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Spatial Filtering and Neocortical Dynamics:
Estimates of EEG Coherence
Ramesh Srinivasan,* Paul L. Nunez, and Richard B. Silberstein

Abstract—The spatial statistics of scalp electroencephalogram
(EEG) are usually presented as coherence in individual frequency
bands. These coherences result both from correlations among
neocortical sources and volume conduction through the tissues
of the head. The scalp EEG is spatially low-pass filtered by
the poorly conducting skull, introducing artificial correlation
between the electrodes. A four concentric spheres (brain, CSF,
skull, and scalp) model of the head and stochastic field theory
are used here to derive an analytic estimate of the coherence
at scalp electrodes due to volume conduction of uncorrelated
source activity, predicting that electrodes within 10–12 cm can
appear correlated. The surface Laplacian estimate of cortical
surface potentials spatially bandpass filters the scalp potentials
reducing this artificial coherence due to volume conduction.
Examination of EEG data confirms that the coherence estimates
from raw scalp potentials and Laplacians are sensitive to different
spatial bandwidths and should be used in parallel in studies of
neocortical dynamic function.

Index Terms—Coherence, Laplacian, neocortical dynamics.

I. INTRODUCTION

T HE electroencephalogram (EEG) time series recorded
at each electrode is a sample of a random process

governed by some unknown probability laws which determine
the observed dynamics. If the process is Gaussian, it is
specified by its first and second moments which are the
mean and the variance of the signals. The Fourier transform
of the autocorrelation function of each data channel is the
power spectral density function, which is an estimate of
signal variance as a function of frequency [1]. Numerous
studies have attributed the observed power spectrum to a
generator lying beneath each electrode. This is a misleading
view, since experimental EEG is spatially lowpass filtered by
the poorly conducting skull. A mathematical model of this
spatial filtering is developed here, showing that scalp EEG
is preferentially sensitive to large correlated dipole layers.
The surface Laplacian estimate of cortical surface potentials
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is shown to be sensitive to higher spatial frequencies, with a
bandpass spatial transfer function.

The spatial statistics of scalp EEG can be characterized by
a spatial autocorrelation function which is usually represented
as coherence in individual frequency bands. In general, these
coherences result from neocortical source correlation, volume
conduction properties of the head, and reference electrode
effects. A stochastic model of the spatial correlation due
to volume conduction is developed here to examine the in-
fluence of the spatial filtering and reference electrode or
Laplacian algorithm on coherence. Estimates of coherence
from referenced potentials and Laplacian data are shown
to provide complementary views of neocortical dynamics at
distinct spatial scales.

II. SPATIAL FILTERING OF SCALP

POTENTIALS AND THE SURFACE LAPLACIAN

Four concentric spherical shells, which represent brain,
cerebrospinal fluid (CSF), skull, and scalp provide a simple
physical model of the volume conduction properties of the
head [2], [3]. This model has been introduced as an im-
provement of the three concentric spheres model of the head
[2], [4]–[6], by including the CSF layer. The fundamental
assumptions of the model are that Ohm’s law applies in each
region and that capacitive effects are negligible. In this case,
the scalp potential distribution depends on the magnitudes
and locations of the current sources and the thickness and
conductivity of the spherical shells [7]. There is substantial
variability in the thickness of the skull and scalp and head
size in the adult population. In addition, skull thickness varies
across different regions of the head [8]. Nevertheless, the
four concentric spheres model is a valuable simulation tool
which provides reasonable estimates (often within 10%–20%)
of scalp potentials for brain current sources in comparisons
with more realistic finite element models [9].

The EEG is generated by dipole current sources which may
be distributed over the entire brain [7]. The scalp surface
potential due to a radial dipole at an arbitrary location in
spherical coordinates ( ) is readily obtained from the
four spheres solution and the addition theorem for spherical
harmonics as the Green’s function [4]

(1)

Here, the are determined by the four concentric spheres
model parameters (layer thicknesses and conductivities) and
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the source distribution’s radial position () as shown in
the Appendix. The spherical harmonics are the
orthogonal basis set on a spherical surface, analogous to
sinusoidal functions in the time domain, with examples shown
in Fig. 1(a). The form of (1) is somewhat different for tan-
gential dipoles, but the relative weighting of spherical har-
monics is still determined by the parameters , which
depend only on the head model and the radial position of
the source ( ). The head model parameters are assumed to
be to ( cm and
conductivity ratios , and

. If the current distribution (source strength
per unit area) at a fixed depth is , for instance
macrocolumnar sources in the gyri, 2 mm below the cortical
surface (i.e., 7.8 cm), the surface potential is obtained
by multiplying the source distribution by the Green’s function
and integrating over the source distribution.

