
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Learning Generalizable Robot Policies by Understanding Semantics and Logic from Task
Demonstrations

Permalink
https://escholarship.org/uc/item/1m5405bc

Author
Wang, Tianyu

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1m5405bc
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Learning Generalizable Robot Policies by Understanding Semantics and Logic from Task
Demonstrations

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Intelligent Systems, Robotics and Control)

by

Tianyu Wang

Committee in charge:

Professor Nikolay Atanasov, Chair
Professor Henrik Christensen
Professor Hao Su
Professor Nuno Vasconcelos
Professor Michael Yip

2024

Copyright

Tianyu Wang, 2024

All rights reserved.

The Dissertation of Tianyu Wang is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2024

iii

DEDICATION

I dedicate this thesis to my family: my parents, Yingjun Wang and Mengjuan Li, for

encouraging me to pursue my academic dreams and being supportive and understanding even

though we are thousands of miles apart. My dear wife, Yanan (Ivy) Zou, for your unwavering

support throughout my academic journey. Through all trials and tribulations, you stand by me,

trust in me and give me confidence. My son, Gabriel Y. Wang, for bringing so much joy to our

family.

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . x

Acknowledgements . xii

Vita . xiv

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1
1.1 Learning from Demonstrations . 2
1.2 Generalization from Simulation to Real World . 3

Chapter 2 Background . 5
2.1 Reinforcement Learning . 5
2.2 Inverse Reinforcement Learning . 7

Chapter 3 Learning Cost Functions from Demonstrations for Robot Navigation 9
3.1 Differentiable Semantic Mapping and Planning . 14

3.1.1 Problem Formulation . 14
3.1.2 Cost Function Representation and Learning . 18
3.1.3 Results . 32
3.1.4 Derivations . 46

3.2 Inferring Logic from Demonstrations . 50
3.2.1 Problem Formulation . 50
3.2.2 Learning Task Logic as Weighted Finite Automata 52
3.2.3 Results . 59

3.3 Summary . 65
3.4 Acknowledgements . 65

Chapter 4 Simulation to Real Generalization for Robot Manipulation 66
4.1 Latent Policies for Adversarial Imitation Learning . 71

4.1.1 Problem Formulation . 71
4.1.2 Learning Latent Action Representation . 72
4.1.3 Task-agnostic and Task-aware Action Embedding for Adversarial Imita-

tion Learning . 73
4.1.4 Experiments . 78

v

4.2 Cross Embodiment Robot Manipulation Skill Transfer from Cycle Consistency . 84
4.2.1 Problem Formulation . 84
4.2.2 Cross Embodiment Representation Alignment . 84
4.2.3 Experiments . 91
4.2.4 Implementation Details . 95

4.3 Dynamic Handover: Throw and Catch with Bimanual Hands 99
4.3.1 System Setup . 99
4.3.2 Learning Bimanual Dexterous Hands Policy . 101
4.3.3 Experiments . 104
4.3.4 Implementation Details . 110

4.4 Summary . 115
4.5 Acknowledgements . 116

Chapter 5 Conclusions and Future Work . 117

Bibliography . 119

vi

LIST OF FIGURES

Figure 1.1. A robot development process includes understanding the demonstrated
concepts to infer reward functions, developing corresponding skills and be-
haviors, and adapting to robot and environment changes during deployment. 2

Figure 3.1. Autonomous vehicle in an urban street, simulated via the CARLA simulator.
The vehicle is equipped with a LiDAR scanner, four RGB cameras, and a
segmentation algorithm, providing a semantically labeled point cloud. . . . 10

Figure 3.2. An example trajectory in the MiniGrid environment where an agent has to
pick up a key, open the door, and navigate to the goal. The trajectory can
be decomposed into three segments. 11

Figure 3.3. A 9× 9 grid environment with cells from four semantic classes: empty,
wall, lawn, lava. An autonomous agent (red triangle, facing down) starts
from the top left corner and is heading towards the goal in the bottom right. 16

Figure 3.4. Architecture for cost function learning from demonstrations with semantic
observations. 16

Figure 3.5. Illustration of the log-odds update in (3.13) for a single point observation. 22

Figure 3.6. The semantic occupancy probability for the example in Fig. 3.3. 23

Figure 3.7. The learned cost function for the example in Fig. 3.3. 24

Figure 3.8. A fully convolutional encoder-decoder neural network similar to that in [9]
is used as the cost encoder to learn features from semantic map ht to cost
function ct . 25

Figure 3.9. Subgradient of the optimal cost-to-go Qt(xt ,ut) for each control ut with
respect to the cost ct(x,u) in Fig. 3.7. 29

Figure 3.10. Examples of probabilistic multi-class occupancy estimation, cost encoder
output, and subgradient computation. 36

Figure 3.11. Example of 3D LiDAR points and semantic segmentation camera facing
four directions. The LiDAR points are annotated with semantic class labels. 38

Figure 3.12. Examples of semantic occupancy estimation and cost encoding during
different steps in a test trajectory marked in red. 40

Figure 3.13. Two scenarios with dynamic obstacles. 42

Figure 3.14. Bird’s-eye view of the Town05 map. 43

vii

Figure 3.15. Semantic probability of each class with different decay rates 44

Figure 3.16. Noisy semantic segmentation observations . 45

Figure 3.17. Histogram of the total variation distance between the semantic probabilities
from the original and the perturbed semantic images. 46

Figure 3.18. Value functions corresponding to the MaxEnt and Boltzmann policies. . . . 47

Figure 3.19. Inferring the hidden state progression ααα t from events σt can be acheived
by an RNN with initial hidden state ααα0, hidden state transition ααα t+1 =
g1(σt ,ααα t ,W) and output ŝ = hψ(σ0:T) = g2(αααT+1,βββ), where g1,g2 are
nonlinear functions. 53

Figure 3.20. WFA-IRL architecture for joint learning of a task specification and cost
function. 58

Figure 3.21. Neural network architecture for the transition cost cθ (xt ,ut). 58

Figure 3.22. Experiment environments in MiniGrid including DoorKey, MultiRoom and
BlockedUnlockPickup. 59

Figure 3.23. Agent trajectory (left column) trained with D1 and expert trajectory (right
column) in task T3 during testing. 63

Figure 3.24. Visualization of policy probabilities of each method trained on D2 at a
critical state in T2. 64

Figure 4.1. We propose to abstract the action space from the high-dimensional joint
space (red) to the low-dimensional gripper pose movement (yellow) to
enable effective imitation learning. 67

Figure 4.2. LAPAL architecture overview. 75

Figure 4.3. Benchmark environments from MuJoCo and robosuite: (left to right)
HalfCheetah-v3, Walker2d-v3, Ant-v3, Humanoid-v3, Door. 78

Figure 4.4. Benchmark results of LAPAL for MuJoCo and robosuite tasks. 80

Figure 4.5. Ablation analysis of task-agnostic LAPAL with latent action dimension da
in Humanoid-v3. 81

Figure 4.6. Zero-shot transfer learning for task-agnostic LAPAL from Panda robot
(left) to Sawyer robot (right) in Door environment. 82

Figure 4.7. Overview of cross embodiment transfer. 85

viii

Figure 4.8. Overview of latent alignment losses . 85

Figure 4.9. Ablation study on latent state and action dimensions for transfer from
Panda to Sawyer and xArm6 robots. 92

Figure 4.10. Examples of transferring Panda robot policy (top row) to Sawyer robot
(middle row) and xArm6 robot (bottom row) for the Lift task in robosuite. 94

Figure 4.11. Real-world experiment setup for cross embodiment transfer. 95

Figure 4.12. Simulation to real transfer for PickPlace task. 96

Figure 4.13. Examples of failure modes for cross embodiment transfer. 96

Figure 4.14. Robosuite simulation environment tasks (from top to bottom, left to right):
Reach, Lift, PickPlace and Stack. 97

Figure 4.15. We propose Dynamic Handover, a new bimanual dexterous hands system
designed for throwing and catching tasks. 99

Figure 4.16. Dynamic Handover real robot system. 100

Figure 4.17. Dynamic Handover joint end-to-end learning from observations with pre-
dicted catching position. 102

Figure 4.18. Training curves for Dynamic Handover and baselines. 105

Figure 4.19. Objects used in simulation and real world experiments. 106

Figure 4.20. Throwing Stability Test of different initial settings . 109

Figure 4.21. Process Reaction Curve of Arm . 111

ix

LIST OF TABLES

Table 3.1. Validation and test results for the 16×16 and 64×64 minigrid environments. 32

Table 3.2. Average inference speed comparison between our model and DeepMaxEnt

for predicting one control in testing. 37

Table 3.3. Test results from the CARLA Town05 environment, including the negative
log-likelihood (NLL) and prediction accuracy (Acc.) of the validation set
expert controls and the trajectory success rate (TSR) and modified Hausdorff
distance (MHD) between the agent and the expert trajectories on the test set. 39

Table 3.4. Runtime analysis of our model during testing in the CARLA simulator. We
report per-step runtime averaged over 100 test trajectories. 41

Table 3.5. Test results with dynamic obstacles from CARLA Town05 map, including
trajectory success rate (TSR), collision rate (CR), and modified Hausdorff
distance (MHD) between the agent and the expert trajectories on the test set. 45

Table 3.6. Maximum total variation distance between the original and perturbed se-
mantic probabilities across all grid cells. 46

Table 3.7. Atomic propositions used in each task. 59

Table 3.8. Results on MiniGrid environment tasks. 60

Table 4.1. Environment state and action space dimensions . 79

Table 4.2. Neural network configurations . 79

Table 4.3. Average return of each policy over 16 episodes and 5 random seeds in the
Sawyer robot target environmentMt . 81

Table 4.4. Transfer learning evaluation on Reach task with Panda end-effector space
source and Panda joint space target. 92

Table 4.5. RL reward for a source policy trained on Panda and transferred to Sawyer
and xArm6 robots. 93

Table 4.6. Transfer results of 10 episodes from simulated Panda to real xArm6 with
joint velocity control. 94

Table 4.7. Ablation Study in Simulation . 106

Table 4.8. Comparison for Pre-throw Conditions . 107

x

Table 4.9. Ablation Study in Real World . 110

Table 4.10. Domain randomization parameters. 112

Table 4.11. Hyperparameters of MAPPO. 113

Table 4.12. Hyperparameters of PPO. 114

xi

ACKNOWLEDGEMENTS

I am especially grateful to my supervisor, Professor Nikolay Atanasov, for your excep-

tional mentoring and support throughout my PhD career. I was lucky to join your lab and became

one of your early students at UCSD. You have always motivated me with insightful advice in our

one on one meetings and treated me as an independent researcher. I have learned so much from

you, technically and professionally to progress in my future endeavors.

I also appreciate the helpfulness from the committee members: Professor Henrik Chris-

tensen, Professor Hao Su, Professor Nuno Vasconcelos, and Professor Michael Yip.

Furthermore, I thank Professor Xiaolong Wang, for his guidance and support. He is

a co-author in two of my papers. I would also like express my deepest gratitude to Professor

Manfred Morari, Professor Vijay Kumar, and Professor Yaodong Yang for their involvement and

assistance in my research. They are each co-authors in one of my papers.

I would like to acknowledge and thank Professor Vikas Dhiman and Steven Chen for

spending several late nights before deadlines coding and discussing research topics with me. You

inspired me when I was taking the initial steps in my PhD path. I am also thankful to Yuzhe Qin

and Binghao Huang, for your time and insightful discussions on robot manipulation.

Lastly, I would like to express my gratitude to all the members of Existential Robotics

Lab with whom I had the pleasure to work with, including (alphabetically): Ibrahim Akbar,

Abdullah Altawaitan, Arash Asgharivaskasi, Saqib Azim, Dwait Bhatt, Hanwen Cao, Kun Chen,

Zhirui Dai, Thai Duong, Qiaojun Feng, Siwei Guo, Nikhil Karnwal, Shumon Koga, Jinzhao

Li, Zhichao Li, Kehan Long, Yue Meng, Sumangala Patki, Siddhant Saoji, Mo Shan, Baoqian

Wang, Youxing Wang, Yifan Wu, Yinzhuang Yi and Ehsan Zobeidi. It has been an incredible

time working with all of you.

Chapter 3, in part, is a reprint of the material as it appears in T. Wang, V. Dhiman

and N. Atanasov, “Learning Navigation Cost from Demonstrations in Partially Observable

Environments,” IEEE International Conference on Robotics and Automation (ICRA), pp. 4434-

4440, 2020. Chapter 3, in part, is a reprint of the material as it appears in T. Wang, V. Dhiman

xii

and N. Atanasov, “Learning Navigation Costs from Demonstrations with Semantic Observations,”

Learning for Dynamics and Control, pp. 245–255, 2020. Chapter 3, in part, is a reprint of the

material as it appears in T. Wang, V. Dhiman and N. Atanasov, “Inverse Reinforcement Learning

for Autonomous Navigation via Differentiable Semantic Mapping and Planning,” Autonomous

Robots, 47(6), 809-830. The dissertation author is the primary author of these papers. Chapter

3, in part, is a reprint of the material as it appears in T. Wang and N. Atanasov, “Inverse

Reinforcement Learning of Autonomous Behaviors Encoded as Weighted Finite Automata”,

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 7429-7435,

2022. The dissertation author is the primary author of this paper.

Chapter 4, in part, is currently being prepared for submission for publication of the

material as it may appear in T. Wang, N. Karnwal and N. Atanasov, “Latent Policies for

Adversarial Imitation Learning.” The dissertation author is the primary author of this paper.

Chapter 4, in part, is currently being prepared for submission for publication of the material

as it may appear in T. Wang, D. Bhatt, X. Wang and N. Atanasov, “Cross Embodiment Robot

Manipulation Skill Transfer from Cycle Consistency.” The dissertation author is the primary

author of this paper. Chapter 4, in part, is a reprint of the material as it appears in B. Huang, Y.

Chen, T. Wang, Y. Qin, Y. Yang, N. Atanasov, X. Wang, “Dynamic Handover: Throw and Catch

with Bimanual Hands, ” Conference on Robot Learning, 2023. The dissertation author is the

co-author of this paper.

xiii

VITA

2016 Bachelor of Science in Physics, Haverford College

2018 Master of Science in Electrical Engineering (Intelligent Systems, Robotics and
Control), University of California San Diego

2024 Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics and
Control), University of California San Diego

PUBLICATIONS

Tianyu Wang, Nikhil Karnwal, Nikolay Atanasov, “Latent Policies for Adversarial Imitation
Learning”, in preparation for submission.

Tianyu Wang, Dwait Bhatt, Xiaolong Wang, Nikolay Atanasov, “Cross Embodiment Robot
Manipulation Skill Transfer from Cycle Consistency”, in preparation for submission.

Binghao Huang, Yuanpei Chen, Tianyu Wang, Yuzhe Qin, Yaodong Yang, Nikolay Atanasov,
Xiaolong Wang, “Dynamic Handover: Throw and Catch with Bimanual Hands”, Conference on
Robot Learning, 2023.

Tianyu Wang, Vikas Dhiman, Nikolay Atanasov, “Inverse Reinforcement Learning for Au-
tonomous Navigation via Differentiable Semantic Mapping and Planning”, Autonomous Robots,
2023.

Tianyu Wang, Nikolay Atanasov, “Inverse Reinforcement Learning of Autonomous Behaviors
Encoded as Weighted Finite Automata”, IEEE International Conference on Intelligent Robot
and Systems, 2022.

Steven W. Chen, Tianyu Wang, Nikolay Atanasov, Vijay Kumar, Manfred Morari, “Large Scale
Model Predictive Control with Neural Networks and Primal Active Sets”, Automatica, 2022.

Tianyu Wang, Vikas Dhiman, Nikolay Atanasov, “Learning Navigation Costs from Demonstra-
tions with Semantic Observations”, Learning for Dynamics and Control Conference, 2020.

Tianyu Wang, Vikas Dhiman, Nikolay Atanasov, “Learning Navigation Cost from Demonstra-
tions in Partially Observable Environments”, IEEE International Conference on Robotics and
Automation, 2020.

xiv

ABSTRACT OF THE DISSERTATION

Learning Generalizable Robot Policies by Understanding Semantics and Logic from Task
Demonstrations

by

Tianyu Wang

Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics and Control)

University of California San Diego, 2024

Professor Nikolay Atanasov, Chair

Autonomous robots have the potential to play a critical role in various aspects of modern

life, including search and rescue, autonomous driving, medical surgery, agricultural farms, etc.

Reinforcement learning algorithms allow intelligent agents to discover optimal behavior through

trial and error from the interactions with the environment and have been successfully applied to

playing video games, mastering the game of Go and training large language models. In robotics,

this data driven learning approach is also promising for locomotion, manipulation and navigation.

When demonstrations are available, an agent can learn to perform a task by imitating

expert behavior. However, the agent has to generalize to novel scenarios that are not seen in

xv

training. This thesis introduces two aspects to learn generalizable policies from demonstrations.

The first method infers a cost function from semantic and geometric information from obser-

vations and can generalize to unseen, dynamic, partially observable simulated environments

for autonomous driving scenarios. The second method infers task logic from demonstrations

which are in turn used as constraints for motion planning. It exploits the hierarchical logic

structure from demonstrated trajectories and can generalize to sequential, compositional planning

problems.

Another challenge towards deploying robots in the natural world is the ability to bridge

the simulation to reality gap. While simulation provides training data at low cost, the policy

should be able to account for mismatches in sensing and actuation when deployed on real robots.

To address these challenges, this dissertation introduces a latent space alignment approach where

policies trained on a source robot can be adapted to a target robot of different embodiments.

Finally, this dissertation also presents a sim-to-real method for throwing and catching objects

with bimanual robots, where they need to cooperate precisely to interact with diverse objects at

high speed.

xvi

Chapter 1

Introduction

Deep reinforcement learning has demonstrated incredible performance on many human-

level challenging tasks, from video games like StarCraft and Dota [168, 14] to professional

Go games [151, 152]. When modern machine learning techniques learn to excel at specific

and well-defined tasks, their real-world applications are limited when generalization gaps exist

between training and testing environments [34, 164]. It remains challenging for robots to

understand physical entities of the world like humans do and adjust their learned skills to react

to environment changes. However, humans have the ability to extrapolate from prior knowledge

and experience to generalize across different situations. The ability to distill abstract information

enables us to adaptively improve and generalize to unseen scenarios.

Consider teaching a robot to pour a cup of tea by imitating a human expert. The robot

needs to understand the semantic and geometric meanings of the physical objects in the scene,

e.g., tea kettle, cups, plates and table. From demonstrations, it needs to associate positive rewards

for bringing the kettle to a cup and negative rewards for undesired behaviors like tossing plates

and knocking over cups. It also needs to layout a task plan and decompose a given high-level

objective into subgoals, e.g., fetching the kettle, pouring into the cup, and putting the kettle

back on the table. Once the robot understands the concepts for pouring tea, it needs to execute

the skills by taking into account the differences between the physical limitations of the human

demonstrator and itself. For example, the human hand has five fingers while the robot is equipped

1

Figure 1.1. A robot development process includes understanding the demonstrated concepts to
infer reward functions, developing corresponding skills and behaviors, and adapting to robot and
environment changes during deployment.

with a parallel gripper. How should the robot obtain a grasp pose which makes pouring easy

when the center of mass changes for the tilted kettle? Inspired by our reasoning process, this

dissertation proposes novel deep learning models to infer cost functions from demonstrations

which understand the semantics and logic from observations and novel domain adaptation

techniques to allow robots to solve real world problems. Fig. 1.1 highlights the core components

of this dissertation. The robot first infer the high-level structures and low-level reward functions

of the demonstrated task. It then develops skills that are consistent with the learned structure

and reward. Finally, the robot accounts for the physical differences in the demonstrator to carry

out the skills and imitate the desired behavior. On a high level, the main contributions of this

dissertation are as follows:

• First, it introduces novel techniques to learn reward functions from demonstrations, encap-

sulating semantic relations and logical constraints from observations.

• Second, it introduces novel domain adaptation approaches to address training and deploy-

ment mismatch, including robot embodiment difference and sim-to-real gap.

1.1 Learning from Demonstrations

Imitation learning learns a mapping from observations directly to a control policy that

matches expert demonstrations. However, it typically suffers from distribution mismatch between

2

training and testing and does not consider long-horizon planning. Inverse reinforcement learning

(IRL) aims at recovering a cost function under which the expert demonstrations are optimal.

Prior works in IRL include maximum-margin [139] and maximum-entropy [192] formulations.

In this dissertation, we investigate how to discover and exploit observation information, such

as semantics, geometry and logic, from demonstrated trajectories and design a cost function

that implicitly satisfy these constraints. Chapter 3 of this dissertation addresses the problem of

learning from demonstrations by understanding semantics and inferring logic. We propose a

cost function representation that is learned using semantic features and a differentiable motion

planning algorithm that efficiently optimizes the cost function parameters using an objective

function that maximizes the likelihood of the expert demonstrated behavior. We also propose

to discover hierarchical logic structure from demonstrations and encode as constraints in the

differentiable motion planning algorithm. The proposed methods allow us to generalize the

control policy to unseen environments and dynamic obstacles by understanding semantic entities

and solving long-horizon, sequential and compositional planning problems.

1.2 Generalization from Simulation to Real World

Reinforcement learning algorithms emerge as a promising tool for solving complex

decision making and control problems. However, it remains challenging to deploy the trained

policy on physically embodied agents. While simulation can provide training data at low cost,

it always inherits physical mismatches from reality. Common techniques for bridging this gap

include domain randomization [82, 4], where the policy is trained with perturbed simulation

settings in order to cover the real world data distribution, and domain adaptation [66, 166, 58],

where models learned in the source domain are adapted to a different target domain usually

through a unified feature space. Chapter 4 of this dissertation presents several approaches to

bridge the gap between training policies in simulation and deploying robots in real world. We

first present a framework to learn policy functions in latent action space that captures the task

3

structure when imitating expert behavior in complex robotic tasks. It allows adversarial imitation

learning algorithms to be trained efficiently in the latent structured action space, especially

for high-dimensional systems. Next, we present a novel approach which aligns source and

target robots with different embodiments in a common latent state and action space which is

trained with distribution matching and cycle consistency objectives. Through this latent space,

policies trained on the source robot in simulation can be transferred to a real target robot without

further finetuning. Finally, we demonstrate a bimanual robot manipulation skill where the policy

is trained with reinforcement learning in simulation and sim-to-real transfer is performed on

real robots. It precisely throws and catches diverse objects at high speed using two arms with

multi-finger hands.

4

Chapter 2

Background

This dissertation focuses on using inverse reinforcement learning algorithms to infer task

logic and reward function from demonstrations and on deploying the algorithms in autonomous

robot navigation and robot manipulation applications. This section provides background infor-

mation on reinforcement learning and inverse reinforcement learning.

2.1 Reinforcement Learning

In reinforcement learning (RL) [158] we consider a Markov decision process which

consists of

• a set of states S, where s ∈ S may be either discrete or continuous,

• a set of actions A, where a ∈ A may be either discrete or continuous,

• dynamics function p(s′ | s,a) that maps a state-action pair to a distribution of the next

state,

• a reward function r(s,a),

• a scalar discount factor γ ∈ (0,1] that emphasizes immediate rewards.

In this thesis, we may use the symbol x ∈ X to denote states interchangeably with s, and u ∈ U

to denote actions or controls interchangeably with a. Additionally, we define a cost function as

5

c(s,a) =−r(s,a). The goal of an RL algorithm is to learn a policy, which defines a distribution

over actions conditioned on states, π(a | s). A trajectory is a sequence of states and actions of

length H, given by τ = (s0,a0, . . . ,sH ,aH) where H might be infinite. The trajectory distribution

pπ for a given MDP and policy π is given by

pπ(τ) = p(s0)
H

∏
t=0

π(at | st)p(st+1 | st ,at). (2.1)

The value function of a policy, V π , can be expressed as an expectation under this trajectory

distribution

V π(s) = Eτ∼pπ

[
H

∑
t=0

γ
tr(s,a) | s0 = s

]
, (2.2)

and the optimal value function V ∗(s) = maxπ V π(s) is the maximal possible long-term return a

policy can achieve from a state s. A policy π∗ is optimal if V π∗(s) =V ∗(s) ∀s.

When the state and action spaces are discrete, a popular algorithm for calculating V ∗ and

π∗ is value iteration. We initialize V0(s) randomly and at each iteration k we compute:

Vk+1(s) = max
a

Qk(s,a) (2.3)

Qk(s,a) = r(s,a)+ γ ∑
s′

p(s′ | s,a)Vk(s′). (2.4)

It is well known that the value function Vk converges as k→ ∞ [16]. We define a stochastic

ε-greedy policy as:

πk(s) =

random a ∈ A with probability ε

∥A∥

argmax
a

Qk(s,a) with probability 1− ε

(2.5)

for small ε ≥ 0. The deterministic optimal policy can be obtained as k→ ∞ and ε → 0, i.e.,

6

π∗(s) = argmax
a

Q∞(s,a).

When the state and action spaces are continuous, policy gradient methods directly

optimize the policy π by computing the value function gradient. In this case, we assume the

policy (sometimes referred to as actor) is parameterized by a parameter vector θ . Typically, the

policy πθ (a | s) is represented by a deep neural network and θ are the neural network weights.

The gradient of the objective with respect to θ can be written as

∇θV πθ = Eτ∼pπθ

[
H

∑
t=0

γ
t
∇θ logπθ (at | st)

(
H

∑
t ′=t

γ
t ′−tr(st ′,at ′)−b(st)

)]
. (2.6)

The advantage function A(st ,at) = ∑
H
t ′=t γ t ′−tr(st ′,at ′)−b(st) which estimates the return of the

trajectory, can be learned as another neural network (sometimes referred to as critic) or it can be

simply be estimated with Monte Carlo samples from generated trajectories. The baseline b(st),

which depends only on the states and not actions, is used to reduce the variance of the return

estimator. Common algorithms for implementing policy gradients include SAC [70], DDPG

[110], TD3 [55], etc.

2.2 Inverse Reinforcement Learning

In inverse reinforcement learning (IRL), the reward function of the MDP is not provided.

Instead, a set of expert demonstrations D = {τ1, . . . ,τN} are supplied. The principal goal of

IRL is to infer the underlying reward r of the expert demonstrations, from which we can predict

behavior using standard RL algorithms. In maximum entropy inverse reinforcement learning

(MaxEnt IRL) [192], the demonstrations are modeled by a Boltzmann distribution, where the

energy is given by the reward function rφ :

pφ (τ) =
1

Zφ

exp(
H

∑
t=0

rφ (st ,at)). (2.7)

7

Intuitively speaking, the optimal trajectories have the highest likelihood and the expert can

generate suboptimal trajectories whose probabilities decrease exponentially as the trajectories

become more costly. The partition function Zφ is the integral of exp(∑H
t=0 rφ (st ,at)) over all

trajectories that are consistent with the dynamics of the environment. We can interpret the IRL

problem as solving the maximum likelihood problem of observing the demonstrated trajectories:

max
φ

Eτ∼D
[
log pφ (τ)

]
⇔max

φ
Eτ∼D

[
H

∑
t=0

rφ (st ,at)− logZφ

]
. (2.8)

When the state and action spaces are discrete with known dynamics and the reward function

is parameterized to be linear in reward features, we can solve the above optimization problem

with dynamic programming [192]. When the system is continuous and the reward function is

non-linear, importance sampling methods can be used to approximate the partition function Zφ

[50].

8

Chapter 3

Learning Cost Functions from Demonstra-
tions for Robot Navigation

Autonomous systems are expected to achieve reliable performance in increasingly com-

plex environments with increasingly complex objectives. Yet, it is often challenging to design a

mathematical formulation that captures all safety and liveness requirements across various opera-

tional conditions. Minimizing a misspecified cost function may lead to undesirable performance,

regardless of the quality of the optimization algorithm. However, a domain expert is often able to

demonstrate desirable or undesirable behavior that implicitly captures the task specifications. In

this chapter, we consider inverse reinforcement learning (IRL) problems in which observations

containing semantic and logic information about the environment are available.

