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Abstract

Prognostic assessment of patients with disorders of
consciousness (DoC) remains one of the most challenging
problems in contemporary medicine. The long treatment
cycle and high costs of treatment for DoC patients are heavy
burdens to the patients’ families and our society. Moreover,
the currently used diagnostic and prognosis methods are
imprecise that effective technique for auxiliary diagnosis on
DoC is of great interest. In this paper, we use deep network to
investigate potential indicators of consciousness within brain
signals of DoC patients. In the experiments, we study P300
and resting-state Electroencephalogram (rs-EEG) signals of 22
DoC patients to investigate neural correlation between brain
signals and the improvement of consciousness. Synergistic
integration of P300 and rs-EEG signals demonstrated superior
predictive proficiency for cross-subject and cross-paradigm
prognosis in DoC, achieving an accuracy rate of 81.1%. Our
results indicate that hybrid P300 and rs-EEG can be used
to predict the prognosis of patients with DoC, and provide
new evidence for the neural correlate of EEG signals to
altered states of consciousness. Our investigation is the first
known to the literature to combine P300 and rs-EEG signals
within a deep learning architecture for analyzing DoC. This
novel approach leverages advanced neural network models to
elucidate the complex neural patterns associated with DoC,
setting a precedent for future research in the field.
Keywords: Disorders of consciousness (DoC); Prognosis;
P300; rs-EEG; deep network; cross-subject; cross-paradigm

Introduction
Disorders of consciousness (DoC) are severe sequelae
of brain injury characterized by deficits in consciousness
and cognitive impairment, including coma, unresponsive
wakefulness syndrome (UWS, also known as a vegetative
state), minimally conscious state (MCS), and locked-in
syndrome (LIS) (Monti, Laureys, & Owen, 2010). For
example, patients with UWS do not have discrete localized
motor control, cannot articulate the words they want to
express, and cannot spontaneously open their eyes to
complete verbal commands (Laureys et al., 2010; Johnson
& Lazaridis, 2018). They may wake up, but they are
unaware of themselves or their environment (Jennett &
Plum, 1972). Patients with MCS are characterized by
inconsistent but reproducible signs of consciousness through
behavior. Furthermore, a feature that emerged in MCS was
reliable and consistent functional interaction communication
or demonstration of functional usage by two different

1Corresponding author

objects (Giacino et al., 2002).
Electroencephalogram (EEG) is a commonly used

diagnostic technique in clinical neuromedicine, and its
convenience and wide availability have led to its rapid
emergence in the field of assessment of DoC (Gantner et al.,
2013; Fernández-Espejo & Owen, 2013). EEG provides a
signal of a patient’s brain function, allowing the diagnosis
of a patient’s state of consciousness through non-behavioral
EEG signals. After severe brain injury, brain activity will
change dramatically, and EEG signals between different
patients have great individual differences. Therefore,
it is extremely challenging to predict the prognosis of
cross-subjects through EEG signals.

In recent years, with the vigorous development of
brain-computer interface (BCI) technology, more and more
experts and scholars try to apply BCI technology to the
clinical detection of consciousness (Pan et al., 2020; Luauté,
Morlet, & Mattout, 2015), and explore an objective methods
to assess the patient’s level of consciousness and prognosis.
For example, Pan et al. demonstrated the great potential of
P300-based BCIs to effectively detect residual consciousness
in DoC patients (Pan, Wang, et al., 2023). P300 is the
third positive wave of event-related potential (ERP). It is
an endogenous component that is not affected by physical
characteristics (shape, size, vision, hearing, etc.) and is
closely related to human cognitive functions. Compared with
the existing methods, the use of P300-BCI technology can
judge the patient’s consciousness level more conveniently
and quickly without basing on the patient’s behavior.

In addition, resting-state electroencephalogram (rs-EEG)
monitoring technique has also been shown to be a potentially
powerful tool that can help physicians and clinical staff to
rapidly assess the state of consciousness and prognosis of
patients with DoC (Sitt et al., 2014; Bai, Xia, & Li, 2017;
Bai, Lin, & Ziemann, 2021; Rossi Sebastiano et al., 2021).
Moreover, the acquisition of rs-EEG signals is very simple
and convenient. It is only necessary to use the corresponding
BCI equipment at the patient’s bedside and collect the
patient’s data, which is cost-effective. Rs-EEG recordings
represent spontaneous neural activity, which correlates with
the basal state of the brain (Giacino et al., 2014; Stam et
al., 2005). Therefore, appropriate features from rs-EEG
may help to monitor brain conditions in DoC and better
communicate with physicians and caregivers to improve
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Table 1: The basic information and CRS-R scores of 22 patients.
CRS-R scores (subscores)