Any fixed depth ( ) source distribution , can be
expressed as a sum over spherical harmonics

(2)

Multiplying the expansion equation (2) by (1) and integrating
over the spherical source distribution results in

(3)

so that a spatial frequency domain transfer function for scalp
potential can be defined as

(4)

The magnitude of this transfer function is plotted in Fig. 1(b)
for different values of skull resistivity and CSF thickness.
In all cases, volume conduction causes the well-known low-
pass spatial filtering of scalp potentials. This characteristic is
only slightly modified by the inclusion of a normal CSF layer
and realistic variations in skull conductivity. The inclusion of
tangential dipoles does not change this qualitative result as the
transfer function only depends on the head model parameters
and source depth, and is independent of the orientation of the
source. Deeper dipole layers would be even more severely low-
pass spatial filtered than is indicated by the figure. Thus, scalp
potentials due to a variety of complex source distributions
should be relatively homogeneous over the scalp, which is
often observed experimentally [11]–[14].

High-resolution EEG techniques provide reference-inde-
pendent estimates of cortical surface potential (or radial skull
current density) using cortical imaging or surface Laplacian
methods [4], [12], [15]–[17]. Although they have different
theoretical basis, these methods provide consistent estimates
of cortical surface potentials in simulations and experimental
studies [15], [16]. The surface Laplacian is the second spatial
derivative of potentials on the scalp surface, usually approx-
imated by a sphere or a general ellipsoid [17]. The surface

(a)

(b)

(c)

Fig. 1. (a) Examples of spherical harmonicsYnm(�; �): left, Y22 and
right, Y31. (b) Spatial transfer functions for scalp potential. Relative
magnitude of each spatial frequency component (n). The four shells are
at radii (rbrain; rCSF; rskull; rscalp) = (8; 8:2; 8:7; 9:2) cm. Cases A–C
include a 2-mm CSF layer with�BRAIN=�CSF = 0:2 and D has no
CSF layer. A: �BRAIN=�SKULL = 40. B: �BRAIN=�SKULL = 80.
C: �BRAIN=�SKULL = 120. D: �BRAIN=�SKULL = 80. (c) Spatial
transfer functions for scalp surface Laplacian. Relative magnitude of
each spatial frequency component (n). The four shells are at radii
(rbrain; rCSF; rskull; rscalp) = (8; 8:2; 8:7; 9:2) cm. Cases A–C include
a 2-mm CSF layer with�BRAIN=�CSF = 0:2 and D has no CSF layer.
A–D are the same as in (b).

Laplacian can be calculated analytically from the four spheres
model [4]. The spatial transfer function for analytic surface
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Laplacian is

(5)

The magnitude of this transfer function is plotted for different
values of skull resistivity and CSF thickness in Fig. 1(c). By
contrast to raw scalp potentials, the surface Laplacian has
a bandpass spatial filtering characteristic. Estimates of the
surface Laplacian from multichannel EEG recordings with
a spline algorithm introduces low-pass spatial filtering in
addition to that shown in Fig. 1(c), due to the application of
smoothing filters to prevent aliasing from undersampled high
spatial frequencies [4], [18].

III. SPATIAL CORRELATION BY VOLUME CONDUCTION

Spatial filtering by volume conduction alters coherence
estimates by introducing artificial correlation between the
recording channels. A quantitative estimate of this erroneous
coherence is obtained here by modeling scalp potentials result-
ing from random neocortical sources with known statistics.
Most spontaneous EEG is believed to be largely generated
by superficial correlated dipole layers in neocortex [12] . In
the four spheres model introduced in Section II, the EEG
source distribution can be modeled as a random source field

which produces the random scalp potential field
. We can assume that the field has zero mean

without loss of generality. The cross correlation function of
the scalp potential ( ) can be calculated from the cross
correlation of the source activity ( ) by

(6)

Here, the compact notation is introduced and
the Green’s function is given in (1). The form of
this expression closely follows from the theory of random
vibrations in structural dynamics [19]. If the excitation is
weakly stationary, i.e.,

(7)

the scalp field is also weakly stationary and the cross spectral
density of the scalp field is obtained by the Fourier transform

(8)

The cross spectral density of the scalp surface Laplacian
can be derived by applying the Laplacian operator to the scalp
potential Green’s function. The cross spectral density function
is the spatial correlation function between the two points

and at the frequency . If this reduces to the
power spectral density function

(9)

If we normalize the cross spectral density function by the
power spectral density functions at and (i.e., normal-
izing covariance by variances), we can define a frequency-
dependent spatial correlation coefficient for raw scalp potential
( ) and scalp Laplacian () which we identify as the usual
coherence functions

(10)

(11)

The coherence function is a squared correlation coefficient
which depends on the pair of spatial locationsas well as
the frequency .

