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The large volumes of sequencing data required to sample deeply
the microbial communities of complex environments pose new
challenges to sequence analysis. De novo metagenomic assembly
effectively reduces the total amount of data to be analyzed but
requires substantial computational resources. We combine two
preassembly filtering approaches—digital normalization and par-
titioning—to generate previously intractable large metagenome
assemblies. Using a human-gut mock community dataset, we dem-
onstrate that these methods result in assemblies nearly identical
to assemblies from unprocessed data. We then assemble two large
soil metagenomes totaling 398 billion bp (equivalent to 88,000
Escherichia coli genomes) from matched lowa corn and native prai-
rie soils. The resulting assembled contigs could be used to identify
molecular interactions and reaction networks of known metabolic
pathways using the Kyoto Encyclopedia of Genes and Genomes
Orthology database. Nonetheless, more than 60% of predicted
proteins in assemblies could not be annotated against known
databases. Many of these unknown proteins were abundant in
both corn and prairie soils, highlighting the benefits of assembly
for the discovery and characterization of novelty in soil biodiver-
sity. Moreover, 80% of the sequencing data could not be assem-
bled because of low coverage, suggesting that considerably more
sequencing data are needed to characterize the functional content
of soil.

COmpIex microbial communities operate at the heart of many
crucial terrestrial, aquatic, and host-associated processes,
providing critical ecosystem functionality that underpins much of
biology (1-7). DNA sequencing has begun to reveal the enor-
mous biological diversity and heterogeneity within these systems,
making them difficult to study in situ (2, 4, 5). With ultradeep
sequencing, we now have unprecedented access to even the rare
species in these environments. However, in complex envi-
ronments such as soil [where an estimated 50 Tbp is required to
sample a gram adequately (8)], converting these large volumes
of sequencing data to biologically useful information remains a
major challenge.

As the sizes of sequencing datasets grow at an exponential
rate, significant computational resources for data storage and
analysis are required. A single metagenomic project can readily
generate as much or more data than is in global reference
databases; for example, a human-gut metagenome sample con-
taining 578 Gbp [ERA000116 (5)], produced more than twice
the data in the National Center for Biotechnology Information
(NCBI) RefSeq (Release 56) database. In its simplest form,
these data (millions to billions of short reads) are error prone
and contain only minimal signal for homology searches, limiting
direct annotation approaches against reference databases (9).
Furthermore, in systems where little of the microbial diversity
has been characterized, these annotation approaches are chal-
lenged by a lack of reference genomes, and more than half of
identified genes share little or no similarity to any experimentally
studied genes (1, 5).

Consequently, investigators of environmental metagenomic
datasets are confronted by overwhelming volumes of data for
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which they have neither the computational resources nor effec-
tive bioinformatics tools (because of short read lengths or a lack
of reference genomes) to analyze efficiently. De novo assembly
of sequence data offers several advantages for analyzing meta-
genomic datasets. It provides improved accuracy of sequences by
removing most random sequencing errors and results in longer
and more specific contigs than found in unassembled se-
quencing reads (10). Furthermore, assembly significantly reduces
the total volume of data required for downstream analysis (e.g.,
gene annotation). Also, de novo assembly does not rely on the
existence of reference genomes, thus allowing the discovery of
novel genomic elements. The main challenge for metagenomic
applications of de novo assembly is that current assembly tools
do not scale to the high diversity and large volume of metagenomic
data. Metagenomes from rumen, human gut, and permafrost soil
sequencing could be assembled only by discarding low-abundance
sequences before assembly (2, 4, 5). Although many meta-
genome-specific assemblers have been developed recently for
the assembly of low-complexity communities, they cannot work
with the volume of reads necessary to achieve high coverage for
extremely diverse environmental metagenomes (10-12).

