Lawrence Berkeley National Laboratory

Recent Work

Title

THE REACTIONS OF DIPHOSPHORUS TETRACHLORIDE WITH NICKEL CARBONYL AND BORON TRIBROMIDE

Permalink https://escholarship.org/uc/item/1m42j7g0

Authors Lindahl, Charles B. Jolly, William L.

Publication Date

1964-05-01

University of California

UCRL-11479

Ernest O. Lawrence Radiation Laboratory

THE REACTIONS OF DIPHOSPHORUS TETRACHLORIDE WITH NICKEL CARBONYL AND BORON TRIBROMIDE

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. Rept. sub. for pub. in Inorganic Chemistry.

UCRL-11479

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

AEC Contract No. W-7405-eng-48

THE REACTIONS OF DIPHOSPHORUS TETRACHLORIDE WITH NICKEL CARBONYL AND BORON TRIBROMIDE

Charles B. Lindahl and William L. Jolly

May, 1964

Contribution from the Department of Chemistry of the University of California and the Inorganic Materials Research Division of the Lawrence Radiation Laboratory, Berkeley, California

The Reactions of Diphosphorus Tetrachloride with Nickel Carbonyl and Boron Tribromide

By Charles B. Lindahl¹ and William L. Jolly

May, 1964

Diphosphorus tetrachloride displaces carbon monoxide from nickel carbonyl at 0°. With large excesses of P_2Cl_4 , the P_2Cl_4 reacts as a monofunctional base to form Ni(CO)₂(P_2Cl_4)₂ and probably Ni(CO)(P_2Cl_4)₃ and Ni(P_2Cl_4)₄. With large excesses of nickel carbonyl, the P_2Cl_4 reacts as a difunctional base to form (CO)₃NiP₂Cl₄Ni(CO)₃. With intermediate ratios of P_2Cl_4 to Ni(CO)₄, polymeric compounds containing both monoand difunctional P_2Cl_4 groups are formed. In reactions with nickel carbonyl, P_2Cl_4 is a stronger base than PCl₃. Diphosphorus tetrachloride decomposes in the presence of boron tribromide at 0° to form a phosphorus trihalide and a phosphorus subhalide, (PX)_x. Halogen exchange occurs as completely as possible; with a sufficient excess of BBr₃, the adduct PBr₃·BBr₃ forms.

(1) Taken from a thesis presented by C. B. Lindahl for partial satisfaction of the requirements of the Ph.D. degree, University of California, Berkeley, 1964.

Introduction

The purpose of this investigation was to study some reactions in which diphosphorus tetrachloride acts as a base. The molecule was expected to have a Lewis-base strength similar to that of phosphorus trichloride, but to react difunctionally as other tetrasubstituted diphosphines do. Thus in the following paragraph we review some pertinent Lewis-base reactions of both phosphorus trichloride and tetrasubstituted diphosphines.

Phosphorus trichloride can displace all four molecules of carbon monoxide in Ni(CO)₄ to form Ni(PCl₃)₄,^{2,3} but no displacement compounds

- (2) J. W. Irvine, Jr., and G. Wilkinson, <u>Science</u>, <u>113</u>, 742 (1951).
 (3) W. C. Smith, <u>Inorg. Syntheses</u>, <u>6</u>, 201 (1960).
- form in the cases of $Mo(CO)_6$ and $Cr(CO)_6$ at temperatures up to 150°.² Substituted diphosphines have been found to react with various metal carbonyls to form the compounds $P_2(CF_3)_4[Ni(CO)_3]_2$, $P_2(CH_3)_4[Ni(CO)_3]_2$, 5,6
- (4) A. B. Burg, and W. Mahler, <u>J. Am. Chem. Soc.</u>, <u>80</u>, 2334 (1959).
 (5) L. A. Ross, Ph.D. Thesis, Indiana University, 1962.
- (6) R. G. Hayter, <u>Inorg. Chem.</u>, <u>3</u>, 711 (1964).