The power spectral density function and the coherence
function are estimated by forming a channel by channel
cross spectral density matrix at each frequency, averaged
over epochs to obtain a reliable estimate of the statistics
of the underlying random process [1], [7]. The resultant
estimates of cross spectral density between all possible pairs of
channels in an EEG recording montage provides an estimate
of the statistics of the spatio-temporal EEG process, filtered
at the spatial frequencies that contribute to scalp samples
for the particular recording strategy (reference, bipolar, or
Laplacian). The filtering is a direct consequence of (6) and
the spatial transfer functions shown here for scalp potentials
and Laplacians in Fig. 1.

The effect of this spatial filtering on coherence estimates
is easily demonstrated in the simplest case where the source
activity is a spatially uncorrelated stationary random process

(12)

Here, is the source variance as a function of frequency.
Then the cross spectral density of the scalp potential is
obtained by applying (1) and (8), yielding

(13)

where is the angle between and and are the
Legendre polynomials. The power spectral density function is
then

(14)

yielding the coherence function

(15)



SRINIVASAN et al.: ESTIMATES OF EEG COHERENCE 817

(a) (b)

Fig. 2. Coherence due to uncorrelated sources. (a) Reference-independent scalp potentials. (b) Analytic surface Laplacians. The analytic solutions
for a superficial layer (rz = 7:8) of uncorrelated sources are shown by the bars. Coherences (squared correlation coefficients) for all pairs of
111 scalp electrodes across 500 random distributions of 4240 superficial sources are shown by the scatter. The four spheres parameters are set to
(rbrain; rCSF; rskull; rscalp) = (8; 8:2; 8:7; 9:2) cm and conductivity ratios�brain=CSF = 0:2; �brain=skull = 80; and�brain=scalp = 1.

Similarly, the Laplacian coherence estimate is obtained as

(16)

These coherence functions are plotted as a function of sepa-
ration angle (measured in centimeters assuming a 9.2-cm
radius scalp) in Fig. 2 (bars). When the coherence of a random
process depends only on the separation distance, the process is
termed homogeneous, which is analogous to time stationarity.
In this case, the power spectral density function has frequency
dependence, but is independent of position on the scalp sur-
face. The coherence function is independent of both frequency
and absolute position on the scalp surface, depending only on
the separation distance between sensors. While this example
is obviously a poor description of most EEG data, the curves
generated in Fig. 2 are useful as a baseline for interpreting
the physiological significance of coherence estimates from
scalp data. The implication is that over short to moderate
interelectrode distances (10 cm in the spherical model) we
may expect a significant contribution of coherence due to
volume conduction. By contrast, the surface Laplacian yields
erroneous high coherences only over short distances (4 cm).
In both cases, the volume conductor contribution to coherence
is independent of temporal frequency, since tissue resistivities
are insensitive to frequency over the narrow frequency range
of EEG.

This simple example of uncorrelated sources fails to account
for the dependence of EEG coherence on either temporal
frequency or electrode position, and the contribution of volume
conduction to EEG coherence appears to be additive. It is
critical to recognize that the underlying process is filtering,
as expressed by (6). In general, the cross spectral density of

neocortical sources ( ) is inhomogeneous (i.e., dependent
on position within the brain), reflecting the spatial specificity of
sources of neocortical rhythms [7], [12]. Thus, large correlated
dipole layers (mostly low spatial frequency components) will
make large contributions to coherence estimates based on scalp
potentials, while smaller dipole layers (composed of higher
spatial frequency components) will make larger contributions
to Laplacian coherence estimates. This can result in higher
coherences between electrode pairs in either Laplacian or
potential data depending on the spatial bandwidth of the
coherent activity. For example, suppose that EEG is due to
a mixture of correlated and uncorrelated neocortical sources,
and that the correlated sources at one temporal frequency are
distributed as shown by the two spherical harmonics shown in
Fig. 1(a). In a hypothetical experiment, we spatially narrow
band filter the scalp data to a single spherical harmonic
degree ( ), for and . Two electrodes that sit above
any two peaks of will record a large coherence for the
filter set at , but low coherence for the filter set to

, as the electrodes are close to nodal lines of.
The spatial filtering of raw potential and Laplacian shown in
Fig. 1(b) and (c) indicates that the coherences recorded with
each method are sensitive to distinct but partially overlapping
spatial wavelengths. The relative magnitude of coherence with
each method will depend on the spatial frequencies of the
coherent neocortical sources.

IV. SIMULATIONS OF SPATIALLY SAMPLED EEG

The analytic solutions presented in Fig. 2 (bars) were based
on reference-independent potentials, which are not available in
EEG recordings. Every EEG electrode is referenced to another
electrode typically placed on the head, chest, or neck. The
neck reference is the effective reference for any choice of
reference below the head [7]. This is a consequence of the fact
that very little current flows below the neck. Thus, reference
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recording involves performing a difference operation between
two points on the head volume conductor. In the idealized
case of “reference with respect to infinity” the contribution
of spherical harmonic components of the scalp potential is
zero for electrodes placed on the nodal lines of the harmonic
functions. The reference recording shifts the location of the
nodal lines, depending on the choice of reference. In the
realistic case of irregular head geometry and inhomogeneous
or anisotropic tissue properties, the transformation of the
potential distribution by choice of reference will have a more
complicated effect on the recorded potential.