Here, we apply two preassembly read-filtering strategies, dig-
ital normalization and partitioning, that together provide a
general strategy for scaling and improving metagenome as-
sembly for large, complex datasets (e.g., billions of reads). Digital
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normalization reduces the size of the dataset by setting aside
reads from high-coverage regions and results in more uniform
sequence coverage overall; digital normalization has been used
previously for both genome and mRNA-seq assembly (13). We
apply digital normalization to metagenomes to scale assembly
by sample richness rather than by diversity. Further, we dem-
onstrate that digital normalization combined with a partitioning
approach to separate reads based on transitive connectivity (e.g.,
grouping reads with sequencing overlap) (14) can be applied to
complex metagenomes. Because these approaches have yet to be
applied to environmental metagenomes for which the true content
is unknown, we first evaluated this strategy on a human-gut mock
community (HGMC) dataset containing 21 known genomes and
found that these methods result in assemblies that are nearly
identical to assemblies from the unprocessed HGMC dataset.
Moreover, we show that partitioning separates most reads into
species-level bins, providing an alternative to abundance-based
and k-mer approaches to species clustering. We next used these
approaches to assemble two previously intractable metagenomes
from matched soils, 100-y-cultivated Iowa agricultural corn soil
and native Iowa prairie soil. We use the resulting assemblies
to evaluate our ability both to sample and to characterize small,
3- to 6-g soil samples and their associated functional diversity.
Even with 300 Gbp of data, we are unable to achieve deep
coverage of the majority of organisms in the sample, high-
lighting the need for more extensive sequencing.

Results

Normalization Results in Similar Assemblies with Minimal Loss of
Information. The HGMC dataset contains sequences from mixed
DNA from isolates at varying abundances ranging from fourfold
to 2,000-fold sequencing coverage using the Illumina sequencing
platform (Table S1). We evaluated our ability to describe the
original HGMC genomes and to estimate the abundances of these
genomes from our filtered assembly as compared with the un-
filtered, original assembly (Fig. 1, Assembly I and Assembly II).
After sequencing, the mock metagenome (unassembled) en-
compassed a total of 93% of the genomic content of the ref-
erence genomes (Fig. S1). After digital normalization, reads
were removed based on their coverage within the dataset
(Materials and Methods), resulting in a total of 5.9 million reads
(40% of the total reads) from the original HGMC dataset (Table
1) with coverage of 91% of the reference genomes (recovery per
genome in Fig. S1). The resulting assembly of filtered HGMC
reads (normalized) was compared with the assembly of all orig-
inal reads, evaluating the recovery of reference genomes and the
length distribution of assembled contigs for each reference.
Using the Velvet assembler (15), we recovered 43% and 44% of
the reference genomes in the original and filtered assemblies,
respectively. The assembly of the original dataset contained
29,063 contigs and 38 million bp; the filtered assembly contained
30,082 contigs and 35 million bp (Table 3). Comparable recov-
eries of references between original and filtered datasets also
were obtained with other assemblers [SOAPdenovo (16) and

Unassembled Filtered by
llumina Short — coverage —|
Reads (~80 bp)

reads

Fig. 1. Summary of approaches for large-scale assembly of complex meta-
genomes presented in this study. Unprocessed (1), normalized (ll), and partitioned

assemblies (lll) were evaluated and compared with the HGMC metagenome.
These approaches were used toward the assembly of metagenomes.

Normalized
reads

Partitions of
normalized
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Meta-IDBA (17)]. Overall, the unfiltered and filtered assemblies
were very similar, sharing 95% of genomic content (Table S2),
and the distributions of contig lengths in unfiltered and fil-
tered assemblies also were comparable. For the large majority
of genomes, the filtered assembly recovered similar fractions
of each reference. In genomes with lower coverage, such as
NC_003112.2 and NC_006085.1, improved assemblies from nor-
malization were observed. In genomes with high sequencing
coverage, such as the plasmids NC_005008.1, NC_005007.1, and
NC_005003.1, the unfiltered assembly recovered significantly
more of the original sequence (Table S1).

To understand the representation of genes and genomes in the
metagenome, we evaluated our ability to estimate genome
abundance in the HGMC metagenome and both unfiltered and
filtered assemblies. Abundance was estimated through the
alignment of unassembled reads to both the known reference
genomes or assembled contigs (experimentally hypothesized
references). Sequencing coverage was determined as the median
base-pair coverage of all aligned reads. For assembled contigs
with a coverage greater than 5, the majority of reads that could
be aligned to contigs also were mapped to reference genomes
(Fig. S2). Below this threshold, reads were mapped to reference
genomes but were less likely to be associated with assembled
contigs. When the unfiltered and filtered assemblies were com-
pared, the estimated abundance of the HGMC genomes from
the filtered assembly were significantly closer to abundances
predicted from reference genomes (n = 28,652; P = 0.032; see SI
Materials and Methods).

