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Abstract

The identification of individuals that have a recent hybrid ancestry (between populations or

species) has been a goal of naturalists for centuries. Since the 1960s, codominant genetic markers

have been used with statistical and computational methods to identify F1 hybrids and back crosses.

Existing hybrid inference methods assume that alleles at different loci undergo independent assort-

ment (are unlinked or in population linkage equilibrium). Genomic datasets include thousands of

markers that are located on the same chromosome and are in population linkage disequilibrium

which violate this assumption. Existing methods may therefore be viewed as composite likelihoods

when applied to genomic datasets and their performance in identifying hybrid ancestry (which is a

model-choice problem) is unknown. Here we develop a new program Mongrail that implements a

full-likelihood Bayesian hybrid inference method that explicitly models linkage and recombination,

generating the posterior probability of different F1 or F2 hybrid, or backcross, genealogical classes.

We use simulations to compare the statistical performance of Mongrail with that of an existing

composite likelihood method (NewHybrids) and apply the method to analyze genome sequence

data for hybridizing species of barred and spotted owls.

Chapter 1 reviews the different types of hybrid inference methods present in literature from

the 1960s till present. The review traces the gradual development of the inference methods with

advancement in sequencing technologies. We discuss how the assumption of independence among

loci (applied by most existing methods) adversely affects the analysis of current genomic datasets.

In Chapter 2 we propose a hybridization model based on diplotypes under a two-generational

pedigree when we consider two sympatric diploid populations. We present a novel way of calculating

the exact likelihood of the SNP data under a model with recombination by using the knowledge of

physical distance between the markers. Our method requires phased data and population haplotype

frequencies to be known when calculating the likelihoods. But we also present some alternatives

when these quantities are unknown. We use a point estimate to estimate the haplotype frequencies

for the two populations using individuals who are unlikely to be hybrids. And for hybrid individ-

ual without any phase information we calculate the likelihood by integrating over all compatible

diplotypes.
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Chapter 3 describes the two major simulation study designs that were used to compare the two

inference methods (NewHybrids and Mongrail) on datasets where the markers were linked. The

first design (Comprehensive Simulation) involved generating a diverse set of haplotype frequency

distributions. Whereas the second design (Coalescent Simulation) used a structured coalescent

model with recombination, thus allowing the statistical performance of the two methods to be

evaluated under biologically realistic conditions. Chapter 4 presents an exhaustive summary of the

simulation results for both the study designs. We find that in general, Mongrail is more effective

in distinguishing hybrids and backcrosses compared to NewHybrids under both the simulation

study designs. One of the most noteworthy findings from the simulation study is that the number

of chromosomes and the map-length of the chromosome, contribute more to power (to infer the

correct genealogical class) than the number of markers. This outcome is extremely advantageous

since it is more computationally challenging to increase the number of markers than increasing the

number of chromosomes or map-length.

Chapter 5 presents the application of our method to a genomic dataset on spotted owls, barred

owls and their hybrids. We give a brief background on the dataset and describe the methods we

employed to analyze the dataset. Mongrail was able to infer the genealogical classes for all putative

hybrids with high posterior probability.

Finally Chapter 6 briefly summarizes the findings from the simulation study designs and the

empirical analysis. We conclude with a discussion about the strengths and weaknesses of our

method and future research directions.
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CHAPTER 1

Introduction

For hundreds of years naturally occurring hybrids between species have been identified based

on their morphology, often intermediate by comparison with the pure parental species. During the

twentieth century, other diagnostics such as karyotypes, blood groups and isozymes were increas-

ingly used to identify hybrids. However, such diagnoses are inherently subjective and confounded

by the presence of backcrosses. Codominant genetic markers potentially offer a more objective form

of data and have been increasingly used to identify hybrid individuals in natural populations ever

since the development of allozyme markers in the 1960s [23, 29]. Genetic distance-based “hybrid

indexes” were proposed in the 1970s, for example, to assign to individuals from known hybrid zones

degrees of hybrid ancestry using allozyme allele frequencies of source populations [25]. Applica-

tions of allozyme markers to identify population or species hybrids in animals and plants flourished

during the 1980s [17,26,28], and microsatellites [37] or AFLPs [10] were commonly used during

the 1990s and 2000s. The applications were often species conservation or, in the case of fish, stock

management [40]. During the 1980s, diagnostic criteria were proposed to identify hybrids based on

explicit considerations of Mendelian inheritance. Some of these [5] rely on fixed allelic differences

between pairs of populations (or species). If loci with fixed differences exist, F1 hybrids will be

heterozygous for all such loci and (if markers are unlinked) the expected fraction of individuals that

can be identified as F1 hybrids versus F2 backcrosses can be predicted as a function of the number

of marker loci [5]. Diagnostic statistics have also been developed to identify F1 or F2 hybrids and

specific backcrosses (F1 x population 1, F1 x population 2) if one or more alleles are exclusive to

each population but not necessarily fixed [31].

Fixed differences (or exclusive alleles) do not always exist between populations (or species) and

(even if they do) it is impossible to be certain an allele is fixed (or exclusive) without exhaustive

sampling. Another class of hybrid inference methods thus relax the requirement for fixed allelic

differences, instead relying on differences in allele frequencies between populations (or species) and

1



calculating probabilities of multilocus genotypes in F1 and F2 hybrids versus pure individuals [8].

Some methods for estimating individual proportions of admixture between populations [33,34,36],

or migrant ancestry [44] also potentially identify F1 hybrids. In particular, [2] developed a powerful

Bayesian method for distinguishing between hybrids and backcrosses based on multinomial sampling

theory that has been widely used. In this paper, we focus on extending the hybrid inference

method of [2] to accommodate genomic data using multilocus genotypes, or haplotypes, without a

requirement for fixed or exclusive alleles.

1.0.1. Assumptions of hybrid inference methods. Model-based methods for identifying

hybrids assume random mating (Hardy-Weinberg equilibrium) within populations (species) and

some form of independence among loci. The independence requirement (among loci) is usually

stated as an assumption of either unlinked loci [5,31,34], or (linked or unlinked) loci that are in

population linkage equilibrium [2,8,36]. The distinction can be important because markers on the

same chromosome may be in linkage equilibrium, whereas none are unlinked.

The statistical assumption of independence among loci implies that the joint probability of

alleles at multiple loci, calculated under a model with linkage, should be equal to the probability

calculated as a product (across loci) of the marginal probabilities. This is generally stated without

proof and thus axioms of the statistical methods are implicit. The more general requirement of

statistical independence of alleles among loci seems to underlie both types of assumptions (un-

linked loci or linkage equilibrium) in most methods. For large genomic datasets, many loci will

be linked and in population linkage disequilibrium so that the assumptions of existing methods

will be violated. Thus, alternative methods that relax these assumptions are desirable. A method

that relaxes the independence assumption must formulate the problem in terms of linked markers

on chromosomes and haplotype frequencies in populations, rather than multilocus genotypes and

allele frequencies.

1.0.2. Full versus composite likelihood. If a likelihood or Bayesian statistical method

is applied that assumes unlinked loci, when the loci are actually linked, the method becomes a

composite likelihood. Composite likelihoods can produce efficient point estimators, with estimates

converging to the true parameter value with increased sample size [42]. However, the problem of
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identifying hybrid class is a model choice problem not a point estimation problem – the performance

of composite likelihood methods for model choice is poorly understood [43]. A full-likelihood

method that explicitly models recombination, thus allowing linked loci, would eliminate the need

for composite likelihood approximations and the potential problems of existing estimators. This

paper aims to develop a full-likelihood method that explicitly models recombination during the

formation of hybrids.

With the advent of genomic datasets of potentially millions of markers linked on chromosomes

for which only a few recombination events are expected to occur per meiosis, the independence

assumptions of composite likelihood methods will inevitably be violated. However, existing sim-

ulation studies examining the statistical performance of hybrid identification methods explicitly

assume that markers are unlinked [41]. The effects of linkage on the performance of these com-

posite likelihood methods is thus unknown. In particular, when thousands of markers are used so

that the assumptions of the methods are strongly violated the effects of model violations could be

extreme. Although the simulation method described in [45] includes a model of linkage, it has not

yet been used to compare different hybrid inference methods. This paper develops a simulator that

includes both linkage and recombination during the formation of population hybrids, allowing the

statistical performance to be evaluated under a more realistic model for both existing (composite

likelihood) hybrid inference methods and the new full-likelihood methods developed in this paper.

1.0.3. Hybrid inference using genomic data with linked markers. There are two ma-

jor factors accounting for the requirement, ubiquitous among existing hybrid inference methods, of

independent assortment of alleles among loci: (1) the positions of first-generation genetic markers

were usually unknown (a linkage or a physical map was not available) for most organisms; (2) ex-

plicitly modeling linkage and recombination is complex and computationally demanding. Advances

in genome sequencing are rapidly altering this first factor, providing inexpensive physical maps of

millions of SNP markers for virtually any species, and statistical methods and computer speed are

rapidly converging to reduce or eliminate the second limiting factor (computational complexity).

In this paper, we present a full-likelihood Bayesian method for identifying hybrids and back-

crosses using biallelic SNP loci available from population genomic samples. The method explicitly

models recombination by using a physical map of the markers. To maximize the efficiency of the
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method we implement many of the computations as low-level bit operations in the C programming

environment. To examine the effects of linkage on composite likelihood methods we conducted

a simulation study of the performance of the [2] composite likelihood method, when used with

linked markers, by comparison with our full-likelihood method which incorporates linkage. As an

application of our method we analyze a real data set consisting of spotted owls, barred owls and

their hybrids [15,21]. This dataset includes an improved spotted owl genome assembly and 51 high

coverage whole-genome sequences [15].

4



CHAPTER 2

Theory

Most methods using genetic markers to identify population hybrids of a diploid species have

assumed that genotypes at different loci undergo independent assortment (e.g., are unlinked or in

linkage equilibrium). In particular, the widely used method of [2] incorporates this assumption

– when markers are actually linked their method becomes a composite likelihood approximation.

Here, we extend the [2] model to allow genomic sequence data comprised of linked SNPs to be jointly

analyzed using an exact full-likelihood approach. We consider two sympatric diploid populations,

labelled A and B, and assume they were initially isolated but have been interbreeding for the last n

generations. We follow [2] who considered all the combinations of hybrid ancestries that can result

with n generations of interbreeding between two populations but consider explicit results only for

the case of a recent population hybridization event (n ≤ 2 generations). Here, we consider the

diploid genome sequence for a single individual and how this may be used to infer the hybrid status

of the individual. In the absence of close relatedness between sampled individuals the hybrid status

of multiple individuals may be inferred independently.

2.1. Genealogical class

A non-inbred pedigree of n generations describing the ancestors of a single individual includes

2n founders, so in our two generation case there are 22 = 4 founders. We consider the founders to

be purebred. We can identify 6 distinct classes of such two-generational pedigrees by considering

the number and arrangement of founders originating from a specified population (population A, for

example). Following [31] we refer to these as genealogical classes (see Figure 2.1), where genealogical

classes a and d are purebreds; b and e are backcrosses; c is a F1 hybrid and f is a F2 hybrid. We

use the term genealogical class and model interchangeably. Our approach differs from [31] in that

we consider diplotypes rather than marker genotypes. The diplotype is the pair of haplotypes on

homologous chromosomes.
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If the map distances between markers and the population haplotype frequencies are known,

then under a random mating process (within populations) the probability of the observed marker

data (likelihood) is completely specified for any given genealogical class. The focus of this paper

will be on developing and implementing an efficient algorithm for calculating this likelihood, thus

allowing inference of the genealogical class of an individual using linked SNP marker data.

2.2. Model and likelihood

Here we describe the likelihood calculation for a set of multiple biallelic SNP markers located

on the two copies (maternal and paternal) of a single chromosome from an individual of a diploid

sexual species that undergoes recombination. Because different chromosomes segregate indepen-

dently during meiosis, the likelihood for markers on multiple chromosomes is simply a product

across the likelihoods for the individual chromosomes. Following [2] the objective of the inference

will be to infer the hybridization history of an individual (genealogical class) which is essentially

a model choice problem. We will use posterior model probabilities to evaluate the support for

different genealogical classes. Here, we present the data, model parameters, and formulas needed

for calculating the likelihood under each of the 6 possible genealogical classes (see Figure 2.1) for

2 populations.

2.2.1. Data and parameters. Consider a sample of K chromosomes from a diploid individ-

ual. Chromosome i contains Li loci with phased biallelic single-nucleotide polymorphisms. We

represent the maternally (M) and paternally (P) inherited copies of the chromosomes as matrices,

xM = {xMij },

xP = {xPij},

where xMij ∈ {0, 1} is the allele (coded as 0,1) present at the jth SNP locus on the maternally

inherited copy of chromosome i, etc. The complete data for an individual are then x = {xM ,xP }.

We define the physical distances between markers on chromosomes as

d = {dij},
6



Figure 2.1. Pedigrees of relationships among founders for n = 2 generations.
Circles represent diploid individuals and the pair of lines within each individual
represent the two chromosomes; the blue line denotes the chromosome originating
from population A and the red line represents the chromosome from population B.
Founders are individuals at the top of the pedigree. An individual’s genealogical
class (a-f), is defined by the population origins among founders.

7



where dij is the distance on chromosome i from marker j − 1 to j and di1 is the distance from the

5’ end of chromosome i to marker 1.

We define the recombination rates on the intervals between markers as

r = {rij},

where rij is the recombination rate on chromosome i for the interval between markers j − 1 and

j in units of centiMorgans (cM) per unit of physical distance. For example, if physical distance is

measured in megabases (Mb) the units would be cM/Mb. Recall that 1 cM = 1 % recombination

per meiosis. The map distance for the interval [j − 1, j] of chromosome i is defined by the product

dij × rij and is measured in units of cM (percent recombination per meiosis).

We consider a model with hybridization between 2 populations A and B. The ancestry matrix

for each chromosome specifies the population origin of each marker locus,

zM = {zMij },

zP = {zPij},

where populations A and B are denoted by 0 and 1, respectively, and zMij = 0 specifies that marker

j of the maternally inherited copy of chromosome i originates from a founder chromosome that was

in population A, and so on. The complete ancestry matrix for an individual is then z = {zM , zP }.

Population haplotype frequencies are also needed to calculate likelihoods. We assume that

the population is randomly mating so that diplotype probabilities can be calculated directly from

haplotype frequencies for non-hybrid segments of chromosomes. We define fA(xi) to be the fre-

quency of haplotype xi on chromosome i in population A and fB(xi) its frequency in population

B. In this paper, we treat population haplotype frequencies as known when calculating likelihoods.

In empirical analyses, haplotype frequencies are estimated using individuals who are unlikely to

be hybrids (for example, individuals sampled outside of a hybrid zone). For the individual being

tested for potential hybrid status we integrate over the unknown haplotype phase taking account

of uncertainty (see section Inference for unphased individuals).
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2.2.2. Population ancestry states of markers. For the case of 2 populations and 2 gen-

erations of hybridization the only non-trivial chromosome ancestry probability to calculate is that

for a chromosome that is a recombinant between two pure chromosomes, one from population A

and the other from population B. We consider autosomes so that it does not matter which specific

chromosome is maternally, or paternally, inherited. We assume no interference (independence of

recombination events on different intervals) allowing the transitions from one population ancestry

state to another along the chromosome from left to right (see Figure 2.2) to be calculated as inde-

pendent conditional probabilities. Here, we present the probability calculation for chromosome i

with Li linked loci. We omit the subscript i from the population ancestry vector z for simplicity.

