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Abstract. We obtain exact expressions counting the satisfiable 2-SAT formulae and describe
the structure of associated implication digraphs. Our approach is based on generating func-
tion manipulations. To reflect the combinatorial specificities of the implication digraphs, we
introduce a new kind of generating function, the Implication generating function, inspired by
the Graphic generating function used in digraph enumeration. Using the underlying recur-
rences, we make accurate numerical predictions of the phase transition curve of the 2-SAT
problem inside the critical window. We expect these exact formulae to be amenable to rig-
orous asymptotic analysis using complex analytic tools, leading to a more detailed picture
of the 2-SAT phase transition in the future.
Keywords. 2-CNF, exact enumeration, random graphs, phase transitions, strongly con-
nected components, satisfiability, generating functions
Mathematics Subject Classifications. 05A15, 68Q87, 68R95

1. Introduction

A k-CNF (Conjunctive Normal Form), or k-SAT formula, is a collection (conjunction) of
clauses, where each clause is a disjunction of Boolean literals, and each Boolean literal is either
a Boolean variable x or its negation x (e.g. (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) for a 3-CNF). A
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k-CNF is satisfiable if it returns True for at least one instantiation of its variables. More formal
definitions are postponed until Section 2.1.

The problem k-SAT of deciding whether a k-CNF is satisfiable is a central Constraint Satis-
faction Problem (CSP for short). It is NP-complete for k ⩾ 3 [Coo71], but 2-SAT is solvable in
polynomial [Kro67, EIS75]. and even in linear [APT79] time. This linear algorithm for 2-SAT
solving relies on the so-called implication digraphs which are digraphs built from the 2-CNF
where each of the clauses (x ∨ y) is replaced with two directed edges x → y and y → x, which
corresponds to a logically equivalent replacement of disjunction by an implication (see further
discussion in Section 2.2). Although 2-SAT is simple from a computational perspective, some
of its variants are difficult. For example, the problem of counting the number of solutions of a
2-SAT formula is NP-complete [GJS76], and even approximating it within a factor less than 4/3
is NP-complete [H0̊1].

The main contribution of the current paper is an exact expression for the number of satis-
fiable 2-CNF with a given number of variables and clauses (other results are summarized in
Section 1.4). Our enumeration is expressed using generating functions and our tools are in-
fluenced by directed graph (digraph for short) enumeration. Before stating our results on the
enumeration of satisfiable 2-CNF in Section 1.4, the three next subsections provide some histor-
ical background and discuss various angles of attack for the problem.

1.1. Exact enumeration

Graphs. Graphical enumeration (see Harary and Palmer [HP73]) is a classical theme in enu-
merative combinatorics. It started in the late 19th century, with the enumeration of labeled
trees by Borchardt [Bor61] and Cayley [Cay89]. Around a hundred years later, in a series of
important papers, Wright [Wri77, Wri78, Wri80] obtained exact expressions for the number of
connected graphs according to their number of vertices and edges. Those expressions rely on
the framework of generating functions, and excellent introductions to those tools are provided
by Bergeron, Labelle, and Leroux [BLL97], and Flajolet and Sedgewick [FS09].

Digraphs. In the 1970’s, Liskovets, Robinson and Wright [Wri71, Lis73, Rob71] developed
the enumeration of strongly connected digraphs, directed acyclic graphs, and related digraph
families. Most importantly, Robinson was able to lift the enumeration from the level of recur-
rences to the level of generating functions and obtain the tools to handle very general digraph
families. Later, Robinson and Liskovets extended these methods to unlabeled enumeration. A
detailed historical account on the development of the directed enumeration can be found in the
introduction of [dPD19], where this method has been again rediscovered.

2-CSP. A CSP formula is similar to a CNF formula, but more logical operators are allowed,
such as the XOR operation ⊕ and logical implication →, further expanding to Boolean functions
of more than two variables.

As various communities, namely computer scientists, probabilists and physicists [ACO08,
BBC+01, MZ97], have been interested in CSP, in what follows we propose to present the line of
research and the links between them that led us to approach the 2-SAT problem via enumerative
combinatorics and the use of generating functions. In a CSP formula where each clause relates
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to exactly 2 variables (or 2-CSP), it is very natural to represent the whole formula, i.e. the
collection of clauses, via a graph where the clauses (resp. the variables) are the edges (resp. the
nodes) of the graph.

As far as graphs are concerned, the works of Daudé and Ravelomanana [DR11] and Pittel and
Yeum [PY10] show that analyses based on graphical enumeration [Wri77, Wri80, HP73] play
a substantial role as such an approach leads to remarkably accurate results on the probability
of satisfaction of a random formula. In the aforementioned works, the enumerative approach
consists in encoding the objects to be enumerated with the help of generating functions. Over
the past decade (see [DR11, dPD19, RRW20, DdPR+20] for reference) it has turned out that it
is fundamental to understand how to enumerate directed graphs before tackling the enumeration
of 2-SAT formulae.

1.2. Structure and phase transition

Graphs. The two most natural models of random graphs are G(n,m) and G(n, p). Both gen-
erate graphs on n vertices. G(n,m) also fixes the number m of edges and samples the graph
uniformly at random, while G(n, p) adds an edge between each pair of vertices independently
with probability p. Random graphs with a large number of vertices exhibit similar limit statistical
properties in both models, as shown by Bollobás [Bol01].

Erdős and Rényi [ER60] studied the structure of random G(n,m) graphs. Let us transpose
in the G(n, p) model one of their most striking results. For p = c/n, with probability tending
to 1, a random G(n, p) graph contains, as n → ∞,

• only trees and unicycles (components having only one cycle) if c < 1,

• only trees, unicycles, and a unique “giant” component, of size n · f(c) + o(n), if c > 1.

Such a drastic change of behavior is called a phase transition (a term borrowed from theoret-
ical physics). The typical structure of random G(n, p) graphs for p close to 1/n was inves-
tigated by Stepanov [Ste88] and described in fine detail by Janson, Knuth, Łuczak and Pit-
tel [JKŁP93]. They showed that in the critical window, corresponding to p = 1

n
(1+O(n−1/3)),

a random G(n, p) graph has a positive limit probability to contain several connected components
that are neither trees nor unicycles. They also derived the limit distributions for various statistics
of those components. As we discuss below, the satisfiability of random 2-SAT formulae under-
goes a similar phase transition. Finally, an even more precise description of large graphs in the
critical window has been obtained by Addario-Berry, Broutin and Goldschmidt [ABBG12], in
the form of a scaling limit (a geometrical limit for random graphs with a large number of vertices
expressed in terms of various stochastic processes related to the Brownian motion).

Digraphs. The random models G(n,m) and G(n, p) extend naturally to digraphs. In
the D(n, p) model, the generated digraph has n vertices and each of the n(n− 1) ordered pairs
of distinct vertices becomes an arc independently with probability p. As in the case of graph, the
structure of digraphs undergoes a phase transition, located by Karp [Kar90] and Łuczak [Łuc90].
With probability tending to 1 as n tends to infinity, the strongly connected components of a ran-
dom D(n, c/n) digraph are
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• cycles or single vertices if c < 1,

• cycles, single vertices, and a unique giant strong component containing a linear proportion
of all vertices if c > 1.

Łuczak and Seierstad [ŁS09] derived the width n−1/3 of the critical window. For
p = 1

n
(1 +O(n−1/3)), they established that the size of the largest strongly connected compo-

nent is of order n1/3. Recently, Goldschmidt and Stephenson [GS19] derived a scaling limit
for random digraphs inside the critical window. Using a generating function approach, Dov-
gal, de Panafieu, Ralaivaosaona, Rasendrahasina and Wagner [DdPR+20] also obtained precise
information on the typical structure of random D(n, p) digraphs inside the critical window.

2-SAT. In the scope of the current paper, we assume that inside of all the clauses of a 2-CNF,
the literals have distinct Boolean variables. This results in 2n(n − 1) possible clauses in case
of n variables. As for graphs, there are two natural models for random 2-CNF. In the (n,m)
model, the numbers of variables n and clauses m are fixed, and the formula is sampled uni-
formly at random. This is akin to the G(n,m) random graph model. In the (n, p) model, the
number of variables n and a probability p are fixed, and the formula is built by adding each of
the 2n(n − 1) possible clauses independently with probability p. This second model is akin to
theG(n, p) random graph model. As in the case of graphs, we expect random formulae to behave
similarly under both models as n tends to infinity. We refer to [BBC+01] for details regarding
the correspondence between these models as n → ∞.

Our enumerative results allow us to express exactly the probability for a random formula
to be satisfiable in the (n,m) model. In Proposition 3.3, we show how to translate this result
to the (n, p) model as well. The most popular model for random 2-SAT formulae is the (n, p)
model, so we focus on it in the rest of the discussion.

Let PSAT(n, p) denote the probability for a random (n, p)CNF to be satisfiable. It was shown
by Goerdt [Goe96], Chvátal and Reed [CR92] and Fernandez de la Vega [dLV01] that the limit
of PSAT(n, p) is 1 for p = c/n with c < 1/2, and 0 if c > 1/2. This sharp change is called the
phase transition of 2-SAT. Bollobás, Borgs, Chayes, Kim and Wilson [BBC+01] refined their
predictions and showed that the limit probability of satisfiability PSAT(n, p) is 1−Θ(|µ|−3)
(or, respectively, exp(−Θ(µ3))) for p = 1

2n

(
1 + µn−1/3

)
when µ → −∞ (or, respectively,

µ → +∞), suggesting that the only region where this probability could be non-trivial is for µ
staying in a compact real interval. Some of these estimated were further refined by Kim [Kim08]
through Poisson cloning and Dovgal [Dov19] with a different technique. Further results on MAX
SAT around the phase transition window have been obtained in [CGHS04].

To describe the behavior of this phase transition, we say that the critical window has
width n−1/3. Let use define PSAT,∞(µ) as the limit

PSAT,∞(µ) = lim
n→+∞

PSAT

(
n,

1

2n

(
1 + µn−1/3

))
.