Patient Age Gender Etiology BCI paradigm Before experiment After 3 months
P01 22 F ABI Number 6 (1-0-2-1-0-2) 6 (1-0-2-1-0-2)
P02 48 M ABI Number 7 (1-1-2-1-0-2) 18 (4-5-5-1-1-2)
P03 47 M TBI Number 4 (1-1-0-0-0-2) 6 (1-0-2-1-0-2)
P04 37 F TBI Number 3 (0-0-1-0-0-2) 23 (4-5-6-3-2-3)
P05 27 F CVD Number 6 (1-0-2-1-0-2) 10 (2-0-4-2-0-2)
P06 43 M TBI Number 5 (1-0-1-1-0-2) 6 (1-0-2-1-0-2)
P07 19 M CVD Number 5 (1-0-1-1-0-2) 6 (1-0-2-1-0-2)
P08 51 M TBI Audiovisual 9 (2-1-2-2-0-2) 9 (2-1-2-2-0-2)
P09 29 M ABI Audiovisual 4 (1-0-1-0-0-2) 4 (1-0-1-0-0-2)
P10 37 M ABI Audiovisual 5 (0-0-2-1-0-2) 5 (0-0-2-1-0-2)
P11 38 M TBI Audiovisual 7 (1-1-2-1-0-2) 7 (1-1-2-1-0-2)
P12 33 M TBI Audiovisual 7 (1-0-2-2-0-2) 7 (1-0-2-2-0-2)
P13 38 M TBI Number 10 (1-3-3-1-0-2) 19 (3-5-6-1-1-3)
P14 46 F CVD Number 8 (1-2-2-1-0-2) 9 (1-2-3-1-0-2)
P15 53 F TBI Number 8 (1-2-2-1-0-2) 8 (1-2-2-1-0-2)
P16 44 M CVD Number 9 (1-3-2-1-0-2) 20 (4-5-6-2-1-2)
P17 52 M TBI Number 9 (1-3-2-1-0-2) 18 (3-5-6-1-1-2)
P18 48 M TBI Audiovisual 12 (1-2-5-1-0-2) 16 (3-3-5-2-1-2)
P19 34 M TBI Audiovisual 9 (1-1-5-1-0-1) 15 (4-4-5-1-0-1)
P20 37 M TBI Audiovisual 9 (1-3-2-1-0-2) 19 (3-5-6-2-1-2)
P21 20 M TBI Audiovisual 7 (1-0-3-1-0-2) 7 (1-0-3-1-0-2)
P22 19 M ABI Audiovisual 8 (1-1-3-1-0-2) 8 (1-1-3-1-0-2)

Note: F: Female; M: Male; ABI: acquired brain injury; CVD: cerebrovascular disease; TBI: traumatic brain injury.

patient treatment options. The functional connectivity of
EEG describes the dependence of different regions in the
brain and plays an important role in neuroscience research.
It has been used to study various brain diseases related to
cognitive function and DoC.

In this study, we explore putative EEG biomarkers
of consciousness in patients with DoC and endeavor to
elucidate the associations between patients’ EEG profiles
and their prognostic outcomes. The main contributions of
this paper are summarized as follows:

(1) A novel hybrid EEG method is proposed for prognosis
prediction of DoC patients.

(2) The proposed method demonstrates robust performance
across diverse subjects and experimental paradigms,
indicating its broad applicability and reliability.

(3) In a cohort of 22 individuals with DoC, the proposed
method attained a predictive accuracy of 81.1% in
forecasting improvements in patients’ CRS-R scores
within a three-month horizon.

Methods
Participants
This study involved 22 patients with DoC (17 males and 5
females; 12 UWS patients and 10 MCS patients; mean age

37.36 ± 10.99 years; Table 1) from the General Hospital
of Guangzhou Military Common of People’s Liberation
Army, China. Their clinical diagnosis was based on the
CRS-R, which includes six subscales of auditory, visual,
motor, oral motor, communication, and arousal functions.
These diagnostic results were discovered after long-term
observation by multiple professional clinical personnel. The
diagnostic type (UWS/VS or MCS) of DoC patients was
determined by the CRS-R score. The inclusion criteria
included: (1) a diagnosis of UWS or MCS, with no detectable
command-following behavior observed during the week of
admission; (2) more than 1 month since brain injury; and
(3) no history of impaired vision or hearing. This study was
approved by the Ethics Committee of the General Hospital
of Guangzhou Military Common and complied with the
ethical Code of Ethics of the World Medical Association
(Declaration of Helsinki). Each patient’s legal representative
provided written informed consent for the experiments and
the publication of the patient’s personal details in this study.

