gene 
segment usage by individual mice that might provide a 
broader view of how TCR repertoires vary between indi-
vidual mice and in regressors versus progressors. For each 
of the eight samples sequenced for TCR including TIL and 
splenic samples, we included a heatmap for the usage of 
Vα-Jα gene segments (online supplemental figure 4A,B) 
or Vβ-Jβ gene segments (online supplemental figure 5). 
Notably, regressor TIL samples indeed exhibited a pref-
erential usage of certain gene segments, such as TRBV16 
and TRBJ2-7, which also occurred in regressor splenic 
samples but not in any progressor samples (online supple-
mental figure 5). In addition, splenic samples appeared to 
display a more even distribution of different V or J gene 
segments, whereas TIL samples clearly showed a prefer-
ential usage of certain V or J gene segments, consistent 
with the expansion of different TCR clonotypes.

Lastly, to provide more context regarding whether 
the observed degree of clonal expansion is meaningful, 
we examined clonal expansion in a non-tumor bearing 

‘healthy’ WT B6 mouse to reveal the expected degree of 
TCR repertoire restriction. We downloaded and similarly 
analyzed the ‘splenocytes from C57BL/6 mice, 10k cells 
(v2)’ public dataset from 10× Genomics, which contains 
VDJ-sequenced T cells from a WT B6 mouse. We presented 
the heatmaps of Vα-Jα and Vβ-Jβ usage and pie chart for 
clonal expansion, and found no clonal expansion in this 
sample (online supplemental figure 6).

CD8 TILs from both regressors and progressors were 
activated
The 3’ RNA-sequencing was performed on CD8 TILs 
of regressor #1 and progressor #1, and the 5’ RNA-
sequencing was performed on CD8 TILs of regres-
sors #2–3, progressors #2–3 and splenic CD8 T cells of 
regressors #2–3 and progressor #3 (see details in online 
supplemental table 1). RNA expression data from all nine 
samples (41 099 total cells) were analyzed using Seurat 
V.3 and Monocle 3-beta, and samples were plotted into 
one UMAP, shown either superimposed or separately for 
regressor, progressor or spleen (figure  5A). Cells were 
grouped by unsupervised clustering (figure  5B), and 
different clusters were defined based on the expression of 
representative genes (figure 5C–D, online supplemental 
figure 7A-C). The full lists of differentially expressed 
genes for each cluster were also included (online supple-
mental files 1-9). While spleen cells predominated in 
naïve clusters (N1–N3) of the UMAP, both regressor 
and progressor CD8 TILs mainly occupied each of the 
activation clusters (figure 5A–B), showing that regressor 
and progressor TILs managed to reach different activa-
tion states. Consistently, regressor and progressor TILs 
upregulated nearly all of the same genes when compared 
with naïve T cells, although to different extents (online 
supplemental table 5).