Direct calculation of coherence on referenced potentials is
compromised by the addition of the signal at the reference
site to each of the electrodes [20], [21]. The relative power
and phase angle between recording electrode and reference
electrode will modify the spatial distribution of the signal
and, consequently, the coherence estimates. One approach is to
reference to the mathematical average of the mastoids or ears,
which we can expect to bias coherences between channels
close to these sites. Another approach is to employ the
average reference, i.e., to estimate the instantaneous average
potential and to subtract this quantity from each channel. In
the ideal case of reference-independent sampling on a closed
surface, such as a sphere, the dc signal is zero [22]. If the
number of samples is sufficiently large and the head surface is
completely sampled, the average reference simply removes the
dc component of the spatial signal, which is entirely due to the
reference electrode. However, if the spatial extent or number
of electrodes is too small, new biases will be introduced by
forcing a zero mean on the spatial signal. Another approach,
more common in clinical studies, is to form close bipolar pairs
which estimate local scalp tangential current density, but are
difficult to interpret spatially because the potentials depend on
the orientation of the bipolar pairs [4].

In order to simulate a spatially sampled EEG recording,
4240 random dipole sources were distributed in a layer cover-
ing the extent of the recording array (105of elevation from
vertex) within the inner sphere (brain) of the four spheres
model at a fixed depth ( 7.8 cm), with the model
parameters set as in the analytic solution. Scalp potentials due
to 500 different random source distributions (drawn from a
uniform distribution) were then calculated from this model.
Correlation coefficients were obtained between all possible
pairs of 111 electrode positions (identical to those used in
the EEG data discussed in a following section). Correlation
coefficient squared was examined to allow direct comparison
with the analytic coherence results.

Fig. 2 shows the coherence between all possible pairs
of electrodes (6105) plotted against the analytic coherence
results for reference-independent potentials and analytically
calculated Laplacians. The analytic estimate is lower than
the sampled estimate for the potentials because the effective
number of sources used in the analytic calculation is infinite.
As the number of sources is increased in the simulation, the
two estimates converge. Both solutions show a small rise at
long distances because the field of each dipole source falls off
to zero with distance, but then rises again with opposite sign. In
the case of the Laplacian, the sampling density was insufficient

to verify the shape of the coherence function, but the nearest
neighbor coherences are negligible in both the simulation and
the analytic solution.

Fig. 3 shows the simulated coherence due to uncorrelated
sources with (a) the average reference and (b) the average
mastoids reference, for all possible pairs of electrodes. None
(out of 6105) of the average reference coherences are shifted
by more than 0.1 from the reference-independent case. In
the case of the average mastoids reference, 2153 coherences
change by 0.1 or more; at short distances (15 cm) the effect
is mostly to inflate coherences, while at longer distances the
effect is mostly to reduce coherences, except for a small
number of interhemispheric coherences (36) that increase due
to proximity to the reference sites. By restricting the coherence
pairs to a single hemisphere (51 electrodes), only 194 (out of
1225) average mastoids coherences change by more than 0.1
as shown in Fig. 3(c). In each plot referenced and reference-
independent coherences are compared; coherences that change
by less than 0.1 are indicated by a point, while coherences that
change by more than 0.1 are indicated by an open circle. We
do not suggest that a shift of 0.1 is necessarily the threshold
for significance; in general confidence intervals for coherence
estimates depend on both the number of epochs used and
the coherence value [1], with larger coherence values having
narrower confidence intervals. We use this criterion only to
facilitate visualizing changes in the coherence function with
reference electrode.

The spline-Laplacian is an estimate of the analytic sur-
face Laplacian based on fitting either a spherical or three-
dimensional (3-D) spline to instantaneous scalp potentials and
calculating the second derivatives in the two surface coordi-
nates [4], [15]–[18] Our study was based on 3-D splines which
have a bandpass filtering characteristic to prevent aliasing from
undersampled higher spatial frequencies [4]. Spline-Laplacian
estimates were obtained at the 111 electrode locations and cor-
relation coefficients calculated, demonstrating almost complete
removal of volume conducted coherence artifact, as shown
in Fig. 3(d). A small number of electrode pairs (16), show
some inflated coherence particularly at the shortest distance
corresponding to nearest neighbors. These electrode pairs all
involved electrodes at the edge of the array, which are not
constrained in the derivative estimates. As a consequence we
have removed these coherences (153) in the analysis of the
experimental Laplacian data.