A central problem in the study of phase transitions is to compute the function PSAT,∞(µ). In the
current paper, we obtain exact expressions for the number of satisfiable 2-CNF that are related
to, though more complex than, the expressions counting digraph families. Our hope is that
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the analytic tools developed by [DdPR+20] to analyze the phase transition of digraphs can be
extended to 2-CNF and express PSAT,∞(µ). We also use those exact expressions to obtain highly
accurate (although non-rigorous) numerical predictions of the curve of PSAT,∞(µ).

1.3. Discussion of possible strategies

In the current work, we focus on the exact enumeration of families related to 2-SAT formulae.
To do this, we further extend the symbolic method for enumeration of directed graphs. Indeed,
digraphs are closely related to 2-SAT formulae since the latter can be represented using implica-
tion digraphs. An unsatisfiable formula is distinguished by the presence of a specific subgraph
– a contradictory circuit – inside its implication digraph. We refer to an approach of Collet,
de Panafieu, Gardy, Gittenberger and Ravelomanana [CdPG+20] based on finding induced sub-
graphs in random graphs, using generating functions as well. Unfortunately, such an approach
does not allow to capture the counting recurrence in an efficient way, because the family of the
required patterns is too large.

Another possible approach is an inclusion-exclusion method, or a more refined probabilistic
tool based on distinguishing a random variable inside a formula, i.e. statistic. Two particular
statistics can be used to count 2-SAT formulae: the number of Boolean assignments satisfying
the formula, and the number of contradictory variables (defined below). A 2-SAT formula is
satisfiable if and only if it has at least one satisfiable assignment. Equivalently, it is satisfiable if
and only if it contains no contradictory variable. Other statistics have historically been used to
produce upper and lower bounds on the probability that a random formula is satisfiable.

The expression obtained by applying inclusion-exclusion on the number of satisfiable
Boolean assignments indeed gives a computable expression, which, however, produces an ex-
ponential number of summands. This approach is not promising, neither from a computational
nor from a theoretical viewpoint, due to the rapid growth of magnitude of the alternating terms.
On the other hand, the first moment method applied to the number of satisfiable Boolean assign-
ments provides bounds on the location of the phase transition, while the second moment method
requires a more delicate choice of the underlying random variable and fails to provide a tight
bound with this statistic for general k-SAT. Recent breakthroughs in the asymptotic threshold of
k-SAT for large k [DSS22, COP16] also rely on a careful choice of the right statistic: the authors
consider clusters of solutions instead of the total number of satisfying assignments.

Let us briefly turn to the work of Bollobás, Borgs, Chayes, Kim and Wilson [BBC+01]. Let
us write H ⊂ F if the clauses of the CNF H are included in the clauses of the CNF F . In the
combinatorial study of random 2-SAT, and more generally, k-SAT, one of the key features of a
random formula has been its spine, which is defined as

S(F ) = {x | ∃H ⊂ F, H is SAT and H ∧ x is UNSAT} .

The spine can be seen as a set of literals that are forced to take False values in any satisfying
assignment. However, for unsatisfiable formulae the spine is also well-defined. As an alternative
to this purely logical definition, a spine in the implication digraph can be defined as the set of lit-
erals x for which there exists a directed path from x to x. In other terms, the spine of a formula F
is defined as the set of literals x such that there exists a satisfiable subformula H of F with the
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property that H is SAT but H ∧ x is not satisfiable. Consequently, when building a formula by
adding random clauses one after the other starting from the empty formula, the spine has proven
to be a useful concept for calculating the probability of satisfiability of the formula. Introducing
this concept allowed the authors of [BBC+01] to establish the width n−1/3 of the critical window
of the phase transition in 2-SAT, i.e. to prove that the limit of the probability PSAT(n, p) could
only be non-trivial for p = 1

2n
(1 +O(n−1/3)).

In the current paper, we are considering the so-called contradictory strongly connected com-
ponents as the central parameter. In an implication digraph, a variable x is contradictory if there
is a path from x to x and from x to x, and the whole strongly connected component containing
a contradictory variable is called contradictory (we will show that, in fact, every variable of this
component will also be contradictory). On the level of logical definition, a Boolean variable x
is called contradictory if both its literals x and x belong to the spine. Equivalently, the set of
contradictory variables is defined as

C(F ) = {x | ∃H1, H2 ⊂ F, H1, H2 are SAT and H1 ∧ x and H2 ∧ x are UNSAT}.

This definition extends to any CSP, but is particularly useful in the case of 2-SAT (see Proposi-
tion 2.9).

1.4. Our results

Exact enumeration. In the current paper, we express the number of satisfiable 2-CNF formu-
lae with the help of generating functions. It follows from Proposition 4.5 that if an,m denotes the
number of satisfiable 2-CNF with n Boolean variables and m clauses, then an,m can be encoded
into a generating function identified by the expression

∑
n⩾0

1

(1 + w)n(n−1)

zn

2nn!

∑
m⩾0

an,mw
m =

∑
n⩾0

1

(1 + w)n(n−1)

zn

2nn!
⊙z e

−SCC(2z,w)/2

∑
n⩾0

1

(1 + w)(
n
2)

zn

n!
⊙z e

−SCC(z,w)
,

where ⊙z denotes the exponential Hadamard product∑
n⩾0

an(w)
zn

n!
⊙z

∑
n⩾0

bn(w)
zn

n!
:=
∑
n⩾0

an(w)bn(w)
zn

n!
,

and SCC(z, w) is the Exponential generating function of strongly connected digraphs (see Equa-
tion (3.1) below or [dPD19, Corollary 3.5]). Note that negative signs in formal generating func-
tions can often be interpreted as an application of the inclusion-exclusion principle, as explained
by [GJ04, Lemma 2.2.29] (see also [FS09, III. 7.4, p. 206]). In our case, the inclusion-exclusion
manifests itself in the negative exponential terms, and the corresponding statistical patterns in-
side a random implication digraph are the number of the so-called contradictory and ordinary
strongly connected components.

We obtain two exact expressions for the number of satisfiable 2-SAT formulae (Theorem 4.6
and Theorem 4.7), the number of unsatisfiable 2-SAT formulae whose implication digraph is
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strongly connected (Theorem 4.8) as well as a description of the structure of the implication di-
graphs associated to 2-SAT formulae (Theorem 4.9): the latter result describes the implication
digraphs with given allowed strongly connected components. Those results are based on gen-
erating function manipulations. In this paper, we introduce a new type of generating function,
called an Implication generating function. It is inspired by the Special or Graphic generating
function introduced in [Rob71, Ges95]. The product of an Implication generating function with
a Graphic generating function corresponds to a combinatorial operation involving a digraph and
a 2-SAT formula, that we call hereafter an implication product.

Phase transition. Note that Deroulers and Monasson [DM06] gave numerical estimates of
probabilities of these formula being satisfiable around their phase transition. Up to n = 5×106,
they were able to determine the empirical values of

P [Random 2-SAT formula built with n variables and n clauses is SAT]

using Monte-Carlo simulation, and gave a prediction of PSAT,∞(0) = 0.907± 10−3. Our results
translate into more efficient algorithms to accurately but non-rigorously predict those empirical
values. We improve their prediction to PSAT,∞(0) = 0.90622396067 ± 10−11, and also make
prediction for PSAT,∞(µ) for other values of µ, plotting the phase transition curve of the 2-SAT
inside the critical window, viz. Figure 1.1. Given the similarity between the exact expressions
counting digraph families and satisfiable 2-CNF, we hope that the analytic tools for analysis of
the phase transition of digraphs similar to the ones developed by [DdPR+20] can be extended
to 2-CNF and express PSAT,∞(µ) in a closed form. We expect this curve to have an expression
akin to the integrals of Airy functions such as those encountered in [DdPR+20], or some form
of generalized Airy function (see [JKŁP93, dP15]).

Outline of the paper

We recall the classic definitions of 2-SAT formulae as well as the characterization of satisfiable
formulae and the structure of the associated implication digraphs in Section 2. The various types
of generating functions used throughout this article are introduced in Section 3. Then, Section 4
presents our results and their proofs. Finally, in Section 5 we provide the first several terms of the
counting sequences for some 2-SAT families along with accurate numerical predictions related
to the satisfiability phase transition.

2. Conjunctive Normal Forms and implication digraphs

2.1. Definitions and notation

In this section, we are using the classical binary Boolean operators∨,∧ and→which correspond
respectively to disjunction, conjunction and implication. We are also using the unary operator¬x
or x to denote negation.

Definition 2.1. The literals of a Boolean variable x are x and its negation x. A Conjunctive
Normal Form (CNF) formula on n variables is a set (conjunction) of clauses, where each clause
is a disjunction of literals corresponding to distinct variables.
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Figure 1.1: The predicted limiting probability that a formula is satisfiable inside the critical
window of the 2-SAT phase transition, in the model (n, p), where n denotes the number of
Boolean variables, and p is the clause probability, p = 1

2n
(1 + µn−1/3).

In particular, the set of clauses is unordered, and the literals in a clause are unordered as well.
For example, the formula

(x1 ∨ x3) ∧ (x2 ∨ x1) ∧ (x2 ∨ x3) (2.1)
is considered to be the same CNF as

(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x1).

Throughout this work, we do not consider formulae with literal or clause duplications, such as

(x1 ∨ x1) ∧ (x2 ∨ x1),

(x1 ∨ x2) ∧ (x2 ∨ x1).

Definition 2.2. A CNF is satisfiable if there exists an assignment of Boolean values to the vari-
ables that satisfies each clause. A 2-CNF (or 2-SAT formula) is a CNF where each clause con-
tains exactly two (distinct) literals.

We also define a second type of Boolean formulae, as an intermediate step between 2-CNF
and directed graphs (digraphs).

Definition 2.3. An implication formula on n variables is a set of clauses, where each clause is
the implication of two literals corresponding to distinct variables.
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1

2

3

1

2

3

Figure 2.1: The implication digraph corresponding to (x1∨x3)∧ (x2∨x1)∧ (x2∨x3). Literals
xk and xk are replaced by k and k for brevity.