The population origin of a SNP locus to the right of an interval changes whenever there is an

odd number of recombinations (1,3,5, etc) on the interval. We denote a distinct population state

(or, ancestry state) as

z = {zj} ; j = 1, . . . , Li,

where zj ∈ {0, 1} is the population origin of the marker j (where 0 represents population A and 1

population B).

There are 2Li possible distinct population states for Li loci, for example:

0 . . . 0︸ ︷︷ ︸
Li

, 1 . . . 1︸ ︷︷ ︸
Li

, 0 . . . 0︸ ︷︷ ︸
Li−1

1︸︷︷︸
1

, 0 . . . 0︸ ︷︷ ︸
Li−2

11︸︷︷︸
2

, . . .

For simplicity, here we treat the rate of recombination as uniform (rij = r) on chromosome i,

although the implementation allows recombination rates to vary as specified by the user. Given the

assumption of no interference, recombinations occur as a Poisson process along the chromosome,

such that the number of recombinations in an interval of length dij is Poisson distributed with a

mean of rdij . Accordingly, the probability that an even number of recombinations occur on an

interval of length dij is
∞∑
n=1

e−rdij (rdij)
2n

[2n]!
= e−rdij (cosh[rdij ]− 1).

9



Figure 2.2. Population origin of L = 4 markers as a result of recombination (or,
crossovers) between two pure chromosomes (a F1 hybrid): one from population A
(blue) and other from population B (red). The two possible gametes (recombinant
haplotype) produced at the end of meiosis is shown with the population origin
labelled on the markers. An odd number of recombinations between two markers
changes the population origin of the marker to the right of an interval whereas an
even number of recombinations results in no change in the population state of the
markers.

Thus the probability that there is a change of population on the interval between the (j − 1)-th

marker and j-th marker is

P (dij , r) = 1− (e−rdij{cosh[rdij ]− 1}+ e−rdij ),
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where the last term in parentheses on the right is the probability of no recombinations (which also

results in no change of population ancestry). Using this result we can calculate the probability of

a particular ancestry state z for Li SNP loci,

Q(z|di, r) =
{1

2
× P (di1, r)

z1 × [1− P (di1, r)]
1−z1 × P ∗

}
+{1

2
× P (di1, r)

|z1−1| × [1− P (di1, r)]
1−|z1−1| × P ∗

}
,

where

P ∗ =

Li∏
k=2

{
P (dik, r)

|zk−zk−1| × [1− P (dik, r)]
1−|zk−zk−1|

}
.

Here we explain the derivation of Q(z|di, r) for a particular ancestry state z. A chromosome can

either be sampled from population A (with probability 1/2) or from population B (with probability

1/2). This explains the summation of the two (mutually exclusive and exhaustive events) repre-

sented by the terms in curly braces. Considering the first term, given that the chromosome was

sampled from population A, if z1 = 0 no change of population state occurred on interval di1. The

probability of no change is [1 − P (di1, r)]. Otherwise, if z1 = 1 the population state changed on

interval di1. The probability a change occurs is P (di1, r). The derivation for a chromosome sampled

from population B (the second term) is similar. For the remaining loci (zk ; k > 1) the probability

is P (dik, r) if the ancestry state zk changed from zk−1, otherwise the probability is [1 − P (dik, r)]

if there was no change (zk = zk−1 ; k 6= 1), and these probabilities are combined into the term P ∗.

2.3. Allelic state of markers

We now consider the probabilities of the SNP alleles observed conditional on the ancestry

states of the markers. Let xi be the SNP haplotype for a (maternally or paternally inherited)

chromosome i and let z be the population ancestry vector (again dropping the chromosome i

subscript for simplicity). The probability of the SNP alleles on the chromosome for the two trivial

cases (either the entire chromosome comes from population A or from population B) are given by

f(xi|z) =

 fA(xi), if zj = 0 ∀ j = 1, . . . , Li

fB(xi), if zj = 1 ∀ j = 1, . . . , Li

11



Now consider the non-trivial case (i.e., the chromosome is a recombinant between two pure chro-

mosomes, one from population A and the other from B). First, we define the marginal frequency

of alleles on sub haplotypes {xiu, xi(u+1), xi(u+2), . . . , xiv} from the u-th marker to the v-th marker

where 1 ≤ u < v ≤ Li in population A (or, B) be fA(xi[u,v]) or, fB(xi[u,v]) respectively. Then,

for any ancestry state z we consider each segment of consecutive 0’s or 1’s, counting the number

of segments and the lengths of each segment (in units of number of markers rather than physical

distance). Consider the case of c segments with lengths j1, j2, . . . , jc. The calculation differs for

even versus odd numbers of segments.

Case I: Even number of segments c = 2n and z1 = 0 (i.e., the starting state is population A),

f(xi|z) = fA(xi[1,j1])

×fB(xi[j1+1,j1+j2])

×fA(xi[j1+j2+1,j1+j2+j3])

...

×fB(xi[j1+j2+...+jc−1+1,j1+j2+...+jc])

The terms are thus an alternating sequence of marginal frequencies from populations A and B

and there are n marginal frequency terms from each. If z1 = 1 the first term instead starts with

population B and the last term is from population A.

12



Case II: Odd number of segments c = 2n+ 1 and z1 = 0 (i.e., the starting state is population

A),

f(xi|z) = fA(xi[1,j1])

×fB(xi[j1+1,j1+j2])

×fA(xi[j1+j2+1,j1+j2+j3])

...

×fB(xi[j1+j2+...+jc−2+1,j1+j2+...+jc−1])

×fA(xi[j1+j2+...+jc−1+1,j1+j2+...+jc])

In this case (z1 = 0), there are (n + 1) marginal frequency terms from population A and n from

B. If z1 = 1, the first and last terms instead come from population B so that (n + 1) marginal

frequency terms are from population B and n from A.

2.4. Likelihood

For the maternally inherited chromosome i, the probability of a Li-loci hybrid SNP haplotype

(i.e., a recombinant SNP haplotype), xMi , unconditioned on the ancestry state of the markers is

given by

L(xMi |di, r) =
∑
z

L(xMi , z|di, r)

=
∑
z

f(xMi |z).Q(z|di, r)

where the sum is over the set of all possible ancestry states at Li markers (there are 2Li dis-

tinct combinations). Because the number of distinct combinations grows with Li, it is currently

computationally practical to analyze 15 or fewer loci per chromosome.

2.5. Likelihoods for genealogical classes

Here, we present formulas for calculating the likelihood of a diplotype, x = {xM ,xP } for an

individual under each of the 6 possible genealogical classes (see Figure 2.1). We use the term
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genealogical class and model interchangeably. We introduce the variable G : G = g denotes that

the individual belongs to the genealogical class g. We define the indicator function,

I =


1 if xMi 6= xPi

0 if xMi = xPi

Model (a): Both chromosomes (xMi and xPi ) come from Population B (i.e., zj = 1 ∀j = 1, . . . , Li)

L(xM , xP |G = 1,d, r) =
K∏
i=1

{2I .fB(xMi ).fB(xPi )},

Model (b): One chromosome comes from Population A and the other chromosome is a recombi-

nant.

L(xM , xP |G = 2,d, r) =

K∏
i=1

([
fA(xMi )

{∑
z

f(xPi |z).Q(z|di, r)
}

+

fA(xPi )
{∑

z

f(xMi |z).Q(z|di, r)
}]I

×

[
fA(xMi )

{∑
z

f(xPi |z).Q(z|di, r)
}]1−I ,

Model (c): One chromosome comes from Population A and the other from Population B

L(xM , xP |G = 3,d, r)

=
K∏
i=1

[{
fA(xMi ).fB(xPi ) + fA(xPi ).fB(xMi )

}I
×
{
fA(xMi ).fB(xPi )

}1−I
]
,

Model (d): Both chromosomes (xMi and xPi ) come from Population A (i.e., zj = 0 ∀j = 1, . . . , Li)

L(xM , xP |G = 4,d, r) =

K∏
i=1

{2I .fA(xMi ).fA(xPi )},
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Model (e): One chromosome comes from Population B and the other chromosome is a recombi-

nant.

L(xM , xP |G = 5,d, r) =

K∏
i=1

([
fB(xMi )

{∑
z

f(xPi |z).Q(z|di, r)
}

+

fB(xPi )
{∑

z

f(xMi |z).Q(z|di, r)
}]I

×

[
fB(xMi )

{∑
z

f(xPi |z).Q(z|di, r)
}]1−I ,

Model (f): Both chromosomes are recombinants.

L(xM , xP |G = 6,d, r) =

K∏
i=1

[
2I .
{∑

z

f(xMi |z).Q(z|di, r)
}
.
{∑

z

f(xPi |z).Q(z|di, r)
}]

Likelihoods for 3 genealogical classes (a,d and c) shown in Figure 2.1 are trivial to calculate because

recombination has no effect on the population origins of linked sites. For models (a) and (d) the

sampled individual’s chromosomes are either entirely A or entirely B. For model (c) the individual

is a first-generation hybrid so that one chromosome is entirely A and the other entirely B. The

probability of the data for these genealogical classes can therefore be calculated directly by assuming

random mating and applying the usual Hardy Weinberg formulas using the population haplotype

frequencies in place of allele frequencies. Models (b), (e) and (f) all require calculation of the

probabilities of one or more recombinant haplotypes (indicated by an x in Figure 2.1).

2.6. Bayesian inference

A Bayesian approach to hybrid inference requires a prior distribution for the genealogical classes.

An individual belongs to genealogical classe g with prior probability πg with g = 1, 2, . . . 6 and∑6
g=1 πg = 1. The posterior probability an individual belongs to the gth genealogical class is

P (G = g|xM , xP ,d, r) =
πg × P (xM , xP |G = g,d, r)∑6
i=1 πi × P (xM , xP |G = i,d, r)

.
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In general, a prior distribution on genealogical classes could incorporate factors such as differential

fitnesses among classes, varying frequencies of mating encounters between individuals of different

populations (or species), and so on. Lacking specific information on hybridization rates, one can

use a discrete uniform prior πg = 1/6,∀g = 1, . . . , 6 which reduces the posterior likelihood to

P (G = g|xM , xP ,d, r) =
P (xM , xP |G = g,d, r)∑6
i=1 P (xM , xP |G = i,d, r)

.

2.7. Estimation of population haplotype frequencies

The likelihood theory above treats population haplotype frequencies as known fixed parameters.

For most empirical datasets population haplotype frequencies are unknown; we thus estimate them

using posterior probability densities. To estimate frequencies “purebred” individuals (those least

likely to be hybrids; possibly sampled outside a hybrid zone) are identified from each of the two

populations and analyzed separately. Let f i = {f i(h)} be a vector of the haplotype frequencies in

population i, where f i(h) is the frequency of the hth distinct haplotype in i and i ∈ {A,B}. Let

Ni be the number of diploid individuals sampled from population i. It is assumed that H distinct

haplotypes exist, each occurring in both populations. The set of distinct haplotypes compatible

with genotypes observed in all sampled individuals (from both populations) provides an estimate of

H. With no prior information, we assign equal prior probability density to the haplotype frequencies

in each population (A and B). Results are formulated for population A (B is equivalent). The prior

probability density of haplotype frequencies (i.e., before sampling) is

Pr(fA) =

H∏
h=1

{fA(h)}(1/H)−1

Γ(1/H)
.

Thus, fA ∼Dirichlet(1/H). Let the vector nA = {n1A, . . . , nHA}, where nhA is the observed number

of copies of the hth distinct haplotype in a sample from population A. The probability density of

nA conditioned on the haplotype frequencies follows a Multinomial distribution given by

Pr(nA|fA) =

( H∑
h=1

nhA

n1A, . . . , nHA

) H∏
h=1

{fA(h)}nhA ,
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where
H∑
h=1

nhA = 2NA

is the total number of haplotypes observed in population A. The posterior density of the haplotype

frequencies, conditioned on the haplotypes observed in a sample from population A, follows a

Dirichlet distribution, since the Dirichlet is a conjugate prior to a Multinomial distribution. The

posterior probability density of haplotype frequencies is

Pr(fA|nA) = Γ(θA)
H∏
h=1

{fA(h)}θAahA−1

Γ(θAahA)
,

where,

θA = (1 +
H∑
h=1

nhA) = (1 + 2NA)

and

ahA =
nhA + 1/H

1 +
H∑
h=1

nhA

=
nhA + 1/H

1 + 2NA
.

Note that
H∑
h=1

ahA = 1. The posterior mean is used to estimate fA and is given by

(2.1) E(fA|nA) =
θAahA

H∑
h=1

(θAahA)

= ahA.

For simplicity, we ignore uncertainties of haplotype population frequencies when inferring hybrid

classes, using the posterior mean as a proxy for the true frequency. Uncertainties could be accounted

for by instead integrating over the posterior density rather than using the posterior mean.

2.8. Inference for unphased individuals

The above calculations require phased haplotypes for all individuals. Although improved ge-

nomic sequencing technologies provide more experimental information about phase than in the

past, complete phase information is not always available. For the “pure” individuals one can ob-

tain phase by applying existing population-based haplotype phasing methods [6, 7, 38] to each

population separately. However, with unphased putative hybrid individuals using either pure pop-

ulation for phasing would be incorrect, and thus could potentially lead to biased inferences, unless
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the individual turns out to be a non-hybrid. Therefore, instead of trying to estimate the phase of

a hybrid individual we opted to integrate over all possible haplotype phase states.

Let X = {Xij} be the matrix of genotype data of a hybrid individual, where Xij is the genotype

at the j-th SNP locus for chromosome i. Given the unphased multilocus genotype data Xi· for

chromosome i, let Ci denote its set of compatible diplotypes. Thus for chromosome i, given the

g-th genealogical class, the likelihood of the unphased hybrid individual is

(2.2) P (Xi·|G = g,d, r) =
∑

{xMi ,xPi }∈Ci

P (xMi , x
P
i |G = g,d, r)

Here we are summing over all compatible diplotypes to obtain the marginal likelihood, taking into

account the uncertainty in phasing. For a sample of K chromosomes, the likelihood of the unphased

hybrid is

(2.3)
K∏
i=1

P (Xi·|G = g,d, r)

The chromosome probabilities are multiplied because the different chromosomes undergo indepen-

dent assortment during meiosis. These equations were implemented in a new inference program

named Mongrail.
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CHAPTER 3

Simulation Methods

Two different simulation study designs were used to evaluate the statistical performance of our

new inference method Mongrail versus NewHybrids. The first design involved generating a diverse

set of haplotype frequency distributions, ensured by using either a symmetrical or non-symmetrical

Dirichlet distribution. This allowed a comprehensive comparison of performance over a broad

range of conditions. The second design used a structured coalescent model with recombination,

with haplotypes generated under a neutral Wright-Fisher model from each of two populations (A

and B) connected by migration, allowing the statistical performance of the inference method to be

evaluated under biologically realistic conditions.