These results suggest that the 3-D spline does not (in this
simulation) introduce any erroneous high coherence, due only
to the spline algorithm an effect that was reported in another
study [23]. The most important difference between these two
studies is that our study used a model of the head to generate
realistic volume-conducted coherence. By contrast, in the
earlier study the artificial correlation between electrodes was
generated in simulations where spatial white noise was added
to the raw signal prior to the Laplacian estimate. This was done
by adding uncorrelated time series of random numbers to each
electrode which is a spatial signal containing very high spatial
frequencies. This approach might be appropriate for modeling
the effects of amplifier or electrode noise, but not for sources in
the brain. The influence of volume conduction is not simply the
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(a) (b)

(c) (d)

Fig. 3. Simulations of reference electrode and spline-Laplacian coherence due to uncorrelated sources: (a) average reference, (b) average mastoids (all
channels) reference, (c) average mastoids (right hemisphere), and (d) spline-Laplacian. Coherences (squared correlation coefficients) for all possible pairs
of 111 scalp electrodes are calculated from 500 random distributions of 4240 superficial (rz = 7:8) sources. The four spheres parameters are set to
(rbrain; rCSF; rskull; rscalp) = (8; 8:2; 8:7; 9:2) cm and conductivity ratios�brain=CSF = 0:2; �brain=skull = 80, and �brain=scalp = 1. In plots
(a)–(c) coherences that are within 0.1 of the simulation of reference-independent potentials are shown with a point; coherences that change by more than
0.1 are shown with an open circle. In plot (d) coherences that are within 0.1 of the simulation of analytic Laplacian coherence are shown with a point;
coherences that change by more than 0.1 are shown with an open circle.

addition of noise to the data, but rather spatial filtering of the
data which has the effect of artificially correlating electrodes
when the neocortical sources are uncorrelated. There may
also be small differences due to the high-pass characteristic
of spherical splines used in the earlier study in contrast to
the bandpass characteristic of 3-D splines used in this study.
This can be easily corrected as spherical spline algorithms
can be smoothed to produce a bandpass characteristic [18].
However, we have not made any direct comparisons between
the 3-D and spherical splines. The 3-D spline Laplacian has
also been tested by estimating local spline Laplacians for the
major scalp regions centered approximately at P3, P4, F3, and
F4, from independent sets of 12 channels [12]. The six pairs
of coherence spectra obtained in this manner were compared

to the same pairs from the global spline Laplacian estimate.
The spectra were largely consistent between the two estimates.
The only significant difference occurred for the pair F3 : F4
where the coherence was found to be lower in the global
spline Laplacian. Thus, we have confidence that our Laplacian
estimate does not introduce algorithmic coherence artifacts.

V. SPONTANEOUS EEG COHERENCE

The EEG data presented here were recorded from one
female adult subject (20 yrs) using a 129-channel geodesic
sensor net [24], providing a mean interelectrode distance of
2.7 cm, subtending an angle of 120from vertex. We have
examined the records of 31 adults subjects (18–24 yrs old) and
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describe only general patterns of EEG coherence common to
the subjects. Two minutes of eyes-closed and eyes-open EEG
were recorded in this “resting” state. A vertex reference was
used and the records were digitized at 200 Hz with the low-
pass analog filter set to 50 Hz. In order to avoid influencing
the results of dynamical analysis by artifact, all time series
were visually inspected for standard artifacts such as eye
blinks and muscle activity. Furthermore, automated rejection
of possible artifact was accomplished using amplitude criteria.
Eighteen data channels on the outer most ring of electrodes
on the inferior surface of the head were dropped from the
study due to possible artifacts, leaving 111 electrode sites.
Average referenced data was obtained by re-referencing the
vertex referenced potentials to the instantaneous average po-
tential of all 111 channels. Average mastoids referenced data
was obtained by re-referencing the data to the mathematical
average of the two mastoid electrodes. The electrode positions
were fit to a sphere and all distances reported are along
this sphere. The data were used to fit a 3-D spline at each
time point and the Laplacian estimate was obtained. The
data were divided into 2-s epochs and Fourier transformed
(using MATLAB) obtaining a 0.5-Hz frequency resolution to
calculate the coherences between all pairs (6105) of channels.
The 95% confidence intervals for coherence depend on both
the number of epochs and the coherence value; for the 60
epochs used here a high coherence of 0.8 has a confidence
interval [ ], while a small coherence of 0.2 has a
confidence interval [ ] [1], [24].