Since the clause x∨y is equivalent with either of the clauses (x → y), (y → x), and with their
conjunction (x → y)∧(y → x), any 2-CNF has an equivalent implication formula. Reciprocally,
any implication formula where each clause x → y has its symmetric y → x also corresponds to
a valid 2-CNF. For example (viz. Figure 2.1), the implication formula corresponding to (2.1) is

(x1 → x3) ∧ (x3 → x1) ∧ (x2 → x1) ∧ (x1 → x2) ∧ (x2 → x3) ∧ (x3 → x2).

Therefore, a 2-CNF is satisfiable if and only if the corresponding implication formula is satisfi-
able.

To each 2-CNF on n variables with m clauses, there corresponds an implication digraph
with 2n vertices and 2m arcs: each clause (k, ℓ) corresponds to the arcs (k, ℓ) and (ℓ, k). Since
a clause cannot contain twice the same variable, an implication digraph contains neither loops
nor arcs from a literal to its negation. Since a 2-CNF does not contain twice the same clause,
there is at most one arc between any two literals.

Definition 2.4. A contradictory variable in a 2-CNF is a variable x such that the implication
digraph contains oriented paths from x to x and from x to x. A strongly connected component
(SCC) of a digraph is a set of vertices, maximal for the inclusion with respect to the property
that an oriented path exists between any two vertices from the set. In an implication digraph,
a contradictory strongly connected component (contradictory SCC) is an SCC that contains a
contradictory variable. An SCC that is not contradictory is ordinary.

Definition 2.5. An SCC of a digraph is source-like if there is no arc pointing to any of its vertices
from a vertex outside of it. It is sink-like if there is no arc pointing from any of its vertices to a
vertex outside of it. It is isolated if it is both source-like and sink-like.

Definition 2.6. Consider a digraph D whose vertices are literals from {x1, . . . , xn, x1, . . . , xn}.
The negation D of D is formed by replacing its vertex labels with their negations and flipping
the edge directions: if the original digraph D contains an arc x → y, then its negated digraph
contains an arc y → x instead.

In Figure 2.2 we provide an example, where an implication digraph of a 2-CNF formula is
depicted in a condensated form, the components X = X and Y = Y are contradictory SCCs;
A, B, C and C are ordinary source-like SCCs; A, B, C and C are ordinary sink-like SCCs;
and finally, C and C are ordinary isolated SCCs. Figures 2.3 and 2.4 provide examples of an
ordinary and a contradictory component.
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Figure 2.2: A condensation of 2-CNF
implication digraph. Each component
is depicted as a node. An arrow from
component D to component E means
that there is at least one edge u → v in
the implication digraph with the literal
u in D and the literal v in E.

1
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Figure 2.3: An ordinary
component.

1
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4

1

2

3

4

Figure 2.4: A contra-
dictory component.

2.2. Structural properties of 2-Conjunctive Normal Forms

The first linear time algorithm to decide the satisfiability of a 2-SAT formula was designed by
Aspvall, Plass and Tarjan [APT79]. It relied on a characterization of the implication digraphs
of satisfiable 2-SAT formulae. In this section, we recall their proof, reformulating it to fit our
needs.

We start with properties of the contradictory SCCs of implication digraphs.

Proposition 2.7. Let C be a contradictory SCC. Then,

1. All variables appearing in C are contradictory;

2. If C is source-like (or sink-like) then it is isolated;

3. If C ′ is another contradictory SCC, then there is no oriented path starting in C and ending
in C ′.

Proof. If C is reduced to one variable, the assertion is trivial. So, let C be a contradictory SCC
that contains a contradictory variable x and a literal k. Then C contains oriented paths from x
to x, from x to x, from x to k and from k to x. By symmetry of the arcs, this implies the existence
of oriented paths from k to x and x to k. Combining them, we obtain oriented paths from k to k
and k to k. Thus, k is also a contradictory variable.

For the second part, suppose that C is source-like. If there were an arc from a literal k ∈ C
to a literal ℓ outside of C, then by symmetry we would also have the arc (ℓ, k). By the previous
result, ℓ does not belong to C, but k does. Thus, C would not be source-like, which leads to a
contradiction.

Let us prove the last part of the proposition. By symmetry, an oriented path from a literal k
of the contradictory SCC C to a literal ℓ of the contradictory SCC C ′ implies an oriented path
from ℓ to k, hence from C ′ to C. Thus, C and C ′ are the same contradictory SCC.

We now turn to ordinary source-like SCC.
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Proposition 2.8. Let C denote a source-like (resp. sink-like, resp. isolated) ordinary SCC from
the implication digraph, then the component C is a sink-like (resp. source-like, resp. isolated)
SCC which is disjoint from C.

Proof. It is sufficient to prove that if C is ordinary and source-like, then C is a sink-like SCC.
Since each arc (k, ℓ) has its symmetric (ℓ, k), any oriented path from k to ℓ has as symmetric
an oriented path from ℓ to k. Thus, the negation of the literals from C also form an SCC C.
It is disjoint from C because C is not contradictory. Furthermore, any arc pointing from C to
a literal k outside C would have its symmetric pointing to C from k. The literal k could not
belong to C, otherwise k would be in C. Thus, C would not be source-like: a contradiction. It
follows that such a k cannot exist and that C is sink-like.

We finally arrive at the classic characterization of satisfiable 2-CNF.

Proposition 2.9. A 2-CNF is satisfiable if and only if it contains no contradictory variable.

Proof. Given an implication digraph, let us write x ⇝ y if there exists an oriented path from
the literal x to the literal y. Suppose that a formula contains a contradictory variable and is
satisfiable, which means that all variables can be assigned Boolean values satisfying all the
clauses. If x is a contradictory variable, then in the implication digraph, the presence of an
oriented path x ⇝ x results in the logical implication x ⇒ x, so x must take the value False.
Similarly, the oriented path x ⇝ x implies x ⇒ x, so x must be True. This is a contradiction,
so the formula cannot be satisfiable if it contains a contradictory variable.

We prove the reverse by induction on the number of variables. Consider a 2-CNF without
contradictory variables, and assume that any smaller 2-CNF without contradictory variables
is satisfiable. Then, it must contain a source-like SCC. Let C be any source-like SCC of the
implication digraph. By Proposition 2.8, its symmetric C is sink-like. Let us set all the literals
of C to the Boolean value False, so the literals from C are set to True. Consider the formula F
corresponding to removing the variables from C and C. It contains no contradictory variable,
so it is satisfiable by induction. We claim that any solution to F satisfies the original formula.
Indeed, the arcs we removed are fromC, in which case they becomeFalse ⇒ xwhich is satisfied
for any value of x, or to C, in which case they become x ⇒ True which is satisfied for any value
of x.

3. Generating functions and implication product

This section introduces the tools that will be applied in Section 4 for counting various 2-SAT fam-
ilies. First, let us recall the general definition of generating functions and give a brief overview
of the plan of the section.

A generating function (GF) associated to a family A is a formal series of the form

A(z) =
∑
a∈A

κ|a|(z),

where z is a formal variable, |a| is a non-negative integer number computed from a and called the
size of a, and (κn(z))n⩾0 is a sequence of functions. Let an denote the number of elements a ∈ A
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such that |a| = n, and assume an is finite for all n ⩾ 0. Grouping the summands corresponding
to the same value |a|, the GF becomes

A(z) =
∑
n⩾0

anκn(z).

The type of the GF corresponds to the choice of (κn(z)). The founding idea of analytic number
theory [Ten15], species theory [BLL97] and analytic combinatorics [FS09] is that the study of
the sequence (an) can be simplified by the introduction of the right type of GF.

In this article, we will use several types of GFs, defined in Section 3.1

• the classic Ordinary and Exponential GFs correspond to

κn(z) = zn and κn(z) = zn/n!,

and a good reference is [FS09, Chapters I and II],

• Graphic (or Special) GFs, introduced by Robinson [Rob71] and Gessel [Ges95], corre-
spond to

κn(z) =
1

(1 + w)(
n
2)

zn

n!

where w denotes an additional formal variable,

• and a new type of GFs, which we call Implication GFs, that corresponds to

κn(z) =
1

(1 + w)n(n−1)

zn

2nn!
.

The Implication GF is designed for the enumeration of various 2-CNF families. To translate
GFs of a type into another type, we will use the exponential Hadamard product, introduced by
Joyal (see Remark 3.4). It is presented in Section 3.2. The central idea behind the use of GFs
is that combinatorial operations on the families translate into analytic operations on their GFs.
The type of GF used depends on the combinatorial operation of interest. Section 3.3 presents
those operations for the various types used in this paper.

3.1. Types of generating functions

We present the various types of GFs used in this paper in the specific context of graphs, digraphs
and implication digraphs. General introductions to Ordinary and Exponential GFs are available
in [BLL97] and [FS09]. The definition of Graphic (or Special) GFs is due to Robinson [Rob71]
and Gessel [Ges95]. The definition of Implication GFs is new and will be motivated in Sec-
tion 3.3. In this paper we are dealing with labeled objects: for each graph or digraph with n
vertices, we consider that their vertices are labeled with distinct labels from {1, . . . , n} (more
on that also in Section 3.3).
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Definition 3.1. LetA be a graph or digraph family andB an implication digraph family. Let an,m
denote the number of (di)graphs in A with n vertices and m arcs (resp. edges), and bn,m the
number of implication digraphs in B with 2n vertices and 2m implication arcs (i.e. built from
2-CNFs with n variables and m clauses). For each n, let An denote the subfamily of A of
(di)graphs on n vertices, and Bn the subfamily of B of implication digraphs on 2n vertices.

The Ordinary GFs of An and Bn are defined as

an(w) =
∑
m⩾0

an,mw
m and bn(w) =

∑
m⩾0

bn,mw
m.

The Exponential GF A(z, w), Graphic GF Â(z, w) and Implication GF B̈(z, w) are defined
as

A(z, w) =
∑
n⩾0

an(w)
zn

n!
, Â(z, w) =

∑
n⩾0

an(w)

(1 + w)(
n
2)

zn

n!

and
B̈(z, w) =

∑
n⩾0

bn(w)

(1 + w)n(n−1)

zn

2nn!
.