 $[P_{2}(CH_{3})_{4}Ni(CO)_{2}]_{x}, {}^{5}P_{2}(C_{6}H_{5})_{4}[Ni(CO)_{3}]_{2}, {}^{6}, {}^{7}[NiP(C_{6}H_{5})_{2}(CO)_{2}]_{2}, {}^{6} and$

(7) W. Schweckendiek, German Patent 1,072,244, Dec. 31, 1959; Chem.
 <u>Abstracts</u>, 55, Pl2355g (1961).

- $P_2(C_6H_5)_4[Fe(CO)_4]_2$. ⁷ Holmes⁸ has shown that previous reports of adducts
- (8) R. R. Holmes, J. Inorg. Nucl. Chem., 12, 266 (1960).
- between PCl₃ and BCl₃⁹ and BF₃¹⁰ are erroneous, and that actually no
- (9) A. Stieber, <u>Comptes Rend. Acad. Sci. Paris</u>, <u>195</u>, 610 (1932).
- (10) P. Baumgarten, and W. Bruns, <u>Ber.</u>, <u>80</u>, 517 (1947).
- complexes form. Garrett and Urry¹¹ reported that B₂Cl_k and PCl₃ form
- (11) A. G. Garrett, and G. Urry, Inorg. Chem., 2, 400 (1963).
- the adduct B₂Cl₄.2 PCl₃. Wiberg and Shuster¹² reported the adduct PCl₃.BBr₃
- (12) E. Wiberg and K. Shuster, Z. anorg. Chem., 213, 94 (1933).

to be a white solid, melting at 42°. Holmes⁸ showed that this adduct, on standing at room temperature, decomposes to BCl₃ and PBr₃, which do not form an adduct.

Experimental

<u>Apparatus and Experimental Methods</u>. - All transfers were carried out in the absence of air and moisture in a standard glass vacuum apparatus. Stopcocks and ground-glass joints were lubricated with KEL-F 90 grease (3M Company). Reactions were carried out in sealed glass tubes which

- 3 -

were opened by means of break-seals. Evolved carbon monoxide was transferred by a Toepler pump and measured in a gas buret. Amounts of diborane and BF₃ were determined by PVT measurements. All other reagents were weighed in tubes with stopcocks.

<u>Reagents</u>. - We prepared diphosphorus tetrachloride by using Sandoval and Moser's discharge method¹³ in which white phosphorus reacts with

(13) A. A. Sandoval and H. C. Moser, Inorg. Chem., 2, 27 (1963).

PCl₃. Our yield varied, but was generally about 2 grams in runs of 6 to 10 hr. Diphosphorus tetrachloride was identified by its melting point of $-28^{\circ 14}$ and its mass spectrum. The identification was confirmed by

- (14) Besson and Fournier¹⁵ originally reported -28° which was confirmed by Stock, Brandt, and Fischer,¹⁶ Ross,⁵ and Sandoval.¹⁷ Finch¹⁸ reported -34° to -35°.
- (15) A. Besson and L. Fournier, Compt. Rend. Acad. Sci. Paris, 150, 102 (1910).
- (16) A. Stock, A. Brandt, and H. Fischer, <u>Ber.</u>, <u>58</u>, 643 (1925).
- (17) A. A. Sandoval (Ph.D. Thesis), Kansas State University, 1963; see also Dissertation Abstr. <u>24</u>, 1422 (1963).
- (18) A. Finch, <u>Can. J. Chem.</u>, <u>37</u>, 1793 (1959).

molecular-weight determinations (freezing-point depression of benzene solutions) that gave values of 215 and 231 (calculated for P_2Cl_4 , 204), and by allowing 217.3 mg. of P_2Cl_4 (1.066 mmole) to react with chlorine to yield 440.3 mg. of PCl₅ (calculated, 444.0 mg.). Diphosphorus tetra-chloride decomposes at room temperature to a yellow solid and PCl₃. At 0°

it decomposes only very slowly. Two samples were kept at 0° for 420 days. In one sample of $P_2Cl_4(0.2367 \text{ g.})$, 7.3% (0.0913 mmole) of the P_2Cl_4 decomposed, giving PCl_3 (0.0925 mmole) and traces of orange solid. In the other sample of $P_2Cl_4(0.0314 \text{ g.})$, 39.8% (0.061 mmole) of the P_2Cl_4 decomposed, giving PCl_3 (0.070 mmole) and orange solid. Thus, at 0° P_2Cl_4 decomposes according to the equation

$$P_2Cl_4 \rightarrow PCl_3 + \frac{1}{x} (PCl)_x$$

Because of this instability of P_2Cl_4 , reactions were carried out at 0° or for short periods of time at room temperature.