3.1. Comprehensive simulation

We simulated diplotypes for individuals that were uniformly assigned to one of the 6 genealog-

ical classes. The chromosomes of parents were randomly assigned haplotypes according to the

population haplotype frequencies in populations A and B, which must first be specified. We first

describe the procedure used to simulate haplotype marker configurations and their corresponding

frequencies (for two populations A and B) for each chromosome. We use simple procedures de-

signed to mimic population genetic processes rather than explicitly simulating a population genetic

model as it allowed more direct control over levels of variation in the populations. For simplicity,

in all simulations we fixed the length of each chromosome to be 240 Mb and the recombination

rate to be 1.2 cM/Mb respectively. The simulation experiment used a factorial design allowing the

performance of the methods to be assessed for many combinations of parameters. The parameters

(factors) and their values were as follows:

(1) Number of chromosomes: K = 1, 2, 5, 10, 20

(2) Number of loci per chromosome: L = 1, 5, 10
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(3) Expected recombination frequency (in cM): R = 1, 25, 50 between the first and the last

locus

(4) Number of distinct haplotype sequences per chromosome for each population: h = 5, 10, 15

(5) Allelic configurations of haplotypes, generated by simulating the switches between allele

states (see description below). Switch rates used: c = 0.1, 1, L/2

(6) Haplotype frequencies, following a Dirichlet distribution (symmetrical with parameters

α = 1, 5, or non-symmetrical with parameters w = 5, 20) (see description below)

To simulate haplotype configurations we mimic recombination by using a “switching process” (that

flips the adjacent marker state) operating along the chromosome. The switch rate on a particular

interval is p = c/L where p is the probability of a switch from 0 to 1 (or 1 to 0). To simulate

haplotype frequencies, we used either a symmetrical or non-symmetrical Dirichlet distribution with

parameters α1, α2, . . . , αh. For the symmetric Dirichlet distribution we set αi = α for i = 1, 2, . . . , h

and consider two cases: α = 1 or α = 5.

For the non-symmetric Dirichlet distribution we use:

αi =

 0.7× w, i = 1

0.3× w
h−1 , i > 1

and again consider two cases: w = 5, 20. These combinations produce a diverse set of distributions

(see Appendix A.1). The above combinatorial design produced 1100 simulation combinations in

total (see below). For each, we simulated from 10,000 to 100,000 genealogical classes using a discrete

uniform probability distribution on the six distinct genealogical classes. As noted above, given a

genealogical class, the diplotype of an individual is generated by simulating a pair of chromosomes

(whether one or both chromosomes are pure or recombinant depends on the genealogical class).

The simulator is available as an option in our program.

With six parameters (factors) and the number of corresponding levels for each (5 for K, 3 for

L, 3 for R, 3 for h, 3 for c, and 4 for α and ω) the number of simulation combinations (when L > 1)

is CL>1 = 5 × 2 × 3 × 3 × 3 × 4 = 1080. If L = 1, for each possible chromosome number (K)

four ways exist to generate population haplotypes using Beta distributions (univariate cases of the

Dirichlet distribution) with parameters α1 and α2:
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(1) α1 = α2 = 1

(2) α1 = α2 = 5

(3) α1 = 0.7× 5, α2 = 0.3× 5

(4) α1 = 0.7× 20, α2 = 0.3× 20

Thus, the number of combinations (for L = 1) is CL=1 = 5 × 4 = 20 and the total number of

simulation combinations is CL>1 + CL=1 = 1080 + 20 = 1100.

We analyzed the statistical performance of Mongrail and NewHybrids [2] for all the simulation

combinations by computing for each simulated individual the posterior probabilities of belonging

to each of the six genealogical classes. NewHybrids analyses multilocus genotypes and population

allele frequencies, rather than haplotypes and haplotype frequencies. The genotypes are completely

specified given the haplotypes. In our analyses, we ignore uncertainty of haplotype (or allele) fre-

quencies, treating them as known. In this case, we do not require MCMC sampling to compute the

posterior probability of an individual belonging to each of the six different hybrid categories under

the NewHybrids model, thus we implemented a version of NewHybrid without MCMC sampling to

calculate posterior probabilities with known population allele frequencies. Our goal is to compare

the two methods using the same assumptions. Avoiding MCMC allows a large-scale comparison

without having to worry about whether NewHybrids MCMC analyses have converged. Uncertainty

of haplotype or allele frequencies will be an additional source of variance for both estimators. It is

straightforward to incorporate individual haplotype and population haplotype frequency inference

into Mongrail and thus account for this source of uncertainty. For both methods, we considered a

discrete uniform prior on the six distinct genealogical classes.

We performed a comparative analysis of statistical performance between Mongrail and NewHy-

brids using five different performance metrics:

(1) Accuracy of posterior probabilities

(2) Power to identify genealogical classes

(3) Posterior distribution of genealogical classes

(4) ROC curve analysis of power versus Type I error

(5) Sensitivity to biological and experimental parameters

We describe the procedures used to evaluate the methods for each of these criteria below.
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3.1.1. Accuracy of posterior probabilities. The aim of this analysis was to verify that

the posterior probabilities of genealogical classes for individuals provide consistent and unbiased

estimates of the frequencies at which individuals belong to the classes. The underlying true ge-

nealogical class is known for a simulated individual and a Bayesian method should produce posterior

probabilities for genealogical classes (models) that correspond to the frequency at which that ge-

nealogical class is the one under which the individual was simulated. To evaluate this, individual

posterior probabilities for the gth genealogical class were binned into 10 intervals each of length

0.1. The proportion of individuals in each bin for which the true genealogical class was g was

calculated and plotted against the mid-point of the posterior probability for the interval. The

method is performing well if, in each interval with midpoint posterior probability p, the frequency

of individuals binned into that interval for whom the true genealogical class is g is close to p. This

will produce a straight line along the diagonal of the plot. This expected relationship holds for all

the six genealogical classes. For example, 95% of individuals that are placed in bin (0.9, 1.0) for

genealogical class g should have true genealogical class g while the remaining 5% will have a true

genealogical class that belongs to one of the other five alternatives.

3.1.2. Power to identify genealogical classes. The aim of this analysis was to examine

how often a method produces a high posterior probability for the true genealogical class used

to simulate an individual. If the posterior probability is accurate, a greater proportion of high

posterior probability outcomes will indicate greater power. The posterior probability assigned to

an individual for each of the six genealogical classes was plotted as a stacked bar plot. Different

colors are used to illustrate the different segments in the bar. Each colored segment represents the

relative contribution of one of the six genealogical class posterior probabilities for that individual.

One can conclude the method is performing well for individuals simulated under the gth genealogical

class if the color assigned to the gth class is the dominant one in the plot. If the bar has many colors

with uniform representation there is low support for any particular model and thus low power.

3.1.3. Posterior distribution of genealogical classes. The aim of this analysis was to ex-

amine the posterior probability of the true genealogical class for individuals simulated under that

genealogical class. If a method is powerful most individuals should have a posterior probability
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concentrated near posterior probability 1 for the true genealogical class (a high frequency of indi-

viduals at the right of the graph). If a method is accurate few individuals should have a posterior

probability concentrated near posterior probability 0 for the true genealogical class (a low frequency

of individuals at the left of the graph).

3.1.4. ROC curve analysis of power versus Type I error. The aim of this analysis was

to examine the power of the methods to detect genealogical classes relative to Type I error for

different classification thresholds. We plot the ROC (Receiver Operating Characteristics) curve for

all six genealogical classes. The ROC curve for the gth genealogical class is created by plotting the

true positive rate (equivalent to power, or sensitivity) against the false positive rate (equivalent to

Type I error, or 1− specificity). The true positive rate is defined as the proportion of individuals

simulated under the gth genealogical class and classified as belonging to that class. The false

positive rate is defined as the proportion of individuals simulated under another class but classified

as belonging to the gth class. The ROC curve measures the performance of the methods for

classifying individuals into genealogical classes as a function of varied classification thresholds (based

on posterior probabilities). For each of the six genealogical classes we overlay the ROC curves of

Mongrail and NewHybrids to allow comparisons between the two methods.

3.1.5. Sensitivity to biological and experimental parameters. The aim of this analysis

was to determine how sensitive the method is to changes of key biological and experimental pa-

rameters: number of chromosomes (K), number of loci (L), and recombination frequency (R). All

of these factors are affected both by the biology of the organism under study and by the exper-

imental design. We expect increased information with increasing values of K,L or R. However,

we do not know apriori how large the effect will be on the posterior probabilities of genealogical

classes. To reduce the state space for this analysis, we consider fixed values for other parameters

that determine haplotype frequencies in populations – these other paranmeters are typically be-

yond the experimentalists control and are also expected to have less predictable effects on method

performance. We used: h = 5, c = 0.1 and α = 1. We plot the proportion of cases for which the

posterior probability of belonging to the correct genealogical class is above a threshold value of

0.9 against the number of chromosomes analyzed using multi-line plots, where each line represents
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different combinations of values for the remaining two parameters: number of loci (except L 6= 1)

and recombination frequency (R).

3.2. Coalescent simulation

The program ms [24] was used to simulate samples from two populations evolving according

to a neutral Wright-Fisher model under various demographic histories. The program employs

a structured coalescent model with recombination. Haplotype marker samples were simulated

from the two populations (A and B) and used to estimate corresponding population haplotype

frequencies. The diploid effective population size was N0 = 10, 000 for each population. We

simulated 100 sampled chromosomes, each 1 Mb in length, for each population. The simulator is

haploid so this corresponds to a sample of 50 diploid individuals from each population. We simulated

20 chromosomes for each diploid individual. The per-generation recombination probability over the

entire chomosome was fixed to r = 0.01, thus the recombination rate was 1 cM/Mb. The population-

scaled recombination rate parameter was then ρ = 4N0 × r = 40, 000× 0.01 = 400. We assumed a

symmetrical island model with M = 4N0m, where m is the fraction of each population made up of

new migrants each generation. We chose five different values M = 0.1, 0.25, 1, 10, 100 to study the

effects of migration on the performance of the two methods in identifying genealogical classes.

We used ms to generate gene trees representing the history of the sampled chromosomes. The

seq-gen program [35] was then used to simulate sequences on gene trees under a Jukes-Cantor

mutation model. The population-scaled per-site mutation rate, θ, was assumed to be θ = 4N0µ =

0.00004, where µ = 10−9 is the mutation rate per generation. The program snp-sites [32] was

used to extract SNPs from simulated sequences into a Variant Call Format (VCF) file. Subsequent

processing and manipulations, such as extracting biallelic SNPs into separate VCF files for the

two populations, were performed using BCFtools [11]. We chose a subset of L = 10 markers for

each analysis such that the markers were approximately equidistant to each other and spanned the

chromosome. Since we specified a recombination rate of 1 cM/Mb, the physical distance between

the first and last marker was 1 Mb (the length of simulated chromosomes). Having obtained

haplotype marker configurations for samples from both populations, unknown population haplotype

frequencies were estimated using the Multinomial-Dirichlet posterior mean (see equation 2.1).
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For each of five different values of M , we simulated 1000 individuals for each of the four ge-

nealogical classes: purebred (model d), F1 (model c) hybrid, backcross (model b) and F2 (model f)

hybrid. For brevity, we used only one backcross model (b) and one purebred model (d). Simulating

a diploid individual is equivalent to generating a diplotype (a pair of haplotypes). Haplotypes re-

quired to form these individuals (belonging to any of the four genealogical classes) were simulated

simultaneously with the population sample haplotypes that were generated under the structured

coalescent process. The description of the procedure to generate diplotypes assigned to one of the

four genealogical classes can be found in Appendix A.3.

For each simulated individual we computed posterior probabilities under each of the six ge-

nealogical classes using either Mongrail or NewHybrids. We performed a comparative analysis of

statistical performance between Mongrail and NewHybrids using two different performance metrics:

(1) Power to identify genealogical classes

(2) ROC curve analysis of power versus Type I error
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CHAPTER 4

Simulation Results

4.1. Comprehensive simulation

It is impossible to present an exhaustive summary of the properties of the methods when

applied to all 1100 combinations of simulation parameters considered in this paper. Instead, we

give a general description of the most obvious patterns observed when applying each type of analysis

to all the datasets and then provide specific examples for a subset of the combinations for which

these patterns were most apparent. All the simulated datasets and scripts to perform the analyses

are available at https://github.com/mongrail/simulations.

4.1.1. Accuracy of posterior probabilities. The general pattern observed across datasets

when the analysis was done using Mongrail was that the average posterior probabilities matched the

proportion of individuals correctly assigned to the specified genealogical class. However, the pos-

terior probabilities and proportions typically did not match one another when using NewHybrids.

The one exception was the case of a single locus per chromosome – in that case the assumptions of

NewHybrids (independent assortment of alleles across loci) were satisified and the posterior prob-

abilities appeared correct. In other cases, posterior probabilities obtained using NewHybrids were

higher than the proportion correctly assigned when posterior probabilities were high and were lower

than the proportion correctly assigned when posterior probabilities were low.

As an example, we generated 100,000 individuals under the set of simulation parameters: K =

20, L = 10, R = 50, h = 10, c = 0.1, α = 1. The Mongrail and NewHybrids programs were used to

produce posterior probabilities for each distinct genealogical class for each individual. The posterior

probabilities were binned into intervals as described in Section 3.1.1. The results are shown in

Figure 4.1. The proportion of individuals having the correct model is plotted against the midpoint

posterior probability of the interval they were binned into. The results for Mongrail, shown in red,

indicate a precise linear relationship with points lying very near the identity line; this is expected
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if the posterior probabilities are accurate. The results for NewHybrids, shown in blue, display

an irregular curve with posterior probabilities higher than the proportion of correct genealogical

classes when posterior probabilities are greater than about 40% and posterior probabilities lower

than the proportion correct when posterior probabilities are lower than about 40%. Moreover,

Mongrail performs well across all the genealogical classes (compare the 6 panels of Figure 4.1 from

left to right). The performance of the NewHybrids method appears non-uniform across the models,

it seems to perform worse for models representing hybrids (c, f) and backcrosses (b, e) compared

to the pure parental ones (a, d). Thus, even with a high recombination rate the NewHybrids

composite likelihood method is too liberal. Since we are primarily interested in high posterior

probabilities, it is a serious problem if estimates of high posterior probabilities are overconfident

(the observed pattern fits our expectation that since NewHybrids is a composite likelihood method

it will tend to underestimate the uncertainty). See https://github.com/mongrail/simulations

for additional examples of this behavior obtained using other combinations of parameters.

4.1.2. Power to identify genealogical classes. The general pattern observed across sim-

ulated datasets was that Mongrail typically placed higher posterior probability on the true ge-

nealogical class of an individual than did NewHybrids. NewHybrids always had more uniform

probabilities among models but, although still worse, was closer in performance to Mongrail for

individuals that were pure A or B (models a and d). In the case of 1 locus per chromosome, Mon-

grail and NewHybrids generate identical plots for posterior probabilities. This is expected because

in this case NewHybrids is not a composite likelihood (all loci are unlinked).

Figure 4.2 shows the results for the particular simulation combination K = 20, L = 10, R = 50,

h = 5, c = 0.1, α = 1. Due to space constraint we show the stacked bar plots for only 100

individuals from each of the six genealogical classes. The Mongrail method has high power in

distinguishing the pure individuals (models a, d) and the F1 hybrids (model c)(top graph, panels

labelled a, d and c in Figure 4.2). The posterior probability that Mongrail assigns to the correct

genealogical class is for most individuals greater than 0.95. Even for the F2 hybrids (model f) and

backcrosses (models b, e) support for the correct genealogical class increases substantially from the

prior (uniform) to the posterior. When the posterior probability of belonging to the correct model

b (backcross with pure population A) is less than 0.9, the remaining posterior probability is mostly
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Figure 4.1. The proportion of correct assignments to genealogical classes (y-axis)
for individuals binned according to the posterior probability of the genealogical
class plotted against the midpoint posterior probability of each binning interval
(x-axis). The 6 panels represent the 6 different genealogical classes. Results for
posterior probabilities obtained using Mongrail are plotted in red and results for
posterior probabilities obtained using NewHybrids are plotted in blue. If posterior
probabilities match proportions the points should fall on a linear line with slope of
unity (shown in black). Results are based on simulated data for 100,000 individuals
using the simulation parameters: K = 20, L = 10, R = 50, h = 10, c = 0.1, α = 1.
The 6 genealogical classes are as follows: a-pure population B, b-backcross with
population A, c-F1 hybrid, d-pure population A, e-backcross with population B,
f -F2 hybrid.

assigned to the other hybrid and backcross categories. Similar patterns are observed for models e

and f as we see a lot more variation (other colours which do not correspond to the true model).

