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by 
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Professor Michael K. Stenstrom, Chair 

 

Sedimentation is one of the most important processes that determine the performance of the 

activated sludge process, and secondary settling tanks (SSTs) have been investigated with the 

mathematical models for design and operation optimization. However, the practical application 

of SST models still remains a challenge due to several difficulties, such as the lack of efficient 

(high accuracy and low computation cost) solution techniques and reliable model calibration 

strategies.  To facilitate the practical application of SST models, this dissertation focuses on the 

one-dimensional (1-D) modeling of SSTs, including the numerical analysis to introduce and 

select efficient solution techniques, sensitivity and practical identifiability analysis to reliably 

calibrate the 1-D SST models, and evaluation of the implications of SST modeling on the design 

and control of waste water treatment plants. 

To improve the understanding of 1-D modeling of SSTs, this dissertation provides a 

comprehensive literature review of the batch settling methodology and the flux theory, which 
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played a significant role in the early stage of SST investigation. The literature review also 

contains an explicit introduction of the established 1-D SST models, including the relevant 

physical laws, various settling behaviors, the constitutive functions, available solution techniques 

and calibration strategies. 

As the only available method for analytical solution development of ideal continuous settling 

model, the method of characteristics has been successfully implemented to investigate the 

dynamics of SST for various solids loading conditions. This dissertation also introduced the Yee-

Roe-Davis method, which able to capture solution discontinuities based on gradient, thus 

providing numerical solutions with second-order accuracy. By using the method of 

characteristics as a reference, the convergence analysis of Methods Simplified-Godunov, 

Godunov and Yee-Roe-Davis shows that all are reliable, since they are able to provide arbitrarily 

close approximations to the reference solutions as discretization is refined. For a given 

discretization level, the Yee-Roe-Davis method is most efficient in reducing error, and provides 

the most accurate approximations. However, this advantage of high accuracy of the Yee-Roe-

Davis method is at the cost of larger computation time and coding complexity.  

To facilitate model calibration, the important parameters for 1-D SST model calibration were 

identified under non-ideal flow and settling conditions using global sensitivity analysis (GSA). 

This dissertation also demonstrated that reliable reduction of 1-D SST models can be achieved 

based on GSA results; for example under the bulking condition, the hindered-compression-

dispersion model can be reduced to the hindered-dispersion model without impacting model 

accuracy. The model uncertainty analysis efficiently evaluates model reduction reliability.  

In terms of developing batch settling methodology for reliable model calibration, this dissertation 

found that the hindered settling parameters are more influential in situations where only batch 



iv 
 

settling data are available, while the sensitivity to compression parameters can be greatly 

increased if concentration profile observations are included. The practical identifiability analysis 

further showed that parameter estimates obtained from data sets that only include batch settling 

data or the concentration profiles cannot generally predict concentration profiles and batch 

settling curve observations, respectively. Because of the application of local sensitivity functions, 

the parameter identifiability analysis can be sensitive to the initial parameter value selection. 

Estimates obtained by identifiable parameter subsets estimation are conditional on the values of 

fixed parameters.   

From the view of optimizing the process design and control, this dissertation demonstrated that 

the bioreactor and SST should be designed as a whole, and a safety constraint can be introduced 

in the design process to greatly improve the system’s efficiency and reliability. A comprehensive 

selection of the designed alternatives should consider three aspects: economic plausibility, 

contaminant removal efficiency, and system robustness. Least-cost points can usually be attained, 

but their locations will vary depending on the weighting of the relative cost factor. 

 

 

 

 

 

 

 

 



v 
 

The dissertation of Ben Li is approved. 

Eric M.V. Hoek 

Keith D. Stolzenbach 

Christopher R. Anderson 

Michael K. Stenstrom, Committee Chair 

 

 

University of California, Los Angeles 

2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

 

 

 

 

 

Dedication to my parents Xiubao Li and Zhenhui Wang 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Table of Contents 

Chapter 1. Introduction                                                                                                                    1 

     1.1. Background                                                                                                                          1 

     1.2. Objectives                                                                                                                            5 

     1.3. Outlines                                                                                                                                6 

Chapter 2. Literature review                                                                                                            8 

     2.1. Batch settling methodology and flux theory development                                                  8 

     2.2. Mathematical modeling of SSTs                                                                                        15 

     2.3. The mass conservation model                                                                                            18 

     2.3.1. Settling velocity determination                                                                                       20 

     2.3.2. The Stenstrom flux constraint analysis                                                                           26 

     2.3.3. The convection-dispersion model development                                                             28 

     2.4. The mass and momentum conservation law model                                                           31 

     2.4.1. Force action analysis and model development                                                               34 

     2.4.2. Hydrodynamic drag coefficient estimation                                                                    42 

     2.4.3. Compressive yield stress calculation                                                                              46 

     2.5. Numerical technique discussion                                                                                        51 

     2.6. Calibration of 1-D SST models                                                                                         58 

Chapter 3. Dynamic 1-D modeling of SSTs and system robustness evaluation                           61 

     3.1. Introduction                                                                                                                       61 

     3.2. Methodology                                                                                                                     63 

          3.2.1. Model structure development                                                                                   63 

          3.2.2. Numerical technique introduction                                                                            67 

          3.2.3. Numerical discretization and integration                                                                  69 

          3.2.4. SST behavior investigation under underloading and overloading conditions          72 



viii 
 

          3.2.5. System robustness study                                                                                            73 

     3.3. Results and discussion                                                                                                       74 

          3.3.1. Numerical solution accuracy                                                                                     74 

          3.3.2. SST behaviors in various operating conditions                                                         77 

          3.3.3. System robustness                                                                                                     78 

     3.4. Conclusion                                                                                                                         81 

Chapter 4. Construction of analytical solutions and numerical methods comparison of the ideal 

continuous settling model                                                                                                              83 

     4.1. Introduction                                                                                                                        83 

     4.2. MOC theory review in ideal continuous settling model solving                                       88 

     4.3. Continuous sedimentation experiments and model parameter estimation                         93 

     4.4. MOC solutions construction of three transients                                                                 94 

          4.4.1. Underloading-to-underloading                                                                                   97 

          4.4.2. Underloading-to-overloading                                                                                     99 

          4.4.3. Overloading-to-underloading                                                                                   104 

     4.5. Convergence analysis and efficiency comparison of numerical methods                       108 

     4.6. Conclusion                                                                                                                       115 

Chapter 5. Dynamic 1-D modeling of SSTs and design impacts of sizing decisions                 117 

     5.1. Introduction                                                                                                                     117 

     5.2. Background                                                                                                                      119 

          5.2.1. Flux theory and state point analysis                                                                        119 

          5.2.2. Modeling of continuous settling process                                                                 124 

     5.3. Model improvement                                                                                                        126 

          5.3.1. Model structure development                                                                                  126 

          5.3.2. Numerical discretization and integration                                                                 128 

          5.3.3. Numerical solution accuracy                                                                                    130 



ix 
 

          5.3.4. Layer number sensitivity test                                                                                   131 

          5.3.5. Model verification of SST responses to solids flux overloading                             132 

     5.4. Practical model application                                                                                              133 

          5.4.1. Activated sludge process design                                                                              133 

          5.4.2. Selection of different-sized ASP                                                                              134 

     5.5. Process size results and discussion                                                                                  136 

          5.5.1. ASP unit sizes                                                                                                          136 

          5.5.2. Economic plausibility                                                                                              137 

          5.5.3. Overall treatment efficiency                                                                                    138 

          5.5.4. System robustness evaluation                                                                                  139 

          5.5.6. Comprehensive selection                                                                                         141 

     5.6. Conclusion                                                                                                                       142 

Chapter 6. A sensitivity and model reduction analysis of 1-D SST models under wet-weather 

flow and sludge bulking conditions                                                                                             144 

     6.1. Introduction                                                                                                                      144 

     6.2. Materials and method                                                                                                       148 

          6.2.1. Model structure and simulation description                                                             148 

          6.2.2. Global sensitivity analysis                                                                                       152 

          6.2.3. Uncertainty analysis with Monte Carlo procedure                                                  154 

          6.2.4. Numerical setting and comparison of SST models                                                  154 

     6.3. Results and discussion                                                                                                     155 

          6.3.1. Global sensitivity analysis of the Bürger-Diehl model under non-ideal flow and 

settling conditions                                                                                                                        155 

          6.3.2. Parameter interactions of the Bürger-Diehl model under non-ideal flow and settling 

conditions                                                                                                                                     158 



x 
 

          6.3.3. Influence of imposed flow and settling conditions on the sensitivity of the Bürger-

Diehl model outputs to parameters                                                                                              160 

          6.3.4. Reduction of the Bürger-Diehl model based on GSA results                                  162 

          6.3.5. Investigating the reliability of the Bürger-Diehl model reduction based on   

uncertainty analysis                                                                                                                      165 

     6.4. Conclusions                                                                                                                      169 

Chapter 7. Practical Identifiability and Uncertainty Analysis of the One-Dimensional Hindered-

Compression Continuous Settling Model                                                                                    172 

     7.1. Introduction                                                                                                                      172 

     7.2. Materials and methods                                                                                                     176 

          7.2.1. Model structure                                                                                                        176 

          7.2.2. Experimental layouts                                                                                               178 

          7.2.3. Identifiability analysis                                                                                              179 

          7.2.4. Exploring the estimate bias and model prediction uncertainty                                185 

     7.3. Results and discussion                                                                                                     186 

          7.3.1. Parameter selection for identifiability analysis                                                        186 

          7.3.2. Parameter identifiability analysis and parameter estimation                                   189 

          7.3.3. Influence of selecting initial parameter values on parameter identifiability            196 

          7.3.4. Exploring potential bias problem and prediction uncertainty                                  199 

     7.4. Conclusion                                                                                                                       203 

Chapter 8. Conclusion                                                                                                                 205 

Reference                                                                                                                                     209 

 

 

 

 

 



xi 
 

List of Figures 

Figure.2.1-Sludge blanket height vs. time                                                                                     11 

Figure.2.2-Schematic overview of an ideal one-dimensional SST                                                17 

Figure.2.3-The fit of various settling velocity functions to the experiment data                           25 

Figure.2.4-Force acting analysis of ideal floc structure                                                                 41 

Figure.3.1-Typical overloading concentration profiles (left: the SVT method; right: the YRD flux 

method)                                                                                                                                          75 

Figure.3.2-Concentration profiles of the SVT method and the YRD method (left: the SVT 

method; right: the YRD flux method)                                                                                            76 

Figure.3.3-Concentration profiles of different solids loading conditions (left: the SVT method; 

right: the YRD flux method)                                                                                                          79 

Figure.3.4-Failure time in the hydraulic shock loading (left) and the settleability deterioration 

(right)                                                                                                                                             81 

Figure.4.1-Schematic overview of ideal continuous settling tank with constant cross-section area 

                                                                                                                                                        85  

Figure.4.2-Top: flux and auxiliary functions of the first underloading operation (left); flux and 

auxiliary functions of the second underloading operation (right). Bottom: MOC solutions of the 

underloading-underloading transients (left); the MOC prediction of the recycle concentration 

compared with the experiment observation (right)                                                                        99 

Figure.4.3-Top: flux and auxiliary functions of the first underloading operation (left); flux and 

auxiliary functions of the second overloading operation (right). Middle: MOC prediction of 

sediment interface compared with the experiment observation (left); the MOC prediction of the 

recycle concentration compared with the experiment observation (right). Bottom: MOC solutions 



xii 
 

of the underloading-overloading transients                                                                                 101 

Figure.4.4-Approximating ( )1' Xf φ + as a linear function of ( )1' Xf φ −  in underloading-

overloading transient (left); approximating ( )'f ε as a linear function of ( )3' xf φ +  in 

overloading-underloading transient (right)                                                                                  104 

Figure.4.5-Top: flux and auxiliary functions of the first overloading operation (left); flux and 

auxiliary functions of the second underloading operation (right). Bottom: MOC solutions of the 

overloading-underloading transients                                                                                            106 

Figure.4.6-Comparison of solution convergences for Methods SG, YRD and G (top to bottom, 

respectively) for the two cases of under loading-to-overloading and overloading-to-under loading 

(left to right, respectively) at N=40,100,200                                                                                112 

Figure.4.7-Errors of the underloading-overloading transient simulation at various layer numbers 

(left); CPU times of the underloading-overloading transient simulation at various layer numbers 

(right)                                                                                                                                           113 

Figure.4.8-Efficiency lines (error vs.CPU time) of Methods SG, G and YRD for different layer 

numbers                                                                                                                                        114 

Figure.5.1-Typical overloading concentration profiles of different discretization levels (left: the 

improved model; right: Takács model)                                                                                        130 

Figure.5.2-SST response to step increase in influent solids flux (Data from Tracy, 1973)         133 

Figure.5.3-Total settling flux profile (left) and the limiting flux profile (right) in different SST 

size conditions                                                                                                                              137 

Figure.5.4-Scale relationship between SSTs and bioreactors (left) and total cost of alternative 

ASP designs in three typical relative cost conditions (right)                                                       138 



xiii 
 

Figure.5.5-SST biomass storage ratio in underloading steady state (left) and large size SST 

biomass storage ratio when the flux loading statues changes from overloading to critical loading  

(right)                                                                                                                                           139 

Figure.5.6-SSTs' time-to-failure corresponding to hydraulic shock loading (left) and settleability 

deterioration (right)                                                                                                                      140 

Figure.5.7-Dynamic solids concentration profiles in hydraulic shock loading for different surface 

areas: 120 m2, 230 m2 and 350 m2                                                                                               142 

Figure.6.1-Layout of the Benchmark Simulation Model NO.1 (BSM1)                                     148 

Figure.6.2-Ratio of sum(Si) to sum(STi) of the Bürger-Diehl model outputs in scenarios 1 to 

3(left), and ratio of Si and STi of the Bürger-Diehl model parameters in scenario 1                    159 

Figure.6.3-Venn diagram related to the comparison of important parameters in scenarios 1 to 3 

                                                                                                                                                      162 

Figure.6.4-Scatter plots and the Pearson correlation index comparing the similarity of model 

outputs of the Bürger-Diehl model and the reduced models (upper: scenario 1, bottom: scenario 2, 

and subscripts H-C-D, H-D and H denote the Bürger-Diehl model, the hindered-compression 

model and the hindered-only model respectively)                                                                       164 

Figure.6.5-Results of the Monte Carlo simulations of BSM1 for scenario 1. On each box, the 

central mark is the mean value, the edges of the box are the 25th and 75th percentiles, and the 

whiskers extend to the most extreme data points (subscripts H, H-C, H-D and H-C-D denote the 

hindered-only, hindered-compression, hindered-dispersion and Bürger-Diehl models respectively) 

                                                                                                                                                      166 

Figure.6.6-Results of the Monte Carlo simulations of BSM1 for scenario 2. On each box, the 

central mark is the mean value, the edges of the box are the 25th and 75th percentiles, and the 

whiskers extend to the most extreme data points (subscripts H, H-C, H-D and H-C-D denote the 

hindered-only, hindered-compression, hindered-dispersion and Bürger-Diehl models respectively) 

                                                                                                                                                      167 



xiv 
 

Figure.6.7-Representation of the uncertainties of Ce and SBH for scenario 3 by the cumulative 

distribution function (subscripts H, H-C, H-D and H-C-D denote the hindered-only, hindered-

compression, hindered-dispersion and Bürger-Diehl models respectively)                                169 

Figure.7.1-Steps of a systematic procedure of identifiable parameter subset selection and 

estimation                                                                                                                                     178 

Figure.7.2-The estimated batch settling flux functions (left) and compressive stress functions 

(right) calculated based on the Vesilind equation (Vesilind 1968) and the logarithmic 

compression stress equation (De Clercq et al. 2008)                                                                   192 

Figure.7.3-Simulation results (batch settling curves and concentration profile) based on 

parameter subset estimations of experiment layouts 1-4                                                             195 

Figure.7.4-Box-Whisker plot of the local mean sensitivity measures of model parameters in 

layouts 3 and 4. The upper and lower boundaries of the box mark the 75th and 25th percentile, 

and line within the box marks the median. Whiskers above and below indicate the 95th and 5th 

percentile. (left: experimental layout 3; right: experimental layout 4)                                        197 

Figure.7.5-Box-Whisker plot of the calculated collinearity indices for all parameter subsets of 

size 2-5. (the order of the parameter subsets is the same as the parameter set number as shown in 

Table 7.4). The upper and lower boundaries of the box mark the 75th and 25th percentile, and 

line within the box marks the median. Whiskers above and below indicate the 95th and 5th 

percentile. (top: experimental layout 3; bottom: experimental layout 4)                                     198 

Figure.7.6-Relative values of estimated parameter for different values of fixed parameters (left: 

experimental layout 3; right: experimental layout 4)                                                                   201 

Figure.7.7-Uncertainty of SBH based on parameter subset estimation of experimental layout 1-4. 

The blue and red dot lines indicate the 95th and the 5th percentile respectively. (top left: 

experimental layout 1; top right: experimental layout 2; bottom left: experimental layout 3; 

bottom right: experimental layout 4)                                                                                           202 

 



xv 
 

List of Tables 

Table 2.1-Overview and comments of gravity settling velocity functions                                    24 

Table 2.2-Overview and comments of different hydraulic dispersion functions                           33 

Table 2.3-Overview and comments of different compressive yield stress function                      50 

Table 2.4-Overview and comments of different numerical techniques used in solving the model 

governing PDEs                                                                                                                             57 

Table 3.1-Parameter sets of gravity settling velocity (normal and deterioration)                         66 

Table 3.2-Parameter set to generate different operating conditions                                              73 

Table.4.1-SST configuration and Vesilind equation parameters                                                   95 

Table.4.2-Operation conditions for the underloading-underloading, underloading-overloading, 

and overloading-underloading transients from Tracy (1973)                                                        96 

Table 5.1-Major contributions to SST behavior analysis and comments.                                   122 

Table 5.2-Parameter sets of ASP design and gravity settling velocity (normal and deterioration) 

                                                                                                                                                      131 

Table 6.1-Uncertainty of the Bürger-Diehl model parameters under good settling and bulking 

conditions                                                                                                                                     151 

Table 6.2-Parameter sensitivity indices of the Bürger-Diehl model outputs in scenario 1         156 

Table 6.3-Parameter sensitivity indices of the Bürger-Diehl model outputs in scenario 2         157 

Table 6.4-Parameter sensitivity indices of the Bürger-Diehl model outputs in scenario 3         158 



xvi 
 

Table 6.5-Spearman's rank index of the comparison of the similarity of sensitivity measure 

ranking                                                                                                                                         161 

Table 7.1-The design of batch settling experiments and comments                                            179 

Table 7.2-Uncertainty of the hindered-compression model parameters                                      180 

Table 7.3-Initial values, global and local mean sensitivity measures of the model parameters of 

layouts 1-4                                                                                                                                    188 

Table 7.4-Collinearity indices and determinant measures of parameter subsets of experimental 

layouts 1-4                                                                                                                                    190 

Table 7.5-Initial values, final estimates, standard errors and correlation matrixes of the parameter 

subsets selected in experimental layouts 1-4                                                                               194 

Table 7.6-The average collinearity indices of parameter subsets of size 2 consisting of one 

identifiable parameter plus the fixed parameter, and the average changes of the estimates of 

identifiable parameters                                                                                                                 200 

 

 

 

 

 

 

 

 

 



xvii 
 

ACKNOWLEDGEMENTS 

I would like to express my appreciation to my advisor Dr. Michael K. Stenstrom, not only for his 

guidance and assistance in developing this thesis, but also for his patience and encouragement. 

His encyclopedic knowledge stimulates my motivation to conduct the study and finish the thesis. 

I also would like to acknowledge my committee members: Dr. Keith D. Stolzenbach, Dr. Eric 

M.V. Hoek and Dr. Chris Anderson. The comments made by the committee greatly improve my 

understanding of this study, and I really appreciate their kind help. 

Finally, I would like to express my deepest gratitude to my parents Xiubao Li and Zhenhui Wang, 

my girlfriend Shanshan Luo. Without their irreplaceable love, I can never finish this thesis.  

 

 

 

 

 

 

 

 

 

 

 



xviii 
 

VITA 

Education 

2007 – 2011 B.S. in Environmental Engineering, Zhejiang University of Technology 

2011 – 2012 M.S. in Civil Engineering, University of California, Los Angeles 

Publications 

Ben  Li and M.K. Stenstrom, "One-Dimensional Modeling of Secondary Clarifier Tanks and Design Impacts of 

Sizing",  Wat. Research, 50, 160-170, 2014 

Ben Li and M.K. Stenstrom, “Dynamic One-Dimensional Modeling of Secondary Settling Tanks and System 

Robustness Evaluation”,  Wat. Sci. & Tech, 69(11), 2339-2349, 2014. 

Ben  Li and M.K. Stenstrom, "Research Advances and Challenges in One-Dimensional Modeling of Secondary 

Settling Tanks - A Critical Review",  Wat. Research, 65, 40-63, 2014. 

Ben Li and M.K. Stenstrom, "Construction of Analytical Solutions and Numerical Methods Comparison of the Ideal 

Continuous Settling Model", Computers & Chemical Engineering, 80, 211-222, 2015. 

Ben Li and M.K. Stenstrom, "Practical Identifiability and Uncertainty Analysis of the One-Dimensional Hindered-

Compression Continuous Settling Model", Wat. Research, 90, 235-246, 2016. 

Ben Li and M.K. Stenstrom, "A Sensitivity and Model Reduction Analysis of One-Dimensional Secondary Settling 

Tank Models Under Wet-weather Flow and Sludge Bulking Conditions", Chemical Engineering Journal, 288, 813-

823, 2016. 

Ben Li, Yingxia Li, Yuping Qiu, Yang Yu, M.K. Stenstrom, " Significance of Reactive Secondary Settling Tank 

Models On the Simulation of WWTP Performance Under Ideal and Non-Ideal Flow and Settling Conditions", 

submitted to Wat. Research and under review.  

Ben Li and M.K. Stenstrom, "Dynamic One-Dimensional Modeling of Secondary Settling Tanks and System 

Robustness Evaluation", 5th IWA ASPIRE Conference, Daejeon Korea, 2013. (Oral presentation) 

Ben Li and M.K. Stenstrom, " Research Advances and Challenges in One-Dimensional Mathematical Modeling of 

Secondary Settling Tanks—A Critical Review", 86th WEFtec Conference, Chicago, IL, 2013. (Oral presentation)  

Ben Li and M.K. Stenstrom, "Comparison of Global Sensitivity Methods for the Activated Sludge Model No.3: A 

Case Study of the West County Wastewater Reclamation Plant," 6th IWA ASPIRE Conference, Beijing, China, 2015. 

(Oral presentation) 

Ben Li and M.K. Stenstrom, " A Comprehensive comparison of one-dimensional continuous settling models based 

on sensitivity and uncertainty analysis", 88th WEFtec Conference, Chicago, IL, 2015. (Oral presentation)



1 
 

1. Introduction 

1.1. Background 

Biological secondary treatment processes are widely used in wastewater treatment plants to 

remove organic matter and reduce nutrients such as nitrogen and phosphorus. In most cases, 

efficient operation requires the biomass to be removed from the wastewater by sedimentation, 

filtration or other solids-liquid separation processes. 

Several types of treatment processes can achieve solids-liquid separation, but secondary settling 

tanks (SSTs) are most commonly used. SSTs, also known as clarifiers, sedimentation basins or 

solids-liquid separators, use gravity to separate the biomass from the fluid, and have two similar 

but distinct functions: clarification and thickening. Clarification is the removal of finely 

dispersed solids from the liquid to produce a low turbidity effluent; thickening is the process of 

increasing the sludge concentration in order for it to be recycled or disposed in less volume. In 

SSTs, the clarification process occurs in the upper zone while thickening occurs near the bottom. 

The result is an effluent from the top, low in suspended solids, and a second stream of settled, 

concentrated biomass from the bottom, suitable for recycling or disposal.  

As one of the most important units in wastewater treatment process, the SST is often a “bottle 

neck,” limiting the capacity of the wastewater treatment process (Ekama et al. 1997a, Ekama and 

Marais 2002a). The SST sizing must be combined with the bioreactor sizing to provide the 

minimum necessary conditions, such as the solids retention (SRT) or food-to-mass (F/M ratio) to 

meet design conditions, as well as maintaining a safety factor to handle shocks and upsets. If the 

SST does not produce a highly clarified effluent, or cannot thicken biomass to the required 
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recycle concentration, excessive effluent solids will result, causing effluent permit violations and 

resultant loss biomass from the reactor. Therefore, two commonly used parameters: overflow 

rate and solids flux, have been developed for SST design and evaluation.  

Since wastewater characteristics vary, such as temperature, flow rate and contaminant 

concentrations, traditional design procedures for SSTs tend to be empirical and conservative by 

introducing averaged parameters with safety factors (Coe and Clevenger 1916). Therefore SST 

performance can suffer unanticipated fluctuations, which may cause process control problems 

and increase the risks of failure. Stringent standards for effluent quality and the need for 

optimization of WWTP performance have made such variations in effluent quality undesirable, 

and have encouraged the use of dynamic controls for wastewater treatment process.  

A mathematical modeling approach, where the bioreactor models are coupled with SST models, 

is encouraged in WWTP studies for overall process design and control optimization. Scientific 

knowledge on characterizing the biomass growth and contaminant removal is well-developed, 

whereas the various settling behaviors within the SST are still poorly understood, thus causing 

the difficulty in effluent quality prediction, biomass inventory estimation (Plósz et al. 2011). 

Great efforts have been made to rigorously predict SST performance. According to different 

practical application purposes, the modeling approaches can be divided into three main 

categories: 

1. One-dimensional (1-D) dynamic model: 1-D models are based mostly on flux theory and 

Kynch's assumption that the solids gravity settling velocity is only determined by the 

local sludge concentration. The hydraulic flow is simplified as downward/upward flow 

to simulate the recycling/effluent flow and satisfy the 1-D assumption.  
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2. Two-dimensional (2-D) hydraulic model: compared with 1-D models, 2-D models are 

developed using computational fluid dynamics (CFD) techniques. Therefore, instead of 

simplifying or omitting the hydraulic flow impacts, 2-D models can incorporate 

hydrodynamics such as density currents, turbulence, and artifacts of unfavorable SST 

geometry. Flocculation behavior can also be modeled, if coupled with a sub-flocculation 

model (Zhou and Mccorquodale 1992a, b). A frequent application of 2-D models is to 

improve SST geometry design and optimize performance.   

3. Three-dimensional (3-D) hydraulic model: the motivation of developing 3-D approaches 

is to understand non-symmetric features: for example the heat exchange caused by the 

varying temperatures and wind effects. Very detailed computation grids are now feasible 

in order to capture geometric features as small as several inches (Gong et al. 2011, 

Xanthos et al. 2011, Ramalingam et al. 2012). However, the high resolution grids also 

incur large computation cost which may limit the 3-D models' practicability. 

In current engineering practice, 1-D SST models are mostly used due to their relative simplicity 

and low computation cost. As the most prevalent one, the 1-D 10-layer SST model, also known 

as the Takács model (Takács et al. 1991), has been implemented in most commercial simulators 

as a reference model. Although the Takács model has achieved a degree of success in predicting 

the SST performance, such as the effluent concentration, the underflow concentration and the 

sludge blanket level, its shortcomings are not negligible, which can be summarized as two 

aspects:   

1. Insufficient description of various settling behavior. With the ad-hoc assumption that 

hindered settling mostly determines the SST performance, the Takács model only 
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includes the first-order convection term (hindered settling term) to describe the solids 

transport within the SST, while other significant settling processes, such as the 

compression settling, are not considered. 

2. Inaccuracy of numerical solutions. The PDE solver using the flux constraint embedded in 

the Takács model can only provide reliable numerical solutions under ideal conditions 

(dry-weather and good settling), and may lead to unphysical solution oscillation under 

non-ideal conditions, such as wet-weather and sludge bulking (Bürger et al. 2012). 

Meanwhile, the numerical dispersion introduced by the low discretization level (10-layer) 

also prevents a detail investigation of the settling dynamics, as reported by Jeppsson and 

Diehl (1996). 

In the last two decades, to overcome the limitations of the Takács model, several advanced SST 

models have been developed as reliable alternatives, which can be classified into three groups 

based on their advantages: 

1. First-order model with reliable numerical techniques: for these models, the model 

formula remains the same as the Takács model by only considering the hindered settling 

behavior, while more reliable numerical techniques, such as the Godunov numerical flux 

are used to construct both numerically and physically acceptable solutions (Jeppsson and 

Diehl 1996).  

2. Second-order hindered-compression model: the improved understanding of activated 

sludge rheology has facilitated the development of phenomenological theory of 

sedimentation-consolidation, and then the phenomenological theory is expressed in the 

compression model, which allows a more rigorous description of the compression settling 
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behavior (Bürger 2000, Bürger et al. 2000a). Compared with the hindered-only model, 

the hindered-compression model is expected to provide more realistic prediction of the 

sludge blanket level and the underflow concentration.   

3. Second-order hydraulic dispersion model: for these models, an explicit hydraulic 

dispersion term is added to the model formula to account for the potential impact of 

hydraulics on the biomass settling behavior (Plósz et al. 2007, Ramin et al. 2014a). The 

hydraulic dispersion model possesses the advantage of simulating the hydraulics of SSTs 

in a wider range of dynamic flow conditions (Ramin et al. 2014c). From the numerical 

point of view, adding the flow-dependent dispersion term also avoids the shock problem 

occurring in the hindered-only model.  

Despite the advantages of these advanced models, their practical application is limited, which 

can be potentially attributed to the lack of guidance to facilitate the model calibration and the 

difficulty of selecting SST models for specific simulation purposes (sludge blanket level 

prediction, sludge retention time calculation etc). Therefore, given that the currently available 

SST models cannot always provide satisfactory predictions and their implementation strategies 

are not well developed, further research is strongly needed to improve the performance of 1-D 

SST models, as well as facilitate their application in engineering practice. 

1.2. Objectives 

In order to improve the model reliability as well as facilitate its practical application, the main 

objectives of this dissertation are (і) to provide a comprehensive literature review, which 

includes the significant research topics related to the 1-D SST modeling, such as the batch 

settling test methodology, model formula development, reliable solution calculation and efficient 
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model calibration; (ii) to focus on the numerical analysis of 1-D SST models with the aim of 

introducing and selecting efficient numerical techniques for model solving; (iii) to investigate the 

application of 1-D SST models on the design and control of wastewater treatment plants 

(WWTPs), such as improving the understanding of interactions between bioreactor and SST, and 

demonstrate that the design and control decision-making of WWTP operations is sensitive to the 

selection of 1-D SST models; (IV) to develop efficient calibration strategy of 1-D SST models 

by identifying parameter subsets suitable for calibration under various flow and settling 

conditions, and evaluate the parameter identifiability based on different experimental layouts; (V) 

to investigate the 1-D SST model reduction based on sensitivity analysis results, and evaluate the 

reliability of model reduction based on uncertainty analysis.    

1.3. Outline 

Chapter 2 of this dissertation provides a comprehensive literature review of the 1-D modeling of 

SSTs. This chapter starts with a review of the development of settling theory, focusing on batch 

settling methodology and the flux theory, since they played an important role in the early stage 

of SST investigation. The second part of this chapter is an explicit review of the established 1-D 

SST models, including the relevant physical law, various settling behaviors (hindered, transient, 

and compression settling), the constitutive functions. The third part is a discussion of reliable 

numerical techniques needed for solving the models' governing equations. The last part focuses 

on the calibration of 1-D SST models, which is specifically important in terms of the increasing 

complexity of SST model itself. 

Chapters 3, 4 and 5 of this dissertation mainly focuses on the numerical analysis of SST models 

and implications of SST models on the design and control of WWTPs. For the ideal SST model 
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(hindered-only model), its analytical solutions under different operating conditions are 

constructed in Chapter 4 based on method of characteristics. The analytical solutions are also 

compared with experiment data to show the validity of the SST model in predicting the sediment 

height and solids concentration distribution as a function of time and loading conditions. In 

Chapters 3 and 5, the reliable numerical technique based on the Yee-Roe-Davis method is 

introduced to calculate both physically and numerically acceptable solutions, and the efficiency 

of different alternative numerical techniques are evaluated based on their comparison with the 

analytical solution in Chapter 4. Chapter 3 and 5 also investigate the feasibility of applying the 

SST models in the design and control of WWTPs, such as optimizing the sizes of bioreactor and 

SST, and evaluate the influence of SST simulation on control and decision-making.  

Chapters 6 and 7 provide the methodology of reliable model calibration in different experimental 

layouts, and the guidance of model reduction for specific simulation purposes. In Chapter 6, the 

parameter subsets suitable for model calibration are identified based on sensitivity analysis, and 

influence of imposed flow and settling conditions on the sensitivity of model outputs on 

parameters are assessed as well. Chapter 6 further demonstrates that reliable model reduction can 

be achieved based on sensitivity analysis, and provides the guidance of SST model selection 

based on specific simulation purposes. The primary concern of Chapter 7 is the reliable 

calibration of SST models in various experimental layouts. The practical identifiability analysis 

of SST models is provided in Chapter 7 to determine identifiable parameter subsets based on 

different experimental layouts. Chapter 7 also investigates the influence of initial parameter 

value selection on parameter identifiability analysis, and the bias of parameter estimates caused 

by fixing unidentifiable parameters. 
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 2. Literature review 

Sedimentation is one of the most important processes that determine the performance of the 

activated sludge process (ASP), and SSTs have been frequently investigated with the 

mathematical models for design and operation optimization. Nevertheless their performance is 

often far from satisfactory. The first part of this chapter is a review of the development of settling 

theory, focusing on batch settling methodology and the development of flux theory, since they 

played an important role in the early stage of SST investigation. The second part is an explicit 

review of the established 1-D SST models, including the relevant physical law, various settling 

behaviors (hindered, transient, and compression settling), the constitutive functions, and their 

advantages and disadvantages. The third part is a discussion of numerical techniques required for 

reliable model output calculation, and the last part mainly focuses on the calibration of 1-D SST 

models.  

2.1. Batch settling methodology and flux theory development 

Because of the similarities between batch settling and continuous settling processes, many early 

researchers investigating activated sludge thickening and clarification predicted continuous 

settling behavior from batch settling tests. Coe and Clevenger (1916) provided one of the earliest 

examples relating batch settling phenomenon to the design and operation of the SST, and in their 

classical paper, the settling behavior in a batch thickening column was qualitatively indentified 

in four distinctive zones: 1) the clear supernatant zone at the top with low turbidity; 2) the 

uniform settling zone with constant concentration equal to initial concentration; 3) the transition 

zone between the constant concentration and compression zones, and 4) the compression zone 

formed by the compression from overlaying sludge and the mechanical support of the lower 
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bottom. Among each zone in the batch settling test, the constant settling zone was found to 

govern the SST area requirement; however Coe and Clevenger (1916) believed that the SST 

depth, in their case of using pulp and paper sludge, should be large enough to provide sufficient 

storage time, thus making the sludge retention long enough within the SST to squeeze the water 

out of sludge sediment to obtain more condensed recycling flow. As an extension of this 

conclusion, the requirement of SST area was characterized as the finding the minimum solids 

handling capacity for any intervening values from the initial concentration to the bottom (Coe 

and Clevenger 1916). 

As the only established quantitative approach, Coe and Clevenger's empirical procedure was 

widely accepted and used in the first half of the 20th century, having a profound impact on SST 

design and operation. Nevertheless, the remaining difficulties of theoretically examining the 

settling process still prevented the in-depth understanding of the batch settling process, as well as 

the continuous process.  

In order to simplify the problem without having to understand the detailed force acting on 

particles, Kynch (1952) presented the constitutive relation, now known as Kynch's assumption, 

that the hindered settling velocity is uniquely determined by the local solids concentration. On 

the basis of Kynch's assumption, the batch settling process was modeled by the mass continuity  

equation of the solid phase as eq.(2.1) with proper constitutive functions, initial and boundary 

conditions, and the mass flux was introduced for solids conveyance calculation: 

( ) 0sv
t z

φφ ∂∂
+ =

∂ ∂
                                                                                                                          (2.1)                                                                                                                                            

where ϕ is the solid concentration, vs is the gravity settling velocity, t is time, z is the spatial axis 
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in vertical direction. 

In solving eq.(2.1), solution discontinuities are expected to occur as a function of time and height, 

and these discontinuities can be physically interpreted as the sediment interfaces or blanket 

heights observed in experiments and full-scale operations. Therefore, eq.(2.1) is satisfactory in 

capturing concentration discontinuities without knowing their physical mechanisms, although it 

fails to distinguish various settling behaviors (Kynch 1952, Concha and Bürger 2003). As Kynch 

said in his celebrated paper " a considerable amount can be learned by the single main velocity 

assumption, though further experiments are necessary to verify its validity" (Kynch 1952). His 

theory greatly improved the understanding of the settling problem, and usually has been applied 

as the first step in batch and continuous settling data analysis.   