The vapor pressure of P_2Cl_4 was measured¹⁹ using an immersible

(19) For experimental details, the reader is referred to University of California Radiation Laboratory Report UCRL - 11189, "Chemistry of Diphosphorus Tetrachloride", January, 1964.

mercury tensiometer at eight temperatures between 25° and 76°. The vapor pressure may be calculated, with an average deviation of $\pm 2.9\%$, from the equation log $P_{mm} = 9.969 - 2958/T$. The data yield an extrapolated boiling point of 144°, a heat of vaporization of 13.5 kcal/mole, and a Trouton constant of 32.4 e.u. Because of decomposition of P_2Cl_4 , reaction of P_2Cl_4 with the mercury, and the unusually high value calculated for the Trouton constant, these vapor-pressure results should be considered as only approximate. The data disagree markedly with the values of Ross⁵ (4 mm. at 0° and 10 mm. at 28°), Stock, Brandt, and Fischer¹⁶ (5 mm. at 0°), and Besson and Fournier¹⁵ (P_2Cl_4 distilled at 180° or 20 mm. at 95° to 96°) and agree with Sandoval¹⁷ (about 1 mm. at 25°).

- 5 -

Phosphorus trichloride (Mallinckrodt) was purified by fractional condensation in traps at -45, -78, and -196°. The -78° fraction had a O° vapor tension of 36 mm. (literature,¹¹ 36.1 mm.). Nickel carbony1 (K and K Laboratories, Jamaica, New York) was purified by a similar fractional condensation. The -78° fraction had a 0° vapor tension of 135 mm. (literature,⁵ 133 mm.). Iron carbonyl (K and K) was fractionally condensed in traps at -22, -45, and -196°. The -45° fraction was retained. Chromium hexacarbonyl (K and K) and molybdenum hexacarbonyl (Climax Molybdenum Company, New York) were used without purification. Boron trifluoride (Matheson) was purified by passing the gas through a -160° trap into one at -196°. The purified BF, was tensiometrically homogeneous and had a CS₂-slush vapor tension of 307 mm. (literature,⁸ 298 mm.). Boron trichloride (Matheson) was condensed in traps at -78, -112, and -196°. The -112° fraction had a 0° vapor tension of 480 mm. (literature, ¹¹ 477 mm.). Boron tribromide (American Potash and Chemical) was condensed in traps at -45, -78, and -196°. The -78° fraction had a 0° vapor tension of 19 mm. (literature, 8 19 mm.). Diborane was prepared²⁰ from reaction of potassium borohydride with sulfuric

- 6 -

(20) H. G. Weiss and I. Shapiro, J. Am. Chem. Soc., 81, 6167 (1959).

acid and was purified by passage through a -112° trap to a -196° trap. The purified sample had a CS₂-slush vapor tension of 218 mm.(literature,²¹ 225 mm.).

(21) A. B. Burg, J. Am. Chem. Soc., 74, 1340 (1952).

Results

<u>Reaction of P₂Cl₄with Ni(CO)₄.</u> - When P₂Cl₄ was allowed to react with Ni(CO)₄ at 0°, carbon monoxide was evolved. After a reaction period, usually of several days, the sample was frozen at -196°, and the carbon monoxide was measured. The sample was then allowed to warm, and unreacted P₂Cl₄ or Ni(CO)₄ was removed and measured to determine the reacting ratio. Table I lists the data for a series of reactions involving various initial ratios of reactants.