We consider two motivating scenarios. First, Fig. 3.1 shows an autonomous vehicle

navigating in an urban environment. The car is equipped with sensors that can reveal information

about the semantic categories of surrounding objects and areas. An expert driver can reason about

a course of action based on this contextual information. For example, staying on the road relates

to making progress, while hitting the sidewalk or a tree should be avoided. One key challenge

in IRL is to infer a cost function when such expert reasoning is not explicit. If reasoning about

semantic entities can be learned from the expert demonstrations, the cost model may generalize

to new environment configurations. Next, we consider a navigation task in Fig. 3.2, requiring a

door to be unlocked before reaching a goal state. Instead of encoding the task requirements as a

9

Figure 3.1. Autonomous vehicle in an urban street, simulated via the CARLA simulator [41].
The vehicle is equipped with a LiDAR scanner, four RGB cameras, and a segmentation algorithm,
providing a semantically labeled point cloud. An expert driver demonstrates lane keeping (green)
and avoidance of sidewalks (pink) and buildings (gray). This chapter considers inferring the
expert’s cost function and generating behavior that can imitate the expert’s response to semantic
observations in new operational conditions.

cost function, an expert may provide several demonstrations of navigating to the goal, some of

which require picking up the key whenever the door is locked. A reinforcement learning agent

should infer the underlying logic sequence of the demonstrated task in order to learn the desired

behavior.

Imitation learning (IL) has a long history in reinforcement learning and robotics [142, 7,

5, 128, 190, 137, 125]. The goal is to learn a mapping from observations to a control policy to

mimic expert demonstrations. Behavioral cloning [142] is a supervised learning approach that

directly maximizes the likelihood of the expert demonstrated behavior. However, it typically

suffers from distribution mismatch between training and testing and does not consider long-

horizon planning. Another view of IL is through inverse reinforcement learning where the learner

recovers a cost function under which the expert is optimal [120, 121, 1]. Recently, [60] and [88]

independently developed a unifying probabilistic perspective for common IL algorithms using

various f-divergence metrics between the learned and expert policies as minimization objectives.

For example, behavioral cloning minimizes the Kullback-Leibler (KL) divergence between the

10

Figure 3.2. (Left) An example trajectory in the MiniGrid environment [28], where an agent has to
pick up a key, open the door, and navigate to the goal. (Right) The trajectory can be decomposed
into three segments, identified by hidden states ααα t . Transitions between the high-level states are
triggered by events, such as picking up key (σ0), or opening door (σ1).

learner and expert policy distribution while adversarial training methods, such as AIRL [53] and

GAIL [77] minimize the KL divergence and Jenson Shannon divergence, respectively, between

state-control distributions under the learned and expert policies.

Learning a cost function from demonstration requires a control policy that is differentiable

with respect to the cost parameters. Computing policy derivatives has been addressed by several

successful IRL approaches [120, 139, 192]. Early works assume that the cost is linear in the

feature vector and aim at matching the feature expectations of the learned and expert policies.

[139] compute subgradients of planning algorithms to guarantee that the expected reward of an

expert policy is better than any other policy by a margin. Value iteration networks (VIN) by

[161] show that the value iteration algorithm can be approximated by a series of convolution and

maxpooling layers, allowing automatic differentiation to learn the cost function end-to-end. [192]

develop a dynamic programming algorithm to maximize the likelihood of observed expert data

and learn a policy with maximum entropy (MaxEnt). Many works [107, 174, 154] extend MaxEnt

to learn a nonlinear cost function using Gaussian Processes or deep neural networks. [50] use a

sampling-based approximation of the MaxEnt partition function to learn the cost function under

unknown dynamics for high-dimensional continuous systems. However, the cost in most existing

work is learned offline using full observation sequences from the expert demonstrations. A

11

major contribution of this chapter is to develop cost representations and planning algorithms that

rely only on causal partial observations. In the case where demonstrations are suboptimal with

respect to the true cost function, a learned cost function can be recovered with preference-based

comparisons [22, 83], self-supervision [24] or human corrections and improvements [12, 81].

In this chapter, we assume that only the demonstrations are provided and we cannot assess the

demonstrator’s suboptimality with respect to the unknown true cost.

There has been significant progress in semantic segmentation techniques, including deep

neural networks for RGB image segmentation [126, 9, 25] and point cloud labeling via spherical

depth projection [172, 40, 115, 36]. Maps that store semantic information can be generated

from segmented images [146, 111]. [57] and [156] generalize binary occupancy mapping [78]

to multi-class semantic mapping in 3D. In this work, we parameterize the navigation cost

of an autonomous vehicle as a nonlinear function of such semantic map features to explain

expert demonstrations. Achieving safe and robust navigation is directly coupled with the

quality of the environment representation and the cost function specifying desirable behaviors.

Traditional approaches combine geometric mapping of occupancy probability [78] or distance

to the nearest obstacle [122] with hand-specified planning cost functions. Recent advances in

deep reinforcement learning demonstrated that control inputs may be predicted directly from

sensory observations [105]. However, special model designs [89] that serve as a latent map are

needed in navigation tasks where simple reactive policies are not feasible. [68] decompose visual

navigation into two separate stages explicitly: mapping the environment from first-person RGB

images in local coordinates and planning through the constructed map with VIN [161]. Our

model constructs a global map instead and, yet, remains scalable with the size of the environment

due to our sparse tensor implementation.

Hierarchical reinforcement learning and options framework [160, 99, 8, 140] are for-

mulations that learn task decomposition and temporal abstraction. Options are high-level

macro-actions consisting of primitive actions. [51] introduces a multi-level hierarchical model

to discover options from demonstrations where option boundaries are inferred for trajectory

12

segmentation. [92] uses an unsupervised encoder-decoder model to predict subtask segmentation

and categorical latent encoding. [176] uses graph recurrent neural networks with relational

features between objects for high-level planning and low-level primitive dynamics prediction.

Formal methods have been applied in robotics to prove and guarantee different behavioral

properties such as safety and correctness [131, 112, 46, 44]. For example, linear temporal logic

(LTL) [11] is used to specify safety and liveness objectives with temporal ordering constraints in

control and reinforcement learning problems [97, 98, 44, 45, 17, 52]. Specification mining of

LTL formulas can learn finite state automata from execution traces [103, 84]. LTL formulas can

also be inferred from Bayesian inference [149] or from graph connectivity of directed acyclic

graphs over atomic propositions [31]. We consider weighted finite automata (WFA) in which the

transitions carry weights. Whereas classical automata determine whether a word is accepted or

rejected, WFA can compute quantitative values as a function of the weighted transitions from

the execution of words [43]. WFA offer the expressive power to model quantitative properties,

such as resources, time or cost, of the demonstrated behavior. Under certain assumptions of the

semiring on which the WFA is defined, it can be shown that WFA is expressively equivalant to

weighted monadic second-order (MSO) logic [42, 43].

In this chapter, we first propose an IRL algorithm that learns a cost function from semantic

features of the environment. While other works learn a black-box neural network parametrization

to map observations directly to costs [174, 154], we take advantage of semantic segmentation

and occupancy mapping before inferring the cost function. A metric-semantic map is constructed

from causal partial semantic observations of the environment to provide features for cost function

learning. Instead of dynamic programming over the entire state space, our formulation allows

efficient deterministic search over a subset of promising states. A key advantage of our approach

is that this deterministic planning process can be differentiated in closed-form with respect to the

parameters of the learnable cost function. Next, we introduce an IRL model that learns to infer

high-level task specifications in addition to the low-level control costs to imitate demonstrated

behavior. We use a spectral method to learn a WFA which encodes the task logic structure

13

from demonstrations. The agent’s interaction with the environment is modeled as a product

between the learned WFA and a labeled Markov decision process (L-MDP). We demonstrate

that our WFA-IRL method correctly classifies accepting and rejecting sequences and learns

a cost function that generalizes the demonstrated behavior to new settings. In summary, the

contributions of this chapter are:

• We propose a cost function representation composed of a map encoder, capturing semantic

class probabilities from online, first-person, distance and semantic observations and a cost

encoder, defined as a deep neural network over the semantic features.

• We propose to encode the high-level demonstration structure as weighted finite automata,

which can be combined with the low-level space for efficient motion planning.

• We propose a new expert model which enables cost parameter optimization with a closed-

form subgradient of the cost-to-go, computed only over a subset of promising states.

• We evaluate our models in autonomous navigation experiments in a 2D minigrid environ-

ment [28] with multiple semantic categories as well as an autonomous driving task that

respects traffic rules in the CARLA simulator [41].

3.1 Differentiable Semantic Mapping and Planning

3.1.1 Problem Formulation

Environment and Agent Models

Consider an agent aiming to reach a goal in an a priori unknown environment with

different terrain types. Fig. 3.3 shows a grid-world illustration of this setting. Let xt ∈ X

denote the agent state (e.g., pose, twist, etc.) at discrete time t. In this work, we will consider

xt ∈ SE(2) composed of 2D position and orientation. Let xg ∈ X be the goal state. The agent

state evolves according to known deterministic dynamics, xt+1 = f (xt ,ut), with control input

ut ∈ U . The control space U is assumed finite. Let K = {0,1,2, . . . ,K} be a set of class labels,

14

where 0 denotes “free” space and k ∈ K\{0} denotes a particular semantic class such as road,

sidewalk, or car. Let m∗ : X →K be a function specifying the true semantic occupancy of the

environment by labeling states with semantic classes. We implicitly assume that m∗ assigns

labels to agent positions rather than to other state variables. We do not introduce an output

function, mapping an agent state to its position, to simplify the notation. LetM be the space of

possible environment realizations m∗. Let c∗ : X ×U ×M→ R≥0 be a cost function specifying

desirable agent behavior in a given environment, e.g., according to an expert user or an optimal

design. We assume that the agent does not have access to either the true semantic map m∗

or the true cost function c∗. However, the agent is able to obtain point-cloud observations

Pt = {(pl,yl)}l ∈ P at each step t, where pl is the measurement location. In the following

sections, we consider pl ∈ R2 for MiniGrid experiments in Sec. 3.1.3 and pl ∈ R3 for CARLA

experiments in Sec. 3.1.3. The vector of weights yl =
[
y1

l , . . . ,y
K
l

]⊤, where yk
l ∈ R, indicates the

likelihood that semantic class k ∈ K\{0} was observed. For example, yl ∈ RK can be obtained

from the softmax output of a semantic segmentation algorithm [126, 9, 25] that predicts the

semantic class of the corresponding measurement location pl in an RGBD image. The observed

point cloud Pt depends on the agent state xt and the environment realization m∗.

Expert Model

We assume that an expert user or algorithm demonstrates desirable agent behavior in

the form of a training set D :=
{
(xt,n,u∗t,n,Pt,n,xg,n)

}Tn,N
t=1,n=1. The training set consists of N

demonstrated executions with different lengths Tn for n ∈ {1, . . . ,N}. Each demonstration trajec-

tory contains the agent states xt,n, expert controls u∗t,n, and sensor observations Pt,n encountered

during navigation to a goal state xg,n.

The design of an IRL algorithm depends on a model of the stochastic control policy

π∗(u | x;c∗,m∗) used by the expert to generate the training data D, given the true cost c∗ and

environment m∗. The state of the art relies on the MaxEnt model [192], which assumes that the

expert minimizes the weighted sum of the stage cost c∗(x,u;m∗) and the negative policy entropy

15

Figure 3.3. A 9×9 grid environment with cells from four semantic classes: empty, wall, lawn,
lava. An autonomous agent (red triangle, facing down) starts from the top left corner and is
heading towards the goal in the bottom right. The agent prefers traversing the lawn but dislikes
lava. LiDAR points detect the semantic labels of the corresponding tiles (gray on empty, white
on wall, purple on lawn and cyan on lava).

Explored area with semantics

Goal

Unexplored area

State space

Current position

Area of Bellman update

Motion planning

Motion
planning

Policy
evaluation

Stoch. Grad. Descent on Closed form gradient

Training phase

Map
encoding

Cost
encoding

Cost representation

Figure 3.4. Architecture for cost function learning from demonstrations with semantic observa-
tions. Our main contribution is a cost representation, combining a probabilistic semantic map
encoder, with recurrent dependence on semantic observations P1:t , and a cost encoder, defined
over the semantic features ht . Efficient forward policy computation and closed-form subgradient
backpropagation are used to optimize the cost representation parameters θ in order to explain
the expert behavior.

16

over the agent trajectory.

We propose a new model of expert behavior to explain rational deviation from optimality.

We assume that the expert is aware of the optimal value function:

Q∗(xt ,ut ;c∗,m∗) := min
T,ut+1:T−1

T−1

∑
k=t

c∗(xk,uk;m∗) s.t. xk+1 = f (xk,uk), xT = xg. (3.1)

but does not always choose strictly rational actions. Instead, the expert behavior is modeled as a

Boltzmann policy over the optimal value function:

π
∗(ut | xt ;c∗,m∗) =

exp(− 1
α

Q∗(xt ,ut ;c∗,m∗))

∑u∈U exp(− 1
α

Q∗(xt ,u;c∗,m∗))
(3.2)

where α is a temperature parameter. The Boltzmann policy stipulates an exponential preference

of controls that incur low long-term costs. We will show in Sec. 3.1.2 that this expert model

allows very efficient policy search as well as computation of the policy gradient with respect

to the stage cost, which is needed for inverse cost learning. In contrast, the MaxEnt policy

requires either value iteration over the full state space [192] or sampling-based estimation of a

partition function [50]. Section 3.1.4 provides a comparison between our model and the MaxEnt

formulation.

Problem Statement

Given the training set D, our goal is to:

• learn a cost function estimate ct : X ×U ×P×Θ→ R≥0 that depends on an observation

sequence P1:t from the true latent environment and is parameterized by θθθ ∈Θ,

• design a stochastic policy πt from ct such that the agent behavior under πt matches the

demonstrations in D.

17

The optimal value function corresponding to a stage cost estimate ct is:

Qt(xt ,ut ;P1:t ,θθθ) := min
T,ut+1:T−1

T−1

∑
k=t

ct(xk,uk;P1:t ,θθθ) s.t. xk+1 = f (xk,uk), xT = xg. (3.3)

Following the expert model proposed in Sec. 3.1.1, we define a Boltzmann policy corresponding

to Qt :

πt(ut | xt ;P1:t ,θθθ) ∝ exp(− 1
α

Qt(xt ,ut ;P1:t ,θθθ)) (3.4)

and aim to optimize the stage cost parameters θθθ to match the demonstrations in D.

Problem 1. Given demonstrations D, optimize the cost function parameters θθθ so that log-

likelihood of the demonstrated controls u∗t,n is maximized by policy functions πt,n obtained

according to (3.4):

min
θθθ

L(θθθ) :=−
N

∑
n=1

Tn

∑
t=1

logπt,n(u∗t,n | xt,n;P1:t,n,θθθ). (3.5)

The problem setup is illustrated in Fig. 3.4. An important consequence of our expert

model is that the computation of the optimal value function corresponding to a given stage cost

estimate is a standard deterministic shortest path (DSP) problem [16]. However, the challenge

is to make the value function computation differentiable with respect to the cost parameters θθθ

in order to propagate the loss in (3.5) back through the DSP problem to update θθθ . Once the

parameters are optimized, the associated agent behavior can be generalized to navigation tasks in

new partially observable environments by evaluating the cost ct based on the observations P1:t

iteratively and re-computing the associated policy πt .

3.1.2 Cost Function Representation and Learning

We propose a cost function representation with two components: a semantic occupancy

map encoder with parameters ΨΨΨ and a cost encoder with parameters φφφ . The model is differen-

18

tiable by design, allowing its parameters to be optimized by the subsequent planning algorithm

described in Sec. 3.1.2.

Semantic Occupancy Map Encoder

We develop a semantic occupancy map that stores the likelihood of the different semantic

categories in K in different areas of the map. We discretize the state space X into J cells and let

m =
[
m1, . . . ,mJ]⊤ ∈ KJ be an a priori unknown vector of true semantic labels over the cells.

Given the agent states x1:t and observations P1:t over time, our model maintains the semantic

occupancy posterior P(m = k | x1:t ,P1:t), where k =
[
k1, . . . ,kJ]⊤ ∈ KJ . The representation

complexity may be reduced significantly if one assumes independence among the map cells m j:

P(m = k | x1:t ,P1:t) = ∏
J
j=1P(m j = k j | x1:t ,P1:t).

We generalize the binary occupancy grid mapping algorithm [163, 78] to obtain incre-

mental Bayesian updates for the mutli-class probability at each cell m j. In detail, at time t−1,

we maintain a vector ht−1, j of class log-odds at each cell and update them given the observation

Pt obtained from state xt at time t.

Definition 1. The vector of class log-odds associated with cell m j at time t is ht, j =
[
h0

t, j, . . . ,h
K
t, j

]⊤
with elements:

hk
t, j := log

P(m j = k | x1:t ,P1:t)

P(m j = 0 | x1:t ,P1:t)
for k ∈ K . (3.6)

Note that by definition, h0
t, j = 0. Applying Bayes rule to (3.6) leads to a recursive

Bayesian update for the log-odds vector:

hk
t, j = hk

t−1, j + log
p(Pt | m j = k,xt)

p(Pt | m j = 0,xt)
(3.7)

= hk
t−1, j + ∑

(pl ,yl)∈Pt

(
log

P(m j = k | xt ,(pl,yl))

P(m j = 0 | xt ,(pl,yl))
−hk

0, j

)
,

where p(Pt | m j = k,xt) is the likelihood of observing Pt from agent state xt when cell m j has

semantic label k. Here, we assume that the observations (pl,yl) ∈ Pt at time t, given the cell m j

19

and state xt , are independent among each other and of the previous observations P1:t−1. The

semantic class posterior can be recovered from the log-odds vector ht, j via a softmax function

P(m j = k | x1:t ,P1:t) = σ k(ht, j), where σ : RK+1→ RK+1 satisfies:

σ(z) =
[
σ

0(z), . . . ,σK(z)
]⊤

,

σ
k(z) =

exp(zk)

∑k′∈K exp(zk′)
,

log
σ k(z)
σ k′(z)

= zk− zk′ .

(3.8)

To complete the Bayesian update in (3.7), we propose a parametric inverse observation model,

P(m j = k | xt ,(pl,yl)), relating the class likelihood of map cell m j to a labeled point (pl,yl)

obtained from state xt .

Definition 2. Consider a labeled point (pl,yl) observed from state xt . Let Jt,l ⊂ {1, . . . ,J} be

the set of map cells intersected by the sensor ray from xt toward pl . Let m j be an arbitrary map

cell and d(x,m j) be the distance between x and the center of mass of m j. Define the inverse

observation model of the class label of cell m j as:

P(m j = k | xt ,(pl,yl)) =

σ k(ΨΨΨl ȳlδ pt,l, j), δ pt,l, j ≤ ε, j ∈ Jt,l

σ k(h0, j), otherwise,
(3.9)

where ΨΨΨl ∈ R(K+1)×(K+1) is a learnable parameter matrix, δ pt,l, j := d(xt ,m j)−∥pl−xt∥2,

ε > 0 is a hyperparameter (e.g., set to half the size of a cell), and ȳl :=
[
0,y⊤l

]⊤ is augmented

with a trivial observation for the “free” class.

Intuitively, the inverse observation model specifies that cells intersected by the sensor

ray are updated according to their distance to the ray endpoint and the detected semantic class

probability, while the class likelihoods of other cells remain unchanged and equal to the prior.

For example, if m j is intersected, the likelihood of the class label is determined by a softmax

20

squashing of a linear transformation of the measurement vector yl with parameters ΨΨΨl , scaled by

the distance δ pt,l, j. Otherwise, Def. 2 specifies an uninformative class likelihood in terms of the

prior log-odds vector h0, j of cell m j (e.g., h0, j = 0 specifies a uniform prior over the semantic

classes).

Definition 3. The log-odds vector of the inverse observation model associated with cell m j and

point observation (pl,yl) from state xt is g j(xt ,(pl,yl)) with elements:

gk
j(xt ,(pl,yl)) = log

P(m j = k | xt ,(pl,yl))

P(m j = 0 | xt ,(pl,yl))
. (3.10)

The log-odds vector of the inverse observation model, g j, specifies the increment for

the Bayesian update of the cell log-odds ht, j in (3.7). Using the softmax properties in (3.8) and

Def. 2, we can express g j as:

g j(xt ,(pl,yl)) =

ΨΨΨl ȳlδ pt,l, j, δ pt,l, j ≤ ε, j ∈ Jt,l

h0, j, otherwise.
(3.11)

Note that the inverse observation model definition in (3.9) resembles a single neural network layer.

One can also specify a more expressive multi-layer neural network that maps the observation yl

and the distance differential δ pt,l, j along the l-th ray to the log-odds vector:

g j(xt ,(pl,yl);ΨΨΨl) =

NN(ȳl,δ pt,l, j;ΨΨΨl) δ pt,l, j ≤ ε, j ∈ Jt,l

h0, j otherwise.
(3.12)

Proposition 1. Given a labeled point cloud Pt = {(pl,yl)}l obtained from state xt at time t, the

Bayesian update of the log-odds vector of any map cell m j is:

ht, j = ht−1, j + ∑
(pl ,yl)∈Pt

[
g j(xt ,(pl,yl))−h0, j

]
. (3.13)

21

Figure 3.5. Illustration of the log-odds update in (3.13) for a single point observation. The
sensor ray (blue) hits an obstacle (black) in cell m j. The log-odds increment g j−h0, j on each
cell is shown in grayscale.

Fig. 3.5 illustrates the increment of the log-odds vector ht, j for a single point (pl,yl).

The log-odds are increased more at m j than other cells far away from the observed point. When

ε in (3.12) is set to half the cell size, values of the cells beyond the observed point are unchanged.

Fig. 3.6 shows the semantic class probability prediction for the example in Fig. 3.3 using the

inverse observation model in Def. 2 and the log-odds update in (3.13).

Cost Encoder

We also develop a cost encoder that uses the semantic occupancy log odds ht to define a

cost function estimate ct(x,u) at a given state-control pair (x,u). A convolutional neural network

(CNN) [62] with parameters φφφ can extract cost features from the multi-class occupancy map:

ct = CNN(ht ;φφφ). We adopt a fully convolutional network (FCN) architecture [9] to parameterize

the cost function over the semantic class probabilities. The model is a multi-scale architecture

that performs downsamples and upsamples to extract feature maps at different layers. Features

from multiple scales ensure that the cost function is aware of both local and global context from

the semantic map posterior. FCNs are also translation equivariant [35], ensuring that map regions

of the same semantic class infer the same cost, irrespective of the specific locations of those

regions. Our model architecture (illustrated in Fig. 3.8) consists of a series of convolutional layers

with 32 channels, batch normalization [80] and ReLU layers, followed by a max-pooling layer

with 2×2 window with stride 2. The feature maps go through another series of convolutional

layers with 64 channels, batch normalization, ReLU and max-pooling layers before they are

upsampled by reusing the max-pooling indices. The feature maps then go through two series of

22

Figure 3.6. The semantic occupancy probability of each class for the example in Fig. 3.3. Using
the map encoder described in Sec. 3.1.2, the semantic categories (wall, lawn, lava, etc.) can be
identified correctly after training.

23

Figure 3.7. The learned cost function for the example in Fig. 3.3. The cost of control “right”
is the smallest at the agent’s location after training. The agent correctly predicts that it should
move right and step on the lawn.

upsampling, convolution, batch normalization and ReLU layers to produce the final cost function

ct . We add a small positive constant to the ReLU output to ensure that ct > 0 and there are no

negative cycles or cost-free paths during planning.

In summary, the semantic map encoder (parameterized by {ΨΨΨl}l) takes the agent state

history x1:t and point cloud observation history P1:t as inputs to encode a semantic map probability

as discussed in Sec. 3.1.2. The FCN cost encoder (parameterized by φφφ) in turn defines a cost

function from the extracted semantic features. The learnable parameters of the cost function,

ct(x,u;P1:t ,θθθ), are θθθ = {{ΨΨΨl}l ,φφφ}.

24

Figure 3.8. A fully convolutional encoder-decoder neural network similar to that in [9] is used
as the cost encoder to learn features from semantic map ht to cost function ct .

Cost Learning via Differentiable Planning

We focus on optimizing the parameters θθθ of the cost representation ct(x,u;P1:t ,θθθ)

developed in Sec. 3.1.2. Since the true cost c∗ is not directly observable, we need to differentiate

the loss function L(θθθ) in (3.5), which, in turn, requires differentiating through the DSP problem

in (3.3) with respect to the cost function estimate ct .

Previous works rely on dynamic programming to solve the DSP problem in (3.3). For

example, the VIN model [161] approximates T iterations of the value iteration algorithm by a

neural network with T convolutional and minpooling layers. This allows VIN to be differentiable

with respect to the stage cost ct but it scales poorly with the size of the problem due to the full

Bellman backups (convolutions and minpooling) over the state and control space. We observe

that it is not necessary to determine the optimal cost-to-go Qt(x,u) at every state x ∈ X and

control u ∈ U . Instead of dynamic programming, a motion planning algorithm, such as a variant

of A* [109] or RRT [101, 85], may be used to solve problem (3.3) efficiently and determine the

optimal cost-to-go Qt(x,u) only over a subset of promising states. The subgradient method of

25

[150, 139] may then be employed to obtain the subgradient of Qt(xt ,ut) with respect to ct along

the optimal path.

Deterministic Shortest Path

Given a cost estimate ct , we use the A* algorithm (Alg. 1) to solve the DSP problem in

(3.3) and obtain the optimal cost-to-go Qt . The algorithm starts the search from the goal state xg

and proceeds backwards towards the current state xt . It maintains an OPEN set of states, which

may potentially lie along a shortest path, and a CLOSED list of states, whose optimal value

minu Qt(x,u) has been determined exactly. At each iteration, the algorithm pops a state x from

OPEN with the smallest g(x)+ εh(xt ,x) value, where g(x) is an estimate of the cost-to-go from

x to xg and h(xt ,x) is a heuristic function that does not overestimate the true cost from xt to x

and satisfies the triangle inequality. We find all predecessor states x′ and their corresponding

control u′ that lead to x under the known dynamics model x = f (x′,u′) and update their g values

if there is a lower cost trajectory from x′ to xg through x. The algorithm terminates when all

neighbors of the current state xt are in the CLOSED set. The following relations are satisfied at

any time throughout the search:

Qt(x,u) = ct(x,u)+g(f (x,u)),∀ f (x,u) ∈CLOSED,

Qt(x,u)≤ ct(x,u)+g(f (x,u)),∀ f (x,u) /∈CLOSED.

The algorithm terminates only after all neighbors f (xt ,u) of the current state xt are in CLOSED

to guarantee that the optimal cost-to-go Qt(xt ,u) at xt is exact. A simple choice of heuristic

that guarantees the above relations is h(x,x′) = 0, which reduces A* to Dijkstra’s algorithm.

Alternatively, the cost encoder output may be designed to ensure that ct(x,u)≥ 1, which allows

using Manhattan distance, h(x,x′) = ∥x−x′∥1, as the heuristic.

Finally, a Boltzmann policy πt(u | x) can be defined using the g values returned by A*

26

for any x ∈ X :

πt(u | x) ∝ exp
(
− 1

α
(ct(x,u)+g(f (x,u)))

)
. (3.14)

The policy discourages controls that lead to states outside of CLOSED because ct(x,u) +

g(f (x,u)) overestimates Qt(x,u). For any unvisited states, the policy is uniform since g values

are initialized to infinity. In practice, we only need to query the policy at the current state xt ,

which is always in CLOSED, for the loss function L(θθθ) in (3.5) during training and policy

inference during testing.

Algorithm 1. A* motion planning
procedure PLAN(xt ,xg,ct ,h,ε)

OPEN←
{

xg
}

, CLOSED←{}
g(x)← ∞,∀x ∈ X , g(xg)← 0
while ∃u ∈ U s.t. f (xt ,u) /∈CLOSED do

Remove x from OPEN with smallest g(x)+ εh(xt ,x) and insert in CLOSED
for (x′,u′) ∈ Predecessors(x) do

if x′ /∈CLOSED and g(x′)> g(x)+ ct(x′,u′) then
g(x′)← g(x)+ ct(x′,u′)
CHILD(x′)← x
if x′ ∈ OPEN then

Update priority of x′ with g(x′)+ εh(xt ,x′)
else

OPEN← OPEN∪{x′}
procedure PREDECESSORS(x)

return {(x′,u′) ∈ X ×U | x = f (x′,u′)}

Backpropagation through Planning

Having solved the DSP problem in (3.3) for a fixed cost function ct , we now discuss

how to optimize the cost parameters θθθ such that the planned policy in (3.14) minimizes the loss

in (3.5). Our goal is to compute the gradient dL(θθθ)
dθθθ

, using the chain rule, in terms of ∂L(θθθ)
∂Qt(xt ,ut)

,
∂Qt(xt ,ut)
∂ct(x,u) , and ∂ct(x,u)

∂θθθ
. The first gradient term can be obtained analytically from (3.5) and (3.4), as

we show later, while the third one can be obtained via backpropagation (automatic differentiation)

through the neural network cost model ct(x,u;P1:t ,θθθ) developed in Sec. 3.1.2. We focus on

computing the second gradient term.