Since the starting point of Kynch’s work is a mathematic development and analysis of eq.(2.1), 

he did not provide suggestions for practical application of his theory. The first attempt of 

introducing Kynch’s theory to SST design was proposed by Talmage and Fitch (1955). In their 

design procedure, the slope of a tangent to the interface subsidence curve of a batch settling test 

was thought to be equal to the settling velocity of the layer with the initial concentration, shown 

as Fig 2.1, which is consistent with Kynch’s theory. Therefore, the settling velocity information 

can be obtained through the initial and final equilibrium states, and the settling flux curve can be 

synthesized from a single batch settling test. 

Shortly thereafter, Talmage and Fitch made the assumption that the thickening capacity is 

governed by the concentration which exists at the solid-liquid interface as the solids enter the 

compression zone. If solids enter the compression zone more rapidly that they can pass through it 

to the underflow, accumulation occurs. Hence, the accuracy of their design procedure is highly 
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dependent on precisely determining the time of compression (tc). Several empirical methods are 

available: Roberts' (1949) procedure based on Coe and Clevenger's hypothesis that the loss of 

water in the compression zone is a function of time and Eckenfelder and Melbinger's (1957) 

tangents crossing method .  

 

Fig. 2.1 - Sludge blanket height vs. time (Grieves and Stenstrom (1976)). 

In additional to the difficulty of determining the compression time, the Talmage-Fitch procedure 

subsequently has been shown to yield conservative SST size design by many investigators 

(Hassett 1958, Fitch 1962, Alderton 1963). One explanation for this result is that the settling 

velocity is not only determined by concentration in compression zone but also impacted by 

various other factors, such as the compressive force, which invalidates Kynch's original 

assumption. However, acknowledging its shortcomings, the Talmage-Fitch procedure was still 

advocated by a number of researchers, because it requires only one batch settling test , as 
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opposed to multiple batch settling experiments required by the Coe and Clevenger method 

(Moncrieff 1964, Scott 1968a, b).  

The reason the Talmage and Fitch method leads to a conservative design rests on two important 

assumptions: the first is that the settling velocities observed in laboratory batch settling test can 

truly represent those found in full scale SSTs, and the second is the validity of the Kynch 

assumption itself. 

To understand the potential artifacts of small scale equipments, factors such as the cylinder size, 

the initial sludge height were investigated. When the diameter of the batch settling cylinder 

becomes fairly small with respect to the particle size, for example in 1 L graduate cylinder 

(diameter=3 cm), the "wall effect" will be greatly magnified by "arching" or "bridging" of the 

sludge with the wall, which could retard the normal settling process (Kammermeyer 1941, 

Vesilind 1968b). Dick (1965) showed that the "wall effect" was more profound with the 

concentrated sludge than with dilute one. Generally, the small diameter column can produce 

higher settling velocity in the dilute range, but lower velocities in the concentrated range 

(Vesilind 1968b). Small size cylinders are more convenient to use since they require less test 

sludge, and obtaining  uniform initial sludge concentration throughout the cylinder is easier. 

Non-uniform sludge concentrations may invalid the 1-D assumption may also change floc 

characteristics (Tracy 1973).  For these reasons small size cylinders are still desirable, and slow 

speed mixers have been recommended to avoid wall effects (Work and Kohler 1940, Behn 1957), 

as well as model the rake effect found in full-scale SSTs (Eckenfelder and Melbinger 1957, 

Vesilind 1968b).  
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Differences in observed settling velocities have been attributed to the initial depth of the sludge.  

Several researchers (Work and Kohler 1940, Kammermeyer 1941) showed that the initial settling 

depth exerts a profound influence in concentrated sludge experiments while having much less 

influence in dilute sludge experiments. Later, more detailed investigations from Dick and Ewing 

(1967) showed that the height effect was closely related to the type of sludge; for example 

activated sludge was much more influenced by initial depth than a suspension of sand.  Shannon 

and Alderton (1966) used glass beads with a Gaussian size distribution to demonstrate the 

independence of settling velocity with the initial height, and Kynch's theory was applicable for 

interface height prediction (Shannon et al. 1963). This discrepancy was caused by the fact that 

the activated sludge deviates greatly from the ideal particle assumption (Tracy 1973). The 

validity of Kynch's theory in compression zone was proven by Tory and Shannon (1965), and 

they stated that the settling velocity in compression zone can still largely be approximated as a 

function only of concentration. 

The settling velocity function is significant for SST design using solid flux theory (Cho et al. 

1993), and a variety of theoretical or empirical functions have been proposed (Steinour 1944, 

Vand 1948, Richardson and Zaki 1954, Yoshioka et al. 1957b, Scott 1966, Vesilind 1968b, 

Vaerenbergh 1980, Takács et al. 1991, Cho et al. 1993, Cacossa and Vaccari 1994, Bürger 2000, 

Kinnear 2002, Zhang et al. 2006). Various factors, for example the particle size, shape, sludge 

viscosity, density and porosity have been used to characterize the settling velocity, while in 

practical engineering application, empirical functions are preferred due to their simplicity and 

practicality. For applications relating to municipal wastewater treatment, the most popular are the 

exponential  functions (Vesilind 1968b, Takács et al. 1991), which have been shown to better fit 

the experimental data than other functions (Smollen and Ekama 1984). Most empirical 
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approaches primarily determine the hindered settling velocity as a function of the sludge 

concentration, although a few functions, consider the velocity in the compression zone, which 

deviates with Kynch's assumption, and will be discussed later.  

The main difference in the continuous settling process as compared to batch settling, is the bulk 

solids transport caused by hydraulic flows, and in ideal 1-D conditions, these hydraulic flows are 

simplified as the upward and downward bulk flow, which convey the sludge towards the SST 

effluent weir and bottom, respectively. On the basis of considering the hydraulic bulk 

transportation, Yoshioka et al. (1957b) and Hassett (1958) independently developed two widely 

used graphical methods for the limiting flux and  SST operation condition analysis. The former 

one plots gravity flux only, while the later shows both gravity and total flux (total flux =gravity 

flux +bulk flux). The SST area requirement is governed by the local minimum flux point, which 

is therefore termed as the limiting flux, and the recycling solids concentration is estimated from 

mass conservation around the SST bottom. Scott (1968a, b) noted that since both methods were 

based on batch flux data, they might overestimate the limiting flux and recycling concentration, 

because batch settling tests do not included a deep compression zone required for compression.  

Different batch settling materials or sludges, including the carbonate sludge, lime softening 

sludge and activated sludge have been used to verify limiting flux theory, and good agreement 

between observed thickening performance and prediction based on batch flux analytical methods 

were obtained in all cases (Yoshioka et al. 1957b, Hassett 1958, Javaheri 1971). Thereafter, 

Keinath et al.(1977) and Keinath (1985) extended these methods to the state point concept, 

where the state point is the intersection of the recycle flow and overflow lines on the settling flux 

plot. State point analysis is now commonly used to evaluate SST performance over a range of 
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different operating conditions (underloading condition, critical loading condition and 

overloading condition), as well as predicating the vertical concentration profiles.  

Despite its prevalence, the solids flux theory still has two remaining problems: 1) it is an 

experiment observation result more than a theoretical proved conclusion; 2) it can deal with 

steady states, but fails in  dynamically investigating the settling behavior within SSTs. During 

the 1990s, the development of 1-D SST model and mathematic techniques of nonlinear 

hyperbolic PDEs provide the opportunity of further understanding the solids flux theory. 

Chancelier et al. (1997) found that the flux theory can be confirmed and extended in a natural 

way within the context of the nonlinear hyperbolic PDEs, and the flux theory conclusions are 

closely related to the stationary solutions of the 1-D model governing equations. By describing 

the solids flux theory within nonlinear PDEs theory, many defined conceptions as the limiting 

flux, feed layer, sludge blanket height and loading condition can be interpreted by a first-order 

hyperbolic PDE model, hence making the SST dynamic behaviors predictable (Diehl 1995, 1996, 

Bürger and Narvaez 2007, Bürger and Karlsen 2008, Diehl 2008). Obviously, compared with the 

stationary solutions of the flux theory, the 1-D SST model owns the specific advantage in 

dynamic or transient conditions predictions, for example the shock hydraulic loading caused by 

rainfall, or the sludge bulking problem caused by filament growth. This explains why the 

research interests was changed to develop reliable 1-D SST model for more comprehensively 

quantitative investigation of SST design and operation, which will be discussed in the following 

section.   

2.2. Mathematical modeling of SSTs 
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SSTs have been investigated with mathematical models for design and operation optimization 

purposes. Although several 2-D and 3-D SSTs models have been developed, 1-D models are 

mostly used because of their simplicity and lower computational demands. Before discussing 1-

D SST models and their development, it is informative to define the expected capabilities of an 

acceptable model (Tracy 1973). Firstly, the 1-D model should be able to predict both effluent 

and underflow concentrations during transient operating conditions, which corresponds to 

clarification and thickening processes. The second main function is to approximate the 

concentration profile and sludge blanket level during unsteady-state operating condition in order 

to avoid system failure. Moreover, the model should be able to integrate with available 

bioreactor models to provide an overall secondary treatment simulation for system design and 

operation optimization purposes. 

Given the complexity of real system conditions (e.g., viscosity, dispersion, turbulence, rake 

effect, various settling behaviors) and the need to simply the model, several ad hoc assumptions 

are usually introduced to limit application to an ideal suspension (a continuum) and 1-D 

modeling conditions, as follows: 

1. the SST is circular and central-feed with constant section area; 

2. the reaction rates are zero in the SST, and the particle properties (not concentrations) are 

uniform and constant in the SST; 

3. the hydraulic flows are vertically, and horizontally uniform (no density currents or wind 

effects) and the solids concentration are uniform across any horizontal cross-section of 

SSTs; 
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4. the mechanical sludge scraper does not impact the settling process and wall effects are 

negligible. 

Based on these assumptions, Shannon et al. (1963) presented the concept of an ideal 1-D SST, 

and an number of later researchers have advanced these concepts (Bryant 1972b, Stenstrom 

1976a, Bustos et al. 1990b, Bürger et al. 2011). Fig 2.2 shows the schematic overview of an ideal 

SST . In general, SSTs can be divided into three major zones according to their distinct functions: 

clarification zone, thickening zone and feed zone. In the clarification zone, influent flow is 

clarified to produce low turbidity effluent, while the thickening zone provides concentrated 

solids for recycling and disposal. The feed zone is the place where the input sludge is introduced 

and well mixed for initial settling. For 1-D modeling, the hydraulic flow divides and is upward 

flow (Qe) towards the effluent weir and the downward flow (Qu) towards the SST bottom. As can 

be seen, compared with the static sedimentation process in batch tests, the feeding and discharge 

flows in SSTs are continuous. 

 

Fig. 2.2 - Schematic overview of an ideal one-dimensional SST. 
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Instead of the sole gravity settling in batch settling tests, the hydraulic bulk transport caused by 

the upward and downward hydraulic flows can also greatly impact the sludge settling behavior in 

the continuous settling process. Therefore, the combination of the sedimentation knowledge 

learned from batch settling tests and the concept of an ideal SST forms the fundamental theory 

framework of the 1-D SST modeling. The problem then becomes how to mathematically 

describe the continuous settling behavior based on this framework. 

2.3. The mass conservation model  

Generally, the starting point of mathematical modeling work is the physical law (Bürger et al. 

2011). The mostly used one in 1-D SST modeling is the mass conservation law of the solid phase, 

which requires that the substance change per unit time in a finite region equals to the net flux 

into the region pluses the net mass production in the region, and usually the net mass production 

is negligible because of the zero reaction assumption. Using the ideal1-D assumptions, the solids 

concentration is a function of space (z) and time (t).  

The mass conservation law model is also known as the layer model, which was originally 

presented by Bryant (1972b) and Stenstrom (1976a) for thickening process modeling, and 

broadened by Vitasovic (1986a) by adding the layer above the inlet level for effluent flow 

quality prediction. The SST is divided into a fixed number of layers with uniform concentration 

in each layer, and the mass conservation law is imposed around each layer to generate the 

following nonlinear hyperbolic PDE formations (Takács et al. 1991, Diehl and Jeppsson 1998, 

Diehl 2000) by modeling the feed flux as point source: 
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where H1 is the height of the clarification zone, the feed point is located as z=0, H2 is the depth 

of the thickening zone, see Fig 2.2; δ(z) is the Dirac impulse; ve is the effluent flow velocity, vu is 

the downward flow velocity, vf is the feed flow velocity, ϕf is the feed concentration. Compared 

with the batch settling governing equation (eq.(2.1)), the continuous settling PDE framework 

includes two bulk terms (veϕ and vuϕ) to capture the hydraulic transport process. After adding 

suitable initial and boundary conditions, solving eq. (2.2) is a problem with one equation and two 

unknowns. As in the batch settling modeling approach, the constitutive relation (Kynch's 

hindered settling velocity assumption) is again used to provide a unique solution. The validity of 

Kynch's concentration discontinuity theory in predicting sludge blanket level propagation in SST 

has also been demonstrated by solving eq.(2.2) with reliable analytical or numerical techniques 

(Bustos et al. 1990a, Diehl 1996, 2000, Bürger et al. 2003). Because of its success in hindered 

settling modeling, others (Fitch 1983, Font 1988) have added compression effect terms based on 

Kynch's theory. However, this kind of modification encountered several problems that are not 

easy to solve within Kynch's theory (Concha and Bürger 2003), which will be discussed in the 

compression effect modeling section. 
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2.3.1. Settling velocity determination 

The determination of the appropriate settling velocity function is essential in the 1-D SST 

modeling process (Cho et al. 1993). Though the settling velocity is physically a function of the 

particle and fluid properties, including the particle shape, size distribution, fluid and floc density, 

fluid viscosity and the hydrodynamic resistance, most available settling velocity models are still 

empirical with the model parameters determined by experimental curve fitting techniques, such 

as the single batch settling curve fitting method (Cacossa and Vaccari 1994, Vanrolleghem et al. 

1996).  

The two mostly used settling functions are the power law function (eq.(2.3)) and exponential law 

function (eq.(2.4)): 

n
sv kφ−=                                                                                                                                     (2.3) 

exp( )sv k nφ= −                                                                                                                            (2.4)                                                      

The power function was first suggested by Yoshioka et al. (1957b). However, the accuracy of the 

power law model deteriorates in dilute sludge region (below 2kgm-3 (Pitman 1980) or below 

3kgm-3 (Riddell et al. 1983)) and becomes infinite at zero concentration. This problem can be 

solved by two alternative approaches: artificially imposing a maximum velocity value or using 

another velocity function for the dilute concentration zone (De Clercq et al. 2008).    

The exponential model is also known as the Vesilind model (Vesilind 1968b) that distinct from 

the power one in both the dilute and condensed zone prediction. It provides a reasonable 

maximum when the concentration approaches zero, and lower velocity in the high sludge 
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concentration range compared with the power law model predictions. Smollen and Ekama (1984) 

also showed that the exponential model gave a better fit with the experimental data than the 

power model. Although the exponential model has special advantages over the power model, it is 

still fully empirical and the parameter values depend upon the fitting experimental data.  

From a practical standpoint, Takács et al. (1991) questioned the validity of the exponential 

model in the dilute zone believing that the dilute zone settling velocity be impacted by the 

flocculation process and non-settleable solids fraction. They modified the exponential model to 

eq.(2.5), now known as the Takács model, to account for these factors: 

( )( )( )min1 min 2 ( )( )
0,max 0max 0,min , exp exp nn

sv v v φ φφ φ − −− −= −                                                             (2.5) 

The term (v0exp( -n
1

 (ϕ-ϕ
min

))) reflects the settling velocity of the large, well flocculated particles, 

while the term  (v0exp( -n
2

 (ϕ-ϕ
min

))) is the velocity correction factor of the smaller slowly settling 

particles. ϕmin indicates the non-settable solids fraction. The Takács and Vesilind models only 

differ in the dilute sludge region, which impacts the predicted effluent TSS concentration.  

There have also been efforts to derive the settling velocity from fundamental analyses of mass 

and force acting in the two phase flow (Cho et al. 1993, Cacossa and Vaccari 1994, Kinnear 

2002). Starting from the Carman-Kozeny equation which is accepted universally for porous 

media modeling, Cho et al. (1993) deduced the settling velocity function by adding the sludge 

viscosity term. Eq. (2.6) uses the viscosity as an exponential function, eq.(2.7) is valid when the 

sludge volume fraction is negligible of the total volumetric concentration (low sludge 

concentration) and eq.(2.8) is the situation where the viscosity term is constant.  
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( ) ( )4
1 21 exp /sv k n nφ φ φ= − −                                                                                                      (2.6)                                                      

exp( ) /sv k nφ φ= −                                                                                                                       (2.7)                                                           

( )41 /sv k nφ φ= −                                                                                                                         (2.8) 

Comparison of data and models showed that this model can perform well without causing the 

infinite problem in dilute range, and also can be easily used within the limit flux theory (Cho et 

al. 1993). 

To complement the velocity model for compression zone calculation, Cacossa and Vaccari (1994) 

originally developed the model in terms of the total suspended solids concentration, the dynamic 

pressure gradient and the gradient corresponding to the compressive yield stress as shown in eq. 

(2.9). 

( )( )0 1 / /sv v z Kφ= − ∂ ∂                                                                                                               (2.9) 

where K is defined as the compressibility function, which describes the sludge compressive 

properties. As opposed to the Kynch assumption based models, the settling velocity in this model 

is defined as a function of the solids concentration, as well as gradient in solids concentration. 

The batch setting verification results showed that it may over predict the solid-liquid interface 

level in the compression region, and a more elaborate expression of the compressibility function 

(K) is required for more accurate prediction (Cacossa and Vaccari 1994). Kinnear (2002) 

followed this suggestion, and provided an improved velocity model by using more fundamental 

properties prameters, such as the solids volumetric concentration (ε), intrinsic permeability (k), 
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floc and liquid density (ρf and ρl), specific surface area of the primary particle (S0), sludge 

viscosity (μ), gel concentration (εg) and effective compression stress (P0). The model was 

developed from the mass and momentum continuity equations of two phase flow. The 

hydrodynamic interaction coefficient was related to the intrinsic permeability, which was 

calculated by the Carman-Kozeny equation. The effective solids stress was determined by 

Buscall and White's (1987) empirical function, thus making the final settling velocity 

formulation expressed as: 
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In contrast to the empirical models, eq. (2.10) and (2.11) incorporate the basic physical factors 

that may determine the sludge settleability, and their derivation does not rely on Kynch's 

assumption. Again, the settling velocity is function of both the solids concentration and 

concentration gradient as in the Cacossa-Vaccari model. 

Most velocity functions discussed so far, and especially the power and exponential models, are 

only appropriate for hindered/compression region modeling, and extending these functions into 

the flocculation region can produce unrealistic results (Kinnear 2002). Incorporating a more 

complex flocculation model, as in the Takács model, by introducing a term to reflect the settling 

velocity of large, well-flocculated particles, or simply setting a constant settling velocity that can 

be measured during pilot testing, which is the same strategy as used in the power model to limit 

the overprediciton of the settling velocity in the dilute region.  
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Table 2.1 - Overview and comments of gravity settling velocity functions. 

Model  Type Model Formula Source Comments 

Polynomial  
models 

2 3 4

1 2 3 4
(1 )v k n n n ns φ φ φ φ= + + + +  Shannon et al.  (1963 )  empirical model; 

 not often used in practical 
engineering application; 

 provides unreliable approximation in 
low concentration range 

 requires more parameters than other 
models; 

( )1v ks φ φ= −  Scott  (1966 ) 

( )2 3

1 2 3 4 5
v n n n n n
s

φ φ φ= + + +  Stenstrom  (1976) 

Power models 

( )4.65
1v k ns φ= −  Richardson and Zaki (1954 ) 

 empirical model; 
 often used in practical engineering 

application; 
 overestimate settling velocity when 

concentration  is small; 
 singular when concentration 

approaches to 0; 
 

nv ks φ−=  Yoshioka et. al  (1957) 

( ) 2
1

1
n

v k ns φ φ= −  
Scott  (1966) , Cho et al. 
(1993) 

( ) ( )2 21 11 2
1 ; 1n nv k n v k n ks sφ φ= − = − +  Vaerenbergh  (1980) 

Exponential models 

( ) ( )1 2
21 expv k n ns φ φ= − −  Steinour  (1944) 

 empirical model; 
 often used in practical engineering 

application; 
 provide reasonable velocity 

estimation in all concentration 
domains; 

 includes other effects, such as 
flocculation settling , non-settleable 
particle fraction; 

( ) ( )( )1 2 3
21 exp / 1v k n n ns φ φ φ= − − −  Vand  (1948) 

exp( )v k ns φ= −  Vesilind  (1968) 

( )min min1 20 0
( ) ( )max 0, min , exp exp,max

n nv v vs
φ φ φ φ − − − − = −    

 Takács et al.  (1991) 

( ) ( ) ( )2
1 3exp / ; 1 exp /nv k n v k n ns sφ φ φ φ φ= − = − −  Cho et al. (1993) 

Compression effect 
including models 

( ) 1 2

1 2

(2 / )( /( )
(1 /

)

( /( )
)

)
g gv n n i

v v z Ks m
fm g

v n n ifm g g

φ φ φ φ φ

φ φ φ
φ

= − − <
= − ∂ ∂

− ≥


=
 Cacossa and Vaccari (1994)  semi-empirical model derived from 

mass and momentum conservation 
law; 

 often used in compression settling 
behavior studies; 

 most parameters have physical 
meaning, and can be estimated by 
experiment measurements instead of 
curve fit; 

( ) ( ) ( )'
; 1hs hs

s ev if v ifg vs gzg
vs

ρ σ ε εε ε ε ε ε ε
ε ρ

 ∂ < − ≥
 ∆ ∂ 

= =  Bürger et al. (2000) 

( ) ( ) ( )( )'3
3

2 2
0 0

(1 )(1 )
; (1 )

5 5

l s el s
g zg

v if v ifs g s gS S ε

ε ρ ρ σ ε ερ ρ ε
ε ε ε ε ε

εµ µ

− + ∂ − ∂− −
= < = − ≥  Kinnear  (2002) 
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Table 2.1 summarizes the structure of various settling velocity functions, and their proper 

modeling domains. To estimate the performance of these velocity functions, we provided a 

typical function calibration example, based on the full-scale data collected by Grieves and 

Stenstrom (1976a) and Levenberg-Marquardt algorithm (More 1978b). Fig 2.3 shows the data 

fitting result. It is noticeable that almost all velocity models can fit the data in medium 

concentration range very well, but they deviate significantly in both dilute and high 

concentration conditions, which also has been demonstrated in  previous studies.  

 

Fig.2.3 - The fit of various settling velocity functions to the experiment data. 
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2.3.2. The Stenstrom flux constraint analysis 

The well-known flux constraint was originally suggested by Stenstrom (1976a) to limit the mass 

flux for solids overloading simulation.  Based on the assumption that the settling mass flux into 

the lower layer can never exceed the flux the layer is capable to transmit, the flux constraint can 

be expressed as eq.(2.12).  

( )1 2 , , 1 1min ,S
i s i i s i iF v vφ φ+ + +=                                                                                                         (2.12) 

where S is the Stenstrom numerical flux, i denotes the layer i. Although this flux limiting 

constraint is empirical, it is "consistent", which means the numerical flux should be a function 

related to adjacent layers instead of the local single layer (Bürger et al. 2011). By implementing 

this numerical flux constraint, Stenstrom’s model was capable of capturing the sludge blanket 

change under various operating conditions, thus making the SST failure predictable. Bürger et al. 

(2011) showed that this constraint is indeed a specific numerical flux for unique solution 

calculation rather than a physically existing one, and noted it as the Stenstrom flux. However, 

this flux constraint is not nostrum, and will cause unphysical solution oscillations under several 

conditions such as in the negative concentration gradient case. A site specific threshold 

concentration was recommended to be set below which the constraint is inactive (Vitasovic 

1986a, Takács et al. 1991). The best well-known work following the Stenstrom flux constraint is 

the Takács' 10-layer model (Takács et al. 1991), which has been mostly used in WWTP 

modeling. 

Watts et al. (1996) tested the Takács model in various discretization levels (10, 20,50 layers) 

without changing the model parameters, and found that only 10-layer provided good agreement 
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with Pflanz's data (Pflanz 1969). Increasing the number of layer will considerably deteriorate the 

model performance, which is contradictory to the fundamental principle that the finer 

discretization should provide more accurate predictions. Further investigation of the Stenstrom 

flux constraint implied that the function of the flux constraint equals to a layer thickness 

dependent dispersion term, and its function disappears as the layer thickness approaches to zero, 

which explains the Takács model deterioration with the increasing discretization level (Watts et 

al. 1996). To correct this problem, Watts et al. (1996) added a dispersion term, hence improving 

its fit to the Pflanz in finer discretization condition. 

Despite analyzing the Stenstrom flux constraint physically, the studies from the standpoint of 

numerical techniques demonstrated that the inclusion of the Stenstrom flux constraint is correct 

in the way of preventing the creation of shock wave and any inverse gradients in the 

concentration profile (Jeppsson and Diehl 1996, De Clercq 2006, Bürger et al. 2011, Bürger et al. 

2012, Bürger et al. 2013). However, the model integrated with the Stenstrom flux constraint, 

such as the Takács model, can only fit the experiment data well in 10-layer condition, which is 

insufficient to resolve the detailed behavior of SSTs, and at least 30-layer is recommended for 

reliable predictions (Jeppsson and Diehl 1996). To uniquely determine the reliable solution, both 

the 'consistent' principle and entropy condition which analogous to the second law of 

thermodynamic should be fulfilled (Bürger et al. 2011). The Stenstrom flux constraint satisfies 

the 'consistent' principle, but not always takes the entropy condition into account, which in return 

results unphysical solutions (oscillation) (Bürger et al. 2011, Bürger et al. 2012, Bürger et al. 

2013). Bürger et al. (2013) suggested the approach of upgrading the Stenstrom flux constraint to 

the reliable Godunov flux, since they have similar mathematical expressions.  As a conclusion, 

although the application of the Stenstrom flux constraint in 1-D SST modeling has achieved 
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some degree of success, more fundamental numerical techniques are still encouraged to being 

introduced for entire reliable solution solving (for detailed information, see the numerical 

technique section). 

2.3.3. The convection-dispersion model development 

The success of the Kynch's theory in settling behavior analysis provided a firm foundation for 

the development of 1-D SST modeling studies. The mathematical discontinuities predicted by 

the Kynch theory, however, cannot exist in a practical system (Fitch 1993), which has been 

confirmed by various experiment cases with continuous concentration profiles (Pflanz 1969, 

Anderson 1981, Bergstrom et al. 1992, Kinnear 2002). A parabolic second-order PDE can 

provide a continuous or smooth concentration profile, and inclusion of a eddy turbulent diffusion 

term in the first-order hyperbolic PDE (eq.(2.2)) converts the governing PDE to a parabolic one 

(Anderson 1981, Vitasovic 1986a). This approach was implemented by Hamilton et al. (1992) 

and modified by Lee et al. (1999) with constant dispersion coefficients as eq. (2.13) shows, and 

this model is capable of providing non-uniform, monotonically increasing concentration profiles 

with depth as expected.  

( ) ( )
2

2 f f

F
D v z

t z z
φφ φ φ δ

∂∂ ∂
+ − =

∂ ∂ ∂
                                                                                              (2.13) 

where D is the dispersion coefficient as a constant for the overall SST domain. Grijspeerdt et al. 

(1995) compared several established 1-D SST models and found Hamilton's and Takács's models 

are more reliable for fitting data because of their dispersion characteristics, even though the 

Takács model does not include a physical dispersion term. This can be explained by Watts' 

conclusion that in low discretization level, the function of the Stenstrom flux constraint equals to 
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a layer thickness dependent dispersion term (Watts et al. 1996). Takács (2008) further 

demonstrated that in "rough" discretization condition, such as 10-layer, imposing the Stenstrom 

flux constraint introduces significant numerical dispassion that effective in smooth concentration 

profile developing. Nevertheless, the drawback of this smooth profile finding approach is the 

lack of control over the dispersion effect to best model calibration of various operating 

conditions (Plósz et al. 2011). A finer discretization, when the layer thickness approaches to zero, 

can seriously deteriorate the Takács model performance, since the dispersion function vanishes; 

discretization of 10-layers for the Takács generally approximates the dispersion expected in an 

SST.  

To correct this problem, a modification of the concentration dependent dispersion coefficient is 

necessary, and one approach is to incorporate a dispersion coefficient that is a function of the 

hydrodynamic dispersion phenomenon caused by the turbulent currents. Even though the 

dispersion term is analogous with the Fick’s constitutive relation for particle diffusion, it 

represents the hydrodynamic dispersion phenomenon caused by the turbulence rather than the 

thermal diffusion process (Anderson 1981, Bürger et al. 2011). Watts et al. (1996) determined 

the dispersion coefficient as a function of the feed flow velocity which creates mixing in the inlet 

region, where most energy dissipation and turbulence occur. The dispersion term was also 

expected to approximate the processes that affect the sludge settling other than the bulk 

convection and gravity settling (De Clercq et al. 2003). De Clercq et al. (2003) proposed that 

since the flow conditions may differ in the clarification zone and the thickening zone, the 

dispersion term should not be only governed by the feed hydraulic flow, but both the upward and 

downward bulk flow: 
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( )
( )

( )
( )

1 11

2 22

e

f
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f

Q t
Q t

Q t
Q t

D D e Clarification Zone

D D e Thickening Zone

α

β

=

=

                                                                                         (2.14) 

where D11, D22, α and β are dispersion parameters that need to be calibrated.  

Plósz et al. (2007) investigated the factors that degrade 1-D SST model performance by 

incorporating the dispersion in terms for both the effluent solids concentration and the sludge 

blanket height, and found that though the dispersion model can account for the SST 

hydrodynamic flow effect on the thickening process, the clarification efficiency is limited by 

flow boundary conditions. The model was optimized to enhance clarification prediction by 

introducing a hydraulic dispersion term as a function of the upward flow velocity-dependent 

term. In most recent studies, the mixing currents were assumed to occur in certain locations, such 

as the SST inlet region, and the dispersion coefficient forms were highly dependent on location. 

For example, the dispersion term in the SST inlet region is a function of the hydraulic feed flow 

velocity (Bürger et al. 2011, Bürger et al. 2012, Bürger et al. 2013), and influenced by factors in 

other regions of the SST. The recent global parameter sensitivity analysis of the whole WWTP 

modeling shows that selecting of 1-D SST model, convection dominant (first-order) or 

convection-dispersion (second-order) models, not only impacts the SST behavior prediction, but 

also greatly influences the parameter selection and the calibration procedure of the WWTP 

models (Ramin et al. 2014b).   

Table 2.2 summarizes of currently available hydraulic dispersion functions. Despite the 

convection and dispersion effect modeling, the mass conservation law SST model can also 

involve some other impact factors, for example the current density can be accounted for by 
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adjusting the inlet height according to the feed sludge concentration (Dupont and Dahl 1995), but 

the maximum of the inlet height should be restricted to 53% of the SST depth (Plósz et al. 2007). 

For short-circuit simulation, a short-circuit factor Ω was introduced, which is a dilution factor 

that can be found by a simple mass balance over the SST, when the flow and concentration of 

influent and return sludge flow are measured, as well as the concentration at the bottom of the 

SST (Dupont and Dahl 1995).  

2.4. The mass and momentum conservation law model 

As can be seen from the above discussion, the cornerstone of the mass continuity model is 

Kynch's assumption that the settling velocity of a particle depends only on the local solids 

concentration. Its validly, however, can only be proved in the zone settling region (Dixon 1977a), 

even Kynch himself admitted in his celebrated paper that "until the details of the forces on the 

particles can be specified, it is impossible to state when our hypothesis is valid, even for a 

dispersion of identical particles." (Kynch 1952). This uncertainty gives rise to some important 

controversies, such as the determination of SST capacity, and compression settling behavior 

modeling.  

By taking into account of force action during thickening process, Dixon (1977a, b, 1978) showed 

that there is no flux limitation associated with the hindered zone because of the absence of 

necessary retarding forces, which contradicts the previous conclusion that the hindered settling 

zone determines the SST thickening capacity as the increase of the compression zone height can 

compact the sludge by squeezing water out of the sludge structure which then can accelerate the 

sludge conveyance in this zone (Coe and Clevenger 1916, Kynch 1952, Fitch 1962). For most 

real settling materials, in particular, these well flocculated slurries such as activated sludge, they 
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form compressible sediment layers which are characterized by curved iso-concentration lines 

rather than the straight characteristics predicted by the Kynch model (Bürger 2000, De Clercq et 

al. 2008). Therefore, the mass continuity model based on the Kynch assumption is not sufficient 

for various type sedimentation problems, and the investigation of the momentum conservation 

law model with a detailed force balance is necessary to provide a more complete understanding 

of continuous settling behavior, especially in the compression zone where the Kynch's 

assumption may not apply.  

Generally, given the complexity of the two-phase flow problem, two points of view have been 

developed for problem analysis and governing equation deviation (Zuber 1964):  

1). Internal flow approach: the flow of the fluidized system is considered as a flow through a 

porous medium with limited permeability, and  solid-liquid relative movement could be modeled 

by Darcy's law through porous media (Shirato et al. 1970, Kos 1977, Cho et al. 1993, Fitch 1993, 

Diplas and Papanicolaou 1997, Holdich and Butt 1997, Zheng and Bagley 1998, Karl and Wells 

1999).  

2). External flow approach: the hydraulic flow is considered as the external flow around a 

particle located in the suspension. The well-known Stokes settling velocity is modified for 

hindered settling velocity calculation, and the compression process is characterized by semi-

empirical equations stemmed from the rheology studies  (Zuber 1964, Buscall and White 1987, 

Auzerais et al. 1988, Auzerais et al. 1990, Buscall 1990, Bürger 2000, Bürger et al. 2000a, 

Kinnear 2002, Usher and Scales 2005, De Clercq 2006, Usher et al. 2006, Grassia et al. 2011). 
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Table 2.2 - Overview and comments of different hydraulic dispersion functions. 

* Numerical dispersion or dissipation introduced by the numerical methods is discussed separately.  

 

 

Hydraulic Dispersion Function* 

Model Type Model Formula Source  Comments 

Fickian 
dispersion term 

2constant (13 m /day)( , )D z t =  Hamilton et al. (1992)  cannot properly characterize the 
dispersion effect caused by the 
hydraulic turbulence but not the 
molecular diffusion; 

 greatly decrease the complexity of 
numerically difficulty in solving 
the governing PDE; 

( ) ( )constant ; constant1 2, ,D Dclarification zone t thickening zone t= =  Lee et al.  (1999) 

Function of 
hydraulic bulk 

flow rate 

( ) ( )1
(1 exp ), 1 max 1 1

, 1 max 1

C C Ci criti
D D C C C if C C Ci i i i crit i i crit
D D if C C Ci i i i crit

β
β

− −+
= + − >+ + +

= ≤+ +





 Watts et al. (1996) 
 empirical model; 
 properly indicate the hydraulic 

dispersion effect caused by the 
hydraulic bulk flow; 

 parameters determination depends 
on concentration profile fit; 

 often imposed around the SST 
inlet zone to simulate energy 
dispassion; 

( )

( )

exp ;11,

exp ;22,

Q Qe fD Dclarification zone t

Q Qu fD Dclarification zone t

α

β

=

=

 De Clercq et al. (2003) 

( )
;,0 ,

, 0 , ,

D D if v vovC C ov C

D D v v if v vov ovC C ov C ov Cγ

= <

= + − ≥
 Plósz et al. (2007) 
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2.4.1. Force action analysis and model development 

The fundamental basis of a momentum based model is the identification of the specific forces 

acting on the particles, but it is also the most difficult step. Benefiting from the last half century's 

developments in fluid dynamics and rheology analysis techniques, the detailed sedimentation 

information, such as the fundamental force analysis, particle interaction in different density 

ranges now is detectable, and provide new 1-D SST modeling approaches. 

As discussed above, the batch settling process can be described as four various concentration 

zones within the a settling suspension: the clear supernatant zone, the hindered settling zone, the 

transient zone, as well as the compression zone (Coe and Clevenger 1916). The totally different 

settling behaviors within these zones necessitate the imposition of force action analysis 

separately rather than investigating them as a whole. The force acting analysis for the 

supernatant zone, compared with the other three, is much more straightforward. The gravity, the 

buoyancy, and the drag forces are the three dominant forces, and their calculation follows the 

classical approaches.  A stochastic Brownian force also exists, but it is negligible due to the large 

Peclet number.  