At each frequency, the coherence data showed different
contributions from coherent sources, reference electrode, and
volume conduction. From the analytic solution, (15), we expect
that the contribution of volume conduction of uncorrelated
sources will be independent of frequency [7], [12]. Fig. 4
shows EEG coherence as a function of frequency in the eyes-
closed condition between electrode Oz and a succession of
electrodes (separated by 2.57 cm) along the midline in the
anterior direction. The coherence between Oz and the elec-
trodes 68, Pz, and 55, clearly indicate a strong component of
volume conduction as the coherence is relatively independent
of frequency with both the average reference and average
mastoids reference. The Oz : Cz pair (10.28-cm separation)
shows peaks in the coherence spectrum with both references.
All four coherence pairs show higher coherences in the average
mastoids reference than the average reference, consistent with
the simulations at these distances (Fig. 3). The pair Oz : Fz
shows differences between average reference and average
mastoids coherence that are specific to the 8–32 Hz range;
they are probably due to differences in the spatial distributions
of frequency components in relation to reference locations.

By contrast, the surface Laplacian data shows significant
coherence that is independent of frequency only for the first
pair (Oz : 68). The Laplacian coherence becomes negligible at
frequencies above 25 Hz at Oz : Pz (separated by 5.14 cm)
and for electrode pairs at greater distances. By contrast, the
two reference potential coherence measurements have large
magnitude, but are relatively frequency independent. At lower
frequencies, such as the alpha band (8–12 Hz), electrode
pair specific coherences are seen in the Laplacian data in

comparison to the rest of the spectrum. For instance, a clear
peak can be seen at 10 Hz at a distance of 5.14 cm (Oz : Pz)
and at a distance of 10.28 cm (Oz : Cz), that is absent in
Oz : 55 at the intermediate distance of 7.71 cm. Apparently,
in this subject this electrode (55) sits close to a nodal line
of the pattern of alpha sources close to 10 Hz filtered at
the spatial wavelengths of Laplacian data. This nodal line is
apparently quite distinct from nodal lines of the adjacent alpha
frequencies, 9.5 and 10.5 Hz.

We directly compared the coherence as a function of inter-
electrode distance between a low EEG frequency (10 Hz) and a
high EEG frequency (38 Hz) with each reference potential and
the Laplacian in both eyes-closed and eyes-open conditions.
Fig. 5 shows the coherence scatter for 51 right-hemisphere
electrodes (1225 pairs) in the eyes-closed condition; qualita-
tively similar plots were obtained for the left hemisphere and
in both hemispheres in the eyes-open condition. We examined
these restricted sets because the average mastoid reference
strongly influences interhemispheric coherences as shown in
Fig. 3. With both the average reference [Fig. 3(a)] and the
average mastoids reference [Fig. 3(b)] high coherences are
shown at 10 Hz at long interelectrode distances (15 cm),
which are somewhat higher in the average reference case in
contrast to very few high coherences shown at 38 Hz. At both
frequencies, the shift in long-range coherence between average
reference and average mastoids is comparable in magnitude
to the simulations with uncorrelated sources (Fig. 3). In all
plots a polynomial fit to the coherence distance function is
shown. At 10 Hz, the coherence function shows a trend to a
minimum is at intermediate distances (14 cm) before rising
again at long distances. At all distances the 10-Hz coherences
are generally higher than the 38-Hz coherences. Since the
electrode pairs were restricted to a hemisphere, all of the long-
range coherences shown here are oriented in anterior–posterior
directions. The pattern of referenced potential coherence at
10 Hz matches a putative source distribution of very low
spatial wavelength, possibly comprised of two broad correlated
dipole layers under posterior and anterior electrodes, which
tend to oscillate 180out of phase in the manner of a standing
wave [12].

The coherences at 38 Hz seem to mostly fall off regularly
with distance suggesting they are mostly due to volume
conduction. This is supported by the Laplacian coherences
at 38 Hz [Fig. 5(c)] which are mostly negligible at distances
greater than 5 cm. By contrast, a large number of high
coherences are shown between 5 and 20 cm at 10 Hz,
but at long distances (20 cm) the coherences are mostly
reduced in comparison to the referenced potential data. This
suggests that while the Laplacian is able to detect the genuine
coherences at short and intermediate (5–20 cm) interelectrode
distances with better resolution than the potential (because
of its spatial bandpass characteristic), the attenuation of low-
spatial frequencies by the Laplacian reduces some genuine
long-range coherences generated by neocortical dynamics [12].