To alleviate the notations, we often omit the variable w, writing A(z) instead of A(z, w). As a
convention, we will use hats to distinguish Graphic GFs from Exponential GFs, and double dots
to denote Implication GFs.

The name Graphic of the generating function may be somewhat misleading: we always use
Exponential GFs to enumerate graphs, and often use Graphic GFs to enumerate directed graphs.
However, for historical reasons, we are keeping its original name.

The following lemma expresses the generating functions of various families that will be used
throughout this article.

Lemma 3.2. LetG(z) (variablew omitted) denote the Exponential GF of all graphs with labeled
vertices, where loops and multiple edges are forbidden, then

G(z) =
∑
n⩾0

(1 + w)(
n
2) z

n

n!
.

Let D(z) denote the Exponential GF of all digraphs, with labeled vertices, where loops and
multiple arcs are forbidden. In this model, we assume that between any two nodes of a digraph,
both arcs connecting these nodes can be present. Then

D(z) =
∑
n⩾0

(1 + w)n(n−1) z
n

n!
.

Let Ŝet(z) denote the Graphic GF of digraphs that contain no arcs, then

Ŝet(z) =
∑
n⩾0

1

(1 + w)(
n
2)

zn

n!
.
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Let ¨Set(z) denote the Implication GF of implication digraphs that contain no arcs, then

¨Set(z) =
∑
n⩾0

1

(1 + w)n(n−1)

zn

2nn!
.

Proof. Consider a family A of graphs (resp. digraphs, resp. implication digraphs) and let an,m
denote the number of its elements with n vertices (resp. n vertices, resp. 2n vertices) and m
edges (resp. m arcs, resp. 2m arcs). Let an(w) denote its Ordinary GF

an(w) =
∑
m⩾0

an,mw
m.

The number of graphs withn vertices andm edges is
((n2)

m

)
, because a subset ofm edges is chosen

among all possible
(
n
2

)
edges. Thus, ifA is the family of all graphs, then an(w) = (1+w)(

n
2) and

the first result follows. When A is the family of all digraphs, we have an,m =
(
n(n−1)

m

)
, because a

subset ofm arcs is chosen among all possiblen(n−1) arcs. Thus, an(w) = (1 + w)n(n−1), which
implies the second result. WhenA is the family of digraphs without any arc, we have an(w) = 1,
because there exists only one digraph on n vertices containing no arc. This implies the third
result. Similarly, when A is the family of implication digraphs containing no arc, we have
again an(w) = 1. This implies the fourth result.

We choose the notations Ŝet and ¨Set to represent families that are just set of vertices, without
any additional structure. Note that in all the sums of the last lemma, n = 0 corresponds to the
empty graph, containing no vertices.

Probability from generating functions. It is handy to use generating functions to calculate
the probabilities in the (n, p) model, where the number of clauses is not fixed, but each clause is
drawn independently with probability p (c.f. [RRW20, Lemma 6] or [DdPR+20, Lemma 2.8]).

Proposition 3.3. Let F be some family of 2-SAT formulae, whose Implication GF is F̈ (z, w).
Then, the probability that a random formula from the (n, p) model (i.e. a random formula with n
Boolean variables where each of the 2n(n − 1) possible clauses is drawn independently with
probability p) belongs to F , is

Pn,p(F ∈ F) = 2nn!(1− p)n(n−1)[zn]F̈

(
z,

p

1− p

)
.

Proof. Let m(F ) denote the number of clauses of a formula F , and let Fn be the set of the
formulae from F containing n Boolean variables. There are 2n(n − 1) possible clauses for n
Boolean variables. The probability that a random formula F belongs to Fn is expressed by
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summing over all possible numbers of edges

Pn,p(F ∈ F) =
∑
F∈Fn

pm(F )(1− p)2n(n−1)−m(F )

= (1− p)2n(n−1)
∑
F∈Fn

(
p

1− p

)m(F )

= (1− p)2n(n−1) (1 + w)n(n−1)
∣∣
w= p

1−p

2nn![zn]F̈

(
z,

p

1− p

)
= 2nn!(1− p)n(n−1)[zn]F̈

(
z,

p

1− p

)
.

Multivariate generating functions. For graph-like families, we use GFs with two variables: z
marking the number of vertices and w the number of edges. Additional marking variables can be
introduced. There are two ways to define the generating function with several variables. One way
is to consider generalized counting sequences (such as an,k,j in the case of three parameters), and
take the sum over all possible combination of indices (e.g.A(z, w, u) :=

∑
n,k,j⩾0 an,k,ju

jwk zn

n!
).

Another viewpoint is to say that the objects inside the family do not have the same weight,
and an object receives a weight uj if the corresponding parameter marked by the variable u
inside this object is equal to j. In this case we return to the usual counting sequence with one
variable

∑
n⩾0 an

zn

n!
, where an now denotes the total weight of the objects of size n, which now

depends on the additional marking variables.

3.2. Exponential Hadamard product

The exponential Hadamard product ⊙z of two formal power series with respect to the variable z,
is defined as (∑

n⩾0

an(w)
zn

n!

)
⊙z

(∑
n⩾0

bn(w)
zn

n!

)
=
∑
n⩾0

an(w)bn(w)
zn

n!
.

In the following, all Hadamard products are taken with respect to the variable z, so we will omit
its mention in the notation, writing ⊙ for ⊙z.
Remark 3.4. The exponential Hadamard product was introduced in [BLL97, Section 2.1, p. 64]
as a Cartesian product or just the Hadamard product. This notion (“cet ami oublié”) can be
traced to the 1981 paper of Joyal [Joy81, Theorem 3, equation (8)], although Joyal does not
really provide a proper definition. To avoid confusion with the apparently more well-known
ordinary Hadamard product, we keep the word “exponential”.

The exponential Hadamard product satisfies the following two elementary properties. For
any value α and series A(z) and B(z), we have

A(α z)⊙B(z) = A(z)⊙B(α z) and A(z)⊙ ez = A(z).
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Proposition 3.5. The Graphic GF and Implication GF of sets (digraphs without arcs), given in
Lemma 3.2, are used to convert the Exponential GF A(z, w) into a Graphic GF Â(z, w) or an
Implication GF Ä(z, w) using the exponential Hadamard product with respect to z as follows:

Â(z, w) = A(z, w)⊙ Ŝet(z) and Ä(z, w) = A(z, w)⊙ ¨Set(z).

Reversely, the Exponential GFs of graphs and digraphs, given in Lemma 3.2, are used to convert
Graphic and Implication GFs back to Exponential GFs as follows

A(z, w) = Â(z, w)⊙G(z) and A(z, w) = Ä(z, w)⊙D(2z).

Proof. We present the proof of the first equality, the other three having similar proofs. By defi-
nition, we have

Â(z, w) =
∑
n⩾0

an(w)

(1 + w)(
n
2)

zn

n!
and A(z, w) =

∑
n⩾0

an(w)
zn

n!
.

Using the exponential Hadamard product (with respect to z, as always in this paper), the first
expression is decomposed as

Â(z, w) =

(∑
n⩾0

an(w)
zn

n!

)
⊙
(∑

n⩾0

1

(1 + w)(
n
2)

zn

n!

)
,

where we recognize
Â(z, w) = A(z, w)⊙ Ŝet(z).

Remark 3.6. In Robinson’s seminal paper [Rob71], a conversion operator

∆

(∑
n⩾0

an(w)
zn

n!

)
:=
∑
n⩾0

an(w)

(1 + w)(
n
2)

zn

n!

is used instead of the Hadamard product. In [DdPR+20] and [FSS04] it is shown how to rep-
resent this operation using a version of Fourier integral, which later turns to be helpful in the
asymptotic analysis of these expressions. However, the inverse operation ∆−1 may potentially
lead to everywhere divergent series, which still constitutes a challenge for the asymptotic analysis
of the expressions involving ∆−1.

3.3. Combinatorial operations

The central idea behind the use of GFs is that combinatorial operations on the families translate
into analytic operations on their GFs. To illustrate this concept, let us look at the disjoint union.

Recall that the GF associated to a family A is a formal series of the form

A(z) =
∑
a∈A

κ|a|(z),
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where |a| is a non-negative integer number computed from a and called the size of a,
and (κn(z))n⩾0 is a sequence of functions. Consider two combinatorial families A and B, as-
sumed disjoint, and their union C = A ⊎ B. Then, by definition,

C(z) =
∑

c∈A⊎B

κ|c|(z) =
∑
a∈A

κ|a|(z) +
∑
b∈B

κ|b|(z) = A(z) +B(z).

Thus, the disjoint union is translated into a sum of GFs. This holds for all types of GFs.
The next most natural analytic operation on GFs is the product. The type of GFs used depends

on the operation on combinatorial families that the product of GFs will translate. In the following
paragraphs, we present this operation for the various types of GFs used in the paper.

3.3.1 Exponential GFs

Excellent introductions to this topic are provided in [FS09, BLL97]. We reproduce here the
minimal definitions needed for this article.

Labels. There are two different frameworks for enumerating graphs: the labeled and unlabeled
variants (cf. [HP73]). In the second paradigm, the graphs are enumerated up to automorphisms.
The purpose behind vertex labeling is to consider the enumeration problem in its purest form,
without having to take automorphisms into account. Consequently, the unlabeled versions of
the enumerating problems have been naturally considered as a further step, and they require the
introduction of the cycle index series [BLL97] and more general enumeration recurrences. For
example, in their papers on digraph enumeration [Lis73, Rob77], Liskovets and Robinson have
extended their recurrences to the unlabeled case, which leads to more tedious computations.

All graphs and digraphs considered in this article are labeled, meaning that if a graph G
contains n vertices, which we denote by |G| = n, then each vertex from this graph carries a
distinct integer in the set of labels {1, . . . , n}. In Figure 3.1, we depict a graphGwith a sequence
of labels (1, 2, 3, 4). If we replaced those labels with (3, 2, 1, 4) or (1, 4, 3, 2), the graph would
be the same, while replacing them with (2, 1, 3, 4) would produce a different graph.

