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• SWAT models are calibrated with both
streamflow and ParBal SWE reference
data.

• Four climate models (HadGEM_ES,
CNRM-CM5, CanESM2 and MIROC5)
and two RCPs were compared.

• Rainfall-runoff season is expected to
peak 2–4 months earlier under the
warming climate.

• High flows are expected to be 3–8 times
of historic flows in the future.

• Snow diminishes quicker at high eleva-
tions under the RCP 8.5 scenario.
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Mountain regions in arid and semi-arid climates, such as California, are considered particularly sensitive to cli-
mate change because global warming is expected to alter snowpack storage and related surface water supply.
It is therefore important to accurately capture snowmelt processes in watershed models for climate change im-
pact assessment. In this study we use the Soil andWater Assessment Tool (SWAT) to estimate projected changes
in snowpack and streamflow in four alpine tributaries to the agriculturally important but less studied southern
Central Valley, California. Watershed responses are evaluated for four CMIP5 climate models (HadGEM_ES,
CNRM-CM5, CanESM2 and MIROC5) and two emission scenarios (RCP 4.5 and RCP 8.5) for 2020–2099. SWAT
models are calibrated following a dual-objective, lumped calibration approach with an automatic calibration
against observed streamflow (stage 1) and a manual calibration against reconstructed Parallel Energy Balance
(ParBal) snow water equivalent (SWE) data (stage 2). Results indicate that under a warming climate, peak
streamflow is expected to increase 0.5–4 times in magnitude in the coming decades and to arrive 2–4 months
earlier in the year because of earlier snowmelt. In the foreseeable future, snow cover will reduce gradually in
the lower elevations and diminish at higher rates at higher elevation towards the end of the 21st century. Surface
water supply is predicted to increase in the southern Central Valley under the evaluated scenarios but increased
temporal variability (wetter wet seasons and drier dry seasons) will create new challenges for managing supply.
The study further highlights that the use of remote sensing based, reconstructed SWE data could fill the current
gap of limited in-situ SWEobservations to improve the snow calibration of SWAT tobetter predict climate change
impacts in semi-arid, snow-dominated watersheds.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Global climate change creates critical challenges to the sustain-
ability of water, energy, food and ecosystem processes at both re-
gional and continental scales (Ashofteh et al., 2017; Ashofteh et al.,
2015a; Ashofteh et al., 2015b; Azadi et al., 2019; Conway et al.,
2015; Ficklin et al., 2016; Golfam et al., 2019a; Golfam et al., 2019b;
Moghadam et al., 2019). Projected impacts of climate change include
warmer air temperature, precipitation variability, diminishing
snowpack, increased evaporation, and sea level rise (Clark et al.,
2016; Flannigan et al., 2016; Huang et al., 2012; Huang et al., 2016;
Li et al., 2016; Pachauri et al., 2014; Schmucki et al., 2015; Yin and
Tsai, 2018). Extreme precipitation and temperature are projected
to intensify in both frequency and severity (Fischer and Knutti,
2015;Wang et al., 2017a). Such changes may trigger a variety of haz-
ards including excessive heat, drought, and flooding, which are dis-
ruptive to the environment and economy (Arnell and Gosling,
2016; Liu and Merwade, 2018; Liu and Merwade, 2019; Liu et al.,
2019; Oleson et al., 2015; Rajib et al., 2020; Schlaepfer et al., 2017).
Alpine watersheds are particularly sensitive to changes in climate
since the warmer temperatures are expected to impact the seasonal
snowpack, which serves as important reservoir in temperate and
semi-arid regions to bridge water availability during the winter
rainy season and high water demand during the summer months
(Li et al., 2017). Often changes in snowpack in these regions, such
as California's Central Valley, directly translate into changes in sur-
face water supply, which can impact water management decisions
in downstream regions.

One of the most comprehensive, open source hydrological models
available to study hydrologic, biogeochemical or climate change impacts
is the semi-distributed Soil Water Assessment Tool (SWAT) (Arnold
et al., 1998). SWAT contains a snow module that simulates SWE for de-
fined elevation bands using a temperature-index method and a set of
snow calibration parameters. Although these snow parameters could be
considered in the calibration process, many SWAT applications in alpine
watersheds calibrate the model based on streamflow records only
(Lévesque et al., 2008; Rahman et al., 2013; Wang and Melesse, 2005).
Omission of considering reference snow data in the model calibration
process and only calibrating snow related model parameters with refer-
ence streamflow information may not accurately capture the snow stor-
age and snow melt processes that occur in alpine watersheds, resulting
in inaccurate projections of snowmelt-driven flow (Bales et al., 2018;
Bales et al., 2011; Roche et al., 2019; Zheng et al., 2018). Multi-objective
model calibration, where a model is calibrated using two or more refer-
ence datasets, is a promising way to improve model performance and re-
duce parameter equifinality (Parajka and Blöschl, 2008; Yin et al., 2020).
Multi-objective model calibration of SWAT has been performed using
for example soil moisture or evapotranspiration data in addition to refer-
ence streamflow data (Abbaspour et al., 2007; Immerzeel and Droogers,
2008; Rajib et al., 2016), however, the use of snow time series data as
the second calibration objective to improve the reliability of calibrated pa-
rameter values has been limited (Her and Chaubey, 2015; Rajib et al.,
2018; Tuo et al., 2018b),mainly due to the lack of high quality SWEobser-
vations (Tuo et al., 2018a).

With the rapid development of measurement devices, remote sens-
ing techniques, and data processing tools, reconstructed SWE datasets
are becoming increasingly available for many snow-dominated water-
sheds (Bair et al., 2018; Brown et al., 2010; Clow et al., 2012; Dozier,
2011; Sturm et al., 2010). Reconstruction of snow water equivalent
from remotely sensed data is a technique where the snowpack is built
up in reverse from melt-out to peak using downscaled satellite-based
energy balance forcings and fractional snow covered area, albedo, and
snow grain size data (Bair et al., 2016; Martinec and Rango, 1981). The
Parallel Balance Model (ParBal) SWE data is promising reconstructed
SWE product available at a daily, 500 m resolution and derived from
MODIS Snow Covered Area and Grain Size data (Bair et al., 2016).
2

The Climate Model Intercomparison Project - Phase 5 (CMIP5)
has generated a suite of daily climate forecast datasets for different
emission scenarios which are available until the end of the 21st cen-
tury (Ahlström et al., 2012; Hao et al., 2013; Kumar et al., 2013; Liu
et al., 2014; Mehran et al., 2014; Ouyang et al., 2015). These future
climate projections can be used to investigate the strain that future
climate change imposes on water resource management. In this
study, ParBal reconstructed snow water equivalent data and
streamflow reference data are used in a dual-objective, lumped cal-
ibration of the SWAT model driven by Daymet historical climate
data to assess the climate change impacts in four alpine watersheds
in the southern Sierra Nevada Mountains. Streamflow and SWE dy-
namics are predicted for 2020–2099 using precipitation and tem-
perature forcings from four selected CMIP5 models (HadGEM2-ES;
CNRM-CM5; CanESM2 and MICROC5) and two emission scenarios
(RCP 4.5, 8.5). The specific objectives of our study are to: (1) cali-
brate SWAT models for four alpine watersheds in the southern Si-
erra Nevada Mountains using a dual-objective calibration with
streamflow and reconstructed SWE reference data; (2) evaluate
changes in monthly streamflow and extreme flows in the near
(2021–2050) and far future (2070–2099) relative to the historical
baseline period; (3) assess spatio-temporal changes in snowpack
in each watershed as well as in its vertical distribution across differ-
ent elevation bands.

The novelty of this study is to evaluate potential climate change im-
pacts on surfacewater supply in the agriculturally and economically im-
portant but less studied southern Central Valley of California, where
changes in climate could dramatically reduce the already scarce surface
water supply from snow influenced southern Sierra Nevadawatersheds
(Safeeq and Hunsaker, 2016). Because of the semi-arid climate and im-
portance of the winter snowpack for water supply in the region, we use
observed streamflow and reconstructed SWE data in a dual-objective
calibration of SWAT to better capture rainfall-runoff and snowmelt dy-
namics in these watersheds. The dual objective calibration directly ad-
dresses the lack of ground based SWE observations and improves the
calibration and water supply prediction reliability in these upland wa-
tersheds in the coming decades.

2. Study area

This study is focusing on four alpine watersheds, comprised of the
Kings (4410 km2), Kern (5360 km2), Tule (1400 km2) and Kaweah
(960 km2) watersheds, in the southern Sierra Nevada Mountains, Cali-
fornia, USA (Fig. 1). These rivers drain into the Tulare Lake Basin
(TLB), located in the southernCentral Valley (CV, 47,000km2) of Califor-
nia, one of themost productive agricultural regions in the world (Faunt
et al., 2016; Harter and Lund, 2012). The study area was selected be-
cause California's CV is an important agricultural region which grows
more than 250 different crops and producesmore than half of the fruits,
vegetables and nuts consumed in the Unites States (Faunt et al., 2009;
Faunt et al., 2016; Kocis and Dahlke, 2017) and is heavily dependent
on the rainfall-runoff and snowmelt from the Sierra Nevadamountains.
The northern part of the CV (Sacramento Basin and San-Joaquin Basin)
that drains to the Sacramento-San Joaquin Delta has been studied by
many researchers (Ficklin et al., 2013a; Hutton et al., 2019; Thakur
et al., 2020) because it provides the majority of surface water supply
to California's agriculture using a vast network of surface water convey-
ance systems. In comparison, local surface water availability in the
southern CV, which has the largest farm output ($24.9 billion out of
$61.8 billion in 2018; California County Agricultural Commissioners' Re-
ports Crop Year 2017–2018, https://www.nass.usda.gov/) is less stud-
ied. Over the last three decades, warmer temperatures have especially
impacted the mountain snowpack in the Sierra Nevada Mountains,
pushing its center of mass to higher elevations and its snowmelt peak
earlier into the spring season (Huning and AghaKouchak, 2018). These
trends are expected to continue in coming decades, leading potentially

https://www.nass.usda.gov/


Fig. 1. Location of the four alpinewatersheds (Kings, Kern, Tule, and Kaweah rivers) in the southern Sierra NevadaMountains, California, USA. Snow- and rain-dominated subbasinswithin
each watershed are shown on the right.
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to a complete loss of snowpack storage and increased rainfall-runoff
from the Sierra Nevada Mountains (Dahlke and Lyon, 2013; Demaria
et al., 2016).