Partitioning Separates Most Reads by Species. To subdivide large
metagenomic datasets, we next partitioned the normalized dataset
based on De Bruijn graph connectivity. This approach should
separate disconnected sequences from distinct species and allow
the assembly of each partition independently (Fig. 1, Assembly
IIT). Notably, conserved regions shared by multiple genomes (e.g.,
16S rRNA genes) may be connected within a single partition; we
examined these partitions through the HGMC dataset. Overall,
it was partitioned into 85,818 disconnected partitions containing
a total of 9 million reads. Among these, only 2,359 (2.7%) of the
partitions contained reads originating from more than one ge-
nome, indicating that partitioning separated the large majority of
reads from distinct genomes. Partitioning had minimal effects
on the assembly of a mock metagenome; the HGMC assem-
blies of the unpartitioned and partitioned dataset were very
similar, sharing 99% identical genomic content.

The number of partitions in the mock metagenome depends
largely on the sequencing coverage of its content. In general,
reference genomes with high sequence coverage were associated
with fewer partitions; a total of 112 partitions contained reads
from high-abundance reference genomes (coverage above 25),
whereas 2,771 partitions were associated with lower-abundance
genomes (coverage below 25). This result is consistent with pre-
vious observations that low coverage in sequences causes “breaks”
in connectivity within the assembly graph (18, 19).

To evaluate partitioning and its separation of species further,
we introduced spiked, simulated reads from several Escherichia
coli genomes into the HGMC dataset. First, simulated reads
from a single genome (E. coli strain E24377A, NC_009801.1 with
a 2% substitution error and 10x coverage) were added to the
HGMC dataset, and the resulting dataset, HGMC.Ecolil, was
normalized by coverage, partitioned, and assembled. Similar
amounts of data reduction were observed after digital normali-
zation and partitioning (Table 1). Among the resulting 81,154
partitioned sets of reads in the HGMC.Ecolil dataset, only 2,580
partitions (3.2%) contained reads from multiple genomes. In
total, 424 partitions contained reads from the spiked E. coli ge-
nome (201 partitions contained only spiked reads), and, when
assembled, the contigs aligned to 99.5% of the E. coli strain
E24377A genome (4,957,067 of 4,979,619 bp).

Next, we introduced five closely related E. coli strains [97.3—
98.7% average nucleotide identity (20)] into the original HGMC
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Table 1. Total number of reads in unfiltered, normalized, and partitioned datasets

Dataset Unfiltered reads (Mbp) Normalized reads (Mbp) Partitioned reads (Mbp)
HGMC 14,494,884 (1,136) 8,656,520 (636) 8,560,124 (631)
HGMC spike 14,992,845 (1,137) 8,189,928 (612) 8,094,475 (607)
HGMC multispike 17,010,607 (1,339) 9,037,142 (702) 8,930,840 (697)
lowa corn 1,810,630,781 (140,750) 1,406,361,241 (91,043) 1,040,396,940 (77,603)
lowa prairie 3,303,375,485 (256,610) 2,241,951,533 (144,962) 1,696,187,797 (125,105)

dataset. This dataset, referred to as HGMC.Ecoli5, was normal-
ized, partitioned, and assembled, resulting in 81,425 partitions.
Among these, 1,154 partitions (1.4%) contained reads associated
with multiple genomes. Among the partitions that contained
reads associated with a single genome, 658 partitions contained
reads originating from one of the spiked E. coli strains. In par-
titions containing reads from more than one genome, 224 par-
titions contained reads from a spiked E. coli strain and one other
reference genome (either from another spiked strain or from the
HGMC dataset). Independently assembling the partitions con-
taining reads originating from the spiked E. coli strains resulted
in 6,076 contigs, all but three originating from a spiked E. coli
genome. The remaining three contigs were more than 99% similar
to HGMC reference genomes (NC_000915.1, NC_003112.2, and
NC_009614.1). The contigs associated with the five E. coli strains
aligned to more than 98% of each of the five genomes. Many of
these contigs contained similarities to reads originating from
multiple genomes found in the HGMC, and more than half of
the contigs (3,075) could be aligned to reads that originated from
more than one spiked genome.