1

2

3

4

Figure 3.1: Example of a labeled graph.

2

5

6

10 1

3 4

7 8

9

11

Figure 3.2: An element from the labeled prod-
uct of two certain graph families.

Labeled product. Although they simplify enumeration, labels introduce the following diffi-
culty. A pair of labeled graphs is not a labeled object: indeed, unless one of the graphs has no
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vertices, the pair will contain two vertices with label 1. This contradicts the requirement that
labels are distinct. There is a classic solution to solve this issue [FS09, Chapter II]. As we are
going to extend the scheme later in Definition 3.9, let us recall it here for completeness.

When forming a pair of labeled (di)graphs A and B, we introduce the following relabeling
scheme:

• Assume that A has k vertices, and that the disjoint union of A and B has n vertices (i.e.
B has n− k vertices);

• An arbitrary partition σA ⊎ σB = {1, . . . , n}, |σA| = k, |σB| = n− k is chosen;

• The nodes of the graphs A and B receive, respectively, the labels from σA and σB, pre-
serving the relative ordering of the labels within A and B.

For example, the left graph from Figure 3.2 is a relabeling of the graph from Figure 3.1. The
labeled product C of two labeled families A and B then contains, for all a ∈ A and b ∈ B,
the pairs of relabeled elements (a′, b′) such that the labels of the pair are {1, 2, . . . , |a| + |b|}
(so the pair is properly labeled). In Figure 3.2 we depict an element of the labeled product of
two graphs which carries 11 labels on its vertices. If we imagine that the first and the second
graphs belong to some hypothetical families A and B, then, inside one of the resulting relabeled
pairs, the first graph from this pair receives labels (2, 5, 6, 10), and the second one receives the
remaining ones. These labels are then arranged in an increasing order to replace the original
ones. Strictly speaking, the resulting object is not a graph: its vertices are partitioned into two
sets, which, informally speaking, correspond to a graph with a marked subset of vertices.

The Exponential GF has been designed precisely to capture the labeled product as an alge-
braic operation. Specifically, let C denote the labeled product of A and B, and let cn, an and bn
denote the respective number of objects of size n. Following the construction, we obtain

cn =
n∑

k=0

(
n

k

)
akbn−k.

Let C(z), A(z) and B(z) denote the associated Exponential GFs, then

C(z) =
∑
n⩾0

cn
zn

n!
=
∑
n⩾0

n∑
k=0

(
n

k

)
akbn−k

zn

n!

=
∑
n⩾0

n∑
k=0

ak
zk

k!
bn−k

zn−k

(n− k)!
=

(∑
k⩾0

ak
zk

k!

)(∑
k⩾0

bk
zk

k!

)
= A(z)B(z).

Thus, the Exponential GF of the labeled product of two families is equal to the product of their
Exponential GFs.

Other operations. The definition of relabeling extends naturally to more than two objects.
Consider a labeled family A and the family B obtained by taking the labeled product of A with
itself k times. Thus, B contains sequences of k relabeled objects from A. Then B(z) = A(z)k.
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Now let us identify two such sequences if one can be obtained from the other by changing the
order of its elements. This corresponds to considering sets of k elements from A instead of
sequences. For each sequence, there are k! corresponding sets. Let C denote the family con-
taining the sets of k (relabeled) elements from A, this implies that its Exponential GF C(z)
satisfies A(z)k = k!C(z), so

C(z) =
A(z)k

k!
.

Let D denote the family containing all sets of relabeled elements from A. This is the disjoint
union of sets of k elements, for k ⩾ 0. Since the disjoint union translates into a sum, we deduce
that the Exponential GF of D is equal to

D(z) =
∑
k⩾0

A(z)k

k!
= eA(z).

Thus, the combinatorial operation set is translated, in the generating functions, by the exponen-
tial.

The following classical result illustrates the power of those simple constructions.

Proposition 3.7. Let G(z) =
∑

n⩾0(1 + w)(
n
2) zn

n!
(variable w omitted) denote the Exponential

GF of all graphs (see Lemma 3.2), then the Exponential GF of connected graphs is

C(z) = log(G(z)).

Proof. Since a graph is a set of connected components, their Exponential GFs are linked by the
relation

G(z) = eC(z).

Inverting this relation gives the announced result.

3.3.2 Graphic GFs

The arrow product (see [DdPR+20, dPD19]) C of two digraph families A and B consists of
all ordered relabeled digraph pairs (A,B) from the labeled product of A and B, equipped with
any additional subset of arcs from A to B. Let an(w), bn(w), cn(w) denote the Ordinary GFs
associated to the families A, B, C as in Definition 3.1, then this construction implies

cn(w) =
n∑

k=0

(
n

k

)
(1 + w)k(n−k)ak(w)bn−k(w).

The factor
(
n
k

)
comes from the possible relabelings and the factor (1+w)k(n−k) accounts for the

possible arcs added from a digraph A (with k vertices) to a digraph B (with n− k vertices).
The Graphic GFs (introduced by Robinson [Rob71] and further refined by Gessel [Ges95])

have been designed to capture this convolution rule. Indeed, denoting by Â(z, w), B̂(z, w),
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Ĉ(z, w) the Graphic GFs corresponding to the families A, B, C, we have

Ĉ(z, w) =
∑
n⩾0

cn(w)

(1 + w)(
n
2)

zn

n!
=
∑
n⩾0

n∑
k=0

(
n

k

)
(1 + w)k(n−k)−(n2)ak(w)bn−k(w)

zn

n!

=
∑
n⩾0

n∑
k=0

(
n

k

)
ak(w)

(1 + w)(
k
2)

zk

k!

bn−k(w)

(1 + w)(
n−k
2 )

zn−k

(n− k)!
= Â(z, w)B̂(z, w).

Thus, the Graphic GF of the arrow product of two digraph families is the product of their
Graphic GFs.

To illustrate the power of this construction, the next proposition gives the exact enumeration
of strongly connected digraphs (SCCs). Ideas from this proof and the result itself will be used
in the proofs of Section 3.3.3.

Proposition 3.8 (See [Rob71] or [dPD19]). The Exponential GF of strongly connected digraphs
(components) SCC(z, w) is equal to

SCC(z, w) = − log

(
G(z, w)⊙ 1

G(z, w)

)
, (3.1)

where G(z, w) denotes the Exponential GF of all graphs, from Lemma 3.2, and ⊙ is the expo-
nential Hadamard product, from Section 3.2.

Proof. The various SCCs of a digraph are disjoint and each vertex belongs to an exactly one
SCC, so the SCCs form a partition of the vertices. We say that an SCC A is source-like if there is
no arc starting in another SCC and ending in a vertex ofA. Let D̂(z, w, u) denote the Graphic GF
of all digraphs, where an additional variable u marks the source-like SCCs. Then D̂(z, w, v+1)
is the Graphic GF of all digraphs, where an arbitrary subset of source-like SCCs are marked by
the variable v. This family has a unique decomposition as the arrow product of a set of SCCs
(the source-like SCCs marked by v) with an arbitrary digraph. The Exponential GF of a set of
SCCs marked by v is

ev SCC(z,w).

Using Proposition 3.5 to translate, the Graphic GF of this family is

Ŝet(z, w)⊙ ev SCC(z,w).

According to Lemma 3.2, the Graphic GF of all digraphs is equal to G(z, w). Since the arrow
product translates into a product of Graphic GFs, we deduce

D̂(z, w, v + 1) =
(
Ŝet(z, w)⊙ ev SCC(z,w)

)
G(z, w).

At v = −1, the left hand-side, D̂(z, w, 0), is the Graphic GF of digraphs that contain no source-
like SCC. The only such digraph is the empty digraph (containing no vertex), which Graphic GF
is 1, so

1 =
(
Ŝet(z, w)⊙ e−SCC(z,w)

)
G(z, w).
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Solving this equation and using Proposition 3.5 to translate the Graphic GF into Exponential GF,
we deduce

SCC(z, w) = − log

(
G(z, w)⊙ 1

G(z, w)

)
.

3.3.3 Implication GFs

In this section, we present the Implication product, a combinatorial operation combining a di-
graph family with an implication digraph family. We also show that the Implication GF of the
Implication product of two families is the product of their respective Graphic and Implication
GFs. We have designed Implication GFs precisely to ensure this correspondence. Enumerative
results on various 2-SAT families will be derived in the next section.

Recall that according to our convention, the nodes of an implication digraph form a set

{1, 2, . . . , n, 1, . . . , n},

where 1, 2, . . . denote the negated literals.

Definition 3.9. Let D be a digraph family and let F be an implication digraph family. The
implication product of D and F is formed in the following way. Let D ∈ D and F ∈ F
be arbitrary members of these families, and let D contain k vertices and F contain 2(n − k)
vertices, so that the total number of vertices in the union of F , D and D is 2n.

1. An arbitrary partition of labels σF ⊎ σD = {1, . . . , n}, |σF | = k, |σD| = n− k is chosen.

2. The nodes of D and F respectively receive labels from σD and σF (in the case of F the
labels extend to negated literals). An arbitrary subset of nodes in D are then labeled
as negated literals. The resulting (“left”) digraph is called L(D). The negated (“right”)
digraph L(D) is then called R(D).

3. A new implication digraph is formed by taking an ordered union of the digraphs L(D), F
and R(D) with new node labels according to the partition (σF , σD).

4. An arbitrary subset of arcs from L(D) to F is added. For each x ∈ L(D) and v ∈ F , if
an arc x → v was added, then an arc v → x is also added from F to R(D).

5. An arbitrary subset of arcs from L(D) to R(D) is added, ensuring that no arc of type
x → x is picked, as this would lead, by symmetry, to multiple arcs. If an arc x → y is
added, then a symmetrical arc y → x, also from L(D) to R(D), is added.