The TLB has aMediterranean to semi-arid desert climatewith hot and
dry summers and cool and wet winters. Mean annual precipitation can
vary between 150 mm in the valley to over 1000 mm in the mountains
(Faunt et al., 2016; Lee et al., 2011). Themean annual temperature varies
around 18 °C in the study area. But air temperature has been increasing
slightly over the past three decades (Fig. S1, Supplementary Materials);
mean annual maximum temperature has increased by 0.61 °C whereas
the mean annual minimum temperature increased by 1.04 °C during.
The main rainy season in the southern Central Valley is from
November–March. In some years, precipitation can occur as early as in
October and as late as in June.

Based on the typical precipitation occurrence, this study defined
the months October–March as the wet season and the months
April–September as the dry season when investigating the hydrolog-
ical and climate characteristics of the study region. As such, each pe-
riod represents exactly one half of a water year (Oct–Sept of
following year; the wet season is the first half and the dry season
the second half). Snow is accumulated during the winter season in
the Sierra Nevada Mountains, on the east side of the TLB. Due to
their size and location the four watersheds exhibit clear differences
in the area typically covered by snow in the winter. The snow-
covered area in each watershed is approximately 79%, 69%, 70% and
49% respectively for the Kings, Kern, Tule and Kaweah watersheds.
All four watersheds have high flows during the spring snowmelt sea-
son, with occasional peak flows also occurring during the summer
due to thunderstorms. Low flows typically occur at the end of the
summer and during the fall season.
3

3. Material and methods

3.1. Data

3.1.1. Model calibration data
Daymet (https://daymet.ornl.gov/) historic daily precipitation and

temperature data (1 km by 1 km resolution, 1981–2013) were used as
climate input data for the calibration of each SWAT model with
SWAT-CUP. Referenced unimpaired streamflow calculated from ob-
served reservoir operation data at the four watershed outlets were
used in the calibration process. The reference streamflow data was ob-
tained from the California Department of Water Resource (DWR)
(http://cdec.water.ca.gov/). The Parallel Energy Balance Model (ParBal)
daily reconstructed snowwater equivalent (SWE) data was used to cal-
ibrate the snow-dominated subbasins in each watershed (Fig. 1) (Bair
et al., 2018). The ParBal data is available from the University of Califor-
nia, Santa Barbara at 500 m resolution for the years 2001–2017 (ftp://
ftp.snow.ucsb.edu/pub/org/snow/products/ParBal/Sierra/). The gridded
ParBal data were extracted for each subbasin in each watershed for the
further analysis.

3.1.2. Climate prediction data
Gridded datasets of locally downscaled (LOCA) daily precipitation

andmaximumandminimum temperature datawith a 1/16-degree spa-
tial resolution (~7 km at equator) from four CMIP5 models (HadGEM2-
ES; CNRM-CM5; CanESM2 and MIROC5) were used to evaluate the
snow and hydrological response in our four watersheds for the years
2020–2099. These four CMIP5 models were recommended by the Cali-
fornia Climate adaptation group (Cal-Adapt, https://cal-adapt.org/) as
priority models for use in climate change adaptation and water

https://daymet.ornl.gov/
http://cdec.water.ca.gov/
ftp://ftp.snow.ucsb.edu/pub/org/snow/products/ParBal/Sierra/
ftp://ftp.snow.ucsb.edu/pub/org/snow/products/ParBal/Sierra/
https://cal-adapt.org/


Table 1
Dual-objective (two-stage) model calibration and validation and selected forecasting pe-
riods and corresponding model objectives.

Modeling Stage 1 Stage 2 Validation Forecasting

Period 1981–2000 2001–2007 2008–2013 2020–2099
Objective Calibration

of flow
Calibration
of SWE

Validation of flow
and SWE

Prediction of flow
and SWE
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resources planning because they encompass different trajectories of fu-
ture climate. The four models represent a warm and dry climate sce-
nario (HadGEM-ES), a cool and wet climate scenario (CNRM-CM5), an
average temperature and precipitation scenario (CanESM2), and the
MIROC5model, which covers the range of CMIP5model prediction out-
puts. Each CMIP5 model considers varying greenhouse gas emission
rates resulting from solar forcing, anthropogenic activity, volcanic erup-
tion, emissions of short-lived species and natural and anthropogenic
aerosols, also known as Representative Concentration Pathways (RCP).
For this study, the RCP 4.5 and 8.5 emission scenarios of each CMIP5
model were considered. These two RCPs are most commonly used by
researchers since RCP 4.5 is an intermediate scenario whereas RCP 8.5
is generally taken as the worst-case climate change scenario. In sum-
mary, data from eight climate models (4 CMIP5 models ∗ 2 RCPs)
were used to force the calibrated SWAT models to estimate future
monthly streamflow and daily SWE responses. Daily, gridded CMIP5
datasets were downloaded from the United States Bureau of Reclama-
tion (USBR, https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/).
The gridded precipitation, minimum and maximum temperature data
were extracted for each subbasin in each watershed and time step for
year 2020–2099.

3.2. SWAT model

3.2.1. Model description
In this study, the Soil and Water Assessment Tool (SWAT) (ver-

sion 2009) (Arnold et al., 1998) was used to simulate the snowmelt
and rainfall-runoff response in the Kings, Kern, Kaweah, and Tule
River watersheds to climate change. SWAT is a semi-distributed,
physically-based model that has been used to simulate the quality
and quantity of surface water to predict the environmental impact
of land use or land management practices, and climate change
(Baker and Miller, 2013; Betrie et al., 2011; Ficklin et al., 2009). A
SWAT model was developed for each watershed using ArcSWAT, an
ArcGIS tool with a graphical user interface that allows building
SWAT models from topography, land use and soil data (Abbaspour
et al., 2015; Arnold et al., 2012; Winchell et al., 2013). In ArcSWAT,
first each watershed was discretized into subbasins based on topog-
raphy using a USGS 30m resolution, 1 arc sec Digital ElevationModel
(DEM, http://ned.usgs.gov). Topography derived terrain slope was
combined with soil and land use data to divide each subbasin further
into multiple Hydrological Response Units (HRUs). The soil and land
use information were derived from the National Land Cover Dataset
2001 land use database (NLCD, https://www.mrlc.gov/data/nlcd-
2001-land-cover-conus) and the State Soil Geographic dataset
(STATSGO, https://www.nrcs.usda.gov/), respectively. The delin-
eated subbasins in each watershed are illustrated in Fig. 1. SWAT
contains a snow module that uses a temperature-index approach to
simulate the solid and liquid phase of precipitation as well as snow
storage and snowmelt processes. Users can define up to 10 elevation
bands to capture orographic effects on precipitation and tempera-
ture in alpine watersheds. In this study, five elevation bands (EB)
were defined for each SWAT model. Details on the snow module
and snowpack mass balance equations in SWAT are described in
the Supplementary Materials (Eqs. (S1)–(S5)).

3.2.2. Model set up, calibration and validation
In SWAT,Hydrologic ResponseUnits (HRUs) are the basic hydrologic

units used to compute water balance components. After the water bal-
ance computation is performed at the HRU level, it is aggregated at
the subbasin level and routed towards the major stream reaches and
eventually towards the watershed outlet (Kalcic et al., 2015; White
et al., 2011).

Each SWAT model was calibrated using a dual-objective calibration
process consisting of two stages (Table 1). First an automatic calibration
of 17 model parameters against reference monthly streamflow was
4

performed using SWAT-CUP (Abbaspour et al., 2015) to find a satisfac-
tory but preliminary set of parameters (stage 1, Table 1). The model
was driven by Daymet historical climate data to best match reference
streamflow observations at the watershed outlets. The simulation was
initially conducted for one iteration consisting of 500 simulations after
which simulation outcomes were evaluated using standard statistical
measures (NSE, R2, p value and r value, details are described in the Sup-
plementary Material). A new iteration is initiated by SWAT-CUP until
the performance measures are satisfactory. The 17 parameters and
their initial ranges were selected following the SWAT documentation
(Arnold et al., 2012) followed by a parameter sensitivity analysis con-
ducted by the California Department ofWater Resource for the four wa-
tersheds (DWR, 2016). The Sequential Uncertainty Fitting algorithm-
version 2 (SUFI-2) in SWAT-CUPwas applied in this study to find an op-
timal set of parameter values by narrowing their pre-defined initial
ranges (Abbaspour, 2013; Arnold et al., 2012; Ha et al., 2017). The
stage 1 calibration was conducted for water years 1981–2000 for
which only reference streamflow and no SWE data were available
(Table S1 and Table S2, Supplemental Material). The first three years
of the historic simulation period (1981–1983) were used as warm-up
period for the model and were therefore excluded from the calibration
process. The stage 2 calibration was conducted for water years
2001–2007 and snow parameters (summarized in Table S1)weremod-
ified manually until a reasonable fit against daily ParBal SWE data was
achieved, while the streamflow predictionwasmaintained at a satisfac-
tory level (NSE ≥ 0.5) compared to the reference streamflow data. The
calibrated parameters from stage 2 were evaluated during the valida-
tion period (2008–2013) with both streamflow and SWE reference
data to prove their suitability for forecasting both variables for future
years. After the dual-objective calibration and validation, the calibrated
SWAT models were used for forecasting watershed responses to differ-
ent climate scenarios. The entiremodel setup, calibration and prediction
processes are described in Fig. 2.