Before introducing the hindered settling analysis, it is useful to review the definition of hindered 

settling: when hindered settling occurs, the contacting particles tend to settle as a zone or 

"blanket", maintaining the same relative position with respect to each other (Metcalf&Eddy 

2002). The two distinctive characterizations of hindered settling are the absence of direct 

particle-particle interaction and uniform concentration profile, such as the uniform initial 

concentration zone in batch settling. Since there is no direct particle-particle interaction and the 

settling particles remain relatively stationary to the neighboring ones, only the equilibrium 
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between drag and gravity forces limits settling velocity (Dixon 1977a). The increased 

concentration in the hindered settling region creates a hydrodynamic interaction between 

particles, and settling velocity no longer conforms to Stokes settling behavior as it did in the 

supernatant clear zone (Buscall and White 1987, Buscall 1990, Landman and White 1992, de 

Kretser et al. 2003).  This hydrodynamic interaction mainly impacts the hydrodynamic drag 

coefficient, which can be multiplied  by a hindered settling factor, R(ϕ), to quantify the inter-

phase drag effect (for detailed information, see the drag coefficient determination section).    

Few studies refer to the transient zone, since it is not always observable in batch or continuous 

settling tests (Coe and Clevenger 1916, Dixon 1977a). The existence of this region is usually 

viewed as a smooth transition between the zone and compression settling regions, and the 

settling behavior in this region is usually physically unstable: the settling plots frequently 

provide inconsistent results (Shirato et al. 1970). In most conditions, the transient zone is 

characterized by a gradually increasing concentration gradient, and is described by Fitch's 

concentration gradient study (Fitch 1993). As Fitch stated, a positive concentration gradient leads 

to a reduced settling velocity due to the dominant solids pressure gradient. Though Kynch's 

theory succeeds in predicting a concentration gradient, the settling velocity within a region of 

large concentration gradient is determined not as the hindered settling velocity, but a transition 

velocity, caused by retarding phenomenon associated with the concentration gradient. When the 

solids pressure gradient is positive, the suspension is mathematically "in compression", and four 

kinds of solids compression force can be physically identified: elastic, static, osmotic and 

dynamic (Fitch 1993):  
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Elastic compression force is caused by the random motion and collisions of particles (thermal 

diffusion), which can be modeling by adding a diffusion term (Dδϕ/δz). However, even though 

existence of this force can be proven, its magnitude compared with the gravitational force and 

hydrodynamic drag force is much smaller, thereby making it insignificant in retarding the 

settling process. 

Static compression force is also known as the compressive yield stress and arises when a 

continuous network is formed within strong inter-particle interactions (de Kretser et al. 2003). 

This stress can be transmitted directly throughout the network, and the settling process, if this 

stress occurs, will be irreversibly retarded (Buscall 1990). However, the static compression force 

only occurs above the gel point (the point where interparticle force results in a self supported 

network), while the transient zone concentration is expected at concentrations no greater than the 

gel point. Hence, the retarding phenomenon within the transient zone cannot be completely 

defined by static compression force theory.  

Osmotic compression force occurs when the concentration spatially varies, such as a 

monotonically varying concentration, and the suspension is in a non-equilibrium state (Auzerais 

et al. 1988). The origin of this force can be illustrated as the force both particles and fluid 

molecules experience in proportion to the gradients of their respective chemical potentials 

(Batchelor 1976). The colloidal solids within the well-flocculated suspension, however, only 

constitute a relatively small fraction of the total weight, hence their contributed osmotic press 

could be indeed insufficient to retard the settling behavior (Fitch 1993).  

Dynamic compression force is characterized as the force that causes the particle deceleration as it 

approaches the discontinuity or settles within a region having a concentration gradient, such as 
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the transient zone (Dixon 1977a, b, 1978, 1981). It originates from the excess local pressure 

required to squeeze fluid out interstitial floc areas to make them more concentrated (Fitch 1993). 

The mathematical formulation of this force still has not been well defined, and the difficulty of 

including it in the governing equation prevents the further investigation of its impact to the 

settling process. The formation of the transient settling zone is the result of one or more retarding 

forces, and further studies are still needed to indentify the mechanism of their contribution to the 

retardation process.  

The study of compression effects is significant for applications as diverse as filtration and 

centrifugation of suspensions in the mineral industries, or sludge dewatering in wastewater 

treatment process to reduce the final disposed sludge volume (de Kretser et al. 2003). Dixon 

(1977a) stressed the importance of compression effect as having a critical role in sludge settling 

retardation which he associated with determining SST solids handling capacity. The existence of 

compression zones has been confirmed by many studies, and the terminology  "compression 

settling " can be interpreted from different perspectives. For instance, Fitch (1993) stated that the 

suspension is in a mathematical compression condition when the pressure gradient term is 

positive. In more recent studies, from the view of " compressive rheology", the compression 

settling zone is defined as the zone with particle concentration over the gel point, and also 

characterized by the strong compressive yield stress transmitted in this zone (Buscall et al. 1987, 

Buscall and White 1987, Buscall 1990, de Kretser et al. 2003, Usher and Scales 2005, Usher et al. 

2006).  

The study of compression effects date back to the 1920s when Terzaghi (1925) originally 

developed the consolidation theory in the field of solid mechanics. This theory was then applied 
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by Behn (1957) for the settling of compressive slurries because of its mathematical analogy 

independent of magnitude of the stress gradients. The compression behavior of flocculated 

particles (Kaolinite) were firstly addressed by Michaels and Bolger (1962b), and the 

compression settling was assumed to be governed by gravitational force (gravity and buoyancy), 

hydrodynamic drag force and the stresses transmitted throughout the condensed  network.  

Shirato et al. (1970) stated that the compression-permeability (C-P) cell method (Ruth 1946, 

Grace 1953, Tiller and Shirato 1964) widely used for internal flow analysis, can lead to 

substantial errors from wall effects in batch settling tests, and used zinc oxide and ferric oxide 

floc data to determine sediment compressibility and permeability. The numerical solutions of 

higher concentration conditions were solved, and showed a favorable agreement with 

experimental results (Shirato et al. 1970). For shock (concentration discontinuity) investigation 

purposes, Auzerais et al. (1988, 1990) started their work with a comprehensive analysis of all 

forces active in both liquid and solid phases, including the gravitational force, inertial force, 

viscous, and interparticle stresses.  

Most of the investigators discussed above emphasized the critical role that compressive pressure 

plays in compression settling. The origin of this stress and how to quantify it to determine the 

sediment compressibility still remain unclear. In the view of compression rheology, for 

sedimentation at high concentrations, direct particle interaction allows energy to be stored 

elastically within the particle network. The accumulation of these solids close to the cylinder 

bottom causes a concentration gradient, and adding the compression stress arising from the 

accumulated, unbuoyed weight of the particles to the force balance, accounts for this 

phenomenon (Buscall and White 1987, Buscall 1990). For colloidally-stable suspension or a 

well-flocculated suspension below the gel point, this stress is only the osmotic pressure, while 
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for concentrations greater than the gel point, the stress is elastic, which is characterized as the 

physically measurable network strength: the compressive yield stress  (Buscall et al. 1987, 

Buscall and White 1987, Buscall 1990, de Kretser et al. 2003).  

Meanwhile, several parallel theories starting from geotechnical approaches (Terzaghi and Peck 

1948, Bürger et al. 1999, Bürger et al. 2000a, Garrido et al. 2000, Bürger et al. 2001) and 

filtration research (Tiller and Shirato 1964, Tiller and Yeh 1987, Lee et al. 2000) also made 

important contributions to the understanding of compression settling behavior using the effective 

solids stress (σ) and the solids pressure (ps) to quantify the sediment compressibility. However, 

compared with the compression rheology approach of defining the compressive yield stress as an 

intrinsic 'material property', both the effective solids stress and pressure, in most cases, are 

defined as volumetric concentration dependent functions, thereby making them numerically 

equivalent to the compressive yield stress. Except for the significant conceptual difference, these 

compressibility quantifying approaches have the a similar rheological basis, and the relationship 

between volumetric concentration and the compressive stress (the effective solids stress, the 

solids stress and compressive yield stress) need to be defined for parameter estimation (de 

Kretser et al. 2003).  

As a conclusion, with a comprehensive force action analysis of various settling zones, the five 

forces (gravity, buoyancy, liquid pressure, hydrodynamic drag force, and compressive yield 

stress)  acting on a floc-phase control volume in 1-D condition can be explicitly shown in Fig 2.4 

with proper force directions. The gravity and buoyancy forces can be expressed as a net 

gravitational force and the hydrodynamic drag force originates from particle-liquid relative 

motivation. The osmotic pressure arises from the spatial concentration variation while the 
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compressive yield stress only exists above the gel point where a self-supported network is 

formed. Therefore, a typical batch settling process can be modeled using the following four 

governing equations: liquid and solid continuity equations [eq.(2.15) and eq.(2.16)], liquid and 

solid momentum continuity equation [eq.(2.17) and eq.(2.18)]: 

Liquid continuity equation 

( )( )1(1 ) 0lv
t z

εε ∂ −∂ −
+ =

∂ ∂
                                                                                                     (2.15) 

Solid continuity equation 

( )( ) 0sv
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∂ ∂
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Liquid momentum equation 
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Solid momentum equation 

( )

( )

(1 )

(1 )

s s
s s s s l s g

ys s
s s s s l s g

v v pv g v v
z z z

pv v pv g v v
z z z z

ερ ερ ερ ε γ ε ε ε

ερ ερ ερ ε γ ε ε ε

∂ ∂ ∂
+ = − + − − − <

∂ ∂ ∂
∂∂ ∂ ∂

+ = − + − − − − >
∂ ∂ ∂ ∂

                      (2.18) 

where ε is the solids volumetric friction; ρl and ρs are the liquid and solid density; vl and vs are the 

liquid and solid velocity; g is the gravity acceleration; γ is the hydrodynamic drag coefficient; p 

is the fluid static pressure; py is the compressive yield stress;   
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Fig.2.4 - Force acting analysis of ideal floc structure. 

The inertial term is always thought to be negligible, since it is many orders of magnitude less 

than the other terms (Auzerais et al. 1988, Karl and Wells 1999, Bürger 2000, Kinnear 2002). 

Hence, the four governing equations can be simplified as the following equation: 

( )( ) ( )1 1 0y
s l

p
g

zt z
ε ε ε ε ρ ρ ε γ

  ∂  ∂ ∂
+ − − + − =    ∂∂ ∂                                                              (2.19)    

where py=0 if ε<εg, and py>0 if ε>εg.  According to Dixon et al. (1976), the inertial term cannot 

always be ignored in sedimentation analysis due to its great significance in the interface between 

suspension and sedimentation where rapid velocity occurs. Fitch (1993) further stated that in the 

concentration gradient-occurring region, for example a transition settling region, various forces, 
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including the inertial force, together with the dynamic pressure, osmotic pressure, and static 

pressure will be present, and if their resultant is negative, the inertial model is applicable due to 

the velocity augmentation of the inertial force. Therefore, compared with the simplification 

model (eq.(2.19)), the original model (eq. (2.15), (2.16), (2.17), (2.18)) is more capable of 

describing an interface discontinuity, which is especially important for  the sludge blanket level 

estimation in 1-D SST model. Obviously, additional proper constitutive functions are needed for 

the hydrodynamic drag coefficient and the compressive yield stress determination to make the 

model solvable.  

2.4.2. Hydrodynamic drag coefficient estimation  

Accurate calculation of the hydrodynamic drag force is especially important to describe hindered 

settling, since it is the only retarding force that can balance the positive gravitational force 

(Dixon 1977a).  At sufficiently low Reynolds number, the hydrodynamic drag force is 

proportional to the liquid-solid relative velocity, and can be expressed as eq. (2.20): 

( )d l sF v vγ= −                                                                                                                            (2.20) 

Notice that vl and vs are the solutions of eq. (2.17) and eq.(2.18). Therefore, calculating the 

hydrodynamic drag force is equivalent to determining the hydrodynamic drag coefficient. 

Although various methods and constitutive functions have been developed for the drag 

coefficient estimation, most of them can be classified in three categories: the hindered settling 

factor approach (Richardson and Zaki 1954, Michaels and Bolger 1962b, a, Batchelo.Gk 1972, 

Batchelor 1976, Dixon et al. 1976, Buscall and White 1987, Auzerais et al. 1990, Buscall 1990, 

Landman and White 1992, Chen et al. 1996, de Kretser et al. 2003, Usher and Scales 2005, 
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Usher et al. 2006), the Darcy's Law approach (Steinour 1944, Javaheri and Dick 1969, Davies et 

al. 1976, Cho et al. 1993, Islam and Karamisheva 1998, Zheng and Bagley 1998, Karl and Wells 

1999, Kinnear 2002) and the Kynch batch flux density approach (Bürger 2000, Bürger et al. 

2000a, Bürger et al. 2005, De Clercq et al. 2008, Bürger et al. 2011). 

At a finite dilution with unbounded fluid, the hydrodynamic drag coefficient is the Stokes drag 

coefficient (λst); for instance, 6π for spheres, and the particle motion is balanced by the 

hydrodynamic drag and gravitational force. With the increase of solids concentration in hindered 

settling region, the indirect interaction (hydrodynamic interaction) between particles leads to a 

deviation of the Stokes settling behavior (de Kretser et al. 2003). In the hindered settling factor 

approach, a volumetric friction-dependent hindered settling factor, r(ε), is introduced to account 

for this deviation, and the hydrodynamic drag as follows: 

( )
( ) ( )
1

st
d s l

p

r
F v v

V
λ ε ε

ε
= −

−
                                                                                                              (2.21) 

where ηs is the liquid viscosity, Vp is the particle volume. In the infinite dilution condition, r(ε) 

approaches to zero to reflect the fact that the single particle sedimentation is unaffected by the 

neighboring particles. The maximum close packed concentration limits ε to less than 1,  

preventing r(ε) from becoming infinite (de Kretser et al. 2003).  Batchelor  (1972) defined r(ε) as 

a linear function of ε, while Buscall et al. (1982) showed that r(ε) increases exponentially as the 

volumetric friction increases, and established the empirical relation based on experimental data 

curve fitting: 

( ) ( ) 4.51r ε ε −= −                                                                                                                         (2.22) 
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Given the fact that the most real systems are poly-disperse, and r(ε) is invariably linked to the 

quantity λst/Vp , it is more convenient to measure λst r(ε) /Vp as a whole, which is defined as the 

hindered settling function R(ε) (de Kretser et al. 2001, Usher et al. 2001, de Kretser et al. 2003). 

The general formula of R(ε) is shown as follows: 

( ) ( )1 mR wε ε= −                                                                                                                       (2.23) 

( ) ( ) nr

a g bR r r rε ε= − +                                                                                                               (2.24) 

where w, m, ra, rb, rn and rb are empirical fitting parameters. Although R(ε) is termed as the 

hindered settling function, it spans the entire concentration region, including the compression 

settling zone, to quantify the hydrodynamic drag associated with various settling behaviors. The 

experimental methods of characterizing R(ε) specifically depend on the solids concentration: in 

the low to intermediate concentration range, a batch sedimentation test is the only available 

approach, while centrifugation  and filtration techniques can be used over gel point to account for 

the compression effect (de Kretser et al. 2003). 

If the internal flow approach is applied, the flow is regarded as a flow through a porous medium 

with limited permeability, and the upward water experiences more and more resistance with an 

increase of the solids concentration. The friction force experienced by a particle equals to that 

experienced by water, which can be determined by the Darcy's law: 

( )( )d s lF K v vε= −                                                                                                                     (2.25) 

where K(ε) is reciprocal of the hydraulic conductivity as a numerical equivalent of the 

hydrodynamic drag coefficient.  It is a function of volumetric friction, and independent of the 
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flow velocity (Zheng and Bagley 1998). Zheng and Bagley  (1998, 1999) defined an empirical 

function for K(ε) based on the Vesilind equation as follows: 

( ) ( ) ( )1

1

exps f

s

g n
K

k
ρ ρ ε ε

ε
ρ

−
=                                                                                                  (2.26) 

where n1 and k1 are Vesilind equation parameters, which can be determined by experiment data 

curve fitting approach.  Another approach is to associate K(ε) with certain physically meaningful 

variables for more theoretical formula derivation (Karl and Wells 1999, Kinnear 2002): 

( )K
k
µεε =                                                                                                                                 (2.27) 

where μ and k are the liquid viscosity and intrinsic permeability, respectively. The intrinsic 

permeability, k, can be determined by either an empirical approach (eq. (2.28)) (Dixon et al. 

1976, Karl and Wells 1999) or a theoretical formula (eq.(2.29)) known as the Carman-Kozenny 

equation (Lee et al. 1996, Kinnear 2002): 

( ) ( )expk ε α βε=                                                                                                                     (2.28) 

( )
( )

3

22
05 1

k
S

εε
ε

=
−

                                                                                                                   (2.29) 

where α and β are model parameters, S0 is the specific surface area of the primary particle. 

Landman et al. (1988) demonstrated that the hindered settling factor approach and the Darcy's 

law approach only differ in the representation of the drag coefficient, but have a similar, even 

identical rheological basis.  
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The Kynch batch flux density (fbk) refers to the flux density (εvs) used in the mass continuity 

calculation based on Kynch's theory. The relationship between the Kynch batch flux density and 

the resistance coefficient (α(ε)) is defined by Bürger et al. (2000a) as eq.(2.30): 

( ) ( )
( )

22 1s l
bk

g
f

ρ ρ ε ε
α ε

− −
=                                                                                                        (2.30) 

de Kretser et al. (2003) showed that the Kynch batch flux density and the hindered settling factor 

approaches are identical, differing only in nomenclature;  fbk can be related to the hindered 

settling function, R(ε), by follows: 

( ) ( )
( )

21s l
bk

g
f

R
ρ ρ ε ε

ε
− −

=                                                                                                          (2.31) 

Therefore, similar experiment techniques including transient batch sedimentation test, centrifugal 

and filtration techniques can also be used for fbk  and R(ε) determination.  In conclusion, because 

of the similar rheological basis, the hindered settling factor approach, the Darcy's law approach 

and the Kynch batch flux density approach have are equally useful in determining the 

hydrodynamic drag coefficient, and the choice of approach strongly depends on experiment 

techniques and the available data sets. 

2.4.3. Compressive yield stress calculation 

When the suspension concentration exceeds the gel point where the self-supported network is 

formed to resist gravity and compression , the compressive yield stress arises from the unbouyed 

weight of the overlying particles, and is transmitted throughout the sediment to prevent the 

irreversible net framework collapse. Since the compressive yield stress only occurs over the gel 
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point, proper methods are required to determine the gel point value before the compressive yield 

stress calculation.  

As intrinsic properties, both the gel point and compressive yield stress depend implicitly upon 

the particle size, shape, the strength of aggregation, and the number, strength, arrangement of 

inter-particle bonds (Buscall 1990, de Kretser et al. 2003). However, direct determination of the 

gel point still remains a problem because of its difficulty of measurement. For example, when the 

solids concentration at the top of the sludge blanket is at the gel point, the compressive yield 

forces present would raise the average bed solids above the gel point (Tien 2002, de Kretser et al. 

2003). Instead of considering the gel point as intrinsic property,  Channell and Zukoski (1997) 

used the following constitutive function to define the gel point as a model parameter by the 

compressive yield stress curve fitting:  

1
n

y
g

p k ε
ε

  
 = −     

                                                                                                                    (2.32)  

where k and n are parameters. This fitting approach should be applied with caution due to broad 

fit over a range of the gel point values (de Kretser et al. 2003). Since the gel point value could be 

a time-dependent value (Diplas and Papanicolaou 1997, Kinnear 2002, De Clercq 2006, De 

Clercq et al. 2008), De Clercq et al. (2008) determined the gel point as the concentration where 

the concentration gradient becomes less than 200g/l/m, a site specific value, within the sludge 

blanket rather than a certain gel point value. Other more theoretical methods based on the 

sediment equilibrium force balance are also available (Tiller and Khatib 1984, Green 1997), the 

estimated gel point, however, is still lower and more detailed study utilizing both shear and 

compressive techniques is required (de Kretser et al. 2003). 
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In most previous studies, the compressive yield stress is always expressed empirically as a 

function of solids concentration or solids volumetric concentration by using polynomial, power 

or exponential laws (Buscall and White 1987, Auzerais et al. 1988, Auzerais et al. 1990, Buscall 

1990, Font 1991, Bergstrom 1992, Holdich and Butt 1997, Karl and Wells 1999, Bürger 2000, 

Gustavsson and Oppelstrup 2000, Kinnear 2002). However, Zheng and Bagley (1998, 1999) 

suggested that the compressive yield stress is a function of both the solids concentration and the 

concentration change rate as eq. (2.33) shows, which is in accordance with Dixon's hypothesis 

(Dixon 1978).  

1
y

dp k
dt
ε
ε

=                                                                                                                               (2.33) 

where k is the model parameter.  Hence, their compressive yield stress model greatly differs from 

the traditional concentration dependent models in the constant concentration region, such as the 

zone settling region. Because of the absence of a concentration gradient, Zheng and Bagley's 

model predicts zero compressive yield stress in constant concentration zones without making any 

additional assumption, as other models require. De Clercq et al. (2008) stated that the most 

frequently used power or exponential model cannot accurately describe the calculated 

compressive yield stress, especially for batch settling tests at high initial concentration. This 

deviation is attributed to the increasing gradient that exists at higher concentration, which do not 

conform to experiment observations. A logarithmic function with two parameters, α and β, is 

presented to overcome this shortcoming: 

ln g
yp

ε ε β
α

β
− + 

=  
 

                                                                                                               (2.34) 
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Table 2.3 summarizes the mostly used compressive yield stress functions. Polynomial, 

exponential and power models are almost equivalent in compressive yield stress calculation, 

while the logarithmic model is developed to capture the logarithmic behavior of the stress that 

cannot be modeled by the other three. 
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Table 2.3 - Overview and comments of different compressive yield stress function. 

Compressive Yield Stress (effective stress) 

Model Type Model Formula Source Comments 

Polynomial 
model 

2 3a b c de e eφ σ σ σ= + + +  Font  (1991)  empirical model; 
 these models only differ in model 

formula, but almost identical in 
compressive yield stress 
approximation; 

 some introduce the gel concentration 
or the maximum package 
concentration as model parameters; 

 provide a increasing stress gradient 
for higher concentration range; 

Exponential 
model 

( )exp bae
φσ =  Karl and Wells  (1999) 

Power model 

( )( ) ( )1 ; 1
b b

a ae g e gσ φ φ σ φ φ= − = −  
 

 Landman et al.  (1988) 

( )max
baeσ φ φ φ= −  Bergstrom  (1992) 

( )baeσ φ=  Holdich and Butt  (1997) 

Logarithmic 
model ( )( )lne gσ α φ φ β β= − +  De Clercq et al.  (2008) 

 empirical model; 
 developed to capture the logarithmic 

behavior of σe which cannot modeled 
by the exponential or power models; 
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2.5. Numerical technique discussion 

For typical batch sedimentation modeling without considering the dispersion and compression 

effects, the model governing equation can be expressed as eq. (2.1) as a combination of Kynch's 

assumption and the mass conservation law, that can be written as follows: 

( )( )
0bkf

t z
φφ ∂∂

+ =
∂ ∂

                                                                                                                   (2.35) 

The numerical challenge of solving this equation is the non-linear hyperbolic property. The 

dispersion and compression effects can be added, without increasing the complexity of solution, 

but have limited value unless the hyperbolic problem is first solved (Bürger et al. 2011). 

Therefore, eq.(2.35) is generally used as the primary objective function in most numerical 

analysis studies (Kynch 1952, Petty 1975, Bustos 1988, Bustos et al. 1990a, Bustos et al. 1990b, 

Bustos and Concha 1992, Diehl 1996, 2000, Bürger et al. 2003, Bürger et al. 2010, Bürger et al. 

2012). As a first-order nonlinear hyperbolic PDE, the solution to eq.(2.35) is constant along the 

characteristic lines which are given by: 

( )'
bk

dz f
dt

φ=                                                                                                                                (2.36)  

Obviously, the characteristics are straight lines, which means a constant concentration ϕ0 

propagates with the speed fbk
' (ϕ0) in a z-t coordinate plane. Two characteristics with different 

concentrations may intersect during the propagation and then a shock (solution discontinuity) 

occurs (Diehl 2000).  Kynch (1952) developed the first characteristics (iso-concentration line) 

analysis approach for batch sedimentation, and succeeded in capturing the shock (the interface of 

sediment and supernatant). Because of its great success in the sludge blanket level prediction, 
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this characteristics analysis approach was further developed to build the framework of the well-

known flux theory for SST design and operation investigations (Keinath et al. 1977, Keinath 

1985, Chancelier et al. 1997, Diehl 2008). Petty (1975) extended Kynch's procedure to the 

continuous sedimentation, and provided an explicit shock analysis for the transient state, while 

Bustos et al. (1990a) constructed the global weak solutions based on the method of 

characteristics for various initial data and operating conditions. Diehl (2000) applied 

characteristic analysis to SST analysis with a further consideration of the impact of the 

converging cross-sectional area and various boundary conditions at top, bottom and inlet. As a 

conclusion, the method of characteristics or the characteristics analysis is currently the only 

available approach to obtain exact solutions of the nonlinear hyperbolic governing PDEs, 

however, it requires considerably more effort of its implementation in engineering practice, and 

further investigations are needed.    

Because of the existence of solution discontinuities, eq.(2.35) does not have closed-form 

solutions, and reliable numerical techniques are encouraged to produce approximate solutions 

that converges to the exact one as the grid mesh is refined  (Bürger et al. 2011). To obtain both 

numerically and physically acceptable solutions, eq.(2.35) cannot be straightforwardly 

discretized, and numerical schemes specially designed to solve the scalar conservation law 

equation are needed to satisfy three fundamental principles: the Courant-Friedrichs-Lewy 

condition (CFL condition) to ensure stability, the "consistent" numerical flux, a function of the 

concentration in neighboring layers, and the entropy condition to reject unphysical 

discontinuities. Great effort has been made to obtain a suitable numerical technique, and the 

earliest, but the most used one in environmental engineering field is the Stenstrom numerical 

flux, as shown in eq.(2.12), which originated as a method for predicting solids overloading. 
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Nevertheless, it may invalidate the entropy condition, and produces unphysical solutions which 

is demonstrated by Bürger et al. (2011) and Li and Stenstrom. Bürger et al. (2012) further 

showed that the Stenstrom flux is only sufficient for standard batch sedimentation and normal 

operation SST modeling, where the concentration is increasing as a function of the depth.  The 

well-known Godunov numerical flux (FG) was first introduced for SST simulation by Jeppsson 

and Diehl (1996), and also used by Plósz et al. (2007). The Godunov numerical flux in 

clarification zone can be shown as eq.(2.37): 
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It is noticeable that the FG differs from FS in the flux calculation by including the bulk transport, 

and the concentration inverse situation where the concentration is decreasing as a function of the 

depth. Based on the Godunov numerical flux, Bürger et al. (2010) derived  Method G, which is 

first-order correct.  Another alternative method called Method EO, based on the Engquist-Osher 

numerical flux (Engquist and Osher 1981) was developed by Bürger et al. (2005) and further 

refined by De Clercq et al. (2008).  

Though both Method G and Method EO are reliable for SST modeling, and yield similar or 

identical solutions in many cases, their selection as a PDE solver is subjected to several 

competing principles: the complexity of implementation, the solution accuracy, and the 

computation cost which is indicated by the CPU time. The comparison study (Bürger et al. 2012) 

showed that the Method EO is too complicated for a straightforward application as the PDE 

solver in practical engineering cases, and for a given discretization level, the Method G is 
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capable of producing acceptable and faster solutions than Method EO. However, Method EO 

reduces numerical error more efficiently than the Method G, which may favor Method EO for  

calculating of high accuracy numerical solutions.  

For the convection-dispersion model (eq.(2.13)), including the dispersion term transforms the 

original nonlinear hyperbolic PDE to a parabolic PDE, which is significantly easier to solve 

numerically.  David et al. (2009a, 2009b) proposed the Method of Lines (MOL) strategy for this 

problem, based on the use of finite difference methods and time integrators. Generally, MOL 

proceeds in two steps (David et al. 2009a):  

1. approximating the spatial derivatives by using finite-difference or spectral methods; 

2. the resulting system of semi-discrete (discrete in space but continuous in time) 

equations are integrated in time; 

The efficiency and flexibility of MOL's implementation in practical analysis and control have 

been demonstrated by various numerical simulation tests of the convection-dispersion model.  

When the compression effect term is imposed, the phenomenological analysis of the various 

settling materials yields a degenerate parabolic PDE model (eq.(2.19)), which means the 

governing PDE is nonlinear hyperbolic if ϕ< ϕg, but nonlinear parabolic if ϕ>ϕg. Because of its 

mixed nonlinear hyperbolic-parabolic nature, the solution of the convection-compression model 

can also be discontinuous, hence making it difficultly to be discretized straightforwardly as in the 

convection-dispersion model case (Bürger et al. 2000b, Berres et al. 2003, Bürger et al. 2006). 

The developed Method G, Method EO and Method YRD can be used for the nonlinear 

convection term discretization, while for the nonlinear compression term discretization, if the 
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primitive con not be expressed in closed form, it can be approximated by numerical integration 

(Bürger et al. 2013).  

If the inertial effect is further considered, the complete model format is a mixed hyperbolic-

parabolic equation system (eq.(2.15, 2.16, 2.17, 2.18)). In Karl and Wells' approach (Karl and 

Wells 1999), eq.(2.16) was first solved to determine ϕ at the new time level (n+1) , and then, 

eq.(2.18) was solved for vs at the new time level (n+1) based on the solution of eq.(2.16). An 

explicit upwind scheme was introduced to discrete eq.(2.16) shown as follows: 

( ) ( )1
1 2 1 2

n n
n n

s si ii i
v v

t z

φ φφ φ+
+ −

−−
=

∆ ∆
                                                                                               (2.38) 

where n is the time index. Because this technique is unconditionally unstable for convection-

dominate systems, Karl and Wells (1999) also added an artificial numerical diffusion term to 

smooth the shock during the calculation. The momentum equation (eq.(2.18)) can be solved 

either implicitly or explicitly, as well as being discretized with either a central difference or 

upwind scheme. The numerical simulation tests showed that the fully explicit formula of the 

momentum equation needed a very small time step (Δt), which greatly increases computation 

cost, while the implicit method allows for larger time steps (Karl and Wells 1999). The selection 

of the upwind or central difference methods does not seriously impact the final simulation 

solutions. 

Table 2.4 summarizes most alternative techniques that can be used for accurate analytical or 

numerical solutions solving. Until now, none of these strategies can completely satisfy the 

requirement of high solution accuracy and low computation cost, and more studies are needed in 
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the future to develop solution calculation technique, which is not only efficient in accurate 

solution calculation, but also easy for implementation in practical application. 
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Table 2.4 - Overview and comments of different numerical techniques used in solving the model governing PDEs. 

Numerical Technique 

Model Type Formula Type Numerical Method Source Comments 

Convection 
model 

Nonlinear hyperbolic 
PDE 

Method of characteristics Petty  (1975)  Method of characteristics is the only available approach for 
analytical solution calculation, but it is difficult for 
implementation; 

 Stenstrom flux constraint is easy for implementation, but 
can be problematic in several situations, such as the 
negative concentration gradient condition; 

 Method G and EO converge to the physically relevant 
solutions, but only own first-order accuracy in both 
discontinuity and smooth regions; 

 Method YRD converges to the physically relevant 
solutions, and owns second-order accuracy in both 
discontinuity and smooth regions; 

Stenstrom flux constraint Stenstrom  (1976) 

Godunov scheme (Method G) Jeppsson and Diehl  (1996) 

Engquist-Osher scheme (Method EO) Bürger et al.  (2005) 

Yee-Roe-Davis scheme (Method YRD) Li and Stenstrom  (2014) 

Convection-
Dispersion 

model 

Linear parabolic PDE 
Central-differencing scheme Hamilton et al.  (1992) 

 compared with the nonlinear hyperbolic PDE, adding the 
hydraulic dispersion term greatly reduces the complexity of 
the numerical solution calculation; 

 Both central-differencing scheme and Method of lines are 
easy for implementation; 

Method of lines David et al.  (2009a) 

Nonlinear parabolic 
PDE Upwind scheme  Watts et al.  (1996) 

Convection-
compression 

model 

Degenerate 
hyperbolic-parabolic 

PDE 

Numerical techniques used for convection model 
solving is applicable for the convection term 
discretization; 
the conservative scheme is used for the 
compression term discretization; 

Bürger et al.  (2000) 
Berres et al.   (2003) 
Bürger et al.  (2006) 

 the model formula type is nonlinear hyperbolic if ϕ< ϕg, 
nonlinear parabolic if ϕ>ϕg; 

 the numerical techniques used for convection model are 
suitable for the convection term discretization, while the 
nonlinear compression term requires special conservative 
schemes; 

 for the compression term discretization, if the primitive 
cannot be expressed in closed form, it can be approximated 
by numerical integration; 

Operator splitting methods Bürger et al.  (2000) 

Convection-
dispersion-

compression 
model 

Mixed hyperbolic-
parabolic PDE 

Numerical techniques used for convection model 
solving is applicable for the convection term 
discretization; 
the conservative scheme is used for the 
compression term discretization; central 
differencing scheme is used for the hydrodynamic 
dispersion term discretization; 

Bürger et al.  (2011) 
Bürger et al.  (2012) 
Bürger et al.  (2013) 

 the model formula type is nonlinear hyperbolic if ϕ< ϕg, 
nonlinear parabolic if ϕ>ϕg; 

 solving this type of model requires the combination of the 
various numerical techniques used in the models discussed 
above; 
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2.6. Calibration of 1-D SST models 

Given the variety of simulation conditions, such as the sludge settleability and compressibility, 

1-D settling models are not considered to be universal for all SST systems, and model parameter 

adjustment based on experiment data, usually referred as model calibration, is usually required 

for specific SST simulations. The calibration methodology of the hindered-only settling models 

are well developed, and can be classified into two categories: 1) the conventional approach using 

hindered settling velocities obtained from multiple batch settling tests; 2)  the direct parameter 

estimation approach by fitting a single batch settling curve (Vanderhasselt and Vanrolleghem 

2000). It is noticeable that the hindered-compression settling models cannot be calibrated 

straightforwardly following these two approaches because of the inclusion of the additional 

compression parameters. Several proposed calibration methods require the use of advanced 

techniques, such as radiotracing, to measure the dynamic concentration distribution during batch 

settling experiments (Kinnear 2002, De Clercq et al. 2005, De Clercq et al. 2008), which is 

beyond the accessibility of most practical application cases (Ramin et al. 2014d). Therefore, to 

promote the application of the hindered-compression settling model, great efforts are needed to 

facilitate its calibration. For example Ramin et al. (2014a, 2014c, 2014d) identified the potential 

parameter subsets suitable for the calibration of WWTP models under various simulation 

conditions, and further reported that calibrating the hindered-compression model based on the 

additional measurement of the batch bottom concentration, beside the batch settling curves, has 

achieved some degree of success. 

The limited observational data of practical batch experiments naturally gives rise to the problem 

of the poorly identifiable parameters, which means it is difficult to identify a unique set of all 
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parameters used in the hindered-compression models due to possible parameter correlation (Brun 

et al. 2002, Brockmann et al. 2008). To avoid this problem, it is important to understand the 

practical identifiability of the model and select a suitable subset of parameters which can be 

reliably identified by the available experiment measurements (Weijers and Vanrolleghem 1997, 

Brun et al. 2001, Ruano et al. 2007).  

In the wastewater treatment process modeling field, two alternative approaches have been most 

used to analysis the parameter identifiability problem. The first method is on the basis of scalar 

functions calculated from the Fisher Information Matrix (FIM), and the D and mod-E criteria can 

be used to select the best identifiable parameter subset (Weijers and Vanrolleghem 1997). The 

second method developed by Brun et al. (2001) uses a diagnostic regression and focuses on the 

analysis of parameter interdependency by calculating the collinearity index. Both methods are 

proven to be efficient in selecting the best identifiable parameter subset from limited experiment 

measurements (Weijers and Vanrolleghem 1997, Brun et al. 2001, Ruano et al. 2007, Brockmann 

et al. 2008).  Recently, the Generalized Likelihood Uncertainty Estimation (GLUE) method has 

also been demonstrated as a reliable alternative for the identifiability analysis of the hindered-

compression settling model by Torfs et al. (2013). 

Nevertheless, despite the efficiency of the two most used approaches in addressing parameter 

identifiability problem, they still have drawbacks which may greatly impact the analysis results, 

at least in the hindered-compression settling model study. Both approaches are based on the 

calculation of local sensitivity functions for a set of reasonable parameters values within the 

parameter space, and in most activated sludge model (ASM) identifiability studies, the initial 

parameter set is determined as default values reported in literature. For example the practical 
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identifiability analysis of ASM2d by Brun et al. (2002) used the default values presented by 

Henze et al. (1999) as the starting point values. Given the fact that very limited parameter values 

have been reported in hindered-compression settling model studies, especially those related to 

the compression rheology, the initial parameter set values cannot be determined by the default 

value strategy, which implies that the choice of the initial parameter values may significantly 

impact the parameter identifiability. Beyond that, fixing some parameters, such as the non-

influential parameters determined by the local sensitivity analysis, at prior values according to 

lecture and practical experience can introduce bias to the parameter estimates, which have been 

reported in pervious investigations (Weijers and Vanrolleghem 1997, Brun et al. 2001, Omlin et 

al. 2001, Brun et al. 2002).  