With excesses of Ni(CO)₄ (runs 2 to 6), nearly 2 mmole of Ni(CO)₄ reacted with every mmole of $P_2Cl_{l_1}$, giving 2 mmole of CO and a solid product having a composition close to $P_2Cl_4[Ni(CO)_3]_2$. This material was yellow at 0° and yellowish white at -63°. The excess Ni(CO)_h could be slowly removed at -63° leaving a product stable at -63°. After the CO and excess $Ni(CO)_{4}$ had been removed, the compound evolved CO and $Ni(CO)_{4}$ slowly even at -45° and very rapidly at room temperature. The samples turned black during these latter reactions, suggesting the formation of metallic nickel. We could not determine how much metallic nickel had formed, but we were able to follow the CO/P₂Cl_b ratio for the residue. Thus in run 3, the unreacted $Ni(CO)_{l}$ was removed during a 3-hr. period at -45°, the data indicating a product of composition $P_2Cl_4Ni_{2.02}(CO)_{6.09}$. During 42 more hours at -45°, the sample darkened, and further evolution of CO and Ni(CO)₄ indicated a ratio $CO/P_2Cl_4 = 4.77$ for the residue. In run 2 (in which the initial unreacted $Ni(CO)_{h}$, removed at -45°, indicated an empirical formula $P_2Cl_4Ni_{2.00}(CO)_{6.01}$ the sample was warmed to 0° for 21 hr., yielding a residue with a ratio $CO/P_2Cl_4 = 5.12$. Four hours after warming this material to room temperature, the CO/P_2Cl_4 ratio had

Run	$\frac{\text{Ni(CO)}_{l_{4}} \text{ in}}{P_{2}Cl_{4} \text{ in}}$	CO evolved	CO evolved	Ni(CO) ₄ reacted	Final press (atm)	Rxn time (hr)	Average sum of P ₂ C14 and Ni units per molecule
		P2C14 reacted	Ni(CO) ₄ reacted	P2Cl4 reacted			
1	29.183	2.805	>1.536		0.33	3165	
2	12.475	1.986	0.995	1.996	0.15	21	2.99
3 :	4.968	1.991	0.987	2.017	0.6	92	2.94
4	4-908	1.885	1.223	1.541	1.35	234	3.87
5	3.685	1.963	1.036	1.895	1.95	16	3.11
6	3.170	1-957	1.196	1.636	0.7	17	3.88
7	1.015	1.865	1.344	1.011		619	13.87
8	0.8886	1.833	1.989	0.922	0.96	3953	• 21.7
9	0.8879	1.775	1.874	0.947	2.06	593	11.3
10	0.4930	1.549	1.956	0.792	1.78	336	7.37
11	0.3859	1.219	1.981	0.615	0.65	456	4.08
12	0.3530	an an anna a anna a seo an	2.243	e na	0.59	693	and a second
13	0.2388	0.956	2.044	0.468	1.8	288	2.87
14	9.2140		2.098		0.77	138	• • • • • • • • • • • • • • • • • • •
15	0.1927	0.698	2.042	0.342	0.32	161	2.08
16	0.1927		2.159		0.74	353	and the second se
17	0.1777	1.313	2.29	0.573	0.23	569	6.04
18	0.1323		3.36	.	0.71	3644	

Table I.

Reactions of P_2Cl_4 with Ni(CO)₄.

fallen to 2.43; another twenty hours at room temperature lowered the ratio to 2.00, and at the end of one week the ratio was 0.60. The data of run 1 indicate that, even when the evolved CO is not removed, the $P_2Cl_4[Ni(CO)_3]_2$ decomposes during extremely long storage periods at 0°. Negligible amounts of nickel metal formed in this run. In run 5, qualitative observations were made to determine the effect of CO pressure on decomposition. With 1 atm of CO pressure, no change in color was seen over a 16-hr. period at 0°; the edges of the material turned gray in 30 minutes at room temperature. When roughly equal amounts of Ni(CO)₄ and P_2Cl_4 were allowed to react (runs 7 to 9), a yellow solid of approximate empirical formula $P_2Cl_4 \cdot Ni(CO)_2$

formed. After standing for long periods of time at 0° or room temperature, this material evolved CO and small amounts of PCl₂.