27

We rewrite Qt(xt ,ut) in a form that makes its subgradient with respect to ct(x,u) obvious.

Let T (xt ,ut) be the set of trajectories, τττ = xt ,ut ,xt+1,ut+1, . . . ,xT−1,uT−1,xT , of length T −

t + 1 that start at xt , ut , satisfy transitions xt+1 = f (xt ,ut), and terminate at xT = xg. Let

τττ∗ ∈ T (xt ,ut) be an optimal trajectory corresponding to the optimal cost-to-go Qt(xt ,ut). Define

a state-control visitation function which counts the number of times transition (x,u) appears in

τττ:

µτττ(x,u) :=
T−1

∑
k=t

1(xk,uk)=(x,u). (3.15)

The optimal cost-to-go Qt(xt ,ut) can be viewed as a minimum over trajectories T (xt ,ut) of the

inner product between the cost function ct and the visitation function µτττ :

Qt(xt ,ut) = min
τττ
∈ T (xt ,ut) ∑

x∈X ,u∈U
ct(x,u)µτττ(x,u), (3.16)

where X can be assumed finite because both T and U are finite. We use the subgradient method

[150, 139] to compute a subgradient of Qt(xt ,ut) with respect to ct .

Lemma 1. Let f (x,y) be differentiable and convex in x. Then, ∇x f (x,y∗), where y∗ :=

argminy f (x,y), is a subgradient of the piecewise-differentiable convex function g(x) :=

miny f (x,y).

Applying Lemma 1 to (3.16) leads to the following subgradient of the optimal cost-to-go

function:
∂Qt(xt ,ut)

∂ct(x,u)
= µτττ∗(x,u) (3.17)

which can be obtained along the optimal trajectory τττ∗ by tracing the CHILD relations returned

by Alg. 1. Fig. 3.9 shows an illustration of this subgradient computation with respect to the cost

estimate in Fig. 3.7 for the example in Fig. 3.3. The result in (3.17) and the chain rule allow us

to obtain a complete subgradient of L(θθθ).

Proposition 2. A subgradient of the loss function L(θθθ) in (3.5) with respect to θθθ can be obtained

28

Figure 3.9. Subgradient of the optimal cost-to-go Qt(xt ,ut) for each control ut with respect to
the cost ct(x,u) in Fig. 3.7.

29

as:

∂L(θθθ)
∂θθθ

=−
N

∑
n=1

Tn

∑
t=1

d logπt,n(u∗t,n | xt,n)

dθθθ
=−

N

∑
n=1

Tn

∑
t=1

∑
ut,n∈U

d logπt,n(u∗t,n | xt,n)

dQt,n(xt,n,ut,n)

dQt,n(xt,n,ut,n)

dθθθ

=−
N

∑
n=1

Tn

∑
t=1

∑
ut,n∈U

1
α

(
1{ut,n=u∗t,n}−πt,n(ut,n | xt,n)

)
× ∑

(x,u)∈τττ∗

∂Qt,n(xt,n,ut,n)

∂ct(x,u)
∂ct(x,u)

∂θθθ
(3.18)

Algorithms

The computation graph implied by Prop. 2 is illustrated in Fig. 3.4. The graph consists of

a cost representation layer and a differentiable planning layer, allowing end-to-end minimization

of L(θθθ) via stochastic subgradient descent. The training algorithm for solving Problem 1 is

shown in Alg. 2. The testing algorithm that enables generalizing the learned semantic mapping

and planning behavior to new sensory data in new environments is shown in Alg. 3.

Algorithm 2. Train cost parameters θθθ

Input: Dataset D=
{
(xt,n,u∗t,n,Pt,n,xg,n)

}Tn,N
t=1,n=1

1: while θθθ not converged do
2: L(θθθ)← 0
3: for n = 1, . . . ,N and t = 1, . . . ,Tn do
4: Update ct,n using xt,n and Pt,n as in Sec. 3.1.2
5: Get Qt,n(xt,n,u) from Alg. 1 with cost ct,n
6: Get πt,n(u | xt,n) in (3.4) from Qt,n(xt,n,u)
7: L(θθθ)←L(θθθ)− logπt,n(u∗t,n | xt,n)

Update θθθ ← θθθ −η∇L(θθθ) via Prop. 2
Output: Trained cost function parameters θθθ

Sparse Tensor Implementation

In this section, we propose a sparse tensor implementation of the map and cost variables

introduced in Sec. 3.1.2. The region explored during a single navigation trajectory is usually

a small subset of the full environment due to the agent’s limited sensing range. The map and

cost variables ht , gt , ct(x,u) thus contains many 0 elements corresponding to “free” space or

unexplored regions and only a small subset of the states in ct(x,u) are queried during planning

30

Algorithm 3. Test control policy πt

Input: Start state xs, goal state xg, cost parameters θθθ

1: Current state xt ← xs
2: while xt ̸= xg and navigation not failed do
3: Make an observation Pt
4: Update ct using xt and Pt as in Sec. 3.1.2
5: Get Qt(xt ,u) from Alg. 1 with cost ct
6: Get πt(u | xt) in (3.4) from Qt(xt ,u)
7: xt ← f (xt ,ut) with ut := argmax

u
πt(u | xt)

Output: Navigation succeeds or fails at xt

and parameter optimization in Sec. 3.1.2. Representing these variables as dense matrices is

computationally and memory inefficient. Instead, we propose an implementation of the map

encoder and cost encoder that exploits the sparse structure of these matrices. [32] developed the

Minkowski Engine, an automatic differentiation neural network library for sparse tensors. This

library is tailored for our case as we require automatic differentiation for operations among the

variables ht , gt , ct in order to learn the cost parameters θθθ .

During training, we pre-compute the variable δ pt,l, j over all points pl from a point cloud

Pt and all grid cells m j. This results in a matrix Rt ∈RK×J where the entry corresponding to cell

m j stores the vector ylδ pt,l, j
1. The matrix Rt is then converted to COOrdinate list (COO) format

[162], specifying the nonzero indices Ct ∈ RNnz×1 and their feature values Ft ∈ RNnz×K , where

Nnz≪ J if Rt is sparse. To construct Ct and Ft , we append non-zero features ylδ pt,l, j to Ft and

their coordinates j in Rt to Ct . The inverse observation model log-odds gt can be computed from

Ct and Ft via (3.11) and represented in COO format as well. Hence, a sparse representation of

the semantic occupancy log-odds ht can be obtained by accumulating gt over time via (3.13).

We use the sparse tensor operations (e.g., convolution, batch normalization, pooling, etc.)

provided by the Minkowski Engine in place of their dense tensor counterparts in the cost encoder

defined in Sec. 3.1.2. For example, the convolution kernel does not slide sequentially over each

entry in a dense tensor but is defined only over the indices in Ct , skipping computations at the 0

1In our experiments, we found that storing only yl at the cell m j where pl lies, instead of along the sensor ray,
does not degrade performance.

31

elements. To ensure that the sparse tensors are compatible in the backpropagtion step of the cost

parameter learning (Sec. 3.1.2), the analytic subgradient in (3.18) should also be provided in

sparse COO format. We implement a custom operation in which the forward function computes

the cost-to-go Qt(xt ,ut) from ct(x,u) via Alg. 1 and the backward function multiplies the sparse

matrix ∂Qt(xt ,ut)
∂ct(x,u) with the previous gradient in the computation graph, ∂L(θθθ)

∂Qt(xt ,ut)
, to get ∂L(θθθ)

∂ct(x,u) .

The output gradient ∂L(θθθ)
∂ct(x,u) is used as input to the downstream operations defined in Sec. 3.1.2

and Sec. 3.1.2 to update the cost parameters θθθ .

3.1.3 Results

MiniGrid Experiment

We first demonstrate our inverse reinforcement learning approach in a synthetic minigrid

environment [28]. We consider a simplified setting to help visualize and understand the differ-

entiable semantic mapping and planning components2. A more realistic autonomous driving

setting is demonstrated in Sec. 3.1.3.

Table 3.1. Validation and test results for the 16×16 and 64×64 minigrid environments. We
report the negative log-likelihood (NLL) and prediction accuracy (Acc) of the validation set
expert controls and the trajectory success rate (TSR) and modified Hausdorff distance (MHD)
between the agent and the expert trajectories on the test set. See Sec. 3.1.3 for precise definitions
of the metrics.

16×16 64×64

Model NLL Acc (%) TSR (%) MHD NLL Acc (%) TSR (%) MHD

DeepMaxEnt 0.333 87.7 85.5 0.783 0.160 92.5 86.3 2.305
Ours 0.247 91.9 93.0 0.208 0.153 95.2 95.6 1.097

Environment: Grid environments of sizes 16×16 and 64×64 are generated by sampling

a random number of random length rectangles with semantic labels fromK := {empty,wall, lava,

lawn}. One such environment is shown in Fig. 3.10. The agent motion is modeled over a 4-

connected grid such that a control ut from U := {up,down, left,right} causes a transition from

2Our code for the minigrid experiments is open-sourced at https://github.com/tianyudwang/sirl.

32

https://github.com/tianyudwang/sirl

xt to one of the four neighboring tiles xt+1. A wall tile is not traversable and a transition to it

does not change the agent’s position.

Sensor: At each step t, the agent receives 72 labeled points Pt = {pl,yl}l , obtained from

ray-tracing a 360◦ field of view at angular resolution of 5◦ with maximum range of 3 grid cells

and returning the grid location pl of the hit point and its semantic class encoded in a one-hot

vector yl . See Fig. 3.3 for an illustration. The sensing range is smaller than the environment size,

making the environment only partially observable at any given time.

Demonstrations: Expert demonstrations are obtained by running a shortest path algorithm

on the true map m∗, where the cost of arriving at an empty, wall, lava, or lawn tile is 1, 100, 10,

0.5, respectively. We generate 10000, 1000, and 1000 random map configurations for training,

validation, and testing, respectively. Start and goal locations are randomly assigned and maps

without a feasible path are discarded. To avoid overfitting, we use the model parameters that

perform best in validation for testing.

Models

DeepMaxEnt: We use the DeepMaxEnt IRL algorithm of [174] as a baseline. DeepMaxEnt

is an extension of the MaxEnt IRL algorithm [192], which uses a deep neural network to learn a

cost function directly from LiDAR observations. In contrast to our model, DeepMaxEnt does not

have an explicit map representation. The cost representation is a multi-scale FCN [174] adapted

to the 16× 16 and 64× 64 domains. Value iteration over the cost matrix is approximated by

a finite number of Bellman backup iterations, equal to the number of map cells. The original

experiments in [174] use the mean and variance of the height of 3D LiDAR points in each cell,

as well as a binary indicator of cell visibility, as input features to the FCN neural network. Since

our synthetic experiments are in 2D, the point count in each grid cell is used instead of the height

mean and variance. This is a fair adaptation since [174] argued that obstacles generally represent

areas of larger height variance which corresponds to more points within obstacles cells for our

observations. We compare against the original DeepMaxEnt model in Sec. 3.1.3.

33

Ours: Our model takes as inputs the semantic point cloud Pt and the agent position xt

at each time step and updates the semantic map probability via Sec. 3.1.2. The cost encoder

goes through two scales of convolution and down(up)-sampling as introduced in Sec. 3.1.2. The

models are trained using the Adam optimizer [91] in Pytorch [129]. The neural network model

training and online inference during testing are performed on an Intel i7-7700K CPU and an

NVIDIA GeForce GTX 1080Ti GPU.

Evaluation Metrics

The following metrics are used for evaluation: negative log-likelihood (NLL) and control

accuracy (Acc) for the validation set and trajectory success rate (TSR) and modified Hausdorff

distance (MHD) for the test set. Given learned cost parameters θθθ
∗ and a validation set D ={

(xt,n,u∗t,n,Pt,n,xg,n)
}Tn,N

t=1,n=1, policies πt,n(· | xt,n;P1:t,n,θθθ
∗) are computed online via Alg. 1 at

each demonstrated state xt,n and are evaluated according to:

NLL(θθθ ∗,D) =− 1

∑
N
n=1 Tn

N,Tn

∑
n=1,t=1

logπt,n(u∗t,n | xt,n;P1:t,n,θθθ
∗)

Acc(θθθ ∗,D) = 1

∑
N
n=1 Tn

N,Tn

∑
n=1,t=1

1{
u∗t,n=argmax

u
πt,n(u|xt,n;P1:t,n,θθθ

∗)

} . (3.19)

In the test set, the agent is initialized at the starting pose and iteratively applies control inputs

ut,n = argmax
u

πt,n(u | xt,n;P1:t,n,θθθ
∗) as described in Alg. 3. The agent trajectories can deviate

from expert trajectories and the agent has to recover from states which were not encountered by

the expert. To find whether the agent eventually reaches the goal, we report the success rate TSR,

where success is defined as reaching the goal state xg,n within twice the number of steps of the

expert trajectory. In addition, MHD compares how far the agent trajectories τA
n deviate from the

expert trajectories τττE
n :

MHD(
{

τττ
A
n

}
,
{

τττ
E
n
}
) =

1
N

N

∑
n=1

max
{

1
T A

T A

∑
t=1

d(τττA
t,n,τττ

E
n),

1
T E

T E

∑
t=1

d(τττE
t,n,τττ

A
n)

}
, (3.20)

34

where d(τττA
t,n,τττ

E
n) is the minimum Euclidean distance from the state τττA

t,n at time t in τττA
n to any

state in τττE
n .

MiniGrid Results

The results are shown in Table. 3.1. Our model outperforms DeepMaxEnt in every

metric. Specifically, low NLL on the validation set indicates that map encoder and cost encoder

in our model are capable of learning a cost function that matches the expert demonstrations.

During testing in unseen environment configurations, our model also achieves a higher score in

successfully reaching the goal. In addition, the difference in the agent trajectory and the expert

trajectory is smaller, as measured by the MHD metric.

The outputs of our model components, i.e., map encoder, cost encoder and subgradient

computation, are visualized in Fig. 3.10. The map encoder integrates past observations and

holds a correct estimate of the semantic probability of each cell. The subgradients in the last

column enable us to propagate the negative log-likelihood of the expert controls back to the

cost model parameters. The cost visualizations indicate that the learned cost function correctly

assigns higher costs to wall and lava cells (in brighter scale) and lower costs to lawn cells (in

darker scale).

Inference Speed

The problem setting in this section requires the agent to replan at each step when a new

observation Pt arrives and updates the cost function ct . Our planning algorithm is computationally

efficient because it searches only through a subset of promising states to obtain the optimal

cost-to-go Qt(xt ,ut). On the other hand, the value iteration in DeepMaxEnt has to perform

Bellman backups on the entire state space even though most of the environment is not visited

and the cost in these unexplored regions is inaccurate. Table. 3.2 shows the average inference

speed to predict a new control ut at each step during testing.

35

Figure 3.10. Examples of probabilistic multi-class occupancy estimation, cost encoder output,
and subgradient computation. The first column shows the agent in the true environment at
different time steps. The second column shows the semantic occupancy estimates of the different
cells. The third column shows the predicted cost of arriving at each cell. Note that the learned
cost function correctly assigns higher costs (in brighter scale) to wall and lava cells and lower
costs (in darker scale) to lawn cells. The last column shows subgradients obtained via 3.17
during backpropagation to update the cost parameters.

36

Table 3.2. Average inference speed comparison between our model and DeepMaxEnt for
predicting one control in testing.

Grid size 16×16 64×64

DeepMaxEnt 5.8 ms 19.7 ms
Ours 2.7 ms 3.1 ms

CARLA Experiment

Building on the insights developed in the 2D minigrid environment in Sec. 3.1.3, we

design an experiment in a realistic autonomous driving simulation.

Environment: We evaluate our approach using the CARLA simulator (0.9.9) [41], which

provides high-fidelity autonomous vehicle simulation in urban environments. Demonstration

data is collected from maps {Town01,Town02,Town03}, while Town04 is used for validation

and Town05 for testing. Town05 includes different street layouts (e.g., intersections, buildings

and freeways) and is larger than the training and validation maps.

Sensors: The vehicle is equipped with a LiDAR sensor that has 20 meters maximum

range and 360◦ horizontal field of view. The vertical field of view ranges from 0◦ (facing forward)

to −40◦ (facing down) with 5◦ resolution. A total of 56000 LiDAR rays are generated per scan

Pt and point measurements are returned only if a ray hits an obstacle (see Fig. 3.11). The vehicle

is also equipped with 4 semantic segmentation cameras that detect 13 different classes, including

road, road line, sidewalk, vegetation, car, building, etc. The cameras face front, left, right, and

rear, each capturing a 90◦ horizontal field of view (see Fig. 3.11). The semantic label of each

LiDAR point is retrieved by projecting the point in the camera’s frame and querying the pixel

value in the segmented image.

Demonstrations: In each map, we collect 100 expert trajectories by running an au-

tonomous navigation agent provided by the CARLA Python API. On the graph of all available

waypoints, the expert samples two waypoints as start and goal and searches the shortest path

as a list of waypoints. The expert uses a PID controller to generate a smooth and continuous

trajectory to connect the waypoints on the shortest path. The expert respects traffic rules, such

37

Figure 3.11. Example of 3D LiDAR points and semantic segmentation camera facing four
directions. The LiDAR points are annotated with semantic class labels.

as staying on the road, and keeping in the current lane. The ground plane is discretized into

a 256× 256 grid of 0.5 meter resolution. Expert trajectories that do not fit in the given grid

size are discarded. For planning purposes, the agent motion is modeled over a 4-connected

grid with control space U := {up,down, left,right}. A planned sequence of such controls is

followed using the CARLA PID controller. Simulation features not related to the experiment are

disabled, including spawning other vehicles and pedestrians, changing traffic signals and weather

conditions, etc. Designing an agent that understands more complicated environment settings

with other moving objects and changing traffic lights will be considered in future research.

Models and Metrics

DeepMaxEnt: We use the DeepMaxEnt IRL algorithm [174] with a multi-scale FCN cost

encoder as a baseline again. Unlike the previous 2D experiment in Sec. 3.1.3, we use the input

format from the original paper. Specifically, observed 3D point clouds are mapped into a 2D

grid with three channels: the mean and variance of the height of the points as well as the cell

visibility of each cell. This model does not utilize the point cloud semantic labels.

38

Table 3.3. Test results from the CARLA Town05 environment, including the negative log-
likelihood (NLL) and prediction accuracy (Acc.) of the validation set expert controls and the
trajectory success rate (TSR) and modified Hausdorff distance (MHD) between the agent and the
expert trajectories on the test set.

Model NLL Acc (%) TSR (%) MHD

DeepMaxEnt 0.673 85.3 89 4.331
DeepMaxEnt + Semantics 0.742 82.6 87 4.752

Ours 0.406 94.2 93 2.538

DeepMaxEnt + Semantics: The input features are augmented with additional channels

that contain the number of points in a cell of each particular semantic class. This model uses the

additional semantic information but does not explicitly map the environment over time.

Ours: We ignore the height information in the 3D point clouds P1:t and maintain a 2D

semantic map. The cost encoder is a two scale convolution and down(up)-sampling neural

network, described in Sec. 3.1.2. Additionally, our model is implemented using sparse tensors,

described in Sec. 3.1.2, to take advantage of the sparsity in the map ht and cost ct . The models

are implemented using the Minkowski Engine [32] and the PyTorch library [129] and are trained

with the Adam optimizer [91]. The neural network training and the online inference during

testing are performed on an Intel i7-7700K CPU and an NVIDIA GeForce GTX 1080Ti GPU.

Metrics: The metrics, NLL, Acc, TSR, and MHD, introduced in Sec. 3.1.3, are used for

evaluation.

CARLA Results

Table. 3.3 shows the performance of our model in comparison to DeepMaxEnt and

DeepMaxEnt + Semantics. Our model learns to generate policies closest to the expert demon-

strations in the validation map Town04 by scoring best in NLL and Acc metrics. During testing

in map Town05, the models predict controls at each step online to generate the agent trajectory.

Ours achieves the highest success rate of reaching the goal without hitting sidewalks and other

obstacles. Among the successful trajectories, Ours is also closest to the expert by achieving

the minimum MHD. The results demonstrate that the map encoder captures both geometric and

39

Figure 3.12. Examples of semantic occupancy estimation and cost encoding during different
steps in a test trajectory marked in red. The left column shows the most probable semantic
class of the map encoder and the right column shows the cost to arrive at each state. Our model
correctly distinguishes the road from other categories (e.g., sidewalk, building, etc) and assigns
lower cost to road than sidewalks.

semantic information, allowing accurate cost estimation and generation of trajectories that match

the expert behavior. Fig. 3.12 shows an example of a generated trajectory during testing in the

previously unseen Town05 environment (also see Extension 1). The map encoder predicts correct

semantic class labels for each cell and the cost encoder assigns higher costs to sidewalks than the

road. We notice that the addition of semantic information actually degrades the performance

of DeepMaxEnt. We conjecture that the increase in the number of input channels, due to the

addition of the number of LiDAR points per category, makes the convolutional neural network

layers prone to overfit on the training set but generalize poorly on the validation and test sets.

40

Table 3.4. Runtime analysis of our model during testing in the CARLA simulator. We report
per-step runtime averaged over 100 test trajectories.

Simulation
Data

preprocessing Model inference

39.3±1.5 ms 14.9±3.2 ms 6.4±2.5 ms

Additional examples of agent trajectories and semantic mapping predictions are given in Online

Resource 1. We also report runtime analysis for test-time model inference in Table 3.4. Each

time step is divided into (1) simulator update, where the agent is set at new states and image and

lidar observations are generated, (2) data preprocessing, where semantic labels are retrieved for

point clouds and data are moved to GPU, and (3) model inference.

Evaluation with Dynamic Obstacles

In this section, we study the effects of dynamic obstacles in the scene on our model’s map

and cost encoders. We create three different scenarios where the agent vehicle has to overtake

a lower speed non-player character (NPC vehicle). In Scenario 1, the NPC is spawned in the

left lane to the agent and 20 meters ahead. The agent is expected to stay in its own lane when

overtaking the NPC. In Scenario 2, the NPC is spawned in the same lane as the agent and 20

meters ahead. The agent has to move to its left lane to overtake the NPC. Scenario 3 is a mixture

of the first two where the NPC could be either in the same lane or in the left lane to the agent.

A visualization of the first two scenarios is shown in Fig. 3.13. Training and evaluation are

conducted in the Town05 map since it contains multi-lane streets while other maps contain

mostly single-lane streets. We sample 100 trajectories for testing within the top-left quadrant

of the map and 200 trajectories for training from other quadrants as illustrated in Fig. 3.14. We

train our model in all three scenarios and test it in the same scenario where it is trained. Each

trajectory is discretized on a 128×128 grid of 1 meter resolution.

To effectively capture the most current information of the dynamic NPC vehicle, we

41

Figure 3.13. Two scenarios with dynamic obstacles. Left column (scenario 1): the agent vehicle
(blue) keeps in its own lane when overtaking the NPC vehicle (red) in the left lane. Right column
(scenario 2): when the NPC and agent vehicles are spawned in the same lane, the agent switches
to the left lane to overtake.

multiply the grid log-odds ht, j with a decay rate γ ∈ {1.0,0.9,0.8,0.7}, i.e.,

hk
t, j = γhk

t−1, j + log
p(Pt | m j = k,xt)

p(Pt | m j = 0,xt)
. (3.21)

The map encoder is the same as in previous experiments when γ = 1.0, while when γ < 1 past

observation information is slowly removed. Note that we use the same decay rate across all

semantic classes since we do not assume prior knowledge of which classes are dynamic or static.

Alternatively, it is possible to use a different decay rate for each class, hk
t−1, j→ γkhk

t−1, j, or set

γk as a learnable parameter to be optimized with the overall objective in (3.5). The semantic

probabilities and cost encoder output of the same trajectory with different decay rates is shown

42

Figure 3.14. Bird’s-eye view of the Town05 map. The top-left quadrant is resevered for testing
while training trajectories are sampled from other regions.

in Fig. 3.15.

We report the results of our model with different decay rates in each scenario in Table 3.5.

In addition to the TSR and MHD metrics, we report the collision rate (CR) between the agent

and the NPC vehicles in the test trajectories. We find that CR is higher in Scenario 2 than in

Scenario 1, which is expected as lane changing is a harder task when a moving NPC vehicle is

present. The performance in the mixed scenario is on par with that in Scenario 2, suggesting

that our policy class in (3.4) may not capture a multi-modal distribution in the demonstrated

behaviors effectively. Within each scenario, we find that the model generally works better when

the decay rate γ is close to 1.0. We suspect that since both vehicles are moving forward in the

same direction, it does not hurt to map the NPC’s past locations. However, when γ is small,

forgetting the NPC’s history makes its semantic probability smaller (as shown in Fig. 3.15), and

thus the agent has a higher chance of colliding into the NPC vehicle. Finally, we find that MHD

is consistent across all settings which shows that the agent trajectories are close to the expert’s,

43

Figure 3.15. Semantic probability of each class with different decay rate γ ∈ {1,0.9,0.8,0.7}.
when they are successful.

Evaluation with Noisy Semantic Observations

In this section, we study how noisy semantic observations can affect downstream cost

prediction and policy inference. First, we consider noise added to the contours of each segmenta-

tion region. We replace each pixel value in the original 600×800 semantic segmentation image

with a random pixel within its local 5×5 pixel window. This makes the segment boundaries

blurry while the interior of each semantic region is unchanged (see Fig. 3.16 (b)). With this noise

model, only 0.2% of the lidar points are labeled incorrectly. We considered two additional noise

models in which 2% and 20% of all pixels are randonmly changed to an incorrect label chosen

among the remaining semantic labels (see Fig. 3.16 (c) and (d)).

44

Table 3.5. Test results with dynamic obstacles from CARLA Town05 map, including trajectory
success rate (TSR), collision rate (CR), and modified Hausdorff distance (MHD) between the
agent and the expert trajectories on the test set.

Scenario 1
(no lane change)

Scenario 2
(lane change required)

Scenario 3
(mixed scenario)

Decay
rate γ

TSR
(%)

CR
(%)

MHD
TSR
(%)

CR
(%)

MHD
TSR
(%)

CR
(%)

MHD

1.0 92 2 2.878 84 12 2.528 84 8 2.708
0.9 92 3 2.795 88 11 2.446 84 9 2.690
0.8 90 2 2.721 78 15 2.512 80 11 2.912
0.7 86 7 3.224 73 24 2.885 78 16 2.948

Figure 3.16. Noisy semantic segmentation observations: (a) original image, (b) each pixel
is replaced with a random pixel within its local 5× 5 pixel window (c) 2% of all pixels are
randomly changed, (d) 20% of all pixels are randomly changed.

We find that these noise models have very little influence on the policy inference. To

understand this, we study how much the map encoder output changes when using noisy semantic

images. We calculate the total variation distance between the semantic map probabilities obtained

from the original and perturbed semantic images. Specifically, let Pa := P(m j = k | x1:T ,P1:T)

be the semantic posterior probability of a trajectory using the original semantic segmentation

images and, correspondingly, let Pb, Pc, Pd denote the posteriors using perturbed images from

Fig. 3.16. The total variation distance between two discrete probability measures is

TV (Pa,Pb) :=
1
2 ∑

k
|Pa(m j = k)−Pb(m j = k)| (3.22)

Table 3.6 and Fig. 3.17 show the maximum and a histogram, respectively, of the total variation

across all grid cells. These results show that our map encoder is robust to noise even when 20%

45

Table 3.6. Maximum total variation distance between the original and perturbed semantic
probabilities across all grid cells.

max
m j

TV (Pa,Pb) max
m j

TV (Pa,Pc) max
m j

TV (Pa,Pd)

0.002 0.185 0.511

Figure 3.17. Histogram of the total variation distance between the semantic probabilities from
the original and the perturbed semantic images. Even with 20% incorrectly labeled pixels in the
semantic segmentation images, most semantic probabilities are unaffected.

of the labels in the semantic images are wrong.

3.1.4 Derivations

For completeness, we present a comparison and derivation between our model and the

MaxEnt formulation.