From a practical point of view, the uncertainty analysis of wastewater treatment plant models is 

particularly important for design and operation decision making, and one of main uncertainty 

sources is the model input uncertainty, such as characterizing the model parameter values over a 

reliable range to reflect the limited knowledge of their exact values (Sin et al. 2009). To facilitate 

the practical application of the hindered-compression settling models by providing a guidance for 

experiment design, it is important to know which parameters can be obtained under what 

experimental conditions, and how large the model prediction uncertainties can be. This 

knowledge can be very beneficial in understanding the uncertainties of SST performance, such as 

the sludge blanket height (SBH), the recycle solids concentration under wet-weather and sludge 

settleability deterioration conditions. 
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3. Dynamic 1-D modeling of SSTs and system robustness evaluation  

3.1. Introduction 

Activated sludge is the most prevalent secondary treatment process and commonly uses 

secondary settling tanks (SSTs) to achieve efficient solid-liquid separation. The major functions 

of SSTs can be described as two similar but distinct actions: clarification and thickening. 

Clarification is the removal of suspended particles from effluent, and occurs in the clarification 

zone (above the inlet), and thickening is the process of increasing the underflow sludge 

concentration in the thickening zone (below the inlet). Free settling is always observed in 

clarification process, while hindered and compression settling dominate the thickening process to 

produce a more concentrated underflow. Therefore, the settling behavior in the clarification and 

thickening zones is totally different. 

Traditional design and control procedures for SSTs tend to be more empirical and conservative 

regardless of changes in wastewater characteristics such as flow rate and contaminant 

concentration. For SST design and operation optimization purposes, mathematical models have 

been used in engineering practice; for example the one-dimensional (1-D) models are used to 

evaluate the sludge blanket level (Li and Stenstrom 2014a), the two-dimensional (2-D) and three-

dimensional (3-D) models are used for the SST geometry design, such as the inlet structure 

(Zhou and Mccorquodale 1992b, Mazzolani et al. 1998). 

Although different SST models are available, one-dimensional (1-D) SST models are most often 

used for their relative simplicity and low computation cost. Based on solids flux theory (Kynch, 

1952), 1-D SST models describe sludge transport within the SST by the scalar conservation 
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partial differential equation (PDE) with a discontinuous flux, and are able to predict both the 

effluent and recycling solids concentration as well as the sludge blanket level. However, 

presently available 1-D sedimentation models are highly dependent upon empirical functions to 

express clarification, thickening and compaction processes and these functions can be an error 

source that profoundly affects simulation results. A second challenge is lack of reliable 

numerical methods to provide a high accuracy solution at low computational cost. Further 

research is still needed to improve the performance of 1-D models. 

Nomenclature t time [h] 

A cross-sectional area of SST [m2] z height above SST bottom [m] 

C sludge concentration [g/m3] Greek letters 

Cmin non-settleable solids concentration [g/m3] Δt the time step [h] 

F (convection) flux function [g/(m2h)] Δz the time step [h] 

h SST inlet depth [m] Φ the flux limiter 

H SST depth [m] θ the averaging factor 

N number of layers δ the YRD method parameter 

Q flow rate [m3/h] Subscripts 

r Veslind settling parameter [m3/kg] B bottom 

rh Takács settling parameter [m3/kg] e effluent 

rp Takács settling parameter [m3/kg] f feed 

R The ratio of solution difference i index of model layer 

v velocity [m/h] u underflow 

v0 Veslind settling parameter [m/h] T top 

v0, max 

 

Takács settling parameter [m/h] Superscripts 

 vs hindered settling velocity [m/h] n index of time 
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The goal of this chapter is to briefly review the development of 1-D SST models and currently 

available numerical techniques used as the model governing PDE solver, then to provide a new, 

reliable numerical technique (based on the Yee-Roe-Davis method) for accurate numerical 

solution calculation. The second goal is providing an analysis of SST behavior at different 

operating conditions (underloading and overloading) based on numerical simulation results. The 

final goal is to show how the choice of numerical methods impact the model outputs, which has 

implications on the design and operation strategies. 

3.2. Methodology 

3.2.1. Model structure development 

In order to simplify the problem and satisfy a 1-D modeling condition, several assumptions are 

necessary to be introduced as following: 1) the SST is circular and central-feed with constant 

area; 2) reaction rates are zero, and the sludge properties are uniform and constant in the SST; 3) 

no density currents exist (the hydraulic flow is vertical, and horizontally uniform); 4) loading 

rate is uniform and there are no wall effects; 5) the mechanical sludge scraper does not affect the 

sludge settling behavior. 

In most previous SST modeling studies, the SST is divided into three functional zones, namely 

the clarification zone (above the inlet), thickening zone (below the inlet) and inlet zone to 

characterize the various settling behaviors: clarification, thickening and the mixture of input 

solids. Because of assumption 3), the hydraulic flow in the clarification zone is an upward 

effluent flow (Qe), which conveys the solids toward the SST effluent weir, while the downward 

underflow (Qu) in thickening zone transports solids to the SST bottom to produce a concentrated 
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recycle flow. Hence, the 1-D SST model should include both the bulk hydraulic transport and 

gravity settling. 

In addition to the gravity settling and hydraulic transport, other factors can also impact the 

continuous settling process, for example the density current in the inlet region (Plósz et al. 2007), 

the hydraulic dispersion around the inlet (Hamilton et al. 1992, Watts et al. 1996, De Clercq et al. 

2003, Plósz et al. 2007, Bürger et al. 2011, Bürger et al. 2012), sludge compression caused by its 

own weight at the SST bottom (Buscall and White 1987, Landman et al. 1988, Landman and 

White 1992, Cacossa and Vaccari 1994, Kinnear 2002, de Kretser et al. 2003, Usher and Scales 

2005, Gladman et al. 2006, Usher et al. 2006, De Clercq et al. 2008, Gladman et al. 2010a, 

Bürger et al. 2011). Any attempt to model hydraulic dispersion and compression must introduce 

a diffusion term (a second-order derivative term) to the model formula that smoothes 

concentration profiles (Bürger et al. 2011, Bürger et al. 2012, Bürger et al. 2013). However, 

solution may still have discontinuous in the region where local concentration less than the critical 

concentration (gel point), which means no compression effect occurs. The governing PDE 

remains nonlinear hyperbolic in these regions, and cannot be easily discretized due to solution 

discontinuities. For either the convention dominant model, such as the well-known 10-layer 

model (Takács et al. 1991) only including the convection process, or the convention-diffusion 

model which also simulates hydrodynamic dispersion and compression, it is necessary to 

introduce reliable numerical techniques for accurate numerical solution calculation and 

discontinuity capture, which is primary goal of this study. Since solving either the convection 

dominant model or the convection-dispersion model requires capturing the solution 

discontinuities and avoiding oscillation at the discontinuity, these two alternative models possess 
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similar characteristics in their numerical solutions. We chose the convection dominant model as 

our model, because of its greater utility in current engineering practice.  

The convection dominant model can be written as the following nonlinear hyperbolic PDEs 

based on the mass conservation law:    

( ) 0s ev C v CC abovethe inlet zone
t z

∂ −∂
+ =

∂ ∂
                                                                   (3.1)      

( )s u e
f f

v C v C v CC v C the inlet zone
t z

∂ + −∂
+ =

∂ ∂
                                                                (3.2)              

( ) 0s uv C v CC belowthe inlet zone
t z

∂ +∂
+ =

∂ ∂
                                                                     (3.3)           

As can be seen, the SST model is one equation with two unknowns (C and vs). Therefore, an 

additional constitutive relation is required, and the Kynch’s assumption (Kynch 1952) is most 

often used, which states that the hindered settling velocity is solely determined by the local solids 

concentration. The two commonly used constitutive formulas are the Vesilind (Vesilind 1968a) 

function, eq.(3.4),  and the double-exponential function (Takács et al. 1991), eq.(3.5) : 

0 exp rC
sv v −=                                                                                                                               (3.4) 

( ) ( )( )minmin
0,max 0max(0,min( , exp exp ))ph r C Cr C C

sv v v − −− −= −                                                             (3.5)      

Though both formulas are suitable for hindered settlings, the Vesilind function may overestimate 

the settling velocity at low solids concentration (Li and Ganczarczyk 1987). The improvement of 

the two-exponential function relates to the non-settleable fraction in the feed sludge and the 
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discrete settling behavior at low solids concentration region. Therefore, the double-exponential 

function is applied in this study for gravity settling velocity calculation, thus making the solids 

concentration (C) the only unknown in the model.  

The mass conservation law should also hold on the upper and bottom boundaries, which requires 

the flux of particle leaving the SST to equal the flux entering the effluent and recycling pipes 

(Diehl 2000, Bürger et al. 2012). The mass conservation law of boundaries can be expressed as 

follows: 

e e
s T T e

Q Qv C C C the top boundary
A A

− = −                    (3.6) 

u u
s B B u

Q Qv C C C the bottom boundary
A A

+ =                                                                  (3.7) 

 The sludge settling velocity parameters are site specific and depend upon the condition of the 

biomass (i.e., filaments, etc). In this chapter, Grieves and Stenstrom's (1976b) data are used. The 

measurement error has been checked to be Gaussian and uncorrelated, and Levenberg–

Marquardt algorithm (More 1978a) is used for model parameter identification. The results are 

shown as normal sludge in Table 3.1.  

Table 3.1 - Parameter sets of gravity settling velocity (normal and deterioration). 

Parameter set of settleability 

 Normal sludge Deterioration 

v0,max [m/h] 9.63 9.63 

v0 [m/h] 20 20 

rp [m3/kg] 0.01 0.01 

rh[m3/kg] 0.00063 0.003 

Cmin [g/m3] 10 12 
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3.2.2. Numerical technique introduction 

Equation (3.1)-(3.3) are hyperbolic and cannot be straightforwardly discretized because of the 

shock problem (discontinuous solutions), which requires determination of unique solutions along 

the shock, and rejection of unstable discontinuities. To obtain both numerically and physically 

acceptable solutions, reliable numerical techniques specially designed for scalar conservation 

PDE are needed to satisfy the three fundamental principles: Courant-Friedrichs-Lewy (CFL) 

condition, consistent numerical flux and the entropy condition to ensure the calculation stability 

and accuracy (Bürger et al. 2011). 

Kynch (1952) first introduced the characteristics (iso-concentration line) analysis in a vessel with 

constant cross section area to capture the path of concentration gradients (shocks) in batch 

settling tests. Petty (1975) extended Kynch's procedure to continuous sedimentation, and 

provided an explicit shock analysis for the transient state, while Bustos et al. (1990a) constructed 

the global weak solutions based on method of characteristics for various initial data and 

operating conditions. Diehl (2000) complemented the characteristics analysis by resolving the 

problem with special boundary conditions at top, bottom and inlet, as well as considering the 

conical effect near the SST bottom. Successful examples of the characteristics analysis are the 

estimate of the batch-settling flux function from experimental data (Diehl 2007), and the 

mathematical analysis of the well-known solids-flux theory (Diehl 2008). On the basis of the 

method of characteristics, Burger et al. (2004) also developed a front tracking method, which is 

efficient for shock capture. As a conclusion, the method of characteristics or the characteristics 

analysis is currently the only available approach to obtain exact solutions of the nonlinear 

hyperbolic governing PDEs, however, it requires considerably more effort of its implementation 
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in engineering practice, and further investigations are needed.    

Compared with analytical approaches, numerical techniques have advantages in dynamic process 

simulations. One of the earliest numerical flux descriptions used in 1-D SST modeling is the 

Stenstrom-Vitasovic- Takács (SVT) flux (Stenstrom 1976a, Vitasovic 1986a, Takács et al. 1991) 

shown as follows: 

( )
1/2 , , 1min ,

i

SVT
s i i s i iF v C v C

+ +=                                                                                                           (3.8) 

Several studies used the SVT flux, and the most well-known one is the 10-layer model (Takács et 

al. 1991) with the SVT flux as the key ingredient. Bürger et al. (2011, 2012, 2013) showed that 

the SVT flux can invalidate the entropy condition, and generates unphysical solutions in low 

concentration region. The Godunov numerical flux, shown as eq.(3.9), is the another widely used 

numerical technique in 1-D SST modeling, which is derived from the unique exact solutions 

(Jeppsson and Diehl 1996), and also used by Plósz et al. (2007).  
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                                                                             (3.9) 

An explicit numerical method (Method EO) with the Enquist-Osher numerical flux (Engquist 

and Osher 1981) was presented by Bürger et al. (2005), and De Clercq et al. (2008) employed it 

for batch settling simulation. Another numerical technique presented by Bürger et al.(2010) is 

Method G, based on the Godunov numerical flux. Though both Method G and Method EO are 

reliable for SST modeling, which means they are able to provide approximate solutions that 

converge to the unique physically relevant solutions, and in many cases, they yield similar, even 
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identical solutions, the selection as a PDE solver is subjected to three competing principles: the 

complexity of implementation, the solution accuracy, and the computation cost. The comparison 

study (Bürger et al. 2012) showed that the Method EO is too complicated for a application as the 

PDE solver in practical engineering problems, and for a given discretization level, Method G is 

capable of producing solutions faster than the Method EO. However, the Method EO reduces 

numerical error more efficiently than the Method G, which means the larger CPU time needed by 

Method EO results in higher quality numerical solutions.  

3.2.3. Numerical discretization and integration 

Because of the possible solution discontinuities (shocks) during the calculation, the nonlinear 

hyperbolic governing PDE cannot be straightforwardly discretized, and specific numerical 

techniques designed for scalar conservation PDE solving are often applied to avoid the shock, for 

example the flux averaging technique. Rather than choosing one method such as a first-order 

upwind method, the flux averaging starts with two or more established methods, then chooses 

one method or averages them. The averaging flux can be shown as follows: 

( )(1) (2)
1 2 1 2 1 2 1 2 1 2

ˆ ˆ1ˆn n n
i i i i iF F Fθ θ+ + + + += + −                                                                                              (3.10)                                                                        

where  is the averaging numerical flux, is the conservative numerical flux of 

numerical method 1, is the conservative numerical flux of numerical method 2, and is 

the averaging factor, sometimes called the shock switch. An equivalent way of writing eq.(3.10) 

is eq.(3.11) shown as follow: 

(1) (2) (1)
1 2 1 2 1 2 1 2 1 2

ˆ ˆ ˆ )ˆ(n n
i i i i iF F F Fφ+ + + + += + −                                                                                               (3.11)                                                                                           

1 2
ˆ n
iF +

(1)
1 2îF +

(2)
1 2îF + 1 2

n
iθ +
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where equals to , and is called the flux limiter. This flux averaging method is 

called the flux-limiter method. After determining the two first-generation methods, the next step 

is choosing suitable flux limiter, which strongly depends on distinguishing shocks from the 

smooth regions. Generally, shocks are indicated by the ratios of solution differences, which can 

be expressed as eq.(3.12): 

1 1

1 1

,
n n n n
i i i i

i in n n n
i i i i

C C C CR R
C C C C

+ −− +

+ −

− −
= =

− −
                                                                                                 (3.12)                                                                                   

where R is the ratio of solution difference, and has the following properties: 

• if the concentration  is monotone increasing or decreasing: 

• if the solution has a maximum or a minimum; 

• is large and is small if the solution differences decrease dramatically from left to right; 

• is small and is large if the solution differences decrease dramatically from right to left; 

A large decrease or increase of the ratio of solution differences always indicates shocks. The 

flux-limit technique directly leads to the popular total variation diminishing (TVD) methods, 

which enforces the nonlinear stability by using the freedom of flux averaging. The Yee-Roe-

Davis (YRD) numerical technique introduced in this study is a typical flux-limited method, 

which has the TVD property. The two first-generation methods used in YRD numerical 

technique are the forward-time central-space (FTCS) method (eq.(3.13)) and Roe's first-order 

upwind method (eq.(3.14)). 

1 2
n
iφ + ( )1 21 n

iθ +−
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( ) ( )1
1 2

ˆ
2

n n
i iFTCS

i

F C F C
F +

+

+
=                                                                                                          (3.13)                                                                                                     

( ) ( )1 2 1 1/2 1
ˆ ROE n n n n
i i i i iF F C a C C+ + + += − −                                                                                            (3.14)                                                                                                     
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                                                                     (3.15)                                                                           

In the original ROE's first-order upwind method, is given by eq.(3.16): 
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                                                                           (3.16)                                                                                                      

In the YRD method, is replaced by , as eq.(3.17) shows: 
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                                                                       (3.17)                                                                 

Here, δ is an arbitrary small value, which is determined as 10-20 in this study. The final step is 

determining the flux limiter , and Yee et al. (1990) suggested three possible flux limiters: 

( )1 1, minmod(1, , )i i i iR R R Rφ + − + −
+ +=                                                                                               (3.18)                                                                                       

1/2
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( ) ( )1 1 1
1, minmod(2, 2 , 2 , )
2i i i i i iR R R R R Rφ + − + − + −

+ + += +                                                                    (3.19)                                                                     

( )1 1, minmod(1, ) minmod(1, ) 1i i i iR R R Rφ + − + −
+ += + −                                                                     (3.20)                                                   

where minmod is the minimum modulus. The minmod function returns the argument closest to 

zero if all of its arguments have the same sign, and it returns zero if any two of its arguments 

have different signs. In this study, we choose the first one, eq.(3.18) as the flux limiter, and the 

explicit Yee-Roe-Davis method is  

( )1
1/2 1/2

ˆ ˆn n n n
i i i iF FtC C

z
+

+ −

∆
= − −

∆
                                                                                                   (3.21)                                                                                           

where 

( ) ( )( )( )1 2 1 1/2 1/2 1
1 1ˆ 1
2 2

n n n n n n
i i i i i i

n
i F F a C CF ψ φ+ + + ++ = + + − −                                                            (3.22)                                                

The YRD method determines what to do in terms of the solution gradient rather than considering 

the solution's stability and accuracy in the same fashion throughout the entire domain. Therefore, 

the YRD method can work well in both regions simultaneously with small tradeoffs, and 

possesses second-order accuracy. Since the SVT numerical flux is mostly often used in current 

engineering practices, we use it as a reference method to show the improvement of applying the 

YRD method.  

3.2.4. SST behavior investigation under underloading and overloading conditions 

Wastewater flow rate and contaminant concentration vary, which means control strategies for 
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SST must make appropriate adjustments. Hence, it is significant to understand SST's behavior in 

different operating conditions. SSTs are usually operated at underloading conditions, which 

requires the operating flux to be less than the limiting flux. Overloading can occur from 

hydraulic shock loading or sludge bulking. 

In this study, we use both SVT flux model and YRD flux model to investigate the SST's 

response to different operating conditions (parameter set shown in Table 3.2). According to 

discretization sensitivity study that numerical solution converges when the number of layer 

exceeds 50 (Li and Stenstrom 2014a), the discretization level is determined as 50-layers.  

Table 3.2 - Parameter set to generate different operating conditions. 

Parameter set of different operating conditions 

 Underloading  
Condition 

Overloading 
Condition 1 

Overloading 
Condition 2 

A[m2] 100 100 100 

H [m] 4 4 4 

h [m] 2 2 2 

Qe [m3/h] 200 200 200 

Qu [m3/h] 60 60 60 

Cf [g/m3] 2500 4000 9000 

 

3.2.5. System robustness study 

SSTs may experience failure due to two primary causes: hydraulic shock loading and 

deterioration of sludge settleability. Time-to-failure is defined as the time interval between the 

beginning of an upset and failure, and can be used as an important indicator for system 

robustness evaluation (Diehl 2005, 2006). The longer time-to-failure indicates a more robust 

process. System robustness is closely related to SST size, since SST size can greatly impact 
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several important operating factors, such as operating flux and limiting flux. To quantitatively 

investigate the relationship between system robustness and SST size, we simulated solids 

overloading for both hydraulic shock loading and sludge settleability deterioration, for SST 

surface area from 100m2 to 400m2. All variations are imposed as step functions with the initial 

condition of zero concentration throughout the SST: 

 Hydraulic shock loading: At t=0 h, Qe=200 m3/h to reach steady state. At t=2 h, Qe is 

increased from 200 m3/h to 800 m3/h. Cf is fixed as 2000 g/m3. 

 Sludge settleability deterioration: Qe and Cf are fixed as 200m3/h and 2000 g/m3. At t=0 h, 

the settling parameters are set to normal as shown in Table 3.1. At t=2h, the settling velocity 

parameters change to deterioration (Table 3.1) in order to model a change to poor 

settleability condition (e.g., bulking). 

3.3. Results and discussion 

3.3.1. Numerical solution accuracy 

To evaluate solution accuracy, we created a hypothetical but typical overloading condition 

(A=100m2, Cf =4000 mg/l), with normal settling parameters as shown in Table 3.1. As can be 

seen from the predicted concentration profiles (Fig.3.1), both models are able to predict the 

sludge blanket level movement; however the model solved by the SVT method provides smooth 

profiles rather than sharp discontinuities shown in the YRD one. The predications also diverge 

with differences in the sludge blanket level, solids concentration in each layer and the underflow 

concentration. The sludge blanket level predicted by the SVT method is higher, while the 

concentration profile solved by the YRD method has an increased solids concentration in each 
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layer, including the bottom one (the underflow concentration). Using the YRD method also 

provides a more accurate prediction of the discontinuities at the edge of the blanket. It is also 

significant to notice the overestimation of the sludge blanket level may encourage designing 

larger SSTs. 

 

Fig.3.1 -Typical overloading concentration profiles.  

(left: the SVT method; right: the YRD flux method) 

In order to further demonstrate the reliability of the YRD method, we ran both the YRD method 

and the SVT method with the same scenario as in Fig.7 of Bürger et al (2012), and the 

simulation results are shown as Fig.3.2. The concentration profiles constructed by the YRD 

method and the Method G are similar, which demonstrates that the YRD method is reliable to 

produce entropy-satisfying solutions, and can be an equivalent alternative as the G and EO 

methods. However, the SVT method provides solutions different from the YRD, G and EO 

methods, and it is also sensitive to the discretization level.  
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Fig. 3.2 - Concentration profiles of the SVT method and the YRD method. 

(left: the SVT method; right: the YRD method) 
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3.3.2. SST behaviors in various operating conditions 

As can be seen in Fig.3.3, SSTs can convey most feed sludge towards to the bottom and produce 

low turbidity effluent in underloading case, which matches the previous experiments 

observations (Tracy 1973). Sludge is thickened in the thickening zone for further recycle and 

disposal. Since the SVT numerical flux limits the gravity settling flux, the downward bulk flux is 

the only source for sludge transfer during the initial thickening time, which can cause a 

numerical delay. Therefore, an obvious sludge accumulation occurs in the SVT method results 

compared with the normal smooth concentration prediction of the model solved by the YRD 

method.  

When Cf  is 4000 g/m3 (overloading 1), the operating flux is larger than the limiting flux, and 

overloading occurs. Both models show that the sludge blanket will rise, though the predicted 

sludge blanket growth rate is different (2.7m for the SVT method versus 2.2m for the YRD 

method). This result supports the earlier statement that the model solved by the SVT method 

overestimates the sludge blanket height. Another key variable is the underflow concentration 

(Cu). Fig.3.3 shows that Cu is independent of sludge blanket height, and is approximately 10000 

g/m3, matching the flux diagram prediction (Hassett 1958). 

The SST behavior can be totally different after Cf  increases to 9000 g/m3 (overloading 2), though 

the operating condition is still defined as solids overloading. In this case, instead of settling to the 

thickening zone, most sludge will be directly conveyed to the SST effluent weir by the effluent 

flow. Rather than a gradual sludge blanket growth from SST bottom, we can observe both sludge 

blanket rise in thickening and clarification, and the latter one is even more rapid than the former 

one as shown in Fig.3.3. Finally, the sludge blanket will exceed the effluent weir, and cause an 
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effluent validation, known as clarification failure. The solutions solved by these two methods are 

totally different in this case. The predicated concentration difference in clarification zone is 2000 

g/m3 (8500 g/m3 Vs. 6500 g/m3). The recycling concentration solved by the SVT method is 8000 

g/m3, while if the YRD method is used as the PDE solver, it remains the same as overloading 1 

(10000 g/m3). For the sludge blanket level, the SVT method provides a higher value in the 

clarification zone, but lower value in the thickening zone compared to the solutions solved by the 

YRD method. 

3.3.3. System robustness 

SSTs with larger surface area are usually considered to be more robust compared with smaller 

ones in terms of offering more sludge storage capacity and smaller operating flux. However, this 

cannot always be correct, since the associated limiting flux can also decrease with the increase of 

size. Hence, in order to quantitatively investigate this problem, time-to-failure is selected as a 

system robustness indicator. Generally, a lengthy time to reach failure implies a more stable 

process. Fig.3.4 illustrates time-to-failure after a 20-h hydraulic shock loading simulation 

(Fig.3.4 left) and deterioration of sludge settleability (Fig.3.4 right).  

It is notable that the estimated time-to-failure based on the solutions solved by the SVT method 

is much smaller than what the YRD method provides. This corresponds well to the conclusion 

presented earlier in the numerical accuracy section that the model solved by the SVT method 

overestimates the sludge blanket height due to numerical inaccuracies. As a consequence, the 

time-to-failure solved by the YRD method is used for system robustness analysis.  
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Fig. 3.3 - Concentration profiles of different solids loading conditions. 

(left: the SVT method; right: the YRD method) 
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According to Fig. 3.4 (left), the hydraulic shock loading failure time of smaller SST alternatives 

(A=100 to 135 m2) is less than 0.1 h. It increases to 1.5-4 h, a great improvement, when SSTs are 

enlarged to medium size (A=140 to 250 m2). No failure will occur if the SST is larger than 250 

m2. For the case of a small SST, most biomass is directly conveyed to the clarification zone by 

the overflow instead of settling to the thickening zone, causing a clarification failure in less than 

0.1h. This helps explain why small SSTs have extremely short time-to-failure. A gradual sludge 

blanket rise is observed in medium SSTs, and causes a thickening failure when it reaches the 

feed point. An area of 140 m2 is the demarcation point between clarification failure and 

thickening failure. Compared with a clarification failure, the thickening failure is a relatively 

slow process as the sludge blanket must rise from the bottom to top, which usually occurs over 

several hours. If the SST can afford large enough limiting flux, the system can always maintain 

an underloading condition. For this reason, neither clarification nor thickening failure occurs 

when the SST area is greater than 260 m2.  

Compared to hydraulic shock loading, where the failure is caused by a sudden increase of 

operating flux, failure due to poor biomass settleability (sludge bulking), is attributed to a 

decrease in the limiting flux. Fig.3.4 (right) shows a similar failure time change tendency 

observed in hydraulic shock loading: a rapid to gradual process. In this case, failure can be 

avoided only by increasing the limiting flux, such as changing the recycle rate or contacting 

pattern (Stenstrom and Andrews 1979a).  
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Fig.3.4 - Failure time in the hydraulic shock loading (left) and the settleability deterioration 
(right). 

3.4. Conclusion 

The conclusions of this chapter can be summarized as follows: 

• Instead of applying the empirical SVT method as the nonlinear hyperbolic governing PDE 

solver, the YRD method determines the calculation behavior in terms of the solution 

gradient, and provides both numerically and physically acceptable solutions that satisfy the 

CFL condition and entropy condition. Therefore, the YRD method is a reliable numerical 

technique for solving the nonlinear hyperbolic PDE of the SST model, and can be an 

acceptable alternative to the G and EO methods.  

• Both clarification and thickening failure can occur during overloading with the magnitude 

of the overloading determining the type of failure. Clarification failure occurs with greater 

overloading. The model solved by the SVT method is likely to produce unrealistic solids 

accumulation during under loading but both models perform well in thickening failure 

predication (overloading 1). For clarification failure (overloading 2), the model solved by 

the YRD method provides more accurate recycle solids concentration and sludge blanket 
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level predication.  

• The choice of numerical methods can greatly impact the model solutions, for instance the 

time-to-failure evaluation. Compared with the exact time-to-failure solved by the YRD 

method, the SVT method can underestimate the time-to-failure, and lead to conservative 

design and operation strategies. Therefore, reliable numerical techniques, such as the YRD 

method, are strongly recommended for 1-D SST model solving.  

 

 

 

 

 

 

 

 

 

 

 



83 
 

4. Construction of analytical solutions and numerical methods comparison of 

the ideal continuous settling model 

4.1. Introduction 

Continuous sedimentation, a gravity driven solid-liquid separation process, has various 

applications in industrial areas including the wastewater treatment, water reuse, mineral waste 

manage and processing. However, in current engineering application, the design and operation of 

the continuous settling tanks still remain as a difficult task, and generally, empirical and 

conservative strategies are applied, which may cause both capital and land waste, as well as the 

unanticipated performance flocculation of the settling tank itself (Northcott et al. 2005, Li and 

Stenstrom 2014a, Li and Stenstrom 2014d). For the purposes of understanding the continuous 

settling behavior and optimizing settling tank performance, mathematical models are encouraged 

to being used, and in most commercial simulators, the ideal one-dimensional (1-D) continuous 

settling model (without compression effect) is equipped due to its relative well understanding 

and less computation burden, especially if long term simulation is needed (Bürger et al. 2011).  

Given the complexity of real system conditions (e.g., viscosity, dispersion, turbulence, rake 

effect, various settling behaviors), the concept of the ideal thickener was introduced by Shannon 

et al.(1963) to simplify the modeling task.  In an ideal 1-D condition, the secondary settling tank 

(SST) possesses a constant cross-section with uniform solids concentration in each horizontal 

layer, and the complex hydrodynamics are simplified as the upward effluent flow to the top and 

downward underflow to the bottom, as shown in Fig.4.1. The distribution of solids are 

determined by both gravity settling and the bulk  hydraulic transport, and the mass conservation 
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law holding in each layer can be expressed as the partial differential equation, eq.(4.1) (Diehl 

1997, Diehl and Jeppsson 1998): 
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where F is the flux function, δ(z) is the Dirac impulse , ϕ(x,t) denotes the solid concentration, x is 

the depth from the feed inlet, t is the time, s=vfϕf, denotes the feed solids flux (ϕf is the feed solid 

concentration and vf  is the feed flow velocity), fbk is the Kynch batch flux function and the solid 

mass fluxes leaving at the effluent weir and bottom are ge=veϕe  (ve is the effluent flow velocity 

and ϕe is the effluent solids concentration) and fu=vuϕu (vu is the underflow velocity and ϕu is the 

underflow solids concentration) respectively. 

It is noticeable that eq.(4.1) only can be solvable with proper constitutive relations. The 

fundamental constitutive relation for hindered settling modeling is the Kynch's assumption  that 

the hindered settling velocity is solely determined by the local solids concentration. Based on the 

Kynch's assumption, three alternative methods have been established to develop the required 

constitutive function: the hindered settling factor approach (Buscall and White 1987, Landman et 

al. 1988, Usher and Scales 2005, Gladman et al. 2010b),  the Darcy's Law approach (Karl and 

Wells 1999, Kinnear 2002) and Kynch flux density approach (Bürger et al. 2000a, Bürger et al. 

2005). However, the Kynch's assumption is not a nostrum, since it can only provide a complete 

settling behavior description of Kynchian suspensions with no compressive behavior at any 
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concentration. Otherwise,  its validity can only be proved in hindered settling region, where the 

concentration is sufficiently low that no weight-bearing network formed (Dixon 1977a).  

 

Fig.4.1 - Schematic overview of ideal continuous settling tank with constant cross-section area. 

When in high concentration range, where strong particle-particle interaction exists, compression 

settling occurs because of the compressive stress transmitted through the formed net structure (de 

Kretser et al. 2003), and modeling the compression settling process is significant for applications 

as diverse as thickening, dewatering, filtration and centrifugation. Two parallel theories have 

been developed to interpret the compression settling: geotechnical approach (Bürger 2000, 

Bürger et al. 2001), which quantifies the sediment compressibility by using effective solids stress 

or the solids pressure; compression rheology approach (Buscall et al. 1987, Buscall and White 

1987), where the compressibility is characterized as the physically measurable network strength: 

compressive yield stress. The effective solid stress and solid pressure are usually defined as solid 

volumetric concentration dependent functions rather than the intrinsic  material property as the 

compressive yield stress is. Except for the significant conceptual difference, these two 
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approaches actually have a similar rheological basis, thus making them parallel (de Kretser et al. 

2003).  

The development of settling theory including the hindered and compression rheology is the first 

step for model formula complementation, and solving these PDEs, which means accurately 

solution calculation, is equivalently important for reliable model predications. When hindered 

settling dominates, the model governing equation can be written as eq.(4.1), nonlinear hyperbolic 

PDEs, known as the convection-dominant model. The compression effect can be modeled by 

adding a nonlinear diffusion term to eq.(4.1), and then the model formula becomes strongly 

degenerate parabolic PDEs, known as the convection-compression model (Bürger et al. 2012). 

Though differing in rheology basis, both convection-dominant and convection-compression 

models possess the similar mathematical characteristics, and solving the compression including 

model will not greatly increase the solution technique complexity (Bürger et al. 2012). Therefore, 

from a mathematical point of view, it is informative to fully understand the mathematical 

implication of eq.(4.1) before investigating more complex models (Diehl 2000).  

Based on the mass continuity law and Kynch's assumption, the advantage of eq.(1) is that it is 

capable to capture the movement of large concentration discontinuities without knowing their 

physical mechanisms (Kynch 1952). However, solution discontinuities, which can be physically 

interpreted as the concentration gradients, are expected to occur as a function of time and height 

in solving eq.(4.1), and greatly increases the complexity of required solution techniques. Solving 

eq.(4.1) can be either numerical or analytical: numerical techniques including Method G 

(Jeppsson and Diehl 1996), Method EO (Bürger et al. 2005), Method YRD (Li and Stenstrom 

2014a, c) et al. have achieved some degree of success in shock capturing and solution calculation, 
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but cannot always satisfy practical application standards, such as high accuracy but low 

computation burden; the only available approach for analytical solution construction is the 

method of characteristics (MOC), which avoids complicate discretization procedure but provide 

high accuracy solutions. Therefore, it is worthwhile further investigating the implementation 

strategy of  MOC in 1-D continuous settling modeling.  

The application of MOC to gravity settling problem can trace its history to 1950s, when Kynch 

(1952) analyzed the solids concentration distribution within the batch settling cylinder by using 

constant concentration lines, or iso-concentration lines, which is mathematically equivalent to 

characteristics. Thereafter, this approach was widely applied in practical SST design and 

operation (Fitch 1979, 1983, 1993). In recent studies, Diehl (2007) showed that the inverse 

problem of estimating of the batch settling flux function from experimental data can also be well 

addressed by using MOC. The first MOC study in continuous settling modeling was provided by 

Petty (1975) to show that the limiting flux, commonly observed in lab and full scale tests, is an 

intrinsic nonlinear phenomenon of the governing nonlinear hyperbolic PDEs, which is lately 

supported by Chancelier et al. (1997) and Diehl (2008), and the propagation of solution 

discontinuities from bottom boundary is caused by interaction of rarefaction waves. Nevertheless, 

Petty's work is a MOC based continuous settling behavior analysis more than an analytical 

solution developing study. Hence, further investigations were motivated to complement the 

MOC theory in continuous settling study, including the global weak solution construction 

(Bustos 1988, Bustos et al. 1990b, Diehl 1997), boundary condition determination (Bustos and 

Concha 1992, Diehl 1996, 2000), and control theory development (Buscall et al. 1982, Bustos et 

al. 1990b, Diehl 2005, 2006).  
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The first goal of this chapter is to construct solutions of the ideal SST model that includes 

hindered settling and hydraulic bulk transport with dynamic loading conditions on the basis of 

the previously developed MOC implementation strategy. The MOC solutions are compared with 

experimental continuous settling data to demonstrate the accuracy of MOC solutions in 

predicting  dynamic continuous settling behaviors. Given that numerical solution techniques are 

often used for continuous settling models, the second part of this chapter focuses on the 

convergence analysis of three representative numerical methods: Method SG, Method G and 

Method YRD by using the MOC solutions as reference solutions.  Accuracy and computation 

cost of these three methods are also investigated to compare their efficiency for practical 

engineering applications. The techniques demonstrated here for solving hyperbolic PDEs are 

applicable in other chemical engineering problems; for example, modeling of two-phase flow in 

heterogeneous media (Vanduijn et al. 1995) and the investigation of multicomponent separation 

(adsorption, ion exchange, chromatography) when the liquid phase is plug flow (Loureiro and 

Rodrigues 1991). 