Monocle analysis of the nine samples revealed a differ-
entiation trajectory between naïve cell clusters (N1–N3) 
and activated cell clusters (A1–A5), ending in the highest 
activated cluster (A6) and the dividing cell clusters (D1–
D3) (figure 5E). Cluster A6 was of particular interest, as 
the cells in this cluster expressed highest levels of Il2, Ifng, 
Nr4a1, Nr4a2, Ccl4 and Cd69, while expressing modest 
amounts of Sell and Ccr7 (figure 5D, online supplemental 
figure 7A), suggesting that cells in the A6 cluster were 
the most activated and memory-like. We examined the 
per cent of each sample in individual clusters and found 
that the progressor TIL samples appeared to be slightly 
less prevalent in A1 (initial activation cluster), A3 (IFN-
stimulated cluster) and A6 clusters, while more prevalent 
in D1–D3 (figure 5F). Of note, when compared with naïve 
T cells, some genes were more upregulated in progressor 
TILs such as Gzmf and S100a4, whereas others were more 
upregulated in regressor TILs such as Ly6a, Ly6c2, Ccl4 
and Ccl5 (figure  5G, online supplemental figure 8A, 
online supplemental table 5). We also separated cells by 
cohort since only one progressor and one regressor were 
sequenced in each sequencing cohort and found that 
these genes were still differentially expressed between 
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Figure 5  Both regressor and progressor tumor-infiltrating lymphocytes (TILs) cluster into the same activation states. (A) 
Transcriptional data of >41 000 cells from nine samples (Grow1-TIL, Regr1-TIL, Grow2-TIL, Regr2-TIL, Regr2-Spln, Grow3-TIL, 
Regr3-TIL, Grow3-Spln, Regr2-Spln) were integrated using Seurat’s integration algorithm, and clustered using UMAP (see online 
supplemental table 1 for additional information on the nine samples). Cells are colored by sample type: regressor TILs (blue), 
progressor TILs (red) or splenic CD8 (gray). The same UMAP plot was shown as a plot containing three types of samples or 
three separate plots containing only one sample type. (B) Cells from nine samples are clustered together by UMAP as described 
in (A) and 13 functional clusters are colored based on gene expression. (C) Cluster abbreviations are shown to be referenced in 
other plots. (D) Cells from nine samples are clustered by UMAP as in (A). Cells are colored based on normalized expression for 
nine representative gene markers (gray=little to no expression; red=high expression). (E) Cells from nine samples are clustered 
by UMAP as in (A) and were analyzed using Monocle 3 Beta to plot a pseudo-time trajectory onto the UMAP, demonstrating 
a differentiation trajectory between naïve cells and highest activated (A6) cells. (F) Heatmap of the per cent of each sample 
residing in each cluster of the UMAP. Samples and cluster names of the heatmap were ordered by unsupervised clustering. (G) 
Representative genes upregulated in growing or regressing activated TILs (residing in one of the six activated clusters: A1–A6) 
versus naïve T cells (residing in N1–N3). Grow-Act, activated clusters in growing samples; Naïve, naïve clusters in all samples; 
Regr-Act, activated clusters in regressing samples. Groups were compared using one-way analysis of variance (ANOVA) 
(****p<0.0001).

https://dx.doi.org/10.1136/jitc-2020-001615
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progressor and regressor TILs within each cohort (online 
supplemental figure 8A). We conclude that both regressor 
and progressor TILs were activated, although progressor 
TILs appeared to be less activated than regressor TILs.

Top TCR clonotypes of TILs differentially occupy activation 
clusters in regressors versus progressors
Since progressor and regressor TILs as a whole were only 
modestly different in gene expression, we hypothesized 
that the TILs that had clonally expanded to at least 1% of 
each sample (top TIL TCR clonotypes) would be differ-
entially activated between progressors and regressors. T 
cells were grouped into clonotypes based on identical 
TCRα and TCRβ CDR3 a.a. sequences, then clonotypes 
were sorted based on abundance in progressors versus 

abundance in regressors as described in figure  4C. We 
compared the top TIL TCR clonotypes to ‘other’ (defined 
as clonotypes that were <1% of a splenic sample) for the 
per cent of cells in each clonotype found in each cluster. 
Regressor top clonotypes were significantly more prev-
alent in clusters A1, A3 and A6; in contrast, progressor 
ones were significantly more prevalent in clusters A4 and 
D1–D3 (figure 6A–B). To account for individual mouse 
differences, we also analyzed cluster distribution by 
comparing TCR clonotypes within each cohort. Differ-
ences were evaluated using two-way analysis of variance 
for progression group (progressor vs regressor) and for 
cohort. While variations by progression group were statis-
tically significant as indicated on the right of each plot 