For comparison, the HGMC.Ecoli5 dataset also was assem-
bled without using any filtering approaches (e.g., no digital
normalization or partitioning). In comparing the unfiltered and
filtered HGMC.Ecoli5 assemblies, we found that the fractions of
contigs associated with multiple genomes were similar. The as-
sembly of the unfiltered dataset resulted in a greater proportion
of contigs (66% or 4,702 contigs vs. 51% or 3,075 normalized/
partitioned contigs) associated with multiple genomes.

Assembly of Two Soil Metagenomes. We next applied digital nor-
malization and partitioning approaches to the de novo assembly
of two soil metagenomes. Unfiltered Iowa corn and prairie data-
sets (containing 1.8 billion and 3.3 billion reads, respectively)
could not be assembled by Velvet in 500 GB of RAM. A 75-
million-reads subset of the Iowa corn dataset alone required 110
GB of memory, suggesting that assembly of the 3.3-billion-read
dataset might need as much as 4 TB of RAM. Applying both
normalization and partitioning approaches reduced the Iowa corn
and prairie datasets to 1.4 billion and 2.2 billion reads, respectively,
and after partitioning a total of 1.0 billion and 1.7 billion reads
remained, respectively. These prefiltering approaches required 300
GB of RAM or less (Table 2). Notably, the large majority of k-
mers in the soil metagenomes are relatively low abundance (Fig.
2), and consequently digital normalization did not remove as many
reads in the soil metagenomes as in the mock dataset (Table 1).
Based on the HGMC dataset, we estimated that above a se-
quencing depth of five, the large majority of sequences that could
be aligned to reference genomes are also assembled into contigs

Table 2. Computational resources (memory and time) required

Filter I: normalization, Filter Il: partitioning,

GB(h) Gb(h)
HGMC 4(<2) 4(<2)
HGMC spike 4(<2) 4(<2)
HGMC multispike 4(<2) 4(<2)
lowa corn 188(83) 234(120)
lowa prairie 258(178) 287(310)

4906 | www.pnas.org/cgi/doi/10.1073/pnas.1402564111

greater than or equal to 300 bp (Fig. S2). Given the greater di-
versity expected in the soil metagenomes, we normalized these
datasets to a sequencing depth of 10 (i.e., setting aside redundant
reads within dataset above this coverage). After partitioning the
filtered datasets, we identified a total 31,537,798 and 55,993,006
partitions (containing more than five reads) in the corn and
prairie datasets, respectively. For assembly, we grouped parti-
tions together into files containing a minimum of 10 million
reads. Data reduction and partitioning were completed in less
than 300 GB of RAM; once partitioned, each group of reads
could be assembled in less than 14 GB and 4 h, readily enabling
the evaluation of multiple assemblers and assembly parameters
with practical computational resources.

The final assembly of the corn and prairie soil metagenomes
resulted in a total of 1.9 million and 3.1 million contigs (mini-
mum length of 300 bp), respectively, and a total assembly length
of 912 million bp and 1.5 billion bp, respectively. To estimate
abundance of assembled contigs and evaluate incorporation of
reads, all quality-trimmed reads (including filtered reads) were
aligned to assembled contigs. Overall, for the Iowa corn assem-
bly, 8% of single reads and 10% of paired-end reads mapped to
the assembly. Among paired-end reads, 95.5% of the reads
aligned concordantly. In the Iowa prairie assembly, 10% of the
single reads and 11% of the paired-end reads aligned to the
assembled contigs, and 95.4% of the paired ends aligned con-
cordantly (Table 4). Based on the alignment of sequencing reads
to assembled contigs, we estimated the distribution of sequenc-
ing coverage in the resulting assemblies (Fig. 2). Overall, the
coverage of each metagenome was low; 48% and 31% of total
contigs in Iowa corn and prairie assemblies, respectively, had
a read coverage less than 10.