This appendix compares the MaxEnt expert model of [192] to the expert model proposed

in Sec. 3.1.1. The MaxEnt model has been widely studied in the context of reinforcement

learning and inverse reinforcement learning [69, 49, 104]. On the other hand, while a Boltzmann

policy is a well-known method for exploration in reinforcement learning, it has not been used to

model expert or learner behavior in inverse reinforcement learning.

46

(a) Value function QME for MaxEnt policy (b) Value function QBM for Boltzmann policy

(c) Maxent policy πME (d) Boltzmann policy πBM

Figure 3.18. Value functions corresponding to the MaxEnt and Boltzmann policies in infi-
nite horizon setting with discount γ = 0.95. The environment only has obstacles around the
outer boundary. The start state is marked in green and the goal in red. The controls are
{right,down, left,up} at each state with constant true cost of 0 to arrive at the goal (which is an
absorbing state), 1 to any state except the goal in the grid and infinity to any obstacle outside the
border. Darker color indicates higher cost-to-go values to reach the goal (top two rows) or higher
probability of choosing a control (bottom two rows). Although the absolute values of QME and
QBM are different, both have similar relative value differences across the controls, providing
well-performing policies πME and πBM.

47

The work of [69] shows that both a Boltzmann policy and the MaxEnt policy are special

cases of an energy-based policy:

π(ut | xt) ∝ exp(−E(xt ,ut)) (3.23)

with appropriate choices of the energy function E. We study the two policies in the discounted

infinite-horizon setting, as this is the most widely used setting for the MaxEnt model. Extensions

to first-exit and finite-horizon formulations are possible. Consider a Markov decision process

with finite state space X , finite control space U , transition model p(x′ | x,u), stage cost c(x,u),

and discount factor γ ∈ (0,1).

Proposition 3 ([69, Thm. 1]). Define the maximum entropy Q-value as:

QME(xt ,ut) := c(xt ,ut)+min
π

Eπ,p

[
∞

∑
k=t+1

γ
k−t (c(xk,uk)−αH(π(· | xk)))

]
, (3.24)

where H(π(· | x)) =−∑u∈U π(u | x) logπ(u | x) is the Shannon entropy of π(· | x). Then, the

maximum entropy policy satisfies:

πME(ut | xt) ∝ exp
(
− 1

α
QME(xt ,ut)

)
. (3.25)

Similarly, define the usual Q-value as:

QBM(xt ,ut) := c(xt ,ut)+min
π

Eπ,p

[
∞

∑
k=t+1

γ
k−tc(xk,uk)

]
(3.26)

and the Boltzmann policy associated with it as:

πBM(ut | xt) ∝ exp
(
− 1

α
QBM(xt ,ut)

)
. (3.27)

The value functions QME and QBM can be seen as the fixed points of the following

48

Bellman contraction operators:

TME [Q](xt ,ut) := c(xt ,ut)− γαEp

[
log ∑

ut+1∈U
exp
(
− 1

α
Q(xt+1,ut+1)

)]
(3.28)

TBM[Q](xt ,ut) := c(xt ,ut)+ γEp

[
min

ut+1∈U
Q(xt+1,ut+1)

]
. (3.29)

In the latter, the Q values are bootstrapped with a “hard” min operator, while in the former they

are bootstrapped with a “soft” min operator given by the log-sum-exponential operation. The

form of the Bellman equations resembles the online SARSA update and offline Q-learning update

in reinforcement learning. Consider temporal difference control with transitions (x,u,c,x′,u′)

using SARSA backups:

Q(x,u)← Q(x,u)+η [c(x,u)+ γQ(x′,u′)−Q(x,u)]

and Q-learning backups:

Q(x,u)← Q(x,u)+η [c(x,u)+ γ min
u′

Q(x′,u′)−Q(x,u)]

where η is a step-size parameter. If we additionally assume that the controls are sampled from

the energy-based policy in (3.23) defined by Q, the SARSA algorithm specifies the MaxEnt

policy, while the Q-learning algorithm specifies the Boltzmann policy.

We show a visualization of the MaxEnt and Boltzmann policies, πME , πBM, as well as

their corresponding value functions QME , QBM, in the infinite horizon setting with discount

γ = 0.95 and α = 1. The 4-connected grid environment in Fig. 3.18 has obstacles only along

the outside border. The true cost is 0 to arrive at the goal (which is an absorbing state), 1 to any

state (except the goal) inside the grid, infinity to any obstacle outside the border. Note that QME

and QBM are very different in absolute value. In fact, QME is negative for all states due to the

additional entropy term in (3.24). However, the relative value differences across the controls are

49

similar and, thus, both policies πME and πBM generate desirable paths from start to goal.

3.2 Inferring Logic from Demonstrations

3.2.1 Problem Formulation

Environment and Agent Models

The agent’s interaction with the environment is modeled as an L-MDP [39].

Definition 4. A labeled Markov decision process is a tuple {X ,U ,x0, f ,c,AP, ℓ}, where X , U

are finite sets of states and controls, x0 ∈ X is an initial state, f : X ×U →X is a deterministic

transition function, and c : X ×U → R≥0 assigns a non-negative cost when control u ∈ U is

applied at state x ∈ X . A finite set of atomic propositions AP provides logic statements that

must be true or false (e.g., “the agent is 1 meter away from the closest obstacle” or “the agent

possesses a key”). A labeling function ℓ : X ×U → 2AP assigns a set of atomic propositions

that evaluate true for a given state transition.

We assume that the state x is fully observable and captures both endogenous variables

for the agent, such as position and orientation, and exogenous variables, such as an environment

containing objects of interest as illustrated in Fig. 3.2. The transition function f (x,u) specifies

the change of state x when control u is executed, and c(x,u) assigns a non-negative cost to this

transition. The alphabet of the L-MDP is the set of labels Σ = 2AP that can be assigned to the

transitions. The labeling function σ = ℓ(x,u) provides the atomic propositions σ ∈ Σ which are

satisfied during the transition f (x,u). The set of words on Σ is denoted by Σ∗ and consists of

all strings σ0:T = σ0 . . .σT for σt ∈ Σ and T ∈ N. We assume that the transition f and labeling

ℓ are known. However, the cost function c is unknown and needs to be inferred from expert

demonstrations.

50

Expert Model

The agent needs to execute a task, whose success is evaluated based on the word

σ0:T ∈ Σ∗ resulting from the agent’s actions. We model the quality of the task execution

by a function h : Σ∗→ R. An execution σ0:T is deemed successful if h(σ0:T)≥ ξ for a known

performance threshold ξ , and unsuccessful otherwise. As argued in the introduction, defining

the function h explicitly is challenging in many applications. Instead, we consider a training set

D =
{
(xn

0:Tn
,un

0:Tn
,sn)
}N

n=1
of N demonstrations of the same task in different environment con-

figurations provided by an expert. Each demonstration n contains the controls un
0:Tn

= un
0 . . .u

n
Tn

executed by the expert, the resulting agent-environment states xn
0:Tn

= xn
0 . . .x

n
Tn

, and the success

level sn ∈ R of the execution, measured by h(σn
0:Tn

), where σn
t = ℓ(xn

t ,un
t) is the label encoun-

tered by the expert at time t. We assume that the expert knows the true task h and the true cost

c and can solve a finite-horizon first-exit deterministic optimal control problem [16] over the

L-MDP:

Q∗(x,u) := min
T,u1:T

T

∑
t=0

c(xt ,ut)

s.t. xt+1 = f (xt ,ut), x0 = x, u0 = u,σt = ℓ(xt ,ut), h(σ0:T)≥ ξ ,

(3.30)

where Q∗(x,u) is the optimal value function. Since (3.30) is a deterministic optimal control

problem, there exists an open-loop control sequence which is optimal, i.e., achieves the same cost

as an optimal closed-loop policy function [16, Chapter 6]. However, we consider experts that do

not necessarily choose strictly rational controls. Instead, we model the expert behavior using

a stochastic Boltzmann policy over the optimal values π∗(u|x) ∝ exp
(
− 1

η
Q∗(x,u)

)
, where

η ∈ (0,∞) is a temperature parameter representing a continuous spectrum of rationality. For

example, η→ 0 means that the expert takes strictly optimal controls while η→∞ means random

controls are selected. The Boltzmann expert model was previously introduced and studied in

[120, 138, 171]. It provides an exponential preference for controls that incur low long-term costs.

This expert model also allows efficient policy search, as shown in Sec. 3.2.2, and computation of

the policy gradient with respect to the cost needed to optimize the cost parameters, as shown in

51

Sec. 3.2.2.

The agent needs to infer the unknown task model h and unknown cost function c from

the expert demonstrations D =
{
(xn

0:Tn
,un

0:Tn
,sn)
}N

n=1
.

Problem 2. Given the demonstrations D and labeling σn
t = ℓ(xn

t ,un
t), optimize the parameters

ψ of an approximation hψ of the unknown task function h to minimize the mean squared error:

min
ψ
Lh(ψ) :=

1
N

N

∑
n=1

(
hψ(σ

n
0:Tn

)− sn)2
. (3.31)

Similarly, the agent needs to obtain an approximation cθ with parameters θ of the

unknown cost function c. This allows the agent to obtain a control policy:

πθ (u|x) ∝ exp
(
− 1

η
Qθ (x,u)

)
, (3.32)

approximating the expert model using a value function Qθ computed according to (3.30) with c

and h replaced by cθ and hψ , respectively.

Problem 3. Given the demonstrations D, optimize the parameters θ of an approximation cθ

of the unknown cost function c such that the log-likelihood of the demonstrated controls un
t is

maximized under the agent policy in (3.32):

min
θ
Lc(θ) :=−

N

∑
n=1

1{sn≥ξ}

Tn

∑
t=0

logπθ (un
t |xn

t), (3.33)

where 1 is an indicator function and ξ is the known task satisfaction threshold.

3.2.2 Learning Task Logic as Weighted Finite Automata

We first discuss how to learn a task model hψ from demonstrations D in Sec. 3.2.2. Next,

in Sec. 3.2.2, we learn a cost model cθ by solving the optimal control problem in (3.30) to obtain

an agent policy πθ . Finally, in Sec. 3.2.2, we show how to backpropagate the policy loss Lc(θ)

in (3.33) through the optimal control problem to update the cost parameters θ .

52

Figure 3.19. Inferring the hidden state progression ααα t from events σt can be acheived by
an RNN with initial hidden state ααα0, hidden state transition ααα t+1 = g1(σt ,ααα t ,W) and output
ŝ = hψ(σ0:T) = g2(αααT+1,βββ), where g1,g2 are nonlinear functions. The weights ψ = (ααα0,W,βββ)
can be learned via the loss L(ŝ,s) in (3.31) between RNN outputs ŝ and demonstration scores s.

Spectral Learning of Task Specifications

Fitting a single cost neural network cθ that is capable of generalizing to various envi-

ronment configurations and tasks is difficult when state and control spaces are large and the

task horizon is long. An alternative is to consider the cost function and its corresponding policy

only for small segments of the task, associated with different subtasks. This idea is based on

the observation that task specifications often have a compositional logic structure. For example,

the demonstrated trajectory in the DoorKey environment in Fig. 3.2 can be decomposed into

three segments, each denoted by a high-level state ααα . The transitions between the high-level

states are triggered by events like σ0: a key is picked up, and σ1: a door is opened. Note that

there is no direct transition between ααα1 and ααα3 because the door cannot be opened without

possessing a key. Such high-level state abstraction and transitions are commonly learned via

recurrent neural network (RNN) or memory architectures [74, 116]. For example, to solve Prob-

lem 2, we can use an RNN hψ in Fig. 3.19 with initial hidden state ααα0, hidden state transition

ααα t+1 = g1(σt ,ααα t ,W) and output function hψ(σ0:T) = g2(αααT+1,βββ), where g1,g2 are nonlinear

functions and ψ = (ααα0,W,βββ) are learnable weights. Instead of an RNN model, in this work,

we propose to use a weighted finite automaton (WFA) [13] to represent hψ . A WFA is less

53

expressive than an RNN [135] but can be trained more effectively from small demonstration

dataset. Moreover, a WFA generalizes deterministic and nondeterministic finite automata, which

are commonly used to model logic task specifications for autonomous agents [98, 44, 97, 45].

Hence, a WFA model is sufficiently expressive to represent a complex task and allows one to

focus on a temporal abstraction without reliance on the low-level system dynamics.

Definition 5. A weighted finite automaton (WFA) with m states is a tuple ψ =
{

ααα0,βββ ,{Wσ}σ∈Σ

}
where ααα0,βββ ∈ Rm are initial and final weight vectors and Wσ ∈ Rm×m are transition matrices

associated with each symbol σ ∈ Σ. A WFA ψ represents a function hψ : Σ∗→R by hψ(σ0:T) =

ααα⊤0 Wσ0Wσ1 . . .WσT βββ .

A WFA represents the task progress for a given word σ0:t via hψ(σ0:t) = ααα⊤0 Wσ0Wσ1 . . .

Wσt βββ , where the high-level state at time t+1 is ααα t+1 =
(
ααα⊤0 Wσ0Wσ1 . . .Wσt

)⊤. When the WFA

is learned correctly, its prediction for an expert word should approximate the expert score s,

i.e., hψ(σ0:T) ≈ s. This can be used to guide a task planning algorithm by providing a task

satisfaction criterion. A trajectory with corresponding word σ0:T is identified as successful

if the WFA prediction passes the known performance threshold introduced in Sec. 3.2.1, i.e.,

hψ(σ0:T) = ααα⊤T+1βββ ≥ ξ .

Our approach to learn a minimal WFA is based on the spectral learning method developed

by [13]. The spectral method makes use of a Hankel matrix Hh ∈ RΣ∗×Σ∗ associated with the

function h : Σ∗→ R, which is a bi-infinite matrix with entries Hh(u,v) = h(uv) for u,v ∈ Σ∗.

We assume the class of functions h that can be represented by a WFA are rational power series

functions and their associated Hankel matrix Hh has finite rank [15, 143]. It can be showns that

under certain assumptions WFA are expressively equivalent to monadic second-order logic. The

quantitative property of WFA allows us to model the performance score s of the demonstrated

trajectories.

Assumption 1. The Hankel matrix Hh associated with the true task specification h has finite

rank.

54

In practice, only finite sub-blocks of the Hankel matrix, constructed from the expert

demonstrations D, can be considered. Given a basis B = (P,S) where P,S ⊂ Σ∗ are finite sets

of prefixes and suffixes respectively, define HB and {Hσ}σ∈Σ as the finite sub-blocks of Hh

such that HB(u,v) = h(uv), Hσ (u,v) = h(uσv), ∀u ∈ P,v ∈ S. The foundation of the spectral

learning method is summarized in the following theorem.

Theorem 1 ([13]). Given a basis B = (P,S) such that the empty string λ ∈ P ∩ S and

rank(Hh) = rank(HB), for any rank m factorization HB = PS where P∈R|P|×m and S∈Rm×|S|,

the WFA {ααα0,βββ ,{Wσ}} is a minimal WFA representing h, where ααα⊤0 = P(λ , :) is the row vector

of P corresponding to prefix λ , βββ = S(:,λ) is the column vector of S corresponding to suffix λ ,

and Wσ = P†Hσ S†, ∀σ ∈ Σ.

A basis can be chosen empirically from demonstrationsD. For example, we can choose a

basis that includes all prefixes and suffixes that appear in the words
{

σn
0:Tn

}
or one with desired

cardinality for the most frequent prefixes and suffixes. Given a basis, the Hankel blocks HB,

{Hσ} are constructed from D. For example, given a word and its score (σ0:T ,s), we set the

entries HB(λ ,σ0:T), HB(σ0,σ1:T), . . . , HB(σ0:T ,λ), and Hσ (σ0:t−1,σt+1:T), where σ = σt with

value s. To find a low rank factorization of HB, we use truncated singular value decomposition,

HB = UmΛΛΛmV⊤m where ΛΛΛm is a diagonal matrix of the m largest singular values and Um,Vm are

the corresponding column vectors, and set P = Um and S = ΛΛΛmV⊤m . Finally, the vectors and

matrices ψ = {ααα0,βββ ,{Wσ}} of the WFA can be obtained from P, S, {Hσ} using Theorem 1.

Planning in a Product WFA-MDP System

Given a learned WFA representation hψ and an initial cost estimate cθ , we propose a

planning algorithm to solve the deterministic optimal control problem in (3.30) and obtain a

control policy πθ (u|x) as in (3.32). To determine the termination condition for the problem in

(3.30), we define the product of the WFA, modeling the task, and the L-MDP, modeling the

agent-environment interactions.

55

Definition 6. Given an L-MDP {X ,U ,x0, f ,c,AP, ℓ} and a WFA {ααα0,βββ ,{Wσ}}, a product

WFA-MDP model is a tuple {S,U ,s0,T,SF ,c,AP, ℓ} where S = X ×Rm is the product state

space, s0 = (x0,ααα0) is the initial state, and SF =
{
(x,ααα) ∈ S | ααα⊤βββ ≥ ξ

}
are the final states.

The function T : S ×U → S is a deterministic transition function such that T ((xt ,ααα t),ut) =

(xt+1,ααα t+1) where xt+1 = f (xt ,ut), emitting symbol σt = ℓ(xt ,ut) and causing transition ααα t+1 =

W⊤σt
ααα t .

To obtain the agent policy in (3.32) for any state xt ∈ X and control ut ∈ U , our goal is

to compute the optimal cost-to-go values for the WFA-MDP model:

Qθ (st ,ut) = cθ (xt ,ut)+Vθ (T (st ,ut)) = cθ (xt ,ut)+ min
T,ut+1:T

T

∑
k=t+1

cθ (xk,uk) (3.34)

where st+1 = T (st ,ut) and ααα⊤T+1βββ ≥ ξ . We have rewritten the terminal state condition as

ααα⊤T+1βββ ≥ ξ , where we keep track of the task hidden state ααα t using the WFA-MDP transition

function T . Our key observation is that (3.34) is a deterministic shortest path problem and

Vθ (T (st ,ut)) can be obtained via any shortest path algorithm, such as Dijkstra [38], A* [109] or

RRT* [86]. When we use a shortest path algorithm to update the cost-to-go values of successor

states st+1 = T (st ,ut), we concurrently compute the corresponding WFA state ααα t+1 = W⊤
σt

ααα t

where σt = ℓ(xt ,ut). A goal state sT+1 is reached when its WFA state αααT+1 satisfies ααα⊤T+1βββ ≥ ξ .

The agent policy πθ in (3.32) with respect to the current cost estimate cθ can be obtained from

the cost-to-go values Qθ in (3.34) computed by the shortest path algorithm.

Optimizing Cost Parameters

We discuss how to differentiate the loss function Lc(θ) in (3.33) with respect to θ

through the deterministic shortest path problem defined by the product WFA-MDP model.

[171] introduce a sub-gradient descent approach to differentiate the log likelihood of expert

demonstrations from the Bolzman policy in (3.32) through the optimal cost-to-go values in

(3.34). The cost parameters can be updated by (stochastic) subgradient descent at each iteration k

56

with learning rate γ(k), θ (k+1) = θ (k)−γ(k)∇Lc(θ
(k)). Intuitively, the subgradient descent makes

the trajectory starting with a demonstrated control more likely, while those with other controls

less likely. The analytic subgradient computation is presented below.

Proposition 4. [171, Proposition 1] Consider an expert transition (xt ,ut). Define τττ(xt ,u) as

the optimal path starting from state xt and any control u ∈ U that achieves Qθ (xt ,u) in (3.34)

under cost estimate cθ . A subgradient of the agent policy (3.32) evaluated at expert transition

(xt ,ut) with respect to cost parameters θ can be obtained via the chain rule as:

∂ logπθ (ut | xt)

∂θ
= ∑

u′∈U

d logπθ (ut | xt)

dQθ (xt ,u′)
∂Qθ (xt ,u′)

∂θ

= ∑
u′∈U

1
η

(
1{u′=ut}−πθ (ut | xt)

)
× ∑

(x,u)∈τττ(xt ,u′)

∂Qθ (xt ,u′)
∂cθ (x,u)

∂cθ (x,u)
∂θ

(3.35)

Substituting (3.35) in the gradient of Lc(θ) in (3.33), Proposition 4 provides an explicit

subgradient computation to allow backpropagation with respect to θ through the value function

Qθ of the deterministic shortest path problem in (3.34). The subgradient only affects the cost

parameters through the optimal trajectories τττ(xt ,u′), ∀u′ ∈ U for expert transitions (xt ,ut) which

can be retrieved from any optimal planning algorithm applied in Sec 3.2.2. Thereafter, the cost

parameters can be optimized depending on the specific form of ∂cθ (x,u)
∂θ

.

Our complete approach WFA-IRL is summarized in Fig. 3.20. We first solve Problem 2

to find a WFA hψ which models the demonstrated task. The learned WFA provides termination

conditions for a deterministic shortest path problem in the product WFA-MDP. Cost parameters

are optimized by backpropagating the loss in (3.33) through the planning algorithm.

Neural Network Cost Representation

We use a neural network, shown in Fig. 3.21 to learn a nonlinear cost function cθ , mapping

from each state-control pair to a non-negative cost value. The cost neural network is separated

into two parts. The first part is a feature extractor which processes each input type accordingly.

57

Figure 3.20. WFA-IRL architecture for joint learning of a task specification hψ and cost function
cθ . Given demonstrations D and a labeling function ℓ, we learn the unknown task specification
with a weighted finite automaton. We construct a product WFA-MDP space from the learned
WFA ψ =

{
ααα0,βββ ,{Wσ}σ∈Σ

}
to solve a deterministic shortest path problem with cost estimate

cθ . The agent policy πθ is compared with the demonstrated controls to backpropagate the loss
Lc(θ) with respect to θ .

Figure 3.21. Neural network architecture for the transition cost cθ (xt ,ut). The state xt consists
of the grid image mt , the agent position pt , direction dt , object it is carrying ot . The grid mt is
fed through a convolutional neural network (Conv), while the discrete variables pt , dt , ot and
the control ut are converted to embedding vectors (Embed) to provide latent representations for
learning the cost function. The concatenated vector of Conv and Embed layer outputs is passed
through three fully-connected layers (Dense) to obtain cθ (xt ,ut).

The grid image is passed through a convolutional neural network, consisting of 3 stacks of

convolution + ReLU layers with {16,32,64} filters of size 2. The agent position, direction,

object carried and control are discrete variables and are passed through embedding layers to

produce high-dimensional feature vectors. The embedding dimensions are {128,64,64,128}

respectively. The outputs from each feature extractor are flattened and concatenated to construct

a latent vector representing the state-control pair in feature space. In the second part, a fully-

connected neural network maps the latent vector to a scalar output for cost prediction. The 3

fully-connected layers have sizes {64,32,1} with ReLU activation function. The cost neural

network architecture is trained using Proposition 4 in PyTorch [129] with the Adam optimizer

[91].

58

Figure 3.22. MiniGrid environments [28] of our experiments. In T1 (MiniGrid-DoorKey-
8x8-v0) the agent must pick up Key to unlock Door and reach Goal in the other room.
In T2 (MiniGrid-MultiRoom-N4-S5-v0) it has to open a series of Doors to reach Goal in
the last room. In T3 (MiniGrid-BlockedUnlockPickup-v0) it has to move away a block-
ing Ball, unlock Door with Key and pick up Box. The state xt includes the grid image
mt ∈ {Wall,Key,Door,Box,Ball,Empty}H×W , the agent position pt ∈ {1, . . . ,H}×{1, . . . ,W},
direction dt ∈ {U p,Le f t,Down,Right}, and the object carried ot ∈ {Key,Ball,Box,Empty}.
The control space U is defined as turn left/right, move forward, pick up/drop/toggle an object.

3.2.3 Results

We consider three MiniGrid tasks shown in Fig. 3.22 whose atomic propositions are

shown in Table 3.7. The task specifications can be expressed in terms of these propositions,

e.g., one possible trajectory that fulfills task T1 is to evaluate the propositions p1, p2, p3 as true

sequentially.

Table 3.7. Atomic propositions used in each task.

T1 T2 T3

p1 Key is picked up Door 1 is open
Ball is 2 steps

away from Door

p2 Door is open Door 2 is open Key is picked up

p3 Agent reaches Goal Door 3 is open Door is open

p4 ——— Agent reaches Goal Box is picked up

Demonstrations

An expert trajectory is collected by iteratively rolling out the controls sampled from

the expert policy π∗ at each state x, where Q∗(x,u) in (3.30) is computed via the Dijkstra’s

59

Table 3.8. Results on MiniGrid environment tasks. In each entry, Green / Orange are results
trained from demonstrations D1 with expert policy temperature η = 0 and D2 with η = 0.5,
respectively. Top: Best Scikit-SpLearn hyperparameters that solve Problem 2 for each task.
Bottom: Mean episode returns (or negative cumulative true cost, higher is better) are reported
across 64 randomly generated test environments.

T1 T2 T3
rank 5/9 6/9 7/11
rows 4/5 5/5 6/6
cols 4/5 5/6 6/7

T1 T2 T3
BC 0.364/0.253 0.338/0.307 0.284/0.192

GAIL 0.483/0.429 0.274/0.185 0.342/0.257
WFA-IRL(ours) 0.797/0.708 0.776/0.642 0.733/0.602

WFA-IRL
w/o WFA 0.683/0.514 0.652/0.488 0.566/0.390

Expert 0.798/0.718 0.776/0.668 0.734/0.639
Optimal 0.798 0.776 0.734
Random 0.000 0.000 0.000

algorithm with cost of 1 for any feasible transition. For each task, we consider two sets of

expert demonstrations D1 and D2, each with 32 trajectories collected from expert policies

with temperatures η ∈ {0,0.5}. The expert trajectories in D1 and D2 are strictly optimal

and suboptimal, respectively, and are labeled with score s = 1. In each set we also add 128

failed trajectories with score s = 0 from a random exploration policy (effectively setting expert

policy temperature η → ∞). The full demonstration set is used in each case to learn a WFA

representation hψ of the task via the spectral method in Sec. 3.2.2 while only the successful

trajectories are used to learn the cost function cθ , as in Sec. 3.2.2 and 3.2.2.

Our Method and Baselines

Our method WFA-IRL uses a neural network architecture to represent the cost func-

tion. For a detailed description, please refer to Appendix 3.2.2. We use the spectral learning

algorithm in the Scikit-SpLearn toolbox [6] to learn the parameters ψ of the WFA from the

expert demonstrations D. In the implementation, we first compress the demonstration words

σn
0:Tn

where consecutive identical symbols are removed. This greatly reduces the complexity

of learning the WFA while keeping the symbol sequences unchanged. The hyperparameters

for the spectral learning method are the rank of the automaton (m in Theorem 1) and the sizes

(rows and cols) of the prefix and suffix basis (B = (P,S) in Theorem 1), which determine

60

the size of the Hankel matrix estimated empirically from demonstrations. The complexity is

O(n×rank×rows×cols) since we iterate through the ranks to find a minimal WFA and count

the prefix and suffix frequencies for a given word. The spectral method can learn almost perfectly

with near zero loss in (3.31) for all tasks and the best hyperparameter configurations are shown in

Table 3.8. We observe that larger WFA capacity is required to learn from suboptimal trajectories

and thus more diverse words from D2.

As baselines, we first ablate the WFA component in our method to understand its

effects. Instead of planning in the product WFA-MDP space and checking the WFA termination

condition in (3.34), the agent without WFA component simply plans in the original MDP and

checks whether a goal state is achieved. Additionally, we compare our method with standard

imitation learning and inverse reinforcement learning algorithms, including behavioral cloning

(BC) [141] and GAIL [77]3. The value/policy functions in these baselines follow our cost neural

network architecture to fit the state-control input format and to compare fairly in representation

power across methods. This includes the policy network in BC, the discriminator in GAIL,

the policy and value networks in PPO [145], used as generator in GAIL. Only the size of the

last fully-connected layer is modified depending on whether it is action or value prediction.

GAIL is known to achieve stable performance in fixed horizon environments while the MiniGrid

environments terminate as soon as the agent fulfills the tasks. We fix this issue by adding a

virtual absorbing state as suggested in [96] when training GAIL.

MiniGrid Results

We report the average performance of each method in Table 3.8 by testing on 64 new

environment configurations generated randomly for each task. First, we observe that our method

can achieve almost perfect performance when trained on D1. This is expected since the learned

WFA strictly chooses planned trajectories whose words would match the optimal behavior.