Analyzing the same individuals using the NewHybrids method (bottom versus top graph) the

posterior probabilities appear much more uniform across the genealogical classes with no particular

genealogical class being well supported (this is particularly true for individuals that are hybrids or

backcrosses; panels b, c, e and f). These results suggest that the NewHybrids method may often

produce poorly resolved genealogical classes for individuals when used with linked marker data.

This is particularly the case when individuals are F2 hybrids or backcrosses.

28



Figure 4.2. Distributions of posterior probabilities for random subsets of 100 in-
dividuals simulated under each of the 6 genealogical classes (plots labelled a-f).
Posterior probabilities for Mongrail are shown in the top plot and for NewHybrids
in the bottom plot. The posterior probabilities for different genealogical classes are
represented by segments of different colors. The proportion of the stacked bar plot
comprised of a particular color indicates the posterior probability of the model cor-
responding to that color. The following simulation parameters were used: K = 20,
L = 10, R = 50, h = 5, c = 0.1, α = 1. The 6 genealogical classes are as follows: a-
pure population B, b-backcross with population A, c-F1 hybrid, d-pure population
A, e-backcross with population B, f -F2 hybrid.

4.1.3. Posterior distribution of genealogical classes. This analysis examines the distri-

bution of the posterior probability of a genealogical class when it is the true genealogical class for

an individual (see description above). The general pattern across simulated datasets was that Mon-

grail tends to assign very high posterior probabilities only to the true model and very low posterior

probabilities only to incorrect models. When the data are less informative the probabilities tend

to be more uniform, resembling the prior. NewHybrids, on the other hand, less frequently assigns

high probability to the true model and frequently assigns very low probabilities to the true model.

These patterns are exemplified in Figure 4.3. To create this figure we generated 100,000 individuals

under the following set of simulation parameters: K = 20, L = 10, h = 10, c = 0.1, and α = 1 with

recombination frequencies on the interval of both R = 1cM and R = 50cM. The first row of the
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figure shows results for Mongrail with a relatively uninformative dataset (R = 1cM). Even with low

information, high posterior probabilities are frequently obtained for the true model when it is pure

(model a or d) and for the other cases the probabilities are distributed quite uniformly and mostly

intermediate. With R = 50cM (second row of figure), high posterior probabilities occur much more

commonly for the true model when it is any of the 6 models.

The results for the NewHybrids method are shown in rows 3 and 4 of Figure 4.3. Since NewHy-

brids assumes unlinked markers we expect the size of the region (frequency of recombination) will

have no effect on the frequency distribution of posterior probabilities (the two rows with either

R = 1cM or R = 50cM are identical). High posterior probabilities are obtained for the true model

only when it is a pure population model (model a or d). For all the other models the most frequent

outcome is a very low posterior probability for the true model. Thus, NewHybrids has very low

power to infer the true model when it is not a pure population model and will often exclude the

true model, assigning very low probability to it.

4.1.4. ROC curve. Here we examine the relative trade-off between power and type I error

for each method using ROC curves (see description above). A method that has high power and

low error should produce a curve that increases steeply and plateaus at a value approaching 1.

The greater the area beneath the curve the better the performance. In general, Mongrail produces

an ROC curve that strictly lies above the curve produced using NewHybrids when L > 1. As an

example, we simulated 10, 000 individuals using the combinations of parameters: K = 20, L = 5,

h = 5, c = 0.1, α = 1, and either R = 1 or R = 10. The results are shown in Figure 4.4.

The Mongrail inference method outperforms NewHybrids across all the six genealogical classes.

In the case of a recombination frequency of 1cM, the difference between the two methods is least

pronounced with either pure population A (model d) or B (model a) ancestry. As the recombi-

nation frequency increases from 1cM to 50cM, the ROC curve for the Mongrail method improves,

approaching the top left corner, whereas the curve for NewHybrids is virtually unchanged. The

NewHybrids method assumes unlinked markers and thus we expect its ROC curve to be unaffected

by recombination (compare the blue curves on the top row to the bottom one).
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Figure 4.3. Histogram showing the relative frequency of the posterior probabilities
obtained for the true model when analyzing simulated data using either the Mongrail
(top two rows) or NewHybrids (bottom two rows) programs. The results are shown
for data simulated using true models a-f (6 plots from left to right in each row). The
plot is based on 100,000 individuals simulated using the following set of simulation
parameters: K = 20, L = 10, h = 10, c = 0.1, and α = 1 with recombination
frequencies on the interval of both R = 1cM and R = 50cM. The 6 genealogical
classes are as follows: a-pure population B, b-backcross with population A, c-F1
hybrid, d-pure population A, e-backcross with population B, f -F2 hybrid.

4.1.5. Sensitivity to biological and experimental parameters. Here we examine the

relative influence of 3 parameters: number of chromosomes, number of loci, and recombination fre-

quency on the power of the methods to identify genealogical classes (using a posterior probability

of 0.9 as a threshold for classifying individuals). Other parameters were held constant (see above).

Figure 4.5 shows the proportion of cases with posterior probability for the true genealogical class

greater than 0.9 (y-axis) as a function of the number of chromsomes (x-axis) for different combina-

tions of number of loci and expected recombination rate for the Mongrail method (top row) and for

NewHybrids (bottom row). Some interesting patterns emerge from the multi-line plot for Mongrail

(Figure 4.5). Each coloured line in Figure 4.5 shows that as the number of chromosomes considered

increases, the proportion of cases where the posterior probability is above 0.9 increases as well.

The increase is particularly large when the number of chromosomes increases from 5 to 20. This is
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Figure 4.4. Reciever Operator Characteristics (ROC) curves for Mongrail (red
line) and NewHybrids (blue line). The plot is based on 10,000 individuals simulated
using parameters: K = 20, L = 5, h = 5, c = 0.1, and α = 1. The top row uses
a smaller region (R = 1cM) with a lower number of expected recombinations and
the bottom row uses a larger region (R = 50cM) with a higher number of expected
recombinations. Results for the six genealogical classes (a-f) are shown from left to
right in both rows. The 6 genealogical classes are as follows: a-pure population B,
b-backcross with population A, c-F1 hybrid, d-pure population A, e-backcross with
population B, f -F2 hybrid.

true across all genealogical classes. However, as observed for other metrics the genealogical classes

a,c or d receive higher posterior probabilities for the correct class as compared to the other three

genealogical classes, likely because the data are more informative in these cases. Another striking

trend is apparent across all the genealogical classes, the proportion above 0.9 changes little with an

increase in number of markers but steadily increases with increasing recombination frequency from

1cM to 50 cM. In summary, increasing the number of chromosomes or recombination frequency has

a large effect on the posterior probabilities (the former having greatest effect) whereas increasing

the number of loci has little effect. With only one or two generations of mating one expects few

recombination events, even on large intervals and so a small number of markers are sufficient to

capture the available information from the data. Because chromosomes undergo independent as-

sortment adding additional chromosomes has a much greater effect on power. Similarly, increasing
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Figure 4.5. Proportion of simulated individuals with posterior probabilities for the
correct genealogical class greater than 0.9 (y-axis) versus the number of chromosomes
sampled per individual (x-axis). Different colored curves are plotted for 6 different
combinations of numbers of loci and expected recombination rates (in cM). The
results for Mongrail are shown in the top row and for NewHybrids in the bottom
row. Results for the 6 genealogical classes that individuals were simulated under are
given from left to right in each row. The 6 genealogical classes are as follows: a-pure
population B, b-backcross with population A, c-F1 hybrid, d-pure population A,
e-backcross with population B, f -F2 hybrid.

the size of a region of chromosome (even with a fixed total number of markers) increases the chances

of observing recombination events and also increases power.

We analyze the same simulated dataset using the NewHybrids method (bottom row of Figure

4.5) for a side-by-side comparison of the effects of the three factors on the two competing methods.

As expected, we see that the proportions for R = 1, 25 and 50 merge, regardless of the number

of loci. Because NewHybrids is a composite likelihood method, we expect that recombination

frequency should have little or no effect on the posterior probabilities and this is indeed the case.

We find that increasing number of chromosomes increases the proportion of cases for which the

posterior probability is greater than 0.9 but the changes are pronounced only for the pure (a, d)

and F1 hybrid (c) individuals. In fact, an increase in the number of loci (from 5 to 10) increases
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the proportion only for these three classes. Only when the number of chromosomes is K = 20, is

there is a difference in the proportions (at L = 5, 10) for the remaining genealogical classes (b,e,f).

4.2. Coalescent simulation

We performed simulation analyses for M = 0.1, 0.25, 1, 10, 100 and four genealogical classes:

purebred (model d), F1 (model c) hybrid, backcross (model b) and F2 (model f) hybrid. For

brevity, we describe the general pattern observed across the analyses and present details only for a

subset of specific illustrative cases. Results for the complete set of simulated datasets and scripts

to perform the analyses are available at https://github.com/mongrail/simulations.

4.2.1. Power to identify genealogical classes. The general pattern observed across simu-

lated datasets for genealogical classes purebred (model d) and F1 hybrids (model c) with M ≤ 1

was that both Mongrail and NewHybrids performed well in identifying true genealogical classes.

Both methods produced high posterior probabilities for the true genealogical class with neither

obviously superior. However, when considering all four genealogical classes (models d,c,b,f) with

M > 1, performance of Mongrail in identifying the true genealogical class is typically better than

NewHybrids, although the power to distinguish correct genealogical classes diminishes for both

methods as M increases.

Figure 4.6 shows results for purebreds (model d, first column) and F1 hybrids (model c, second

column). Figure 4.7 shows results for backcrosses (model b, first column) and F2 hybrids (model

f, second column). Both figures show results for a range from relatively low to high values of

migration (M = 0.25, 1, 10). The stacked bar plots for only 100 representative individuals from

each of these four genealogical classes are shown due to space constraints. For all four genealogical

classes (Figure 4.6 and 4.7) when M ≤ 1 (first four rows), Mongrail (first and third row) and

Newhybrids (second and fourth row) perform similarly well, both placing high posterior probability

on the true genealogical classes. For most individuals, the posterior probability assigned to the true

genealogical class by both methods is greater than 0.9. More probability associated with incorrect

models (colors not corresponding to the true model) is evident for backcrosses and F2 hybrids

in Figure 4.7 compared to the pure and F1 genealogical classes (Figure 4.6). For M > 1 (last

two rows), both methods show more uncertainty across all four genealogical classes but Mongrail
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appears to perform better on average. The other general pattern observed is that both methods

struggle to resolve the correct genealogical class as model complexity increases (from purebred to

F1 hybrid in Figure 4.6 or from backcross to F2 hybrid in Figure 4.7) especially when the migration

rate is high (M = 10). Difficulty increases with an increase in model complexity (models d,c,b,f)

across all values of M . This is evident from the more uniform distribution of posterior probabilities

across genealogical classes. For extremely high migration between the two populations, NewHybrids

performs less well in resolving genealogical classes by comparison with Mongrail. This is especially

true for F1 or F2 hybrids or backcrosses.

Figure 4.6. Distributions of posterior probabilities for random subsets of 100 in-
dividuals simulated (through a structured coalescent process) under each of the 2
genealogical classes (plots labelled d and c) for three values of migration parameter
M = 0.25 (1st, 2nd rows), 1 (3rd, 4th rows), 10 (5th, 6th rows). For each value of
M , posterior probabilities for Mongrail are shown in the top plot and for NewHybrids
in the bottom plot. The posterior probabilities for different genealogical classes are
represented by segments of different colors. The proportion of the stacked bar plot
comprised of a particular color indicates the posterior probability of the model corre-
sponding to that color. The 6 genealogical classes are as follows: a-pure population
B, b-backcross with population A, c-F1 hybrid, d-pure population A, e-backcross
with population B, f -F2 hybrid.
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Figure 4.7. Distributions of posterior probabilities for random subsets of 100 in-
dividuals simulated (through a structured coalescent process) under each of the 2
genealogical classes (plots labelled b and f) for three values of migration parameter
M = 0.25 (1st, 2nd rows), 1 (3rd, 4th rows), 10 (5th, 6th rows). For each value of
M , posterior probabilities for Mongrail are shown in the top plot and for NewHybrids
in the bottom plot. The posterior probabilities for different genealogical classes are
represented by segments of different colors. The proportion of the stacked bar plot
comprised of a particular color indicates the posterior probability of the model corre-
sponding to that color. The 6 genealogical classes are as follows: a-pure population
B, b-backcross with population A, c-F1 hybrid, d-pure population A, e-backcross
with population B, f -F2 hybrid.

4.2.2. ROC curve. The relative trade-off between power and type I error was analyzed for

each method using ROC curves for the datasets simulated under a structured coalescent process.

The greater the area beneath the curve, the better the performance. In general, for all M ≥ 1,

Mongrail produces an ROC curve that lies strictly above the curve produced by NewHybrids across

all four genealogical classes (models d,c,b,f). We present the results for 1000 individuals simulated

under each of the four genealogical classes for M = 0.25, 1, 10 in Figure 4.8.

Mongrail outperforms NewHybrids across all four genealogical classes when M ≥ 1. The

performance difference between the two methods increases with model complexity, with M(≥ 1)

fixed. As M increases, the difference between the two methods gets more pronounced for all the

four genealogical classes. When M < 1 for the purebred (model d) and F1 hybrid (model c), the
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Figure 4.8. Reciever Operator Characteristics (ROC) curves for Mongrail (red
line) and NewHybrids (blue line). The plot is based on 1000 individuals simulated
under each of the four genealogical classes (d,c,b,f) through a structured coalescent
process. The first, second and third row corresponds to migration parameter with
values M = 0.25, 1 and 10 respectively. Results for the six genealogical classes
(d,c,b,f) are shown from left to right in all three rows. The 6 genealogical classes
are as follows: a-pure population B, b-backcross with population A, c-F1 hybrid,
d-pure population A, e-backcross with population B, f -F2 hybrid.

two curves overlap with no visible difference between methods. When M < 1 for the backcross

(model b) and F2 hybrid (model f), although the Mongrail curve lies above the NewHybrids curve,

the difference is negligible.
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CHAPTER 5

Empirical Analysis of Spotted and Barred Owl Hybridization

5.1. Background

Spotted Owls (SO) are native to the forests of western Northern America, mainly the Pacific

Northwest, California and Mexico [3, 12, 13]. Barred Owls (BO) are native to eastern North

America but have expanded their range to the west coast of North America thus encroaching on

the territory of the endangered spotted owl [14,18,30], whose population is already in decline due

to habitat loss caused by logging and wildfires [9,16,39]. There are three recognized subspecies of

the spotted owl ranging in distribution from British Columbia to Mexico: Northern Spotted Owl

(NSO), California Spotted Owl (CSO) and Mexican Spotted Owl (MSO). The NSO and MSO have

been listed as “threatened” under the Endangered Species Act since the early 1990s by the US

Fish and Wildlife Service (USFWS). As the two species can hybridize (sympatric populations of

spotted and barred owls exist from British Columbia to southern California) [19,20,27], frequent

hybridization may threaten the genetic integrity of the spotted owls.