The periods selected for calibration and validationwere based on the
availability of reference flow and SWE data for the four watersheds. Ad-
ditionally, the occurrence of both wet and dry years was considered in
defining the calibration and validation periods. Streamflow was cali-
brated and predicted at a monthly time step in SWAT whereas SWE
was calibrated at a daily step.

3.3. Analysis of model outputs

3.3.1. Evaluation of climate change impact on streamflow
Monthlywater yield (i.e. streamflownormalized by catchment area)

was estimated for the outlet of eachwatershed for the years 2020–2099
for each of the 8 climate scenarios. For each time step the ensemble
mean was calculated as the arithmetic mean of the predicted
streamflow of the 8 modeling scenarios. In order to quantify the degree
to which future changes in climate forcing impact the hydrological re-
sponse in each watershed, the forecasted streamflow was split into
two 30-year periods, the near future (NF, 2021–2050) and the far future
(FF, 2070–2099), for comparison with the historical period of
1984–2013 for each modeling scenario. In this comparison, a positive
value indicates increasing flow in the future and a negative value indi-
cates decreasing flow in the future. Because severe droughts and floods
are both major water resources concerns in California (Diffenbaugh
et al., 2015; Griffin and Anchukaitis, 2014), the frequency and

https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
http://ned.usgs.gov
https://www.mrlc.gov/data/nlcd-2001-land-cover-conus
https://www.mrlc.gov/data/nlcd-2001-land-cover-conus
https://www.nrcs.usda.gov/


Fig. 2. Flow chart of SWAT model calibration, validation and climate change impact prediction.
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magnitude of such events is assessed in the coming decades. Changes in
both low (10th percentile, Q10 and20th percentile, Q20) and highflows
(80th percentile, Q80, 90th percentile, Q90, and maximum flow) are
evaluated for each modeling scenario and watershed during the wet
season (Oct–Mar) and dry season (Apr–Sep), respectively, and com-
pared with the corresponding periods in the historical period
(1984–2013).
5

3.3.2. Evaluation of climate change impact on SWE
Similar to streamflow, SWE is predicted for the 8 climate scenarios

for 2020–2099 with the SWAT models and evaluated for the snow cali-
brated subbasins in each watershed. In order to evaluate the impact of
climate change on SWE, the 10-year average daily SWE was calculated
for each snow calibrated subbasin for the historical baseline period
(2004–2013), the near future (2031–2040) and far future
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(2081–2090), respectively. The near and far future periods for the SWE
comparison were chosen to be exactly the middle 10 years of the two
30-year periods used for the streamflow comparison. The difference be-
tween the near future and baseline, the far future and baseline, as well
as the far future and near future were calculated for each snow-
dominated subbasin in each watershed for each modeling scenario. In
this comparison, a positive value indicates an increase in SWE in the fu-
ture and a negative value indicates a decreasing trend of SWE in the
future.

In addition to assessing the spatial SWE change at the subbasin scale,
the projected SWE was also investigated vertically across different ele-
vation bands. The 10-year daily average SWE was evaluated at 5 pre-
defined elevation bands for the near (2031–2040) and far future
(2081–2090) in each watershed to determine how snow accumulation
is changing vertically from the base to the top of the watershed in the
different modeling scenarios.

4. Results

4.1. Two-objective calibration and validation results

During stage 1 of the calibration (streamflow calibration), the
model performance achieved by the best set of calibration parame-
ters for all four watersheds ranged between 0.81 and 0.9 (R2) and
0.7–0.89 (NSE), respectively (Fig. 3, Table S2). Additionally, in the
last iteration of the 500 simulations, 65%–97% of the measured data
were bracketed by the 95PPU (p value) and r values ranged from
0.67–1.45. Simulated streamflow during the calibration period was
higher for the Kings and Kaweah watersheds (i.e. high flows during
spring seasons could reach 9 mm/day for Kings and 5 mm/day for
Kaweah), which are located closer to the High Sierras and thus expe-
rience more snow and snowmelt runoff (Fig. 3). In comparison, the
Kern and Tule watersheds are located in the relatively warmer,
southern region of the Sierra Nevada Mountains. High streamflow
events in these watersheds reach around 2–3 mm/day. After the
two-objective calibration both the R2 and NSEwere found to perform
slightly lower than after the stage 1 (streamflow only) calibration
(i.e. for Kings watershed, the R2 and NSE reduced from 0.9 and 0.89
after the stage 1 calibration to 0.86 and 0.76 respectively after the
Fig. 3. Simulated streamflow and reference streamflow for calibration stage 1 (1984–2000), cal
measures (NSE and R2) are shown for each period. NSEc and Rc

2 indicate the model performanc
applied to the stage 2 snow calibration.

6

stage 2 calibration). This outcome is the result of finding a suitable
calibration parameter set for both streamflow and SWE reference
datasets. Although the streamflow simulation performance de-
creased slightly during the stage 2 calibration, the R2 and NSE values
achieved by the model were still very satisfactory (R2 ranged from
0.59–0.86 and NSE ranges from 0.58–0.78 for the stage 2 calibration
period, 2001–2007). After the stage 2 calibration, the model cap-
tured rainfall-runoff and snow-runoff processes in all four water-
sheds more realistically, which reduced the chance of model
parameter equifinality. A similar model performance was achieved
for the validation period (2008–2013).

NSE values for the snow-dominated subbasins ranged between 0.36
and 0.71 in the Kings watershed after the stage 1 calibration (Fig. 4).
After the manual snow parameter calibration was performed in stage
2, model performance in snow-dominated subbasins in the Kings wa-
tershed showed a clear improvement in comparison to the reference
SWE data (NSE ranged between 0.53 and 0.76). NSE values of the SWE
simulation likewise improved substantially in most subbasins in the
Kern, Kaweah and Tule watersheds (median NSE values of all subbasins
reached 0.65, 0.65, 0.1, 0.55 for the Kings, Kern, Tule and Kaweahwater-
sheds). The Tule watershed, which has the least snow cover and the
smallest number of snow-dominated subbasins among the four water-
sheds also improved slightly after the stage 2 calibration (median NSE
increased from 0.05 and 0.1 with some subbasins reaching NSEs of
0.4–0.6). This might indicate that the standard snow module in SWAT
does not simulate small amounts of SWE well and/or it might have
problems simulating SWE in small, steep watersheds. In addition,
some snow-dominated subbasins did not achieve a satisfactory NSE
value despite the snow calibration (see red colored subbasins in
Fig. 4). Poor model performance in these subbasins might be because
of their distinct geographical and climatic features (i.e. northeastern as-
pect away from main weather pathways). The lumped calibration
could not find a calibration parameter set that resulted in high
NSEs in all subbasins. However, in general, the simulated SWE in
most snow influenced subbasins was much improved. The well cali-
brated subbasins (blue subbasins in Fig. 4) were used to study future
climate change impacts in our four watersheds while subbasins with
poor SWE calibration performance (red color) were excluded from
future forecasting analysis.
ibration stage 2 (2001–2007), and the validation period (2008–2013). Model performance
e after the stage 1 calibration before the calibrated parameters from stage 1 were directly



Fig. 4. Distribution of Nash-Sutcliffe Efficiency between the SWAT-predicted and ParBal-observed SWE across all snow-dominated subbasins within the Kings (A), Kern (B), Tule (C), and
Kaweah (D) watersheds. The NSE distribution is shown before and after the stage 2 calibration (snow calibration) as well as for the validation period. Subbasins in which the snow
calibration performed poorly are indicated in red. These subbasins had an NSE of <0.52, < 0.12, <0.004, and <0.47 in the Kings, Kern, Tule, and Kaweah watershed, respectively and
were excluded from the climate change forecast analysis.
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4.2. Projected climate change and its impact on streamflow

The four climate models and two RCP scenarios predict an increase
in air temperature in all four watersheds in the coming decades
(Fig. S2 in the Supplementary Materials). In comparison, precipitation
is projected to either increase or slightly decrease depending on thewa-
tershed. Compared to the mean annual maximum temperature in the
historical period (1984–2013), different climate trajectories show that
in the far future (2070–2099) the annual maximum air temperature
changes by approximately 0.5–7.5 °C, 1–7 °C, −1.5-4 °C and 0.2–7 °C
relative to the historical mean annual maximum temperature in the
Kings, Kern, Tule and Kaweah watersheds, respectively. The mean an-
nual minimum temperature changes by about 0–5 °C, −0.5–4.5 °C,
−2.5–3 °C and−0.5–4.5 °C relative to the historical mean of the annual
minimum temperature in these four watersheds. Similarly, the change
of total annual precipitation in the far future relative to the historical
mean ranges between −558-1752 mm (−60%–200%), −398-
1346 mm (−70%–230%), −327–1751 mm (−60%–300%) and
−687–1371 mm (−70%–140%) respectively in the Kings, Kern, Tule
and Kaweahwatersheds, reflecting the disagreement of climatemodels
on projected precipitation change in California (Berg and Hall, 2015).