All patients underwent CRS-R assessment twice: one week
before the start of the experiment and three months later. We
used the CRS-R score to judge the level of consciousness. For
each patient, two experienced physicians performed CRS-R
assessments at least twice during each assessment period.
Increasing CRS-R scores represent a trend toward increasing
levels of awareness.

2248



Figure 1: Illustration of the experimental design and procedure.

Procedure
Number Paradigm. As shown in Figure 1, in each
experiment, two randomly selected Arabic numerals from
0 to 9 are presented. On each trial, one of the two photos
was randomly selected as the target. Each trial began with
an audiovisual description and two numbers, each embedded
in a static frame. Instructions were displayed in Chinese
characters for 8 seconds: ”Focus on the target number and
count the number of times the frame flashes.” Following the
instruction panel, a 10-second stimulation period began with
two numbers simultaneously appearing on the screen. The
two photos continued to flash at different frequencies (6.0
Hz and 7.5 Hz for the left and right numbers, respectively) to
evoke the P300 associated with the left/right number.
Audiovisual Paradigm. For this paradigm, two buttons
are located on the left and right sides of the GUI, each
displaying two randomly selected Arabic numerals from 0
to 9. The buttons of the two numbers flash alternately, the
color of the flashing button changes from green to black
and the color of the corresponding number simultaneously
changes from black to white. The corresponding number is
simultaneously read from a speaker located on the same side
of the monitor. In this way, subjects were presented with
temporally, spatially, and semantically consistent audiovisual
stimuli, each lasting 300 ms, to evoke a P300 response. The
specific process is shown in Figure 1.
Preprocessing. For the entire BCI experimental process,
we used NuAmps equipment (Compumedics Neuroscan,

Inc. TX, USA.) to collect EEG data through 30 channels.
EEG signals from all electrodes were referenced to the
right mastoid and digitized at a sampling rate of 250 Hz.
Electrode impedance was maintained below 5 KΩ. For each
paradigm-related P300, the EEG signal was first filtered from
0.1 Hz to 10 Hz. For each flash of the frame surrounding
the left image, we obtained a segment of the EEG signal
from each channel (0-600 ms after the frame flash) and
downsampled the segment at a fivefold rate. We concatenate
the downsampled segments of the 10 channels (Fz, Cz,
P7, P3, Pz, P4, P8, O1, Oz, and O2) to obtain the data
vector for each flash. These were then averaged to provide a
final correlated P300 feature vector for each trial. Through
the above frequency band filtering and feature extraction
methods, the influence of 50 Hz, electrocardiographic and
myoelectrical artifacts of the AC power supply is removed.
For each stimulus, EEG epochs for each channel were
obtained from 50 ms before to 600 ms after stimulation after
bandpass filtering (0.1–20 Hz) and were baseline corrected
based on data from the 50 ms prestimulus interval. For
each channel, we averaged the EEG epochs of all target and
non-target stimuli to obtain ERP waveforms.
Hybrid P300 and rs-EEG. In this paper, patients whose
CRS-R scores increased after 3 months of follow-up were
recorded as ”improved ” patients, and patients whose CRS-R
scores remained unchanged or decreased after 3 months
were recorded as ”non-improved”. ”Improved” patients are
labeled as 1, and ”non-improved” patients are labeled as
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0. We collected P300 and rs-EEG signals from 22 patients
separately. After preprocessing, the P300 and rs-EEG signals
were combined 1:1 to form a hybrid P300 and rs-EEG signal.
(the detailed process is shown in Figure 2) The feature
information of patients with different prognosis conditions is
found through feature extraction.
Prognosis prediction. We use four traditional machine
learning algorithms: linear discriminant analysis
(LDA) (Izenman, 2013), K-nearest neighbor (KNN) (Kramer
& Kramer, 2013), support vector machine (SVM) (Pisner
& Schnyer, 2020), Multi-Layer Perceptron (MLP) (Abdi,
1994) to make prognostic predictions on the processed
data. Moreover, we use the proposed Self-Constructing
Convolutional Neural Network (SCCNN, as shown in
Figure 2) to predict and classify the extracted EEG
signals. It mainly includes CNN layer, max pooling layer,
BatchNormalization and Transformer. The multi-kernel
convolution layer downsamples different frequency bands
and extracts features. Transformer-based methods have
achieved great success in many fields. The self-Attention
mechanism is used to have the excellent ability to capture
long-range dependencies. In SCCNN, the Adam optimizer
with a weight decay rate of 0.0001 is used to minimize the
loss, the batch size is 32, the learning rate is 0.00004, and
Drop out is set to 0.3.