With large excesses of P_2Cl_4 (runs 10-18), each mmole of Ni(CO)₄ reacted initially with 2 mmoles of P_2Cl_4 to form a brownish yellow solid of approximate composition Ni(CO)₂(P_2Cl_4)₂. When long reaction times were provided, and when the CO pressures were sufficiently low, the product slowly reacted further with P_2Cl_4 . After removal of the evolved CO in runs 12, 14 and 16, the reaction products were kept in the presence of the excess P_2Cl_4 for additional long periods of time (2700, 2900 and 1000 hrs, respectively). The final ratios of the total CO evolved per Ni(CO)₄ were, respectively, 3.65, 3.63 and 4.02. Apparently all four molecules of CO can be displaced from Ni(CO)₄.

Several attempts were made to reverse the reaction of P_2Cl_4 with Ni(CO)₂(P₂Cl₄)₂ by the application of CO pressures of 2.5 atm. for several days. The experimental errors in determining the CO absorbed were so great, however, that we can only say that less than 0.3 mmole of CO was

- 9 -

absorbed per mmole of Ni(CO), (P,Cl_l), in these experiments.

<u>Reactions of P₂Cl₄ and PCl₃ with Ni(CO)₄.</u> - Table II lists the results of our experiments on mixtures of PCl₃, P₂Cl₄, and Ni(CO)₄ at 0°. In each case there were excesses of P₂Cl₄ and PCl₃, with P₂Cl₄/Ni(CO)₄ ratios from 2.3 to 7.1 and with PCl₃/Ni(CO)₄ ratios from 2.6 to 13.5. The first two samples were allowed to react about 200 hr. and the last two about 1300 hr. In all cases most of the reaction was due to P₂Cl₄. In two cases, slightly more than 100% recovery of PCl₃ was achieved, a result attributable to some decomposition of P₂Cl₄.

In another run, 4.553 mmoles of P_2Cl_4 was allowed to react with a sample formed by reaction of 4.970 mmoles of PCl_3 and 1.284 mmoles of Ni(CO)₄. 4.729 mmoles of PCl_3 was recovered.

<u>Reaction with Diborane</u>. - When B_2H_6 was exposed to P_2Cl_4 at 0°, a slow increase in pressure due primarily to evolution of H_2 continued over a long period of time. This experiment was terminated after 17 days of continuous H_2 evolution. Boron trichloride and BHCl₂ (identified by their infrared spectra) were also evolved.

<u>Reaction of P_2Cl_4 with Boron Trihalides</u>. - Boron trifluoride was not absorbed by P_2Cl_4 at 0° or room temperature. When an excess of BCl₃ was placed in a sealed tube with P_2Cl_4 at 0°, the starting materials were recovered unchanged after two months.

When boron tribromide was mixed with P_2Cl_4 at 0° or room temperature, a reaction occured producing a yellow-orange non-volatile solid, boron trichloride, and, with a sufficient excess of BBr₃, a white volatile solid. Quantitative data are presented in Table III. Only those runs with BBr_3/P_2Cl_4 ratios greater than 1.421 involved the formation of white volatile solids. Table II.

Reactions of PCl₃ and P_2Cl_4 with Ni(CO)₄ at 0°.

O evolved Ni(CO) ₄	Pressure (atm)	r r	P2 ^{C1} 4 eacted mmole)	PC13 reacted (mmole)	CO evolved (mmole)
			• • •		
2.089	0.64		1.575	(-0.234) ^a	1.626
1.992	1.22	۰. ۲	2.766	0.206	3.197
2.568	0.69		1.092	(-0.142) ^a	1.361
2.115	0.63	1	1.824	0.322	1.223
	•		N Z	, , ;	

^a More PCl₃ was recovered than put in reaction vessel.

Products of the Reaction of BBr_3 with P_2Cl_4

BBr ₃ P ₂ Cl ₄	mg PX mmole P ₂ Cl ₄	mg PBX ₆ mmole P ₂ Cl ₄	$\frac{\text{mg BCl}_{3}}{\text{mmole BBr}_{3}}$
••••••••••••••••••••••••••••••••••••••	****		
35.90	94.1	523.5	
5.793	157.5	483.0	
4.596	95•5	597.8	
3.472	85.5	552.0	
3•349	69.3	484.4	
3.109	118.2	501.2	
2.100	95.8	434.5	
1.6288	103.6	9	109.2
1.421	70.6		116.7
1.334	80.7		110.1
1.299	96.3		105.6-
0.5258	101.2		152.1
0.3838	61.3		167.4