There exists substantial inter-model variability in the predicted fu-
ture flow, reflecting the differences in the climatic forcing represented
by the different climate models (Fig. 5A1–D1). As expected, the cool
and wet CNRM-CM5 climate model predicts higher peak flows in the
coming decades (i.e. 18 mm/day around 2025 for Kings under RCP
4.5). Under the CNRM-CM5 RCP 8.5 emission scenario extreme flows
are predicted to become more severe (i.e. 21 mm/day around 2090 for
Kings with RCP 8.5), resulting in at least a three-fold increase in peak
flows in all watersheds. In comparison, ensemble mean predictions
from all other climate scenarios are predicted to reduce flow peaks in
the hydrograph. High flows are projected to increase in the future
both duringwet and dry seasons in all four watersheds. Extreme events
(e.g. flows >90th percentile), which might trigger flooding, could in-
crease 3–8 times inmagnitude duringwet seasons compared to the his-
torical baseline period. For instance, under the CNRM-CM5 RCP 8.5
7

climate scenario, the Kings River maximum monthly flow is predicted
to increase fivefold from 3.92 mm/day in the baseline period to about
19.59 mm/day in the future. Even during the dry season the maximum
flow peaks are predicted to increase 1.5 to 2 times that of the baseline
period for most of the wetter climate scenarios (i.e. increase from
9 mm/day in the baseline period for Kings watershed to 17–18 mm/
day for CNRM_CM5 model and 14–16 mm/day for CanESM2 models
under RCP 4.5 and RCP 8.5 conditions). In contrast, low quantile (Mini-
mum, 10th percentile, 20th percentile) flows are predicted to see a
slight decline or to generally remain on a similar level as observed dur-
ing the baseline period. Dry season flows in the Kings, Kern and Kaweah
watersheds are predicted to decrease by−2.31,−0.35,−2.34mm/day
for the near future and by−2.64,−0.47, −2.43 mm/day for the far fu-
ture compared to baseline period. Low flows in the Tule watershed,
which has the least snow cover of all watersheds, are predicted to re-
main the same. Overall, our results indicate that all four watersheds
will likely reach flooding conditions (e.g. high magnitude flows) more
frequently in the future (Fig. 5). This might be because the warmer air
temperature predicted in all climate scenarios will lead tomore intense
snowmelt or rainfall-runoff events in the future.

Mean monthly streamflow is predicted to increase during the wet
season (Oct-Mar) in the near (2021–2050) and far future (2070–2099)
in all four watersheds (Fig. S3). However, the increase in wet season
streamflow is occurring at a lower rate in the far future compared to the
near future (Fig. S3A and S3C). For instance, in the Kings watershed aver-
aged monthly streamflow during wet seasons increases by 1 mm/day in
the near future compared to the baseline period whereas the increase in
the far future is around 0.6 mm/day compared to the near future. As ex-
pected, inter-model differences exist between the climate scenarios.
Under the CNRM_CM5andCanESM2climate scenarios, the SWATmodels
predict a higher increase in streamflow until the end of this century (i.e.
Fig. S3B, E, H and K).

Fig. S3 also shows that the rate of increase differs between the sea-
sons; it is higher for late winter and early spring (January to March) and
lower for late fall and early winter (August to December). For instance,
for the Kings watershed the increase in streamflow is around 1–2 mm/



Fig. 5.Monthly streamflow (A1–D1) and selected low flowand highflowquantiles predicted for thewet (A2–D2) and dry seasons (A3–D3) for the fourwatersheds for 2020–2099. Results
are shown for the 8 climate scenarios; baseline period is 1984–2013.
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day during January to March in the near future and less than 1 mm/day
during August to December. In addition, the timing of high flows is
shifting, which are predicted to occur earlier in the future. The seasonal
peak in streamflowmight come as early as January or February in the fu-
ture whereas flows peaked aroundMay in the 1980s. The dry seasons are
predicted to start earlier in the future as streamflow starts to decline in
May for the Kings and Kaweah watersheds. In addition, due to the pre-
dicted increase in total annual streamflow and the earlier onset of the
wet season (flow starts to increase in December), the low flow periods
(i.e. flow <1 mm/day for Kings watershed) are predicted to be shorter
in the future. During the 1980s, the low flow period typically lasted
from August to February of the following year in the Kings watershed.
In the far future the low flow period is predicted to start around July
and end in November. However, model differences exist among the
eight climate scenarios. For example, the CNRM_CM5 and CanESM2 cli-
mate models predict higher flow increases for the future whereas the
MIROC5model predicts the lowest flow increases during thewet seasons
for the future.

4.3. Influence of climate change on SWE at the subbasin scale

In the future the absolute amount of SWE reduces significantly
(around −50 mm) in the Tule and Kaweah watersheds (Fig. 6). These
two watersheds are located in the southern part of the study are and
thuswill experience relativelymorewarming than their northern coun-
terparts. SWE is also predicted to decline in the western parts of the
Kings and Kaweah watersheds (around −100 mm), which are the
lower elevation regions, where snow is easier to melt. The eastern
parts of the Kings and Kaweahwatersheds are closer to theHigh Sierras,
a region known for its high elevation and large snowpack. Based on the
HadGEM_ES model, snowpack will increase slightly in the High Sierras
(0–70 mm under RCP 4.5 scenario) in the near future compared to the
baseline period (which might be related to the regional climate such
as precipitation in that period) and decrease in the far future as the tem-
perature continues to increase (Belmecheri et al., 2016; Huang et al.,
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2018;Walton et al., 2017). In the far future (2081–2099) the low eleva-
tion snowpackwill completely disappear, and the high elevation snow-
pack is increasingly diminishing at higher rates, as indicated by the
subbasins in the northern Kings and Kern watersheds (Fig. 6).

There exists a slight inter-model variability with respect to the pre-
dicted SWE change (Fig. 7). For instance, the predictedmedian absolute
SWE change for all snow subbasins varies between −80 and 0 mm
among climate models for the Kings watershed and between −100
and 0 mm for the Kaweah watershed. Absolute SWE change is less
than 50 mm for the Kern and Tule watersheds. SWE is predicted to de-
crease in most snow-dominated subbasins in the future, which is
reflected by the position of the box-whisker plots relative to the “no
change” line (0 mm dash line, Fig. 7). In general, the RCP 8.5 emission
scenario yields a greater change in SWE in both the near and far future
for all four climate models. This indicates that the warming climate is
expected to continue to reduce the snowpack in the coming decades.
Towards the end of this century, the snowpack is predicted to reduce
to 10%–60% of the baseline conditions. Especially for the Kern and Tule
watersheds, which are located in the southern Sierras, the snowpack
will, on average, reduce by 70% in each subbasin. This might be due to
a combination of different effects and feedback mechanisms that an-
thropogenic global warming exerts on snow and the local hydrological
processes. As the snowpack continues to diminish, the reduction in
snow covered area will decrease the magnitude of the feedback to the
extent that large changes are no longer possible to occur.

4.4. Projected SWE in different elevation bands

With increasing elevation, the amount of snow accumulation in-
creases in both the near and far future, reflecting a similar pattern as
does currently exist in the Sierra Nevada Mountains (Fig. 8). Each water-
shed has a characteristic snowaccumulation profile,which is a function of
the total elevation difference, total precipitation, and topography in the
watershed. In general, the Kern, Tule and Kaweah watersheds show a
more linear increase in snowpack with elevation while the Kings shows



Fig. 6.Comparison of 10-year daily average predicted absolute (mm) and relative SWE (%, circles) change for theHadGEM_ES climate scenario at the subbasin scale. The top row shows the
change for the RCP4.5 scenario between the near future (NF, 2031–2040) and the baseline period (2004–2013) (A), the far future (FF, 2081–2090) and the baseline period (B), and the far
future relative to the near future (C). The bottom row shows results for the same comparisons under the RCP 8.5 emission scenario.
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a slightly exponential elevation profile, indicating that only the very high
elevation bands (EB4 & EB5) receive larger amounts of snow. In the near
and far future only the highest elevation regions maintain a snowpack
(i.e. for Elevation Band 5, 100–200 mm left for Kings, 50–100 mm for
Kern, 30–50 mm for Tule and 100–400 mm for Kaweah, Fig. 8). The
total SWE predicted for each elevation band varies substantially among
the climate models and RCP scenarios. Similar to the spatial trends
shown in Figs. 6 and 7, SWE is predicted to decrease more substantially
in the far future than in the near future in each elevation band under
the same emission scenario. The change in SWE will move the snow
line to around 2500 m for the Kings and Kern watersheds and around
2000 m for the Tule and Kaweah watersheds. Similar to the streamflow
results presented in this study, the change in SWE across the different el-
evation bands varies greatly across the different climate models. The cool
andwet CNRM-CM5model, overall predicts higher SWE amounts in each
elevation band in the future compared to the other three models.

5. Discussion

5.1. Model performance with streamflow-reconstructed SWE dual-
objective calibration

Hrachowitz et al. (Hrachowitz et al., 2016) recently suggested that
forcing models to adequately reproduce various response variables
9

can considerably improve the predictive power of models. Degrees of
parameter freedom could be controlled towards making better predic-
tions if more observations from measurement, analysis and modeling
could be easily assimilated into a model over time (Gupta et al., 2008;
Kirchner, 2006). In this study, the two-objective calibration against ob-
served streamflow (stage 1) and remote sensing based reconstructed
SWE (stage 2) data resulted in a better model performance than the
single-objective calibration using streamflow alone. Although the pro-
cedure formodel calibration ismore complex, as a payoff,model predic-
tions of SWE were much improved while streamflow still performed
satisfactory. Using the dual-objective calibration allowed calibration of
amodel thatmore accurately represented dominant rainfall-runoff pro-
cesses in each watershed which reduced the chance of model
equifinality (Beven, 2006; Beven and Binley, 1992; Vrugt and Beven,
2018; Vrugt et al., 2009). Using the reconstructed SWE data in the cali-
bration approach particularly increased the calibration efficiency and
accuracy for the snow influenced upland watersheds, which is crucial
for alpine watersheds.