The changes in coherence when switching between the
two references and the Laplacian could (in part) be predicted
by the simulations. Table I shows the number of coherences
that changed by at least 0.1 (in either direction) in changing
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(a)

(b)

Fig. 4. Coherence spectra in the posterior–anterior direction along the midline with respect to electrode Oz: (a) average mastoids reference and (b) average 
reference. Data shown is from one subject in the eyes-closed resting condition. Coherence was estimated from 60 2-s epochs (0.5-Hz frequency resolution). 
The channel names correspond to the 10–20 system for some of the electrodes; electrodes in between the 10–20 electrodes are identified by number. The 
reported interelectrode distances are along a best-fit sphere to the electrode positions.
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(c)

Fig. 4. (Continued.) Coherence spectra in the posterior–anterior direction along the midline with respect to electrode Oz: (c) surface Laplacian. Data
shown is from one subject in the eyes-closed resting condition. Coherence was estimated from 60 2-s epochs (0.5-Hz frequency resolution). The channel
names correspond to the 10–20 system for some of the electrodes; electrodes in between the 10–20 electrodes are identified by number. The reported
interelectrode distances are along a best-fit sphere to the electrode positions.

between references in the simulations and EEG data. For each
entry the number in the parenthesis indicates the number
of coherences that increased by at least 0.1. The numbers
are shown combining the left and right hemisphere results
from a total of 2250 coherences. In the simulation average
mastoids has higher coherences than average reference except
for approximately 100 long-range coherences. The Laplacian
reduces coherences due to volume conduction and reference
with no coherences increasing. In the EEG data, at both fre-
quencies and in both eyes-closed and eyes-open conditions, the
difference between mastoids and average reference coherence
was not mostly positive as in the simulations. This discrep-
ancy may have occurred because each of the experimental
conditions probably included some correlated sources near the
mastoids and/or deeper sources that differentially influence
other electrodes, depending on the relative phase of each
channel with respect to the average of the mastoids [20]. This
suggests that neither reference provides a perfect picture of the
potential coherence, but at long distances both are useful, with
the average mastoids being more suitable for intrahemispheric
coherences at long distances as it cancels some of the volume
conduction effects. In the comparison between Laplacian and
mastoids or average reference, a striking difference is noted
between the experimental 10-Hz and 38-Hz results and simu-
lations. The 38-Hz response is similar to the simulation with
most coherences lower using the Laplacian. However, at 10 Hz
approximately 30% of the Laplacian coherences are larger;

these occur mostly at interelectrode distances between 5 and
20 cm. This implies that 10-Hz coherent source distributions
exist in the data filtered by both the referenced potential and
the Laplacian, while at 38 Hz most of the potential coherence
was due to volume conduction of uncorrelated sources.

VI. DISCUSSION

The spatial filtering inherent in both the scalp potential field
and the surface Laplacian estimate of cortical potentials imply
that each approach is sensitive to distinct, but partially over-
lapping spatial scales of the dynamics. Both the simulations
and data examined here confirm this qualitative property of
scalp recorded EEG. The simulations and analytic solutions
predict that volume conduction of uncorrelated sources inflate
coherence estimates for electrode pairs within 10–12 cm.
This artificial correlation is reduced by the surface Laplacian
estimate of cortical potentials. The analytic solution reveals
that this process is not additive, but is spatial filtering, implying
that the potential and Laplacian coherences are representations
of source statistics at distinct spatial wavelengths. The EEG
data was consistent with these predictions. At 10 Hz, distinct
patterns of source correlations are observed in the referenced
potential and Laplacian data, while at high frequencies (38 Hz)
most of the referenced potential coherences are due to volume
conduction, which are reduced substantially by the Laplacian.
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(a)

(b)

Fig. 5. Scatter of all coherence pairs versus interelectrode distance among right-hemisphere electrodes (51) at (left) 10 Hz and (right) 38 Hz. (a) 
Average mastoids reference and (b) average reference. Third-order polynomial fits to the coherence scatter are plotted. The analytic coherence estimate 
for uncorrelated sources is shown by the bars.
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(c)

Fig. 5. (Continued.) Scatter of all coherence pairs versus interelectrode distance among right-hemisphere electrodes (51) at (left) 10 Hz and (right) 38 Hz. (c)
Spline-Laplacian. Third-order polynomial fits to the coherence scatter are plotted. The analytic coherence estimate for uncorrelated sources is shown by the bars.

TABLE I
CHANGES IN COHERENCEESTIMATES WITH CHANGES IN REFERENCE. EACH ROW IS THE COMPARISON

BETWEEN REFERENCEDPOTENIALS OF LAPLACIAN FOR THE TWO FREQUENCIES

(10 AND 38 Hz) IN THE TWO CONDITIONS (EYES CLOSED AND EYES OPEN)

Comparison simulation 10 Hz
eyes closed

10 Hz
eyes open

38 Hz
eyes closed

38 Hz
eyes open

mastoid–average 1054 (956) 552 (224) 620 (296) 546 (56) 434 (220)
Laplacian–average 878 (0) 1814 (501) 1554 (469) 1112 (114) 1094 (188)
Laplacian–mastoid 1356 (0) 1786 (498) 1542 (441) 978 (97) 1086 (86)

Entries are the number of coherences that changed by at least 0.1. The numbers in parentheses are the
number of these coherences that increased by at least 0.1, i.e., a positive difference between the first
method and the second. All of the numbers were taken from simulations or 2-min EEG records from
one subject, with 0.5-Hz frequency resolution. Coherences were computed between electrode pairs in the
same hemisphere using 51 electrodes over each hemisphere, for a total of 2250 coherences.