The study by [15] is the largest genomic study conducted on spotted owls, barred owls and

their hybrids. They obtained sequences from spotted and barred owls sampled outside and across

their hybrid zone in western Northern America. The sampling locations of all of the owls included

in the study are presented in Table 1. For County level information see [15] (Supplementary Table

S5). [15] improved upon a previously generated SO genome assembly [22] (using data from 10x

genomics and Bionano Genomics) and generated high-coverage (mean 31.70×,±6.51) whole genome

sequence data from 51 owl samples consisting of 11 spotted owls, 25 barred owls, 2 known hybrids

(identified in [21]) and 13 potential hybrids. The 51 owl samples included a female SO sample

named Sequoia [22] used for constructing the new and more contiguous reference genome assembly.
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Table 1. Table showing the sampling locations (states in North America) of the
51 owl samples consisting of 11 spotted owls, 25 barred owls, 2 known hybrids and
13 potential hybrids. The purebred samples (SO and BO) are further categorized
into their recognized sub-species.

Species Category State #individuals Total #individuals

Northern Spotted Owl
California 5

Oregon 2
Washington 1

8

California Spotted Owl California 3 3

Eastern Barred Owl

Kentucky 2
Ohio 2

New York 3
Massachusetts 3

New Jersey 1
Indiana 1

12

Western Barred Owl California 13 13

Putative Hybrid
California 7

Oregon 5
Washington 1

13

Known Hybrid
California 1

Oregon 1
2

5.2. Materials and methods

We used Mongrail to analyze the 51 owl samples, using the filtered Variant Call Format (VCF)

file available at https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?analysis=SRZ190173.

The dataset includes 17,385,299 biallelic single nucleotide polymorphisms (SNPs) across 82 large

autosomal scaffolds and 8,543,351 of these had high-confidence genotype calls (GQ ≥ 40) in all

individuals. We restricted our analyses to the 15 largest autosomal scaffolds and filtered out sites

with any missing data. Here we treat each scaffold as a chromosome. For each scaffold, we

extracted the SO (10 individuals, excluding Sequoia) and BO (25 individuals) populations into

two separate VCF files. Processing and manipulation of the high-throughput sequencing data

was performed using BCFtools [11]. The unknown population haplotype frequencies (for SO and

BO) were first estimated for each scaffold. Phased haplotype information is needed to estimate

frequencies but the data were not phased for all SNPs. BEAGLE version 5.1 [7] was used to

phase each population separately for each scaffold. We chose 10 markers from each scaffold for

the analysis. The distribution of markers across scaffolds varied (see Section 5.2.1, 5.2.2). The
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frequencies of phased haplotypes for the two populations were estimated using the Multinomial-

Dirichlet posterior mean (see equation 2.1). In our model framework, BO is treated as Population

A and SO as Population B. Thus the pure and hybrid classification of this owl dataset with its

equivalent genealogical class based on our model:

• Model a - Spotted Owl (SO)

• Model b - Backcross with Barred Owl (F1 x BO)

• Model c - F1 hybrid

• Model d - Barred Owl (BO)

• Model e - Backcross with Spotted Owl (F1 x SO)

• Model f - F2 hybrid

The putative hybrids have an unusual plumage pattern making them difficult to distinguish

from the western BO based purely on morphology. The main aim of this empirical analysis is to

examine whether Mongrail can successfully place the samples into different genealogical classes,

especially the hybrids (see Appendix B.1). We also examine the effect of certain biological and

experimental parameters on the power to identify genealogical classes, suggesting optimal ways to

choose parameters (number of chromosomes or scaffolds and region size or expected recombination

frequency/map length).

We perform four main analyses (bash scripts used to perform the analyses are available at

Scripts) to examine the owl dataset which are as follows:

(1) Spatial variation of model posterior probabilities across scaffolds

(2) Effect of successive scaffold inclusion for varied map length

(3) Sensitivity of results to assumed recombination rate

(4) Assignment of 15 hybrids (13 putative and 2 known)

The procedures used to perform these four analyses are described below.

5.2.1. Spatial variation of model posterior probabilities. The purpose of this analysis

is to study the variation in posterior probabilities of genealogical classes for owl samples across

the genome by using different sets of L = 10 loci from a particular scaffold region of variable map

size (R = 1.5cM and R = 50cM). This was implemented using a sliding window approach over
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an entire scaffold starting from the 5’ end and moving towards 3’. A window implies a set of L

markers each of length R, where the markers are almost equidistant to each other. We say “almost”

since the theoretically equidistant marker positions are not all present in the actual dataset. The

recombination rates for SO and BO are not available, so following [21] we assumed a recombination

rate of 1.5 cM/Mb (the average recombination rate of zebra finch). At R = 50cM (a physical length

of 33.33 Mb), we chose 100 initiating markers to create windows evenly spaced across the scaffold.

Then for every window the posterior probability assigned to an owl sample for each of the six

genealogical classes was plotted as a stacked bar plot. Different colors are used to illustrate the

different segments in the bar. Each colored segment represents the relative contribution of one of

the six genealogical class posterior probabilities for that owl sample. Using the same 100 initiating

markers but with R = 1.5cM (a physical length of 1 Mb) we created similar stacked bar plots.

The two stacked bar plots are compared to examine the effects of varying map length on posterior

probabilities. Within each plot we examine the consistency of the posterior probabilities across the

entire scaffold.

5.2.2. Effect of successive scaffold inclusion for varied map length. The purpose of

this analysis is to examine the variation in posterior probabilities of genealogical classes for owl

samples as we increase the number of scaffolds for different levels of recombination frequency. For

each sample we considered L = 10 markers from all 15 scaffolds where the scaffolds are arranged

in a decreasing order of length. We study the cumulative effect of adding the scaffolds successively

starting from the largest scaffold (Super-Scaffold 7) of size 72.11 Mb to the smallest scaffold (Super-

Scaffold 47) of size 21.02 Mb on the posterior probabilities. A recombination rate of 1.5 cM/Mb is

assumed for the same reasons as mentioned earlier. We perform the analysis under two cases. In

the first case, we use a constant recombination frequency (or, map length) of R = 1.5cM (a physical

length of 1Mb) for every scaffold. For the second one, we vary the recombination frequency over

each scaffold in a way such that its equivalent physical length is approximately equal (rounded off

to a whole number) to the length of the scaffold. Say, for the largest scaffold which is of length 72.11

Mb we use a map length of 108cM which is equivalent to a physical length of 72 Mb. This design

that incorporates almost the entire scaffold size as the map length has the advantage of retaining

maximum information. Henceforth we refer to this second case as “maximally informative”. Now
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we need to choose a set of L = 10 markers from each scaffold. Here we adopt the window approach

(as described in the previous section) for each scaffold and arbitrarily select the middlemost window

under this “maximally informative” case. For every owl sample we plot the posterior probability for

the gth genealogical class against the cumulative number of scaffolds using multi-line plots, where

each line represents a particular genealogical class. From the simulation analysis we found that

increasing the number of chromosomes results in an increase in information. So we examine this

multi-line plot to see whether a particular genealogical class is favored over others as the number

of scaffolds increases. Ideally the gth genealogical class is said to be “preferred” over the rest, if

the posterior probability for the gth genealogical class approaches one while the rest of the lines

concentrates around zero as the number of scaffold increases. Using the same initiating markers as

chosen earlier for each scafffold but with a constant map length of R = 1.5cM we produce similar

multi-line plots. The multi-line plots for the two cases of recombination frequency are compared to

study the effects of different map length on posterior probabilities.

5.2.3. Sensitivity of results to assumed recombination rate. In the previous two anal-

yses we studied the behaviour of the posterior probabilities of genealogical classes under a fixed

recombination rate of 1.5 cM/Mb. This value has been extrapolated from another species, the

zebra finch (Taeniopygia guttata) as the recombination rate for owls was not available. This raises

the question whether the choice of recombination rate affects the inference of genealogical classes.

We conducted a sensitivity analysis to study the behaviour of the posterior probabilities of the

“preferred” model (inferred in the previous analyses) for different values of the recombination rate

when successively increasing the number of scaffolds. We chose three different levels of recombina-

tion rate (in cM/Mb): r = 0.5, 1.5 and 5. For each individual we plot the posterior probability of

the “preferred” genealogical class against the cumulative number of scaffolds using multi-line plots,

where each plot represents a particular value of recombination rate r. The map length used for

scaffolds is similar to the “maximally informative” case described above.

5.2.4. Assignment of 15 hybrids (13 putative and 2 known). This analysis aimed to

compare the genealogical classifications obtained from Mongrail with previous classifications of the

same individuals. We used all 15 scaffolds and assumed a recombination rate of 1.5cM/Mb (with

42



a “maximally informative” region size) to construct a table of the posterior probabilities of the

“preferred” model for each of the 15 hybrids (along with the primary and genetic identification

information of [15]). The purpose of this table was to examine whether posterior probabilities

of the “preferred” model are high enough to make an assignment call for each of the 15 hybrid

owl samples using a pre-specified threshold posterior probability (for example, 0.99). Given that

an individual can be classified, we examined whether our inference matched the previous genetic

identification [15].

5.3. Results

All analyses were performed using the 50 owl samples described in Table 1 excluding Sequoia.

For brevity, detailed results are presented for only 5 individuals. The 5 owls were chosen to be

representative of the five observed categories genetically identified by [15]. The categories along

with the sample names are presented in Table 2.

Table 2. Details for five individuals (out of the 50 owls) chosen for detailed analysis.
Primary and genetic identifications are from [15].

Primary
identification

Genetic
identification

Sample
names

spotted owl (SO) SO ZRH625
barred owl (BO) BO ZRHG101
putative hybrid BO CYWC009
known hybrid backcross (F1× BO) ZRH607
known hybrid F1 hybrid (F1) ZRH962

Phased haplotypes were not available for these owls. Putative “pure” individuals ZRH625 (SO)

and ZRHG101 (BO) were phased using BEAGLE version 5.1 [7]. For the remaining putative hybrid,

or backcross, individuals inferences were averaged over the probability distribution of possible phase

resolutions using equations 2.2 and 2.3.

5.3.1. Spatial variation of model posterior probabilities. In this analysis we examine

how posterior probabilities vary across a scaffold. We also examine the effect of the size of a window

(map length) on the distribution of posterior probabilities. Figure 5.1 shows the distribution

of posterior probabilities across the largest scaffold (Super-Scaffold 7) of length 72.11 Mb. The

distribution of the posterior probability on the six genealogical classes (denoted by each bar) is
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highly consistent across the entire scaffold for all the samples. Increasing map length from R = 1.5

cM (left) to R = 50 cM (right) increases the posterior probabilities for the proposed genealogical

class for the pure individuals and the F1 hybrid. The pattern in the putative hybrid (row 3) and

backcross (row 4) is less clear. For these two owl samples there is a slight increase in the posterior

probability for the pure barred owl genealogical class (model d) but also increased support for F1

hybrid (model c) in some regions. Such patterns might suggest more ancient hybridization not

included in our model. There is also more variation in the posterior probabilities for the larger

window size along the scaffold, likely because the markers are spread over a larger region thus

increasing the chances of recombination. The stacked bar plots for the putative hybrid and the

backcross individuals look very similar suggesting that distinguishing the hybrids may be quite

difficult when using a small region of a single chromosome. Distinguishing the genealogical classes

of these two hybrids may not be possible based on a single scaffold.

5.3.2. Effect of successive scaffold inclusion for varied map length. This analysis

evaluates the cumulative effect of the number of scaffolds and of map length on the posterior

probability for each genealogical class. Another aim is to examine whether the genealogical class

with highest posterior probability for an individual analyzed using Mongrail matches the genetically

identified category of [15] for that individual.

To examine the cumulative effect of adding scaffolds we used the 15 largest scaffolds, which were

sequentially added in descending order by size. In figure 5.2, as we move from left (Super-Scaffold 7)

to right (Super-Scaffold 47) on the x-axis, the number of scaffolds denoted by K increases from 1 to

15. The general pattern observed is that the posterior probability for genealogical classes a, d and

c increases monotonically (asymptotically approaching 1) as the number of scaffolds is increased

for the pure spotted owl (ZRH625), pure barred owl (ZRHG101) and F1 hybrid (ZRH962). Across

the three samples, in the “maximally informative” case, the posterior probability of the “preferred”

model exceeds 0.9 when K = 3 and exceeds 0.99 when K = 5. The “maximally informative” case

(right) occurs when we choose map lengths (for each scaffold) such that the equivalent physical

length is near the length of the scaffold. With a smaller region (lower expected recombination

frequency) of R = 1.5cM (left), the posterior probability of the genealogical class a (or, d) exceeds

0.9 when K = 4 and exceeds 0.99 when K = 7 for spotted owl (or, barred owl), respectively. For
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Figure 5.1. Distribution of posterior probabilities is constructed for 5 owl samples
(ZRH625, ZRHG101, CYWC009, ZRH607 and ZRH962) for 100 windows (set of
L = 10 markers), where the initiating markers are evenly spaced across the largest
scaffold Super-Scaffold 7 (size 72.11Mb). The right column uses a larger region
(33.33Mb equivalent to R = 50cM) of the scaffold and the left column uses the same
initiating markers but of smaller length (1Mb equivalent to R = 1cM). Six different
colors are used to represent the 6 different genealogical classes. The proportion of the
stacked bar plot comprised of a particular color indicates the posterior probability
of the model corresponding to that color. The primary and genetic identification
information about the 5 owl samples are provided alongside the sample identifiers.
A recombination rate of r = 1.5cM/Mb is assumed for this plot. The 6 genealogical
classes are as follows: a-pure population B, b-backcross with population A, c-F1
hybrid, d-pure population A, e-backcross with population B, f -F2 hybrid. In our
model framework, BO is treated as population A and SO as population B.

the F1 hybrid at R = 1.5cM the posterior probability of genealogical class c exceeds 0.9 when

K = 5 and exceeds 0.99 when K = 9. These results suggests that either increasing the number of

scaffolds or increasing the within-scaffold region size increases information, but additional scaffolds

have a greater effect. The smaller the region (lower the expected recombination frequency) the

higher the number of scaffolds (K) needed for the posterior probability of the “preferred” model

to approach 1.

For the putative hybrid, even in the “maximally informative” case, more scaffolds are needed

by comparison with the pure barred owl for the genealogical class d to become the “preferred” one.
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Figure 5.2. Posterior probability plotted against the cumulative number of scaf-
folds for 5 owl samples (ZRH625, ZRHG101, CYWC009, ZRH607 and ZRH962).
Different colored lines are plotted for 6 different genealogical classes. Moving along
the x-axis, the scaffolds are arranged from the largest to smallest and the number of
scaffolds (K) increases from 1 to 15. The right column referred to as the “maximally
informative” case considers very large map length (its equivalent physical length is
almost equal to the length of the scaffold) for every scaffold and a set of L = 10
markers are chosen from the middle of each scaffold where the markers are almost
equidistant from each other. The left column considers a smaller region (1Mb equiv-
alent to R = 1.5cM) for each scaffold with L = 10 markers with the same initiating
markers chosen previously (for the “maximally informative” case). The primary and
genetic identification information about the 5 owl samples are provided alongside
the sample identifiers. A recombination rate of r = 1.5cM/Mb is assumed for this
plot. The 6 genealogical classes are as follows: a-pure population B, b-backcross
with population A, c-F1 hybrid, d-pure population A, e-backcross with population
B, f -F2 hybrid. In our model framework, BO is treated as population A and SO as
population B.