By taking the union over all pairs (D,F ), all possible label partitions (σD, σF ), vertex negations,
and all arc subsets from L(D) to F and from L(D) to R(D), we obtain the implication product
of D and F .

Example 3.10. This construction is illustrated in Figure 3.3. In our example, we let k = 4
and n = 7. The digraph D receives labels σD = {1, 4, 6, 7}. Then, according to the arbitrary
choices, a vertex with the label 6 is labeled as negated, which yields a digraph L(D). The
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negation of L(D) now has labels {1, 4, 6, 7}, and its arc directions are reversed. The implication
digraph F receives the remaining labels {2, 3, 5}. Then, an arbitrary subset of arcs is added
from L(D) to F , which is, in our example, a set {7 → 2, 6 → 2}, and, by symmetry, there
is a subset of arcs {2 → 7, 2 → 6} from F to R(D). Finally, the arcs {1 → 4, 4 → 1} are
added from L(D) to R(D) in a way that avoids adding arcs x → x, and preserves the symmetry
property of implication digraphs.

1

4

6

7 2

3

5

2

3

5

1
4

6
7

L(D), D ∈ D F ∈ F R(D), D ∈ D

Figure 3.3: An element from the implication product of a certain digraph family D and a certain
implication digraph family F .

Let us emphasize that, by definition, this product operation is not commutative, because it
involves two families of different kinds, namely the digraphs and the implication digraphs. This
explains why we need two separate kinds of generating functions, one for the digraph family, the
other one for the implication digraph family. Surprisingly, in the context of this combinatorial
operation, there is no need to introduce a new type of GF for digraphs as we can still use the
Graphic GF.

Proposition 3.11. Let A be a family of digraphs and B be a family of implication digraphs, and
let Â(z, w) and B̈(z, w) denote their respective Graphic and Implication GFs. Let C denote their
implication product, and C̈(z, w) its Implication GF. Then,

C̈(z, w) = Â(z, w) · B̈(z, w).

Proof. Let us construct the convolution rule corresponding to the implication product. Let

an(w) =
∑
m⩾0

an,mw
m and bn(w) =

∑
m⩾0

bn,mw
m,

where an,m denotes the number of digraphs fromAwithn nodes andm arcs, and bn,m denotes the
number of implication formulae fromB with 2n vertices 2m implication arcs (i.e. corresponding
to 2-CNFs with n variables and m clauses).

Let us compute the generating function cn(w) of the number of ways to form an implication
digraph with n vertices in total. Suppose that a digraph D ∈ A has k vertices and a correspond-
ing implication digraph F ∈ B has 2(n − k) vertices. We need to take a sum over all possible
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values of k. The number of ways to choose the labels belonging to either side of the product
is
(
n
k

)
. Then, there are 2k ways to choose a negated subset of vertices in the digraph L(D).

Next, the generating function of the number of ways to choose a subset of arcs from L(D) to F
is (1+w)k·2(n−k). Finally, drawing the edges fromL(D) toR(D) yields a choice from k(k−1)/2
possible combinations (each edge has also a complementary negated edge, which provides the
factor 1/2). This gives in total

cn(w) =
n∑

k=0

(
n

k

)
2k(1 + w)2k(n−k)+k(k−1)/2ak(w)bn−k(w)

=
n∑

k=0

(
n

k

)
2n(1 + w)n(n−1) ak(w)

(1 + w)(
k
2)

bn−k(w)

(1 + w)(n−k)(n−k−1)2n−k
.

On the other hand, by expanding the brackets in Â(z, w) · B̈(z, w), we also obtain, by grouping
the summands,

Â(z, w) · B̈(z, w) =
∑
n⩾0

n∑
k=0

ak(w)

(1 + w)(
k
2)

bn−k(w)

(1 + w)(n−k)(n−k−1)2n−k

zn

n!

=
∑
n⩾0

cn(w)

(1 + w)n(n−1)

zn

2nn!
,

which completes the proof.

Remark 3.12. A similar technique can be used if edges of the form x → x are allowed, or when
loops and multiple edges are allowed. In such models it is useful to recall that the composition
operation requires dealing with compensation factors [JKŁP93], which was handled in [dP19]
using a very natural construction of GF which is doubly-exponential in variables marking both
vertices and edges. By further exploring this idea with 2-SAT, it is possible to arrive at a similar
definition of the compensation factor for such formulae in the presence of multiple arcs and
loops, similar to [DdPR+20, Dov19].

4. Counting 2-SAT families

In this Section, we use the implication product to obtain the GFs of satisfiable 2-CNFs and
contradictory strongly connected components, as well as 2-CNFs whose implication digraphs
have prescribed ordinary and contradictory SCCs.

4.1. The main decomposition scheme

The first proposition we introduce exposes a link between the generating function of all 2-CNFs
and all digraphs. It will be used to simplify the expressions where they appear. Recall that the
Exponential GF of the implication digraphs given in Definition 3.1 is not constrained to even
powers: the counting sequence is indexed by n and m, where n denotes half the number of



24 Sergey Dovgal et al.

vertices, and m denotes half the number of arcs. This convention seems natural if one considers
CNF as sets of clauses with Boolean variables, but it can be less intuitive when manipulating
directed combinatorial structures such as implication digraphs.

Proposition 4.1. Let CNF(z) = CNF(z, w) denote the Exponential GF of all implication di-
graphs, then its corresponding Implication GF is

¨CNF(z) = D(z/2).

Proof. A 2-CNF on n variables is characterized by its set of clauses. The set of all possible
clauses has cardinality 4

(
n
2

)
= 2n(n− 1), so the Exponential GF of 2-CNFs is

CNF(z) =
∑
n⩾0

(1 + w)2n(n−1) z
n

n!
.

By application of Proposition 3.5, the corresponding Implication GF is then

¨CNF(z) =
∑
n⩾0

(1 + w)2n(n−1)

(1 + w)n(n−1)

zn

2nn!
=
∑
n⩾0

(1 + w)n(n−1) (z/2)
n

n!
,

which is equal to D(z/2).

Now, let us explore the structural properties of a formula coming from an implication di-
graph. Recall that according to Proposition 3.8, SCC(z) = − log(G(z)⊙ G(z)−1) denotes the
Exponential GF of strongly connected digraphs.

Lemma 4.2. LetCNF(z, u, v) (variablew omitted) denote the Exponential GF of all implication
digraphs, where u marks the number of source-like non-isolated ordinary strongly connected
components, and v marks the number of unordered tuples {C,C} containing an isolated ordi-
nary component C and its negation C (in the sense of Proposition 2.8, in other words, v marks
twice the number of isolated ordinary components). Let ¨CNF(z) denote the Implication GF of
implication digraphs (from Proposition 4.1), then

CNF(z, s+ 1, 2s+ 2t+ 1) =
([

(esSCC(z) ⊙ Ŝet(z)) ¨CNF(z)
]
⊙D(2z)

)
etSCC(2z). (4.1)

Proof. Recall that according to Proposition 2.8, for any isolated ordinary componentC of an im-
plication digraph, the digraph also contains an isolated ordinary component C obtained from C
by negating the literals and reversing the arcs. Let F denote the family of implication digraphs
where

• a subset of non-isolated source-like ordinary components are marked by the variable s,

• a subset of all unordered tuples {C,C} of isolated ordinary components is distinguished.
In each of those tuples, one component is chosen and marked either by the variable s, or
by the variable t.



combinatorial theory 3 (2) (2023), #7 25

Figure 4.1: A schematic representation of the main decomposition scheme forCNF(z, s+1, 2s+
2t + 1) (labels omitted for convenience). Mirror symmetry reflects a relation between pairs of
negated literals. A 2-CNF implication digraph without any marked components is located in the
center (in blue and red). On the sides are the marked source-like (and sink-like) distinguished
components (second leftmost and second rightmost, in purple). Some of these components may
happen to be isolated. Then come marked isolated components, also in pairs (leftmost and
rightmost, in green).

The Exponential GF of F is then CNF(z, s+1, 2s+2t+1), which is the left hand-side of (4.1).
Any implication digraph in F has a unique decomposition as

(i) a set of ordered tuples (C,C) of isolated ordinary components (the components C are the
one marked by t),

(ii) and the implication product of a set of ordinary components (they correspond to the com-
ponents marked by s) with an arbitrary implication digraph (the unmarked part of the
implication digraph).

This decomposition is depicted in Figure 4.1. We now show that it translates into the generating
function given in the right hand-side of (4.1).

Item (i). Proposition 2.8 gives a recipe to build an ordered tuple of isolated ordinary compo-
nents.

1. Start with a strongly connected digraph (component) B;

2. For each vertex x, choose to keep it as a literal x, or replace it with its negation x. We
denote the resulting component by C;

3. Add a negated component C (obtained by negating each literal and reversing the arcs).

The ordered tuple is then (C,C). This construction implies that the Exponential GF of ordered
tuples of isolated ordinary components is SCC(2z). Thus, the Exponential GF of sets of ordered
tuples of isolated ordinary components, marked by the variable t, is etSCC(2z).
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Item (ii). The Exponential GF of a set of ordinary components marked by s is esSCC(z). Apply-
ing Proposition 3.5, its Graphic GF is esSCC(z)⊙Ŝet(z). By Proposition 3.11, the Implication GF
of the implication product from Item (ii) is(

es SCC(z) ⊙ Ŝet(z)
)

¨CNF(z)

so, according to Proposition 3.5, its Exponential GF is[(
esSCC(z) ⊙ Ŝet(z)

)
¨CNF(z)

]
⊙D(2z)

Combining (i) and (ii) in a labeled product (see Section 3.3.1), we deduce that the Exponen-
tial GF of F is ([(

esSCC(z) ⊙ Ŝet(z)
)

¨CNF(z)
]
⊙D(2z)

)
etSCC(2z).

Furthermore, we can consider the case when the contradictory and ordinary strongly con-
nected components of the implication digraph only belong to the two given families. This allows
us to obtain the Exponential GF of these implication digraphs.