The white solids had the composition $PBCl_xBr_{6-x}$, where x varied from zero to about two. The solids exchanged halogen with large excesses of BBr₃ until only stable $PBBr_6$ remained which was identical with the known adduct of PBr_3 and BBr_3 .^{8,22} Solids containing chlorine had melting

(22) J. Tarible, <u>Comptes Rend. Acad. Sci., Paris</u>, <u>116</u>, 1521 (1893).

points depressed as much as 10-20° from the 61-62° melting point of pure PBBr₆, and usually melted over a range of several degrees. Analysis of the solid was accomplished by precipitation of silver halide, Volhard analyses for total halogen, and treatment of the solid with chlorine followed by measurement of the liberated bromine and BrCl. In eleven silver halide determinations, the ratio of mg AgX to mg sample varied from 2.16 to 2.35 (calculated for PBBr₆, 2.161; PBBr₅Cl, 2.270; PBBr₄Cl₂, 2.400) giving x (in PBCl_xBr_{6-x}) values from 0 to 1.67, with nine of the results between 0 and 0.5. Five determinations of halogen by the Volhard method, and six determinations of bromine by treatment with chlorine confirmed the values of x in these samples to be in the range 0 to 1.5.

The second column of Table III gives the mg. of nonvolatile orange solid formed per mmole of P_2Cl_4 ; except for two high values, all the values lie between the formula weights for PCl, 66.4, and PBr, 110.9. Because the PBX₆ sublimes slowly, it is quite likely that the high values of 118.2 and 157.5 are due to traces of PEX₆ left with the nonvolatile solid. The third column of Table III gives the mg. of solid (per mmole of P_2Cl_4) stopped in a -45° trap in a fractional condensation of the volatile products. Most of the values lie between the molecular weights

- 13 -

of PBBr₆, 521.2, and PBBr₄Cl₂, 432.3. The fourth column of Table III gives the mg. of material (per mmole of BBr₃) which passed a -78° trap in a fractional condensation of the volatile products. All but the last two values are in fair agreement with the molecular weight of BCl₃, 117.2. In the last two runs, the reaction yielded large amounts of PCl₃, traces of which could have passed the -78° trap. Infrared spectra indicated that the principal component of all samples was BCl₂.

Reactions having an excess of BBr_3 yielded $BBrCl_2$ and BBr_2Cl_2 . Those having an excess of P_2Cl_4 yielded PCl_2Br and $PClBr_2$.

Discussion

<u>Reaction of P_2Cl_{\downarrow} with $Ni(CO)_{\downarrow}$ </u>. - It appears that either one or both phosphorus atoms of P_2Cl_{\downarrow} can act as donors to nickel and that one to four CO molecules can be displaced from nickel carbonyl by the phosphorus atoms of P_2Cl_{\downarrow} . Thus in the presence of a large excess of $Ni(CO)_{\downarrow}$, the binuclear complex $(CO)_3NiP_2Cl_4Ni(CO)_3$ forms; in the presence of a large excess of P_2Cl_{\downarrow} , mononuclear complexes such as $(CO)_2Ni(P_2Cl_{\downarrow})_2$; $(CO)Ni(P_2Cl_{\downarrow})_3$ and $Ni(P_2Cl_{\downarrow})_{\downarrow}$ form. When there is no large excess of either reactant, polymeric materials, in which nickel atoms are bridged by P_2Cl_{\downarrow} molecules, are formed. For all of these compounds, or mixtures of compounds, the average sum of the P_2Cl_{\downarrow} groups and Ni atoms per molecule may be calculated from the function $(\underline{a} + \underline{b})/(\underline{a} - \underline{ab} + \underline{b})$, where $\underline{a} = CO$ evolved/ P_2Cl_{\downarrow} reacted and $\underline{b} = CO$ evolved/Ni(CO)_µ reacted.²³

(23) This formula is based on the assumption that there are no ring structures formed.

- 14 -

column of Table I. It will be noted that the function has values fairly close to three, corresponding to $P_2Cl_4[Ni(CO)_3]_2$ or $Ni(CO)_2(P_2Cl_4)_2$, in runs involving large excesses of either reagent. High values are obtained for runs 7, 8 and 9, in which there was no large excess of either reagent.