Interestingly, the learned WFA could make the agent suboptimal if the optimal word in testing is

3The implementations are adapted from the imitation learning library [170]

61

not seen in training, as shown in Fig. 3.23. Next, our method matches the expert performance well

using either D1 or D2 and outperforms BC and GAIL (even without WFA). This demonstrates

that using planning to solve tasks that encode logical structures performs better than a reactive

policy employed by BC. Moreover, the performance gap between our method and ours without

WFA shows that learning logic specifications explicitly with a WFA can further improve the

policy. On the other hand, we find the performance of GAIL is limited as PPO cannot easily

generate successful samples similar to the demonstrations (notice that the random policy never

succeeds) to improve the cost discriminator and, in turn, the generator itself. We visualize the

agent policy in Fig. 3.24 and observe that our method has a stronger bias on controls that follow

the learned logical sequences.

62

Figure 3.23. Agent trajectory (left column) trained with D1 and expert trajectory (right column)
in task T3 during testing. The agent WFA only learns words that appear in demonstration D1,
which always moves Ball away from Door first before picking up Key. In testing it fails to
recognize a lower cost trajectory of a different word sequence, where Key is carried closer to
Door before moving away Ball.

63

Figure 3.24. Visualization of policy probabilities of each method trained on D2 at a critical state
in T2. Our method shows a stronger preference towards controls (toggle door) that can make
task progress.

64

3.3 Summary

This chapter introduces inverse reinforcement learning approaches to learn navigation

policies from expert demonstrations. In Sec. 3.1, we introduce cost functions that can learn from

semantic features and in Sec. 3.2 we encode high-level task logic as weighted finite automata.

Furthermore, we propose a differentiable motion planning algorithm that efficiently optimizes

the cost function parameters using an objective function that maximizes the likelihood of the

expert demonstrated behavior. The proposed approaches allow us to generalize the navigation

policy to unseen environments with dynamic obstacles by understanding semantic entities and

solving long-horizon, sequential and compositional planning problems.

3.4 Acknowledgements

Chapter 3.1, in part, is a reprint of the following papers. The dissertation author is the

primary author of these papers.

• T. Wang, V. Dhiman and N. Atanasov, “Learning Navigation Cost from Demonstrations

in Partially Observable Environments,” IEEE International Conference on Robotics and

Automation (ICRA), pp. 4434-4440, 2020.

• T. Wang, V. Dhiman and N. Atanasov, “Learning Navigation Costs from Demonstrations

with Semantic Observations,” Learning for Dynamics and Control, pp. 245–255, 2020.

• T. Wang, V. Dhiman and N. Atanasov, “Inverse Reinforcement Learning for Autonomous

Navigation via Differentiable Semantic Mapping and Planning,” Autonomous Robots,

47(6), 809-830.

Chapter 3.2, in part, is a reprint of the material as it appears in T. Wang and N. Atanasov,

“Inverse Reinforcement Learning of Autonomous Behaviors Encoded as Weighted Finite Au-

tomata”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp

7429-7435, 2022. The dissertation author is the primary author of this paper.

65

Chapter 4

Simulation to Real Generalization for
Robot Manipulation

In the previous chapter, we have introduced inverse reinforcement learning approaches

for imitating robot navigation behaviors from expert demonstrations. In this chapter, we focus

on applying inverse reinforcement learning methods on robot manipulators. Robot manipulation

systems typically consist of a robot arm and an end-effector and classical control methods are

used in assembling and packaging in manufacture, planting and harvesting in agriculture, etc.

However, robot manipulators cannot easily achieve versatile skills like washing dishes, peeling

a banana or arranging furniture. In recent years, deep reinforcement learning and imitation

learning methods have been applied to learn complex manipulation skills and adapt to diverse

environments and tasks from experience and demonstrations. While typical RL agents require

millions of environment interactions to specialize is a single task, we consider learning internal

robot representations such that the policy is not re-trained for different robots performing the

same task. In particular, we will consider domain adaptation for policy generalization across

different types of robots and transfer learning from simulation to real world.

Consider a manipulation task requiring a robot arm to control a gripper (see Fig. 4.1). A

canonical parametrization of the state and action space utilizes joint angles, angular velocities

or torques. Our insight is that a successful trajectory in the joint configuration space may be

complicated but its embedding in the end effector (e.g., fingers or gripper) configuration space is

66

relatively simple. We postulate that discovering such a latent space through joint optimization

with the task objective can facilitate training convergence and policy adaptation across different

types of robot arms in both simulation and real world settings.

Figure 4.1. Learning a policy for robot joint torques (red) to achieve an expert-demonstrated
manipulation task is challenging due to the high dimensional configuration space. We propose to
abstract the action space to the gripper pose movement (yellow) to allow imitation learning in a
lower-dimensional action space.

Learning invariant feature representations have shown promising for solving downstream

RL and domain transfer tasks. Guo et al. [65] and Hafner et al. [71] independently propose

to learn a latent recurrent state model from pixel observations and bootstrap latent dynamics

to learn latent predictions of future observations. Pari et al. [127] use a BYOL-style [63] self-

supervised learning framework to learn latent representations from visual observations offline

and then find nearest neighbors from demonstrations to predict actions. Zhang et al. [187] use

virtual reality teleoperation system to align human demonstrations with robot arms for imitation

learning. Wang et al. [169] consider visual planning problem for robot manipulation where a

causal InfoGAN model [100] generates future visual observations with latent planning and a

learned inverse dynamics tracks the predicted observation sequence. Nair at el. [119] pre-train

latent visual representations from large dataset using time-contrastive learning [148] and video-

language alignment [118] to be used in downstream robot manipulation tasks. Das et al. [37] use

67

visual keypoints as latent features to imitate human demonstrations for robot manipulation tasks.

Transfer learning is considered a challenging direction in reinforcement learning. Zhang

et al. [185] propose to learn invariant representations through bisimulation metrics [47] where

states are considered similar if they have similar immediate rewards and state distributions

under the same action sequence. Wulfmeier et al. [173] finetune a source policy on the

target robot of the same type but different dynamics by encouraging similar state distribution.

However, it still performs RL on the target environment which assumes access to the reward

function and environment interactions. Zakka et al. [183] use temporal consistency constraint

from paired source and target samples for cross-embodiment imitation learning. Hejna et al.

[75] consider cross-morphology transfer learning by finetuning hierarchical policies with KL

constraint. Zhang et al. [186] learn a direct state and action correspondence between source

and target domains with a cycle consistency constraint. However, they do not construct a latent

space so correspondence has to be re-trained if a third domain is introduced. Stadie et al.

[155] consider imitation learning under viewpoint mismatch where feature extractor learns to

be invariant to viewpoint changes. Kim et al. [90] also considers matching state distributions

via generative adversarial networks across domains in an imitation learning setting. Our work

does not require expert demonstrations in the target domain. Yin et al. [179] learn a latent

invariant representation for a robot with different physical parameters (e.g. link length). Their

method cannot be applied if source and target robots have different morphologies (e.g. different

number of links). Yoneda et al. [180] aligns latent features from source and target samples with

adversarial training and dynamics consistency constraint. While their approach only considers

visual adaptation of the same robot, we consider a more general setting of aligning robots of

different dynamics and morphology.

Different from common manipulation tasks like grasping and opening drawers, dynamic

manipulation abandons the quasi-static assumption of interaction. It leverages object dynamics,

such as inertia and momentum, to handle tasks requiring high-speed actions and extended robot

workspace, like throwing and catching [114, 56, 147, 93]. Traditional systems for such tasks often

68

rely on handcrafted models of system dynamics, which may fall short when dealing with difficult-

to-estimate parameters or new objects. To address this issue, recent works [94, 59, 184, 29]

employ data-driven approaches to optimize control commands using partial dynamics models.

For example, Chi et al. [29] propose an iterative residual policy to solve tasks with complex

dynamics; Zeng et al. [184] use end-to-end training to learn stable grasps that generate predictable

throws. However, these works focus on low-DoF manipulators rather than high-DoF dexterous

hands, which introduce additional complexities due to intricate hand-object interactions. [130]

uses Population Based Training (PBT) to scale up the training of dexterous manipulation in

simulation, and it also trains a task that throws and catches using two hands. However, while

our methodologies primarily focus on sim2real transfer, [130] does not include the real-world

experiments. In this study, we use a learning-based approach to tackle dynamic problems,

specifically throwing and catching, with multi-finger dexterous hands. We explore the impact of

initial dexterous grasps on throwing performance and investigate strategies to bridge the sim2real

gap in the context of dynamic manipulation.

In recent years, the robotics community has increasingly focused on dexterous ma-

nipulation due to its great flexibility and human-like dexterity. Researchers have developed

methods using dexterous hands for tasks such as grasping [177, 19, 67, 33, 134], in-hand ro-

tating [178, 72, 132, 2, 26], and manipulating deformable objects [10, 48, 108, 79]. Similar

to us, DexPoint [133] achieves generalizable manipulation for grasping and door opening by

training on multiple objects with a Allegro hand. However, complex tasks like throwing and

catching objects require a bimanual robot system to achieve human-level manipulation skills.

Researchers have investigated bimanual manipulation through task planning [167, 193, 175],

and reinforcement learning [30, 3, 87]. However, most previous work focused on using two

parallel jaw grippers for quasi-static interaction, leaving dexterous bimanual manipulation largely

unexplored. Few studies have delved into this area, mainly in simulation without real robot

validation [23, 27, 182]. In this section, we take a step forward by developing a bimanual

dexterous manipulation system capable of throwing and catching various objects. Our work also

69

demonstrates that simulation training without real-world data can still tackle this challenging

task even with great sim2real gap.

We introduce three approaches for learning robot manipulations skills in this chapter.

First, we propose L
¯

A
¯

tent P
¯

olicies for A
¯

dversarial Imitation L
¯

earning (LAPAL), which trains an

action encoder-decoder model to provide a latent structured action space for efficient adversarial

imitation learning. We demonstrate that the action encoder-decoder model can be trained offline

with expert demonstrations only to learn latent action representations, and trained online to learn

latent representations that align with the imitation learning task objective. Next, we generalize

LAPAL by learning both state and action encoder-decoder models. We propose to project robots

of different embodiments into a common latent representation space using adversarial distribution

matching and cycle consistency training objectives. Finally, we demonstrate a simulation to real

transfer approach for learning bimanual throw and catch skill. In summary, the contributions of

this chapter are:

• We propose LAPAL, an action encoder-decoder model which learns a structured latent

action representation via adversarial imitation learning. The latent action space can be

aligned with expert demonstrations or imitation learning task objective for efficient training

and finetuning the action encoder-decoder model allows us to generalize policy across

different robot manipulators.

• We propose cross embodiment robot manipulation skill transfer, where robots of different

dynamics and morphology can be projected into a common latent space using adversarial

distribution matching and cycle consistency constraint. The latent policy trained from a

source robot can be transferred to a target robot without finetuning with target domain

reward function or expert demonstrations.

• We propose an approach to enable simulation to real world transfer for bimanual robot

manipulation. We demonstrate that our multi-finger robot hands learn robust policies to

throw and catch diverse types of objects at high speed in real world.

70

4.1 Latent Policies for Adversarial Imitation Learning

4.1.1 Problem Formulation

Consider a continuous-space control task formulated as a discrete-time Markov decision

process (MDP)M = {S,A,T,r,γ}, where s ∈ S ⊆ Rn is the state, a ∈ A ⊆ Rm is the action,

T : S ×A×S → [0,1] is an unknown transition function from state s to state s′ under action

a, r : S ×A→ R is a reward function and γ ∈ (0,1) is a discount factor. In IRL, the reward

function r is not known to the agent. Instead, it infers a reward function from a set of expert

demonstrations {(st ,at)}t sampled from an expert policy πE : S ×A→ [0,1].

We denote the state-action marginal of the trajectory distribution induced by a policy π

inM as ρπ(s,a). The imitation learning objective can be formulated as minimizing a general

f -divergence between the state-action occupancy measures under a parameterized agent policy

πθ , and the expert policy πE ,

min
θ

D f [ρπθ
(s,a) || ρπE (s,a)] , (4.1)

where D f [p||q] :=
∫

f (p(s,a)
q(s,a))q(s,a)dsda) measures the difference between two probability

distributions p,q ∈ P(S ×A) in the space of density functions over S ×A, using a convex

generator function f : [0,∞) 7→ (−∞,∞]. For example, AIRL [54] optimizes the Kullback-

Leibler divergence (f (x) = x lnx), and GAIL [77] optimizes the Jensen-Shannon divergence

(f (x) = 1
2(x−1) lnx) [77, 61]. In this work, we consider the Jensen-Shannon divergence but the

development can be generalized to other types of divergence functions as well. GAIL iteratively

trains a discriminator Dφ , and a generator policy πθ , with the following mini-max objective

71

[77, 61]:

min
θ

max
φ

J(θ ,φ) = min
θ

DJS [ρπθ
(s,a) || ρπE (s,a)]

= min
θ

max
φ

E(s,a)∼πE

[
logDφ (s,a)

]
+E(s,a)∼πθ

[
log(1−Dφ (s,a))

]
(4.2)

where Dφ : S ×A→ [0,1] is the discriminator function classifying the probability of a given

state-action pair from the expert. In this section, we will focus on solving (4.2) by introducing a

latent policy defined on a learned latent action space.

4.1.2 Learning Latent Action Representation

We consider lifting the original MDP to a new MDP, M̄ =
{
S,Ā, T̄ , r̄,γ

}
where Ā

is a (lower-dimensional) latent action space, and T̄ : S × Ā×S → [0,1] and r̄ : S × Ā → R

are the transition probability and reward function defined in the latent space. We assume

there exist optimal action encoder-decoder functions g : A → Ā and h : Ā → A, such that

T̄ (s,g(a)) = T (s,a), r̄(s,g(a)) = r(s,a),∀s ∈ S,a ∈A. We further assume that the expert policy

support lies within the image of the latent action decoder, i.e., supp(πE) ⊂ h(Ā) ⊂ A. The

insight is that the expert policy only operates on a subset of the original configuration space.

Therefore, learning a policy on such subspace is more efficient and it prevents explorations

on the original action space where the optimal policy would never visit. In this section, we

present a method to learn the latent action representations from expert demonstrations. In the

following sections, we show that the learned action encoder-decoder functions can be fixed and

(4.2) reduces to solving an imitation learning problem in latent MDP M̄, or they can be merged

within the adversarial learning algorithm with their parameters optimized by gradients of (4.2).

Following the motivation in Fig. 4.1, we propose to learn a latent action space such as the

space of the robot’s end-effector pose movements from it orginal action space of joint torques. To

determine a latent action, the end-effector pose movement not only depends on the joint torques

applied but also the current robot joint configuration state. Similarly, finding the joint torques

72

such that the end-effector achieves the desired movement is also conditioned on the robot joint

state. Inspired by these observations, we propose to use a conditional variational autoencoder

(CVAE) [153] to model the action encoder-decoder functions and learn a latent represetation of

the original action space. The action encoder gω1 maps an action a to a latent distribution Φ(· | s),

e.g. diagonal Gaussian, conditioned on the state s, and samples a latent action ā from Φ. The

action decoder hω2 : S ×Ā→A maps a latent action to the original action space, conditioned

on the state s. The loss function to train CVAE is

LCVAE(s,a) = ||a−hω2(s, ā)||
2
2 +βDKL[Φ(ā | s) || p(ā | s)] (4.3)

where we assume a state-independent prior p(ā | s) = p(ā). The first reconstruction loss term

ensures that we learn a latent action space that is consistent with the original action space and

the second KL loss term regularizes the encoded latent posterior distribution. The coefficient β

is an adjustable hyperparameter that balances latent model capacity and reconstruction accurary

[76]. We train the CVAE model with expert demonstrations only so that the learned action space

captures latent representations of the expert policy and not those of any random exploration

policy for the reasons described in the previous paragraph.

4.1.3 Task-agnostic and Task-aware Action Embedding for Adversarial
Imitation Learning

Task-agnostic Action Embedding

In this section, we assume the action encoder-decoder functions gω1,hω2 are trained as in

Sec. 4.1.2 and the parameters ω1,ω2 are fixed. Given gω1,hω2 , we can induce a latent MDP M̄

as described in Sec. 4.1.2. We consider an imitation learning problem in the latent MDP M̄ and

73

the mini-max objective anagolous to (4.2) is

min
θ̄

max
φ

J(θ̄ ,φ) = min
θ̄

DJS
[
ρπ̄

θ̄
(s, ā) || ρπ̄E (s, ā)

]
= min

θ̄

max
φ

E(s,ā)∼π̄E

[
logDφ (s, ā)

]
+E(s,ā)∼π̄

θ̄

[
log(1−Dφ (s, ā))

]
(4.4)

Here, we abuse the notation (s, ā)∼ π̄E to denote that we have converted an expert transition

(s,a)∼ πE into the latent action space via ā = gω1(s,a). The latent agent policy π̄
θ̄

: S ×Ā→

[0,1] predicts a latent action ā at state s, which is converted back to the original action space,

a = hω2(s, ā), before applying it to the agent.

For discriminator optimization, we compute the gradient of the objective with respect to

discriminator parameters φ :

∇φ J(θ̄ ,φ) = E(s,ā)∼π̄E

[
∇φ logDφ (s, ā)

]
+E(s,ā)∼π̄

θ̄

[
∇φ log(1−Dφ (s, ā))

]
. (4.5)

We can exchange the expectation with differentiation since the expectation terms do not depend

on φ . The expert latent actions are converted from the original state-action pair via the action

encoder ā = gω1(s,a) and the agent latent action is sampled from the latent policy π̄ .

For generator optimization, we denote the discriminator Dφ evaluated at the optimal

parameter φ∗ as D∗ := Dφ∗ . Since θ̄ appears in the probability distribution and not inside the

expectation in the second term of (4.4), a gradient estimator can be obtained from the policy

gradient theorem [159, 144],

∇
θ̄

DJS
[
ρπ̄

θ̄
(s, ā) || ρπ̄E (s, ā)

]
= ∇

θ̄
E(s,ā)∼π̄

θ̄
[log(1−D∗(s, ā))]

= E(s,ā)∼π̄
θ̄
[∇

θ̄
log π̄

θ̄
(ā | s)Qπ̄(s, ā)] (4.6)

where Qπ̄(s, ā) = E(st ,āt)∼π̄
θ̄
[∑∞

t=0 γ t log(1−D∗(st , āt)) | s0 = s, ā0 = ā] is the value function of π̄

starting from (s, ā). Effectively, the policy optimization step is to apply on-policy reinforcement

74

Figure 4.2. LAPAL overview. We first train action encoder-decoder functions gω1,hω2 with a
conditional variational autoencoder (CVAE) on expert demonstrations BE to extract latent action
representation. In adversarial imitation learning, we iteratively train a discriminator Dφ that
classifies state and latent action pairs (s, ā) and train a generator π̄

θ̄
that predicts latent actions

from states. For task-agnostic LAPAL, we update the discriminator and generator parameters
φ , θ̄ by formulating a imitation learning objective in the latent space (orange dashed line). For
task-aware LAPAL, the action encoder-decoder functions can be jointly optimized with the
discriminator and policy (green dashed line).

learning with reward r̄(s, ā) =− log(1−D∗(s, ā)) using on-policy samples from π̄
θ̄

. In practice,

off-policy reinforcement learning algorithms, e.g., soft actor-critic (SAC) [70], can be applied

to replace the expectation under the policy distribution with expectation under the agent replay

buffer distribution [95, 18]. It is no longer guaranteed that the agent visitation distribution will

match that of the expert but allows off-policy training for sample efficiency. In addition, since

we optimize the discriminator and generator iteratively, we do not obtain the optimal discrimi-

nator D∗ but rather use the reward r̄(s, ā) =− log(1−Dφ (s, ā)) defined over the discriminator

parameters in the current iteration.

To sum up, in task-agnostic imitation learning, we assume that the action encoder-

decoder functions gω1,hω2 are trained and their parameters are fixed. We apply GAIL in the

latent MDP M̄ where the discriminator Dφ classifies (s, ā), and the policy π̄θ is trained with

reward r̄(s, ā) =− log(1−Dφ (s, ā)) using SAC.

75

Task-aware Action Embedding

In this section, we consider the case where the action encoder-decoder parameters ω1,ω2

are trainable, and solve the imitation learning optimization problem for the original MDPM.

We rewrite the minimax objective in (4.2) as

min
θ̄ ,ω2

max
φ ,ω1

J(θ̄ ,φ ,ω1,ω2)

= min
θ̄ ,ω2

max
φ ,ω1

E(s,a)∼πE

[
logDφ (s,gω1(s,a))

]
+E(s,a)∼π

θ̄ ,ω2

[
log(1−Dφ (s,gω1(s,a)))

]
(4.7)

where we have written the latent action as ā = gω1(s,a) and the latent policy samples (s, ā)∼ π
θ̄

followed by action decoding a = hω2(s, ā) as (s,a)∼ π
θ̄ ,ω2

to explicitly bring out the dependency

on the parameters ω1,ω2.

For the discriminator update, we now compute the gradient with respect to both φ and

ω1 since they affect the classification probability of a state-action pair (s,a),

∇φ ,ω1J(θ̄ ,φ ,ω1,ω2)

= E(s,a)∼πE

[
∇φ ,ω1 logDφ (s,gω1(s,a))

]
+E(s,a)∼π

θ̄ ,ω2

[
∇φ ,ω1 log(1−Dφ (s,gω1(s,a)))

]
.

(4.8)

For the generator update, we again notice that the policy parameters θ̄ ,ω2 only appear in

the probability distribution and not inside the expectation. The policy gradient theorem can still

be applied to obtain a gradient estimator,

∇
θ̄ ,ω2

DJS

[
ρπ

θ̄ ,ω2
(s,a) || ρπE (s,a)

]
= ∇

θ̄ ,ω2
E(s,a)∼π

θ̄ ,ω2
[log(1−D∗(s,gω1(s,a)))]

= E(s,a)∼π
θ̄ ,ω2

[∇
θ̄ ,ω2

logπ
θ̄ ,ω2

(a | s)Qπ(s,a)], (4.9)

where Qπ

θ̄ ,ω2
(s,a) = E(st ,at)∼π

θ̄ ,ω2
[∑∞

t=0 γ t log(1−D∗(st ,gω1(st ,at))) | s0 = s,a0 = a] is the value

function of π
θ̄ ,ω2

= hω2 ◦ π̄
θ̄

starting from (s,a). In practice, we can optimize the agent policy

76

π
θ̄ ,ω2

using any off-policy reinforcement learning algorithm, e.g. SAC, with reward function

r(s,a) =− log(1−Dφ (s,gω1(s,a)) as described in the previous section.

The architechture for task-agnostic and task-aware LAPAL is illustrated in Fig. 4.2 and

the complete algorithm is summarized in Algorithm 4.

Algorithm 4. Latent Policies for Adversarial Imitation Learning (LAPAL)
1: Input: Expert demonstration buffer BE
2: Randomly initialize action encoder-decoder {gω1,hω2}, discriminator Dφ , latent policy π̄

θ̄
,

and empty agent replay buffer Bπ

3: Train action encoder-decoder gω1,hω2 with CVAE loss (4.3) using expert transitions from
BE

4: for number of training iterations do
5: for number of experience collection steps do
6: Sample latent action āt ∼ π̄

θ̄
(· | st)

7: Decode action at = hω2(st , āt)
8: Add (st ,at) to agent replay buffer Bπ

9: Step environment for next state st+1

10: for number of adversarial training steps do
11: Sample a minibatch B from joint buffer BE ∪Bπ

12: Encode actions ā = gω1(s,a) for (s,a) ∈ B
13: if using task-agnostic LAPAL then
14: Update φ with gradient (4.5)
15: Update θ̄ with reward r̄(s, ā) =− log(1−Dφ (s, ā)) using SAC [70]
16: else if using task-aware LAPAL then
17: Update {φ ,ω1} with gradient (4.8)
18: Update

{
θ̄ ,ω2

}
with reward r(s,a) =− log(1−Dφ (s, ā)) using SAC [70]

Characterizing LAPAL Latent Policy

In this section, we discuss a theoretical aspect of our method where the objective func-

tion that we optimize is a lower bound to the original imitation learning algorithm objective.

Given a fixed action embedding function f :A→ Ā, we induce a latent MDP M̄. The imita-

tion learning objective function inM is given as D f [ρπθ
(s,a) || ρπE (s,a)] while that in M̄ is

D f
[
ρπ̄

θ̄
(s, ā) || ρπ̄E (s, ā)

]
. The data processing theorem states that the latter is a lower bound for

the former,

D f [ρπ̄(s, ā) || ρπ̄E (s, ā)]≤ D f [ρπ(s,a) || ρπE (s,a)] . (4.10)

77

In other words, any processing of the ground truth state-action (s,a) makes it more difficult to

determine whether it came from the expert or the agent policy. As a result, the latent policy π̄ that

we solve in M̄ can be suboptimal inM after action decoding, π = h◦ π̄ . Empirically we find

that our task-agnostic LAPAL model can achieve a suboptimal performance in low-dimensional

systems where the action dimension is already small and embedding action space might lose

important information for imitating expert policy. For high-dimensional systems, the learned

latent policy still matches the expert performance.

Figure 4.3. Benchmark environments from MuJoCo and robosuite: (left to right) HalfCheetah-
v3, Walker2d-v3, Ant-v3, Humanoid-v3, Door.

4.1.4 Experiments

Benchmark Tasks for Imitation Learning

We use four continuous control locomotion environments from MuJoCo [165, 21] and

one manipulation environment from robosuite [191], presented in Fig. 4.3. For the locomotion

environments, the task is to run at high speed without falling or exerting too much control effort.

For the Door manipulation environment, the task is to open the door using a robot arm with a

two-finger gripper. The original state and action dimensions are provided in Table 4.1.

We evaluate task-agnostic and task-aware LAPAL against GAIL [77]. Each algorithm is

provided with 64 expert demonstrations, collected from a policy trained with soft actor-critic

(SAC) on the ground truth reward function. We use the same set of hyperparameters across GAIL

and task-agnostic/aware LAPAL and the neural network architectures are shown in Table 4.2.

The generator policy SAC is adapted from [136] and its critic and actor networks share weights

78

Table 4.1. Environment state and action space dimensions

Environment
State

dimension
Action

dimension
HalfCheetah-v3 17 6

Walker2d-v3 17 6
Ant-v3 111 8

Humanoid-v3 376 17
Door (Panda/Sawyer) 46 8

Table 4.2. Neural network configurations

Module Hidden layer size Activation Learning rate
Action encoder (256, 256) Leaky ReLU 3e-4
Action decoder (256, 256) Leaky ReLU 3e-4
Discriminator (256, 256) Tanh 3e-5

Generator actor (256, 256, 256) ReLU 3e-4
Generator critic (256, 256) ReLU 3e-4

for the first two layers. For LAPAL models, we add a Tanh activation layer to the action decoder

output to match the action space bounds. The networks are trained in PyTorch [129] with

the Adam optimizer [91]. The latent action dimension is set to 4 for both task-agnostic and

task-aware LAPAL to infer the latent task structure of these robotic locomotion and manipulation

tasks.

Fig. 4.4 shows the learning curves of each method. For low-dimensional systems

(HalfCheetah-v3, Walker2d-v3), task-agnostic LAPAL is on par or worse than the baseline GAIL

since the original action space dimension is small enough and further compressing the latent

space could result in suboptimal performance as discussed in Sec. 4.1.3. For high dimensional

systems (Ant-v3, Humanoid, Door), both task-agnostic and task-aware LAPAL demonstrate

faster convergence than GAIL. Specifically in the complex Humanoid-v3 environment, our

models can achieve the expert baseline performance, while GAIL fails to recover an optimal

policy in the original action space without explicit regularization techniques like gradient penalty

[64, 123] and spectral normalization [117].

79

Figure 4.4. Benchmark results for MuJoCo and robosuite tasks. Each algorithm is averaged
over 3 random seeds and the shaded area indicates standard deviation. LAPAL is on par with
GAIL in low-dimensional problems such as Walker2d-v3 and HalfCheetah-v3 but converges
faster for high-dimensional problems like Ant-v3, Humanoid and Door. In high-dimensional
Humanoid-v3, GAIL fails to recover the optimal policy without addition regularization, e.g.
gradient penalty and spectral normalization, while LAPAL converges quickly and asymptotically.