The posterior probability of genealogical class d exceeds 0.9 when K = 5 and exceeds 0.99 when

K = 8. A similar posterior probability pattern is observed for R = 1.5cM with an increasing num-

ber of scaffolds. Though the “preferred” model is the same (d) for both the samples (pure barred

owl and putative hybrid) a striking contrast is observed between posterior probability plots for the

two individuals. This difference may suggest why the putative hybrid individual was difficult to dif-

ferentiate from a pure barred owl based solely on morphology (it had an unusual plumage pattern).

46



It is possible that this individual is descended through a backcross greater than 2 generations ago.

Distinctive patterns of posterior probability are observed in the putative backcross individual for

both choices of region size (expected recombination frequency). Two genealogical classes b and d

seem to be competing for relative support, with d preferred initially. As the number of scaffolds

is increased a point is reached where the trend of the two line plots is reversed and genealogical

class b is increasingly favoured, ultimately emerging as the “preferred” model. The main difference

between the scaffold addition plot for the two different region sizes (R = 1.5cM and “maximally

informative”) is that the transition to the asymptotically preferred model takes place with fewer

scaffolds in the “maximally informative” case (the transition occurs as K = 1 increases to K = 2

in the “maximally informative” case versus as K = 4 increases to K = 5 in the R = 1.5cM case).

The posterior probability for genealogical class b exceeds 0.99 when K = 10 in the “maximally

informative” case but more scaffolds (K = 13) are needed for the posterior probability to exceed

0.99 when the map length is R = 1.5cM.

In conclusion, the “preferred” genealogical class for each owl sample matches the previously

genetically identified class indicating that Mongrail is successful in inferring genealogical classes

irrespective of the choice of region size (R = 1.5cM or “maximally informative”). The larger

“maximally informative” region size ultimately supported the same genealogical classes as the

smaller region but converged to a high posterior probability with fewer scaffolds. This suggests

that a researcher has some flexibility to design genomics experiments with different numbers of

scaffolds and region sizes according to the limitations imposed by their budget or study organism.

5.3.3. Sensitivity of results to assumed recombination rate. The Mongrail method

requires that recombination rate be known (in units of cM/Mb). For the Spotted and Barred

Owl species direct estimates of recombination rates across the genome (from pedigree analysis for

example) are unavailable. Instead, we used a recombination rate of 1.5cM/Mb based on the average

recombination rate of the zebra finch. Here we examine the sensitivity of the results generated by

Mongrail to assumptions about the recombination rate. Specifically, we examined the influence

of different values of recombination rate on the inferred genealogical class. Figure 5.3 shows the

posterior probability for the “preferred” model as a function of the number of scaffolds (K) at

different values of recombination rate for each owl sample. A model is “preferred” if its posterior
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probability approaches one as the value of K increases. The general pattern observed across all

the owl samples is that the “preferred” models for the spotted owl, barred owl, putative hybrid,

backcross and F1 hybrid when all scaffolds are used are, respectively, a (Row 1), d (Row 2), d (Row

3), b (Row 4) and c (Row 5) regardless of the recombination rate that was used. Thus, for the owl

dataset, varying the recombination rate over a broad range does not change the genealogical classes

inferred by Mongrail. The same genealogical class is likely to be identified even if the recombination

rate is badly mis-specified and our extrapolation of the recombination rate from another species is

unlikely to be misleading for this dataset.

Figure 5.3. Posterior probability of the “preferred” model is plotted against
the cumulative number of scaffolds for 5 owl samples (ZRH625, ZRHG101,
CYWC009, ZRH607 and ZRH962) at different levels of recombination rate (r =
0.5, 1.5, 5cM/Mb). Different colored plots denote different values of recombination
rate. A genealogical class (or, model) is said to be “preferred” if its posterior proba-
bility approaches 1 while the posterior probability for the rest concentrates around 0
with large number of scaffolds. The “preferred” model is shown in parenthesis placed
beside the sample names. Moving along the x-axis, the scaffolds are arranged from
the largest to smallest and as we move from left to right the number of scaffolds (K)
increases from 1 to 15. A set of L = 10 markers are chosen from the middle of each
scaffold where the map length for every scaffold is selected in such a way that its
equivalent physical length is almost equal to the length of the scaffold. The mark-
ers are almost equidistant from each other. The primary and genetic identification
information about the 5 owl samples are provided alongside the sample identifiers.
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5.3.4. Assignment of 15 hybrids (13 putative and 2 known). Here we examine whether

the Mongrail method produced posterior probabilities for “preferred” models high enough to allow

classification of a hybrid sample. Table 3 shows that if 0.99 is chosen as the threshold value to make

a decision, we were able to make an assignment call for all hybrids except one (TLW519). The

posterior support for the one unassigned hybrid sample TLW519 is still very high (0.96) although

below the threshold (0.99) and it too would be assigned if a lower threshold (such as 0.95) were

used. Based on our model framework, genealogical class d, c and b refers to a pure barred owl, a F1

hybrid and a backcross with barred owl respectively. We see that the inferred genealogical class for

each sample matches the prior genetic classification suggesting that Mongrail provides reasonable

results that align with previous conclusions (analysis with NewHybrids produces similar results,

see Appendix: Table B1).

Table 3. Table showing the assignment call for all 15 hybrid owl samples . The
primary and genetic identification were provided by [15]. Assuming a recombina-
tion rate of 1.5cM/Mb and considering the “maximally informative” case (the map
length for each scaffold is chosen in such a way that its equivalent physical length is
almost equal to the length of the scaffold) for all 15 scaffolds, the “preferred” model
along with its posterior probability is presented in the table. Based on our model
framework, genealogical class d, c and b refers to a pure barred owl, a F1 hybrid
and a backcross (with barred owl) respectively.

Sample
Names

Primary
Identification

Genetic
Identification

Posterior
Probability

Preferred
Model

TLW521 Unknown Barred Owl 1 d
TLW532 Unknown Barred Owl 1 d
AFRD90 Unknown Barred Owl 1 d
CYWC009 Unknown Barred Owl 1 d
1957-00137 Unknown F1 1 c
1957-00240 Unknown F1 1 c
1957-00243 Unknown F1 1 c
LCW1363 Unknown F1 1 c
LCW1383 Unknown F1 1 c
ZRH600 Unknown F1 1 c
ZRH610 Unknown F1 1 c
ZRH962 Known Hybrid F1 1 c
TLW519 Unknown Backcross 0.961 b
TLW528 Unknown Backcross 1 b
ZRH607 Known Hybrid Backcross 0.999 b
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CHAPTER 6

Discussion

In this article we developed a full-likelihood Bayesian method to identify species hybrids, ex-

plicitly modeling recombination, using population genome sequence data (multiple biallelic SNP

markers). We compute the posterior probability of an individual belonging to different genealogical

classes (pure population, F1 or F2 hybrid, or backcross). Hybridization is an important evolutionary

process influencing biodiversity and impacting diversity generating processes such as speciation [1].

Mongrail should thus be particularly useful to researchers in the fields of conservation biology or

population management. In particular, identifying hybrids is a first step in studying various con-

sequences of natural hybridization such as hybrid inviability, introgression between species, and so

on [4]. The method developed here offers an improvement over the hybrid inference method of [2]

for the analysis of population genomic data by explicitly modeling linked markers. Rapid progress

in sequencing technologies has produced datasets with hundreds of thousands of linked loci, clearly

violating this assumption. Treating linked loci as independent reduces NewHybrids to a composite

likelihood method, potentially leading to overconfidence and/or inaccuracy in identifying hybrids.

We considered a simple model of recombination which closely mimics the population genetic

process. This allowed us to build a full-likelihood method with linked markers without the need to

use MCMC, reducing the burden of heavy computational cost and the risk of non-convergence. We

compared the performance of Mongrail and NewHybrids by performing two extensive simulation

studies. The first type, a comprehensive simulation study, aimed at investigating the two inference

methods under a broad range of haplotype frequency distributions. The second type, based on a

structured coalescent model was performed to generate biologically realistic linkage disequilibrium

patterns among haplotypes from the source populations. The simulator generates a pair of hap-

lotypes (a diplotype) for an individual from two populations assuming linkage and recombination

in the formation of hybrids. Simulated data were analyzed to compute the posterior probabilities
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of genealogical classes using both Mongrail and NewHybrids. This allowed us to evaluate their

relative statistical performance in distinguishing the different genealogical classes.

The comprehensive simulation study demonstrated the improved performance of Mongrail over

NewHybrids using varying levels of biological and experimental parameters such as number of

chromosomes, number of loci, expected recombination frequency (in cM) etc. The simulation

studies indicated that Mongrail was often able to correctly identify the genealogical classes with high

certainty, whereas NewHybrids more often failed to infer the correct genealogical class, especially

in the case of hybrids or backcrosses. Even with high values of expected recombination frequency,

NewHybrids often overestimated the posterior probabilities (as expected in a composite likelihood).

With only two generations of mating few recombinations are expected over the entire chromosome,

violating the assumption of the [2] method that markers are unlinked.

The comprehensive simulation study also suggested that for, both methods, increasing the num-

ber of chromosomes has a large effect on the power to infer the correct genealogical class, whereas

increasing the number of markers has little effect. Increasing the map-length of the chromosome

also greatly increases power by increasing the expected number of recombinations. One outcome of

this is that relatively few markers provide sufficient power, reducing the potential computational

cost incurred due to a large number of linked loci. Currently, our program implementing this al-

gorithm (Mongrail) allows only 10 markers per chromosome, although the statistical model allows

for an arbitrary number of markers. This limitation of the current program does not negatively

impact our empirical analysis since we can utilize the power of increased numbers of chromosomes.

Many diploid species have sufficient numbers of chromosomes to render the method powerful. The

computational complexity increases only linearly in the number of chromosomes.

The coalescent simulation study evaluated the performance of the two methods in inferring

individual genealogical classes with varying levels of migration between populations. We consid-

ered a wide range of migration, M ∈ {0.1, 0.25, 1, 10, 100}. Applying Wright’s approximate formula

for expected FST (fixation index), FST = 1/(4N0m + 1) = 1/(M + 1), these values correspond

to FST ∈ {0.91, 0.8, 0.5, 0.091, 0.0091}. Low values of migration translate to a high value of FST ,

indicating greater genetic differentiation between the two populations and vice versa. This simu-

lation study suggested both methods perform well inferring purebreds for low values of migration
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(M ≤ 1 equivalent to FST ≥ 0.5). But with an increase in migration, Mongrail performs better

in distinguishing the genealogical classes on average compared to Newhybrids. As model com-

plexity increases (from F1 hybrid to backcross to F2 hybrid) the performance of both methods

declines. In general, Mongrail is more effective in distinguishing hybrids and backcrosses compared

to Newhybrids under the simulation conditions we examined, even when genetic differentiation

between populations is low.

We applied Mongrail to a previously published whole genome sequence dataset consisting of

spotted owls, barred owls and their hybrids. Mongrail was able to infer genealogical classes for

all the putative hybrids as well as the purebreds with high posterior probability. This was true

despite using only 10 markers from each of 15 largest autosomal scaffolds. The markers were

spread evenly across the entire length of scaffold to attain maximum information from the data.

No prior information were available on the hybridization rates or differential fitnesses among the

six genealogical classes, thus a discrete uniform prior on the classes was used. We also assumed

a uniform recombination rate on each scaffold – as no prior information was available for the owl

dataset – and extrapolated the specific value from another species, the zebra finch. Mongrail is

able to accomodate variable recombination rates if such information is available. The genealogical

classifications did not change when other much higher (or lower) rates were used, suggesting that

for many species a rough estimate of the recombination rate should be sufficient for use of Mongrail.

The model underlying Mongrail assumes random mating (Hardy-Weinberg equilibrium), and

the method requires phased diplotypes and specified haplotype frequencies for the two populations.

Many genomic datasets are comprised of unphased genotype data and the population haplotype

frequencies are usually unknown. In our study, we phased the pure individuals using BEAGLE

version 5.1 [7] on each population separately. With advances in sequencing technologies complete

phased data may be common in future, thus eliminating the need for phase inference. Population

haplotype frequencies were estimated using the Multinomial-Dirichlet posterior mean of the refer-

ence samples. An alternative would be to allow for uncertainties by integrating over the posterior

density. An advantage of our approach is that we calculate the likelihood of hybrid individuals

without assuming phase, by integrating over all compatible haplotypes thus taking into account

the uncertainties.
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A current limitation of Mongrail, is that it only allows biallelic SNP loci. The vast majority of

SNP loci in most species are biallelic, so plenty of biallelic SNPs are available for use rendering this

constraint largely unimportant. Nonetheless, the method can be easily extended to multiple alleles

by redefining the bit operations of the program. An assumption of the current method is that

hybridization between the two species (populations) occurred within the last n = 2 generations.

Therefore the extent to which many generations of backcrossing (n > 2) affects our inference method

is unknown. Since we suspect that individuals resulting from many generations of unidirectional

backcrossing may resemble purebreds genetically this potentially limits the scope of our method.

However, information probably dissipates quickly with additional generations of hybridization and

the number of possible models quickly increases – there could also be identifiability issues. We

suggest that it is sensible to focus exclusively on identifying recent hybrid ancestry until further

theoretical studies confirm our ability to infer more distant ancestries. The approaches developed

here could be extended to allow more generations of hybridization but computational expense will

increase dramatically.

Finally, though Mongrail does not require any fixed differences (or, exclusive alleles) between

the two populations, high levels of genetic differentiation increase the power of the method to

identify hybrids. In particularly, for the empirical data analysis, we found the SO genomes had little

polymorphism and were very distinct from the much more variable BO genomes. The exceptionally

low genetic diversity of SO genomes is likely due to a recent population decline. This may explain

the high posterior probabilities we obtained as resulting from strong genetic differentiation between

the two species.

Mongrail currently requires knowledge of haplotype frequencies in source popualtions. If this

information is unavailable we need “pure” individuals (no recent hybrid ancestry) to be present in

the sample in order to estimate these parameters. This implies that the two pure populations should

be clearly distinguishable. One can be fairly confident of choosing individuals who are likely to be

pure if sampled from two non-overlapping geographical regions. This condition is automatically

ensured for most allopatric populations. It is currently difficult to apply Mongrail to individuals

sampled from a sympatric region when the two species (populations) cannot be separated or to a

population with clinal variation of haplotype frequencies. To address this issue a possible extension
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of our approach could be to jointly infer population haplotype frequencies and genealogical classes.

This would require developing a Markov Chain Monte Carlo method similar to the one presented

in [2] (which jointly infers allele frequencies and genotype frequency classes). If pure individuals can

be distinguished, it is recommended that at least 10 individuals are sampled from each population

to produce sensible estimates of population haplotype frequencies. An important question, beyond

the scope of the current study, concerns the effect of population sample size on errors of estimates

of population haplotype frequencies (and resulting genealogical classifications).

Analyzing larger number of markers per chromosome has little effect in increasing the power to

infer genealogical classes, yet an increased number of markers requires more haplotype frequencies

to be estimated. Thus, there appears to be a trade-off between information gained from additional

markers and cost incurred by additional parameter estimates.