4.2. MOC theory review in ideal continuous settling model solving  

To improve the understanding of the MOC theory in ideal continuous settling process and its 

implementation stretegy, we proived a brief reivew of the MOC theory and its implementation 

stretegy which is developed in previous publicitions (Diehl 1996, 1997, 2000). For the overall 

SST domain, as shown in Fig.4.1, the height of the clarification zone is H, and the depth of 

thickening zone is D. The downward direction is defined as the positive direction of the x-axis, 

and settling velocity and flux are positive in downward direction. The direction of feed flow (Qf), 

effluent flow (Qe), and underflow (Qf) are also shown in Fig.4.1. The Kynch's assumption 
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(Kynch 1952), is assumed to hold, therefore the settling velocity (vs) as well as the Kynch batch 

flux function fbk =vsϕ is only determined by local solids concentration ϕ. The mass conservation 

law model equation, eq.(4.1), inside the SST domain, can be written as eq.(4.2) (Diehl 2000): 
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                                                                      (4.2) 

where ( ) ( )' ( )bk bkf d f dφ φ φ= . As a nonlinear hyperbolic PDE, eq.(4.2) possesses the property 

that, the initial concentration value, ϕ(x,0), propagates with the speed ( )' ( 0, )bkf xφ , along a 

straight line xl with slope ( )( )' ' 0,l bkx f xφ= . These straight lines with constant solutions are called 

characteristics. If the initial concentrations are not uniform, characteristics with different slopes 

can intersect in the positive direction of t and generate solution discontinuities, which means for 

a discontinuity X=X(t), the solutions are ϕx+ and ϕx- on the left and right side respectively, instead 

of being continuous.  

Since the differential formula requires differentiable solutions, it cannot model the possible 

nondifferentiable discontinuities, thus making eq.(4.2) not sufficient to completely describe the 

settling processes in both smooth and discontinuous regions. To provide a unique solution, the 

differential formula, eq.(4.2), is supplemented by a jump condition (Rankine-Hugoniot relations), 

which is derived from the integral form, and expressed as a discontinuity X=X(t), propagating at 

a speed of S: 
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And eq.(4.3) implies that  

( )'
bkS f ξ=                                                                                                                                 (4.4) 

where ξ is between ϕx+ and ϕx-. However, given the fact that the flux function, fbk , is always 

nonconvex, the jump condition for nonconvex scalar conservation law is not sufficient to select 

the unique ϕx+ and ϕx- along discontinuities. A stronger condition called Oleinik entropy 

condition (Oleinik 1964), is always introduced as an algebraic inequality to reject unstable 

discontinuities, shown as eq.(4.5): 
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for all ξ between ϕx+ and ϕx-. The Oleinik entropy condition is derived from the second law of 

thermodynamics, and states that the flux function, fbk here, lies entirely above the chord 

connecting ϕx+ and ϕx- for ϕx+ > ϕx-, or the flux function fbk lies entirely below the chord 

connecting ϕx+ and ϕx- for ϕx+ < ϕx-, thus no intersection is allowed between the flux function 

curve and the chord.   

Because of the discontinuities of flux functions at three boundaries (x=-H, x=0, x=D), the 

solutions of the governing PDE, eq.(4.2), are also discontinuous, which can be defined as 

following: 
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The mass conservation law should also hold on the three boundaries, yielding the following jump 

conditions: 

( ) ( )
( ) ( )

( ) ( )

0 0 0 0 0 0

H H H H H
e s e e

s u s e

D D D D D
u s u u

v v v g g top outlet boundary

v v v v s f g s inlet boundary

v v v f f bottom outlet boundary

φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ

− − − + − + − − − +

+ + − − + −

+ − − − +

− = − ⇒ =

+ = − + ⇒ = +

= + ⇒ =

                          (4.7) 

Accurately determining the six boundaries solutions are especially significant, since they are not 

only the solutions of the governing PDEs, but also the required model outcomes, such as the 

effluent solids concentration (ϕ-H-) and the recycle solids concentration (ϕD+). However, the jump 

conditions (eq.(4.3) and eq.(4.7)) are not sufficient to determine the unique discontinuous 

solutions at three boundaries for a given initial condition. In order to select the physically 

acceptable boundary solutions, MOC theory at boundaries are supplemented by the condition Γ 

(Diehl 1995, 1996), which is a generalization of Oleinik entropy condition (eq,(4.5)) and 

motivated physically by a conservative numerical method: Godunov method (Godunov 1959).  

• top outlet boundary: to construct the physically correct ϕ-H- and ϕ-H+, two auxiliary 

functions are developed, including the non-increasing function eg and the non-decreasing 

function ĝ , as shown in eq.(4.8): 
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where ϕmax is the maximum packing concentration, an intrinsic property of the settling material. 

Condition Γ states that the effluent boundary flux γ is the value of the intersection of eg  and ĝ , 

and the boundary solutions ϕ-H- and ϕ-H+ satisfy: 

( ) ( )H H
eg gφ γ φ− − − += =                                                                                                              (4.9) 

inlet boundary: the most complex behavior of the SST occurs at the inlet, and in a fashion similar 

to the top outlet boundary, two auxiliary functions are introduced: the non-increasing function g

and the non-decreasing function f̂ , shown as eq.(4.10). 
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Condition Γ states that the flux value γ at the feed boundary is the value of the intersection of the 

( )0g φ −  and ( )0f̂ φ + , and ϕ0- and ϕ0+ satisfy:  

( ) ( ) ( )0 0f g s tφ γ φ+ −= = +                                                                                                        (4.11) 

• bottom outlet boundary: the bottom outlet boundary solutions are constructed by defining 

another two auxiliary functions: a non-increasing function f


 and a non-decreasing function  ûf : 
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Condition Γ states that the flux value γ at the feed boundary is the value of the intersection of the 

( )Df φ −


 and ( )ˆ D
uf φ + , and ϕD- and ϕD+ satisfy:  

( ) ( )ˆD D
uf fφ γ φ− += =



                                                                                                              (4.13) 

As can be seen, the MOC theory in continuous settling includes two main parts: determining the 

unique correct solutions inside the SST domain by considering the jump condition and Oleinik 

entropy condition, and determining the unique boundary solutions by applying condition Γ. The 

most important but difficult task when using MOC is to correctly determine possible 

discontinuities, and the corresponding discontinuity solutions. To avoid presenting the 

complicated mathematics, we assume that readers are familiar with the techniques and concepts 

discussed above, and more information about the jump condition, Oleinik entropy condition, and 

condition Γ, can refer to (Oleinik 1964, Diehl 1995, 1996, 2000).  

4.3. Continuous sedimentation experiments and model parameter estimation 

It is well known that the solids handling capacity of a SST is limited, and the maximum solids 

flux that can be transported to the tank bottom outlet without causing changes, such as the 

sediment height propagation, is defined as the limiting flux (Diehl 2005). Hence, the SST's 

operating conditions can be divided into three categories: 1) underloading condition if the feed 

flux is less than the limiting flux; 2) critical loading if the feed flux equals to the limiting flux; 3) 
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overloading if the feed flux is larger than the limiting flux. The SST is normally underloaded, 

while overloading can be caused by hydraulic shock loading (wet weather) or settleability 

deterioration, and often leads to process failure.   

Tracy (1973) conducted a lab-scale investigation of the impact of various feeding conditions on 

continuous settling behavior, especially the responses of the recycle concentration and sediment 

height. Ferric hydroxide was used as the settling material, and its settleability was characterized 

by the Kynch batch settling function (fbk) based on the Vesilind equation (Vesilind 1968b), 

shown as eq.(14): 
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                                                                                     (4.14) 

 In this study, the Vesilind parameter estimation (V0 and n) is performed by fitting the Vesilind 

equation on the measured settling velocity data, and the objective function used to quantify the 

quality of the fit is the sum of squared errors. Table 3.1 shows the tank configuration and Kynch 

batch settling function parameters. Three transients are imposed: underloading-to-underloading, 

underloading-to-overloading, overloading-to-underloading by two influent forcings, and the 

operating condition for each transient is given in Table 3.2. In next section, we will show the 

implementation strategy of MOC to construct solutions of these three transients.  

4.4. MOC solutions construction of three transients  

Each of the following three cases is designed to show how the ideal continuous settling model 

can be solved with MOC to show the dynamic performance. The selected cases show important 

and commonly observed conditions for full scale SSTs. 
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• Underloading-underloading transient: in this case, the change of feed flux causes a 

change of the recycle concentration. Hence, the MOC solution is expected to accurately 

predict the recycle solids concentration. 

• Underloading-overloading transient: in this case, the change of feed flux causes the 

propagation of sediment from SST bottom, and the increase of the recycle concentration. 

Hence, the MOC solution is expected to accurately predict the sediment interface level and 

the recycle concentration to prevent process failure. 

• Overloading-underloading transient: in this case, the sediment interface rises to the top 

due to the overloading condition and then decreases due to a reduction in feed flux. The 

decrease of feed flux also causes a decrease in the recycle concentration. The MOC solution 

is expected to accurately predict the sediment interface change including both the increase 

and decrease, and the recycle concentration change.  

Table 4.1 - SST configuration and Vesilind equation parameters. 

SST configuration Vesilind equation parameters 

Cross-section 
area [m2] 0.0153 V0 [m/h] 3.163 

SST height [m] 2.44 n [m3/kg] 0. 936 

Inlet height (m) 1.83   
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Table 4.2 - Operation conditions for the underloading-underloading, underloading-overloading, and overloading-underloading 
transients from Tracy (1973). 

 

 

Underloading-to-underloading Underloading-to-overloading Overloading-to-underloading 

Operating 
Parameter 

Underloading 
(0-5 h) 

Underloading 
(5-12 h) 

Operating 
Parameter 

Underloading 
(0-5 h) 

Overloading 
(5-16h) 

Operating 
Parameter 

Overloading 
(0-10 h) 

Underloading 
(10-30h) 

Influent flow 
rate (l/h) 13.02 9.72 Influent flow 

rate (l/h) 9.72 13.02 Influent flow 
rate (l/h) 15.84 15.84 

Underflow 
rate (l/h) 3.456 3.456 Underflow 

rate (l/h) 2.538 2.538 Underflow 
rate (l/h) 3.96 3.96 

Influent 
solids 

concentration 
(g/l) 

1.435 1.335 

Influent 
solids 

concentration 
(g/l) 

1.28 1.435 

Influent 
solids 

concentration 
(g/l) 

1.4 1 
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4.4.1. Underloading-to-underloading 

For the first transient experiment, the column is initially filled with liquid, which means the 

initial value of the governing formula is 0. At t=0, the tank is fed at a constant concentration 

(ϕf=1.435 kg/m3, s1=1.22 kg/(m2h)). The graphs of auxiliary functions ( )0ˆ ;f φ φ + and 

( )0;g sφ φ − + where ϕ0+= ϕ0- =0 are shown in Fig.4.2 (top left). Their intersection occurs at the 

concentration 0
1φ
+  and the flux value s1. Therefore, as the condition Γ states, the unique boundary 

condition concentrations at inlet (x=0) are 0
1φ
+ =0.58 kg/m3 and 0

1φ
− =0 kg/m3, and holds until the 

feed concentration changes to ϕf=1.335 kg/m3, s2=0.848 kg/(m2h) at t=5 h. As shown in Fig.4.2 

(bottom left), Z1 is the region where characteristics with slope ( )' 0f  propagate, thus making 

solutions at this region equal to 0. Similarly, the solution at Z3 is 0
1φ
+ =0.58 kg/m3 determined by 

the characteristics with slope ' 0
1( )f φ + .  

Between Z1 and Z3, there is an expansion wave (Z2) consisting all concentrations between the 

solution of Z1 ( 0φ + =0 kg/m3) and the solution of Z3 ( 0
1φ
+ =0.58 kg/m3). The solution ϕ(x,t) within 

Z2 can be uniquely solved by eq.(4.15) (the monotonic decreasing of 'f  at the left side of the 

inflection point ensures the invertibility of 'f  ): 

( ) ( ) ( )1',x t f x tφ
−

=                                                                                                                  (4.15) 

The recycling concentration (ϕD+) remains 0, until the expansion wave reaches the bottom (z=D) 

at t1. Then ϕD+ generally increases from 0 to 1
Dφ + (5.406 kg/m3) the values predicted by the 
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condition Γ as the intersection of ( )1; Df φ φ −


 and ûf  as shown in Fig.4.2 (top left). Any recycle 

concentration between t1 and t2 can be determined by eq.(4.16) based on the mass conservation 

law: 

( ) ( ) ( )( )1',D
uv D t f f D tφ

−+ =                                                                                                   (4.16) 

At t=5h, the operation condition becomes to ϕf=1.335 kg/m3, s2=0.848 kg/(m2h), and 

correspondingly, the inlet boundary concentrations change to 0
2φ
+ =0.33 kg/m3 and 0

2φ
− =0 kg/m3 

predicted by the  condition Γ as the intersection of  ( )0ˆ ;f φ φ + and ( )0;g sφ φ − + (ϕ0+= 0
1φ
+ , ϕ0- =0), 

Fig.4.2 (top right) shows. The change of inlet boundary concentration generates the new 

characteristics with slope ( )' 0
2f φ + , thus making Z4 an uniform solution region ( ( ) 0

2,x tφ φ += ) as 

Z1 and Z3. Since ( )' 0
2f φ +  > ' 0

1( )f φ + , a solution discontinuity (X1(t)) originates  at point (5,0), and 

propagates towards bottom. The slope of X1 follows the jump condition as eq.(4.17):  

( ) ( )0 0
2 1'

1 0 0
2 1

f f
X

φ φ

φ φ

+ +

+ +

−
=

−


At t=t3, X1 reaches the bottom (x=D) as shown in Fig.4.2 (bottom left), and causes a sudden 

decrease of recycling concentration from 1
Dφ + (5406 g/m3) to 2

Dφ + (3755 g/m3). Fig.4.2 (bottom 

right) shows that the recycling concentrations change predicted by MOC solutions (the generally 

increase from 0 to 1
Dφ + (5.406 kg/m3) at time interval (t1 - t2), and the decrease from 1

Dφ + (5.406 

g/m3) to 2
Dφ + (3.755 g/m3) at t3 ) matches the experiment data very well.  
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Fig.4.2 - Top: flux and auxiliary functions of the first underloading operation (left); flux and 
auxiliary functions of the second underloading operation (right). Bottom: MOC solutions of the 
underloading-underloading transients (left); the MOC prediction of the recycle concentration 
compared with the experiment observation (right). 

4.4.2. Underloading-to-overloading 

The SST is filled with liquid as before in the underloading-to-underloading case, thus making the 

initial value as 0. The underloading condition is imposed by continuously feeding the tank with 

the constant ferric hydroxide flow (ϕf=1.28 kg/m3, s1=0.81 kg/(m2h)). Fig.4.3 (top left) shows the 

graphs of flux and auxiliary functions used to construct boundary concentrations. The unique 

inlet boundary concentrations are 0
1φ
+ =0.32 kg/m3 and 0

1φ
− =0 kg/m3, determined by the 
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intersection of ( )0ˆ ;f φ φ + and ( )0;g sφ φ − + (ϕ0+= ϕ0- =0). Solutions are shown in Fig.4.3 (bottom) 

in terms of characteristics and discontinuities. Z1(characteristic slope= ( )' 0
1f φ − ) and Z3 

(characteristic slope= ( )' 0
1f φ + ) are constant solution regions with solutions as 0 kg/m3  and 0.32 

kg/m3  respectively. The expansion wave (Z2) between Z1 and Z3 includes all the concentrations 

between ϕ0+=0 kg/m3  and 0
1φ
+ =0.32 kg/m3, and solutions within Z2 can also be uniquely 

determined by eq.(4.15). The recycle concentration ( Dφ + ) generally increases from 0 to 1
Dφ + (4.9 

kg/m3) after the expansion wave reaches the bottom, and can be calculated by eq.(4.16) as well. 

Therefore, the steady-state boundary concentrations are: the inlet boundary 0
1φ
+ =0.32 kg/m3 and 

0
1φ
− =0 kg/m3; the bottom boundary 1

Dφ + =4.9 kg/m3 and 1
Dφ − =0.32 kg/m3.  
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Fig.4.3 - Top: flux and auxiliary functions of the first underloading operation (left); flux and 
auxiliary functions of the second overloading operation (right). Middle: MOC prediction of 
sediment interface compared with the experiment observation (left); the MOC prediction of the 
recycle concentration compared with the experiment observation (right). Bottom: MOC solutions 
of the underloading-overloading transients. 

At t=5 h, the tank is overloaded by increasing ϕf  to 1.435 kg/m3 (s2=1.22 kg/(m2h)). The 

intersection of ( )0
1

ˆ ;f φ φ + and ( )0
1;g sφ φ − + indicates that the inlet boundary concentrations 

changes to 0
2φ
+ = 0.62 kg/m3 and 0

2φ
− =0 kg/m3, see Fig.4.3 (top right). Since ( )' 0

1f φ + > ( )' 0
2f φ + , 

both Z4 and Z5  in Fig.4.3 (bottom) are expansion wave regions, at which solutions can be 

determined by eq.(4.15), but they differ in the recycling concentration ( Dφ + ) change. Similar as 
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Z2, Z4 causes the recycle concentration increase from 1
Dφ +  to 2

Dφ + (6.0 kg/m3). However, at t=t1 

(6.32 h), when Z5 reaches the bottom, instead of continuously increasing the recycle 

concentration, a contact discontinuity (X1(t)) , emanates from point (D,t1), and propagates 

towards the inlet (x=0). Therefore, after t1, the recycle concentration remains as 2
Dφ + (6.0 kg/m3). 

The solution below X1 increases from ϕI to 2
Dφ − , and the solution above X1 increases from ϕL (the 

smaller solution of f(ϕ)=f( 2
Dφ − ) ) to 0

2φ
+ as Fig.4.3 (top right) shows. Complete analytical solution 

construction requires the determination of the formula of X1(t), the most significant but also most 

challenging task. Denote 1Xφ − ( 1 0
2

X
Lφ φ φ− +≤ ≤ ) and 1Xφ + ( 1

2
X D

Iφ φ φ− −≤ ≤ )as the left and right 

solution limits at discontinuity X1, which satisfy eq.(4.18): 

( ) ( ) ( )1 1

1

1 1

'
X X

X
X X

f f
f

φ φ
φ

φ φ

+ −
+

+ −

−
=

−
                                                                                                  (4.18) 

Starting from (6.23,1.83), X1 (t) can be defined  by eq.(4.19): 

( )
( ) ( )

1

1

'1

1 '

( ) 0
5

X

X

X t f
t

dX t
f

dt

φ

φ

−

+

−
=

−

=

                                                                                                                (4.19) 

Since ( )1' Xf φ +  can be approximated as a linear function of ( )1' Xf φ − with R2=0.998, as Fig.4.4 

(left) shows, the formula of X1(t) can be determined by the following procedure: 

( ) ( ) ( )

( ) ( )

0.1235
11 1

0.1235
1

0( ) 5 0.208 ( 5)0.1235 0.1823
5 (1.83 6.23)

2.0332 5 0.208 ( 5)

X tdX t X t t t
dt t

X t t t

λ− = ∗ − − ∗ −= ∗ − ⇒
−

= ∗ − −

 ⇒


⇒ ∗ −

，  
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At (1.808,6.853), the intersection of X1 and characteristics emanating at (0,5) with slope ' 0
2( )f φ + , 

X1 is replaced by the discontinuity X2, which emanates tangentially from X3. The formula of X2 

can be easily determined as ( ) '
2 1 2 2 2( ) ( ) 1.808, 6.853X t X t t t t= ∗ − + = . Z6 is a constant solution 

zone with ( ) 0
2,t xφ φ += . The solution in Z7 is determined by characteristics emanate tangentially 

from X1, and for any point (
7 7z zx t， ) in Z7, the corresponding tangent point (X1(t*), t*) can be 

determined by eq.(4.20): 

( )
7

7

*
1' *

1 *( ) z

z

x X t
X t

t t
−

=
−

                                                                                                                 (4.20) 

To accurately solve eq.(4.20), numerical techniques, for example Newton's method (Traub 1964), 

are needed to solve nonlinear equations. And then, the solution at (
7 7z zx t， ) is solved based upon 

eq.(4.21): 

( )( ) ( )
7 7

' ' *
1z zf x t X tφ =，                                                                                                            (4.21) 
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Fig.4.4 - Approximating ( )1' Xf φ + as a linear function of ( )1' Xf φ −  in underloading-overloading 

transient (left); approximating ( )'f ε as a linear function of ( )3' xf φ +  in overloading-

underloading transient (right). 

Fig.4.3 (middle left) demonstrates the accuracy of MOC solution in sediment interface (solution 

discontinuities) prediction by comparing with experiment data. MOC solutions can also capture 

the change of recycling concentration as shown in Fig.4.3 (middle right). However, the recycling 

concentration (6.0 kg/m3) predicted by MOC solution in overloading condition is smaller than 

the experiment observation (6.6 kg/m3). This incongruity can be attributed to the fact that the 

coning effect (onset of coning at the bottom of tank increases the recycling concentration but not 

greatly impact continuous settling behavior) and compression effect (compression effect caused 

by the sediment with high solids concentration produces a more concentrated recycling flow) are 

magnified in overloading condition, which is not considered in the ideal continuous settling 

model.  

4.4.3. Overloading-to-underloading 

Since settling characteristics of solids in the overloading-underloading transient cannot be 

adequately described by the collected batch settling data (Tracy 1973, George and Keinath 

1978) , the measured sediment interface level and recycle concentration data can be no longer 

used to test the MOC solution accuracy. In this case, the Vesilind parameters remain the same, 

and the tank operating parameters are given by Table 4.2. 

To simplify the overloading problem analysis, the initial concentration is assumed to be the 

constant ϕ0 (0.94 kg/m3) which determined by eq. (4.22) in the thickening zone, and the constant 

ϕ0 (0 kg/m3) in the clarification zone, which means the overloading will cause a sludge blanket 
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rise in the thickening zone as time progresses, but no clarification failure in the clarification zone. 

( ) ( )
0 1

e u
f

Q Q
f s

A
φ φ

+
= =                                                                                                           (4.22) 

Similarly,  the inlet boundary concentrations are determined by the intersection of ( )0ˆ ;f φ φ + and 

( )0;g sφ φ − + as 0
1φ
+ =0.94 kg/m3 and 0

1φ
− =0 kg/m3, as Fig.4.5 (top left) shows. It is noticeable 

that since ϕ0= 0
1φ
+  ( ( ) ( )' ' 0

0 1f fφ φ += ), Z1 is a constant solution zone with the solution as 0
1φ
+

(0.94 kg/m3), and the contact discontinuity X1 emanates from bottom at t=0 h, and propagates 

towards the inlet as a straight line. Denote the left and right solution limits of X1 as 1Xφ − and 1Xφ + . 

1Xφ − equals to 0
1φ
+ ,  and 1Xφ + can be determined by eq.(4.23) (Ballou 1970, Diehl 2000): 

( ) ( )1

1

1

0
1'

0
1

( )
X

X
X

f f
f

φ φ
φ

φ φ

++
+

++

−
=

−
                                                                                                    (4.23) 

Therefore, the formula of X1 is X1= 1' ( )Xf φ + *t+1.83. Below X1, the concentration increases from 

1Xφ + to 1
Dφ − , and the recycling concentration remains as 1

Dφ + (4.98 kg/m3) until t2, as shown in 

Fig.4.5 (bottom).  
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Fig.4.5 - Top: flux and auxiliary functions of the first overloading operation (left); flux and 
auxiliary functions of the second underloading operation (right). Bottom: MOC solutions of the 
overloading-underloading transients. 

At t=10 h, the operating condition is changed to underloading, and correspondingly, the inlet 

boundary concentrations change to 0
2φ
+ (0.45 kg/m3) and 0

2φ
− (0 kg/m3), as Fig.4.5 (top right) 

shows. Since ( )' 0
2f φ +  > ' 0

1( )f φ + , a solution discontinuity (X2(t)) originates at point (0,10), and 

propagates towards bottom. The formula of X2 is X2(t)= '
2X *(t-10), where  
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( ) ( )0 0
2 1'

2 0 0
2 1

f f
X

φ φ

φ φ

+ +

+ +

−
=

−
                                                                                                              (4.24) 

Z2 is a constant concentration zone with the solution of 0
2φ
+ . At t=t1 (10.83 h), the interaction of 

X1 and X2 at (1.1, 10.83) generates the third discontinuity X3(t). Denote the left and right solution 

limits of X3 as 3Xφ − and 3Xφ + . 3Xφ − equals to 0
2φ
+ , while 3Xφ +  is in the range of ϕI and 1

Dφ − . X3(t) is 

governed by eq.(4.25): 

( ) ( ) ( )

( )

3 3

3 3

3

'3

'3

( )

( ) 1.83
0

X X

X X

X

f fdX t f
dt

X t f
t

φ φ
ε

φ φ

φ

− +

− +

+

−
= =

−
−

=
−

                                                                                          (25) 

where ε is between 3Xφ − and 3Xφ + . Fig.4.4 (right) shows that ( )'f ε can be approximated as a 

linear function of ( )3' Xf φ +  with R2=0.9889.  Hence, the formula of X3 can be determined by the 

following procedure: 

( ) ( )

( )

2

33 3 0.3004

1.3004 2.3004

3 1.3004

1.83 0.06321.83( ) 0.3004 0.0822
0 (1.110.83)

2.8113* 1.83 0.0632

t tX tdX t X t
t tdt t

t t tX t
t

λ∗ + ∗− = +
= − ∗ + ⇒

−

− + ∗ + ∗
=


 ⇒


⇒

，  

The solution in Z3 can be determined by solving eq.(4.26) : 

( )( ) 3

3 3

3

' 1.83
,

0
z

z z
z

x
f t x

t
φ

−
=

−
                                                                                                       (4.26)                                                                                      
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4.5. Convergence analysis and efficiency comparison of numerical methods 

Although MOC has been successfully implemented to develop analytical solutions, as shown 

previously, its application as an alternative solution technique in commercial simulators remains 

as a challenge for two reasons: 1). the model formula cannot always be expected to have 

analytical solutions, especially when it is extended to capture more physical phenomena, such as 

the hydrodynamic dispersion and the compression effects; 2). MOC's theoretical complexity 

requires considerably more effort to implement in engineering practice. Therefore, numerical 

solution techniques are often needed to provide accurate results. 

Applied mathematical investigations have led to several alternative numerical methods, 

represented here by Method G based on the Godunov numerical flux (Jeppsson and Diehl 1996, 

Diehl and Jeppsson 1998), Method EO based on the Engquist-Osher numerical flux (Bürger et al. 

2005), and Method YRD, a total variation diminishing (TVD) method based on flux-limit 

technique (Li and Stenstrom 2014a). All these numerical methods are expected to be reliable, 

which means they produce approximate solutions that converge to the exact solutions as the 

discretization is refined (Bürger et al. 2012). However, due to the difficulty of proving 

convergence, only the convergence of Method EO has been proven by Bürger et al. (2005). An 

approach to evaluating the accuracy of the other methods is to use solutions generated by solving 

the model formula with Method EO at extreme high discretization level, such as 2430-layer 

(Bürger et al. 2012) and use this as the reference for other solutions. The successful 

implementation of MOC, in this study, provides another alternative approach of using analytical 

solutions as reference solutions.  
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Since the convergence of Method EO has already been proven, we did not include it in the 

convergence test, but added another alternative method: Method SG (simplified Godunov), 

which was originally proposed by Bürger et al. (2012, 2013). As the name implies, Method SG is 

derived from Method G, and eq. (4.27) compares methods G and SG, for the thickening zone.  
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                                                                             (4.27) 

where i is layer index; FG is the Godunov numerical flux; FSG is the simplified Godunov 

numerical flux. As can be seen, both of Method G and Method SG are based on Godunov 

numerical flux, but differ in the numerical flux application: Method G applies the Godunov flux 

to the total flux, while Method SG applies the Godunov flux only to the nonlinear settling flux 

(vsϕ); the linear bulk flux (vuϕ) is unchanged. This adjustment leads to a simplification in 

determining the local extrema: Method G, Method EO, Method YRD require keeping track of 

two local extremum of the total flux function, which may vary with the change of underflow rate, 

while Method SG only requires the determination of only one local extrema that does not vary 

with underflow rate, thus making Method SG easier to implement with the algorithm given by 

Bürger et al (2013).  

To evaluate convergence, various model outputs have been obtained using a reliable solution 

technique, which are then used as a reference solution. For example, Bürger et al. (2012) used 

the concentration profile from Method EO to validate Method G. In this study, the sludge blanket 

level is selected for comparison for two reasons: 1). sludge blanket level is one of the most 
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significant model outputs for system robustness evaluation; 2). the shock path (sludge blanket 

level) function developed by MOC can be directly applied to test the shock capturing accuracy, 

generally the most challenging task in a numerical solution. The spatial and time steps are same 

for all three methods, and the discretization level starts at 40-layer as Jeppsson and Diehl (1996) 

recommended. Solutions of the underloading-overloading scenario (scenario 1) and overloading-

underloading scenario (scenario 2) as shown in Table 4.2 are solved with Methods SG, G and 

YRD to demonstrate and compare their convergences.  

The sludge blanket levels for both loading conditions at discretization levels of 40, 100 and 200-

layer by Methods SG, G and YRD are shown in Fig.4.6, and compared with the MOC solution. 

As can be seen, all these three methods are able to track the change of the sludge blanket level 

regardless of the discretization level. For each method, the approximate solution for 40-layer 

deviates most from the reference, but as the discretization increases (increasing number of 

layers), the approximate solutions converge to the reference solutions, as demonstrated. The 

convergence rate with increasing discretization is rapid at first, but greatly decreases as the 

number of layers approaches 500, which is most evident in the Method SG simulation results.  

Even though Fig.4.6 qualitatively shows that all three methods are able to converge to  reference 

solutions, at least in these two scenarios, it does not mean they are equally efficient in practical 

engineering applications. An efficient numerical method is defined as high in approximation 

accuracy and low in computation cost. To further quantify the efficiency of these three 

alternatives, computation cost is characterized by the required CPU time, and accuracy is 

evaluated using the error measurement defined in eq.(4.28) 
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( ) ( ) ( )
1
( / )

m
N R R
j j j

j
h

h t h t h t
e

m
=

−
=
∑

                                                                                              (4.28)  

where eh  is the averaged relative error in sludge blanket level; j is the time index; m is the overall 

time step used; h denotes the sludge blanket level; N is the discretization level, and R denotes the 

reference solution. The amount of required memory can also be important in defining efficiency, 

but it is not important in this case since the needed memory can be provided by a typical desk top 

computer. 
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Fig.4.6 - Comparison of solution convergences for Methods SG, YRD and G (top to bottom, 
respectively) for the two cases of under loading-to-overloading and overloading-to-under loading 
(left to right, respectively) at N=40,100,200. 

Fig.4.7 (left) shows the eh change with increasing discretization, and quantitatively confirms the 

conclusion made previously that for these three methods, increasing discretization can effectively 

improve the quality of numerical solutions, but yields diminishing returns when using a large 

number of layers. Method YRD shows the most relative improvement with increased number of 

layers, but its absolute accuracy is much greater that Method G and SG for any fixed N. For 

example, Method YRD using 40-layer has approximately the same accuracy as Method G using 

200-layer and much more accurate than Method SG using 200-layer. This difference in accuracy 

can be attributed to the fact that Method YRD possesses second-order accuracy in both smooth 

and discontinuous regions, while Method G is first-order accurate. At the same discretization 

level, Method SG can be no more accurate than Method G because the simplification in 

numerical flux that facilitates implementation results in increased numerical errors (Bürger et al. 

2012, Li and Stenstrom 2014a). 
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Fig.4.7 - Errors of the underloading-overloading transient simulation at various layer numbers 
(left); CPU times of the underloading-overloading transient simulation at various layer numbers 
(right). 

Nevertheless, Method YRD's error reduction is at the cost of more computation, which is 

quantitatively indicated by the increase of CPU time shown in Fig.4.7 (right); less CPU time 

means fewer computations and faster simulations. Method SG produces approximations faster 

than the other two methods for any given N. If CPU time is further approximated as a linear 

function of the discretization, the rate of computation increase for Method YRD, Method G and 

Method SG  is 0.31 s/layer, 0.22 s/layer, 0.07 s/layer, respectively, which implies that Method 

YRD requires much more computations than the other two. For example the computation cost of 

Method YRD at 100-layer equals to it of Method G at 197-layer and Method SG at 475-layer. It 

seems that we might be able to continuously refine the discretization of Method G and Method 

SG to make them as accurate as Method YRD in numerical calculation but with the same or even 

less computation cost. Nevertheless, this strategy is questionable for two reasons: 1) 

continuously refining discretization requires smaller time steps to guarantee calculation stability, 

which may invalidate the observed linear relations and make the real computation cost much 
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more than the predicated one; 2) as shown in Fig.4.6 (left), the rate of error decrease with 

increasing discretization decreases.  Methods SG and G will require greater levels of 

discretization to obtain a specified accuracy. The choice of method will depend upon the 

required accuracy and the availability of computing resources.  

 

Fig.4.8 - Efficiency lines (error vs.CPU time) of Methods SG, G and YRD for different layer 
numbers. 

Fig.4.8 shows the efficiency line of each method based Fig.4.6. If the computation cost is the 

priority (CPU time < 20s), Method G and Method SG can be the only two alternatives, and 

Method G is more efficient than Method SG as its efficiency line lies below that of Method SG. 

However, if the accuracy is the priority (eh<10-1), Method YRD is the most efficient one regard 

less of its high implementation complexity. The implementation complexity (complexity of the 

computer code) of the three methods cannot be included in Fig.4.8, since it is difficult to quantify. 

Based on our knowledge, more accurate calculation of the numerical flux usually complicates 

implementation; the simplification of the Godunov numerical flux calculation makes the 

implementation of Method SG much easier than it of Method G, while the flux limited technique 
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used in Method YRD to ensure a second-order accuracy can greatly increase the implementation 

complexity.  

4.6. Conclusion 

Accurately solving the ideal continuous settling model is challenging because of solution 

discontinuities. As the only available method for analytical solution development of ideal 

continuous settling model, the method of characteristics has been successfully implemented to 

investigate the dynamics of SST for three typical solids loading transients: underloading-

underloading, underloading-overloading and overloading-underloading. The comparison of 

experiment continuous settling data and MOC solutions demonstrates that the ideal continuous 

settling model solved by MOC can accurately predict the recycle concentration and sediment 

interface change at various operation conditions. However, because of the complexity of 

implementing MOC, further studies are required to develop more efficient implementation 

strategies.  

To avoid the complexity of MOC, alternative solution techniques are available but have not been 

extensively verified as to convergence and efficiency. By using the MOC solution as reference, 

the convergence analysis of Methods SG, G, and YRD shows that all are reliable, since they are 

able to provide arbitrary close approximations to the reference solutions as discretization is 

refined. An efficiency comparison based upon three completing principles: easy implementation, 

high accuracy and low computation cost is provided. For a given discretization level, Method 

YRD is most efficient in reducing error, and provides the most accurate approximations. 

However, this advantage of high accuracy of Method YRD is at the cost of larger computation 

time and coding complexity when compared with Methods SG and G. The simplified numerical 
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flux calculation technique used in Method SG increases error, but greatly reduces the coding 

complexity and computation cost. Method G performs well in both accuracy and computation 

cost comparisons. Therefore, the selection of the most desirable numerical solution technique 

depends on the ease of implementation, accuracy and computation cost.  
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5. Dynamic 1-D modeling of SSTs and design impacts of sizing decisions 

5.1. Introduction 

Biological secondary treatment processes are widely used in wastewater treatment plants to 

remove organic matter and reduce nutrients such as nitrogen and phosphorus. In all cases, 

efficient operation requires the sludge to be removed from the wastewater by sedimentation, 

filtration or other solids-liquid separation processes. 

For sedimentation to be successful, the biomass must be composed of large particles or flocs, 

which have sufficient settling velocity to be removed in a settling tank of manageable size. To 

achieve this goal, it is necessary to grow the biomass to select floc-forming organisms as well as 

understanding solids-liquid separation processes (Parker, et al. 2004).  

Several types of treatment processes can achieve the solids-liquid separation, but secondary 

settling tanks (SSTs) are most commonly used. SSTs, also known as sedimentation basins or 

solids-liquid separators, use gravity to separate the biomass from the fluid, and have two similar 

but distinct functions: clarification and thickening. Clarification is the removal of finely 

dispersed solids from the liquid to produce a low turbidity effluent; Thickening is the process of 

increasing the sludge concentration in order for it to be recycled or disposed in less volume. In 

SSTs, the clarification process occurs in the upper zone while thickening occurs near the bottom. 

The result is an effluent from the top, low in suspended solids, and a second stream of settled, 

concentrated solids from the bottom, suitable for recycling or disposal.  