As mentioned earlier, ground based SWE data could also be used in
the SWAT model calibration and validation processes (Tuo et al.,
2018b). Dense ground snow measurement networks are desirable be-
cause they allow calibration of hydrological models with more details
at the subbasin level or for each elevation band. However, not many
snow-dominated regions in the world can offer the high station density



Fig. 7.Distribution of absolute change (mm) and relative change (%) in 10-year daily average SWE in the snow calibrated subbasins for each climate scenario. Box-whisker plots show the
change between the far future (FF, 2081–2090), near future (NF, 2031–2040) and the baseline period (B, 2004–2013). A and B show the Kings watershed, C and D the Kern watershed, E
and F the Tule watershed, and G and H the Kaweah watershed.
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or quality of data needed for model calibration at this time highlighting
theneed for alternativemeans of calibratingmodelswith observed SWE
data. The reconstructed SWE data used in our study offers a higher spa-
tial and temporal coveragewhich is particularly appealing for ungauged
basins with limited ground-observed data. Recent advances in machine
learning techniques now support even the real-time estimation of SWE
Fig. 8. Comparison of predicted daily average SWE between the far future

10
from remote sensing data (Bair et al., 2018), making the ParBal product
available during the snow season for runoff forecasting.We also applied
a long calibration period for streamflow (17 years; 1984–2000) and
SWE (7 years, 2001–2007) in our study, and applied another 6 years
for the SWE and streamflow validation period (2008–2013), which
was made possible using the ParBal reconstructed SWE data. Since
(2081–2090) and near future (2031–2040) for each elevation band.
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California is known for having one of the most variable climates in the
entire U.S. (Kocis and Dahlke, 2017), using these long calibration and
validation periods ensured that both extremely wet and dry years
were included in the calibration and validation periods.

5.2. Comparison of predicted streamflow trends to other studies

The streamflow predictions obtained for the Kings, Kern, Tule and
Kaweahwatersheds from four climatemodels and two emission scenar-
ios are generally in line with the findings from previous studies for
northern hemisphere mid-latitude alpine watersheds although some
regional differences existing among the various basins. Previous climate
change studies in thewestern United States indicate that rising temper-
atures will result in varied precipitation, reduced snowpack and earlier
snowmelt,which likelywill increase the frequency and intensity of both
drier conditions and flooding events (Esralew et al., 2016; Flint et al.,
2013; Pagán et al., 2016). Further, rising air temperatures in winter
and spring might lead to earlier snowmelt runoff and a reduction in
late spring and summer streamflow (Ashfaq et al., 2013; Barnett et al.,
2004). For instance, the shifts in runoff seasonality and timing observed
in our study is in line with findings of Gleick and Chalecki (1999), who
found in the Sacramento San Joaquin River Basin that during winter
(wet period), the risk of winter flooding is likely to increase as the
ratio of rain to snow increases and snow melts faster. On the contrary,
summer (dry period) water availability is likely to decrease as a result
of the earlier ending of spring runoff, which increases the risk of sum-
mer water deficits. In a study conducted for the Upper Colorado River
Basin (70% of flow originates from Rocky Mountains, Ficklin et al.,
2013b), results indicate that summer streamflow declines with median
decreases of 46%, and an overall range of −100% to +22%.

In this study, besides the earlier onset of the wet period (wet season
flows peak 2–4 months earlier), results indicate that the wet season
monthly flow magnitude is projected to increase, while the dry season
flow is predicted to decrease (except for the Tule watershed which is
predicted to see a general stable trend). This finding indicates that the
southern Central Valley will possibly face more challenges of extreme
flow events in the future. For the wetter wet seasons, higher flow
might result in more frequent flooding events whereas for the drier
dry seasons, lower water supply might cause more severe droughts.
Both extremes will have strong negative impacts on the agricultural
production in the Central Valley and likely result in cause great eco-
nomic loss as seen during the 2012–2016 drought (Howitt et al.,
2014). Thus, adaptation measures and regulation (such as expanding
storage to capture surface water during the wet season for use during
the dry season) should be taken in the future to minimize the economic
loss (Kocis and Dahlke, 2017).

5.3. Comparison of predicted SWE trends to other studies

Similar to our research, previous studies show that the warmer cli-
mate projections predict snowpack loss by the end of the century
which would significantly affect the agricultural water supply and hy-
dropower production in the western United States (Kapnick et al.,
2018; Vicuña et al., 2011). In California, snowpack loss and changes in
snow accumulation are predicted to be most severe in the climate pro-
jections under the highest emission scenarios (Cayan et al., 2008; Gergel
et al., 2017; Kim et al., 2015). Findings from a recent study performed
over the southern California mountain region predicts that winter
snowfall will be about 70% of baseline by 2050 under the RCP 8.5 sce-
nario and about 80% of baseline for RCP 2.6 scenario (Sun et al., 2016).
However, the two different emission scenarios would diverge signifi-
cantly by the end of the century. A further decline to 50% of baseline
snowfall was predicted under the RCP 8.5 scenario whereas the reduc-
tion is negligible from 2050 to 2100 under the RCP 2.6 scenario. These
findings are generally in accordance with the results obtained in this
study with the SWE decreasing amount slightly varying among the
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four watersheds and climate models. For instance, SWE is predicted to
reduce 40–70% in the far future in the Kings watershed whereas a
50–80% reduction is predicted for the Kern watershed. The RCP 8.5
emission scenario would cause a more severe snowpack loss compared
to the RCP 4.5 emission scenario until the end of the 21st century.

Moreover, SWE changes are predicted to differ depending on eleva-
tions (Mote et al., 2005). For example, Sun et al. (2016) predict for the
California mountain region that at low elevation the remaining SWE
will be as low as 26%, while about 54% are predicted to remain at mod-
erate elevations. Ensemble-mean midcentury remaining snowpack is
predicted to be about 90% of baseline snowpack in the southern Califor-
nia mountains at very high elevations (Sun et al., 2016). These findings
have a similar trend to what we concluded in this study. Our results in-
dicate that SWE could reduce by about 40–80% inmost subbasins in the
four upland watersheds in the far future and that the snow loss mainly
comes from the lower elevation bands (Fig. 8) and almost no SWE left
for low elevations for the far future. Thus, the temperature changes
will also result in a progressively higher snowline in our upland water-
sheds and only the higher elevation bands (EB4 & EB5) will sustain a
winter snowpack for longer periods in the far future.

6. Conclusions

This study evaluated the impact of four CMIP5 climate models
(HadGEM-ES, CNRM-CM5, CanESM2 and MIROC5) and two emission
scenarios (RCP 4.5 and RCP 8.5) on streamflow and snowwater equiva-
lent dynamics in four watersheds located in the southern Sierra Nevada
Mountains in California. Climate change impactswere assessedwith the
Soil andWater Assessment Tool (SWAT) using a dual-objective calibra-
tion strategy and monthly streamflow and daily ParBal reconstructed
snow water equivalent data. Our results indicate an overall increasing
trend in total discharge in allwatersheds and all scenarios in the near fu-
ture and a decline in snowmelt contributions in the far future. However,
the impact of climate change on streamflow and SWE is spatially and
temporally highly heterogeneous in the four watersheds. Based on our
analysis, the following conclusions can be drawn from this study:

1. The use of both reference streamflow and reconstructed SWE in the
SWAT model calibration improves the overall prediction reliability
for watersheds dominated by rain and snow. Addition of ParBal re-
constructed SWE data in the second stage of the calibration process
significantly improved the accuracy of the SWE simulation (i.e.
NSEs of different subbasins for the Kings River improves from range
0.36–0.71 to range 0.53–0.76) and reduced the likelihood of
equifinality issues.

2. The four climate models and two RCP scenarios predict an increase in
air temperature and varied precipitation for the fourwatersheds in the
coming decades. In the far future (2070–2099), the annualmaximum/
minimum air temperature changes by approximately 0.5–7.5 °C/
0–5 °C, 1–7 °C/−0.5–4.5 °C, −1.5–4 °C/−2.5–3 °C and 0.2–7 °C/
−0.5–4.5 °C relative to the historical baseline period (1984–2013)
whereas the change of total annual precipitation ranges between
−558–1752 mm (−60%–200%), −398–1346 mm (−70%–230%),
−327–1751 mm (−60%–300%) and−687–1371 mm (−70%–140%),
respectively in the Kings, Kern, Tule and Kaweah watersheds.

3. High flows are predicted to increase 3–8 fold during the wet season
compared to the historical baseline period. This might be because
the warmer air temperature will cause more snowmelt, rain on
snow, and rainfall-runoff events in the future. The rate of increase
differs between the seasons. It is higher for late winter and early
spring (1–2 mm/day during January to March in the near future for
the Kings watershed) and lower for late fall and early winter
(<1 mm/day during August to December). The timing of flow
peaks is predicted to occur earlier in the future (Jan. - Mar. in the
far future vs. May in the 1980s) and low flow periods are predicted
to be shorter in the future. Among the four climate scenarios tested
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in this study, the CNRM-CM5 and CanESM2models with the RCP 8.5
emission scenario predict the highest flow increase during the wet
season. Thus, surface water supply in the southern Central Valley
might be more challenging in the future because of wetter wet sea-
sons and drier dry seasons.