Figure 6  Top T-cell receptor (TCR) clonotypes of progressor tumor-infiltrating lymphocyte (TIL) versus regressor TIL occupy 
different activation clusters. (A) Expanded clonotypes (>1% of a TIL sample) are shown as log10 of the per cent of the clonotype 
existing in each cluster of the UMAP. (B) Clusters that are differentially occupied by progressing and regressing clonotypes from 
(A) are quantified with dot plots with a black line indicating the mean. Progressor and regressor groups were compared using 
t-tests with Mann-Whitney U test correction for non-parametric data. *P<0.05; **p<0.01; ***p<0.001; ****p<0.0001. (C and D) All 
TCR clonotypes from Regr2 and Regr3 (C) or from Grow2 and Grow3 (D) with at least 50 cells are shown as bars, broken down 
into different colors representing the per cent of the clonotype in each cluster of the UMAP. (E) A graph summary of per cent in 
clusters for clonotypes in (C) and (D). Progressor group (red), regressor group (blue). Error bars indicate the SEM. Significance 
was calculated using two-way analysis of variance (ANOVA) with Sidak’s multiple comparison test (**p<0.01, ***p<0.001). (F) 
UMAP of CD8 T cells with shared TCR clonotypes. Three representative TCR clonotypes are shown. Cells with a given TCR 
clonotype are shown in red color for progressing TILs or blue for regressing TILs, over cells with all other TCR clonotypes from 
all samples (gray). (G) The per cent of each of the three shared clonotypes in each of the clusters (A1–D3). (H) A summary graph 
showing the per cent of the three shared clonotypes occupying each of the clusters (A1–D3). Clonotypes in regressor samples 
occupy A6 cluster more than their matched counterparts in progressor samples. Significance was calculated with two-way 
ANOVA with Sidak’s multiple comparisons test. **P<0.01.

https://dx.doi.org/10.1136/jitc-2020-001615
https://dx.doi.org/10.1136/jitc-2020-001615


14 Woolaver RA, et al. J Immunother Cancer 2021;9:e001615. doi:10.1136/jitc-2020-001615

Open access�

(online supplemental figure 8B), the differences in each 
cluster appeared to vary slightly by cohort (online supple-
mental figure 8B). To further corroborate our findings, 
we examined all regressor and progressor clonotypes that 
contained at least 50 cells for their distribution in different 
clusters (figure 6C–D). Consistently, a significantly higher 
per cent of regressor clonotypes were in clusters A1 and 
A6, while progressor clonotypes were significantly higher 
in cluster A4 (figure 6E).

Next, we asked whether the same TCR clonotype would 
behave differently in regressors versus progressors. We 
identified three TCR clonotypes that were shared between 
regressor and progressor TIL samples and that contained 
at least 50 cells in a given sample (online supplemental 
table 3), thereby allowing us to make matched compar-
isons. UMAP plots clearly showed that the three shared 
TCR clonotypes occupied different clusters in regres-
sors versus progressors (figure  6F). For instance, the 
‘Shared Clonotype 3’ predominated in cluster A5 in the 
progressor TIL sample but in cluster A6 in the regressor 
TIL sample (figure 6F). We then calculated the per cent of 
each of three shared clonotypes in all clusters and found 
that the same TCR clonotype distributed quite differently 
in regressor versus progressor TIL samples (figure 6G). 
Statistical analysis of the pooled data from three shared 
clonotypes showed that, T cells, despite having the same 
TCR clonotypes, tended to enrich more in cluster A1 and 
significantly more in cluster A6 when found in regres-
sors than in progressors (figure 6H). Taken together, we 
conclude that the expanded T cells in progressors are 
deficient at initiating activation, evidenced by less preva-
lence in cluster A1, and at reaching the highest activation 
state, cluster A6.

Top TCR clonotypes of TILs exhibited differentially activated 
genes in progressors versus regressors
To further reveal the differences between progressor 
and regressor CD8 TILs, we performed two different 
differential gene expression comparisons: (I) progressor 
top clonotypes (>1% of a progressor TIL sample) versus 
‘other’ clonotypes (<1% of a splenic sample), and (II) 
regressor top clonotypes (>1% of a regressor TIL sample) 
versus ‘other’ clonotypes. The heatmap illustrated the 
differential scaled gene expression of each top TCR 
clonotype of TIL samples versus ‘other’ clonotypes, which 
clearly demonstrated clusters of differentially expressed 
genes in progressors versus regressors (figure 7A). The 
most differentially expressed genes with their averaged 
fold changes and the most conservative p values calcu-
lated from each cohort were listed in online supple-
mental table 6 for comparison I and II. The fold changes 
of some representative genes were shown for compar-
ison I and II, respectively (figure  7B–C). Progressor 
top clonotypes expressed much more Gzmf, a mouse-
specific granzyme, than regressor ones (figure 7B, online 
supplemental figure 8C, online supplemental table 6). 
Progressor top clonotypes also expressed higher levels 
of genes involved in immunosuppressive processes such 