As one of the most important units in wastewater treatment process, the SST is often a “bottle 

neck,” limiting the capacity of the wastewater treatment process (Ekama et al. 1997b, Ekama and 
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Marais 2002b). The SST sizing must be combined with the bioreactor sizing to guarantee the 

minimum necessary performance to meet the design basis, as well as maintaining required 

efficiency for contaminant removal. If the SST does not remove solids from the effluent, or fails 

to produce a recycle stream, process failure occurs with effluent permit violations and loss of 

biomass from the reactor. Therefore, two commonly used parameters: overflow rate and solids 

flux, have been developed for SST design and evaluation.   

Nevertheless, given the fact that the wastewater characteristics vary, such as flow rate and 

contaminant concentrations, traditional design procedures for SSTs tend to be more empirical 

and conservative by introducing averaged parameters with safety factors (Coe and Clevenger 

1916). Therefore SST performance can suffer unanticipated fluctuations, which may cause 

process control problems and increase the risks of failure. Stringent standards for effluent quality 

and the need for optimization of WWTP performance have made such variations in effluent 

quality undesirable, and have encouraged the use of dynamic controls for wastewater treatment 

process. For the purpose of developing such an automatic control system to provide consistent 

effluent water quality, great effort has been made to create accurate mathematic descriptions of 

wastewater treatment process (mathematical models), and the one-dimension (1-D) SST model 

for predicting the time dependent responses to transient process inputs of SSTs is a good 

example.  

1-D SST models, based on solids-flux theory (Kynch 1952), describe sludge transport by a scalar 

conservation partial differential equation (PDE). Although many 1-D SST models are available 

and some of them, especially Takács model (Takács et al. 1991), have been widely utilized in 

engineering practice, the predication of the sludge settling characteristics and concentration 
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profiles in and out of a SST is still far from satisfactory.  

The presently available 1-D models are highly dependent upon empirical equations to express 

clarification, thickening and compaction process and these equations or functions can be an error 

source that can profoundly affect simulation results. A second challenge is the difficulty of 

making full-scale measurements in working SSTs that has caused a lack of data sets for model 

calibration and verification. As a consequence, further research is still needed to improve the 

performance of the 1-D model. 

The first goal of this chapter is to review the previous, major developments in SST design and 

analysis to show how they have been used to develop 1-D models. The second goal is to review 

the 1-D models especially with regard to the numerical methods used to solve the resulting PDE, 

and to provide an improved method for solving the PDE. The final goal is to show how the 1-D 

model can be used in the design process to better understand the interaction between bioreactor 

and SST, particularly with regard to dynamic inputs, such as the time-to-failure after a shock 

load or appearance of filamentous bulking organisms.   

5.2. Background 

5.2.1. Flux theory and state point analysis 

As theoretical foundations of solids-liquid separation, flux theory and state point analysis are 

widely used in SST studies, such as SST design, capacity analysis, and optimizing daily 

operations. For the purposes of quantifying biosolids settling characteristics, the starting point of 

both flux theory and state point analysis is usually the batch settling test. Table 5.1 lists the major 

contributors to solids flux theory and shows that Coe and Clevenger (1916) performed one of the 
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earliest batch settling studies. Their major contribution was a comprehensive method to 

understand and utilize batch settling test results, and confirm SSTs’ limited capacity in 

clarification/thickening, now known as limiting flux theory.  

Because of the difficulty in analyzing the details of forces on particles during sedimentation, a 

complete theoretical analysis of solids settling cannot be completed.  Though Coe and 

Clevenger’s method was widely accepted, it was still considered an empirical rather than a “first-

principles” analysis. One of the most well-known theoretical analyses was given by Kynch 

(1952), also shown in Table 5.1. Kynch approached the problem by introducing a simple but 

critical assumption that hindered settling velocity is only determined by the local solids 

concentration, thus making the solids concentration the dominant factor in sedimentation 

processes. The solids transport then can be calculated using mass flux ( sv CΦ = , a function only 

related to C), which is the rudiment of flux theory. Therefore, the batch settling process can be 

mathematically expressed as a continuous function based on scalar mass conservation law:  

( ) 0sv CC
t z

∂∂
+ =

∂ ∂
                                                                                                                                                (5.1) 

Talmage and Fitch (1955, 1962) interpreted Kynch’s result by suggesting the slope of the tangent 

to the interface subsidence curve of a batch settling test was equal to the settling velocity of the 

layer with the same solid concentration. Their experimental results matched Kynch’s theory.  

However, one remaining question in flux theory was whether the free settling velocity obtained 

in laboratory scale batch settling conditions can accurately represent the observed velocity in the 

full-scale continuous SSTs, since batch settling can be affected by various factors, such as the 

size of cylinders, wall effects, the non-uniform shape and size particles. Dick et al (1967, 1970) 
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compared batch settling processes with similar initial concentrations in different sized cylinders, 

and recommended using a slow speed mixer to offset the wall effect and reduce lag time. Tory 

and Shannon (1965) investigated the non-uniform shape and size problem by using Gaussian 

distribution spheres, and found that zone settling was independent of particle shape and size. 

Yoshioka et al (1957a) and Hassett (1958) independently developed two widely accepted 

graphical methods of analyzing batch flux data on the basis of flux theory. The former plots the 

gravity flux only, while the later shows on both gravity and total fluxes. However, both of them 

use batch test results for continuous settling predication, such as underflow solids concentration 

and limiting flux, thus making the SST performance predictable. 

One of the most well known concepts in flux theory is a limiting flux that is normally used to 

estimate SST solids handling capacity. Thickening and clarification failure may occur when the 

solids loading flux exceeds the limiting flux, which can be caused by either hydraulic shock 

loading or deterioration of settling characteristics. Keinath (1985) extended flux theory, creating 

what has become known as state point analysis, by integrating clarification requirements into the 

flux diagram. State point analysis considers feed flow rate, underflow rate and feed solids 

concentration, and is now routinely used for operation analysis of activated sludge systems and 

solids inventory control strategies. Table 5.1 summarizes the major advances of these pioneering 

studies and summarizes the contribution of each researcher.  
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Table 5.1- Major contributions to SST behavior analysis and comments. 

Author Major contribution Comments 

Coe and 

Clevenger (1916) 
Conducted one of the earliest batch settling tests and developed a comprehensive 

method to understand and utilize batch settling results. 

Their work connected batch settling tests and continuous settling study, and 

had a profound impact on the SST studies for the first half of the 20th century. 

Kynch (1952) Assumed that gravity settling velocity is only determined by the local solids 

concentration, and mathematically expressed the mass conveyance as a partial 

differential equation (PDE). 

The velocity assumption made the settling process mathematically 

describable, thus greatly improving the understanding of solid-liquid 

separation. 

Talmage and Fitch 

(1955) 
Suggested the slope of the tangent to the interface subsidence curve of a batch 

settling test was equal to the settling velocity of the layer with the same solid 

concentration, and developed a procedure to obtain the settling velocity information. 

It was one of the earliest ramifications of Kynch theory, and the batch settling 

velocity can be easily determined. The accuracy of this procedure was highly 

depended on the determination of the compression point. 

Yoshioka et al 

(1957) Hassett et 

al ( 1958) 

Independently developed two widely accepted graphical methods of analyzing batch 

flux data (the gravity flux and bulk flux), and the flux analysis was related to a 

concentration profile in SST. 

Both are convenient methods to estimate several significant parameters, such 

as underflow solids concentration and limiting flux, therefore making the SST 

performance predictable. 

 Shannon and Tory 

(1965) Dick et al 

(1967 )   

Recommended using a slow speed mixer to offset the wall effects and to reduce lag 

time, and showed that the batch settling results were independent to the initial 

settling height, the particles’ shape and size. 

Since the free settling velocity obtained in batch settling tests can represent 

the observed velocity in full-scale continuous SST, the batch settling results 

can be used as reference of continuous SST deign and control. 

Keinath (1985) Extended the flux theory to the state point analysis, a comprehensive analysis of the 

relationships among various operating parameters (MLSS, overflow rate, underflow 

rate et al) 

The state point analysis provided a fundamental description of solids handling 

characteristics of the SST, and could be used to develop effective SST control 

strategy and optimize its performance. 
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Nomenclature V bioreactor volume [m3] 

A cross-sectional area of SST [m2] v0, max Takács settling parameter [m/h] 

C sludge concentration [g/m3] vs hindered settling velocity [m/h] 

Cmin non-settleable solids concentration [g/m3] t time [h] 

CT total ASP cost [dollar] z height above SST bottom [m] 

G flux [g/(m2h)] Greek letters 

Gs gravity settling flux [g/(m2h)] Φ flux [g/(m2h)] 

h SST inlet depth [m] Φl limiting flux [g/(m2h)] 

H SST depth [m] µ/Y F/M ratio ((kg BOD5/kg MLSS) d-1) 

Hs Sludge blanket level [m] Subscripts 

n Veslind settling parameter [m3/kg] e effluent 

Q flow rate [m3/h] f feed 

rh Takács settling parameter [m3/kg] i index of model layer 

rp Takács settling parameter [m3/kg] in incoming 

Rc relative cost coefficient u underflow 

S biodegradable substrate concentration [g/m3] w waste 

v settling velocity [m/h] Superscripts 

v0 Veslind settling parameter [m/h] n index of time 
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5.2.2. Modeling of continuous settling process 

The previous discussion traced the development of flux theory for SSTs and all the analyses 

were steady state analysis. To extend these results to more realistic conditions, a dynamic 

procedure is needed. Considerable efforts have been made to develop dynamic models to better 

understand and predict SST performance. Bryant (1972a) improved Kynch’s batch continuity 

equation by adding extra terms to simulate the bulk mass thickening near the SST bottom and 

established the following fundamental model structure:  

( ) 0s
u

v CC Cv
t C z

∂∂ ∂ + + = ∂ ∂ ∂ 
                                                                                                                             (5.2) 

However, Bryant realized that the eq. (5.2) cannot predict a limiting flux and solids overloading 

condition without proper PDE solver.   

Tracy (1973) developed an inventory model by dividing the SST into clarification, dilution, 

thickening, and compression zones. Tracy adjusted the volume of each zone to conserve mass 

and adhere to the limiting flux by using solids concentrations calculated from Hasselt’s flux 

graphing method. The utility of his model is the ability to simulate overloading by adjusting the 

thickening zone volume to represent sludge blanket level rise as a function of solids overloading, 

and even predicting time-to-failure with continued overloading. The limitation of this model is 

its inability to dynamically change concentrations in each zone as a function of hydraulic 

changes. It is interesting to note that Tracy never actually solved eq. (5.1) or (5.2). 

Stenstrom (1976b) modified Bryant’s model eq.(5.2) in order to make it conform to the 

limitations of solids flux theory by using an empirical constraint eq. (5.3) on gravity settling flux.  
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                                                                                                                            (5.3) 

He divided the SST into layers or finite differences, and limited the solids flux out of each layer 

into the lower layer. Fluxes were calculated from the batch settling velocity relationship, and an 

upper layer was limited to the flux that the lower layer could pass. The constraint, while based on 

a physical concept, does have a theoretical basis, since it satisfies a mathematical principle called 

‘consistent’, which means the numerical flux should be a function related to adjacent layers 

instead of the local single layer (Bürger et al. 2011). Vitasovic (1986b) found this constraint may 

cause oscillations at low concentrations, and recommended to setting a threshold concentration 

below which the constraint is not active. He chose 3,000 g/m3 and noted the value is site specific. 

The best well-known work using Stenstrom and Vitasovic’s work is the Takács model (Takács et 

al. 1991), which has become the most widely used 1-D SST model. 

Although the studies discussed above have partially solved the one-dimension SST modeling 

problem, the increasingly strict standard for WWTPs stability and reliability calls for efforts to 

provide more accurate and practicable continuous models; and approaches to improve model 

quality can be identified into two categories: improvements to the numerical solution technique, 

and more accurate description and implementation of the sedimentation mechanism.  

The settling model, a typical nonlinear hyperbolic PDE, is not easy to solve because of possible 

solution discontinuities, which are difficult to detect. Authors (Jeppsson and Diehl 1996, David 

et al. 2009a, Bürger et al. 2011) have discussed better methods for providing more reliable 

solutions of eq. (5.2).  

In addition to the gravity and hydraulic flux, other effects can also influence continuous settling 
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process: for example dispersion, compression, density currents and short-circuiting. Several 

approaches now are available to estimate possible impacts. Dispersion is usually modeled by a 

second-order dispersion term (Watts et al. 1996, Plósz et al. 2007, Bürger et al. 2011), and 

compression is caused by solid-solid and solid-water interaction in a high concentration zone, 

and modeled by the second-order compression term (De Clercq et al. 2008). Usually, 1-D models 

have difficulty in accounting for hydraulic flow impacts, but the density current and short-

circuiting are predictable with inlet height and feed flow rate adjustment (Dupont and Dahl 1995). 

5.3. Model improvement 

5.3.1. Model structure development 

The SST is idealized as one dimension with constant cross-sectional area, no net organism 

growth, no density currents and no short-circuiting. Therefore the SST feed solids concentration 

can be assumed to equal the bioreactor solids concentration.  

Other effects, such as dispersion and compression affect SST performance, but modeling them 

can greatly increase the model’s complexity. Therefore, to maintain the model complexity at a 

reasonable level for practical application, in this study, the model mathematic expression is 

determined, giving 

( ) 0s ev C v CC above the inlet layer
t z

∂ −∂
+ =

∂ ∂
                            (5.3)

( )s u e
f f

v C v C v CC v C the inlet layer
t z

∂ + −∂
+ =

∂ ∂
                                                            (5.4)                    

( ) 0s uv C v CC below the inlet layer
t z

∂ +∂
+ =

∂ ∂
                                                      (5.5)                       
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A relationship between the C and vs is required. Based on Kynch’s settling velocity assumption 

(Kynch 1952), two commonly used functions are Vesilind’s equation (Vesilind 1968a) and the 

double-exponential equation (Takács et al. 1991): 

0 e nC
sv v −=                                                            (5.7) 

( )( )( )minmin ( )( )
0,max 0max 0,min , ph r C Cr C C

sv v v e e− −− −= −
                                                                               

(5.8) 

Both of equations are suitable in hindered settling zone, while Vesilind’s equation may 

overestimate the settling velocity at low solids concentration (Li and Ganczarczyk 1987, David 

et al. 2009a). Therefore, the double-exponential formulation is used in this study. 

The sludge settling velocity parameters are site specific and depend upon the condition of the 

biomass (i.e., filaments or no filaments, etc). For this chapter, the data collected by Stenstrom 

(1976b) and Tracy (1972) were used. The measurement error has been checked to be Gaussin 

and uncorrelated. Therefore, the estimation used the Levenberg–Marquardt algorithm (More 

1978a). The results are shown as normal sludge in Table 5.2. 

For most situations where an SST is overloaded, the limit occurs because of the rise of the sludge 

blanket in the hindered settling zone, which is less than the gel point concentration. Compression 

settling only occurs near the SST bottom region, which can impact the sludge blanket level rise 

and sludge recycling. However, the rise in the compression zone usually does not limit operation. 

In cases where more thickening is involved, such as with gravity thickeners, modeling this 

compression zone will be more important. Notice that the major improvement of this model is 

the use of reliable numerical techniques, and the solids settling description still follows the 

double-exponential formulation, which is not designed for compression settling modeling. 
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Several researchers (Buscall and White 1987, Cacossa and Vaccari 1994, Bürger 2000, Kinnear 

2002, De Clercq et al. 2008, Gladman et al. 2010b) have studied the compression zone, and 

provided approaches and guidance for modeling two-phase flow and compression settling. 

5.3.2. Numerical discretization and integration 

The first-order nonlinear hyperbolic PDE mathematic structure can produce numerical 

discontinuities during the calculation. However, computing these discontinuities generates severe 

challenges, since numerical oscillations may occur near the discontinuous point.  

Though great efforts have been done to improve model solution accuracy, problems still remain. 

For example, when using the flux constraint (Stenstrom, 1976) the result is sensitive to the 

number of discretization layers used in the model, and can cause numerical oscillation at low 

concentrations; Both Godunov’s first-order method and Engquist and Osher’s upwind method 

routinely treat every part of numerical solutions same, regardless of how these solutions behave, 

thus causing a sharp tradeoff between accuracy and stability.  

In this study, the SST model is improved by introducing a second-order accurate total variation 

diminishing (TVD) numerical technique- the Yee-Roe-Davis scheme (Yee et al. 1990), which is 

specifically designed for the scalar conservation law solving. To capture the solution 

discontinuity and avoid oscillation across the shock, the solution difference calculation and flux 

limiter technique are used. For smooth region, the solution difference can be very small, while it 

can be relative large through the shock. And instead of the straightforward discretization, the flux 

limiter is used to satisfy the nonlinear stability condition. Eq. (5.9) is used as the flux limiter in 

this study. 
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( )1 1, minmod(1, , )i i i ir r r rφ + − + −
+ +=                                                                                                    (5.9) 

where  

1 1

1 1

,
n n n n
i i i i

i in n n n
i i i i

C C C Cr r
C C C C

+ −− +

+ −

− −
= =

− −
                                                                                                  (5.10) 

The explicit Yee-Roe-Davis flux limited scheme is  

( )1
1/2 1/2

n nn n
i ii i

tC C G G
z

+
+ −

∆
= − −

∆
                                                                                                  (5.11) 

where 

( ) ( )( )( )1/2 1 1/2 1/2 1
1 1 1
2 2

n n n n n n n
i i i i i i iG G G a C Cψ φ+ + + + += + + − −                      (5.12)

( )
2 2

, ; , ,
2

a dGa a a a a
dC

δψ δ δ
δ

 +
= < > = 
 

                                                                      (5.13) 

In this study, δ is determined as 10-20. As a solution sensitive technique, the Yee-Roe-Davis 

technique is able to determine what to do in terms of the solution gradient rather than considering 

the solution's stability and accuracy in the same way throughout the entire solution domain. 

Therefore, the improved model can work well at both discontinuity and smooth regions 

simultaneously with small tradeoffs. 

Given the fact that solids concentration depends on two variables (z, t), discretization is required 

for both time axis and spatial axis: the SST is divided into several layers with equal height, 

volume and a uniform concentration within the layer. Specifying the number of layers must be 
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done carefully, because it greatly impacts the calculated concentration profile (Jeppsson and 

Diehl 1996). Sensitivity to the number of layers is a numerical artifact; the solution should be 

independent of the number of layers. Hence, a favorable 1-D model is required to be consistent 

with respect to number of layers. Fig.5.1 shows discretization sensitivity of the improved model 

and Takács model in a solids overloaded simulation. 

 

Fig.5.1 - Typical overloading concentration profiles of different discretization levels.  

(left: the improved model; right: Takács model) 

5.3.3. Numerical solution accuracy 

For the SST modeling, what interests us most is the SSTs’ response to solids overloading, since 

effluent violations are likely to occur with solids overloading. To evaluate sensitivity, we created 

a hypothetical but typical overloading condition (A=100m2, Cf =4000 mg/l), with normal settling 

parameters as shown in Table 5.2. As can be seen from the predicted concentration profiles 

(Fig.5.1), both models are able to detect the sludge blanket propagation regardless of the number 

of layers, but the results diverge with differences in the sludge blanket level, solids concentration 

in each layer and the recycling solids concentration. The Takács model predicts a higher sludge 
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blanket height (~3m), while the improved model has a larger solids concentration in each layer, 

including the bottom layer. Using the Yee-Roe-Davis technique as PDE solver, the improved 

model more accurately predicts the discontinuities at the edges of the blankets. It is also 

important to notice the overestimation of the sludge blanket height (~3 m versus ~2.5 m) that 

may lead to designing for a larger SST area, to accommodate the excessive blanket height.  

Table 5.2 - Parameter sets of ASP design and gravity settling velocity (normal and deterioration). 

Parameter set of ASP design Parameter set of settleability 

Qf 260  Normal sludge Deterioration 

Qe 200 v0,max 20 20 

Qu 60 v0 9.63 9.63 

Sin 300 rp 0.01 0.01 

F/M 0.3 rh 0.00063 0.003 

H 4 Cmin 10 12 

h 2    

 

5.3.4. Layer number sensitivity test 

Fig.5.1 is the solids concentration profile for four different layer-number conditions. Except for 

the case of 10 layers, no obvious differences within each model's results can be observed. Clearly, 

10-layer is not enough for either model. The 10-layer model, especially for the Takács model, 

predicts too much sludge storage within the SST. When the model layer number exceeds 30, the 
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predicted concentration profiles within each model, will be similar.  

5.3.5. Model verification of SST responses to solids flux overloading 

In current engineering practice, the underflow solids concentration and the sludge blanket level 

predications are the two key 1-D SST model outputs, since they are closely related to ASP 

system robustness and contaminant removal efficiency. To further investigate the model 

performance, the data collected by Tracy (1973) in continuous ferric hydroxide suspension 

settling is introduced for both the Takács model and the improved model verification. The 

response of the height of the sludge blanket level and the predicted and actual underflow solids 

concentration are shown in Fig.5.2. For the sludge blanket level predication, the improved model 

simulation (6.82 cm/h) closely approximates the actual sludge blanket rising rate (6.71cm/h), 

while the Takács model predication is 7.25 cm/h, which agrees well with the conclusion above 

that the Takács model overestimates the sludge blanket level. The underflow solids concentration 

predicted by the Takács model (5850g/m3) is also much smaller than the measured concentration, 

as expected. The improved model provides a steady state value 6480g/m3, which is virtually the 

same as the measured value 6650g/m3, and the underflow concentration change tendency 

predicated by the improved model is more rapid than data. These incongruities can be explained 

by the impact of compression settling. Because of the compression settling impact, the 

thickening process will be retarded during the initial solids overloading period, which can 

accelerate the sludge blanket rise and decelerate the underflow concentration increasing rate. 

However, with the sludge blanket increase, the weight of the overlying sludge in the compression 

zone promotes thickening, which can decelerate the sludge blanket rise but can accelerate the 

increase in underflow concentration.  
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Fig. 5.2 - SST response to step increase in influent solids flux (Data from Tracy, 1973). 

5.4. Practical model application 

5.4.1. Activated sludge process design  

Mathematic models including ordinary differential equations (ODEs) for bioreactor and PDEs 

for SST are frequently used for activated sludge process (ASP) design and evaluation (Diehl and 

Faras 2012). Here, we present a traditional ASP design to demonstrate practical value of the 

improved SST model. Assume that dissolved oxygen in bioreactor is sufficiently high; the 

bioreactor is completely mixed; Qw and S at steady state are much smaller than Qe and S0, 

respectively.  Design parameters and sludge settling parameters (normal sludge) are given in 

Table 5.2.   

The substrate mass balance around the bioreactor yields the following ODE:

( )e in e w w w f
dSV Q S Q Q S Q S C V
dt Y

µ
= − − − −                                                                             (5.14) 

Sedimentation process in SST is modeled by a series of PDEs, eq. (5.4~5.6). At steady state, Sin, 

Qe, V, F/M ratio are constant, and Qw and S are much smaller than Qe and S0. Thus, the steady 
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state Cf can be expressed as:
 

( )
e in

f
Q SC

V Yµ
=                         (5.15) 

In solids flux theory, the SST solids input is defined as the operating flux, and the maximum SST 

solids handling capacity must equal to or be less than the limiting flux. To maintain ASP stability 

and reliability, process loading at critical or under loading conditions is preferable, which means 

operating flux must be less than or equal to the limiting flux. Otherwise, thickening or 

clarification failure may occur. In this study, we set this requirement as a safety constraint 

safeguarding ASP efficiency and stability, and express it as the following inequality:  

( )
( )

e u e in
l

Q Q Q S
A V Yµ
+

⋅ ≤ Φ                                                                               (5.16) 

If steady state Qu is also set as a constant 30% of Qe, lΦ can be obtained from the graphic total 

flux method (Hassett 1958) for various areas indicated in Fig.5.3. A restricted range (100-400 m2) 

was evaluated which is within the proper overflow rate (0.5-2 m/h). As a result, the bioreactor 

volume and SST area are the two only variables in this inequality, and their effect on process 

performance can be plotted.  

5.4.2. Selection of different-sized ASP 

Various combinations of V and A can satisfy the safety constraint, so three extra criterions are 

established to evaluate the quality of the design: 

1. Economic plausibility; 
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2. Contaminants removal efficiency at steady state; 

3. Robustness to solids overloading;  

Most ASP cost optimizations treat the designed treatment capacity as the dominant components, 

while few recognized the capital cost is closely related to reactors’ size (Keinath et al. 1977). In 

this study, the cost estimation strategy follows the latter one, and unit cost of bioreactor and SST 

are respectively expressed as dollar/m3 and dollar/m2 in terms of their volume and area. 

Providing an explicit cost analysis is beyond the scope of this research, but a hypothetical yet 

realistic example is achieved by fixing the bioreactor unit cost as 1 dollar/m3, and then 

introducing a relative-cost coefficient for SST cost calculation as eq. (5.17): 

1T cC V R A= ⋅ + ⋅                                                                        (5.17)                

The relative cost coefficient will vary and be site specific, and three typical values (1, 1.5, 3) are 

selected here (David 1968). 

At steady state, the biomass distribution between the bioreactor and SST will reach equilibrium. 

Total biomass in the reactor is an important factor in contaminants removal evaluation, and 

retaining most biomass in bioreactor is preferable for maximizing overall treatment efficiency. 

The steady state Cf is solved by the following ODE: 

f u u f fdC C Q C Q
dt V

−
=                                                                                                                                      (5.18) 

Here, we only discuss the contaminant removal efficiency in the underloading condition, because 

it is most prevalent. A typical underloading condition is modeled by fixing Qe=100 m3/h, half of 

the designed capacity with a simulation time interval as 3 h. 
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Though the safety constraint considerably improves system stability and reliability, SST may 

still experience failure problems attributed to two chief causes: hydraulic shock loading and 

deterioration of sludge settleability. The time-to-failure or failure time is defined as the time 

interval between the beginning of an upset and failure, and can be used as an important indicator 

for process robustness evaluation. Obviously, a longer time-to-failure indicates a more robust 

process. All variations are imposed as step functions in solids overloading endurance test: 

 Hydraulic shock loading: At t=0 h, Qe=200 m3/h to reach steady state. At t=2 h, Qe is 

increased from 200 m3/h to 800 m3/h, four times of the designed flow rate. 

 Slurry settleability deterioration: Qe is fixed as 200m3/h. At t=0 h, the settling parameters 

are set to normal as shown in Table 5.2. At t=2h, the settling velocity parameters change to 

deterioration (Table 5.2) in order to simulate a change to  poor settleability condition (e.g., 

bulking). 

5.5. Process size results and discussion 

5.5.1. ASP unit sizes 

Fig.5.3 shows the limiting flux decreasing with increasing SST area. This occurs because a larger 

area provides smaller hydraulic bulk flux towards SST bottom. A smaller limiting flux does not 

simply mean less reliability, because enlarging the SST’s area meanwhile decreases the 

operating flux to less than or equal to the limiting flux.  
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Fig.5.3 - Total settling flux profile (left) and the limiting flux profile (right) in different SST size 
conditions. 

As shown in Fig.5.4 (left), the required volume decreases with increasing area. Adjustment of 

either bioreactor or SST’s size can requires a compensating modification of the other, thereby 

restricting the whole ASP size.  

5.5.2. Economic plausibility 

For all relative cost conditions, the system capital cost decreases with the increase of SSTs’ area 

initially, and then increases, therefore an economic optimal point exists, as shown in Fig.5.4 

(right). What differs is the location of the least cost point. The relative cost is a significant 

weighting factor greatly impacting the relative size of bioreactor and SST, and a large relative 

cost shifts the economic optimal point toward the smaller SST surface area. If economic 

plausibility is the only consideration, the least cost point reduces capital investment (10~20% 

reduction). However, an important consideration is whether the least cost design can provide 

sufficient contaminant removal and simultaneously avoid solids overloading failures, which we 

will discuss in the next section. 
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Fig.5.4 - Scale relationship between SSTs and bioreactors (left) and total cost of alternative ASP 
designs in three typical relative cost conditions (right). 

5.5.3. Overall treatment efficiency 

In an underloading condition, biomasses are shifted from bioreactor to SST, and finally reach a 

balance. And as shown in Fig.5.5 (left), the stored biomass amount in larger SSTs is 2 to 3 times 

more than it in smaller ones.  

Nevertheless, the gradient of SST biomass storage actually has little effect on the total slurry 

distribution: the maximum SST biomass is no larger than 5% of the total. This indicates that all 

alternatives (A=100~400m2) are able to retain most biomass (95~98%) in bioreactors. 

Additionally, since the total biomass amount is almost the same, there is no significant difference 

in the total bioreactor biomass storage regardless of the small variations in the SST biomass 

storage. This implies all alternative ASP designs can meet the high overall treatment efficiency 

requirement.  
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Fig.5.5 - SST biomass storage ratio in underloading steady state (left) and large size SST 
biomass storage ratio when the flux loading statues changes from overloading to critical loading  
(right). 

5.5.4. System robustness evaluation 

A lengthy time to reach biomass distribution equilibrium between bioreactor and SST implies a 

more stable process, since a longer time to reach equilibrium provides more time to respond in 

the event of an overload. This section illustrates this point by evaluating the time-to-failure of a 

20-h hydraulic shock loading simulation (Fig.5.6 left) and deterioration of sludge settleability 

(Fig.5.6 right).  

It is notable that the estimated time-to-failure provided by Takács model is much smaller than 

what the improved model predicts. This corresponds well to the conclusion presented earlier in 

the numerical accuracy section of this chapter that the Takács model overestimates the sludge 

blanket height due to numerical inaccuracies. This shortage can eventually cause a conservative 

design. For instance, the Takács model shows for a hypothetical hydraulic shock loading, the 

SST surface area should be at least 285 m2 to provide sufficient capacity, while the improved 

model indicates 195 m2 is sufficient.  
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Fig.5.6 - SSTs' time-to-failure corresponding to hydraulic shock loading (left) and settleability 
deterioration (right). 

The time-to-failure predicted by the improved model can be used for system robustness analysis. 

According to Fig.5.6 (left), the hydraulic shock loading failure time of smaller SST alternatives 

(A=100 to 185 m2) is less than 0.1 h. It increases to 2-5.8 h, a great improvement in overloading 

endurance, when SSTs are enlarged to medium size (A=190 to 260 m2). No failure will occur if 

the SST is larger than 260 m2. Fig.5.7 presents the 20-h dynamic biomass accumulation 

processes in small, medium and large SSTs (A=120, 230, 350 m2). For the case of a small SST, 

most biomasses are directly conveyed to the clarification zone by the overflow instead of settling 

to the thickening zone, causing a clarification failure in less than 0.1h. This helps explain why 

small SSTs have extremely short time-to-failure. A gradual sludge blanket rise is observed in 

medium SSTs, and causes a thickening failure when it reaches the inlet. An area of 195 m2 is the 

demarcation point between clarification failure and thickening failure, and a state point analysis 

also shows this distinction (Keinath 1985). Compared with a clarification failure, the thickening 

failure is a relatively slow process as the sludge blanket must rise from the bottom to top, which 

usually occurs over several hours. If the SST can afford sufficient storage capacity of biomass in 
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the thickening zone, the solids loading condition can be reduced from overloading to critical 

loading. This explains why neither clarification failure nor thickening failure occurs when the 

SST area is greater than 260 m2. Fig.5.5 (right) shows the biomass distribution for a large, 

overloaded SST and most (75%) of the biomass is stored in the thickening zone, which is much 

larger than for the under loaded case (2~5%). 

Compared to hydraulic shock loading, where the failure is caused by a sudden increase of 

operating flux, failure due to poor biomass settleability (sludge bulking), is attributed to a 

decrease in the limiting flux. In this case, failure can be avoided only by increasing the limiting 

flux, such as changing the recycle rate or contacting pattern (Stenstrom and Andrews 1979b).  

5.5.6. Comprehensive selection 

An overall selection of SST size relative to the bioreactor size must include considerations other 

than capital investment. Simultaneously achieving an economically justifiable sizing, high 

contaminant removal and system stability can be difficult. It may be tempting to use the least 

cost alternative, such as an area of 130 m2 when Rc=3 (Fig.5.4 right), but this selection produces 

a situation with no ability to tolerate overloading from either a hydraulic shock or deterioration 

in sludge settling properties. When the SST is less expensive relative to the bioreactor (Rc =1), a 

larger SST can be provided (A=285m2) and much greater stability is obtained. Comprehensive 

selection of ASP design using a 1-D SST model is a tool for the designer to evaluate capital cost, 

overall treatment efficiency and process stability.  



142 
 

 

 

Fig.5.7 - Dynamic solids concentration profiles in hydraulic shock loading for different surface 
areas: 120 m2, 230 m2 and 350 m2. 

5.6. Conclusion 

The conclusions of this chapter can be summarized as follows: 

• The improved model with solution-sensitive PDE solver can determine the calculation 

behavior in terms of the solution gradient, therefore providing more numerically and 

physically acceptable solutions. The discretization level sensitivity test demonstrates 

that the improved model can provide uniform solids concentration and storage 
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predication, while Takács’ model is sensitive to number of layers, and can even 

overestimate the sludge blanket level and underestimate the underflow concentration.  

• For an activated sludge process design, the bioreactor and SST should be designed as a 

whole, and a safety constraint can be introduced in the design process to greatly improve 

the system’s efficiency and reliability. The designed alternatives based on the safety 

constraint show that the requirement of bioreactor volume decreases with an increase of 

SST size, and this can help to prevent overdesigning the ASP size and land waste. 

• A comprehensive selection of the designed alternatives should consider three aspects: 

economic plausibility, contaminant removal efficiency, and system robustness. Least-

cost points can usually be attained, but their locations will vary depending on the 

weighting of the relative cost factor. In a solids underloading condition, all designed 

alternatives are able to provide sufficiently high contaminant removal with only 2%~5% 

total of the biosolids storage in the SST.  

• Both hydraulic shock loading and settleability deterioration can cause solids overloading 

problems. ASPs with small size SSTs may suffer clarification failure in less than 0.1h, 

and the medial size ones can have a thickening failure problem in 2~5h due to the 

continuously rising sludge blanket level. If the SST is large enough to store 75% of the 

biomass in the thickening zone, no failure occurs, and ASP system will be robust. In 

most cases, it is difficult to prioritize these three criterions, which requires trade-offs for 

system optimization.  
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6. A sensitivity and model reduction analysis of 1-D SST models under wet-

weather flow and sludge bulking conditions  

6.1. Introduction 

The activated sludge process is the most widely used technique to remove organic matter and 

reduce nutrients such as nitrogen and phosphorus in wastewater treatment plants (WWTPs). 

Generally, efficient solids-liquid separation techniques are needed to provide low turbidity 

effluent by removing the biomass from the liquid, and the secondary settling tanks (SSTs), where 

biomass is settled by gravity, are the most commonly used (Li and Stenstrom 2014d). 

Mathematical modeling approaches, where the activated sludge models, comprised of a set of 

ordinary differential equations (ODEs), are coupled with the SST models, comprised of a set of 

partial differential equations (PDEs), are being increasingly used in wastewater treatment process 

studies for three purposes 1): learning, which means the model simulation results are able to 

improve the understanding of wastewater treatment process; 2): design, the model can be used to 

evaluate various design alternatives via simulation, and 3): process optimization and control, 

simulating different sceneries to optimize the process efficiency and avoid possible failure 

problems (Hulsbeek et al. 2002, Petersen et al. 2002, Gernaey et al. 2004). 

The family of Activated Sludge Models (Henze et al. 1987, Henze et al. 1995, Gujer et al. 1999) 

provide a comprehensive description of the significant biological processes of the activated 

sludge system, and are widely accepted in the research and industrial communities as a useful 

tool for scientific study and practical applications. However, compared with the well-developed 

scientific knowledge on characterizing the metabolic processes and contaminant removal in the 

bioreactor, various settling behavior occurring in the SST still remain poorly understood, thus 



145 
 

making the SST model a potential error source in process simulation (Plósz et al. 2011). The 

one-dimensional (1-D) 10-layer model, also known as the Takács model (Takács et al. 1991), is 

the most commonly used SST model and has been implemented in most commercial simulators 

as a reference model. Although the Takács model has achieved a degree of success in predicting 

the SST performance, its shortcomings are not negligible, such as the insufficient description of 

various settling behaviors and inaccuracy of numerical solutions, which have been demonstrated 

in previous studies  (Jeppsson and Diehl 1996, Plósz et al. 2011, Bürger et al. 2012, Li and 

Stenstrom 2014a, Li and Stenstrom 2014b).  

In last two decades, to compensate for the limitations of the Takács model, several advanced 

SST models have been developed as alternatives, which can be classified into three groups based 

on their advantages: 

1. First-order hindered-only models with reliable numerical techniques: for these models, the 

model formula remains the same as the Takács model, considering only the hindered settling 

behavior, but using more reliable numerical techniques. Reliable techniques such as the 

Godunov numerical flux, the Yee-Roe-Davis (YRD) numerical flux, and finer discretization 

levels (more than 30-layers), are used to construct both numerically and physically 

acceptable solutions (Jeppsson and Diehl 1996, Li and Stenstrom 2014a, Li and Stenstrom 

2015).  