4. Based on the output from the HadGEM-ES model, the absolute SWE
amount is predicted to decrease significantly in the Kern and Tule
rivers (around −50 mm in the near future). The low elevation
areas on the western slope of the Kings and Kaweah watersheds
are predicted to experience snowpack loss of around −100 mm in
the near future. In the far future, snowpack diminishes in nearly all
subbasins, with an estimated 10%–60% remaining at the end of the
century. Only the highest elevation areas (EB4 & EB5) are predicted
to maintain a snowpack in the far future. As a result, the snow line
will move up to around 2500 m for Kings and Kern watersheds and
around 2000 m for Tule and Kaweah watersheds.

5. In general, climate change has a similar influence on the southern Si-
erras as is found in other northern hemisphere, mid-latitude alpine
watersheds. This study highlights that the higher elevation water-
sheds (Kings and Kern and Kaweah watersheds) will experience
drier late spring and early summerswhile the lower elevationwater-
sheds (Tule) might not suffer from severe summer water supply
shortage in the future.

There exist certain limitations for this study.We employed amanual,
lumped calibration approach in the snow calibration process. The
lumped snow calibration led to the fact that not all snow-dominated
subbasins could be calibrated very well resulting in some poorly
performing snow-dominated subbasins. Regardless of the limitations,
the parameter values derived with the two-objective calibration have
improved the SWE performance of the SWAT models, reduced the
chance of model equifinality, and increased the reliability of the models
for future predictions. Further investigation could focus on implementa-
tion of an automatic calibration process for the snowparameters against
observed ParBal SWE data at subbasin level to improve the performance
of SWAT for future climate change studies.

CRediT authorship contribution statement

Zhu Liu: Conceptualization, Methodology, Software, Writing - origi-
nal draft. Jonathan D. Herman: Validation, Supervision. Guobiao
Huang: Data curation,Writing - review & editing. Tariq Kadir: Supervi-
sion, Writing - review & editing. Helen E. Dahlke: Conceptualization,
Project administration, Funding acquisition, Writing - original draft,
Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

This work was supported by the U.S. National Science Foundation
(#1716130) and the USDA National Institute of Food and Agriculture,
Hatch project CA-D-LAW-2243-H. Authors want to thank Dr. Ned Bair
and Dr. Jeff Dozier from the University of California-Santa Barbara for
providing the daily ParBal dataset as historical SWE reference. Authors
also appreciate editors and two anonymous reviewers for providing
constructive suggestions for the earlier version of the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2020.143429.
12
References

Abbaspour, K.C., 2013. Swat-cup 2012. SWAT Calibration and Uncertainty Program—A
User Manual.

Abbaspour, K.C., et al., 2007. Modelling hydrology and water quality in the pre-alpine/
alpine Thur watershed using SWAT. J. Hydrol. 333 (2–4), 413–430.

Abbaspour, K.C., et al., 2015. A continental-scale hydrology and water quality model for
Europe: calibration and uncertainty of a high-resolution large-scale SWAT model.
J. Hydrol. 524, 733–752.

Ahlström, A., Schurgers, G., Arneth, A., Smith, B., 2012. Robustness and uncertainty in ter-
restrial ecosystem carbon response to CMIP5 climate change projections. Environ.
Res. Lett. 7 (4), 044008.

Arnell, N.W., Gosling, S.N., 2016. The impacts of climate change on river flood risk at the
global scale. Clim. Chang. 134 (3), 387–401.

Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic model-
ing and assessment part I: model development 1. JAWRA Journal of the American
Water Resources Association 34 (1), 73–89.

Arnold, J.G., et al., 2012. SWAT: Model use, calibration, and validation. Trans. ASABE 55
(4), 1491–1508.

Ashfaq, M., et al., 2013. Near-term acceleration of hydroclimatic change in the western
US. Journal of Geophysical Research: Atmospheres 118 (19), 10,676–10,693.

Ashofteh, P.-S., Haddad, O.B., Loáiciga, H.A., 2015a. Evaluation of climatic-change impacts
on multiobjective reservoir operation with multiobjective genetic programming.
J. Water Resour. Plan. Manag. 141 (11), 04015030.

Ashofteh, P.-S., Haddad, O.B., Marino, M.A., 2015b. Risk analysis of water demand for ag-
ricultural crops under climate change. J. Hydrol. Eng. 20 (4), 04014060.

Ashofteh, P.-S., Bozorg-Haddad, O., Loáiciga, H.A., 2017. Impacts of climate change on the
conflict between water resources and agricultural water use. J. Irrig. Drain. Eng. 143
(4), 02516002.

Azadi, F., Ashofteh, P.-S., Loáiciga, H.A., 2019. Reservoir water-quality projections under
climate-change conditions. Water Resour. Manag. 33 (1), 401–421.

Bair, E.H., Rittger, K., Davis, R.E., Painter, T.H., Dozier, J., 2016. Validating reconstruction of
snow water equivalent in C alifornia’s Sierra Nevada using measurements from the
NASA Airborne Snow Observatory. Water Resour. Res. 52 (11), 8437–8460.

Bair, E.H., Abreu Calfa, A., Rittger, K., Dozier, J., 2018. Using machine learning for real-time
estimates of snow water equivalent in the watersheds of Afghanistan. Cryosphere 12
(5), 1579–1594.

Baker, T.J., Miller, S.N., 2013. Using the soil and water assessment tool (SWAT) to assess
land use impact on water resources in an East African watershed. J. Hydrol. 486,
100–111.

Bales, R.C., et al., 2011. Forests and water in the Sierra Nevada: Sierra Nevada watershed
ecosystem enhancement project. Sierra Nevada Research Institute report 11.

Bales, R., et al., 2018. Spatially distributed water-balance and meteorological data from
the rain–snow transition, southern Sierra Nevada, California. Earth System Science
Data 10 (4), 1795–1805 (10(4): 1795-1805).

Barnett, T., et al., 2004. The effects of climate change on water resources in the west: in-
troduction and overview. Clim. Chang. 62 (1–3), 1–11.

Belmecheri, S., Babst, F., Wahl, E.R., Stahle, D.W., Trouet, V., 2016. Multi-century evalua-
tion of Sierra Nevada snowpack. Nat. Clim. Chang. 6 (1), 2.

Berg, N., Hall, A., 2015. Increased interannual precipitation extremes over California under
climate change. J. Clim. 28 (16), 6324–6334.

Betrie, G.D., Mohamed, Y.A., Griensven, A.v., Srinivasan, R., 2011. Sediment management
modelling in the Blue Nile Basin using SWAT model. Hydrol. Earth Syst. Sci. 15 (3),
807–818.

Beven, K., 2006. A manifesto for the equifinality thesis. J. Hydrol. 320 (1–2), 18–36.
Beven, K., Binley, A., 1992. The future of distributed models: model calibration and uncer-

tainty prediction. Hydrol. Process. 6 (3), 279–298.
Brown, R., Derksen, C., Wang, L., 2010. A multi-data set analysis of variability and change

in Arctic spring snow cover extent, 1967–2008. Journal of Geophysical Research: At-
mospheres 115 (D16).

Cayan, D.R., Maurer, E.P., Dettinger, M.D., Tyree, M., Hayhoe, K., 2008. Climate change sce-
narios for the California region. Clim. Chang. 87 (1), 21–42.

Clark, P.U., et al., 2016. Consequences of twenty-first-century policy for multi-millennial
climate and sea-level change. Nat. Clim. Chang. 6 (4), 360.

Clow, D.W., Nanus, L., Verdin, K.L., Schmidt, J., 2012. Evaluation of SNODAS snow depth
and snow water equivalent estimates for the Colorado Rocky Mountains, USA.
Hydrol. Process. 26 (17), 2583–2591.

Conway, D., et al., 2015. Climate and southern Africa’s water–energy–food nexus. Nat.
Clim. Chang. 5 (9), 837.

Dahlke, H.E., Lyon, S.W., 2013. Early melt season snowpack isotopic evolution in the
Tarfala valley, northern Sweden. Ann. Glaciol. 54 (62), 149–156.

Demaria, E.M., Roundy, J.K., Wi, S., Palmer, R.N., 2016. The effects of climate change on
seasonal snowpack and the hydrology of the northeastern and upper Midwest
United States. J. Clim. 29 (18), 6527–6541.

Diffenbaugh, N.S., Swain, D.L., Touma, D., 2015. Anthropogenic warming has increased
drought risk in California. Proc. Natl. Acad. Sci. 112 (13), 3931–3936.

Dozier, J., 2011. Mountain hydrology, snow color, and the fourth paradigm. Eos, Transac-
tions American Geophysical Union 92 (43), 373–374.

DWR, 2016. Estimates of natural and unimpaired flows for the Central Valley of Califor-
nia: water years 1922–2014. Report of California Department of Water Resources.

Esralew, R.A., Flint, L., Thorne, J.H., Boynton, R., Flint, A., 2016. A framework for effective
use of hydroclimatemodels in climate-change adaptation planning for managed hab-
itats with limited hydrologic response data. Environ. Manag. 58 (1), 60–75.