In conclusion the method presented in this paper has the power to infer hybrids using linked

genetic data without the requirement for any fixed or exclusive alleles to be present between two

diploid populations. Extensive simulations show the potentially adverse effects of applying the

widely used program NewHybrids (which assumes unlinked loci) to genomic data composed of

large numbers of linked markers. The fact that the number of chromosomes, and the size of

the intervals, contribute more to power than the number of markers allows an exact likelihood

approach to be developed that is powerful without an excessive computational burden. Due to the

analytical nature of the theory and consequent absence of simulation-based methodologies (such as

MCMC) from the inference procedure the method is computationally efficient so that most of the

runs finish within a few minutes. Rapid advances in sequencing technologies and bioinformatics

tools, along with decreasing costs of genome sequencing and assembly, will increase the availability

of genomic datasets for hybridizing non-model organisms. Therefore efficient statistical methods

for identifying hybrids, such as Mongrail, that account for linkage will be increasingly needed in

conservation biology and related disciplines.

6.1. Data availability

Simulated datasets and scripts for generating simulations are available at https://github.

com/mongrail/simulations. Scripts for analyzing the empirical dataset are available at https:
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//github.com/mongrail/Scripts. The Open Source C program Mongrail, implementing the al-

gorithms presented in this paper, is available at https://github.com/mongrail. The owl dataset

analyzed in this paper is publicly available at https://trace.ncbi.nlm.nih.gov/Traces/sra/

sra.cgi?analysis=SRZ190173.
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APPENDIX A

Simulation

A.1. Comprehensive simulation: Methods

Here, we describe the details of the simulation procedures used in the paper and of the statistical

methods used to summarize the results in making a comparison of the statistical performance of

Mongrail and NewHybrids.

The simulation experiment used a factorial design allowing the performance of the methods to

be assessed for many combinations of parameters. The parameters (factors) and their values were

as follows:

(1) Number of chromosomes: K = 1, 2, 5, 10, 20

(2) Number of loci per chromosome: L = 1, 5, 10

(3) Expected recombination frequency (in cM): R = 1, 25, 50 between the first and the last

locus

(4) Number of distinct haplotype sequences per chromosome for each population: h = 5, 10, 15

(5) Allelic configurations of haplotypes, generated by simulating the switches between allele

states (see Section A.1.1). Switch rates used: c = 0.1, 1, L/2

(6) Haplotype frequencies, following a Dirichlet distribution (symmetrical with parameters

α = 1, 5, or non-symmetrical with parameters w = 5, 20) (see Section A.1.2)

For simplicity, in all simulations we fixed the length of each chromosome (D) to be 240 Mb and

the recombination rate (r) to be 1.2 cM/Mb respectively.

The R scripts for simulating haplotype configurations (Section A.1.1), simulating haplotype

frequencies (Section A.1.2) and simulating marker positions (Section A.1.3) are available at Scripts.

A.1.1. Simulating haplotype configurations. The parameters for the simulation study

were generated using R version 3.6.3. To simulate haplotype configurations we mimic recombi-

nation by using a “switching process” (that flips the adjacent marker state) operating along the
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chromosome. The switch rate on a particular interval is p = c/L (when L 6= 1) where p is the

probability of a switch from 0 to 1 (or 1 to 0).

The allele state for the first marker is simulated randomly from a Bernoulli(1/2) distribution.

Given the value of L and c, the allele states for the rest of the (L− 1) markers are simulated from

a Bernoulli(p) distribution (following the description in the previous paragraph). We repeat the

process above until we obtain h distinct haplotypes. These simulations were performed using the

rbinom function in R.

When L = 1, there are only two possible haplotypes 0 and 1 (the two allele states possible for

a single marker). Thus for L = 1, the number of haplotypes h = 2.

We use the same haplotype configurations for both the populations (A and B) for each of the

K chromosomes.

A.1.2. Simulating haplotype frequencies. Given the h distinct haplotypes generated in

section A.1.1, we simulate their corresponding population frequencies. Let fAk and fBk be the hap-

lotype frequencies in population A and B respectively for chromosome k for k = 1, 2, . . . ,K. We

perform these simulations using either a symmetrical or non-symmetrical Dirichlet distribution.

The simulations were generated using the rdirichlet function in R. We simulate h frequencies from

a Dirichlet Distribution with parameters α1, α2, . . . , αh.

For the symmetric Dirichlet distribution we set αi = α for i = 1, 2, . . . , h and consider two

cases: α = 1 or α = 5.

For the non-symmetric Dirichlet distribution we use:

αi =

 0.7× w, i = 1

0.3× w
h−1 , i > 1,

and again consider two cases: w = 5 or w = 20.

When L = 1, there are only 2 haplotypes, and we simulate h = 2 frequencies from Beta

distributions (univariate cases of the Dirichlet distribution) with parameters α1 and α2:

(1) α1 = α2 = 1
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(2) α1 = α2 = 5

(3) α1 = 0.7× 5, α2 = 0.3× 5

(4) α1 = 0.7× 20, α2 = 0.3× 20

We repeat this process for each of the K chromosomes.

A.1.3. Assigning marker positions. Given the value of L(6= 1), R and r, we calculate the

distance between the first and last marker in units of base pair (bp) which is

R× (106)

r
.

We consider all L markers to be equidistant from each other. Therefore the inter-marker distance

(in units of bp) is given by
R× (106)

r × (L− 1)
.

For simplicity, we consider the position of the first marker (in bp) as R×(106)
r and obtain the positions

of the rest of the L− 1 markers (in bp) following the description above. For L = 1, we arbitrarily

chose 120000bp as the marker position. We use the same marker positions for both the populations

(A and B) for each of the K chromosomes.

A.2. Simulating diplotypes for markers

All simulations in this section were done in the C programming environment. This simulation

environment is available as an option in our program Mongrail. Given that the haplotypes and

their corresponding frequencies (along with the marker positions) have been generated for the two

populations A and B, generating a diploid individual is equivalent to generating a diplotype (a

pair of haplotypes). Generating a diplotype from any of the models: a (pure population B), c (F1

hybrid) or d (pure population A) is straightforward. For these models, each of the two chromosomes

derives entirely from one population (A or B). To simulate a chromosome, a sample of size 1 from a

multinomial distribution with h types was simulated, where h is the number of haplotypes, and the

multinomial proportions f j are the haplotype frequencies in the source population, j ∈ {A,B}. For

this purpose we used the function gsl ran multinomial from the GNU scientific library. For model a

(or, d) both the chromosomes are simulated independently from population B (or, A) respectively.
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In case of model c, one chromosome is simulated from population A and the other from population

B.

For the other models, one (b, e) or both (f) the chromosomes are recombinant (a mixture be-

tween two pure parental chromosomes, one from population A and the other from B). Recombinant

chromosomes were simulated in two steps:

Step I

Simulate two pure parental chromosomes (one from population A and the other from B) which

is equivalent to simulating from model c (described above). Denote the two simulated pure chro-

mosomes as CA (Population A) and CB(Population B) respectively. For example, let’s say we

generated the following two chromosomes for L = 10 markers:

CA ≡ 1100011010

CB ≡ 0111001001

Here the 0 or 1 indicate the allele present at each marker since we consider phased biallelic SNP

markers. Therefore CA (or, CB) is a binary string of size L. We shall carry on with this example

in the following steps.

Step II

Simulate recombinations between the two pure chromosomes to produce a pair of recombinant

chromosomes. This is achieved as follows:

(a) Simulate the number of recombinations: We simulate the number of

recombinations (nr) over the length of the chromosome. Assuming the rate of

recombination over the chromosome is uniform, and recombination events are

independent and never occur simultaneously, nr follows a Poisson distribution with rate

parameter λ (the expected number of recombination events over the entire chromosome).

Given the rate of recombination (r) in units of cM/Mb and the length of the

chromosome (say, D) in units of Mb, the map distance of the chromosome in units of
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centiMorgans (cM) is D × r and λ = (D × r)/100. We used the function gsl ran poisson

from GNU Scientific Library to generate nr.

(b) Simulate the positions of recombinations: The positions of recombinations on the

chromosome, conditional on the number of recombinations (nr), are simulated from a

continuous uniform distribution over the length of the chromosome (in cM). For example,

if nr = 3, we might generate a single crossover event between each of the following pair of

marker positions: (3, 4), (5, 6) and (7, 8). We used the function gsl rng uniform pos from

GNU Scientific Library to generate the recombination positions.

(c) Obtain the population origin of markers: The population origin (or, ancestry

state) of the markers was obtained conditional on the positions of recombinations. The

population origin of a SNP marker to the right of an interval changes whenever there is

an odd number of recombinations (similarly, an even number of recombinations results in

no change). We move from left i.e., 5’ end of the chromosome to the right towards the 3’

end of the chromosome. Based on the example developed so far, two haplotype ancestry

states are produced for L = 10 markers:

AAABBAABBB and BBBAABBAAA

(d) Obtain the allelic state (0/1) of the markers: The allele type (0 or 1) for each

marker is derived from CA or CB depending on whether the ancestry state is A or B

respectively for the marker under consideration. For the particular CA and CB we

considered at the beginning and based on the ancestry state AAABBAABBB, the

alleles at the markers from position 1 to 3 and from positions 6 to 7 should come from

population A. This requires that the alleles at these positions should match those of CA

(indicated by the underbraces) and the alleles for the rest of the markers match those of

chromosome CB.:

CA ≡ 110︸︷︷︸ 00 11︸︷︷︸ 010

CB ≡ 011 10︸︷︷︸ 01 001︸︷︷︸
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Therefore, given the ancestry state AAABBAABBB, the allele states of the markers

for one recombinant haplotype are

rH1 ≡ 1101011001.

Similarly, given the ancestry state is BBBAABBAAA, the allele states of the markers

for the other haplotype are

rH2 ≡ 0110001010.

Thus, there are two rH1 and rH2 recombinant haplotypes. We used bit operations in C to

perform this step.

(e) Simulate a recombinant chromosome: The two recombinant chromosomes (rH1 and

rH2) are equally likely to occur. So we choose one of them from a Bernoulli(1/2)

distribution (say, getting rH1 is defined as success). We used the function

gsl ran bernoulli from GNU Scientific Library to generate a recombinant chromosome.

A.2.1. Distribution of Linkage Disequilibrium (LD). We obtained the linkage

disequilibrium coefficient (r2) under a particular set of simulation combinations (cases where

haplotype frequencies were simulated using symmetric Dirichlet Distribution). We only consider

the linkage disequilibrium coefficient (r2) between the first and last marker. For brevity we plot

the distribution of r2 values for four specific simulation combinations (Figure A1):

(1) L = 5, h = 5, α = 5, c = 1

(2) L = 10, h = 15, α = 1, c = 0.1

(3) L = 5, h = 15, α = 5, c = L/2

(4) L = 5, h = 15, α = 5, c = 0.1

We find that under our comprehensive simulation setup, the r2 values range from really low

values (close to 0) to very high values (close to 1). Therefore this shows that the comprehensive

simulation design does not explicitly produce high LD values. It produces a broad range of LD

values ranging from 0 to 1.
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Figure A1. Histogram showing the frequency distribution of linkage disequilibrium
coefficient (r2) under four specific simulation combinations: (a) L = 5, h = 5, α =
5, c = 1 (top-left), (b) L = 10, h = 15, α = 1, c = 0.1 (top-right), (c) L = 5, h =
15, α = 5, c = L/2 (bottom-left), (d) L = 5, h = 15, α = 5, c = 0.1 (bottom-right).

A.3. Coalescent simulation: Simulating diplotypes

Here we describe the procedure for generating diplotypes under different genealogical classes given

a sample of chromosomes from two populations simulated under the structured coalescent model.

Generating a diplotype which is a purebred (model d) or F1 (model c) is straightforward. Under

model d both the chromosomes arise entirely from population B. To simulate a purebred diploid

individual from population B, we simulate 2 additional chromosomes from population B in the

coalescent simulation; the two chromosomes from the purebred diplotype. In an F1 hybrid, one

chromosome arises from population A and the other from population B. To simulate an F1

hybrid, we simulate 1 additional chromosome from each of the two populations (A and B) during

the coalescent simulation, the two chromosomes form the F1 diplotype. For a backcross (model b)

one chromosome arises entirely from population A and the other is a recombinant between a pair

of chromosomes, one from population A and the other from B. Therefore we simulate 3 additional

chromosomes (2 from population A and 1 from population B) and follow Step II of Section A.2 to

produce a recombinant chromosome (using one of the chromosomes from population A and
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another from B). The A-B recombinant and A chromosomes together form the backcross

diplotype. For an F2 hybrid (model f) both chromosomes are recombinant between populations A

and B. To simulate an F2 hybrid 4 additional chromosomes are simulated (2 from population A

and 2 from population B) during the coalescent simulation and each pair (one chromosome from

A and one from B) undergo recombination according to Step II of Section A.2. The two A-B

recombinant chromosomes together form the F2 diplotype.

A.3.1. Summary of number of population haplotypes generated. We computed the

mean and standard deviation of the number of distinct haplotypes observed in populations A and

B under the coalescent simulation. These results are presented for all values of

M = 0.1, 0.25, 1, 10, 100 in Table A1. As the value of M increases, the mean number of unique

Table A1. The mean and standard deviation (S.D.) of the number of distinct
10-locus haplotypes generated under each coalescent simulation scenario for two
populations A and B.

Migration Rate (M)
Population A Population B

Mean S.D. Mean S.D.

0.1 9.17277 5.7704 9.1582 5.74928
0.25 13.3307 7.23048 13.3239 7.25902

1 17.9721 8.62542 17.9387 8.62992
10 21.3009 8.84554 21.2143 8.78405
100 22.6983 8.89778 22.6209 8.85955

haplotypes increases in both simulated populations. This is expected as an increase in migration

introduces additional shared haplotypes into both populations. Since the coalescent simulation

was carried out under a symmetric island model the two populations are equivalent and thus the

mean and standard deviation are nearly identical between the two populations.
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APPENDIX B

Empirical Dataset

B.1. Mongrail: Analysis of putative hybrids

Marker genotypes were filtered for each scaffold using positions chosen such that they satisfied

physical distances specified for the different analyses (either a sliding window analysis or a

maximally informative distribution) using BCFtools, and reformatted for input to Mongrail using

Awk and Sed. A C program was used to enumerate all compatible diplotypes for putative hybrid

individuals for each choice of markers, which formed the input for Mongrail. For each scaffold and

genealogical class, the total likelihood is obtained as a sum of the likelihood calculated for each

compatible diplotype. When multiple scaffolds are analyzed, likelihoods are multiplied across

scaffolds, treating scaffolds as equivalent to independent chromosomes. Posterior probabilities are

obtained from the normalized likelihoods (using a uniform prior on genealogical classes). Results

were plotted in R using Tidyverse, RColorBrewer and reshape.

B.2. Applying NewHybrids to the owl dataset

B.2.1. Assignment of 15 hybrids (13 putative and 2 known). We applied

NewHybrids to the owl dataset to obtain genealogical classifications of the putative hybrids. We

used the same set of 10 markers from the 15 scaffolds that were considered for Mongrail (the case

where the assumed recombination rate was 1.5cM/Mb under a “maximally informative” region

size). Therefore we used 150 markers in total to construct a table (see Table B1) of the posterior

probabilities of the “preferred” model for each of the 15 hybrids (along with the primary and

genetic identification information of [15]).