Lemma 4.3. Let CNFScc,Cscc(z, u, v) (variable w omitted) denote the Exponential GF of im-
plication digraphs whose ordinary SCCs belong to the family Scc and whose contradictory
SCCs belong to the family Cscc, where u marks the number of source-like non-isolated or-
dinary strongly connected components, and v marks the number of unordered tuples {C,C}
containing an isolated ordinary component C and its negation C (in the sense of Lemma 4.2
and Proposition 2.8). Then, the following decomposition is valid:

CNFScc,Cscc(z, s+ 1, 2s+ 2t+ 1)

=
([

(esScc(z) ⊙ Ŝet(z)) ¨CNFScc,Cscc(z, 1, 1)
]
⊙D(2z)

)
etScc(2z), (4.2)

where Scc(z) is the Exponential GF of the family Scc.

The proof of the lemma is identical to the proof of the previous one. Now, we want to obtain
the generating function Cscc(z), which is the Exponential GF of the family Cscc, based on the
previous result. Note that there is no generating function of the family Cscc of any type entering
the previous expression. In order to solve the previous equation and identifyCNFScc,Cscc(z, u, v),
we need to use another combinatorial property of the implication digraphs which results in an ad-
ditional initial condition when u = 0. The following result is thus independent from Lemma 4.2
and Lemma 4.3.

Lemma 4.4. With the previous notation, we have

CNFScc,Cscc(z, 0, v) = eCscc(z)+v Scc(2z)/2, (4.3)

where Cscc(z) is the Exponential GF of the family Cscc.
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Proof. The left expression is the Exponential GF of the implication digraphs where all the
source-like ordinary strongly connected components are isolated, and where unordered tuples of
isolated ordinary components are marked by v. Let us temporarily remove all the isolated ordi-
nary components from the implication digraph. Clearly, if a digraph is not empty, there should
be at least one source-like SCC. Since all the source-like ordinary SCCs are now removed, it
should be a contradictory one. But according to Proposition 2.7, all the source-like contradic-
tory SCCs should be isolated. Therefore, after returning back the removed isolated ordinary
components, an implication digraph corresponding to such 2-CNF is decomposed into a set of
disjoint contradictory SCCs and unordered tuples of isolated ordinary SCCs (each marked by v).
Now, the SET operation on implication digraphs is again expressed using the exponential func-
tion, and the Exponential GF of one pair of isolated components from Scc is Scc(2z)/2 because
the pair is non-ordered. This yields the expression for the generating function.

Finally, by combining the previous two lemmas, we arrive at the enumeration formula for all
implication digraphs whose ordinary and contradictory SCCs belong to given families. Further-
more, fixing the allowed families allows even more flexible analysis by weighting the elements
of these families and by using those weights as additional marking parameters in order to count
the number of specific types of components in a formula, which we shall see later.

Proposition 4.5. Let ¨CNFScc,Cscc(z) be the Implication GF of the implication digraphs whose
Exponential GFs of allowed ordinary and contradictory SCCs are, respectively, Scc(z)
and Cscc(z), then

¨CNFScc,Cscc(z) =
eCscc(z)−Scc(2z)/2 ⊙ ¨Set(z)

e−Scc(z) ⊙ Ŝet(z)
. (4.4)

Proof. By plugging s = −1 into (4.2), we obtain

CNFScc,Cscc(z, 0, 2t− 1) =
([

(e−Scc(z) ⊙ Ŝet(z)) ¨CNFScc,Cscc(z)
]
⊙D(2z)

)
et Scc(2z) (4.5)

and by combining with (4.3), we obtain

eCscc(z)+(2t−1)Scc(2z)/2 =
([

(e−Scc(z) ⊙ Ŝet(z)) ¨CNFScc,Cscc(z)
]
⊙D(2z)

)
et Scc(2z), (4.6)

which, at t = 0 (or, in fact, with any t), yields

eCscc(z)−Scc(2z)/2 ⊙ ¨Set(z) = (e−Scc(z) ⊙ Ŝet(z)) ¨CNFScc,Cscc(z). (4.7)

This completes the proof.

4.2. Counting satisfiable 2-CNFs and contradictory SCCs

A first application of Proposition 4.5 is the enumeration of satisfiable 2-CNFs.

Theorem 4.6. Let ¨SAT(z) denote the Implication GF of satisfiable 2-CNFs. Then,

¨SAT(z) = G(z)

(√
G(z)⊙ 1

G(z)
⊙ ¨Set(2z)

)
.
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Proof. A formula is satisfiable if and only if its set of contradictory SCCs is empty. Inject-
ing Cscc(z) = 0 and Scc(z) = SCC(z) into (4.4) gives

¨SAT(z) =
e−SCC(2z)/2 ⊙ ¨Set(z)

e−SCC(z) ⊙ Ŝet(z)
.

The Hadamard relation
f(az)⊙ g(z) = f(z)⊙ g(az)

is applied in the numerator

¨SAT(z) =
e−SCC(z)/2 ⊙ ¨Set(2z)

e−SCC(z) ⊙ Ŝet(z)
. (4.8)

Replacing the generating function SCC(z) with its expression from (3.1), we have

e−SCC(z) ⊙ Ŝet(z) = G(z)⊙ 1

G(z)
⊙ Ŝet(z).

Given the expressions of G(z) and Ŝet(z) provided in Proposition 3.5, the exponential Hada-
mard product G(z)⊙ Ŝet(z) is equal to 1, so the denominator of (4.8) is

e−SCC(z) ⊙ Ŝet(z) =
1

G(z)
.

The numerator is expressed as the Hadamard product with the square root.

Note that exponential Hadamard product can become an obstacle in a potential future asymp-
totic analysis of satisfiable 2-CNF due to undefined behavior of divergent series. To assist in this
journey, we propose another formulation of the last result containing fewer Hadamard products,
but including a sort of large power coefficient extraction [FS09, Theorem VIII.8].

Theorem 4.7. The number of satisfiable 2-CNFs with n variables and m clauses is

2nn![znwm]Ŝet((1 + w)2(n−1)z, w)

√
G(z, w)⊙ 1

G(z, w)
.

Proof. Let A(z) denote the function

A(z) =

√
G(z)⊙ 1

G(z)
.

From Theorem 4.6, the number SATn,m of satisfiable 2-CNFs with n variables and m edges is

SATn,m = n![znwm]D(2z)⊙
(
G(z)

(
A(z)⊙ ¨Set(2z)

))
.
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Replacing D(2z) and ¨Set(2z) by their expressions from Proposition 3.5 and extracting the [zn]
coefficient, we obtain

SATn,m = 2n[wm](1 + w)n(n−1)

n∑
k=0

(
n

k

)
(1 + w)(

n−k
2 ) k![zk]A(z)

(1 + w)k(k−1)

= 2n[wm]
n∑

k=0

(
n

k

)
(1 + w)(

n−k
2 )+n(n−1)−k(k−1)k![zk]A(z).

Rewriting the power of (1 + w) as 4
(
n
2

)
−
(
n−k
2

)
− 2(n− 1)k, we obtain

SATn,m = 2n[wm](1 + w)4(
n
2)

n∑
k=0

(
n

k

)
(1 + w)−(

n−k
2 )k![zk]A((1 + w)−2(n−1)z, w)

= 2nn![znwm](1 + w)4(
n
2)Ŝet(z)A((1 + w)−2(n−1)z, w)

= 2nn![znwm]Ŝet((1 + w)2(n−1)z)A(z).

The second implication of Proposition 4.5 is the enumeration of contradictory SCCs.

Theorem 4.8. The Exponential GF of contradictory strongly connected implication digraphs
(components) is given by

CSCC(z) =
1

2
SCC(2z) + log

(
D(z)⊙ D(z)

G(2z)

)
.

Proof. By applying Proposition 4.5, we obtain

CSCC(z) =
1

2
SCC(2z) + log

(
D(2z)⊙

[(
e−SCC(z) ⊙ Ŝet(z)

)
¨CNF(z)

])
where ¨CNF(z) is equal to D(z/2) according to Proposition 4.1. We finish the proof by applying
the identity

e−SCC(z) = G(z)⊙G(z)−1

and the Hadamard property

A(2z)⊙B(z) = A(z)⊙B(2z).

Finally, the most detailed description of implication digraphs with marked parameters includ-
ing source-like components, isolated components and marked contradictory SCCs summarizes
several of the previous results.

Theorem 4.9. Let CNF(z, u, v) denote the Exponential GF of the implication digraphs whose
Exponential GFs of allowed ordinary and contradictory SCCs are, respectively, Scc(z) and
Cscc(z), and the variables z, u and v mark, respectively, the vertices, non-isolated source-like
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ordinary SCCs and unordered tuples of isolated ordinary components (in the sense of
Lemma 4.2), then

CNFScc,Cscc(z, u, v)

=


(
e(u−1)Scc(z) ⊙ Ŝet(z)

)(
eCscc(z)−Scc(2z)/2 ⊙ ¨Set(z)

)
e−Scc(z) ⊙ Ŝet(z)

⊙D(2z)

 e(v+1−2u)Scc(2z)/2.

Proof. We start with (4.2) from Lemma 4.3. The variable change

(s, t) =

(
u− 1,

v + 1− 2u

2

)
is applied

CNFScc,Cscc(z, u, v)

=
([(

e(u−1)Scc(z) ⊙ Ŝet(z)
)

¨CNFScc,Cscc(z, 1, 1)
]
⊙D(2z)

)
e(v+1−2u)Scc(2z)/2. (4.9)

We fix u = 0 and solve with respect to ¨CNFScc,Cscc(z, 1, 1), using Proposition 3.5 to reverse the
exponential Hadamard products:

¨CNFScc,Cscc(z, 1, 1) =

(
CNFScc,Cscc(z, 0, v)e

−(v+1)Scc(2z)/2
)
⊙ ¨Set(z)

e−Scc(z) ⊙ Ŝet(z)
.

The expression of CNFScc,Cscc(z, 0, v) from (4.3) is injected:

¨CNFScc,Cscc(z, 1, 1) =
eCscc(z)−Scc(2z)/2 ⊙ ¨Set(z)

e−Scc(z) ⊙ Ŝet(z)
.