Because the resulting assemblies are consensus representatives
of the unassembled datasets, we also investigated the degree of
variation (i.e., polymorphism) present among aligned reads to
assembled contigs (SI Materials and Methods). For both the Iowa
corn and prairie metagenomes, more than 99.9% of contigs
contained base calls that were supported by a 95% consensus
from mapped reads over 90% of their lengths, demonstrating an
unexpectedly low polymorphism rate.

We annotated assembled contigs (greater than 300 bp) through
the MG-RAST pipeline. This annotation resulted in 2,089,779
and 3,460,496 predicted protein coding regions in the corn and
prairie metagenomes, respectively. The large majority of these
regions, 61.8% in corn and 70.0% in prairie, had less than 60%
similarity (over a minimum length of 15 aa) with any gene in the
MG-RAST database M5NR (release 52). In total, 613,213
(29.3%) and 777,454 (22.5%) protein coding regions were
assigned to an existing function. Many contigs were greater than
1 kbp, including 85,581 contigs in the corn metagenome (maxi-
mum length = 20,234) and 11,728 contigs in the prairie genome
(maximum length = 2,579), and the distribution of lengths
among assembled contigs was similar between sequences which
could be assigned a function and those that could not (e.g., un-
known sequences) (Figs. S3 and S4).

Annotations of the assembled corn and prairie soil meta-
genomes also were identified against the MG-RAST Kyoto
Encyclopedia of Genes and Genomes Orthology (KEGG KO)
database (Release 56). In total, 143,666 corn metagenome
sequences and 164,318 prairie metagenome sequences matched
sequences within the KO database with a minimum identity of

Howe et al.


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402564111/-/DCSupplemental/pnas.201402564SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402564111/-/DCSupplemental/pnas.201402564SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402564111/-/DCSupplemental/pnas.201402564SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402564111/-/DCSupplemental/pnas.201402564SI.pdf?targetid=nameddest=SF4
www.pnas.org/cgi/doi/10.1073/pnas.1402564111

Table 3. Assembly summary statistics for unfiltered, normalized, and normalized + partitioned datasets

No. Unfiltered Maximum No. Normalized filtered Maximum No. Partitioned Maximum
Dataset contigs length (Mbp) contig (bp) contigs length (Mbp) contig (bp) contigs length (Mbp) contig (bp) Assembler
HGMC 29,063 38 146,795 30,082 35 90,497 30,115 35 90,497 \%
HGMC 24,300 36 86,445 — — — 27,475 36 96,041 M
HGMC 36,689 37 32,736 — — — 29,295 37 58,598 S
lowa corn — — — — — — 1,862,962 912 20,234 \%
lowa corn — — — — — — 1,334,841 623 15,013 M
lowa corn — — — — — — 1,542,436 675 15,075 S
lowa prairie — — — — — — 3,120,263 1,510 9,397 \%
lowa prairie — — — — — — 2,102,163 998 7,206 M
lowa prairie — — — — — — 2,599,767 1,145 5,423 S

M, MetalDBA assembler; S, SOAPdenovo assembler; V, Velvet assembler.
unfiltered or normalized-only datasets.

60%, a minimum length of 30 aa, and E-value <le-10. The
assembled contigs had significantly longer alignments to KEGG
proteins than did unassembled reads (89 + 39 aa vs. 32 + 1 aa)
(Fig. S5). Among these, a total of 3,553 unique KO identifiers
were identified (2,201 shared between corn and prairie meta-
genomes, 223 in corn alone, and 1,129 in prairie alone) and were
found to represent broad metabolic functions (Fig. 3 and Fig. S6)
involved in metabolism, genetic and environmental information
processing, and cellular processes.

The shared presence of contigs without functional annotations
in both the corn and prairie datasets also was evaluated. As-
sembled contigs that shared no homology to known sequences in
the M5NR database were used as references for the com-
plementing soil metagenome (e.g., corn assembly reference for
prairie unassembled reads). Among these, a total of 34,436
contigs (31,058 and 3,416 corn and prairie contigs, respectively)
were found to be shared between the two soil metagenomes (S
Materials and Methods).