Ablation Studies

We perform ablation on the Humanoid-v3 task to investigate the influence of the latent

action dimension da on task-agnostic LAPAL. Humanoid-v3 has the largest action space dimen-

sion among the tasks studied in this section. Fig. 4.5 shows the learning curves of task-agnostic

LAPAL with da = 4,8 and 16. We provide 16 expert trajectories instead of 64 as in the previous

benchmark evaluation to emphasize the difference between our ablated models and the baseline

GAIL. The performance of task-agnostic LAPAL is close to optimal when da = 4 or 8 but drops

about 10% when da = 16. In comparison, the baseline GAIL applied in the original action space

with 17 dimensions only reaches 60% of the expert performance when few demonstrations are

provided. This shows that AIL methods can suffer from high action space dimensionality.

We also study the effect of spectral normalization on each model in Fig. 4.5. Empirically,

we find that spectral normalization [117] improves the model performance while penalty gradient

[64] does not and is omitted here. With spectral normalization, GAIL is able to reach expert

80

Figure 4.5. Ablation analysis of task-agnostic LAPAL with latent action dimension da in
Humanoid-v3. Each model is averaged over 5 random seeds and the shaded area indicates
standard deviation. Without spectral normalization (left), task-agnostic LAPAL with large
da = 16 performs worse than those with da = 4 or 8, while GAIL using the original action space
(da = 17) has the lowest return. With spectral normalization (right), all models reach expert
performance but the effect of the action dimension size is still apparent in the training speed.

Table 4.3. Average return of each policy over 16 episodes and 5 random seeds in the Sawyer
robot target environment Mt . The source policy is trained with a Panda robot in a source
environmentMs and directly applied toMt . Behavioral cloning (BC) and GAIL are trained
with demonstrations fromMt . The transferred policy is a composition of the latent policy π̄s
trained inMs and the action decoder ht trained inMt .

Expert
policy

Source
policy BC GAIL

Transferred
policy

Average
return 857±21 35±6 657±159 752±53 732±46

level and the differences in task-agnostic LAPAL with varying da are small. However, using a

lower-dimensional action embedding still leads to faster training. Additionally, we notice that in

the previous experiments, the performance of both task-agnostic and task-aware LAPAL degrades

in the beginning of adversarial training. We suspect that this is due to pre-training the action

encoder-decoder with expert demonstrations. When the weights of the action encoder-decoder

are optimized for the CVAE loss (4.3), they might not be a good initialization for training the

discriminator and generator under the adversarial loss. With spectral normalization applied,

the performance drop of task-agnostic LAPAL is mitigated as it stablizes gradients during

81

Figure 4.6. Zero-shot transfer learning for task-agnostic LAPAL from Panda robot (left) to
Sawyer robot (right) in Door environment.

discriminator training.

Transfer Learning in Robosuite Door

Our task-agnostic LAPAL model is suited for transfer learning problems in robotic tasks.

We consider transferring skills acquired from one robot in a source environmentMs to another

robot in a task environmentMt . Specifically, we train task-agnostic LAPAL in the robosuite

Door environment with a Panda robot arm and deploy it on a Sawyer robot arm in the target

environment (see Fig. 4.6). The two robots have the same degrees of freedom but the joint

configurations (geometry, friction, damping) and gripper models are different. Directly applying

a policy trained from one robot to another for the same task does not work.

We first apply task-agnostic LAPAL inMs to acquire a latent policy π̄s for an “open

door” skill. We then use 64 expert demonstrations inMt to train a new action encoder-decoder

{gt ,ht} as described in Sec. 4.1.2 for the Sawyer arm. Combining the latent policy π̄s inMs and

the new action decoder ht we obtain a transferred policy forMt . We consider this as zero-shot

transfer since it does not require additional online interactions withMt . On the other hand,

training GAIL directly in the target environmentMt will require collecting online samples from

Mt . Table 4.3 shows that the transferred policy obtains an mean return of 732. For baseline

comparisons, the expert policy on Mt has mean return 857 but directly applying the expert

82

policy fromMs toMt only achieves 35. Without considering transferability or leveraging any

source task data, applying behavioral cloning (BC) and GAIL inMt achieves mean returns of

657 and 752, respectively. The transferred policy from LAPAL is better than BC alone inMt

and almost matches GAIL trained inMt . This illustrates that LAPAL learns an informative

latent policy that may be generalized to different robot types.

83

4.2 Cross Embodiment Robot Manipulation Skill Transfer
from Cycle Consistency

4.2.1 Problem Formulation

A Markov decision process (MDP)M = {S,A,r,T,γ} consists of a continuous state

space S , a continuous action spaceA, a reward function r : S×A→R, a probabilistic transition

function T : S ×A×S → [0,1], and a discount factor γ ∈ [0,1]. We consider a source MDP

Ms = {Ss,As,rs,T s,γ} and a target MDPMt = {St ,At ,rt ,T t ,γ}. In general, the state and

action spaces of the source and target MDPs are different. We aim to align the source and the

target domains by defining a latent-space MDPMz = {Sz,Az,rz,T z,γ}. We introduce a state

encoder Fs : Ss→Sz and an action encoder Gs : Ss×As→Az to map source state-action pairs

to the latent MDP, as well as decoders F̃s : Sz→Ss and G̃s : Ss×Az→As to map latent state-

action pairs back to the source MDP. Similarly, we define state-action encoders and decoders

between the target and the latent MDPs F t , F̃ t ,Gt , G̃t . We assume that random transitions

Ds =
{
(ss

k,a
s
k,s

s
k+1)

}
and Dt =

{
(st

k,a
t
k,s

t
k+1)

}
are available from the source and target domains.

Our goal is to learn the state-action encoders and decoders F{s,t}, F̃{s,t},G{s,t}, G̃{s,t} such that

a source policy parameterized through the latent space, πs(ss) = G̃s(ss,πz(Fs(ss)), can be

transferred to the target domain by keeping the latent policy πz fixed and only replacing the

embedding functions, i.e., πt(st) = G̃t(st ,πz(F t(st)). In this section, the latent policy πz : Sz→

Az is assumed to be deterministic. The encoders and decoders provide a common latent space to

align different robot emobodiments. We can reuse the latent policy when a new target robot is

introduced without learning the target policy from scratch.

4.2.2 Cross Embodiment Representation Alignment

In this section, we first define source encoders and decoders and train a latent space

policy. Next, we align the target domain samples to the latent space constructed in the first stage,

so that the latent policy can be combined with target domain projection functions to construct a

84

Figure 4.7. Approach overview: (a) The source robot learns encoders and decoders Fs,Gs, F̃s, G̃s
for state-action projections between its own space and a latent space. The source robot learns a
latent policy πz simultaneously with encoders and decoders with RL. (b) During latent alignment,
the source encoder decoder functions are frozen while the target encoder decoder are trained to
match latent distributions as well as to satisfy cycle consistency and latent dynamics constraints.
(c) During target deployment, we composite the target encoder and decoder functions trained in
(b) with the latent policy trained in (a).

Figure 4.8. Overview of latent alignment losses: (left) adversarial loss to match distributions in
each domain, (middle) cycle consistency loss that regularizes samples to be close to themselves
when translated to the other domains and back, (right) latent dynamics loss to enforce forward
and inverse latent dynamics functions.

target domain policy. An overview of our approach is shown in Fig. 4.7.

Latent Policy Training with Source Domain Projection

Training a source domain policy directly does not help build a representation that allows

generalization to new target domains. We parameterize a source policy inMs through a latent

policy inMz using a state encoder Fs and an action decoder G̃s: πs(ss) = G̃s(ss,πz(Fs(ss)).

Hence, instead of directly predicting a source action from a source state, we project the source

state ss to a latent state sz = Fs(ss), use the latent policy to predict a latent action az = πz(sz),

and project the latent action back to a source action, i.e., as = G̃s(ss,az). We propose to combine

three types of objectives to learn the encoders, decoders and latent policy as discussed below.

RL Task Objective. We first optimize the latent representations of the source robot to

align with the task objective. In particular, we optimize G̃s,Fs jointly with the latent policy πz

85

using a deterministic policy gradient algorithm, e.g., TD3 [110, 55]. Recall that in deterministic

policy gradient algorithms, the objective of a parameterized policy πθ is to maximize the expected

cumulative reward (or to minimize the expected cumulative cost):

LRL(θ) =−Eπθ

[
∞

∑
k=0

γ
kr(sk,ak)

]
. (4.11)

The gradient of the objective is:

∇θLRL(θ) =−E
[
∇θ πθ (s)∇aQπθ (s,a)|a=πθ (s)

]
, (4.12)

where the action-value (Q) function of πθ is

Qπθ (s,a) =Es∼Tπθ
,a∼πθ

[
∞

∑
k=0

γ
kr(sk,ak)|s0 = s,a0 = a

]
,

i.e., the expected sum of rewards when choosing action a in state s and following πθ afterwards.

In our approach, since the policy is a composition of the encoder Fs, decoder G̃s and latent

policy πz, the policy gradient in (4.12) is backpropagated through each component to update

their parameters.

Latent Dynamics Loss. The latent space is loosely constrained with a policy representa-

tion that is optimized by the task objective only. We use a self-supervision signal based on latent

dynamics prediction [73] to learn forward and inverse dynamics models T z : Sz×Az→Sz and

T̃ z : Sz×Sz→Az. The latent dynamics loss is optimized simultaneously within the RL loop

and is defined as:

Ldyn(T z, T̃ z,Fs,Gs) = E(ss
k,a

s
k,s

s
k+1)∼Ds

[∥∥T z(sz
k,a

z
k)− sz

k+1

∥∥2
2 +
∥∥T̃ z(sz

k,s
z
k+1)−az

k

∥∥2
2

]
(4.13)

where sz
k = Fs(ss

k) and az
k = Gs(ss

k,a
s
k). Note that we use a deterministic latent dynamics model

for ease of implementation while a stochastic model can also be considered [102] and is left for

86

future work.

Reconstruction Loss. While it may not be necessary to reconstruct distractions or

noise when learning latent representations from visual observations, we consider robot joint

configuration as the source domain and it includes crucial information that should be captured

in the latent space. Therefore, we also require Fs and F̃s (as well as Gs and G̃s) to be inverse

mappings of each other:

Lrec(Fs, F̃s,Gs, G̃s) = E(ss
k,a

s
k)∼Ds

[∥∥F̃s(Fs(ss
k))− ss

k

∥∥2
2 +
∥∥G̃s(ss

k,G(ss
k,a

s
k))−as

k

∥∥2
2

]
. (4.14)

The pseudo-code for learning source domain policy through latent space is shown in

Alg. 5. We first initialize a replay buffer D containing the source random transitions Ds. In the

RL loop, we update the Fs,πz, G̃s with policy gradient in (4.12) and use the same minibatch

samples to optimize the latent dynamics T z, T̃ z and to enforce the encoder-decoder reconstruction

loss in (4.14).

Target Domain Alignment

In the previous section, we have learned a projection (Fs, F̃s,Gs, G̃s) from the source

domain to the latent domain and a source policy πz parameterized through that latent domain.

Next, we will consider projecting the target domain to the same latent domain induced by source

policy training and construct a target policy from the latent policy. Our objective function

contains three types of terms as shown in Fig. 4.8: adversarial losses for matching the translated

distribution in the source, target and latent domains; cycle consistency loss such that the state and

action mappings can learn from unpaired samples in each domain; and finally latent dynamics

consistency where target samples follow the same latent dynamics trained in the Sec. 4.2.2.

Adversarial Loss. In the previous section, we have learned the projection from the

source domain to latent via encoders and decoders Fs, F̃s,Gs, G̃s, which fix the latent distribution

from Ds. We would like to train the target domain encoders and decoders F t , F̃ t ,Gt , G̃t such

87

that the latent distribution from target domain matches that from the source. We consider an

adversarial learning objective where a discriminator Dz : Sz×Az→ [0,1] tries to distinguish

latent state-action pairs (Fs(ss),Gs(ss,as)) from the source domain and (F t(st),Gt(st ,at)) from

the target domain. Note that the distribution of (Fs(ss),Gs(ss,as)) is now fixed because Fs,Gs

which are trained in Sec.4.2.2 and are frozen during alignment in target domain. The target

domain encoders F t ,Gt act as a generator that tries to generate latent state-action F t(st),Gt(st ,at)

which are indistinguishable from the source latents. The adversarial objective in the latent space

can be expressed as follows:

max
Dz

min
Ft ,Gt
Lz

GAN(F
t ,Gt ,Dz) =

E(ss,as)∼Ds [logDz(Fs(ss),Gs(ss,as))]+ E(st ,at)∼Dt
[
log(1−Dz(F t(st),Gt(st ,at)))

]
.

(4.15)

Additionally, we can also consider matching the translated distributions in the source and

target domains. For example, in the target domain, the translated state-action from source are

s̄t = F̃ t(Fs(ss)) and āt = G̃t(s̄t ,Gs(ss,as)). With another discriminator Dt : St ×At → [0,1]

which distinguishes real target pairs (st ,at) from fake ones (s̄t , āt), the adversarial objective in

the target space is:

max
Dt

min
F̃t ,G̃t
Lt

GAN(F̃
t , G̃t ,Dt) = E(st ,at)∼Dt

[
logDt(st ,at)

]
+E(ss,as)∼Ds

[
log(1−Dt(s̄t , āt)

]
(4.16)

Similarly, we can construct a source domain discriminator Ds which distinguishes the translated

target distribution in the source domain:

max
Ds

min
Ft ,Gt
Ls

GAN(Ft ,Gt ,Ds) = E(ss,as)∼Ds [logDs(ss,as)]+E(st ,at)∼Dt [log(1−Ds(s̄s, ās)] .

(4.17)

88

where s̄s = F̃s(F t(st) and ās = G̃s(s̄s,Gt(st ,at)). Combining the adversarial objectives in the

latent, source and target domains, the full adversarial objective is

max
Dz,Ds,Dt

min
Ft ,F̃t ,Gt ,G̃t

Lz
GAN +Ls

GAN +Lt
GAN . (4.18)

Cycle Consistency Loss. Inspired by CycleGAN [189], we construct a cycle consistency

loss such that the state-action translation from one domain to the other and back to its own

domain should recover itself. The cycle consistency constraint leverages unpaired samples since

it only requires samples from one domain, obviating the need of paired samples from both

domains. Specifically, if we have a translated target state s̄t = F̃ t(Fs(ss)) from source state, the

reconstructed source state from it should be close to itself, i.e., ¯̄ss = F̃s(F t(s̄t))≈ ss. The cycle

consistency objective also applies to translated actions, i.e., ¯̄as = G̃s(F̃s(F t(s̄t)),Gt(s̄t , āt))≈ as.

The full cycle consistency objective for both domains is

Lcyc(F t , F̃ t ,Gt , G̃t) =

E(ss,as)∼Ds [∥¯̄ss− ss∥1 +∥ ¯̄as−as∥1]+E(st ,at)∼Dt
[∥∥¯̄st− st∥∥

1 +
∥∥ ¯̄at−at∥∥

1

]
. (4.19)

Dynamics Consistency Loss. Finally, we introduce dynamics consistency constraint in

the latent domain to match the joint distribution P(Fs(ss
k),Gs(as

k),Fs(ss
k+1)) and P(Ft(st

k),Gt(at
k),Fs(st

k+1)).

Recall that in the previous section, we have trained an RL policy with additional dynamics

consistency constraint in the latent space. During target domain alignment, the dynamics

consistency can be applied to the target samples as well. We train the target encoders F t ,Gt such

that the target latent state-action pairs follow the forward and inverse dynamics functions T z, T̃ z

trained in Sec. 4.2.2:

Ldyn,t(Ft ,Gt) = E(st
k,a

t
k,s

t
k+1)∼Dt

[∥∥T z(sz
k,a

z
k)− sz

k+1

∥∥2
2 +
∥∥T̃ z(sz

k,s
z
k+1)−az

k

∥∥2
2

]
, (4.20)

89

Algorithm 5. Source domain policy learning
1: Initialize replay buffer D with source samples Ds.
2: loop
3: Select action a = G̃s(ss,πz(Fs(ss))+ ε with exploration noise ε ∼N (0,σ)
4: Observe reward r, next state s′ and store (s,a,r,s′) in D
5: Sample a minibatch

{
(ss

k,a
s
k,r

s
k,s

s
k+1)

}
from D

6: Update G̃s,πz,Fs with deterministic policy gradient in (4.12)
7: Update latent dynamics T z, T̃ z and encoders Fs,Gs with latent dynamics loss in (4.13)
8: Update encoders Fs,Gs and decoders F̃s, G̃s with reconstruction loss in (4.14)
9: Output: Source encoders and decoders Fs, F̃s,Gs, G̃s, latent dynamics T z, T̃ z, latent policy πz.

where sz
k = F t(st

k),a
z
k = Gt(st

k,a
t
k). Note that the forward and inverse dynamics functions

T z, T̃ z are fixed during this latent alignment stage since the latent distribution from source

P(Fs(ss
k),Gs(as

k),Fs(ss
k+1)) is already optimized in Sec. 4.2.2. Here we are only aligning the

latent joint distribution P(Ft(st
k),Gt(at

k),Fs(st
k+1)) from target towards that from source.

After training the target domain encoders and decoders F t , F̃ t ,Gt , G̃t with the above

alignment objectives, we have aligned the source and target samples Ds,Dt in the common

latent spaceMz. Finally, we deploy the target policy from the source policy by replacing the

corresponding state encoder and action decoder, i.e., πt(st) = G̃t(st ,πz(F t(st))).

Algorithm

Alg. 5 summarizes the reinforcement training procedure for learning source encoders

and decoders Fs, F̃s,Gs, G̃s. Alg. 6 summarizes the procedure for learning a latent representation

between source and target domains with cycle and dynamics consistency. During deployment in

the target domain, only the latent policy πz from Sec. 4.2.2 remains while the state encoder and

action decoder are replaced with F t and G̃t trained in Sec. 4.2.2. Our proposed approach does

not depend on paired source and target data, nor does it require reward supervision for test time

adaptation.

90

Algorithm 6. Latent representation alignment for target domain deployment

1: Freeze learned models Fs, F̃s,Gs, G̃s,T z, T̃ z,πz from Alg. 5
2: for step in 1, . . . , target domain alignment steps do
3: Sample minibatches

{
(ss

k,a
s
k,s

s
k+1)

}
∼ Ds and

{
(st

k,a
t
k,s

t
k+1)

}
∼ Dt

4: Update discriminators Dz,Ds,Dt by maximizing (4.18)
5: Update target encoders and decoders F t , F̃ t ,Gt , G̃t by minimizing (4.18), (4.19), (4.20)
6: Output: Target policy: π t(st) = G̃t(st ,πz(F t(st)))

4.2.3 Experiments

Simulation Results

We first verify our approach and conduct ablation studies in the robosuite simulation

environment [191]. We consider four tasks: Reach, Lift, PickPlace and Stack. Environment

details are further described in Sec. 4.2.4.

Reach Task and Ablation Studies. In the first experiment, we will test the target state

alignment by only using the Panda robot in both domains. Specifically, we will only learn

the target state encoder-decoder F t , F̃ t while setting the other components to be identity, i.e.,

Fs,Fs,Gs, G̃s,Gt , G̃t are identity functions. InMs, a Panda robot tries to reach a target position

with end-effector position control given its end-effector position while inMt , the same Panda

robot uses joint positions as state input for end-effector position control. Under such setting,

the target state encoder-decoder F t , F̃ t should theoretically approximate the forward and inverse

kinematics functions between joint angles and end-effector position. For evaluation metrics, we

first compute the ℓ1-distance between the predicted and ground truth end-effector positions of the

target robot to assess state alignment. Next, we evaluate the RL performance as another metric

where we train a source policy πs (in this case πs = πz since Fs and G̃s are identity) and apply

the target policy πt = πz ◦F t (since G̃t is also identity). Since there is no projection from the

source domain to the latent, we simply apply TD3 [55] to obtain the source domain policy.

We compare with the following baselines: (i) ILA [180] which performs state alignment

in source domain and does not require cycle consistency; (ii) our model without latent dynamics

constraint; (iii) a strongly-supervised model that is trained on paired joint to end-effector data;

(iii) an oracle which is an RL policy trained in the target domain and provides an upper bound;

91

Table 4.4. Transfer learning evaluation on Reach task with Panda end-effector space source
and Panda joint space target. The results are averaged over 5 runs. Lower is better for the ℓ1
error (cm), and higher is better for the RL score. Our model performs better than the baseline
ILA [180] which does not consider cycle consistency constraint or then baseline without latent
dynamics constraint. The strong supervision model performs better than ours but requires paired
training data. The oracle is an RL policy trained in the target domain.

Ours
Ours

w/o dyn. ILA [180]
Strong

supervision Oracle Random

ℓ1 error 0.7±0.1 4.7±0.2 3.9±0.3 0.3±0.1 - -
RL score 163±10 41±27 53±27 166±7 172±11 13±8

(iv) a random policy in the target domain. The results in Table 4.4 show that the cycle consistency

and dynamics consistency are important terms that improve the performance of our model over

ILA [180]. The strongly supervised model is marginally better ours even though it uses paired

source and target data while our model only uses unpaired data.

Figure 4.9. Ablation study on latent state and action dimensions for transfer from Panda to
Sawyer and xArm6 robots. The lowest state and action dimensions with reasonable performance
are 4.

Next, we use joint velocity control for both the source and target domains and ablate the

latent state and action dimensions. The Panda and Sawyer have 7 degrees-of-freedom (DoF)

arms while the xArm6 is 6 DoF. Hence, the robot state dimensions, represented in sine and

cosine functions of the joint angles, are 14 for Panda and Sawyer and 12 for xArm6. The action

dimension for each robot is its DoF when we apply joint velocity control. Fig. 4.9 shows the

RL performance on the transferred policy from Panda to Sawyer and xArm for the Reach task

with different latent state sz and action az dimensions. We find that the transfer performance

92

Table 4.5. RL reward for a source policy trained on Panda and transferred to Sawyer and xArm6
robots. The reward of an oracle policy trained directly on the target robot is shown in parenthesis.

Task Lift PickPlace Stack
Sawyer 122±41 (181±4) 70±35 (86±15) 85±40 (121±18)
xArm6 132±23 (171±7) 74±36 (84±9) 78±49 (116±23)

drops significantly when the state or action dimensions are too small. This makes sense as the

end-effector position control takes place in 3-dimensional space and latent trajectories in a lower

dimensional space cannot recover the 3D motions for Reach task. In the subsequent experiments,

we choose latent state and action dimensions to be both 4 since it is the smallest dimension that

still achieves a good performance.

Lift, PickPlace, Stack. In this section, we use joint velocity controller to perform Lift,

PickPlace and Stack tasks in robosuite simulation. We train the source domain policy with

reinforcement learning on the Panda robot and transfer to Sawyer and xArm6 robots. The state

variable includes robot joint angles, gripper width, gripper touch signal and object and target

positions. Detailed experiment settings are described in Appendix 4.2.4. Fig. 4.10 shows a Lift

task example of the transferred policy from Panda robot to Sawyer and xArm robots. Table 4.5

shows that quantitatively our model can learn a meaningful mapping between robots of different

embodiments. However, manipulation tasks require very precise alignment in order to correctly

grasp objects and sometimes the transferred policy cannot complete the task successfully.

Real Robot Experiments

In this section, we evaluate our model’s capability for sim-to-real skill transfer. The

physical setup of the robot and experiment task is shown in Fig. 4.11. We train a source policy

with the Panda robot in simulation and instead of transferring to a simulated Sawyer or xArm

robot, we directly transfer to a real xArm6 robot. Note that the robot to train a policy in simulation

is not the same type of robot that is used in real world deployment. The source policy on the

simulated Panda is trained with behavioral cloning on 100 human demonstrated trajectories in

each task in order to avoid jerky motions when we transfer on the real robot for safety concerns.

93

Figure 4.10. Examples of transferring Panda robot policy (top row) to Sawyer robot (middle
row) and xArm6 robot (bottom row) for the Lift task in robosuite. We learn encoders to map
the source Panda robot states and actions into a latent space and simultaneously a latent policy
to solve the task. The latent space can be used to align different types of target robots (Sawyer
or xArm6) and successfully transfer the learned policy without finetuning in the target domains
using their reward functions or additional expert demonstrations.

Since we do not have ground truth object information in real experiments as we did in the

simulated experiments, we use an RGBD camera to estimate object position in real time. Details

about object tracking are described in Sec. 4.2.4. For evaluation metrics, we count the success

rate for each task over 10 test episodes. The success conditions are defined in Sec. 4.2.4 for each

task. While simulation environments are quite tolerant to collisions, it would cause protection

responses on the real robot arm and are counted as failures.

We transfer the source policy trained on a simulated Panda robot to a real xArm6 robot
Table 4.6. Transfer results of 10 episodes from simulated Panda to real xArm6 with joint velocity
control. Our model can successfully transfer from sim to real. The success rate on the real robot
is lower due to dropped objects or collisions that cause a safety stop.

Task Success Collision Drop
Lift 70% 20% 10%

PickPlace 60% 20% 20%

94

Figure 4.11. Real-world experiment setup. We use the xArm6 robot with an xArm gripper. Force
sensing resistors (FSR) are attached on grippers (enlarged on bottom right) to obtain pressure
signals when objects are grasped. We use an RGBD camera to estimate object positions.

with reasonable success rates as shown in Table 4.6. Fig. 4.12 shows a successful trajectory of

the transferred policy of the PickPlace task while Fig. 4.13 shows some failure modes. When the

alignment is not perfect, the gripper would collide with the cube or the table. We also observe

that the gripper can sometimes drop the cube prematurely before it reaches the target. The

robot is not able to re-grasp the dropped cube if its landing position is outside that of training

distribution.

4.2.4 Implementation Details

Experiment Settings

We use Reach, Lift, and PickPlace environments from the robosuite simulator [191] as

shown in Fig. 4.14. The custom Reach task contains only the robot manipulator and it tries to

reach a target position in 3D space with its end-effector. In the Lift task, the robot tries to lift

95

Figure 4.12. Simulation to real transfer for PickPlace task. The source policy is trained with
behavior cloning in simulation with Panda robot (top row) and transferred to a real xArm6 robot
(bottom row).

Figure 4.13. Examples of failure modes including cube collisions, table collisions, or perma-
nently dropping the cube.

the cube to a target position above the table center. In the PickPlace task, the robot picks up

a bread object from one side and places it in the bin on the other side. In the Stack task, the

robot stacks the red cube on top of the green cube. The state space consists of robot related

states, including sine and cosine functions of joint angles or the gripper end-effector position and

gripper open width, and object related states, including object position and target position. The

action space consists of desired joint velocities for joint velocity control or delta position values

for end-effector position control, and gripper open or close control. For the Lift, PickPlace and

Stack tasks, we also include touch sensors from the robot grippers. In simulation, the touch

sensor signal is obtained from checking collisions between gripper finger and objects. In real

96

Figure 4.14. Robosuite simulation environment tasks (from top to bottom, left to right): Reach,
Lift, PickPlace and Stack.

experiments, this is obtained from force sensing resistors attached on the xArm gripper.

Model Architecture

The state and action encoder and decoder functions Fs,t ,F−1
s,t ,Gs,t ,G−1

s,t , latent dynamics

functions H f wd,Hinv, and discriminators Ds,t,z are neural network layers with hidden layers of

size [256,256,256]. We use ReLU activations for all hidden layers and hyperbolic tangent

function for the final output layer for all models except for discriminators where leaky ReLU

activations are used for hidden layers. All models are trained with Adam optimizer using decay

rates β1 = 0.9,β2 = 0.999.

97

Object Tracking

Real-time object tracking is performed with an Intel RealSense D435 stereo camera.

We use a simple color detector on the RGB image to find the pixel location of the object since

the object has a high color contrast from its background. The color range for green cube in

HSV space is from [30,80,50] to [90,255,255]. Next, the 3D position of that pixel is obtained

from querying the corresponding depth value on the depth image, where post-processing filters

including disparity, spatial and temporal, are applied to reduce depth noise. Finally, we get the

3D object position in robot frame from image frame with calibrated camera extrinsics parameters

which are obtained from hand-eye calibration using ArUco markers.

Dataset Collection

We collect random trajectories for Panda, Sawyer and xArm6 robots (Ds and Dt) in the

robosuite simulation for the state-action alignment. For each robot type, the robot base is placed

such that its gripper initial position is at [−0.2,0,1.05]. In each episode, the robot gripper moves

in straight line to a randomly sampled target position in a 3D rectangular region bounded by

[−0.2,0.2] in x, [−0.25,0.25] in y and [−0.8,1.2] in z. It continues to move to a newly sampled

target without resetting at the end of the episode unless the gripper goes out of bounds. We

collect 10000 episodes of length 200 for each robot. We find that this sampling strategy covers

the robot workspace better than randomly sampling actions at each step. With random actions at

each step, the robot trajectory often result in either self collision or purposeless directions above

or even behind the base.