as Tsc22d3 that was shown to facilitate the generation of 
peripherally induced Tregs.54 Conversely, regressor top 
clonotypes expressed higher levels of type I IFN respon-
sive genes (Isg15, Ifi209, Ifi213) and Irf7, a transcrip-
tion factor regulating the activation of type I IFN genes 
(figure 7C, online supplemental table 6), consistent with 
their increased prevalence in the IFN-stimulated cluster 
(A3). Additionally, regressor top clonotypes expressed 
higher levels of genes involved in memory T cell function 
or development, including, Cxcr6, Ly6a55 and Ly6c2,56 
consistent with our flow cytometry data (figure  2I–J, 
online supplemental figure 2F,K,L). Regressor top clono-
types also expressed higher levels of genes related to cyto-
toxic or effector functions of activated T cells, including 
Ccl4, Gzmb, Icos and Ccl5 (figure 7C, online supplemental 
table 6).

Violin plots of normalized expression of representative 
genes in all cells consistently showed differing expres-
sion between progressor versus regressor top clonotypes 
(figure  7D–E). We also separated cells by cohort and 
found that these genes were still differentially expressed 
between progressor and regressor top clonotypes 
(online supplemental figure 8C,D). To directly compare 
progressor top clonotypes versus regressor top clono-
types, we performed two additional differential gene 
expression comparisons: (III) regressor top clonotypes 
versus progressor top clonotypes, and (IV) progressor top 
clonotypes versus regressor top clonotypes. The data from 
these two comparisons including averaged fold changes 
and the most conservative p values calculated from each 
cohort were listed in online supplemental table 7) for 
comparison III and IV. Taken together, progressor top 
clonotypes, while expressing many of the same genes 
as their regressor counterparts, appear to be limited in 
activation status and induced into frequent division. In 
contrast, regressor top clonotypes appear to receive addi-
tional stimulation from type I IFNs, achieve better activa-
tion, acquire stronger cytotoxic ability, and reach more 
memory-like states.

To explore the implications of our findings in human 
patients with HNSCC, we used the HNSCC patient RNA-
sequencing and survival data from the TCGA Pan-Cancer 
Atlas (cBioPortal) to test if the genes more upregu-
lated in regressor top clonotypes are indicative of better 
survival. We used Cox univariate regression analysis and 
found that 30 of the genes that were more upregulated 
in regressor top clonotypes did significantly (p<0.05) 
correlate with patient survival (data not shown). We 
then scored each patient for the expression of 30 genes 
and grouped patients into high-expression versus low-
expression categories. Our analysis showed that patients 
with high expression of the 30-Gene-Signature had signifi-
cantly better survival (p=0.00052) compared with patients 
with low expression (figure 7F). We suggest that the genes 
more upregulated in regressor TILs in our dataset may 
serve as prognostic markers for successful antitumor 
immune responses.
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DISCUSSION
We employed a unique mouse model of HNSCC to inves-
tigate the underlying mechanisms of heterogeneous 
antitumor immune responses. A major advantage of our 
model system is that A223 tumors can be transplanted into 
immunocompetent genetically identical recipients, yet 
the tumors can be spontaneously eradicated in a subset 
of recipients. Hence, this system may provide a better 

control for tumor-intrinsic and host-genetic variables, 
thereby uncovering the contribution of the adaptive 
immunity to tumor eradication. Our key findings include: 
(1) spontaneous tumor eradication required CD8 T cells 
and tumor volume was inversely correlated with CD8 T 
cell poly-functionality; (2) regressors developed an immu-
nological memory response against A223 tumors; (3) 
commonly used TCR clonotypes appeared to be mutually 