Faunt, C.C., Hanson, R.T., Belitz, K., 2009. Chapter a. introduction, overview of hydrogeol-
ogy, and textural model of California’s Central Valley. US Geological Survey Profes-
sional Paper(1766).

https://doi.org/10.1016/j.scitotenv.2020.143429
https://doi.org/10.1016/j.scitotenv.2020.143429
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0010
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0010
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0015
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0015
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0020
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0020
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0020
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0025
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0025
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0025
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0030
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0030
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0035
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0035
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0035
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0040
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0040
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0045
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0045
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0050
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0050
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0050
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0055
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0055
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0060
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0060
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0060
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0065
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0065
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0070
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0070
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0070
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0075
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0075
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0075
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0080
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0080
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0080
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0085
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0085
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0090
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0090
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0090
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0095
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0095
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0100
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0100
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0105
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0105
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0110
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0110
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0110
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0115
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0120
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0120
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0125
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0125
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0125
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0130
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0130
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0140
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0140
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0145
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0145
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0145
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0155
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0155
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0160
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0160
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0165
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0165
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0165
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0170
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0170
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0175
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0175
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0185
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0185
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0190
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0190
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0190
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0195
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0195
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0195


Z. Liu, J.D. Herman, G. Huang et al. Science of the Total Environment 759 (2021) 143429
Faunt, C.C., Sneed, M., Traum, J., Brandt, J.T., 2016. Water availability and land subsidence
in the Central Valley, California, USA. Hydrogeol. J. 24 (3), 675–684.

Ficklin, D.L., Luo, Y., Luedeling, E., Zhang, M., 2009. Climate change sensitivity assessment
of a highly agricultural watershed using SWAT. J. Hydrol. 374 (1–2), 16–29.

Ficklin, D.L., Luo, Y., Zhang, M., 2013a. Watershed modelling of hydrology and water qual-
ity in the Sacramento River watershed, California. Hydrol. Process. 27 (2), 236–250.

Ficklin, D.L., Stewart, I.T., Maurer, E.P., 2013b. Climate change impacts on streamflow and
subbasin-scale hydrology in the Upper Colorado River Basin. PLoS One 8 (8), e71297.

Ficklin, D.L., Robeson, S.M., Knouft, J.H., 2016. Impacts of recent climate change on trends
in baseflow and stormflow in United States watersheds. Geophys. Res. Lett. 43 (10),
5079–5088.

Fischer, E.M., Knutti, R., 2015. Anthropogenic contribution to global occurrence of heavy-
precipitation and high-temperature extremes. Nat. Clim. Chang. 5 (6), 560.

Flannigan, M., et al., 2016. Fuel moisture sensitivity to temperature and precipitation: cli-
mate change implications. Clim. Chang. 134 (1–2), 59–71.

Flint, L.E., Flint, A.L., Thorne, J.H., Boynton, R., 2013. Fine-scale hydrologic modeling for re-
gional landscape applications: the California Basin Characterization Model develop-
ment and performance. Ecol. Process. 2 (1), 25.

Gergel, D.R., Nijssen, B., Abatzoglou, J.T., Lettenmaier, D.P., Stumbaugh, M.R., 2017. Effects
of climate change on snowpack and fire potential in the western USA. Clim. Chang.
141 (2), 287–299.

Gleick, P.H., Chalecki, E.L., 1999. The impacts of climatic changes for water resources of the
Colorado and Sacramento-San Joaquin river basins 1. JAWRA Journal of the American
Water Resources Association 35 (6), 1429–1441.

Golfam, P., Ashofteh, P.-S., Loáiciga, H.A., 2019a. Evaluation of the VIKOR and FOWAmulti-
criteria decision makingmethods for climate-change adaptation of agricultural water
supply. Water Resour. Manag. 33 (8), 2867–2884.

Golfam, P., Ashofteh, P.-S., Rajaee, T., Chu, X., 2019b. Prioritization of water allocation for
adaptation to climate change using multi-criteria decision making (MCDM). Water
Resour. Manag. 33 (10), 3401–3416.

Griffin, D., Anchukaitis, K.J., 2014. How unusual is the 2012–2014 California drought?
Geophys. Res. Lett. 41 (24), 9017–9023.

Gupta, H.V., Wagener, T., Liu, Y., 2008. Reconciling theory with observations: elements of
a diagnostic approach to model evaluation. Hydrological Processes: An International
Journal 22 (18), 3802–3813.

Ha, L.T., Bastiaanssen, W.G., van Griensven, A., van Dijk, A.I., Senay, G.B., 2017. SWAT-CUP
for calibration of spatially distributed hydrological processes and ecosystem services
in a vietnamese river basin using remote sensing. Hydrology and Earth System
Science.

Hao, Z., AghaKouchak, A., Phillips, T.J., 2013. Changes in concurrent monthly precipitation
and temperature extremes. Environ. Res. Lett. 8 (3), 034014.

Harter, T., Lund, J.R., 2012. Addressing Nitrate in California's DrinkingWater:With a Focus
on Tulare Lake Basin and Salinas Valley Groundwater: Report for the State Water Re-
sources Control Board Report to the Legislature. Center for Watershed Sciences, Uni-
versity of California, Davis.

Her, Y., Chaubey, I., 2015. Impact of the numbers of observations and calibration param-
eters on equifinality, model performance, and output and parameter uncertainty.
Hydrol. Process. 29 (19), 4220–4237.

Howitt, R., Medellín-Azuara, J., MacEwan, D., Lund, J.R., Sumner, D., 2014. Economic Anal-
ysis of the 2014 Drought for California Agriculture. Center for Watershed Sciences
University of California, Davis, CA.

Hrachowitz, M., et al., 2016. Transit times—the link between hydrology and water quality
at the catchment scale. Wiley Interdiscip. Rev. Water 3 (5), 629–657.

Huang, G., Kadir, T., Chung, F., 2012. Hydrological response to climate warming: the upper
feather river watershed. J. Hydrol. 426, 138–150.

Huang, J., Yu, H., Guan, X., Wang, G., Guo, R., 2016. Accelerated dryland expansion under
climate change. Nat. Clim. Chang. 6 (2), 166.

Huang, X., Hall, A.D., Berg, N., 2018. Anthropogenic warming impacts on today’s Sierra Ne-
vada snowpack and flood risk. Geophys. Res. Lett. 45 (12), 6215–6222.

Huning, L.S., AghaKouchak, A., 2018. Mountain snowpack response to different levels of
warming. Proc. Natl. Acad. Sci. 115 (43), 10932–10937.

Hutton, P.H., Chen, L., Rath, J.S., Roy, S.B., 2019. Tidally-averaged flows in the interior
Sacramento–San Joaquin River Delta: trends and change attribution. Hydrol. Process.
33 (2), 230–243.

Immerzeel, W., Droogers, P., 2008. Calibration of a distributed hydrological model based
on satellite evapotranspiration. J. Hydrol. 349 (3–4), 411–424.

Kalcic, M.M., Chaubey, I., Frankenberger, J., 2015. Defining soil and water assessment tool
(SWAT) hydrologic response units (HRUs) by field boundaries. International Journal
of Agricultural and Biological Engineering 8 (3), 69–80.

Kapnick, S.B., et al., 2018. Potential for western US seasonal snowpack prediction. Proc.
Natl. Acad. Sci. 115 (6), 1180–1185.

Kim, S.B., Shin, H.J., Park, M., Kim, S.J., 2015. Assessment of future climate change impacts
on snowmelt and stream water quality for a mountainous high-elevation watershed
using SWAT. Paddy Water Environ. 13 (4), 557–569.

Kirchner, J.W., 2006. Getting the right answers for the right reasons: linking measure-
ments, analyses, and models to advance the science of hydrology. Water Resour.
Res. 42 (3).

Kocis, T.N., Dahlke, H.E., 2017. Availability of high-magnitude streamflow for groundwa-
ter banking in the Central Valley, California. Environ. Res. Lett. 12 (8), 084009.

Kumar, S., Merwade, V., Kinter III, J.L., Niyogi, D., 2013. Evaluation of temperature and pre-
cipitation trends and long-term persistence in CMIP5 twentieth-century climate sim-
ulations. J. Clim. 26 (12), 4168–4185.

Lee, J., De Gryze, S., Six, J., 2011. Effect of climate change on field crop production in
California’s Central Valley. Clim. Chang. 109 (1), 335–353.
13
Lévesque, É., Anctil, F., Van Griensven, A., Beauchamp, N., 2008. Evaluation of streamflow
simulation by SWAT model for two small watersheds under snowmelt and rainfall.
Hydrol. Sci. J. 53 (5), 961–976.

Li, X., Xie, S.-P., Gille, S.T., Yoo, C., 2016. Atlantic-induced pan-tropical climate change over
the past three decades. Nat. Clim. Chang. 6 (3), 275.

Li, D., Wrzesien, M.L., Durand, M., Adam, J., Lettenmaier, D.P., 2017. How much runoff
originates as snow in the western United States, and how will that change in the fu-
ture? Geophys. Res. Lett. 44 (12), 6163–6172.

Liu, Z., Merwade, V., 2018. Accounting for model structure, parameter and input forcing
uncertainty in flood inundation modeling using Bayesian model averaging.
J. Hydrol. 565, 138–149.

Liu, Z., Merwade, V., 2019. Separation and prioritization of uncertainty sources in a raster
based flood inundation model using hierarchical Bayesian model averaging. J. Hydrol.
578, 124100.

Liu, Z., Mehran, A., Phillips, T.J., AghaKouchak, A., 2014. Seasonal and regional biases in
CMIP5 precipitation simulations. Clim. Res. 60 (1), 35–50.

Liu, Z., Merwade, V., Jafarzadegan, K., 2019. Investigating the role of model structure and
surface roughness in generating flood inundation extents using one-and two-
dimensional hydraulic models. Journal of Flood Risk Management 12 (1), e12347.

Martinec, J., Rango, A., 1981. Areal distribution of snow water equivalent evaluated by
snow cover monitoring. Water Resour. Res. 17 (5), 1480–1488.

Mehran, A., AghaKouchak, A., Phillips, T.J., 2014. Evaluation of CMIP5 continental precip-
itation simulations relative to satellite-based gauge-adjusted observations. Journal of
Geophysical Research: Atmospheres 119 (4), 1695–1707.