In Figure 1 we have plotted the CO evolved/Ni(CO)₁ reacted against the final CO pressure for all our runs involving an excess of P₂Cl_h. The numbers near the points correspond to the hours of reaction time. Presumably if any of the runs had been terminated after a reaction time shorter than that indicated, the point would have fallen somewhere on the line joining the indicated point and the origin. It will be noted that the only runs in which significantly more than two molecules of CO per $Ni(CO)_{h}$ were displaced by $P_{O}Cl_{h}$ molecules were those runs of long duration in which the final pressure of carbon monoxide was less than 0.77 atm. Whenever the final pressure of carbon monoxide was greater than 0.77 atm., the CO evolved/Ni(CO)_h reacted was, within experimental error, equal to Although we were unable to obtain good evidence for the reversibility two. of any of these reactions, we believe that the equilibrium pressure of CO over a mixture containing $P_2Cl_{l_1}$, Ni(CO)₂($P_2Cl_{l_1}$)₂ groups, and Ni(CO)($P_2Cl_{l_1}$)₃ groups is approximately 0.77 atm., and we write

 $Ni(CO)_2(P_2Cl_4)_2 + P_2Cl_4 = Ni(CO)(P_2Cl_4)_3 + CO K \approx 0.77$

It should be made clear, however, that some of the coordinated P_2Cl_4 molecules in this equation may form bridges to other nickel atoms.

<u>Reactions of P_2Cl_4 and PCl_3 with $Ni(CO)_4$.</u> - The data indicate that P_2Cl_4 is a stronger Lewis base than PCl_3 in reactions with Ni(O). This result might have been predicted from a consideration of the inductive effect.

- 15 -

Phosphorus trichloride has three electron-withdrawing chlorine atoms per phosphorus atom, whereas P_2Cl_4 has only two chlorine atoms per phosphorus atom.

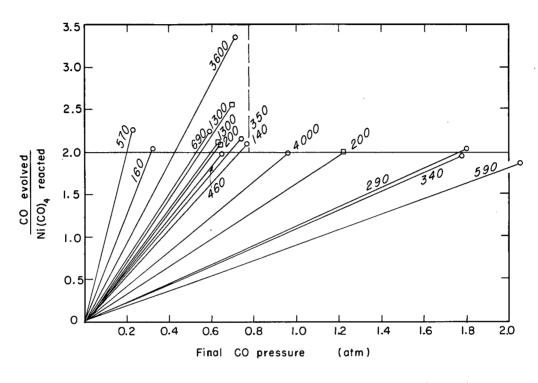
<u>Reaction of $P_2Cl_{i_1}$ with Boron Trihalides.</u> - The reaction of $P_2Cl_{i_1}$ with BBr₃ involves both the quantitative disproportionation of the $P_2Cl_{i_1}$ to PCl₃ and (PCl)_x and the quantitative conversion, as far as possible, of PCl₃ and (PCl)_x to PBr₃ and (PBr)_x and of BBr₃ to BCl₃. The disproportionation and halogen exchange reactions cannot be separated, however. In the presence of a large excess of BBr₃, the net reaction is

5 $BBr_3 + P_2Cl_4 \rightarrow 4 BBr_2Cl + PBBr_6 + \frac{1}{x}(PBr)_x$

In the presence of a large excess of $P_{o}Cl_{h}$, the reaction is

 $BBr_3 + 3 P_2Cl_4 \rightarrow BCl_3 + 3 PCl_2Br + \frac{3}{x}(PCl)_x$

We initially studied this reaction with the hope of making $P_2Cl_4 \cdot 2 BBr_3$; indeed, this adduct may be an intermediate in the complicated reaction observed. In this regard it is interesting to note that the weaker acids BF_3 and BCl_3 neither react with P_2Cl_4 nor accelerate its decomposition.


Acknowledgement. - This work was supported in part by the U.S. Atomic Energy Commission. Figure Caption

- 17

11. 2019

Figure 1. Data for reactions of $Ni(CO)_4$ with

excess P2C14.

MU-33362

Fig. 1.

.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

الاست. المحمد المحم المحمد المحمد