Figure 7  Top T-cell receptor (TCR) clonotypes of progressor tumor-infiltrating lymphocyte (TIL) versus regressor TIL show 
differentially activated genes. All cells with a given clonotype above 1% of a progressor or regressor TIL sample were evaluated 
against all cells with clonotypes <1% of spleen samples (‘other’) using Seurat’s FindMarkers function. (A) Gene expression 
is shown by heatmap where values are the average of scaled expression for all cells of each clonotype. Genes were filtered 
for those differentially expressed in regressor and progressor clonotypes (≥0.4 difference between progressor fold change 
and regressor fold change). (B and C) Fold changes were calculated as the difference in expression between progressor 
top clonotypes and other clonotypes (‘progressor fold change’) or between regressor top clonotypes and other clonotypes 
(‘regressor fold change’) (≥0.6 difference between progressor fold change and regressor fold change). See online supplemental 
table 6 and online supplemental file 10 for full list of genes with fold changes and p values. Genes more upregulated in 
progressor clonotypes (B) or in regressor clonotypes (C). (D and E) Violin plots of select differentially expressed genes between 
regressor or progressor top TCR clonotypes and other clonotypes. The normalized gene expression for all cells in each category 
is shown. Black dots indicate the mean of each group. Genes more highly expressed in progressor top clonotypes (D) or in 
regressor top clonotypes (E). Groups were compared using one-way analysis of variance (ANOVA) (**p<0.01, ****p<0.0001). 
(F) HNSCC TCGA PanCancer RNA sequencing data were used to score patients for the expression of 30 genes found to be 
upregulated in regressor top clonotypes (right). Scores for the 30-Gene-Signature were calculated as the sum of normalized 
expression (patient expression/dataset median) for each of the 30 genes, and then patients were grouped into high-expression 
(having a score >the median score) or low-expression (having a score <the median score). Patients with high expression of the 
30-Gene-Signature have significantly better survival (p=0.00052).
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exclusive in regressor versus progressor TILs; (4) TILs in 
regressors and progressors shared very little similarity in 
TCRβ specificity groups, despite their potential for recog-
nising the same tumors; (5) unexpectedly, TILs from 
both progressors and regressors underwent clonal expan-
sion and were activated with only modest differences in 
gene expression when analyzed as a whole; (6) regressor 
TILs with top TCR clonotypes clustered more prevalently 
in A1, A3 and A6, whereas progressor counterparts did 
not. These observations were also supported by differ-
ential gene expression analysis of top TCR clonotypes in 
regressor versus progressor TILs. Thus, the A223 tumors 
may serve as a useful model system to better understand 
fundamental principles governing highly individualized 
antitumor immune responses in a setting of polyclonal T 
cell activation.

Prior studies have uncovered insight into tumor 
antigen-specific T cell immune responses by using model 
antigens expressed in tumors and transgenic T cells 
recognizing such model antigens,33–36 many of which are 
immunodominant.57–59 However, tumor immunogenicity 
varies widely between different patients,60 and tumors 
may express immunodominant antigens and less immu-
nogenic antigens. Thus, to better understand the nature 
of T cell-mediated antitumor immune responses, it would 
be important if such responses can be evaluated in a poly-
clonal naturally occurring setting with tumors that express 
multiple antigens with variable immunogenicity. In this 
regard, TILs in five different recipients transplanted 
with A223 tumors shared very little antigen specificity, as 
evidenced by the clonal expansion of many clones that 
were not detectable in other recipients (figure 4C) and 
the exclusive GLIPH specificity groups that were only 
present in one recipient (figure 4D). Based on the lack of 
TCR clonotypic or specificity overlap between recipients, 
we infer that each mouse employs an individualized T cell 
repertoire to mount immune responses against the same 
A223 tumors. Given that A223 tumors potentially harbor 
abundant neoAgs that are recognizable by the immune 
system, why did not all the recipients eradicate tumors? 
First, tumor antigens may be poorly immunogenic so that 
they could induce clonally expanded TILs in all recipients 
but fail to elicit tumor eradication. Second, the presence 
of a single tumor-reactive TCR clonotype may not be 
sufficient to induce tumor eradication. We predict that a 
combination of multiple clonotypes may be needed. Third, 
we speculate that different recipients harbor intrinsic 
differences in their TCR repertoire that may influence the 
chance of a successful antitumor immune response.61 For 
instance, such differences in TCR repertoire may affect the 
frequency of neoAg-reactive clones or the optimal compo-
sition of such clones that tips the balance between tumor 
eradication and outgrowth. We suggest that the A223 
model might be immensely useful for studying hetero-
geneity, due to its unique and inherent ability to elicit 
heterogeneous antitumor immune responses (eg, sponta-
neous tumor eradication vs outgrowth), and its potential 
to harbor multiple poorly-immunogenic neoAgs.