98

Figure 4.15. We propose Dynamic Handover, a new bimanual dexterous hands system designed
for throwing and catching tasks. The system consists of two Allegro Hands, each individually
attached to a separate XArm robot, arranged in a facing configuration. Using multi-agent
reinforcement learning, we train policies in a simulation environment and subsequently transfer
them to the real world.

4.3 Dynamic Handover: Throw and Catch with Bimanual
Hands

4.3.1 System Setup

Task Description. We focus on the bimanual Catching and Throwing task with two

dexterous robot hand. This task involves two robot agents: (i) a thrower robot agent (Figure 4.16

right) that needs to execute swift movements to toss the grasped object towards the other side,

and (ii) a catcher agent (Figure 4.16 left) that needs to react dynamically to catch the airborne

object. This task is important because it enables the catcher robot to access objects beyond its

kinematic range by leveraging the object’s momentum imparted by the thrower. It also serves

as a good test-bed for evaluating the coordination and performance of bimanual systems in

high-speed, real-time scenarios.

99

Figure 4.16. Real Robot System: We employ two Allegro Hands, each individually mounted on
separate XArm-6 robots, arranged in a face-to-face configuration. We incorporate a RealSense
D435 camera for real-time object position tracking, which is oriented towards the working space.
We use k prior states in observation.

Real World Setup. We construct a bimanual system for executing our throwing and

catching task, as depicted in Figure 4.16. The system includes two arm-hand subsystems and a

RealSense D435 camera. Each arm-hand subsystem features a 6-DoF XArm-6 robot arm paired

with a 16-DoF Allegro Hand, culminating in a 44-DoF system. To create a closed-loop policy,

we use a RealSense camera to capture the real-time position of objects within the catcher robot’s

frame of reference. For observation, distinct feedback mechanisms are provided for each agent,

as depicted at the bottom of Figure 4.16. The thrower (Figure 4.16: right) depends exclusively

on its own proprioceptive data, while the catcher (Figure 4.16: left) obtains feedback from not

only its own proprioception but also the object’s real-time positions estimated by the camera.

In other words, the thrower operates based on its current state, whereas the catcher necessitates

both proprioceptive and visual input to dynamically and interactively perform catching actions.

Further information regarding this system’s implementation can be found in the Appendix.

Simulation Setup. In this work, we use the IsaacGym physical simulator [113] for

training our throwing and catching task. The simulation setup is shown on the left side of

100

Figure 4.15. The simulation frequency is set at 120Hz while the control frequency is 20Hz. We

train the end-to-end reinforcement learning policy in the simulated environment and then transfer

the policy to the real world. Further information regarding the details about the simulation setup

(e.g. policy architecture) can be found in the Appendix.

Action Space. The policy outputs a 22-dimensional PD control target, with the first

six dimensions corresponding to XArm-6 and the remaining 16 dimensions corresponding to

Allegro hand. For the XArm-6, we employ delta joint positions as the control target, while for

the Allegro hand, we utilize absolute joint positions as the control target. This design choice

is made to avoid jerky motion of robot arm for safety reasons, while still allowing the hand to

swiftly react and release its grasp to throw the object. In our experiments, we find that controlling

only the second and third joints of the robot arm and keeping the other four joints fixed results

in a more effective and safer policy. Therefore, the action space consists of an 18-dimensional

target for the thrower and a 22-dimensional target for the catcher.

4.3.2 Learning Bimanual Dexterous Hands Policy

Catching an object in mid-air poses significant difficulties due to the high-speed require-

ment. First, object’s real-time velocity and anticipated trajectory must be taken into account in

order for the catcher to determine its movement. Second, even though the thrower can consis-

tently toss the object toward the pre-defined target goal in simulated environment, the policy

transfer to the real world is imperfect due to the substantial dynamics gap between simulation

and real physical. Consequently, there is a discrepancy between the pre-defined throwing goal

and the object’s actual destination. In light of these two challenges, a goal estimator becomes

crucial for predicting the thrower’s actual destination instead of the predetermined target goal.

This allows the catcher to move based on the forecasted object destination and successfully catch

it.

To achieve this, we introduce a novel three-stage training pipeline for learning bimanual

throwing and catching. (i) In the first stage, we train a base policy using Multi-Agent RL to

101

Figure 4.17. Joint End2End Learning: The two agents receive input from both their own
observations and the catcher agent additionally receives the predicted catching position. The
goal estimator takes past 20 frames of the object’s positions as input and predicts the catch goal
for each time step. We use a violet ball to represent the pre-defined goal for the throwing. The
orange ball represents the predicted goal for the catcher to catch during the throwing task. The
blue ball represents the object that is currently been manipulated.

tackle the task, with the catcher observing the pre-defined throwing goal. The policy trained

during this stage is expected to perform well within the simulator but may hardly transfer to the

real world. (ii) Next, we freeze the base policy and train a goal estimator through supervised

learning, using the rollout trajectory of the base policy as training data. (iii) Finally, we replace

the pre-defined throwing goal in the catcher’s observation with the estimated goal and unfreeze

the policy for fine-tuning both the base policy and the goal estimator in an end-to-end fashion.

The refined policy is expected to bridge the dynamics gap between simulation and reality with

the predicted object’s future trajectory.

Stage 1: Multi-Agent Reinforcement Learning

We employ the Multi-Agent Proximal Policy Optimization (MAPPO) [181] in a non-

parameter sharing way to train the thrower and the catcher to obtain basic policies in the first stage.

MAPPO is an application of the PPO algorithm to multi-agent settings. It leverages centralized

training with decentralized execution, allowing each robot agents to efficiently accomplish the

cooperative task using partial observations.

As shown at the bottom of Figure 4.16, the observations for the thrower and catcher in

102

MAPPO training is not identical. The thrower’s policy, denoted as π0, receives its proprioception

and a pre-defined target position for throwing. In contrast, the catcher’s policy, denoted as

π1, takes as input its proprioception, the pre-defined goal position and the current position of

the object for catching. To satisfy MAPPO’s requirement for equal input dimensions across

agents, we pad zeros to the thrower’s input for dimension alignment. Besides, we include

observations from past k frames as input for both policies to provide temporal information. In

our implementation, we set k = 2.

Given the object position pppt , target goal position Gt , the velocity of the object vvv, the unit

direction vector from thrower to catcher ûuu, and robot joint torque τττ , we design the reward function

using three components: (i) distance between object and throwing goal; (ii) object velocity

projected in the direction from thrower to catcher; (iii) robot joint torque. The final reward r

can be computed as r = rdis + rlinvel + rtorque, where rdis = exp(−20∗ (pppt−Gt)) represents the

distance, rlinvel = clamp(vvv · ûuu,−0.1,0.1) denotes the object’s velocity towards the catcher, and

rtorque =−0.003∗∥τττ∥2
2 corresponds to the torque penalty.

Stage 2: Goal Estimator Learning

After training the basic policies, the next step involves freezing the basic policies and

training a goal estimator (Orange Block in Figure 4.17) to predict the goal for the catcher based

on the trajectory of the object. This is a crucial step due to the sim2real gap, which implies

that although the thrower may consistently hit the goal in simulation, it is unlikely to achieve

the same level of accuracy in the real world. Therefore, predicting the actual goal based on the

object’s trajectory becomes essential for improving sim-to-real transfer. In this stage, we utilize

the historical positions of the object over a span of k frames as input to the goal estimator. The

output of the goal estimator is the predicted 3D position of the goal, which provides crucial

information for the catcher to anticipate the intended catching point and enhance the coordination

between the two hands. We use Adam to optimize the L2 distance between the position of the

predicted goal and the thrower’s goal until convergence:

103

L(ω) = ∥ω(p1
t−k:t)−G0

t ∥2 (4.21)

where p1
t−k:t is the position of the object from t− k to t frames, G0

t is the thrower’s goal,

and the 0 and 1 represent the thrower and catcher respectively. It is important to highlight that in

the previous training stage, the object’s landing point was primarily influenced by the thrower’s

goal. This is because the thrower, operating in the simulation environment, had the ability to

consistently hit the specified goal in the simulation.

Stage 3: End2End Joint Learning

In stage 1, the catcher’s base policy uses a pre-defined throw goal in its observation.

In this stage, we replace the pre-defined goal with the predicted one from the goal estimator.

However, the distribution shift brought by this replacement can result in compounding errors. To

address this issue, we jointly fine-tune the goal estimator and the policy network in this stage, as

visualized in Figure 4.17, allowing the catcher to adapt to the goal estimator. For example, when

the goal estimator is inaccurate, the policy will not depend solely on it for decision-making. This

joint training approach helps reduce compounding errors when integrating the goal estimator

with the policy.

4.3.3 Experiments

Evaluation Criterion. To evaluate the performance of the trained policies for throwing

and catching, we consider several metrics as follow:

(i) Success Rate(SR): It is calculated as the ratio of successful throws and catches to the

total attempts. A better policy will lead to a higher Success Rate.

(ii) Hit Rate(HR): This metric is defined as the proportion of objects that successfully hit

the hand palm of catcher. A better policy and goal estimator will lead to a higher Hit Rate.

Training and Dataset. During the training process, we utlize three different objects: a

ball, a cube, and a rod, which are three typical geometries for robot manipulation. At the begin-

104

Figure 4.18. Training Curves. The plot shows multi-object training curves of our method and 3
baselines.

ning of each episode, we randomly select one object for training. For simulation experiments, we

expand the object set to include additional objects to evaluate the generalizability of our policy

to novel objects. The objects used in the simulation experiments are depicted in Figure 4.19(a)

and Figure 4.19(b). We chose objects that have similar sizes to the training objects but differ in

shape and size to assess the model’s generalization capabilities. In the real-world experiments,

we employ sandbags in three different shapes for throwing, as shown in Figure 4.19(c): a ball, a

cylinder, and a triangle prism.

Baselines. In this section, we compare our method with the following baselines:

(i) Open-Loop Policy: We employ a pre-defined trajectory for the bimanual hand-arm

system to execute the throwing and catching task. The trajectories are collected on the real robot

using kinesthetic teaching and replayed later without considering feedback or adjustment during

execution.

(ii) Without Multi-Agent: We train our policy using PPO instead of using MAPPO.

However, we still incorporate goal estimation during the learning process. Under this setup, both

agents share the same observation.

(iii) Without Goal Estimation: We restrict our learning process to the first stage in

105

Figure 4.19. Objects Sets. (a) Training objects. (b) Additional objects in evaluation. (c)
Real-world objects.

Section 4.3.2 with MAPPO algorithm and evaluate the policies without goal estimation.

(iv) Without Both: We restrict our learning process to the first stage in Section 4.3.2 with

PPO algorithm and evaluate the policies without goal estimation.

Table 4.7. Ablation Study in Simulation: Success Rate of throwing and catching task on
different objects in simulation. We use 11 trained objects and 14 novel objects. The results are
averaged on 5 seeds, each seed has 100 trails.

Settings Known Obj. Novel Obj.
w/o Multi-Agent 0.89±0.07 0.24±0.05
w/o Goal Est. 0.88±0.04 0.22±0.04
w/o Both 0.93±0.07 0.12±0.06
Ours 0.95 ± 0.07 0.37 ± 0.04

Results in Simulation

We conduct an analysis of our method with three baselines in the simulation environment.

Figure 4.18 shows the training curve of four methods. Table 4.7 presents the success rates for

two categories: Known Objects and Novel Objects. Our findings can be summarized as follows.

First, for the test on known objects experiment, we observe that the baseline (Without

Both) outperforms the other three methods, including ours. One possible reason for this is that the

106

Table 4.8. Comparison for Pre-throw Conditions: We calculate the standard deviation of
landing points on the table in the x and y directions, based on 10 runs for each pose. The units
are in meters. Pose A: simply placing the object. Pose B: gripping the object with the robot hand.
Pose C: firmly grasping the object.

Settings Pose A Pose B Pose C
Std(x) 0.051 0.072 0.024
Std(y) 0.087 0.048 0.043

policy without multi-agent coordination has access to full observations of both hands and the arm

system, as well as the ground-truth object position. As a result, the policy can easily overfit to a

specific point and successfully solve the task. However, it is important to note that this baseline

policy may have lower generalization capabilities when it comes to novel objects or uncertain

parameters. In the real world, we encounter noise and uncertainties, and obtaining the ground-

truth object position is not feasible. Therefore, the policy with full observations demonstrates

lower transferability from simulation to the real world, as we validate in Section 4.3.3.

Secondly, in the novel objects experiment, although all methods show a significant drop in

performance, our method outperforms the baselines. The utilization of multi-agent reinforcement

learning and goal estimation proves beneficial for accomplishing the throwing and catching task.

Both the thrower and catcher agents receive observations from their respective perspectives,

enabling them to perform their tasks cohesively. Furthermore, goal estimation assists the catcher

in predicting the landing point of the objects based on historical positions. This feature helps

mitigate the impact of unpredictable parameters during the manipulation process, such as friction,

unexpected collisions, and other dynamic factors.

Results in Real World

We perform sim-to-real experiments to assess the performance of our method and two

baselines on a real robot platform. As depicted in Figure 4.16, we deploy multi-agent reinforce-

ment learning policies on the real robot agents, with both agents controlled by the same host. The

task execution sequence is visualized on the second and third columns in Figure 4.15. Further

implementation details and communication methods can be found in the Sec. 4.3.4.

107

The results of our real world evaluation are presented in Table 4.9. We successfully

transfer our multi-agent reinforcement policy to the real robot system with a reasonable success

rate after performing system identification to align the PD controllers between the simulation

and the real robot. Our method outperforms the baseline methods, indicating the effectiveness

of multi-agent reinforcement learning (MARL) and goal estimation in real robot experiments.

These components provide benefits in dealing with various unpredictable factors encountered in

the real-world setting, leading to improved performance and robustness. We also notice that the

success rates achieved in real world experiments are lower than the hit rate. This is primarily

attributed to occasional challenges encountered during the grasping phase of the catcher. In some

cases, the catcher may fail to firmly grasp the object before it bounces back, leading to the object

slipping off the robot’s hand.

How Pre-throw Conditions Impact Throwing Performance?

In this experiment, we examine the repeatability of the thrower. Our intuition is that a

thrower policy capable of generating consistent object trajectories often results in a higher success

rate for the catcher. We find that the robots’ and objects’ initial positions have a significant

impact on the stability of the throwing motion. To address this, we investigate three different

initial conditions (depicted in Figure 4.20) in real-world. For each initial position, we train a

MARL policy and conduct 10 trials with the thrower robot. We compute the variance of the

landing point on the table to evaluate the repeatability under different initial conditions. A

smaller variance indicates better repeatability and stability. The results are summarized in Table

4.8. We observe that condition (c) demonstrates the smallest variance and enables more stable

throws towards the target compared to conditions (a) and (b). This suggests that an initial firm

grasp is advantageous for subsequent throwing behavior.

108

Figure 4.20. Throwing Stability Test of different initial settings: (a) simply placing the object
on an open robot hand, (b) gripping the object with the robot hand, resembling a parallel gripper,
and (c) firmly grasping the object with the robot hand.

109

Table 4.9. Ablation Study in Real World: Performance of throwing and catching task on
3 different unknown objects in real robot platform. Objects are made of sandbags with the
same mass but different shapes. The results are averaged on 3 seeds with 5 trails for each. The
two terms stand for:(i) Hit Rate(HR): This metric is defined as the proportion of objects that
successfully hit the hand palm of catcher. A better policy and goal estimator will lead to a higher
Hit Rate. (ii) Success Rate(SR): It is calculated as the ratio of successful throws and catches to
the total attempts. A better policy will lead to a higher Success Rate.

Settings Ball Cylinder Triangle
HR SR HR SR HR SR

Open-Loop 0.60±0.12 0.13±0.12 0.47±0.12 0.13±0.12 0.27±0.12 0.07±0.12
w/o Multi-Agent 0.73±0.31 0.40±0.20 0.53±0.31 0.20±0.00 0.47±0.12 0.20±0.20
w/o Goal Estimation 0.60±0.20 0.33±0.23 0.67±0.31 0.40±0.34 0.40±0.20 0.13±0.23
w/o Both 0.47±0.13 0.12±0.12 0.40±0.20 0.07±0.12 0.20±0.20 0.00±0.00
Ours 0.93±0.12 0.60±0.20 0.80±0.20 0.53±0.12 0.86±0.12 0.33±0.12

4.3.4 Implementation Details

Detailed Implementation of Real Robot System

Bimanual Hands System. For our system, we have developed a ROS-based pipeline that

operates at a control frequency of 20Hz. This pipeline serves as the foundation for controlling our

setup, enabling efficient communication and coordination between the different components. In

our configuration, the Arm-Hand subsystems are controlled by a single policy utilizing multiple

agents. This unified policy governs the actions of both subsystems, promoting synchronized

and collaborative behavior in our setup. To achieve this, we control the motion of the robotic

arms through Modbus TCP (Transmission Control Protocol) using an AC/DC Control Box. The

control boxes of the two robotic arms are connected to a router via Ethernet cables, and the router

is then connected to the host computer. Additionally, the two robot hands are directly connected

to the same computer using RS-485 serial communication.

Object Tracking. Real-time object tracking is performed with an Intel RealSense D435

stereo camera. Since the object has a high color contrast from its background, we first use a

simple color detector on the RGB image to find the pixel location of the object. The color range

for detecting a blue object is constrained between [80,200,0] and [120,255,0] in HSV color

space. Next, the 3D position of that pixel is obtained from querying the corresponding depth

value on the depth image, where post-processing filters including disparity, spatial and temporal,

110

are applied to reduce depth noise. Finally, we get the 3D object position in robot frame from

image frame with calibrated camera extrinsics parameters.

Sim2Real Transfer

System Identification. To achieve a successful sim-to-real transfer, we utilize system

identification techniques to align the behavior of the PD (Proportional-Derivative) controller

of the arm and hand in simulation with that in the real world. This involves tuning the PD

coefficients of the controllers to ensure that their responses to impulse and sinusoidal inputs are

aligned. This step is crucial in ensuring that the control actions generated in simulation can be

effectively applied to the real robot setup, enabling a reliable sim-to-real transfer of our system.

Figure 4.21. Process Reaction Curve of Arm: We set the same delta joint angles for each joint
and execute. During this execution, we record the process reaction curve.

Domain Randomization. Isaac Gym offers several domain randomization functions for

reinforcement learning training. We apply randomization to the task, as indicated in Table. 4.10

for each environment. We generate new randomizations every 1000 simulation steps.

111

Table 4.10. Domain randomization parameters.

Parameter Type Distribution Initial Range

Robot
Mass Scaling uniform [0.5, 1.5]

Friction Scaling uniform [0.7, 1.3]
Joint Lower Limit Scaling loguniform [0.0, 0.01]
Joint Upper Limit Scaling loguniform [0.0, 0.01]

Joint Stiffness Scaling loguniform [0.0, 0.01]
Joint Damping Scaling loguniform [0.0, 0.01]

Object
Mass Scaling uniform [0.5, 1.5]

Friction Scaling uniform [0.5, 1.5]
Scale Scaling uniform [0.95, 1.05]

Observation
Obs Correlated. Noise Additive Gaussian [0.0, 0.001]

Obs Uncorrelated. Noise Additive Gaussian [0.0, 0.002]
Action

Action Correlated Noise Additive Gaussian [0.0, 0.015]
Action Uncorrelated Noise Additive Gaussian [0.0, 0.05]

Environment
Gravity Additive normal [0, 0.4]

112

Hyperparameters of the RL Algorithms

The hyperparameters of the RL algorithms used are shown in Table 4.11 and 4.12.

Table 4.11. Hyperparameters of MAPPO.

Hyperparameters Throw and Catch
Num mini-batches 1
Num opt-epochs 5

Num episode-length 8
Hidden size [1024, 1024, 512]
Use popart True

Use value norm True
Use proper time limits False

Use Huber loss True
Huber delta 10
Clip range 0.2

Max grad norm 10
Learning rate 5.e-4

Opt-eps 5.e-4
Discount (γ) 0.96

GAE lambda (λ) 0.95
Std x coef 1
Std y coef 0.5
Ent-coef 0

113

Table 4.12. Hyperparameters of PPO.

Hyperparameters Throw and Catch
Num mini-batches 4
Num opt-epochs 5

Num episode-length 8
Hidden size [1024, 1024, 512]
Clip range 0.2

Max grad norm 1
Learning rate 3.e-4
Discount (γ) 0.96

GAE lambda (λ) 0.95
Init noise std 0.8

Desired kl 0.016
Ent-coef 0

114

Reward Design

The reward of our system r can be computed as r = rdis + rlinvel + rtorque. In the design

of our reward, rdis is the reward that mainly responds to throwing objects to the target position.

rlinvel is a reward that encourages throwers to release the ball from hand. rtorque is a penalty

item for robots that torque is too big. In our reward function, if rdis is missing, the object will

not be thrown to the exact position, but will only be thrown forward vigorously. Without rlinvel ,

it would often fall into a sub-optimal where the thrower holds the ball in its hand and doesn’t

release. rtorque is a common reward term that allows robots to avoid jitter and large dangerous

movements.

4.4 Summary

In this chapter, we first introduce LAPAL, an approach that learns a latent action space to

imitate expert behaviors efficiently in robotic locomotion and manipulation tasks. Our experi-

ments show that LAPAL converges faster and yield significant improvements over a standard

adversarial imitate learning baseline, especially in high-dimensional complex environments.

We also introduce cross embodiment policy transfer where different robots can be aligned in a

common latent space representation to perform a task. The latent space alignment is learned via

adversarial training for distribution matching and cycle consistency which leverages unpaired

data. It enables policy transfer between different types of robot arms either in simulation or in

real world. Finally, we introduce Dynamic Handover, a system capable of throwing and catching

with bimanual hands. Through the use of multi-agent reinforcement learning and goal estimation,

our system demonstrates the ability to achieve successful throw and catch in both simulation

and real world environments. We find that the goal estimation aids in mitigating the effects of

unpredictable parameters and enhances the overall stability to bridge the large dynamics gap

between sim and real.

115

4.5 Acknowledgements

Chapter 4.1, in part, is currently being prepared for submission for publication of the

material as it may appear in T. Wang, N. Karnwal and N. Atanasov, “Latent Policies for

Adversarial Imitation Learning.” The dissertation author is the primary author of this paper.

Chapter 4.2, in part, is currently being prepared for submission for publication of the

material as it may appear in T. Wang, D. Bhatt, X. Wang and N. Atanasov, “Cross Embodiment

Robot Manipulation Skill Transfer from Cycle Consistency.” The dissertation author is the

primary author of this paper.

Chapter 4.3, in part, is a reprint of the material as it appears in B. Huang, Y. Chen, T.

Wang, Y. Qin, Y. Yang, N. Atanasov, X. Wang, “Dynamic Handover: Throw and Catch with

Bimanual Hands, ” Conference on Robot Learning, 2023. The dissertation author is a co-author

of this paper.

116

Chapter 5

Conclusions and Future Work

It is crucial for autonomous robots to adapt quickly to environment changes and gener-

alize prior knowledge to tackle unseen scenarios. In this dissertation, we present methods to

learn appropriate representation of the environment and task and obtain generalizable policies

which enable robots to imitate effectively from demonstrations and adapt efficiently to domain

mismatch.

In Chapter 3, we develop novel models to learn semantic understanding and logic structure

from demonstrations. We introduce novel deep learning-based cost function representation which

is optimized by differentiable motion planning algorithms. We demonstrate that the models

can enable long-horizon planning and generalize to unseen autonomous driving scenarios with

dynamic obstacles.

In Chapter 4, we investigate the generalization capabilities of robot manipulation skills

across different physically embodied robots and from simulation to real. We introduce latent

invariant feature space to align different robot embodiments and learn generalizable latent

policies. We also demonstrate that domain randomization and adaptation techniques can be

applied to a challenging real world bimanual robot manipulation problem.

To improve generalization capability for autonomous robots, we propose the following

directions for future work:

• Large-scale suboptimal and heterogeneous demonstrations. In this dissertation we

117

have applied IRL algorithms where expert demonstrations are assumed to be optimal.

However, it is often expensive to collect perfect demonstrations at large scale. It remains

an open challenge to effectively learn policies from large scale offline data of different

levels of suboptimality, in terms of reward function, user preference and ranking [106]. In

Chapter 4, we have also discussed learning invariant feature space for heterogeneous robot

embodiments in manipulation tasks. Large-scale offline dataset like RT-X [124] contains

examples of different robot embodiments across a diverse set of skills and tasks. This

suggests that we can learn robot-specific foundation models for better adaptability and

generalization capability.

• Language semantic understanding for planning. In Chapter 3, we have discussed how

to discover and exploit semantics and logic from observations to shape a cost function for

motion planning. With the recent advance in large language models (LLMs), we have seen

their applications as pretrained models for learning language-conditioned policy in robotics

[20, 157]. Understanding language instructions can provide high-level task planning when

we can convert them into meaningful semantics, e.g. from natural language to temporal

logic.

• Safety quantification. LLMs often hallucinate by producing seemingly plausible but

factually incorrect, logically inconsistent, or physically infeasible solutions [188]. The

applications of LLMs can be limited in safety-critical robotic applications. To enable

autonomous robots to survive in the wild or co-exist in human-centered environments, it

is crucial to provide safety guarantees, quantify prediction uncertainty and account for

distributional shifts.

118

Bibliography

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement
learning. In International Conference on Machine Learning, page 1, 2004.

[2] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving
rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

[3] Fabio Amadio, Adrià Colomé, and Carme Torras. Exploiting symmetries in reinforcement
learning of bimanual robotic tasks. IEEE Robotics and Automation Letters, 4(2):1838–
1845, 2019.

[4] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob
McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray,
et al. Learning dexterous in-hand manipulation. The International Journal of Robotics
Research, 39(1):3–20, 2020.

[5] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of
robot learning from demonstration. Robotics and Autonomous Systems, 57(5):469–483,
2009.

[6] Denis Arrivault, Dominique Benielli, François Denis, and Rémi Eyraud. Scikit-splearn: a
toolbox for the spectral learning of weighted automata compatible with scikit-learn. In
Conférence francophone sur l’Apprentissage Aurtomatique, 2017.

[7] Christopher G Atkeson and Stefan Schaal. Robot learning from demonstration. In
International Conference on Machine Learning, volume 97, pages 12–20, 1997.

[8] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI
Conference on Artificial Intelligence, 2017.

[9] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(12):2481–2495, 2017.

[10] Yunfei Bai, Wenhao Yu, and C Karen Liu. Dexterous manipulation of cloth. In Computer
Graphics Forum, volume 35, pages 523–532. Wiley Online Library, 2016.

[11] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT press, 2008.

119

[12] Andrea Bajcsy, Dylan P Losey, Marcia K O’malley, and Anca D Dragan. Learning robot
objectives from physical human interaction. In Conference on Robot Learning, 2017.

[13] Borja Balle and Mehryar Mohri. Spectral learning of general weighted automata via
constrained matrix completion. In Advances in Neural Information Processing Systems,
2012.

[14] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2
with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[15] Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages, volume 12.
Springer-Verlag, 1988.

[16] Dimitri Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 1995.

[17] Amit Bhatia, Lydia E Kavraki, and Moshe Y Vardi. Sampling-based motion planning with
temporal goals. In IEEE International Conference on Robotics and Automation, 2010.

[18] Lionel Blondé and Alexandros Kalousis. Sample-efficient imitation learning via generative
adversarial nets. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 3138–3148. PMLR, 2019.

[19] Jeannette Bohg, Antonio Morales, Tamim Asfour, and Danica Kragic. Data-driven grasp
synthesis—a survey. IEEE Transactions on robotics, 30(2):289–309, 2013.

[20] Rogerio Bonatti, Sai Vemprala, Shuang Ma, Felipe Frujeri, Shuhang Chen, and Ashish
Kapoor. Pact: Perception-action causal transformer for autoregressive robotics pre-training.
In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3621–3627. IEEE, 2023.

[21] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[22] Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation
learning via automatically-ranked demonstrations. In Conference on robot learning, pages
330–359. PMLR, 2020.

[23] Alejandro M Castro, Frank N Permenter, and Xuchen Han. An unconstrained convex
formulation of compliant contact. IEEE Transactions on Robotics, 2022.