2. Second-order hindered-compression models additionally accounting for compression 

settling: the improved understanding of activated sludge rheology has facilitated the 

development of phenomenological theory of sedimentation-consolidation. The 

phenomenological theory is then expressed in the compression model, which allows a more 
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rigorous description of the compression settling behavior (Bürger 2000, Bürger et al. 2000a). 

Compared with the hindered-only model, the hindered-compression model is expected to 

provide more realistic predictions of the sludge blanket level and the underflow concentration.   

3. Second-order hindered-dispersion models additionally accounting for hydraulic dispersion: 

for these models, an explicit hydraulic dispersion term is added to the model formula to 

account for the potential impact of hydraulics on the biomass settling behavior (Plósz et al. 

2007, Ramin et al. 2014a). The hydraulic dispersion model possesses the advantage of 

simulating the hydraulics of SSTs over a wider range of dynamic flow conditions (Watts et al. 

1996, Plósz et al. 2007). From the numerical point of view, adding the explicit flow-

dependent dispersion term also decreases the difficulty in solving the hindered-dispersion 

model. 

Recently, a new 1-D SST model, the Bürger-Diehl model (the hindered-compression-dispersion 

model), has been presented (Bürger et al. 2011), which accounts for phenomena that may impact 

the SST behavior, such as hindered settling, compression settling and hydraulic dispersion. The 

Bürger-Diehl model is also based on the reliable numerical solution of its governing model 

formula by appropriate methods (Torfs et al. 2015). Therefore, the Bürger-Diehl model is able to 

provide more realistic predictions of the SST performance.   

Despite the advantages of the Bürger-Diehl model, its practical application is limited, which can 

be attributed to two main reasons:  

1. The difficulty of calibration: great efforts have been made to facilitate model calibration, 

for example by evaluating the hindered-only and hindered-dispersion models, Ramin et al. 
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(Ramin et al. 2014a, Ramin et al. 2014c) identified the potential parameter subsets suitable 

for the calibration of WWTP models under various simulation conditions. However, 

calibrating the 1-D SST models accounting for the compression settling still remains a 

challenge due to the insufficient understanding of the influence of compression settling on 

the SST performance.  

2. The increased implementation complexity and computation burden: technically, the 

currently used hindered-only, hindered-compression and hindered-dispersion models can be 

considered as the sub-models of the Bürger-Diehl model, and their successful applications in 

SST simulation implies that the Bürger-Diehl model in some cases can be reduced to these 

sub-models without sacrificing the quality of prediction. However, how to reliably reduce the 

Bürger-Diehl model, particularly under non-ideal flow and settling conditions, still remains 

unclear.  

In this study, we provided a comprehensive sensitivity and model reduction analysis of the 

Bürger-Diehl model under non-ideal flow and settling conditions. The Benchmark Simulation 

Model No.1 (BSM1) (Alex et al. 2008) is used as the simulation platform, because of its well 

documented model inputs. The influence of the uncertainty of model parameters to the variance 

of model outputs, such as the sludge blanket level, is quantified by using global sensitivity 

analysis (GSA), and the reliability of the Bürger-Diehl model reduction is evaluated based on 

uncertainty analysis. 

The main objectives of this chapter are (і) identify the suitable parameter subsets for the Bürger-

Diehl model calibration under non-ideal flow and settling conditions; (ii) evaluate the influence 

of imposed flow and settling conditions on the sensitivity of the Bürger-Diehl model outputs to 
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the parameters; (iii) demonstrate how reliable reduction of the Bürger-Diehl model can be 

achieved based on GSA results ; (IV) assess the reliability of  the Bürger-Diehl model reduction 

for different modeling purposes based on uncertainty analysis results. 

6.2. Materials and method 

6.2.1. Model structure and simulation description 

As shown by Fig.6.1, BSM1 is used as the simulation platform, where ASM1 is combined with 

the SST model to describe the biological and settling processes of the activated sludge system. 

For further details about ASM1, the reader is referred to literature (Henze et al. 1987). With 

regards to the SST model, the Bürger-Diehl model is used to replace the Takács model. 

 

Fig.6.1 - Layout of the Benchmark Simulation Model NO.1 (BSM1). 

 

The formula of the Bürger-Diehl model can be expressed as eq.(6.1) on the basis of the mass and 

momentum conservation: 
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where C is the solids concentration, t is time, x is the depth from the feed layer, vov is the 

overflow velocity, Qf is the feed flow rate, A is the SST surface area, Cf is the feed solids 

concentration, δ is the Dirac delta distribution and the transport flux F can be written as eq.(6.2) 

(Diehl 1996): 
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where Qe is the effluent flow rate, Qu is the underflow rate, Ce is the effluent solids concentration 

and Cu is the underflow concentration. The hindered settling velocity, vhs, is calculated by the 

double-exponential equation (Takács et al. 1991): 

( )( ) ( )
0
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The compression function is approximated by eq.(6.4) recommended by previous publications  

(De Clercq et al. 2008, Bürger et al. 2011):  
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where ρs is the solids density, ρf is the liquid density. The dispersion function developed by Plósz 

et al. (2007) is used to characterize the hydraulic dispersion, shown as eq.(6.5): 
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Quantifying prior uncertainty of all model parameters is one of the most important but difficult 

task for reliable sensitivity analysis. Table 6.1 shows the definition and prior uncertainty of 

parameters. The uncertainty of hindered settling parameters (v0, rh, rp and fn), compression 

settling parameters (Cg, α and β) and dispersion parameter, vov,c , are determined based on 

literature references and expert knowledge. Since the dispersion parameters, Dc,0 and γ, are not 

well documented in previous studies, we introduce a relative uncertainty (50%) based on the 

default values reported by Plósz et al. (Plósz et al. 2007) to reasonably quantify their 

uncertainties. The probability distributions of all model parameters are assumed uniform because 

of no prior knowledge (Ramin et al. 2014c). 

To comprehensively evaluate the 1-D SST models, three scenarios of non-ideal flow and settling 

conditions are selected to run the BSM1 as following:  

1. Wet-weather inflow but good biomass settleability: based on the values of ASM1 inputs 

and parameters follows the dry-weather data set provided by Alex et al. (2008), and a 

constant inflow rate (18446 m3/d), a 150-day simulation is conducted to obtain steady-

state, and then a wet-weather condition (14.4-hour) is imposed by increasing the influent 

flow rate to four times of the average dry-weather inflow rate.  



151 
 

2. Dry-weather inflow but filamentous bulking: The same strategy as scenario 1 is used to 

reach steady state. Then, the filamentous bulking condition is simulated as long as 9.6 

hours on the basis of the parameter uncertainty of bulking as shown in Table 6.1; (Since 

no significant association is found between compression parameters and filamentous 

abundance (Wágner et al. 2015), same uncertainty ranges of compression parameters are 

used under bulking condition as those used under good settling condition.) 

3. Wet-weather inflow and filamentous bulking: the steady-state is obtained by 150-day 

simulation similar as scenarios 1 and 2. A 4.8-hour simulation of the wet-weather inflow 

and bulking condition is conducted by increasing the influent flow rate twice of the 

average dry-weather inflow rate, and using the settling parameter set of bulking; 

Table 6.1 - Uncertainty of the Bürger-Diehl model parameters under good settling and bulking 
conditions. 

  Good settling Bulking 

 Unit Min Max Min Max 

v0 m/d 355.5 592.5 177.75 296.25 

rh m3/kg 0.432 0.721 0.75 1.25 

rp m3/kg 2.7 10 2.7 10 

fns - 0.00123 0.00259 0.00123 0.00259 

Cg kg/m3 6.06 10.12 6.06 10.12 

α Pa 0 20 0 20 

β kg/m3 1 10 1 10 

Dc,0 m2/d 1.98 5.92 1.98 5.92 

γ d 1.1E-2 3.3E-2 1.1E-2 3.3E-2 

vov,c m/d 10 22 10 22 
                      *Uncertainty is determined based on literature review and expert knowledge 
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6.2.2. Global sensitivity analysis 

To improve the model understanding, global sensitivity analysis is usually introduced to 

investigate the dependence of model outputs on the uncertainties of model factors (defined as 

both model parameters and inputs). This is informative for various purposes, such as quantifying 

the individual contribution of the uncertain parameters to the model output uncertainty to 

identify influential parameters.  

The global sensitivity technique used in this study is the Extended-Fourier Amplitude Testing 

(Extended-FAST), originally  developed by Cukier et al. (1973) and Schaibly and Shuler (1973), 

and later extended by Satelli et al. (1999). Compared with frequently used regression-based and 

screening methods, the Extended-FAST possesses the advantages of providing accurate 

sensitivity measures in various model structures (linearity, monotonicity etc.) without the 

necessary of making any assumptions of model behaviors. As a variance-based approach, the 

Extended-FAST has its root in the general theorem that the total variance can be decomposed 

into conditional variances, as shown in eq.(6.6): 

( ) ( ( | )) ( ( | ))i iVar sy Var E sy E Var syθ θ= +                                                                                 (6.6) 

where Var and E is the variance and expectancy operator respectively, sy denotes a vector of 

scalar values for the model output and θi is the ith model factor. The Extended-FAST converts 

the multidimensional integral over all the uncertain parameters in a one-dimensional integral 

using a transformation function that scans the entire parameter space, and the contribution of the 

individual parameters to the variance of the model output is calculated by using a Fourier 

decomposition (Saltelli et al. 2004, Brockmann and Morgenroth 2007). The Extended-FAST 
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implementation strategy used in this study is based on Satelli et al. (1999), and the 

transformation function is given as eq.(6.7): 

1 1 arcsin(sin( ))
2i i isθ ω ϕ

π
= + +                                                                                                   (6.7) 

where s ranges from -π/2 to π/2, ω is a set of different frequencies and φi is a random phase-shift. 

The total number of model evaluation required can be determined by eq.(6.8): 

( )max2 1sN m Mω= +                                                                                                                   (6.8) 

where m is the number of model parameters, M is the interference frequencies, and wmax is the 

maximum frequency. For further information about Extended-FAST implementation strategy, 

such as the selection of ω, the reader is referred to the literature (Saltelli et al. 1999).  

Generally, Extended-FAST provides three kinds of sensitivity measures: the first-order effect 

index (Si), which represents the contribution of the variance of individual parameters to the 

output variance without considering the interaction with other parameters, and can be used to 

identify the most significant factors (factors prioritization); the total effect index (STi), which 

accounts for the total contribution of the parameter to the output variance, and is informative for 

determining factors that can be fixed without greatly reducing output variance (factor fixing); the 

interaction (SSi), which can be used to evaluate the interactions among parameters. 
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6.2.3. Uncertainty analysis with Monte Carlo procedure 

Uncertainty analysis can be understood as the propagation of the uncertainty of parameters to 

model outputs, which is beneficial for design and control decision-making. The model 

uncertainty analysis in this study involves the following steps as listed by Sin et al. (2009): 

1. Specifying input uncertainty: for each scenario, only the SST model parameters are 

considered as uncertainty source; 

2. Sampling input uncertainty: Latin hypercube sampling is applied; 

3. Propagating input uncertainty to obtain prediction uncertainty: Monte Carlo simulation is 

used; 

4. Representation and interpretation of results: the predicted uncertainty results are 

represented using mean, percentiles and cumulative distribution functions; 

The possible correlations among parameters are not considered here, since there is no detailed 

information available about the correlation matrix.  

6.2.4. Numerical setting and comparison of SST models 

The discretization level of SST models is 30-layer. Given that the GSA and reduction analysis 

are made based on the numerical solutions of the Bürger-Diehl model, reliable numerical 

techniques are needed: the solids transport flux is approximated by Yee-Roe-Davis numerical 

flux, and the compression and dispersion terms are approximated following the strategy provided 

by Bürger et al. (2013). For Extended-FAST, M and ωmax is 4 and 8 respectively. Only factors 

with Si larger than 0.01 or STi larger than 0.1 are considered to be important according to Cosenza 

et al. (2013). To provide an effective coverage of model output uncertainty, the BSM1 model 
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with different SST models is simulated 500 times for each scenario following the benchmark 

simulation strategy. 

Five significant model outputs: sludge blanket height (SBH), Ce, Cu, sludge inventory (SI) and 

operating flux (fluxop), are used to characterize the SST performance, since they are closely 

related to the SST robustness, the mostly interesting topic under non-ideal flow and settling 

conditions.  

6.3. Results and discussion 

6.3.1. Global sensitivity analysis of the Bürger-Diehl model under non-ideal flow and 

settling conditions 

In this section, the GSA results of Bürger-Diehl model are provided in order to identify the 

potential parameter subsets suitable for model calibration. Table 6.2 shows the sensitivity 

measures (Si and STi) of the Bürger-Diehl model under the wet-weather condition (scenario 1). 

The high sensitivity indices (Si >0.01) of v0 and rh indicate their strong influence on the model 

outputs as well as implying the important role hindered settling plays in determining the SST 

performance. In contrast, the hindered settling parameter, rp, is non-influential to SST behavior, 

with only one notable exception: Ce, where rp contributes more than 50% percent of the total 

variance. It means that to accurately predict Ce, rp needs to be carefully calibrated. Regarding the 

compression settling parameters, the gel concentration, Cg, is another significant parameter 

strongly impacting the SST performance, particularly, in the case of Cu, SI and fluxop, where Cg 

contributes more than 30% of the total variance. The other two compression settling parameters, 

α and β, are moderately influential to Cu, SI and fluxop as well. The high sensitivity of Cu, SI and 
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fluxop to the compression settling parameters can be interpreted by the fact that the sludge with 

high compressibility can be easily compacted in the thickening zone, thus leading to the increase 

of Cu and fluxop, but a decrease of SI. The hydraulic dispersion parameters, γ and vov,c, are 

important for SST behavior too, especially in the case of Ce, where γ ranks the second of most 

influential parameters. This is due to the explicit hydraulic term accounts for some of the 

variations in hydraulic feathers of SST under the wet-weather condition, as reported by Ramin et 

al. (Ramin et al. 2014c). fn and Dc,0, are identified as non-influential parameters, since their 

sensitivity measures are much smaller than the corresponding thresholds.  

Table 6.2 - Parameter sensitivity indices of the Bürger-Diehl model outputs in scenario 1. 

 

The sensitivity measures of model parameters under the bulking condition are shown in Table 

6.3. It is interesting to find that the sensitivity measures of compression settling parameters, Cg, α 

and β, are smaller than the thresholds regardless of the model outputs, which means that the 

compression settling is not influential to SST performance under the bulking condition. The 

hindered settling parameters, v0 and rh, are the most influential parameters, which contributes 

Wet-weather and good settling 
  v0 rh rp fn Cg α β Dc,0 γ vov,0 

SBH 
Si 0.071 0.461 0.004 0.002 0.046 9.1E-4 6.7E-4 0.003 0.085 0.067 

STi 0.086 0.471 0.014 0.016 0.063 0.004 0.005 0.007 0.097 0.086 

Ce 
Si 0.199 0.209 0.544 3.5E-4 0.011 0.001 1.7E-4 0.001 0.299 0.093 

STi 0.438 0.453 0.593 0.039 0.048 0.027 0.011 0.008 0.578 0.186 

Cu 
Si 0.046 0.261 0.002 8.1E-4 0.333 0.018 0.008 1.6E-4 0.009 0.031 

STi 0.067 0.299 0.012 0.013 0.394 0.027 0.016 0.002 0.013 0.049 

SI 
Si 0.019 0.282 0.008 9.4E-4 0.374 0.024 0.011 2.9E-4 0.001 0.007 

STi 0.052 0.427 0.021 0.012 0.438 0.036 0.024 0.004 0.005 0.029 

Fluxop 
Si 0.046 0.254 0.001 7.8E-4 0.351 0.017 0.007 1.6E-4 0.008 0.031 

STi 0.067 0.295 0.012 0.012 0.411 0.027 0.015 0.002 0.012 0.048 
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more than 95% of total variance to most model outputs, thus demonstrating the importance of 

reliably calibrating v0 and  rh under the bulking condition. According to Table 6.3, Ce is most 

sensitive to the change of rp, which contributes more than 80% of total variance of Ce. Therefore, 

reliable calibration of rp is highly needed for accurate prediction of Ce when sludge bulking 

occurs. Similar as rp, fn is only influential to Ce with 6% contribution of total variance. The 

hydraulic dispersion parameter found to be important is Dc,0, even though its contribution of 

variance is relatively small compared those made by hindered settling parameters. Consequently, 

hindered settling process is most influential to the SST performance under the bulking condition, 

while the effect of compression settling is almost negligible. 

Table 6.3 - Parameter sensitivity indices of the Bürger-Diehl model outputs in scenario 2. 

 

According to Table 6.4, four parameters, v0, rh, rp and Dc,0, are important for model calibration 

under the wet-weather and filamentous bulking condition, since their sensitivity measures are 

larger than the thresholds. For SBH and Ce, they are highly sensitive to the change of both 

hindered and hydraulic dispersion parameters, which means they are results of hindered settling 

Dry-weather and filamentous bulking 

  v0 rh rp fn Cg α β Dc,0 γ vov,0 

SBH 
Si 0.125 0.895 0.001 5.6E-4 0.004 8.7E-4 0.001 0.051 0.001 0.001 

STi 0.143 0.911 0.008 0.006 0.029 0.006 0.011 0.071 0.009 0.007 

Ce 
Si 0.191 0.138 0.823 0.063 0.003 0.003 0.002 0.062 0.006 0.001 

STi 0.355 0.336 0.866 0.142 0.022 0.054 0.021 0.103 0.043 0.029 

Cu 
Si 0.076 0.931 8.2E-5 5.4E-6 4.9E-5 1.6E-5 5.7E-6 0.016 6.4E-6 4.1E-6 

STi 0.078 0.933 0.003 0.001 0.004 0.001 0.003 0.021 0.003 
 

0.001 

SI Si 0.079 0.933 1.7E-5 1.2E-5 8.9E-5 1.4E-5 1.4E-5 0.019 1.1E-5 7.7E-6 

STi 0.081 0.935 0.003 0.001 0.004 0.001 0.003 0.022 0.003 0.001 

Fluxop 
Si 0.083 0.924 0.001 5.5E-6 6.7E-5 2.1E-5 

 

6.7E-6 0.016 9.4E-6 7.2E-6 

STi 0.085 0.926 0.003 0.001 0.004 0.001 0.003 0.021 0.003 0.001 



158 
 

and hydraulic dispersion effects. However, in contrast to scenarios 1 and 2 where Ce is most 

sensitive to rp , Ce in scenario 3 is mostly determined by rh, which accounts for more than 50% of 

the total variance. The hindered settling process primarily impacts Cu, SI and fluxop, because the 

hindered settling parameters, v0 and rh, are the only influential parameters. Consequently, the 

reliable calibration of v0 and rh can greatly reduce the uncertainty of model outputs, hence 

producing an adequate description of the SST behavior under the wet-weather and bulking 

condition. 

Table 6.4 - Parameter sensitivity indices of the Bürger-Diehl model outputs in scenario 3. 

  

6.3.2. Parameter interactions of the Bürger-Diehl model under non-ideal flow and settling 

conditions 

Although the analysis of Si greatly facilitates the SST model calibration by identifying influential 

parameters suitable for prioritization, it is important to emphasize that the analysis of STi is still 

required; for parameters having small Si, they cannot be simply fixed as non-influential 

Wet-weather  and filamentous bulking 

  v0 rh rp fn Cg α β Dc,0 γ vov,0 

SBH 
Si 0.132 0.929 9.8E-4 2.1E-4 7.6E-4 4.7E-4 8.3E-4 0.013 0.001 0.006 

STi 0.152 0.947 0.008 0.004 0.018 0.003 0.006 0.022 0.007 0.012 

Ce 
Si 0.222 0.509 0.025 0.004 6.8E-4 0.001 0.004 0.039 0.008 0.003 

STi 0.591 0.801 0.091 0.019 0.029 0.005 0.059 0.181 0.089 0.018 

Cu 
Si 0.088 0.952 1.3E-4 2.6E-5 1.1E-4 3.4E-5 2.2E-5 0.006 4.9E-4 0.003 

STi 0.091 0.954 0.003 0.002 0.005 0.001 0.003 0.01 0.004 0.006 

SI 
Si 0.056 0.937 4.7E-4 7.2E-4 3.1E-4 1.1E-4 3.7E-4 0.007 4.1E-4 0.006 

STi 0.106 0.987 0.004 0.004 0.006 0.003 0.002 0.011 0.003 0.009 

Fluxop 
Si 0.115 0.919 0.001 2.4E-5 2.2E-4 4.2E-5 3.6E-5 0.005 3.1E-4 0.002 

STi 0.118 0.922 0.004 0.002 0.005 0.001 0.003 0.009 0.003 0.005 
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parameters because of the possible interactions reflected by their high STi values. In this study, 

the interactions among parameters are characterized by the ratio of the sum of Si to the sum of STi, 

as shown in Fig.6.2 (left). As can be seen, the sum of Si is always smaller than the sum of STi, 

which indicates the existence of interactions. This result is more pronounced for Ce, where the 

ratio of the sum of Si to the sum of STi  is smaller than 60% for all scenarios. However, for Cu, SI 

and Fluxop in scenarios 2 and 3, the sum of Si is close to the sum of STi, which means the model is 

almost additive without parameter interactions affecting model outputs.  

 

Fig.6.2 - Ratio of sum(Si) to sum(STi) of the Bürger-Diehl model outputs in scenarios 1 to 3(left), 
and ratio of Si and STi of the Bürger-Diehl model parameters in scenario 1. 

To further investigate the parameter interactions, we take the parameter interaction analysis of Ce 

under the wet-weather condition as an example, where the ratio of the sum of Si to the sum of STi 

for important parameters are shown as Fig.6.2 (right). According to Fig.6.2 (right), strong 

parameter interactions are observed in most parameters, which implies that the effluent 

concentration under the wet-weather condition is strongly influenced by hindered settling, 

compression settling and hydraulic dispersion. What is surprising is that even though rp is the 

most influential parameter on Ce, its interactions with other parameters are negligible, as 
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indicated by the high ratio of Si to STi. This may be attributed to the fact that rp is a parameter 

used to describe settling behavior in low solids concentration range, while other parameters, 

especially the compression parameters, mostly affect the medium and high concentration 

domains. Based on the results of parameter interaction analysis, simple GSA techniques, such as 

the Standard Regression Coefficients method or Morris screening method, are sufficient for the 

sensitivity analysis of Cu, SI and Fluxop in scenarios 2 and 3, while the advanced GSA methods, 

such as Extended-FAST, are needed for the sensitivity analysis of Ce.  

6.3.3. Influence of imposed flow and settling conditions on the sensitivity of the Bürger-

Diehl model outputs to parameters 

In this study, the influence of imposed flow and settling conditions on the sensitivity of the 

Bürger-Diehl model outputs to the parameters are analyzed on the basis of the similarity of 

parameters identified to be important as well as the similarity of ranking of sensitivity indices. 

The Venn diagrams, Fig.6.3, are used for the comparison of important parameter identified in 

different scenarios. The significant hindered settling parameters found in scenarios 1 to 3, are 

almost identical regardless to the model outputs, with only one exception: fn which is only 

important for the prediction of Ce in scenario 2. The important parameters found in scenarios 2 

and 3 are similar, and moreover, all influential parameter in scenario 3 are important in scenario 

2. The main difference between scenarios 2 and 3 is that the dispersion parameter, Dc,0, is 

influential for the predication of Cu and SI in scenario 2, which implies the SST performance 

under the bulking condition is sensitive to the hydraulic dispersion. Great differences can be 

observed between scenario 1 and the other two scenarios in terms of the significance of the 

compression parameters. The compression settling parameters, especially Cg, are strongly 
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influential on SST performance in scenario 1, while none of the compression parameters are 

important in scenarios 2 and 3. Another interesting observation is that significant hydraulic 

dispersion parameters found in scenarios 1 and 2 are different: γ and vov,c are influential on SST 

behavior in scenario 1, while Dc,0 is the only hydraulic dispersion parameter important in 

scenario 2.  

Table 6.5 - Spearman's rank index of the comparison of the similarity of sensitivity measure 
ranking. 

 

The similarity of ranking of sensitivity indices in scenarios 1 to 3 is quantitatively investigated 

based on the Spearman's rank correlation index (NS), and the high similarity of ranking leads to 

large NS. According to Table 6.5, the rankings of sensitivity measures obtained in scenarios 2 and 

3 are similar in terms of the model output variables SBH, Ce and Fluxop, where Ns values are 

larger than 0.7. However, for most model outputs, the ranking of sensitivity measures obtained in 

scenario 1 differs greatly from those obtained in scenarios 2 and 3, which is demonstrated by the 

small Ns. For instance, Cg  is the most important parameter for the change of Cu, SI and Fluxop in 

scenario 1, while in scenarios 2 and 3, most of the variance of Cu, SI and Fluxop are contributed 

by rh. Therefore, it should be noted that for the Bürger-Diehl model, sensitivity of model outputs 

to parameters strongly depends on the imposed flow and settling conditions, and suitable 

parameter subsets used for model calibration need to be determined based on flow and settling 

conditions to improve the calibration efficiency and reliability.    

Model 
outputs 

Ns (rank of wet vs. rank of 
bulking) 

Ns (rank of wet vs. rank of 
wet+bulking) 

Ns (rank of bulking vs. rank of 
wet+bulking) 

SBH 0.539 0.709 0.831 

Ce 0.515 0.479 0.769 

Cu 0.261 0.333 0.661 

SI 0.442 0.224 0.467 

Fluxop 0.358 0.333 0.842 
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6.3.4. Reduction of the Bürger-Diehl model based on GSA results 

Reduction of the Bürger-Diehl model, to some extent, is useful to facilitate its practical 

application, such as inclusion in the popular commercial simulators. Therefore, in this section, 

we focus on how to reliably reduce the Bürger-Diehl model for specific modeling purposes based 

on the GSA results. 

 

 

Fig.6.3 - Venn diagram related to the comparison of important parameters in scenarios 1 to 3. 
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According to Table 6.2, Cg is the only compression settling parameters influential on SBH and Ce  

in scenario 1 with sensitivity measures close to the threshold. It implies that if the primary 

modeling interests are SBH and Ce under the wet-weather condition, the Bürger-Diehl model 

(hindered-compression-dispersion) can be reduced to the hindered-dispersion model without 

greatly deteriorating prediction quality. However, in the case of SI, which is sensitive to all of the 

compression settling parameters, it is not reliable to reduce the Bürger-Diehl model to the 

hindered-dispersion model. To demonstrate this point, we compare the Bürger-Diehl model and 

the hindered-dispersion model based on the prediction of SBH, Ce and SI.  The Monte Carlo 

simulations were run 300 times for each model. For each run, the hindered-dispersion and 

Bürger-Diehl models shared the same hindered and dispersion parameters. The similarity of 

model outputs obtained from the Bürger-Diehl and hindered-dispersion models is characterized 

by the scatter plot and the Pearson correlation index (Np), as shown in Fig.6.4. As can be seen, in 

terms of the variable Ce, the predictions of the hindered-dispersion model are almost identical to 

those obtained from the Bürger-Diehl model, which is also confirmed by the high value of Np, 

close to 1. The comparison of the SBH prediction shows that the SBH values predicated by the 

hindered-dispersion model agree well with those obtained from the Bürger-Diehl model. The 

discrepancy for these two models in the prediction of SBH is larger than it in the prediction of Ce. 

This can be expected, since Cg is more influential on SBH than it on Ce. When it comes to SI, the 

predictions obtained from the Bürger-Diehl model and the hindered-dispersion model differ 

greatly with a low Np (0.647), which means the reduction of the Bürger-Diehl model to the 

hindered-dispersion model is not reliable in terms of the SI prediction.  

Under the filamentous bulking condition, all compression settling parameters are non-influential 

regardless of model outputs, as shown in Table 6.3, thus making the reduction of the Bürger-
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Diehl model to the hindered-dispersion model reliable for all model outputs. As Fig.6.4 shows, in 

terms of model outputs SBH, Ce and SI, the performance of the hindered-dispersion model is 

equivalent to the Bürger-Diehl model, which is confirmed by the high value of NP. This means 

under the bulking condition, the Bürger-Diehl model can be reliably reduced to the hindered-

dispersion model to reduce the implementation complexity and computation cost.  

Further reduction of the Bürger-Diehl model to hindered-only model can, to some degree, 

deteriorate the quality of model prediction; for instance an obvious discrepancy can be observed 

between the Bürger-Diehl and hindered-only models in the prediction of Ce, where Np is as low 

as 0.871. This is due to the strong sensitivity of Ce  to the hydraulic dispersion parameter Dc,0 

under the bulking condition, thus making the hydraulic effect not negligible in SST modeling if 

Ce is the primary interest.  

 

 

Fig.6.4 - Scatter plots and the Pearson correlation index comparing the similarity of model 
outputs of the Bürger-Diehl model and the reduced models (upper: scenario 1, bottom: scenario 2, 
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and subscripts H-C-D, H-D and H denote the Bürger-Diehl model, the hindered-compression 
model and the hindered-only model respectively).  

 

6.3.5. Investigating the reliability of the Bürger-Diehl model reduction based on 

uncertainty analysis 

In this section, the reliability of the Bürger-Diehl model reduction under non-ideal flow and 

settling conditions is further evaluated based on uncertainty analysis of the prediction of SBH, Ce, 

Cu and SI.  Three typical reduced models, the hindered-only model, the hindered-dispersion 

model and the hindered-compression model, are considered, and the Bürger-Diehl model is used 

as the reference model to evaluate reliability of model reduction.  
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Fig.6.5 - Results of the Monte Carlo simulations of BSM1 for scenario 1. On each box, the 
central mark is the mean value, the edges of the box are the 25th and 75th percentiles, and the 
whiskers extend to the most extreme data points (subscripts H, H-C, H-D and H-C-D denote the 
hindered-only, hindered-compression, hindered-dispersion and Bürger-Diehl models 
respectively). 

Fig. 6.5 is the boxplot of uncertainty of SST model outputs under the wet-weather condition. It is 

easy to observe that there is considerable uncertainty concerning all model outputs. With regard 

to SBH and Ce, reduction of the Bürger-Diehl model to the hindered-only and hindered-

compression models cannot produce reliable predictions; for example the 75th percentiles of 

SBH and Ce predicted by the hindered-only and hindered-compression models are lower than the 

25% percentile predicted by the Bürger-Diehl model. In contrast, the uncertainties of SBH and Ce 

obtained from the hindered-dispersion model are similar to those of the Bürger-Diehl model, 

which reveals that it is reliable to reduce the Bürger-Diehl model to the hindered-compression 

model in terms of model outputs SBH and Ce. In the case of Cu and SI, reducing the Bürger-Diehl 

model to hindered-compression model is acceptable, since the hindered-compression model can 

provide satisfactory uncertainty results similar as those of the Bürger-Diehl model. 

The uncertainties of SST model outputs under the filamentous bulking condition are shown as 

Fig.6.6. As expected, the prediction uncertainties of the hindered-dispersion model are identical 

to those obtained from the Bürger-Diehl model, which agree with the conclusion that the SST 

performance under the bulking condition is not sensitive to the compression settling, and the 

Bürger-Diehl model can be reliably reduced to the hindered-dispersion model without 

significantly deteriorating the accuracy of model predictions. However, the prediction 

uncertainty of the hindered-only and hindered-compression models differ from those obtained 

from the hindered-dispersion and Bürger-Diehl models as Fig.6.6 shows; for example SBH, Ce 

and SI predicted by the hindered-only and hindered-compression models are much smaller than 
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those of hindered-dispersion and Bürger-Diehl models, while in the case of Cu, the hindered-only 

and hindered-compression models provide higher predictions than the hindered-dispersion and 

Bürger-Diehl models. Therefore, reducing the Bürger-Diehl model to the hindered-only and 

hindered-compression models is unreliable under the bulking condition, which may introduce 

considerable errors to the model uncertainty analysis. 

 

 

Fig.6.6 - Results of the Monte Carlo simulations of BSM1 for scenario 2. On each box, the 
central mark is the mean value, the edges of the box are the 25th and 75th percentiles, and the 
whiskers extend to the most extreme data points (subscripts H, H-C, H-D and H-C-D denote the 
hindered-only, hindered-compression, hindered-dispersion and Bürger-Diehl models 
respectively). 

For scenario 3 (wet-weather and bulking), to show the influence of the Bürger-Diehl model 

reduction on the decision making in SST design and control, the cumulative function distribution 
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plots of SBH and Ce are given as Fig.6.7 to represent the uncertainty results. When wet-weather 

and sludge bulking occur, the sludge blanket can propagate from the SST bottom to effluent weir, 

which will cause system failure. If the effluent limit of TSS is set as 0.03 kg/m3, Fig.6.7 shows 

that based on the uncertainty results, violation of effluent TSS limit always has the opportunity to 

occur under the wet-weather and bulking condition regardless of the SST model structure. 

However, it is notable that using different SST models leads to inconsistent probabilities of 

violation: the probabilities predicted by the hindered-only and hindered-compression models are 

37%, which are smaller than 45% obtained from the hindered-dispersion and Bürger-Diehl 

models. If a more strict system robustness requirement is imposed, for example no thickening 

failure is allowed, the primary interest of uncertainty analysis is to investigate probability that the 

sludge blanket will rise above the feed inlet (SBH > 2.2 m). According to the Fig.6.7, the 

probabilities of thickening failure predicted by the hindered-only and hindered-compression 

models are 70% which are much smaller than 83% predicted by the hindered-dispersion and 

Bürger-Diehl models. Therefore, it is noteworthy that in terms of the violation of effluent TSS 

limit and thicken failure, the unreliable reduction of the Bürger-Diehl model to the hindered-only 

and hindered-compression models can lead to the underestimation the risk of system failure, thus 

negatively impact the decision making of the system design and control under the wet-weather 

and bulking condition. 
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Fig.6.7 - Representation of the uncertainties of Ce and SBH for scenario 3 by the cumulative 
distribution function (subscripts H, H-C, H-D and H-C-D denote the hindered-only, hindered-
compression, hindered-dispersion and Bürger-Diehl models respectively). 

6.4. Conclusions 

In the last decade, great efforts have been made to improve the SST simulation. In this study, by 

using the benchmark simulation model No.1 as the simulation platform, we provide the 

sensitivity and reduction analysis of the Bürger-Diehl model under non-ideal flow and settling 

conditions. The following specific conclusions can be made: 

1. Based on the GSA results, the important parameters are identified for the Bürger-Diehl 

model calibration under non-ideal flow and settling conditions. All model parameters, except 

fn and Dc,0, are influential to SST performance under the wet-weather condition. When 

filamentous bulking occurs, the outputs of the Bürger-Diehl model are most sensitive to the 

hindered settling parameters, v0 and rh, which need to be accurately calibrated.   

2. The analysis of the total sensitivity measure (STi) shows that the parameter interactions 

impact the model output differently. In the case of Ce where strong parameter interactions 

exist, advanced GSA techniques, such as Extended-FAST, are required for reliable GSA 

results. However, for Cu, SI and Fluxop under the bulking condition, the model is almost 
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additive with negligible parameter interactions. Therefore, simple GSA techniques, such as 

Standard Regression Coefficients method or Morris screening method, are sufficient to 

provide reliable GSA results. 

3. The sensitivity of the Bürger-Diehl model outputs to parameters is highly impacted by the 

imposed simulation conditions, resulting in different parameter subsets for model calibration. 

For example, under the wet-weather condition, the compression settling parameters can be as 

important as the hindered settling parameters, particularly in the cases of Cu, SI and Fluxop. 

Imposing the sludge bulking in scenarios 2 and 3 greatly increases the influence of the 

hindered settling parameters (v0 and rh), while decreasing the influence of the compression 

settling parameters. Different simulation conditions can also lead to different influential 

dispersion parameters; for example γ and vov,c  are found to be influential in scenario 1, while 

Dc,0 is important in scenarios 2 and 3. 

4. Reliable reduction of the Bürger-Diehl model can be achieved based on GSA results. For 

example, under the wet-weather condition, in terms of the prediction of Ce, the Bürger-Diehl 

model can be reduced to the hindered-dispersion model without deteriorating model 

performance, since the compression settling parameters are not as influential to Ce as the 

hindered settling and dispersion parameters. Under the bulking condition, the Bürger-Diehl 

model can be reduced to the hindered-dispersion model without impacting model outputs, 

which occurs because none of model outputs are sensitive to the compression settling 

parameters. 
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5. The reliability of the Bürger-Diehl model reduction can be evaluated based model 

uncertainty analysis. Unreliable reduction of the Bürger-Diehl model can introduce 

considerable errors to model predictions, thus negatively impact SST design and control. 
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7. Practical Identifiability and Uncertainty Analysis of the One-Dimensional 

Hindered-Compression Continuous Settling Model 

7.1. Introduction 

As the mostly used solids-liquid separation unit in wastewater treatment process, secondary 

settling tanks (SSTs) are able to remove finely dispersed solids to produce low turbidity effluent, 

and to concentrate the solids in an underflow for it to be recycled or disposed in the least volume. 