Many experimental papers on EEG coherence have avoided
the issue of volume conduction. A common misconception is
that volume conduction is additive and can, thus, be ignored in
the comparison of two or more conditions in the same subject
or between groups of subjects [26], [27]. The theoretical
developments in this paper suggest that the effectiveness of
the comparisons are compromised by this assumption in two
ways: 1) The inflation of coherence estimates at short distances
by volume conduction of uncorrelated sources biases statistical
analysis of task condition or group differences. Changes in
weak correlation at short distances can appear highly sig-
nificant as the confidence intervals on coherence values are
narrower for higher coherence values. 2) Only changes of
source correlation at very low spatial frequencies (i.e., large
dipole layers) are robust in raw potential data. Correlations

between smaller dipole layers are relatively attenuated in the
raw potential data, so that statistical significance of changes
in coherence is reduced.

The surface Laplacian approach improved the resolution
of these intermediate length coherences due to its bandpass
spatial filtering characteristic. In the simulations using uncor-
related sources, the surface Laplacian algorithm removed all of
the coherences due to volume conduction for 111 electrodes.
In the case of high-frequency data (38 Hz), most of the coher-
ences were reduced by the surface Laplacian, suggesting that
they were largely due to volume conduction. But in the alpha
frequency data (10 Hz) many of the coherences at intermediate
lengths (5–20 cm) increased. This suggests that at 10 Hz,
short and intermediate wavelengths of correlated sources exists
along with robust long-range coherences (20 cm). These
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long-range coherences were reduced in the surface Laplacian
estimate because its spatial bandpass characteristic attenuates
low spatial frequencies. Thus, the surface Laplacians do not
replace the referenced potentials, but rather should be used in
parallel to improve the information yield in studies of EEG
coherence.

By contrast to the relatively high coherences at electrode
separations greater than 5 cm, intracranial coherences are
normally much smaller at comparable distances. For example,
subdural coherence measured with 2-mm-diameter electrodes
typically falls to zero at all frequencies at electrode separa-
tions greater than about 2 cm [28]. Apparently, large- and
intermediate-scale recordings from scalp electrodes of 1-cm
diameter provide recordings at a distinct spatial scale of
EEG dynamics. Nearly all physiologically based models of
dynamic interactions of neurons in neocortex suggest spatial-
temporal dynamic behaviors with preferred ranges in both
spatial ( ) and temporal () frequencies for the spectral density
function . These include local neural circuits with local
negative and positive feedback [29], [30], global theory that
includes delays of signals transmitted along corticocortical
fibers [12], [31], [32], combined local/global theory [12],
[33], and statistical mechanics of neocortical interactions [34].
The global theory predicts multiple spatial frequencies ()
contributing over the same range of temporal frequencies ()
even in linear limiting cases [12], [32]. Thus, neocortical
dynamic processes can, themselves, be expected to act as
a spatio–temporal filter on cortical inputs. Scalp recording
involves further spatial filtering of this response function due
to volume conduction. Differences between cortical and scalp
temporal frequency spectra [35] apparently occur as an indirect
result of this spatial filtering.

Despite some simplifying assumptions, the theory and sim-
ulations outlined here provide a useful guide to interpreting
experimental coherence studies. The filtering properties of the
head equation (6) depend on the head model and depth of
source distribution; we have used a superficial radial dipole
layer in a four spheres model. However, the general form of
the filter, and the simulation techniques, are equally applicable
to spatial correlations among tangential dipole sources, and
should provide qualitatively similar results. Further improve-
ments to the modeling could be achieved by the use of
a realistic finite-element model. In this case, the analytic
approach is not possible, but realistic simulations of coherence
due to uncorrelated sources could provide a more precise aid
in the interpretation of EEG data.

APPENDIX

THE FOUR CONCENTRIC SPHERESMODEL OF THE HEAD

For a radial dipole, the solution to the four spheres model is
expressed in each sphere[ (brain), (CSF), (skull),
and (scalp)] as

(A-1)

where are the Legendre polynomials and boundary condi-
tions are applied to obtain the solutions as a set of recursion re-
lations for the coefficients. The solution for tangential dipoles
is of the same form but with the sums over the associated
Legendre polynomials. The terms corresponding to have
zero contribution as a consequence of current conservation.

We introduce the notation and to
indicate the radii and conductivity ratios between the model
layers. For convenience we define the quantities

(A-2)

(A-3)

(A-4)

Then the model coefficients are

(A-5)

(A-6)

(A-7)

(A-8)

(A-9)

(A-10)

(A-11)

The scalp surface potential is calculated as

(A-12)
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