Discussion

Coverage-Based Filtering Approaches Reduce Datasets Without
Information Loss. Our described approach for scalable meta-
genomic assembly was effective in reducing the HGMC dataset
size without significant loss of information. Although the diversity
and sequencing depth represented by the HGMC dataset are
extremely low as compared with most environmental meta-
genomes, it represents a simplified, unevenly sampled model for
a metagenomic dataset that allows the evaluation of novel
approaches through the availability of source genomes. Our
approaches normalized the abundance of reads in the dataset to
a specific sequencing coverage while reducing the dataset volume
and removing errors introduced by extraneous reads. Further-
more, the partitioning approach subdivides large datasets into

Relative abundance

Relative abundance

10 20 30 40
Median basepair coverage of assembled contigs

Fig. 2. Coverage (median base pair recovered) distribution of assembled con-
tigs from the lowa corn soil (Upper) and lowa prairie soil (Lower) metagenomes.

Howe et al.

Assemblies of lowa corn and prairie metagenomes could not be completed on

biologically relevant subsets that can be assembled separately and
by any assembler.

Based on our evaluations of a mock metagenome, we ob-
served that the specific effects of filtering by digital normali-
zation vary, depending on the conservation of genomic regions
and abundance of genomes. In general, filtered (normalized and
partitioned) assemblies were similar to or improved upon the
assembly of the unprocessed dataset, suggesting that removing
and subsetting these data do not result in substantial loss of
information. For low-coverage genomes, the removal of er-
roneous sequences during normalization resulted in improved
assemblies. The assembly of highly abundant genomes sharing
conserved regions [such as the plasmids of the Staphylococcus
epidermidis (NC_005008.1, NC_005007.1, and NC_005003.1)] was
negatively affected by normalization. The greater number of
reads representing these sequences within the unfiltered mock
metagenome likely enabled assemblers to extend the assembly of
these sequences more effectively, and this advantage ultimately
was observed as an increased recovery of these genomes in this
assembly as compared with the normalized assembly. This result
identifies a shortcoming of our approach for metagenomic as-
sembly and, indeed, of most short-read assembly approaches,
related to repetitive regions and/or polymorphisms. Although
data reduction may cause some information loss, we exchanged
this disadvantage for the ability to assemble previously intractable
datasets. Our evaluation of the mock metagenome suggests that
this information loss is minimal overall and that our approach
results in a comparable assembly whose abundance estimations
are slightly improved.

Partitioning Separates Metagenomes into Tractable Subsets
Representative of Species. Metagenomes contain many distinct
genomes that are largely disconnected from each other but that
often share sequences as the result of sequence conservation or
lateral transfer. Our prefiltering normalization approach removes
both common multigenome elements and most artificial con-
nectivity stemming from the sequencing process. The removal
of these sequences does not significantly alter the recovery of
HGMC reference genomes through de novo assembly, in which
the resulting assemblies of unfiltered, normalized, and partitioned
datasets were nearly identical. Further, for the mock metagenome,
the large majority of partitions contained reads from a single
reference genome, supporting our previous hypothesis that most
connected subgraphs contain reads from distinct genomes (14).
When an E. coli genome of 10x sequencing coverage was spiked
into this dataset, it was divided into 424 partitions, likely because
of the presence of introduced sequencing errors. Although fewer
than half of these partitions (n = 201) contained reads unique to
the original reference genome, the combined assembly of each
partition could recover nearly all of the original reference. When
five similar E. coli genomes were mixed with the mock meta-
genome, we observed more partitions (n = 658) containing E. coli
sequences, one-third of which contained only E. coli sequences.
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Table 4. Unassembled single-end (SE) and paired-end (PE) reads mapped to lowa corn and

prairie Velvet assemblies

Type of read

lowa corn assembly

lowa prairie assembly

Total unfiltered reads

Total unfiltered SE READS

SE aligned one time

SE aligned more than one time
SE aligned, %

Total unfiltered PE reads

PE aligned one time

PE aligned more than one time
PE aligned disconcordantly, %
PE aligned, %

1,810,630,781

3,303,375,485

141,517,075 358,817,057
11,368,837 32,539,726
562,637 1,437,284

8.43 9.47
834,556,853 1,472,279,214
54,731,320 110,353,902
1,993,902 3,133,710

0.47 0.63%
9.68 11.20

When these partitions were assembled, the large majority of the
genomic content of these strains was recovered, albeit largely in
chimeric contigs. This particular result is not unique to our
approach, however, because the comparable unfiltered assembly
dataset resulted in a slightly higher fraction of assembled contigs
associated with multiple references. This observation suggests
that partitioning is an effective method for subdividing a meta-
genomic dataset, even one with highly similar strains, for assembly.
Furthermore, these much-reduced subsets of sequences could be
targeted for more sensitive assembly approaches for highly variable
regions such as overlap-layout-consensus approaches or abundance
binning approaches (21).