TILs in human cancers were examined by single-cell 
RNA-sequencing to show that certain T cell clusters indi-
cate better patient outcome or that effective treatments 
caused T cells to reside in almost completely different 
clusters compared with the control-treated T cells.31 62 63 
Additionally, clonal expansion may indicate a successful 
immune response against tumors.64 Given our finding 
that T cell activation inversely correlated with tumor 
volume to a high degree, we anticipated that regressor 
versus progressor TILs would reside in different clusters, 
and that progressor TILs would not achieve the same 
level of clonal expansion as their regressor counterparts. 
Unexpectedly, we found that T cells in growing tumors 
demonstrated polyclonal expansion, and that T cells in 
growing tumors reached each of the different activa-
tion states identified on the UMAP. Nevertheless, we did 
find that the frequency of TILs reaching specific activa-
tion states, particularly the highest-activated state (A6), 
differed significantly between regressors and progressors. 
Therefore, we suggest that one’s ability to eradicate a 
tumor is not dependent on whether T cells get activated 
in the TME, but rather the proportion of T cells that 
achieve optimal states of activation. Intriguingly, A223 
tumors partially responded to anti-PD-1 treatment (data 
not shown), suggesting that tumors can be controlled by 
reactivating some of these activated but likely exhausted 
CD8 TILs in growing tumors. An important field that 
requires further study is to identify factors causing acti-
vated T cells to reach optimal levels of activation versus 
sub-optimal activation (eg, exhaustion).

A fundamental unaddressed question is to what extent 
the TCR or its clonality contributes to T cell activation. 
Many studies used single-cell RNA-sequencing and exam-
ined the distribution of T cell clones among the different 
activation states in a tSNE or UMAP plot. While some have 
shown that single clones are largely relegated to either 
one or two clusters of the plot,62 65–67 few have shown 
that clones are quite spread out between the different 
clusters.68 One limitation of these prior studies is that 
the overall number of cells sequenced per sample, and 
thus the number of cells per clone, have been limited, 
often ranging from 8 to 50 cells per clone. However, our 
studies expand on this question due to our analysis of 56 
clones each containing between 50 and 2200 cells, where 
we found that most of these expanded clones contain 
cells residing in each of the UMAP’s activated clusters. 
Thus, a T cell’s TCR may not dictate the activation states 
that it can achieve. Indeed, when we analyzed the same 
TCR clonotype shared between a regressor versus a 
progressor, the distribution of cells showed that ‘shared 
clonotypes’ in regressors were significantly more abun-
dant in the highest activated cluster (A6), suggesting 
that the TCR alone was not sufficient to drive optimal 
activation since the cells with the same TCR clonotype 
failed to reach cluster A6 in progressors. We postulate 
that, instead of TCR affinity alone driving differentiation 
into various activation states, the TME and inflammatory 
signals cooperate with TCR-based signaling to shape T 
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cell differentiation into different states. Accordingly, our 
data suggest that regressor TILs are more prevalent in 
an IFN-stimulated state (A3), with many genes upregu-
lated related to IFN signaling. Therefore, IFN signaling 
may provide additional co-stimulation to T cells to help 
drive them into optimal activation states as suggested by 
prior work.69–72 Of note, we further postulate that regres-
sors may mount a successful antitumor immune response 
if they have CD8 TILs enriched in clusters A1 and A6 
(initial activation and highest activation); or if they have 
CD8 TILs enriched in cluster A3 (IFN-stimulated). This 
notion is in line with our overall conclusion that anti-
tumor immune responses appear to be highly heteroge-
neous in different hosts.
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