Besides, We quantify our experimental outcomes
utilizing the Area Under the Receiver Operating
Characteristic Curve (AUC, Calculated using Python’s
sklearn.metrics.roc auc score function.) and Accuracy
(ACC) :

ACC =
T P+T N

T P+T N +T P+FN
(1)

where True Positive (TP) is the number of “positive”
(i.e., improved patients) result retrieved by the classifier;
True Negative (TN) is the number of “negative” (i.e.,
non-improved patient) result not retrieved by the classifier;
False Positives (FP) are the classifier that incorrectly retrieved
the number of “negative” results found; False Negatives (FN)
are the number of “positive” results not retrieved by the
classifier.

Results
In this section, we detail the experiments conducted and
the results obtained using our proposed method. We
employed our SCCNN model alongside four machine
learning algorithms for validation purposes.

During the experiments, we combined P300 with rs-EEG
signals from 22 patients across various paradigms. We
extracted different frequency band features from the rs-EEG,
which were then integrated with the P300. Subsequently,
we applied 4 machine learning techniques to predict patient
outcomes. The outcomes of these predictions are depicted in
Table 2 and illustrated in Figure 3.

As depicted in Table 2, the accuracy of the combined P300
and rs-EEG data across each frequency band for predicting

the prognosis of patients with DoC consistently exceeds 75%.
Utilizing the SCCNN has further enhanced the accuracy of
cross-subject prognostic predictions, thereby validating the
efficacy of our proposed method for this task.

Figure 2: The overall structure of SCCNN.

Interestingly, when conducting cross-subject predictions
using only the rs-EEG data from individual frequency bands,
the delta band outperformed the others. The inclusion of the
P300 signal resulted in improvements across the board, with
the combined P300+delta signal exhibiting enhancements,
albeit not as pronounced as those observed in other frequency
bands. This observation opens up a new avenue for future
research. Notably, the P300+alpha combination yielded
the most favorable outcomes, indicating a strong correlation
between the alpha band and patient prognosis.According
to the mesocircuit hypothesis (Schiff, 2010), normal alpha
activity is generated in the thalamus and reflects the
intact functioning of thalamo-cortical loops, which are
a prerequisite for consciousness (Schiff, 2010; Roux et
al., 2013; Sokoliuk & Cruse, 2018). When these loops
are structurally or functionally disrupted, consciousness is
reduced or absent (Schiff, 2010). The presence of alpha
activity indicates intact thalamocortical connections, such
that future recovery of consciousness is a possibility. This
is also consistent with our experimental results.
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Figure 3: Cross-subject prognosis prediction results of hybrid
P300 and rs-EEG signals in different frequency bands.

Table 2: Predicting prognosis of patients with DoC using
hybrid P300 and rs-EEG.

Feature Method ACC AUC
LDA 0.764 0.741
KNN 0.748 0.728

P300+delta SVM 0.764 0.735
MLP 0.745 0.729
SCCNN 0.811 0.803
LDA 0.778 0.754
KNN 0.764 0.745

P300+theta SVM 0.783 0.760
MLP 0.778 0.773
SCCNN 0.805 0.762
LDA 0.774 0.748
KNN 0.797 0.793

P300+alpha SVM 0.771 0.743
MLP 0.779 0.766
SCCNN 0.793 0.763
LDA 0.750 0.728
KNN 0.795 0.797

P300+beta SVM 0.775 0.747
MLP 0.783 0.757
SCCNN 0.779 0.764
LDA 0.781 0.755
KNN 0.758 0.752

P300+gamma SVM 0.797 0.771
MLP 0.776 0.753
SCCNN 0.807 0.810

Discussion
Rs-EEG has been shown to provide diagnostic and prognostic
information for patients with different brain diseases. Dukic
et al. (Dukic et al., 2022) found that rs-EEG can reliably

and quantitatively capture abnormal patterns of motor
and cognitive network disruption in amyotrophic lateral
sclerosis. Their data demonstrate that novel phenotyping
using neuroelectric signal analysis can distinguish disease
subtypes based exclusively on different patterns of network
disturbances. Saes et al. (Saes et al., 2021) investigated
whether rs-EEG parameters recorded early after stroke
could predict Fugl-Meyer motor score (FM-UE) six months
later. They demonstrated for the first time that rs-EEG
parameters can also serve as prognostic biomarkers of stroke
recovery. Schorr et al. (Schorr et al., 2016) investigated
differences of EEG coherence within (short-range), and
between (long-range) specified brain areas as diagnostic
markers for different states of DoC and their predictive value
for recovery from UWS. These findings suggest that rs-EEG
consistency can be a predictor of recovery from UWS and
has a diagnostic value.