The most valuable result of partitioning is that it subdivides
our datasets into sets of reads that can be assembled (or ana-
lyzed) with minimal computational resources. For the HGMC
dataset, this gain was small, reducing unfiltered assembly at 12
GB RAM and 4 h to less than 2 GB RAM and 1 h. However, for
the soil metagenomes, previously impossible assemblies could
be completed in less than a day and in under 14 GB RAM of
memory, enabling the use of multiple assembly parameters (e.g.,
k-length; see SI Materials and Methods) and multiple assemblers
(Velvet, SOAPdenovo, and Meta-IDBA; Table 3).

Benefits of Soil Assembly. This study represents the largest pub-
lished soil metagenomic sequencing and assembly effort to date.
Despite a significant sequencing effort (141 Gbp and 257 Gbp
for Jowa corn and prairie soil, respectively), our resulting assemblies
show that these metagenomes are largely characterized by low-
coverage sequences (Fig. 2). Based on our evaluation of the mock
community, the assembly of low-coverage sequences using our
approaches results in minimal loss of information (Fig. S1). As
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Fig. 3. Distribution of most abundant KEGG Orthology groups identified in
corn and prairie soil metagenomes.
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improved sampling of soils is accompanied by increased sequencing
coverage, these approaches will further enable the analysis of larger
volumes of soil metagenomes in the future.

In our soil assemblies, we identified millions of putative genes,
with hundreds of thousands of functions, even though only 10%
of sequences were sufficiently sampled for assembly. The resulting
corn and prairie soil metagenome assemblies resulted in a total
length of 912 million bp and 1.5 billion bp, respectively, equivalent
to ~500 E. coli genomes’ worth of DNA. The contigs agreed well
with the raw sequencing data, as evidenced by evaluation of
paired-end concordance (Table 4), which was even slightly
greater than the fraction of unpaired read alignments. Further,
these contigs contained very low degrees of variation when un-
assembled reads were aligned, suggesting that they do not orig-
inate from polymorphic species within the soil. Combined, these
results support the quality of these metagenomic assemblies and
their representation of soil diversity.

The overall representation of assembled soil contigs was low
(average coverage of 10x) (Fig. 2), demonstrating the high di-
versity even in these localized soils and emphasizing the need to
increase sampling of these metagenomes considerably for them
to represent its microbial diversity. As these datasets become
increasingly available, our approaches enabling assembly offer
a number of advantages for metagenomic analysis. First, the
assembly resulted in significant data compression, reducing the
volume of our data to be annotated (including sequencing
errors) from 397 Gbp (unassembled) to 2.4 Gbp (assembled) and
thus allowing more efficient and effective annotation and anal-
ysis of the resulting sequences. Furthermore, the length of the
assembled sequences is significantly greater than their un-
assembled counterparts. In the soil metagenomes, more than
97,000 contigs were longer than 1,000 bp, allowing the possible
identification of multiple genes and operon structure. Notably,
nine sequences were assembled into contigs longer than 10 kbp
(corn metagenome), and the most abundant sequences (17,507
bp and 16,126 bp) were related to sequences of phage origin
(Pseudomonas phage PaP2) (Table S3).

The longer lengths of assembled sequences relative to un-
assembled metagenomes allowed both greater numbers and
improved identification (lengths of alignment) of metabolic
pathways within the framework of the KEGG Orthology data-
base (e.g., 79,477 KO in the corn assembly vs. 68,037 in un-
assembled corn metagenomes) (Fig. S5), representing a broad
catalog of the majority of known metabolic pathways in corn and
prairie soils (Fig. S6). We identified unique metabolic con-
tributions of the prairie microbial communities relative to that of
the corn, especially those involved in cellular processes (e.g., cell
growth and death and transport and catabolism) and genetic
information processing (e.g., folding, sorting, and degradation;
translation; and transcription) (Fig. 3). This result may reflect
the varying management history of these two soils. Unlike the
prairie soils, which have never been tilled, the corn soils have been
cultivated for more than 100 y and have had annual additions
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of animal manure that potentially could enrich specific metabolic
pathways with decreased diversity.