Based on the NewHybrids model framework, genealogical class d, c and b refers to a pure barred

owl, a F1 hybrid and a backcross with barred owl respectively. The results are similar to those

obtained by applying Mongrail to this owl dataset (see Table 3). The preferred model has
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Sample Names Primary Identification Genetic Identification Posterior Probability Preferred Model
TLW521 Unknown Barred Owl 1 d
TLW532 Unknown Barred Owl 1 d
AFRD90 Unknown Barred Owl 1 d
CYWC009 Unknown Barred Owl 1 d
1957-00137 Unknown F1 1 c
1957-00240 Unknown F1 1 c
1957-00243 Unknown F1 1 c
LCW1363 Unknown F1 1 c
LCW1383 Unknown F1 1 c
ZRH600 Unknown F1 1 c
ZRH610 Unknown F1 1 c
ZRH962 Known Hybrid F1 1 c
TLW519 Unknown Backcross 0.99912 b
TLW528 Unknown Backcross 1 b
ZRH607 Known Hybrid Backcross 1 b

Table B1. Table showing the assignment call for all 15 hybrid owl samples using
NewHybrids.

posterior probability 1 for all samples suggesting that both Mongrail and NewHybrids similarly

provide reasonable results that align with previous conclusions.

B.2.2. Comparison of posterior probability distributions. In this analysis we compare

the posterior probabilities under the two methods (Mongrail and NewHybrids) for 5 putative

hybrids. These owls were chosen to be representative of the three observed categories genetically

identified by [15]. The categories along with the sample names are presented in Table B2.

Primary identification Genetic identification Sample names

putative hybrid BO CYWC009
known hybrid F1 hybrid (F1) ZRH962
putative hybrid backcross (F1× BO) TLW519
putative hybrid backcross (F1× BO) TLW528
known hybrid backcross (F1× BO) ZRH607

Table B2. Details for 5 individuals chosen for detailed analysis. Primary and
genetic identifications are from [15].

We chose 10 markers from the largest scaffold (Super-Scaffold 7 of length 72.11 Mb) and consider

two different map lengths. We considered R = 1.5 cM and the “maximally informative” case

described in section 5.2.2.
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Figure B1. Distribution of posterior probabilities is constructed for 5 owl samples
(CYWC009, ZRH962, TLW519, TLW528, ZRH607). A set of L = 10 markers
are chosen from the largest scaffold Super-Scaffold 7 (size 72.11 Mb) according to
the “maximally informative” case. For each individual, posterior probabilities for
Mongrail are shown in the top plot and for NewHybrids in the bottom plot. The
posterior probabilities for different genealogical classes are represented by segments
of different colors. The proportion of the stacked bar plot comprised of a particular
color indicates the posterior probability of the model corresponding to that color.
The 6 genealogical classes are as follows: a-pure population B, b-backcross with
population A, c-F1 hybrid, d-pure population A, e-backcross with population B,
f -F2 hybrid. In our model framework, BO is treated as population A and SO as
population B.

There is a greater distribution of posterior probabilities among genealogical classes under Mongrail

by comparison with NewHybrids (compare top and bottom rows in Figures B1 and B2). Even

with 10 markers, NewHybrids tends to produce extremely high posterior probabilities for specific

genealogical classes for both small (Figure B2) and large (Figure B1) intervals. Thus NewHybrids

seems to be overconfident even when information is quite low. In one case (individual TLW519)

the posterior probability for genealogical class d is nearly one in the “maximally informative” case

(Figure B1), whereas for a smaller interval (R = 1.5 cM) the posterior probability for genealogical

class d drops to 0.02 and the posterior probability for genealogical class c increases to 0.83

(Figure B2). In both cases the genealogical class with the highest posterior probability differs
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from the preferred genealogical class. Mongrail appears more conservative, never assigning a

posterior probability to a non-preferred model of more than 0.30 for individual TLW519.

Figure B2. Distribution of posterior probabilities is constructed for 5 owl samples
(CYWC009, ZRH962, TLW519, TLW528, ZRH607) for a set of L = 10 markers,
where the markers are evenly spaced across the largest scaffold Super-Scaffold 7
(size 72.11 Mb) with a constant map length of R = 1.5cM. The initiating marker is
same as the first marker in the “maximally informative” case. For each individual,
posterior probabilities for Mongrail are shown in the top plot and for NewHybrids
in the bottom plot. The posterior probabilities for different genealogical classes are
represented by segments of different colors. The proportion of the stacked bar plot
comprised of a particular color indicates the posterior probability of the model corre-
sponding to that color. The 6 genealogical classes are as follows: a-pure population
B, b-backcross with population A, c-F1 hybrid, d-pure population A, e-backcross
with population B, f -F2 hybrid. In our model framework, BO is treated as popula-
tion A and SO as population B.

B.2.3. NewHybrids analysis using unlinked SNPs with fixed differences. To

explore the effects of fixed differences between these two species on hybridization inference with

NewHybrids, we applied NewHybrids to the same set of 5 putative hybrids analyzed previously

(See Table B2) but specifically chose loci with fixed differences. We randomly chose a single

marker from among all the markers with fixed differences for each of the 15 scaffolds. As shown in

Figure B3, when loci are fixed for alternate alleles NewHybrids produces extremely high posterior
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probabilities (greater than 0.998) for specific genealogical classes, even when using only 15

markers. For the individuals analyzed, the “preferred” genealogical class matches the prior

genetic classification. Caution is needed when considering such results, since without exhaustive

population sampling it is always uncertain whether “fixed” differences are truly fixed or instead

an artifact of genotyping error or failure to sample an allele.

Figure B3. Distribution of posterior probabilities for 5 owl samples (CYWC009,
ZRH962, TLW519, TLW528, ZRH607) obtained by applying NewHybrids to a set of
15 fixed SNPs, where each SNP is chosen randomly from each of the 15 scaffolds. The
posterior probabilities for different genealogical classes are represented by segments
of different colors. The proportion of the stacked bar plot comprised of a particular
color indicates the posterior probability of the model corresponding to that color.
The 6 genealogical classes are as follows: a-pure population B, b-backcross with
population A, c-F1 hybrid, d-pure population A, e-backcross with population B,
f -F2 hybrid. In our model framework, BO is treated as population A and SO as
population B.

68



Bibliography

[1] R. Abbott, D. Albach, S. Ansell, J. W. Arntzen, S. J. Baird, N. Bierne, J. Boughman,

A. Brelsford, C. A. Buerkle, R. Buggs, et al., Hybridization and speciation, Journal of Evolutionary

Biology, 26 (2013), pp. 229–246.

[2] E. Anderson and E. Thompson, A model-based method for identifying species hybrids using multilocus

genetic data, Genetics, 160 (2002), pp. 1217–1229.

[3] R. G. Anthony, E. D. Forsman, A. B. Franklin, D. R. Anderson, K. P. Burnham, G. C. White,

C. J. Schwarz, J. D. Nichols, J. E. Hines, G. S. Olson, et al., Status and trends in demography of

northern spotted owls, 1985–2003, Wildlife Monographs, 163 (2006), pp. 1–48.

[4] M. L. Arnold, Natural hybridization as an evolutionary process, Annual Review of Ecology and Systematics,

23 (1992), pp. 237–261.

[5] J. C. Avise and M. J. Van Den Avyle, Genetic analysis of reproduction of hybrid white bass x striped bass in

the savannah river, Transactions of the American Fisheries Society, 113 (1984), pp. 563–570.

[6] B. L. Browning, X. Tian, Y. Zhou, and S. R. Browning, Fast two-stage phasing of large-scale sequence

data, The American Journal of Human Genetics, 108 (2021), pp. 1880–1890.

[7] S. R. Browning and B. L. Browning, Rapid and accurate haplotype phasing and missing-data inference for

whole-genome association studies by use of localized haplotype clustering, The American Journal of Human

Genetics, 81 (2007), pp. 1084–1097.

[8] D. E. Campton and F. M. Utter, Natural hybridization between steelhead trout (salmo gairdneri) and

coastal cutthroat trout (salmo clarki clarki) in two puget sound streams, Canadian Journal of Fisheries and

Aquatic Sciences, 42 (1985), pp. 110–119.

[9] D. A. Clark, R. G. Anthony, and L. S. Andrews, Relationship between wildfire, salvage logging, and

occupancy of nesting territories by northern spotted owls, The Journal of Wildlife Management, 77 (2013),

pp. 672–688.

[10] L. Congiu, I. Dupanloup, T. Patarnello, F. Fontana, R. Rossi, G. Arlati, and L. Zane, Identification

of interspecific hybrids by amplified fragment length polymorphism: the case of sturgeon, Molecular Ecology, 10

(2001), pp. 2355–2359.

69



[11] P. Danecek, J. K. Bonfield, J. Liddle, J. Marshall, V. Ohan, M. O. Pollard, A. Whitwham,

T. Keane, S. A. McCarthy, R. M. Davies, et al., Twelve years of SAMtools and BCFtools, Gigascience,

10 (2021), p. giab008.

[12] R. J. Davis, B. Hollen, J. Hobson, J. E. Gower, and D. Keenum, Northwest forest plan—the first 20

years (1994-2013): status and trends of northern spotted owl habitats, Gen. Tech. Rep. PNW-GTR-929.

Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 54 p., 929

(2016).

[13] E. D. Forsman, E. C. Meslow, and H. M. Wight, Distribution and biology of the spotted owl in oregon,

Wildlife Monographs, (1984), pp. 3–64.

[14] A. B. Franklin, K. M. Dugger, D. B. Lesmeister, R. J. Davis, J. D. Wiens, G. C. White, J. D.

Nichols, J. E. Hines, C. B. Yackulic, C. J. Schwarz, et al., Range-wide declines of northern spotted owl

populations in the pacific northwest: A meta-analysis, Biological Conservation, 259 (2021), p. 109168.

[15] N. T. Fujito, Z. R. Hanna, M. Levy-Sakin, R. C. Bowie, P.-Y. Kwok, J. P. Dumbacher, and J. D.

Wall, Genomic variation and recent population histories of spotted (strix occidentalis) and barred (strix varia)

owls, Genome Biology and Evolution, 13 (2021), p. evab066.

[16] J. L. Ganey, H. Y. Wan, S. A. Cushman, and C. D. Vojta, Conflicting perspectives on spotted owls,

wildfire, and forest restoration, Fire Ecology, 13 (2017), pp. 146–165.

[17] W. S. Grant, G. B. Milner, P. Krasnowski, and F. M. Utter, Use of biochemical genetic variants for

identification of sockeye salmon (oncorhynchus nerka) stocks in cook inlet, alaska, Canadian Journal of

Fisheries and Aquatic Sciences, 37 (1980), pp. 1236–1247.

[18] R. Gutiérrez, M. Cody, S. Courtney, and A. B. Franklin, The invasion of barred owls and its potential

effect on the spotted owl: a conservation conundrum, Biological Invasions, 9 (2007), pp. 181–196.

[19] S. M. Haig, T. D. Mullins, E. D. Forsman, P. W. Trail, and L. Wennerberg, Genetic identification of

spotted owls, barred owls, and their hybrids: legal implications of hybrid identity, Conservation Biology, 18

(2004), pp. 1347–1357.

[20] T. E. Hamer, E. D. Forsman, A. Fuchs, and M. Walters, Hybridization between barred and spotted owls,

The Auk, (1994), pp. 487–492.

[21] Z. R. Hanna, J. P. Dumbacher, R. C. Bowie, J. B. Henderson, and J. D. Wall, Whole-genome analysis

of introgression between the spotted owl and barred owl (strix occidentalis and strix varia, respectively; aves:

Strigidae) in western north america, G3: Genes, Genomes, Genetics, 8 (2018), pp. 3945–3952.

[22] Z. R. Hanna, J. B. Henderson, J. D. Wall, C. A. Emerling, J. Fuchs, C. Runckel, D. P. Mindell,

R. C. Bowie, J. L. DeRisi, and J. P. Dumbacher, Northern spotted owl (strix occidentalis caurina)

genome: divergence with the barred owl (strix varia) and characterization of light-associated genes, Genome

Biology and Evolution, 9 (2017), pp. 2522–2545.

70



[23] H. Harris, Genetics of enzyme polymorphisms in man, Proceedings of the Royal Society of London. Series B.

Biological Sciences, 164 (1966), pp. 298–310.

[24] R. R. Hudson, Generating samples under a wright–fisher neutral model of genetic variation, Bioinformatics,

18 (2002), pp. 337–338.

[25] G. W. Hunt and R. K. Selander, Biochemical genetics of hybridisation in european house mice, Heredity,

31 (1973), pp. 11–33.

[26] R. Joly and W. Adams, Allozyme analysis of pitch× loblolly pine hybrids produced by supplemental

mass-pollination, Forest Science, 29 (1983), pp. 423–432.

[27] E. G. Kelly and E. D. Forsman, Recent records of hybridization between barred owls (Strix varia) and

northern spotted owls (S. occidentalis caurina), The Auk, 121 (2004), pp. 806–810.

[28] T. Lamb and J. C. Avise, Directional introgression of mitochondrial DNA in a hybrid population of tree frogs:

the influence of mating behavior, Proceedings of the National Academy of Sciences, 83 (1986), pp. 2526–2530.

[29] R. C. Lewontin and J. L. Hubby, A molecular approach to the study of genic heterozygosity in natural

populations. ii. amount of variation and degree of heterozygosity in natural populations of drosophila

pseudoobscura, Genetics, 54 (1966), p. 595.

[30] L. L. Long and J. D. Wolfe, Review of the effects of barred owls on spotted owls, The Journal of Wildlife

Management, 83 (2019), pp. 1281–1296.

[31] J. Nason and N. Ellstrand, Estimating the frequencies of genetically distinct classes of individuals in

hybridized populations, Journal of Heredity, 84 (1993), pp. 1–12.

[32] A. J. Page, B. Taylor, A. J. Delaney, J. Soares, T. Seemann, J. A. Keane, and S. R. Harris,

Snp-sites: rapid efficient extraction of snps from multi-fasta alignments, biorxiv, (2016), p. 038190.

[33] S. Piry, A. Alapetite, J.-M. Cornuet, D. Paetkau, L. Baudouin, and A. Estoup, Geneclass2: a

software for genetic assignment and first-generation migrant detection, Journal of Heredity, 95 (2004),

pp. 536–539.

[34] J. K. Pritchard, M. Stephens, and P. Donnelly, Inference of population structure using multilocus

genotype data, Genetics, 155 (2000), pp. 945–959.

[35] A. Rambaut and N. C. Grass, Seq-gen: an application for the monte carlo simulation of dna sequence

evolution along phylogenetic trees, Bioinformatics, 13 (1997), pp. 235–238.

[36] B. Rannala and J. L. Mountain, Detecting immigration by using multilocus genotypes, Proceedings of the

National Academy of Sciences, 94 (1997), pp. 9197–9201.

[37] M. S. Roy, E. Geffen, D. Smith, E. A. Ostrander, and R. K. Wayne, Patterns of differentiation and

hybridization in north american wolflike canids, revealed by analysis of microsatellite loci., Molecular Biology

and Evolution, 11 (1994), pp. 553–570.

71



[38] M. Stephens, N. J. Smith, and P. Donnelly, A new statistical method for haplotype reconstruction from

population data, The American Journal of Human Genetics, 68 (2001), pp. 978–989.

[39] D. J. Tempel, H. A. Kramer, G. M. Jones, R. Gutiérrez, S. C. Sawyer, A. Koltunov, M. Slaton,

R. Tanner, B. K. Hobart, and M. Z. Peery, Population decline in california spotted owls near their

southern range boundary, The Journal of Wildlife Management, 86 (2022), p. e22168.

[40] F. Utter and N. Ryman, Genetic markers and mixed stock fisheries, Fisheries, 18 (1993), pp. 11–21.
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