The result of the theorem is obtained by injecting this last equation into (4.9).

Remark 4.10. In Theorem 4.9, we could introduce an additional variable q marking the contra-
dictory SCCs as well. To do so, simply replace the generating function Cscc(z) with qCscc(z):

CNFScc,Cscc(z, u, v, q)

=


(
e(u−1)Scc(z) ⊙ Ŝet(z)

)(
eqCscc(z)−Scc(2z)/2 ⊙ ¨Set(z)

)
e−Scc(z) ⊙ Ŝet(z)

⊙D(2z)

 e(v+1−2u)Scc(2z)/2.

The same applies to ordinary SCC.
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5. Numerical results

The first few coefficients of the sequences enumerating satisfiable 2-CNF and contradictory SCC
are given in Tables 5.3 and 5.4. Using exhaustive generation techniques, we have verified that
our enumeration scheme gives correct answers for all 2-CNF families with at most 4 Boolean
variables and up to 7 clauses. It is still worth treating some specific examples by hand.

As a first check, we observe that the coefficients an,m are those of [wm](1 + w)2n(n−1) for
all m ⩽ 3. Indeed in expectation three quarters of the clauses are SAT during a random as-
signment by a greedy algorithm of the variables. The probabilistic method [NS16] tells us then
that for all m ⩽ 3, there is only one integer value that exceeds the expected number of satisfied
clauses by the greedy algorithm, and this unique integer is the value m.

As a second check, the first discrepancy is given by a3, 4 = 486 whereas there are in to-
tal [w4](1 + w)12 = 495 2-CNF formulae built with 3 variables and 4 clauses. The 9 UNSAT
formulae built with the variables x, y, z and 4 clauses can be deduced by considering all the
permutations of literals {x, x, y, y, z, z} from the constructions given in (5.1), where 6 formulae
come from the first construction and 3 come from the second:

x ∨ y

x ∨ y

x ∨ z

x ∨ z


x ∨ y

x ∨ y

x ∨ y

x ∨ y

(5.1)

Below, we provide empirical time measurements (performed on a 2014 MacBook Air, Intel
Core i5 with 1,4 GHz) for computing the total number of satisfiable 2-SAT formulae with dif-
ferent numbers of variables as an indication (see Tables 5.1 and 5.2), by using the generating
functions that we provide in the paper. In the case with two parameters the exact calculation take
much longer due to necessity of considering bivariate series.

Table 5.1: Empirical time measurements for computing the total number of satisfiable 2-SAT
formulae.

n 10 20 40 100 200 250 350 500 600 700 800 900

Time 0.3ms 0.5ms 16ms 200ms 2s 3.76s 14s 45s 1m34s 2m30s 3m55s 6m52s

Table 5.2: Empirical time measurements for computing the number of satisfiable 2-SAT formu-
lae with given number of clauses. Decimal precision for interval arithmetic picked up heuristi-
cally.

n 10 20 25 30 35 40 45 50 60

m = n 27ms 340ms 870ms 1.7s 4s 12.8s 22.7s 41.6s 2min
m = 2n 50ms 1.16s 2.8s 7.17s 22.3s 48.4s 1m39s 2m20s 4m7s



32 Sergey Dovgal et al.

Recall that PSAT(n, p) denotes the probability for a random (n, p) 2-CNF to be satisfiable,
and its limit probability in the critical window p = (1 + µn−1/3)/(2n) is denoted by

PSAT,∞(µ) = lim
n→+∞

PSAT

(
n,

1

2n

(
1 + µn−1/3

))
.

Using the data from generating functions with moderate values of n we can provide very pre-
cise although non-rigorous estimates for PSAT,∞(µ). In [DM06], Deroulers and Monasson used
Monte-Carlo simulation approach to empirically estimate the limit probability PSAT,∞(0) that a
random 2-SAT with clause probability p = 1

2n
is satisfiable, which corresponds to the center of

the critical window of the phase transition. Using the assumption that the limiting probability
behaves as PSAT

(
n, 1

2n

)
∼ PSAT,∞(0) − cn−1/3, they empirically estimated the coefficient c

using linear regression which lead them to an estimate

PSAT,∞(0) = 0.907± 10−3,

by using the data obtained from various values of n up to n = 5×106. Although this assumption
is very plausible by taking into account the analogy with digraphs and random graphs [ŁS09,
dPD20, JKŁP93], it is still an open question, as far as we know. However, using the same as-
sumption along with the machinery of generating functions, we can provide much more accurate
predictions by simply taking more terms of the asymptotic expansion.

With our method, we do not have to use Monte-Carlo simulation to obtain the finite-size
probabilities with high accuracy: using the interval variant of long arithmetic and recurrences
from generating functions, we can obtain these probabilities with arbitrarily high precision. Re-
lying on the asymptotic equivalence of the models (n,m) and (n, p) as n → ∞, we can argue
that the limiting probabilities do not depend on which model is chosen. The probabilities in
the (n, p) model can be expressed via generating functions using Proposition 3.3. Inside the
critical window of the phase transition p = 1

2n
(1 + µn−1/3) we use an assumption that the lim-

iting probability that a random 2-SAT formula with n Boolean variables and clause probability
p is satisfiable, asymptotically behaves as

PSAT

(
n,

1

2n
(1 + µn−1/3)

)
∼ PSAT,∞(µ) + c1(µ)n

−1/3 + c2(µ)n
−2/3 + . . . (5.2)

and we can thus use multidimensional linear regression to estimate the coefficients (ck(µ))∞k=1

and PSAT,∞(µ) in the setting where almost no noise is present. Our estimates for coefficients
c1(0), . . . , c6(0) in the center of the critical window are given in Table 5.5.

By computing these probabilities for only 100 points n in the range from 100 to 5000, which
can be computed in only a few minutes (!), and by ensuring that no numerical instability is
present in our estimates (also known as “overfitting”), we predict, by applying linear regression
with dimension 7,

PSAT,∞(0) = 0.90622396067± 10−11.

The estimated error 10−11 has been obtained by comparing the regression models with different
dimensions and with a different level of “noise” truncation, if we consider the measurements
with smaller values of n to be more “noisy”. These prediction can be improved by taking more
points and a higher upper bound.
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Table 5.3: Enumerating satisfiable 2-SAT formulae. Here, an is the counting sequence of satisfiable formulae, where n denotes the
number of Boolean variables. We provide also an,m where m is the number of clauses.

n an m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

1 1 1 0 0 0 0 0
2 15 1 4 6 4 0 0
3 2397 1 12 66 220 486 684
4 3049713 1 24 276 2024 10596 41616
5 28694311447 1 40 780 9880 91320 654408
6 2034602766692687 1 60 1770 34220 487500 5451072
7 1115068294703296663717 1 84 3486 95284 1929270 30847236

n m = 6 m = 7 m = 8 m = 9 m = 10 m = 11 m = 12

3 572 276 72 8 0 0 0
4 123528 275568 463680 596232 593928 462408 281896
5 3752600 17428040 65774970 202646120 514203264 1087043720 1937000920
6 49675760 377136960 2411974740 13063104000 60169952412 237115483560 805717285720
7 405181084 4485339276 42527890314 348648091120 2484665216376 15453747532944 84253905879486

Table 5.4: Enumerating contradictory strongly connected 2-CNF. Here, an is their counting sequence, where n denotes the number
of Boolean variables. k denotes the excess of a component and is equal to its number of clauses minus its number of variables.

n an k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

2 1 0 1 0 0 0 0
3 1606 6 84 316 492 417 212
4 12864042 144 4104 38880 186864 559496 1175064
5 1035697286504 2880 152160 2779350 26769440 165382784 733763440
6 1137724245192445576 57600 5097600 157060200 2572386420 27182781120 207149446560
7 19275699325699284398997808 1209600 166199040 7932622320 201117551040 3285880363290 38654632189488
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Table 5.5: Numerical estimates of the coefficients of the full asymptotic expansion (5.2).

PSAT,∞(0) 0.90622396067 +/- 1e-11

c1 0.212314432 +/- 2e-9

c2 -0.17396477 +/- 2e-8

c3 0.066792 +/- 2e-6

c4 0.0155 +/- 2e-4

c5 -0.041 +/- 2e-3

c6 0.021 +/- 2e-3

By using this method for values of µ other than zero, we obtain the predicted plot of the
limiting function PSAT,∞(µ) in the range µ ∈ [−4, 4], which is shown in Figure 1.1.

6. Conclusion

Random 2-CNFs are fundamental objects in combinatorics and analysis of algorithms. Having
exact expressions for 2-SAT formulae potentially opens many new possibilities to describe the
properties of a typical 2-SAT formula. However, the analytic tools to extract the asymptotic of
the coefficients of such generating functions are not yet developed. More specifically, the GF

e−SCC(z,w) = G(z, w)⊙ 1

G(z, w)
(6.1)

appearing in Theorems 4.6 and 4.7 is a GF whose coefficients are growing faster than exponen-
tially for any fixed positive value of w. One of the few tools for dealing with such divergent
series is the Large Powers Theorem [FS09, Theorem VIII.8] and its variations, which requires
a specific representation with additional variables. We expect that representation from Theo-
rem 4.7 will be helpful in this direction. Two other possibilities worth exploring are the formal
integral representation of (6.1) (see [FSS04] to grasp the difficulties involved) or an application
of Bender’s theorem [Ben75] since the sequence is growing sufficiently quickly.

Phase transitions are intriguing phenomena, linking combinatorics, algorithmics and statis-
tical physics. For example, the random instances of NP-complete problems that are difficult
to solve for heuristics tend to appear inside the phase transition window [ACO08]. Although
2-SAT is not a computationally challenging algorithmic problem, its phase transition has for a
long time eluded the application of existing combinatorial tools. It has embodied the simplest
unsolved problem for various techniques at different times. Even though the phase transition win-
dow and its width have already been obtained [Goe96, CR92, dLV01, BBC+01], to the present
day, a combinatorial description inside the critical window is still missing. The present paper
constitutes a step in that direction.
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