A key challenge facing future soil investigations is the lack of
culturable representatives from soil and consequently the poor
availability of reference genomes. This problem is highlighted by
our observation that more than half of the assembled contigs
were not similar to any sequence in the MG-RAST m5nr data-
bases, suggesting that soil holds considerable unexplored taxo-
nomic and functional novelty. These “unknown” sequences are
broadly distributed in both length and abundance (Figs. S3 and
S4) and represent the potential of gene and organism discovery.
These sequences highlight the value of using de novo assemblies
as reference datasets that are more representative of site-specific
genes than are the publicly available references (where the av-
erage homology of assembled sequences against the SEED
database was 68% over an average of 70 bp). For example, we
identified 17 Mbp of unknown sequences in 34,436 contigs that
were shared at relatively high abundance (C >10) by the corn
and prairie soil metagenomes. These broadly present, novel
sequences are targets for further investigations of proteins
about which nothing is known. As increasing numbers of meta-
genomes become available, the co-occurrence of these assembled
sequences with known genes and genomes will enable further
characterization.

Conclusions

We have presented two strategies that readily enable the as-
sembly of very large environmental metagenomes by compress-
ing and subdividing the data before assembly. The strategies are
generic and broadly applicable to any metagenome. We dem-
onstrate their effectiveness by first evaluating them on the as-
sembly of a mock community metagenome and then applying
them to two previously intractable soil metagenomes. Digital
normalization scales the data size with community richness
rather than diversity and is particularly effective for mixed-
abundance communities. After digital normalization, partitioning
enables the extraction of read subsets that belong to individual
species. These read partitions are small enough that a variety
of genomic-based analysis techniques can easily be applied to
them individually, as evidenced by the application of multiple
assemblers for our soil metagenomes with considerably reduced

1. Arumugam M, et al.; MetaHIT Consortium (2011) Enterotypes of the human gut mi-
crobiome. Nature 473(7346):174-180.

2. Hess M, et al. (2011) Metagenomic discovery of biomass-degrading genes and ge-
nomes from cow rumen. Science 331(6016):463-467.

3. Iverson V, et al. (2012) Untangling genomes from metagenomes: Revealing an un-
cultured class of marine Euryarchaeota. Science 335(6068):587-590.

4. Mackelprang R, et al. (2011) Metagenomic analysis of a permafrost microbial com-
munity reveals a rapid response to thaw. Nature 480(7377):368-371.

5. QinJ, et al.; MetaHIT Consortium (2010) A human gut microbial gene catalogue established
by metagenomic sequencing. Nature 464(7285):59-65.

6. Tringe SG, et al. (2005) Comparative metagenomics of microbial communities. Science
308(5721):554-557.

7. Venter JC, et al. (2004) Environmental genome shotgun sequencing of the Sargasso
Sea. Science 304(5667):66-74.

8. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great
bacterial diversity and high metal toxicity in soil. Science 309(5739):1387-1390.

9. Wommack KE, Bhavsar J, Ravel J (2008) Metagenomics: Read length matters. App/
Environ Microbiol 74(5):1453-1463.

10. Loman NJ, et al. (2013) A culture-independent sequence-based metagenomics ap-
proach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli 0104:H4.
JAMA 309(14):1502-1510.

. Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J (2012) Ray Meta: Scalable
de novo metagenome assembly and profiling. Genome Biol 13(12):R122.

Howe et al.

computational resources. By acting as prefilters, digital normal-
ization and partitioning let downstream assemblers focus on im-
proving their performance on low-coverage or high-variability
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erably more data are needed to study the content of soil met-
agenomes comprehensively.

Materials and Methods
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performed on (i) quality-filtered unassembled sequences and (ii) the same
sequences filtered by digital normalization [HGMC coverage threshold (C) = 20,
soil coverage threshold (C) = 10], removal of high-coverage sequences (C >50),
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