Moghadam, S.H., Ashofteh, P.-S., Loáiciga, H.A., 2019. Application of climate projections
and Monte Carlo approach for assessment of future river flow: Khorramabad River
Basin, Iran. J. Hydrol. Eng. 24 (7), 05019014.

Mote, P.W., Hamlet, A.F., Clark, M.P., Lettenmaier, D.P., 2005. Declining mountain snow-
pack in western North America. Bull. Am. Meteorol. Soc. 86 (1), 39–50.

Oleson, K., et al., 2015. Interactions between urbanization, heat stress, and climate change.
Clim. Chang. 129 (3–4), 525–541.

Ouyang, F., et al., 2015. Impacts of climate change under CMIP5 RCP scenarios on
streamflow in the Huangnizhuang catchment. Stoch. Env. Res. Risk A. 29 (7),
1781–1795.

Pachauri, R.K., et al., 2014. Climate change 2014: synthesis report. Contribution of Work-
ing Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change. Ipcc.

Pagán, B.R., et al., 2016. Extreme hydrological changes in the southwestern US drive re-
ductions in water supply to Southern California by mid century. Environ. Res. Lett.
11 (9), 094026.

Parajka, J., Blöschl, G., 2008. The value of MODIS snow cover data in validating and cali-
brating conceptual hydrologic models. J. Hydrol. 358 (3–4), 240–258.

Rahman, K., et al., 2013. Streamflow modeling in a highly managed mountainous glacier
watershed using SWAT: the Upper Rhone River watershed case in Switzerland.
Water Resour. Manag. 27 (2), 323–339.

Rajib, M.A., Merwade, V., Yu, Z., 2016. Multi-objective calibration of a hydrologic model
using spatially distributed remotely sensed/in-situ soil moisture. J. Hydrol. 536,
192–207.

Rajib, A., Merwade, V., Yu, Z., 2018. Rationale and efficacy of assimilating remotely sensed
potential evapotranspiration for reduced uncertainty of hydrologic models. Water
Resour. Res. 54 (7), 4615–4637.

Rajib, A., Liu, Z., Merwade, V., Tavakoly, A.A., Follum, M.L., 2020. Towards a large-scale lo-
cally relevant flood inundation modeling framework using SWAT and LISFLOOD-FP.
J. Hydrol. 581, 124406.

Roche, J.W., et al., 2019. Climate, snow, and soil moisture data set for the Tuolumne and
Merced river watersheds, California, USA. Earth System Science Data 11 (1), 101–110.

Safeeq, M., Hunsaker, C.T., 2016. Characterizing runoff and water yield for headwater
catchments in the southern Sierra Nevada. JAWRA Journal of the AmericanWater Re-
sources Association 52 (6), 1327–1346.

Schlaepfer, D.R., et al., 2017. Climate change reduces extent of temperate drylands and in-
tensifies drought in deep soils. Nat. Commun. 8, 14196.

Schmucki, E., Marty, C., Fierz, C., Lehning, M., 2015. Simulations of 21st century snow re-
sponse to climate change in Switzerland from a set of RCMs. Int. J. Climatol. 35 (11),
3262–3273.

Sturm, M., et al., 2010. Estimating snow water equivalent using snow depth data and cli-
mate classes. J. Hydrometeorol. 11 (6), 1380–1394.

Sun, F., Hall, A., Schwartz, M., Walton, D.B., Berg, N., 2016. Twenty-first-century snowfall
and snowpack changes over the southern California mountains. J. Clim. 29 (1),
91–110.

Thakur, B., Kalra, A., Ahmad, S., Lamb, K.W., Lakshmi, V., 2020. Bringing statistical learning
machines together for hydro-climatological predictions-case study for Sacramento
San joaquin River Basin, California. Journal of Hydrology: Regional Studies 27,
100651.

Tuo, Y., Marcolini, G., Disse, M., Chiogna, G., 2018a. Calibration of snow parameters in
SWAT: comparison of three approaches in the upper Adige River basin (Italy). Hydrol.
Sci. J. 63 (4), 657–678.

Tuo, Y., Marcolini, G., Disse, M., Chiogna, G., 2018b. Amulti-objective approach to improve
SWAT model calibration in alpine catchments. J. Hydrol. 559, 347–360.

Vicuña, S., McPhee, J., Garreaud, R.D., 2011. Agriculture vulnerability to climate change in
a snowmelt-driven basin in semiarid Chile. J. Water Resour. Plan. Manag. 138 (5),
431–441.

Vrugt, J.A., Beven, K.J., 2018. Embracing equifinality with efficiency: limits of acceptability
sampling using the DREAM (LOA) algorithm. J. Hydrol. 559, 954–971.

Vrugt, J.A., Ter Braak, C.J., Gupta, H.V., Robinson, B.A., 2009. Equifinality of formal
(DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?
Stoch. Env. Res. Risk A. 23 (7), 1011–1026.

http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0200
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0200
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0205
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0205
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0210
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0210
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0215
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0215
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0220
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0220
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0220
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0225
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0225
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0230
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0230
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0235
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0235
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0235
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0240
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0240
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0240
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0245
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0245
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0245
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0250
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0250
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0250
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0255
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0255
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0255
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0260
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0260
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0265
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0265
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0265
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0270
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0270
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0275
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0275
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0275
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0275
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0285
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0285
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0285
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0290
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0290
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0290
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0295
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0295
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0300
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0300
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0305
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0305
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0310
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0310
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0315
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0315
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0320
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0320
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0320
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0325
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0325
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0330
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0330
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0330
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0335
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0335
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0350
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0350
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0350
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0355
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0355
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0355
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0360
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0360
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0370
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0370
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0370
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0375
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0375
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0380
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0380
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0380
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0385
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0385
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0390
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0390
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0390
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0395
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0395
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0395
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0400
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0400
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0400
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0405
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0405
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0410
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0410
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0410
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0415
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0415
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0425
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0425
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0425
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0430
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0430
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0430
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0435
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0435
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0440
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0440
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0445
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0445
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0445
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0450
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0450
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0450
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0455
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0455
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0455
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0460
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0460
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0470
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0470
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0470
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0475
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0475
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0475
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0480
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0480
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0480
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0485
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0485
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0485
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0495
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0495
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0500
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0500
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0500
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0505
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0505
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0510
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0510
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0510
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0525
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0525
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0530
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0530
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0530
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0535
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0535
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0535
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0535
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0545
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0545
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0545
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0550
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0550
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0560
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0560
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0560
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0565
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0565
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0570
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0570
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0570


Z. Liu, J.D. Herman, G. Huang et al. Science of the Total Environment 759 (2021) 143429
Walton, D.B., Hall, A., Berg, N., Schwartz, M., Sun, F., 2017. Incorporating snow albedo
feedback into downscaled temperature and snow cover projections for California’s Si-
erra Nevada. J. Clim. 30 (4), 1417–1438.

Wang, X., Melesse, A., 2005. Evaluation of the SWAT model’s snowmelt hydrology in a
northwestern Minnesota watershed. Transactions of the ASAE 48 (4), 1359–1376.

Wang, G., et al., 2017a. The peak structure and future changes of the relationships be-
tween extreme precipitation and temperature. Nat. Clim. Chang. 7 (4), 268.

White, E.D., et al., 2011. Development and application of a physically based landscape
water balance in the SWAT model. Hydrol. Process. 25 (6), 915–925.

Winchell, M., Srinivasan, R., Di Luzio, M., Arnold, J., 2013. ArcSWAT Interface for
SWAT2012: User’s Guide. Blackland Research and Extension Center, Texas Agrilife
14
Research. Grassland. Soil andWater Research Laboratory, USDAAgricultural Research
Service, Texas, p. 3.

Yin, J., Tsai, F.T.-C., 2018. Saltwater scavenging optimization under surrogate uncertainty
for a multi-aquifer system. J. Hydrol. 565, 698–710.

Yin, J., Pham, H.V., Tsai, F.T.-C., 2020. Multiobjective spatial pumping optimization for
groundwater management in a multiaquifer system. J. Water Resour. Plan. Manag.
146 (4), 04020013.

Zheng, Z., Molotch, N.P., Oroza, C.A., Conklin, M.H., Bales, R.C., 2018. Spatial snow water
equivalent estimation for mountainous areas using wireless-sensor networks and
remote-sensing products. Remote Sens. Environ. 215, 44–56.

http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0575
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0575
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0575
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0580
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0580
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0585
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0585
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0600
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0600
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0605
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0605
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0605
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0605
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0615
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0615
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0620
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0620
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0620
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0625
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0625
http://refhub.elsevier.com/S0048-9697(20)36960-6/rf0625

	Identifying climate change impacts on surface water supply in the southern Central Valley, California
	1. Introduction
	2. Study area
	3. Material and methods
	3.1. Data
	3.1.1. Model calibration data
	3.1.2. Climate prediction data

	3.2. SWAT model
	3.2.1. Model description
	3.2.2. Model set up, calibration and validation

	3.3. Analysis of model outputs
	3.3.1. Evaluation of climate change impact on streamflow
	3.3.2. Evaluation of climate change impact on SWE


	4. Results
	4.1. Two-objective calibration and validation results
	4.2. Projected climate change and its impact on streamflow
	4.3. Influence of climate change on SWE at the subbasin scale
	4.4. Projected SWE in different elevation bands

	5. Discussion
	5.1. Model performance with streamflow-reconstructed SWE dual-objective calibration
	5.2. Comparison of predicted streamflow trends to other studies
	5.3. Comparison of predicted SWE trends to other studies

	6. Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References