Similarly, P300 has been repeatedly proven to be useful
in detecting the level of consciousness of patients with DoC.
For example, P300 has been confirmed to be different among
subjects with different prognosis, which was also confirmed
in previous study (Li et al., 2022). That is, there was a
significant difference in P300 between patients with different
prognosis. Pan et al. (Pan, Liang, et al., 2023) proposed a
novel spatio-temporal self-constructing graph neural network
(ST-SCGNN) for cross-subject emotion recognition and
consciousness detection. Wang et al. (Wang et al., 2023)
proposed a domain adaptation-based decoding algorithm
called WD-ADSTCN to improve P300 signal detection in
DoC patients. The experimental results showed that the
proposed method can be applied to the P300 BCI system
in DoC patients, which has important implications for the
clinical diagnosis and prognosis of these patients.

Here, we conducted ablation experiments to compare the
impact of different modules on prognosis prediction accuracy.
As shown in Table 3, after adding Batch Normalization,
the accuracy of all frequency bands increased by more than
7%, with an average increase of 9.2%. In addition, we
borrowed from the popular CNN + Transformer mechanism
in the image field and used it in our cross-subject and
cross-paradigm prediction of the prognosis of patients with
consciousness disorders. By superimposing the attention
network and the fully connected layer, we obtained optimized
feature vectors. This vector pays attention to the connection
between patients and the direct correlation between each part
of the sequence and the partial results that have been output,
so that the neural network can better extract effective features
of patients with different prognosis, thereby achieving higher
prediction accuracy. After adding Transformer, the accuracy
of all frequency bands has improved, with an average
increase of 3.1%.

Moreover, we conducted ablation experiment on
multimodal signals to verify the effectiveness of our
fusion method. As shown in Figure 4, using hybrid P300
and rs-EEG, the improvement is relatively large. Under the
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machine learning method, the combined signal improved by
26.5% and 27.6% respectively compared with using P300
and rs-EEG alone. When using SCCNN, the combined signal
is improved by 20.3% and 21.6% compared to using P300
and rs-EEG alone. It indicated that hybrid P300 and rs-EEG
can effectively predict the prognosis of patients. In addition,
we did a t-test on the accuracy of the three modalities, with a
P-value <0.05. Moreover, the distribution of the probability
density function was plotted (as shown in Figure 5(a)(b)),
and it can be seen that the enhancement brought by the
hybrid signals is significant compared with one signal alone.
The experimental results demonstrated that hybrid P300 and
rs-EEG can effectively improve the accuracy of predicting
the prognosis of patients with DoC.

Table 3: Ablation study on SCCNN. Improvement reports
after new modules are added.

Feature Method ACC Improve(ACC) AUC
CNN 0.718 - 0.668

P300+delta CNN+BN 0.778 +8.4% 0.799
SCCNN 0.811 +13.0% 0.803
CNN 0.714 - 0.684

P300+theta CNN+BN 0.780 +9.3% 0.791
SCCNN 0.805 +12.7% 0.762
CNN 0.718 - 0.796

P300+alpha CNN+BN 0.780 +8.6% 0.812
SCCNN 0.793 +10.4% 0.763
CNN 0.711 - 0.673

P300+beta CNN+BN 0.765 +7.6% 0.819
SCCNN 0.779 +9.6% 0.764
CNN 0.691 - 0.701

P300+gamma CNN+BN 0.774 +12.0% 0.826
SCCNN 0.807 +16.8% 0.810

In this study, we successfully integrated two distinct types
of neurological signals for the first time, utilizing a composite
of P300 and rs-EEG to predict patient outcomes across
different paradigms and subjects. Our experimental results
were promising. Ablation studies demonstrated that the
combination of these signals significantly enhances predictive
accuracy. This finding underscores the importance of the
P300+rs-EEG fusion in prognostication for patients with
DoC. The hybrid signal may be considered a potential
biomarker and serve as a critical reference in the prognostic
evaluation of DoC patients. Furthermore, our research
supports the clinical application of P300+rs-EEG fusion in
forecasting patient outcomes.

Figure 4: Prediction accuracies of three signals under
machine learning and SCCNN. t-test: * p <0.05.

(a)

(b)

Figure 5: Comparison of probability density functions of
single and hybrid signals.
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