[24] Letian Chen, Rohan Paleja, and Matthew Gombolay. Learning from suboptimal demon-
stration via self-supervised reward regression. In Conference on robot learning. PMLR,
2021.

[25] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam.
Encoder-decoder with atrous separable convolution for semantic image segmentation. In
European Conference on Computer Vision, pages 801–818, 2018.

120

[26] Tao Chen, Megha Tippur, Siyang Wu, Vikash Kumar, Edward Adelson, and Pulkit
Agrawal. Visual dexterity: In-hand dexterous manipulation from depth. arXiv preprint
arXiv:2211.11744, 2022.

[27] Yuanpei Chen, Yaodong Yang, Tianhao Wu, Shengjie Wang, Xidong Feng, Jiechuan
Jiang, Zongqing Lu, Stephen Marcus McAleer, Hao Dong, and Song-Chun Zhu. Towards
human-level bimanual dexterous manipulation with reinforcement learning. In Thirty-sixth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track,
2022.

[28] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld
environment for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

[29] Cheng Chi, Benjamin Burchfiel, Eric Cousineau, Siyuan Feng, and Shuran Song. Iterative
residual policy: for goal-conditioned dynamic manipulation of deformable objects. arXiv
preprint arXiv:2203.00663, 2022.

[30] Rohan Chitnis, Shubham Tulsiani, Saurabh Gupta, and Abhinav Gupta. Efficient bimanual
manipulation using learned task schemas. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 1149–1155. IEEE, 2020.

[31] Glen Chou, Necmiye Ozay, and Dmitry Berenson. Explaining multi-stage tasks by
learning temporal logic formulas from suboptimal demonstrations. In Robotics: Science
and Systems (RSS), 2020.

[32] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D spatio-temporal convnets:
Minkowski convolutional neural networks. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 3075–3084, 2019.

[33] Matei Ciocarlie, Corey Goldfeder, and Peter Allen. Dimensionality reduction for hand-
independent dexterous robotic grasping. In 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3270–3275. IEEE, 2007.

[34] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural
generation to benchmark reinforcement learning. In International conference on machine
learning, pages 2048–2056. PMLR, 2020.

[35] Taco Cohen and Max Welling. Group equivariant convolutional networks. In International
Conference on Machine Learning, pages 2990–2999, 2016.

[36] Tiago Cortinhal, George Tzelepis, and Eren Erdal Aksoy. Salsanext: Fast, uncertainty-
aware semantic segmentation of lidar point clouds for autonomous driving. arXiv preprint
arXiv:2003.03653, 2020.

[37] Neha Das, Sarah Bechtle, Todor Davchev, Dinesh Jayaraman, Akshara Rai, and Franziska
Meier. Model-based inverse reinforcement learning from visual demonstrations. In
Conference on Robot Learning, pages 1930–1942. PMLR, 2021.

121

https://github.com/maximecb/gym-minigrid

[38] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[39] Xu Chu Ding, Stephen L Smith, Calin Belta, and Daniela Rus. Mdp optimal control under
temporal logic constraints. In IEEE Conference on Decision and Control and European
Control Conference, 2011.

[40] David Dohan, Brian Matejek, and Thomas Funkhouser. Learning hierarchical semantic
segmentations of lidar data. In International Conference on 3D Vision, pages 273–281,
2015.

[41] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
CARLA: An open urban driving simulator. In Proceedings of the 1st Annual Conference
on Robot Learning, pages 1–16, 2017.

[42] Manfred Droste and Paul Gastin. Weighted automata and weighted logics. In International
Colloquium on Automata, Languages, and Programming, pages 513–525. Springer, 2005.

[43] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata.
Springer Science & Business Media, 2009.

[44] Georgios E Fainekos, Antoine Girard, Hadas Kress-Gazit, and George J Pappas. Temporal
logic motion planning for dynamic robots. Automatica, 45(2):343–352, 2009.

[45] Georgios E Fainekos, Hadas Kress-Gazit, and George J Pappas. Hybrid controllers for
path planning: A temporal logic approach. In IEEE Conference on Decision and Control,
2005.

[46] Marie Farrell, Matt Luckcuck, and Michael Fisher. Robotics and integrated formal
methods: Necessity meets opportunity. In International Conference on Integrated Formal
Methods, 2018.

[47] Norman Ferns and Doina Precup. Bisimulation metrics are optimal value functions. In
UAI, pages 210–219, 2014.

[48] Fanny Ficuciello, Alessandro Migliozzi, Eulalie Coevoet, Antoine Petit, and Christian
Duriez. Fem-based deformation control for dexterous manipulation of 3d soft objects.
In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 4007–4013. IEEE, 2018.

[49] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection between
generative adversarial networks, inverse reinforcement learning, and energy-based models.
arXiv preprint arXiv:1611.03852, 2016.

[50] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse
optimal control via policy optimization. In International Conference on Machine Learning,
pages 49–58, 2016.

122

[51] Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level discovery of deep
options. arXiv preprint arXiv:1703.08294, 2017.

[52] Jie Fu, Nikolay Atanasov, Ufuk Topcu, and George J Pappas. Optimal temporal logic
planning in probabilistic semantic maps. In IEEE International Conference on Robotics
and Automation, 2016.

[53] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse
reinforcement learning. In International Conference on Learning Representations, 2018.

[54] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse
reinforcement learning. International Conference on Learning Representations, 2018.

[55] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International Conference on Machine Learning, 2018.

[56] Yi Gai, Yukinori Kobayashi, Yohei Hoshino, and Takanori Emaru. Motion control of a
ball throwing robot with a flexible robotic arm. World Academy of Science, Engineering
and Technology, International Journal of Computer, Electrical, Automation, Control and
Information Engineering, 7:937–945, 2013.

[57] L. Gan, R. Zhang, J. W. Grizzle, R. M. Eustice, and M. Ghaffari. Bayesian spatial kernel
smoothing for scalable dense semantic mapping. IEEE Robotics and Automation Letters,
5(2):790–797, 2020.

[58] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of
neural networks. Journal of machine learning research, 17(59):1–35, 2016.

[59] Ali Ghadirzadeh, Atsuto Maki, Danica Kragic, and Mårten Björkman. Deep predictive
policy training using reinforcement learning. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2351–2358. IEEE, 2017.

[60] Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence
minimization perspective on imitation learning methods. In Conference on Robot Learning,
pages 1259–1277, 2020.

[61] Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence
minimization perspective on imitation learning methods. In Conference on Robot Learning,
pages 1259–1277. PMLR, 2020.

[62] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[63] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad
Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised
learning. Advances in neural information processing systems, 2020.

123

http://www.deeplearningbook.org

[64] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of wasserstein gans. Advances in neural information
processing systems, 30, 2017.

[65] Zhaohan Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-Bastien Grill, Florent Altché,
Rémi Munos, and Mohammad Gheshlaghi Azar. Bootstrap latent-predictive represen-
tations for multitask reinforcement learning. In International Conference on Machine
Learning, pages 3875–3886. PMLR, 2020.

[66] Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning
invariant feature spaces to transfer skills with reinforcement learning. International
Conference on Learning Representations, 2017.

[67] Abhishek Gupta, Clemens Eppner, Sergey Levine, and Pieter Abbeel. Learning dexterous
manipulation for a soft robotic hand from human demonstrations. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 3786–3793.
IEEE, 2016.

[68] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. Cognitive mapping and
planning for visual navigation. In Computer Vision and Pattern Recognition (CVPR),
2017.

[69] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement
learning with deep energy-based policies. In International Conference on Machine
Learning, pages 1352–1361, 2017.

[70] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International conference on machine learning, pages 1861–1870. PMLR, 2018.

[71] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. 2019.

[72] Ankur Handa, Arthur Allshire, Viktor Makoviychuk, Aleksei Petrenko, Ritvik Singh,
Jingzhou Liu, Denys Makoviichuk, Karl Van Wyk, Alexander Zhurkevich, Balakumar
Sundaralingam, Yashraj Narang, Jean-Francois Lafleche, Dieter Fox, and Gavriel State.
Dextreme: Transfer of agile in-hand manipulation from simulation to reality. arXiv, 2022.

[73] Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel, Alexei A Efros,
Lerrel Pinto, and Xiaolong Wang. Self-supervised policy adaptation during deployment.
arXiv preprint arXiv:2007.04309, 2020.

[74] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable
mdps. In AAAI Fall Symposium Series, 2015.

[75] Donald Hejna, Lerrel Pinto, and Pieter Abbeel. Hierarchically decoupled imitation
for morphological transfer. In International Conference on Machine Learning, pages
4159–4171. PMLR, 2020.

124

[76] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual
concepts with a constrained variational framework. 2016.

[77] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances
in Neural Information Processing Systems, pages 4565–4573, 2016.

[78] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Bur-
gard. OctoMap: An efficient probabilistic 3D mapping framework based on octrees.
Autonomous Robots, 34(3):189–206, 2013.

[79] Yew Cheong Hou, Khairul Salleh Mohamed Sahari, and Dickson Neoh Tze How. A
review on modeling of flexible deformable object for dexterous robotic manipulation.
International Journal of Advanced Robotic Systems, 16(3):1729881419848894, 2019.

[80] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on Machine
Learning, volume 37, pages 448–456, 2015.

[81] Ashesh Jain, Shikhar Sharma, Thorsten Joachims, and Ashutosh Saxena. Learning
preferences for manipulation tasks from online coactive feedback. The International
Journal of Robotics Research, 2015.

[82] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan,
Julian Ibarz, Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-to-real
via sim-to-sim: Data-efficient robotic grasping via randomized-to-canonical adaptation
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12627–12637, 2019.

[83] Hong Jun Jeon, Smitha Milli, and Anca Dragan. Reward-rational (implicit) choice: A
unifying formalism for reward learning. Advances in Neural Information Processing
Systems, 2020.

[84] Hong Jin Kang and David Lo. Adversarial specification mining. ACM Transactions on
Software Engineering and Methodology (TOSEM), 2021.

[85] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research, 30(7):846–894, 2011.

[86] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research, 30(7):846–894, 2011.

[87] Satoshi Kataoka, Seyed Kamyar Seyed Ghasemipour, Daniel Freeman, and Igor Mordatch.
Bi-manual manipulation and attachment via sim-to-real reinforcement learning. arXiv
preprint arXiv:2203.08277, 2022.

125

[88] Liyiming Ke, Sanjiban Choudhury, Matt Barnes, Wen Sun, Gilwoo Lee, and Siddhartha
Srinivasa. Imitation learning as f-divergence minimization. In International Workshop on
the Algorithmic Foundations of Robotics, 2020.

[89] A. Khan, C. Zhang, N. Atanasov, K. Karydis, V. Kumar, and D. D. Lee. Memory
augmented control networks. In International Conference on Learning Representations,
2018.

[90] Kuno Kim, Yihong Gu, Jiaming Song, Shengjia Zhao, and Stefano Ermon. Domain
adaptive imitation learning. In International Conference on Machine Learning, pages
5286–5295. PMLR, 2020.

[91] Diederik P Kingma and Jimmy Ba. ADAM: A method for stochastic optimization. In
International Conference on Learning Representations, 2014.

[92] Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Alvaro Sanchez-Gonzalez,
Edward Grefenstette, Pushmeet Kohli, and Peter Battaglia. CompILE: Compositional
imitation learning and execution. In International Conference on Machine Learning,
2019.

[93] Jens Kober, Matthew Glisson, and Michael Mistry. Playing catch and juggling with a
humanoid robot. In 2012 12th IEEE-RAS International Conference on Humanoid Robots
(Humanoids 2012), pages 875–881. IEEE, 2012.

[94] Jens Kober, Erhan Öztop, and Jan Peters. Reinforcement learning to adjust robot move-
ments to new situations. In International Joint Conference on Artificial Intelligence,
2010.

[95] Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan
Tompson. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in
adversarial imitation learning. arXiv preprint arXiv:1809.02925, 2018.

[96] Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan
Tompson. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in
adversarial imitation learning. International Conference on Learning Representations,
2019.

[97] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. Where’s waldo? sensor-
based temporal logic motion planning. In IEEE International Conference on Robotics
and Automation, 2007.

[98] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. Temporal-logic-based
reactive mission and motion planning. IEEE Transactions on Robotics, 25(6):1370–1381,
2009.

[99] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchi-
cal deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation.
In Advances in Neural Information Processing Systems, 2016.

126

[100] Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J Russell, and Pieter Abbeel. Learning
plannable representations with causal infogan. Advances in Neural Information Processing
Systems, 31, 2018.

[101] Steven LaValle. Rapidly-exploring random trees: A new tool for path planning. Tr 98-11,
Comp. Sci. Dept., Iowa State University, 1998.

[102] Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent
actor-critic: Deep reinforcement learning with a latent variable model. Advances in Neural
Information Processing Systems, 33:741–752, 2020.

[103] Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. General ltl specification mining
(t). In 2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2015.

[104] Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial
and review. arXiv preprint arXiv:1805.00909, 2018.

[105] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of
deep visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373,
2016.

[106] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforce-
ment learning: Tutorial, review, and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020.

[107] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse reinforcement
learning with gaussian processes. In Advances in Neural Information Processing Systems,
pages 19–27, 2011.

[108] Sizhe Li, Zhiao Huang, Tao Chen, Tao Du, Hao Su, Joshua B Tenenbaum, and Chuang
Gan. Dexdeform: Dexterous deformable object manipulation with human demonstrations
and differentiable physics. arXiv preprint arXiv:2304.03223, 2023.

[109] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with provable bounds on
sub-optimality. In Advances in Neural Information Processing Systems, page 767–774,
2004.

[110] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

[111] C. Lu, M. J. G. van de Molengraft, and G. Dubbelman. Monocular semantic occupancy
grid mapping with convolutional variational encoder-decoder networks. IEEE Robotics
and Automation Letters, 4(2):445–452, 2019.

127

[112] Matt Luckcuck, Marie Farrell, Louise Dennis, Clare Dixon, and Michael Fisher. Formal
specification and verification of autonomous robotic systems. ACM Computing Surveys
(CSUR), 2019.

[113] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey,
Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac
gym: High performance gpu-based physics simulation for robot learning. arXiv preprint
arXiv:2108.10470, 2021.

[114] Matthew T. Mason and Kevin Lynch. Dynamic manipulation. In Proceedings of (IROS)
IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 1, pages
152 – 159, July 1993.

[115] Andres Milioto, Ignacio Vizzo, Jens Behley, and Cyrill Stachniss. Rangenet++: Fast
and accurate lidar semantic segmentation. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4213–4220, 2019.

[116] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Ballard, Andrea
Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al. Learning to
navigate in complex environments. International Conference on Learning Representations,
2017.

[117] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral
normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957,
2018.

[118] Suraj Nair, Eric Mitchell, Kevin Chen, Silvio Savarese, Chelsea Finn, et al. Learning
language-conditioned robot behavior from offline data and crowd-sourced annotation. In
Conference on Robot Learning, pages 1303–1315. PMLR, 2022.

[119] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m:
A universal visual representation for robot manipulation. Conference on Robot Learning,
2022.

[120] Gergely Neu and Csaba Szepesvári. Apprenticeship learning using inverse reinforcement
learning and gradient methods. In Conference on Uncertainty in Artificial Intelligence,
pages 295–302, 2007.

[121] Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In
International Conference on Machine Learning, pages 663–670, 2000.

[122] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto. Voxblox: Incremental 3D
Euclidean signed distance fields for on-board MAV planning. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1366–1373, 2017.

128

[123] Manu Orsini, Anton Raichuk, Léonard Hussenot, Damien Vincent, Robert Dadashi,
Sertan Girgin, Matthieu Geist, Olivier Bachem, Olivier Pietquin, and Marcin Andrychow-
icz. What matters for adversarial imitation learning? Advances in Neural Information
Processing Systems, 34, 2021.

[124] Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Ir-
pan, Alexander Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-
embodiment: Robotic learning datasets and rt-x models. arXiv preprint arXiv:2310.08864,
2023.

[125] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos A
Theodorou, and Byron Boots. Imitation learning for agile autonomous driving. The
International Journal of Robotics Research, 39(2-3):286–302, 2020.

[126] George Papandreou, Liang-Chieh Chen, Kevin P Murphy, and Alan L Yuille. Weakly-
and semi-supervised learning of a deep convolutional network for semantic image seg-
mentation. In IEEE International Conference on Computer Vision, pages 1742–1750,
2015.

[127] Jyothish Pari, Nur Muhammad Shafiullah, Sridhar Pandian Arunachalam, and Lerrel Pinto.
The surprising effectiveness of representation learning for visual imitation. Proceedings
of Robotics: Science and Systems (RSS), 2021.

[128] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learning and general-
ization of motor skills by learning from demonstration. In IEEE International Conference
on Robotics and Automation, pages 763–768, 2009.

[129] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems, pages 8026–8037, 2019.

[130] Aleksei Petrenko, Arthur Allshire, Gavriel State, Ankur Handa, and Viktor Makoviychuk.
Dexpbt: Scaling up dexterous manipulation for hand-arm systems with population based
training. In Robotics: Science and Systems, 2023.

[131] Erion Plaku and Sertac Karaman. Motion planning with temporal-logic specifications:
Progress and challenges. AI communications, pages 151–162, 2016.

[132] Haozhi Qi, Ashish Kumar, Roberto Calandra, Yi Ma, and Jitendra Malik. In-Hand Object
Rotation via Rapid Motor Adaptation. In Conference on Robot Learning (CoRL), 2022.

[133] Yuzhe Qin, Binghao Huang, Zhao-Heng Yin, Hao Su, and Xiaolong Wang. Dexpoint:
Generalizable point cloud reinforcement learning for sim-to-real dexterous manipulation.
In Conference on Robot Learning, pages 594–605. PMLR, 2023.

129

[134] Yuzhe Qin, Hao Su, and Xiaolong Wang. From one hand to multiple hands: Imitation
learning for dexterous manipulation from single-camera teleoperation. IEEE Robotics
and Automation Letters, 7(4):10873–10881, 2022.

[135] Guillaume Rabusseau, Tianyu Li, and Doina Precup. Connecting weighted automata
and recurrent neural networks through spectral learning. In International Conference on
Artificial Intelligence and Statistics, 2019.

[136] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and
Noah Dormann. Stable baselines3, 2019.

[137] Aravind Rajeswaran*, Vikash Kumar*, Abhishek Gupta, Giulia Vezzani, John Schulman,
Emanuel Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with
Deep Reinforcement Learning and Demonstrations. In Proceedings of Robotics: Science
and Systems (RSS), 2018.

[138] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In
International Joint Conferences on Artificial Intelligence Organization, volume 7, pages
2586–2591, 2007.

[139] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning.
In International Conference on Machine Learning, pages 729–736, 2006.

[140] Matthew Riemer, Miao Liu, and Gerald Tesauro. Learning abstract options. 2018.

[141] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 661–668, 2010.

[142] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. In International Conference on
Artificial Intelligence and Statistics, pages 627–635, 2011.

[143] Arto Salomaa and Matti Soittola. Automata-theoretic Aspects of Formal Power Series.
Springer Science & Business Media, 2012.

[144] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation
using stochastic computation graphs. Advances in Neural Information Processing Systems,
28, 2015.

[145] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[146] Sunando Sengupta, Paul Sturgess, L’ubor Ladickỳ, and Philip HS Torr. Automatic dense
visual semantic mapping from street-level imagery. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 857–862, 2012.

[147] Taku Senoo, Akio Namiki, and Masatoshi Ishikawa. High-speed throwing motion based
on kinetic chain approach. 2008 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3206–3211, 2008.

130

[148] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal,
Sergey Levine, and Google Brain. Time-contrastive networks: Self-supervised learning
from video. In 2018 IEEE international conference on robotics and automation (ICRA),
pages 1134–1141. IEEE, 2018.

[149] Ankit Jayesh Shah, Pritish Kamath, Shen Li, and Julie A Shah. Bayesian inference of
temporal task specifications from demonstrations. 2018.

[150] Naum Zuselevich Shor. Minimization methods for non-differentiable functions, volume 3.
Springer Science & Business Media, 2012.

[151] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search. nature,
529(7587):484–489, 2016.

[152] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering
the game of go without human knowledge. nature, 550(7676):354–359, 2017.

[153] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation
using deep conditional generative models. Advances in neural information processing
systems, 28, 2015.

[154] Yeeho Song. Inverse reinforcement learning for autonomous ground navigation using
aerial and satellite observation data. Master’s thesis, Carnegie Mellon University, 2019.

[155] Bradly C Stadie, Pieter Abbeel, and Ilya Sutskever. Third-person imitation learning.
International Conference on Learning Representations, 2017.

[156] L. Sun, Z. Yan, A. Zaganidis, C. Zhao, and T. Duckett. Recurrent-octomap: Learning
state-based map refinement for long-term semantic mapping with 3D-lidar data. IEEE
Robotics and Automation Letters, 3(4):3749–3756, 2018.

[157] Yanchao Sun, Shuang Ma, Ratnesh Madaan, Rogerio Bonatti, Furong Huang, and Ashish
Kapoor. Smart: Self-supervised multi-task pretraining with control transformers. arXiv
preprint arXiv:2301.09816, 2023.

[158] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[159] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. Advances in neural
information processing systems, 12, 1999.

[160] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning. Artificial intelligence,
112(1-2):181–211, 1999.

131

[161] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration
networks. In Advances in Neural Information Processing Systems, pages 2154–2162,
2016.

[162] Parker Allen Tew. An investigation of sparse tensor formats for tensor libraries. PhD
thesis, Massachusetts Institute of Technology, 2016.

[163] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. The MIT
Press, 2005.

[164] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. Domain randomization for transferring deep neural networks from simulation
to the real world. In 2017 IEEE/RSJ international conference on intelligent robots and
systems (IROS), pages 23–30. IEEE, 2017.

[165] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems,
pages 5026–5033. IEEE, 2012.

[166] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer
across domains and tasks. In Proceedings of the IEEE international conference on
computer vision, pages 4068–4076, 2015.

[167] Nikolaus Vahrenkamp, Markus Przybylski, Tamim Asfour, and Rüdiger Dillmann. Bi-
manual grasp planning. In 2011 11th IEEE-RAS International Conference on Humanoid
Robots, pages 493–499. IEEE, 2011.

[168] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhn-
evets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrit-
twieser, et al. Starcraft ii: A new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782, 2017.

[169] Angelina Wang, Thanard Kurutach, Kara Liu, Pieter Abbeel, and Aviv Tamar. Learning
robotic manipulation through visual planning and acting. Proceedings of Robotics: Science
and Systems (RSS), 2019.

[170] Steven Wang, Sam Toyer, Adam Gleave, and Scott Emmons. The imitation li-
brary for imitation learning and inverse reinforcement learning. https://github.com/
HumanCompatibleAI/imitation, 2020.

[171] Tianyu Wang, Vikas Dhiman, and Nikolay Atanasov. Learning navigation costs from
demonstration in partially observable environments. In IEEE International Conference on
Robotics and Automation, 2020.

[172] Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. Squeezeseg: Convolutional
neural nets with recurrent crf for real-time road-object segmentation from 3D lidar point
cloud. In International Conference on Robotics and Automation, pages 1887–1893, 2018.

132

https://github.com/HumanCompatibleAI/imitation
https://github.com/HumanCompatibleAI/imitation

[173] Markus Wulfmeier, Ingmar Posner, and Pieter Abbeel. Mutual alignment transfer learning.
In Conference on Robot Learning, pages 281–290. PMLR, 2017.

[174] Markus Wulfmeier, Dominic Zeng Wang, and Ingmar Posner. Watch this: Scalable cost-
function learning for path planning in urban environments. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2089–2095, 2016.

[175] Ning Xi, Tzyh-Jong Tarn, and Antal K Bejczy. Intelligent planning and control for
multirobot coordination: An event-based approach. IEEE transactions on robotics and
automation, 12(3):439–452, 1996.

[176] Fan Xie, Alexander Chowdhury, M Kaluza, Linfeng Zhao, Lawson LS Wong, and Rose
Yu. Deep imitation learning for bimanual robotic manipulation. In Advances in Neural
Information Processing Systems, 2020.

[177] Jianglong Ye, Jiashun Wang, Binghao Huang, Yuzhe Qin, and Xiaolong Wang. Learning
continuous grasping function with a dexterous hand from human demonstrations. IEEE
Robotics and Automation Letters, 2023.

[178] Zhao-Heng Yin, Binghao Huang, Yuzhe Qin, Qifeng Chen, and Xiaolong Wang.
Rotating without seeing: Towards in-hand dexterity through touch. arXiv preprint
arXiv:2303.10880, 2023.

[179] Zhao-Heng Yin, Lingfeng Sun, Hengbo Ma, Masayoshi Tomizuka, and Wu-Jun Li. Cross
domain robot imitation with invariant representation. In 2022 International Conference
on Robotics and Automation (ICRA), pages 455–461. IEEE, 2022.

[180] Takuma Yoneda, Ge Yang, Matthew R. Walter, and Bradly Stadie. Invariance through
latent alignment. Proceedings of Robotics: Science and Systems (RSS), 2022.

[181] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and
Yi Wu. The surprising effectiveness of ppo in cooperative multi-agent games. Advances
in Neural Information Processing Systems, 35:24611–24624, 2022.

[182] Kevin Zakka, Laura Smith, Nimrod Gileadi, Taylor Howell, Xue Bin Peng, Sumeet Singh,
Yuval Tassa, Pete Florence, Andy Zeng, and Pieter Abbeel. RoboPianist: A Benchmark
for High-Dimensional Robot Control, 2023.

[183] Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and De-
bidatta Dwibedi. Xirl: Cross-embodiment inverse reinforcement learning. In Conference
on Robot Learning, pages 537–546. PMLR, 2022.

[184] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser.
Tossingbot: Learning to throw arbitrary objects with residual physics. 2019.

[185] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learn-
ing invariant representations for reinforcement learning without reconstruction. arXiv
preprint arXiv:2006.10742, 2020.

133

[186] Qiang Zhang, Tete Xiao, Alexei A Efros, Lerrel Pinto, and Xiaolong Wang. Learning
cross-domain correspondence for control with dynamics cycle-consistency. International
Conference on Learning Representations, 2021.

[187] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, and
Pieter Abbeel. Deep imitation learning for complex manipulation tasks from virtual
reality teleoperation. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), 2018.

[188] Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang,
Enbo Zhao, Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: A survey on
hallucination in large language models. arXiv preprint arXiv:2309.01219, 2023.

[189] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–2232, 2017.

[190] Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez, Serkan Cabi, Saran Tunya-
suvunakool, János Kramár, Raia Hadsell, Nando de Freitas, and Nicolas Heess. Rein-
forcement and imitation learning for diverse visuomotor skills. In Robotics: Science and
Systems, 2018.

[191] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martı́n-Martı́n, Abhishek Joshi,
Soroush Nasiriany, and Yifeng Zhu. robosuite: A modular simulation framework and
benchmark for robot learning. In arXiv preprint arXiv:2009.12293, 2020.

[192] Brian D. Ziebart, Andrew Maas, J.Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In AAAI Conference on Artificial Intelligence, pages
1433–1438, 2008.

[193] R Zollner, Tamim Asfour, and Rüdiger Dillmann. Programming by demonstration: dual-
arm manipulation tasks for humanoid robots. In 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), volume 1, pages
479–484. IEEE, 2004.

134

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Learning from Demonstrations
	Generalization from Simulation to Real World

	Background
	Reinforcement Learning
	Inverse Reinforcement Learning

	Learning Cost Functions from Demonstrations for Robot Navigation
	Differentiable Semantic Mapping and Planning
	Problem Formulation
	Cost Function Representation and Learning
	Results
	Derivations

	Inferring Logic from Demonstrations
	Problem Formulation
	Learning Task Logic as Weighted Finite Automata
	Results

	Summary
	Acknowledgements

	Simulation to Real Generalization for Robot Manipulation
	Latent Policies for Adversarial Imitation Learning
	Problem Formulation
	Learning Latent Action Representation
	Task-agnostic and Task-aware Action Embedding for Adversarial Imitation Learning
	Experiments

	Cross Embodiment Robot Manipulation Skill Transfer from Cycle Consistency
	Problem Formulation
	Cross Embodiment Representation Alignment
	Experiments
	Implementation Details

	Dynamic Handover: Throw and Catch with Bimanual Hands
	System Setup
	Learning Bimanual Dexterous Hands Policy
	Experiments
	Implementation Details

	Summary
	Acknowledgements

	Conclusions and Future Work
	Bibliography