The two functions are known as clarification and thickening. The traditional SST design and 

operation strategies tend to be empirical and conservative, which may cause an unanticipated 

performance fluctuation of the SST itself and a low efficiency of energy and land use (Li and 

Stenstrom 2014a, Li and Stenstrom 2014d).  

For design and operation optimization purposes, various SST mathematical models have been 

developed to provide a reasonable prediction of the effluent solids concentration, underflow 

solids concentration, sludge blanket level and sludge inventory which are specifically important 

during hydraulic shock loading and sludge settleability deterioration. In most commercial 

simulators, one-dimensional (1-D) SST models are most often used due to their simplicity and 

less computation burden, especially if long term simulations are needed (Bürger et al. 2011). 

Most early 1-D models, such as the well-known Takács model (Takács et al. 1991), are derived 

considering only local mass conservation and hindered settling. In last decade, the improved 

understanding of activated sludge rheology has facilitated the development of phenomenological 

theory of sedimentation-consolidation, which provides a more rigorous description of the 

compression settling behavior (Bürger 2000). The phenomenological theory is subsequently 

expressed in the 1-D model from the mass and linear momentum balance, allowing the 
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development of hindered-compression models, such as the Bürger-Diehl model (Bürger et al. 

2012, Bürger et al. 2013).  Compared with the hindered-only models, the hindered-compression 

models have the advantage of providing improved compression settling simulations, thus 

allowing more accurate predictions of the underflow concentration, sludge blanket level under 

unusual conditions, for example the wet-weather condition (Torfs et al. 2015).  

Given the variety of simulation conditions, such as the sludge settleability and compressibility, 

1-D settling models are not considered to be universal for all SST systems, and model parameter 

adjustment based on experiment data, usually referred as model calibration, is usually required 

for specific SST simulations. The calibration methodology of the hindered-only settling models 

are well developed, and can be classified into two categories: 1) the conventional approach using 

hindered settling velocities obtained from multiple batch settling tests; 2)  the direct parameter 

estimation approach by fitting a single batch settling curve (Vanderhasselt and Vanrolleghem 

2000). It is noticeable that the hindered-compression settling models cannot be calibrated 

straightforwardly following these two approaches because of the inclusion of the additional 

compression parameters. Several proposed calibration methods require the use of advanced 

techniques, such as radiotracing, to measure the dynamic concentration distribution during batch 

settling experiments (Kinnear 2002, De Clercq et al. 2005, De Clercq et al. 2008), which is 

beyond the accessibility of most practical application cases (Li and Stenstrom 2014d, Ramin et al. 

2014d). Therefore, to promote the application of the hindered-compression settling model, great 

efforts are needed to facilitate its calibration. For example Ramin et al. (2014c, 2014d) reported 

that calibrating the hindered-compression model based on the additional measurement of the 

batch bottom concentration, beside the batch settling curves, has achieved some degree of 

success. 
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The limited observational data of practical batch experiments naturally gives rise to the problem 

of the poorly identifiable parameters, which means it is difficult to identify a unique set of all 

parameters used in the hindered-compression models due to possible parameter correlation (Brun 

et al. 2002, Brockmann et al. 2008). To avoid this problem, it is important to understand the 

practical identifiability of the model and select a suitable subset of parameters which can be 

reliably identified by the available experiment measurements (Weijers and Vanrolleghem 1997, 

Brun et al. 2001, Ruano et al. 2007).  

In the wastewater treatment process modeling field, two alternative approaches have been most 

used to analysis the parameter identifiability problem. The first method is on the basis of scalar 

functions calculated from the Fisher Information Matrix (FIM), and the D and mod-E criteria can 

be used to select the best identifiable parameter subset (Weijers and Vanrolleghem 1997). The 

second method developed by Brun et al. (2001) uses a diagnostic regression and focuses on the 

analysis of parameter interdependency by calculating the collinearity index. Both methods are 

proven to be efficient in selecting the best identifiable parameter subset from limited experiment 

measurements (Weijers and Vanrolleghem 1997, Brun et al. 2001, Ruano et al. 2007, Brockmann 

et al. 2008).  Recently, the Generalized Likelihood Uncertainty Estimation (GLUE) method has 

also been demonstrated as a reliable alternative for the identifiability analysis of the hindered-

compression settling model by Torfs et al. (2013). 

Nevertheless, despite the efficiency of the two most used approaches in addressing parameter 

identifiability problem, they still have drawbacks which may greatly impact the analysis results, 

at least in the hindered-compression settling model study. Both approaches are based on the 

calculation of local sensitivity functions for a set of reasonable parameters values within the 
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parameter space, and in most activated sludge model (ASM) identifiability studies, the initial 

parameter set is determined as default values reported in literature. For example the practical 

identifiability analysis of ASM2d by Brun et al. (2002) used the default values presented by 

Henze et al. (1999) as the starting point values. Given the fact that very limited parameter values 

have been reported in hindered-compression settling model studies, especially those related to 

the compression rheology, the initial parameter set values cannot be determined by the default 

value strategy, which implies that the choice of the initial parameter values may significantly 

impact the parameter identifiability. Beyond that, fixing some parameters, such as the non-

influential parameters determined by the local sensitivity analysis, at prior values according to 

lecture and practical experience can introduce bias to the parameter estimates, which have been 

reported in pervious investigations (Weijers and Vanrolleghem 1997, Brun et al. 2001, Omlin et 

al. 2001, Brun et al. 2002).  

From a practical point of view, the uncertainty analysis of wastewater treatment plant models is 

particularly important for design and operation decision making, and one of main uncertainty 

sources is the model input uncertainty, such as characterizing the model parameter values over a 

reliable range to reflect the limited knowledge of their exact values (Sin et al. 2009). To facilitate 

the practical application of the hindered-compression settling models by providing a guidance for 

experiment design, it is important to know which parameters can be obtained under what 

experimental conditions, and how large the model prediction uncertainties can be. This 

knowledge can be very beneficial in understanding the uncertainties of SST performance, such as 

the sludge blanket height (SBH), the recycle solids concentration under wet-weather and sludge 

settleability deterioration conditions.      
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The first objective of this chapter is to evaluate the parameter identifiability of the hindered-

compression model based on different experimental layouts to show which parameter is 

identifiable in which experimental layout, as well as to study the influence of initial parameter 

selection on parameter identifiability analysis. The second goal of this chapter aims to investigate 

the influence of the choice of initial parameter values on parameter identifiability and the bias of 

the parameter estimates caused by fixing unidentifiable parameters. The third part focuses on the 

model prediction uncertainty analysis by showing how the estimates obtained from different 

layouts impact the model prediction uncertainty.  

7.2. Materials and methods 

7.2.1. Model structure 

Although having a similar rheological basis, most established hindered-compression models can 

be distinguished by their modeling approach of the compression settling process (Li and 

Stenstrom 2014b). In this study, we selected the recently presented Bürger-Diehl model (no 

hydrodynamic dispersion considered) as an example for identifiability and uncertainty analysis 

because of its flexibility in application and available implementation details (Bürger et al. 2011, 

Bürger et al. 2013). The frame of the Bürger-Diehl model can be expressed as eq.(7.1): 

( ) ( ) ( ) ( ) ( ), , f f
comp

Q t C tC CF C x t d C t
t x x x A

δ∂ ∂ ∂ ∂ + = + ∂ ∂ ∂ ∂ 
                                                     (7.1) 

where C is the solids concentration, t is time, x is deep from the SST bottom, dcomp is the 

compression function, A is SST surface area, Qf is the feed flow rate, Cf is the feed solids 



177 
 

concentration, δ is the Dirac delta distribution, and the solids transport flux F can be written as 

eq.(7.2): 
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                                            (7.2) 

where Qe is the effluent flow rate, Qu is the underflow rate, Ce is the effluent solids concentration, 

Cu is the underflow solids concentration, and vhs is the hindered settling velocity calculated by 

the Vesilind equation (Vesilind 1968), shown as eq.(7.3): 

0 exp( )hs hv v r C= −                                                                                                                        (7.3) 

The compression function, eq.(7.4), is derived by Bürger et al. (2012, 2013) which based on the 

logarithmic compression stress function developed by De Clercq et al. (2008):  

( ) ( )
( )( )

0 0 g

s hscomp
g

s f g

C C

v Cd
C C

g C C
C ρ α

ρ ρ β

≤ <


⋅ ⋅=  ≥ − + −
                                                                   (7.4) 

where α and β are the compression parameters, and Cg denotes the gel concentration (the 

threshold compression concentration). Recently, Ramin et al. (2014c) found that the logarithmic 

compression stress function, as the state-of-the-art function, is not effective for model calibration, 
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even if the additional concentration profile measurements are provided, which implies the need 

of more accurate mathematical description of the compression behavior.    

 

Fig.7.1 - Steps of a systematic procedure of identifiable parameter subset selection and 
estimation. 

7.2.2. Experimental layouts 

Currently in both academic research and practical application, the calibration of advanced 

settling models strongly relies on batch settling measurements, which remains labor intensive 

and information limited. The lack of high resolution data sets, especially those outside the 

hindered settling range, greatly challenges the model advancement test and application. Kinnear's 

data set (Kinnear 2002) is one of few published data sets that contain both the batch settling 
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curves and concentration profile measurements, which implies it can be used for a 

comprehensive model performance evaluation. In this study, we select the Salt Lake City Water 

Reclamation Plant (SLCWRP) subset of the Kinnear's data set, and design four modeling 

scenarios with increasing difficulty of data collection, as shown in Table 7.1, to evaluate the 

influence of experimental layouts on the analysis of parameter identifiability and prediction 

uncertainty. Since there is no information about the possible measurement error available, the 

measurement error is not considered in this study. For further information about methodology of 

data collection, the reader is referred to the literature (Kinnear 2002). 

Table 7.1 - The design of batch settling experiments and comments. 

 

7.2.3. Identifiability analysis 

Fig.7.1 shows the procedure for obtaining identifiable parameter subset in different experimental 

layouts. First, the experimental layout needs to be specified, as shown in Table 7.1. The proper 

Scenario Experimental Design Comments 

1 
Collecting sludge blanket curves with initial 
concentrations at 1.74, 3.42, 5.46, 8.25, 8.95 
kg/m3  (119 data points); 

The sludge blanket curve data is most often collected in 
batch settling measurements. The linear part of the curve is 
informative for Vesilind parameter estimation; 

2 

Collecting sludge blanket curves  with initial 
concentrations at 1.74, 3.42, 5.46, 8.25, 8.95 
kg/m3, and concentration at the static sediment 
top at 3.42  kg/m3 (120 data points); 

Theoretically, the solids concentration at the static sediment 
top equals to the gel concentration, the only physically 
measurable parameter within the hindered-compression 
settling model; 

3 
Collecting solids concentration profile of the 
static sediment with the initial concentration at 
3.42 kg/m3 (7 data points); 

The solids concentration profile of the static sediment is 
difficultly measurable but highly recommended being 
collected in proposed hindered-compression calibration 
strategies; 

4 

Collecting sludge blanket curves with initial 
concentrations at 1.74, 3.42, 5.46, 8.25, 8.95 
kg/m3, as well as solids concentration profile of 
the static sediment with initial concentration at 
3.42 kg/m3 (126 data points); 

The most informative data set, which is expected to provide 
information about both the hindered and compression 
settlings; 
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assessment of prior parameter uncertainties is significant for the subsequent analysis steps, but 

usually difficult and laborious. The hindered settling parameters (v0, rh) are well reported in 

previous studies (Plósz et al. 2011, Ramin et al. 2014a), while the compression parameters (Cg, α, 

β) remain poorly understood. Table 7.2 gives the parameter uncertainties used in this study, 

which are reasonably estimated based on literature reviews and modeling experience.   

Table 7.2- Uncertainty of the hindered-compression model parameters. 

 

 

 

 

By evaluating model outputs which correspond to the experimental data set, the global sensitivity 

analysis (GSA) has been proved as a reliable approach to preliminarily select the parameter 

subset which can be reasonably estimated based on the available information content 

(Brockmann et al. 2008). Compared with the expert knowledge approach recommended by Brun 

et al. (2002), GSA is expected to be more objective by considering the whole range of 

uncertainty of each parameter, and allocating model output uncertainties to the parameter 

uncertainties (Saltelli et al. 2004). The GSA is carried out by the extended-Fourier Amplitude 

Testing (e-FAST), originally developed by Cukier et al. (1973) and Schaibly and Shuler (1973), 

and later extended by Satelli et al. (1999). As a variance based technique, the e-FAST has its root 

in the general theorem that the total variance can be decomposed into conditional variances, as 

shown in eq.(7.5): 

Symbol Definition Uncertainty  Reference 

V0 hindered settling parameter [m/hr] 3.47 - 9.71 Plósz et al. 2011, Ramin et al. 2014a 

rh hindered settling parameter [m3/kg] 0.15 - 0.63 Plósz et al. 2011, Ramin et al. 2014a 

Cg Gel concentration [kg/m3] 5.06 - 15.27 Kinnear 2002 

α compression settling parameter [Pa] 0 - 20 De Clercq et al. 2008, Bürger et al. 2013 

β compression settling parameter [kg/m3] 1 - 10 De Clercq et al. 2008, Bürger et al. 2013 
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( ) ( ( | )) ( ( | ))i iVar sy Var E sy E Var syθ θ= +                                                                                 (7.5) 

where Var and E is the variance and expectancy operator respectively, sy denotes a vector of 

scalar values for the model output and θi is the ith model factor. The Extended-FAST 

implementation strategy used in this study is based on Satelli et al. (1999), and the 

transformation function is given by eq.(7.6): 

1 1 arcsin(sin( ))
2i i isθ ω ϕ

π
= + +                                                                                                   (7.6) 

where s ranges from -π/2 to π/2, wi is a set of different frequencies and φi is a random phase-shift. 

The total number of model evaluation required can be determined by: 

( )max2 1sN m Mω= +                                                                                                                   (7.7) 

where m is the number of factors, M is the interference frequencies, and wmax is the maximum 

frequency. In this study, M and ωmax is 4 and 8 respectively. For further information about 

Extended-FAST implementation strategy, such as the selection of ω, the reader is referred to the 

literature (Saltelli et al. 1999).  

Technically, the e-FAST is able to provide two kinds of sensitivity measures: Si, which  does not 

consider the interaction among factors, and STi, which accounts for the total contribution of the 

factor to the output variance. According to Cosenza et al. (2014), STi is more informative for 

determining non-influential factors. Therefore, the global mean sensitivity ( ,G msqr
jδ ) of the model 

output to the change in θj is calculated by: 
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= ∑                                                                                                                 (7.8) 

where n is number of observations. A large ,G msqr
jδ indicates the parameter θj is influential to the 

overall model outputs, and only parameters with ,G msqr
jδ larger than 0.1 are considered to be 

influential in this study. Given that the global sensitivity measures quantify the averaged 

influence of parameters on the model outputs, it may not be able to accurately reflect the 

parameter importance at specific local points, especially for those having global mean sensitivity 

measures close to the critical value. Therefore, the local mean sensitivity measures, which can 

calculated by eq.(7.9),  are used as a supplement to further evaluate the significance of 

parameters.            

As mentioned above, selecting the suitable value of initial parameter set remains a challenge due 

to the insufficient prior knowledge of biomass settleability and compressibility, as well as the 

limited number of reported parameter values. The parameters that cannot be reasonably 

estimated are fixed as the values reported by De Clercq et al. (2008) and Bürger et al. (2013). For 

the influential parameters, the initial hindered parameter values can be estimated by the 

conventional hindered settling velocity approach if batch settling curve observations are 

available, such as in experimental layouts 1, 2 and 4. The initial value of gel concentration (Cg) 

can be approximated by the concentration at the static sediment top, such as in experimental 

layouts 2, 3 and 4. Otherwise, the initial influential parameter values are determined by artificial 

manipulation until an acceptable fit to the experimental observations is obtained.   



183 
 

Parameter identifiability is investigated using the approach proposed by Brun et al. (2001), 

which is based on the collinearity calculation of the scaled local sensitivity functions (sk,j), shown 

as eq.(7.9): 

,
, ,

j k jk
k j k j

k j j

ssys and s
sc s
θ

θ
∆ ∂

= =
∂

                                                                                               (7.9) 

where k jsy θ∂ ∂  denotes the absolute local sensitivity of model output syk to the parameter θj; 

Δθj and sck are two scale factors which denote the prior uncertainty range of the parameter θj and 

the typical magnitude of the corresponding observations respectively. js is the Euclidean norm 

of the jth column of S ( { },k jS s= ). The perturbation factor used is 5%, which is found to be 

suitable for all the model parameters.  

Poor parameter identifiability can be caused by a small sensitivity of the model output to the 

parameter, or by a high linear dependence of local sensitivity functions (Reichert and 

Vanrolleghem 2001). The significance of parameters is determined by the local mean sensitivity 

function ,L msqr
jδ : 
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= ∑                                                                                                                (7.10) 

The collinearity index is defined as eq.(7.11) to evaluate the linear dependence: 

1

1 1
min min( )

k
TS EV S Sβ

γ
η=

= =
  



 

                                                                                     (7.11) 
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where { },k jS s=  , η is the vector of coefficients, and EV denotes the eigenvalue of [ ]TS S  . A large 

γk indicates that the sensitivity functions are highly linearly dependent, which means the changes 

of model outputs caused by a small change of parameters, such as θj, can be mostly compensated 

by the change of other parameters (Brun et al. 2002). In this study, the parameter subset is 

considered to be poorly identifiable, if the corresponding γk exceeds 10, the threshold 

recommended by Brun et al. (2001).  

To combine the information of the collinearity index and the local sensitivity function, the 

determinant measure ρk  is defined as eq.(7.12), which can be useful in parameter identifiability 

comparison of different parameter subsets (Brun et al. 2002).  

( )1/(2 )
det

NT
N N NS Sρ =                                                                                                                 (7.12)                                                                                                            

Where det( ) is the determinant function, and N is the number of parameters in the corresponding 

subset. Since the value of Nρ  strongly depends on the choice of Δθj, Nρ  is a relative measure 

suited for comparison of parameter identifiability of different subsets, and cannot be simply 

evaluated based on an absolute threshold value (Brun et al. 2002). The large ,L msqr
jδ and small γk 

result a large ρN, which indicates a good identifiability.  

Based on the parameter identifiability analysis results, the parameter estimation is performed by 

minimizing the weighted residual sum of squares (WRSS): 

( ( )) ( ( ))TWRSS Y sy W Y sy= − −θ θ                                                                                            (7.13) 
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where Y is the experimental observation vector, θ is the parameter vector, and 

2 2 2 2
1 2(1/ ,1/ , 1/ , 1/ )j MW diag sc sc sc sc=   is a diagonal weighting matrix. The parameter 

identifiability analysis and estimation are repeated until convergence is achieved. Since the 

collinearity measures are calculated based on local sensitivity measures, steps (local sensitivity 

analysis, practical identifiability analysis, perform parameter estimate) have to be redone after 

adjusting the initial parameter values, until the convergence of estimates is achieved.     

The selection of initial parameter values can profoundly impact the local sensitivity measures, 

thus potentially influencing parameter identifiability for nonlinear systems (Weijers and 

Vanrolleghem 1997). In this study, the influence of initial values selection on parameter 

identifiability is evaluated based on the approach developed by Brockmann et al. (2008) by using 

experimental layouts 3 and 4 as examples. Parameters are sampled 800 times over the entire 

uncertainty space using Latin hypercube sampling, and the corresponding WRSS values are 

calculated. Only the sampled parameter sets with WRSS smaller than 25 percentile of the total 

calculated WRSS are considered to provide acceptable predictions and used to investigate the 

influence of selecting initial parameter values on parameter identifiability. 

7.2.4. Exploring the estimate bias and model prediction uncertainty 

In most cases, estimating identifiable parameter subsets from insufficient experimental 

observations are conditional on the values of prior fixed parameter, which may lead to biased 

estimates (Brun et al. 2002). To evaluate the influence of the values of fixed parameters on 

estimates, we reestimate the parameter subset by varying β in the entire prior uncertainty space in 

layouts 3 and 4. 
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It is also interesting to investigate the maximum possible model prediction uncertainty reduction 

if the identifiable parameter subsets are reliably estimated. The prediction uncertainty analysis 

involves the following steps recommended by Sin et al. (2009): 

1. Specifying input uncertainty: because of the reliable estimation of identifiable parameters, 

the only uncertainty source is the non-identifiable parameters, and their uncertainty has been 

shown in Table 7.2; 

2. Sampling input uncertainty: Latin hypercube sampling strategy is applied; 

3. Propagating input uncertainty to obtain prediction uncertainty: Monte Carlo simulation is 

applied; 

4. Representation and interpretation of results: the prediction certainty results are represented 

using mean and percentiles.  

7.3. Results and discussion 

7.3.1. Parameter selection for identifiability analysis 

The global sensitivity functions of the four experimental layouts are shown in Table 7.3. 

Compared with layout 1, the additional measurement of the top concentration of the static 

sediment in layout 2, provides a good initial approximation of the gel concentration, but does not 

impact the sensitivity functions calculation. Hence, the global sensitivity functions of the 

experimental layouts 1 and 2 are identical. When only the batch settling curve observations are 

available, such as in experimental layouts 1 and 2, the hindered settling parameters are much 

more influential than the compression parameters. The large difference of sensitivity functions 
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between hindered and compression parameters may be attributed to the fact that the duration of 

most batch settling experiments, usually 0.5~1 hr, is sufficient to collect hindered settling 

velocities, but not long enough to obtain compression settling behavior. This implies that 

calibration approaches based solely on batch settling curves need to be used with caution for 

hindered-compression model calibration. When concentration profile observations are available, 

compression parameter sensitivities greatly increase, especially in experimental layout 3, where 

sensitivity functions of several compression parameters can be even larger than those of hindered 

settling parameters. This finding shows that the solids concentration distribution in the high 

concentration range is profoundly influenced by the compression settling behavior, thus making 

the concentration profile measurements informative for compression parameter calibration, 

which agrees with the previous conclusion that collecting concentration profile data is 

recommended for hindered-compression model calibration (Kinnear 2002, De Clercq et al. 2008, 

Ramin et al. 2014c).  

Initial parameter values as well as the corresponding local mean sensitivity measures, are also 

shown in Table 7.3. The important parameters found by the local measures are almost identical 

to those determined by the global measures, with only one exception: layout 4 where the global 

and local sensitivity measures cannot reach a consensus of the importance of β. This 

demonstrates that global sensitivity analysis is reliable for preliminary selection of important 

parameters, and local sensitivity analysis is also necessary to further evaluate the parameter 

selection. The influence of selecting initial parameter values to the local sensitivities is also 

obtained: the change of initial values of Cg and α from 6.00 and 0.31 in experimental layout 1 to 

11.06 and 1.94 in experimental layout 2 impact local sensitivities. It demonstrates that a proper 

assessment of initial parameter values is particularly important.  
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Table 7.3 - Initial values, global and local mean sensitivity measures of the model parameters of layouts 1-4. 

 

 Layout 1 Layout 2 Layout 3 Layout 4 

Parameter θini δG,msqr δL,msqr θini δG,msqr δL,msqr θini δG,msqr δL,msqr θini δG,msqr δL,msqr 

V0 7.61 0.235 0.421 7.61 0.235 0.487 9.18 0.159 0.107 7.61 0.208 0.506 

rh 0.34 0.815 0.681 0.34 0.815 0.699 0.38 0.245 0.675 0.34 0.701 0.997 

Cg 6.00 0.214 0.129 11.06 0.214 0.213 11.06 0.735 0.332 11.06 0.322 0.398 

α 0.31 0.168 0.145 1.94 0.168 0.136 0.617 0.271 0.136 0.38 0.146 0.214 

β 4.00 0.029 0.056 4.00 0.029 0.011 4.72 0.158 0.103 2.10 0.079 0.119 
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7.3.2. Parameter identifiability analysis and parameter estimation  

To be identifiable, a parameter subset is expected to satisfy two criteria: 1) parameters within the 

parameter subset must be sufficiently sensitive, which means their local mean sensitivity 

functions need to be larger than 0.1; 2) the local sensitivity functions of the parameter subset 

cannot be approximately linearly dependent, and this point is addressed by setting a maximum of 

the collinearity index as 10. Only if parameter subsets fulfill both criteria, those having high 

determinant measures are considered to be best identifiable. 

The collinearity indices and determinant measures of parameter subsets are shown in Table 7.4. 

For layouts 1 and 2, all parameter subsets comprising influential parameters are identifiable with 

collinearity measures as low as 1.00, which means almost no interdependency exists. It is 

interesting to learn that although in previous studies, batch settling curves (experimental layout 1 

and 2) were usually considered to be less informative for calibrating the compression parameters, 

weak interdependency exists between compression parameters Cg and α. In contrast, parameter 

subsets including the hindered parameters have a relatively stronger interdependency as their 

collinearity measures is more than 2. Combining hindered settling parameters (V0, rh) and 

compression settling parameters (Cg and α) does not deteriorate the parameter identifiability. 

Therefore, parameter subset {V0,  rh, C g, α}is used for parameter estimation due to its acceptable 

identifiability.  

For experimental layout 3, even though all parameter subsets of size 2 are identifiable with 

collinearity measures less than 10, subset {α, β} shows a strong interdependency as its 

collinearity index is close to the critical value.  As expected, parameter subsets comprising {α, β} 

are clearly unidentifiable with collinearity measures larger than 10. It is noticeable that although 
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the concentration profile observations are informative for both hindered and compression 

parameter calibration, simultaneously estimating all parameters is unlikely to be successful based 

upon the initial parameter selection as shown in Table 7.3, and the maximum size of identifiable 

parameter subsets is found to be 3. Consequently, parameter subset {rh, Cg, α} is selected for 

estimation due to its low collinearity measure (γ=2.86) and high determinant measure (ρ=0.738). 

Table 7.4 - Collinearity indices and determinant measures of parameter subsets of experimental 
layouts 1-4. 

 

With respect to layout 4, the parameter subsets comprising {α, β} are poorly identifiable as well. 

Nevertheless, in contrast to layout 3 where no parameter subsets with size more than 3 are 

  Layout 1 Layout 2 Layout 3 Layout 4 
Set 

number Parameters γk ρk γk ρk γk ρk γk ρk 
1 V0, rh 2.23 0.775 2.67 0.714 3.67 0.615 2.21 0.779 
2 V0, Cg 1.22 0.972 1.01 1.00 1.18 0.979 1.25 0.967 
3 V0, α 1.00 1.00 1.00 1.00 1.63 0.884 2.24 0.968 
4 V0, β - - - - 1.45 0.923 1.24 0.968 
5 rh, Cg 1.21 0.975 1.05 0.998 1.36 0.943 1.81 0.850 
6 rh, α 1.19 0.978 1.11 0.991 1.63 0.884 1.81 0.848 
7 rh, β - - - - 1.52 0.908 1.80 0.849 
8 Cg, α 1.00 1.00 1..00 1.00 2.59 0.724 4.78 0.541 
9 Cg, β - - - - 3.43 0.635 5.31 0.514 

10 α,  β - - - - 9.21 0.391 26.1 0.233 
11 V0, rh, C g 2.23 0.827 2.71 0.797 4.23 0.675 3.08 0.732 
12 V0, rh, α 2.59 0.806 2.91 0.778 3.67 0.663 3.14 0.728 
13 V0, rh, β - - - - 3.71 0.678 3.14 0.729 
14 V0, C g, α 1.22 0.981 1.01 0.999 3.88 0.689 4.78 0.649 
15 V0, C g, β - - - - 4.52 0.658 5.32 0.627 
16 V0, α, β - - - - 15.9 0.418 26.2 0.370 
17 rh, C g, α 1.32 0.967 1.13 0.992 2.86 0.738 4.78 0.593 
18 rh, C g, β - - - - 3.63 0.689 5.31 0.574 
19 rh, α, β - - - - 10.6 0.476 26.2 0.339 
20 C g, α, β - - - - 20.8 0.319 31.7 0.232 
21 V0, rh, C g, α 2.59 0.838 2.94 0.826 12.2 0.481 4.79 0.578 
22 V0, rh, C g, β - - - - 11.6 0.476 5.33 0.564 
23 V0, rh, α, β - - - - 33.7 0.339 26.2 0.380 
24 V0, C g, α, β - - - - 32.7 0.340 31.9 0.328 
25 rh, C g, α, β - - - - 28.9 0.367 32.1 0.306 
26 V0, rh, C g, α, β - - - - 36.5 0.289 32.1 0.342 
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identifiable, two subsets of size 4, {V0, rh, Cg, α} and {V0, rh, Cg, β}, are clearly identifiable in 

layout 4. The comparison of the determinant measures of {V0, rh, Cg, α} and {V0, rh, Cg, β} 

shows that the former one is more promising for further evaluation.  

Parameter estimation is performed based on the parameter identifiability analysis, and Table 7.5 

summarizes the estimation results and the corresponding correlation matrix information. The low 

absolute off-diagonal elements of correlation matrixes of all experimental layouts confirm the 

conditional identifiability of the selected parameter subsets. Estimates of hindered parameters (V0, 

rh) and gel concentration (Cg) differ only slightly from their corresponding initial values, and in 

contrast, the difference between final estimates and initial values of α can be as large as 30~60%.  

To compare the sludge settling properties characterized by the parameter estimates obtained from 

different experimental layouts, the batch settling flux and compressive solids stress which reflect 

the sludge settleability and compressibility respectively are calculated and shown in Fig.7.2. The 

estimated settling fluxes are similar or identical with only one notable exception: the batch flux 

of layout 3, which implies a better sludge settleability, especially in medium and high 

concentration range. This discrepancy possibly can be caused by the difference in obtaining 

initial hindered parameter values; the same initial values of hindered parameters are used in 

layout 1, 2 and 4 which are determined by the conventional hindered settling velocity approach. 

In layout 3 where no batch settling curve observations are available, the initial values of the 

hindered settling parameters are selected by experience or manual parameter adjustment. Fig.7.2 

also shows that the estimated sludge compressibility characterized by compressive solids stress 

curves of different layouts are inconsistent, which is mostly reflected by the difference of 

estimated gel concentrations and magnitude of effective solids stress. The effective solids stress 
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curve estimated in experimental layout 1 possesses the smallest gel concentration and magnitude, 

which is consistent with the smallest initial values of Cg and α used in this case as compared 

with other layouts. Estimated effective solids stress curves of layout 2, 3 and 4 are similar in gel 

concentration, but greatly differ in stress magnitude, which can be attributed to the fact that in 

these layouts, similar gel concentration estimates but different α estimates are obtained. 

 

Fig.7.2 - The estimated batch settling flux functions (left) and compressive stress functions (right) 
calculated based on the Vesilind equation (Vesilind 1968) and the logarithmic compression stress 
equation (De Clercq et al. 2008). 

To facilitate an understanding of the limitations of each layout in model calibration, we compare 

model simulations based on parameter estimates of layouts 1-4 to complete experiment 

observations (batch settling curves and concentration profiles), shown in Fig.7.3. As expected, 

model simulations based on estimates obtained in layout 4 fit well with both batch settling curves 

and concentration profiles. Simulations of layout 3 provide the best fit with concentration profile 

observations, while the predicted batch settling curves are much lower than experiment 

observations, which implies that the estimated batch settling flux of layout 3 cannot represent 

real sludge settleability. Accurate predictions of static concentration profiles in layout 3 may be 
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achieved by overestimating the sludge settleability while underestimating its compressibility. 

Therefore, estimating sludge settleability and compressibility by only using static concentration 

observations, such as experimental layout 3, may be questionable. Simulations of layout 1 and 2 

provide fairly good fits to observed batch settling curves. Simulations of layout 1 slightly 

overestimate batch settling curves of 8.25, 8.95 kg/m3, which may be caused by the 

underestimated gel concentration. Although simulations based upon layout 2 succeed in 

predicting the top concentration of static sediment, the predicted concentration within the 

sediment is lower than the experiment observations due to the relatively large estimated 

compressive solids stress as shown in Fig.7.2. Consequently, accurately estimating 

compressibility remains a challenge if using only batch settling curve observations.  
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Table 7.5 - Initial values, final estimates, standard errors and correlation matrixes of the parameter subsets selected in experimental 
layouts 1-4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment layout 1 Experiment layout 2 

  Standard error Correlation matrix  Standard error Correlation matrix 

Parameter θest absolute relative V0 rh Cg α Parameter θest absolute relative V0 rh Cg α 

V0 7.41 0.072 0.009 1    V0 6.99 0.098 0.014 1    

rh 0.34 0.004 0.011 0.446 1   rh 0.33 0.004 0.013 0.538 1   

Cg 6.46 0.549 0.085 0.053 -0.081 1  Cg 11.8 0.196 0.017 0.356 -0.007 1  

α 0.22 0.028 0.127 -0.042 -0.297 0.084 1 α 1.01 0.086 0.085 0.100 -0.039 0.018 1 

Experiment layout 3 Experiment layout 4 

  Standard error Correlation matrix  Standard error Correlation matrix 

Parameter θest absolute relative rh Cg α  Parameter θest absolute relative V0 rh Cg α 

rh 0.33 0.015 0.045 1    V0 6.98 0.096 0.014 1    

Cg 10.51 0.866 0.082 -0.424 1   rh 0.34 0.004 0.011 0.542 1   

α 0.82 0.109 0.133 0.406 0.838 1  Cg 10.7 0.177 0.017 0.376 0.405 1  

        α 0.39 0.433 0.111 -0.121 -0.408 -0.428 1 
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Fig.7.3 - Simulation results (batch settling curves and concentration profile) based on parameter 
subset estimations of experiment layouts 1-4.  
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7.3.3. Influence of selecting initial parameter values on parameter identifiability  

The selection of parameter initial values impacts parameter identifiability in two ways: 1) impact 

local parameter sensitivity functions; 2) impact collinearity measures of parameter subsets. If 

initial values of Cg and hindered parameters are determined by measuring the top concentration 

of static sediment and hindered settling velocities respectively, the sensitivity analysis of 

parameter identifiability to initial parameter selection only needs to consider the remaining 

parameters (V0, rh, α, β in experimental layout 3, and α, β in experimental layout 4), which may 

have different initial values.  

Fig.7.4 shows the change of local mean sensitivity functions with different initial parameter 

values. For experimental layout 3, changes of parameter initial values mostly influence the local 

mean sensitivity functions of V0, rh α and β. In spite of the variance of sensitivity functions, the 

gel concentration, Cg , remains influential as its 25% percentile is above the critical value defined 

as 0.1 in this study. Fig.7.4 also shows that compared with other parameters, Cg possesses the 

highest median of the local mean sensitivity functions, which agrees with the global sensitivity 

analysis conclusion that Cg is the most influential parameter in layout 3. In layout 4, the hindered 

settling parameters, V0 and rh, are the most influential parameters, and their sensitivity functions 

are almost insensitive to the initial value changes of α and β. Even though a moderate variance of 

the sensitivity measures of Cg is observed, it remains as a significant parameter with 5th 

percentile above the critical value.  The only potentially non-influential parameters are α and β, 

whose 75th percentiles are close to the critical value.  
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Fig.7.4 - Box-Whisker plot of the local mean sensitivity measures of model parameters in layouts 
3 and 4. The upper and lower boundaries of the box mark the 75th and 25th percentile, and line 
within the box marks the median. Whiskers above and below indicate the 95th and 5th percentile. 
(left: experimental layout 3; right: experimental layout 4). 

Box-Whisker plots for collinearity indices of parameter subsets calculated based on sampled 

parameters are shown in Fig.7.5. For experimental layout 3, the parameter subsets of size 2 are 

mostly identifiable, and their collinearity measures are not sensitive to the change of initial 

parameter values. Poor identifiability only can be obtained in subsets 1 {V0, rh} and 10 {α, β} for 

their median and 75 percentile are above the critical value. This implies that parameter subsets 

comprising {V0, rh} or {α, β} can be less identifiable than others. For subsets of size 3 and 4, the 

increase of parameter subset size leads to the variation of collinearity measures as well as the 

deterioration of identifiability, with only one notable exception: subset 14 {rh, Cg, α}, which is 

clearly identifiable independently of change of initial parameter values. This agrees well with the 

conclusion that parameter subsets that do not include {V0, rh} or {α, β} show a better 

identifiability. Subset 26 {V0, rh, Cg, α, β} is poorly identifiable as the 5th percentile is above the 

critical value, thus making it unreliable for estimating all parameters simultaneously. Compared 

to layout 3, collinearity measures of parameter subsets of layout 4 are less sensitive to initial 

parameter value selection. Clearly, most parameter subsets are identifiable regardless of the 
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initial parameter values, and for several of them, for example the subsets of size 2, the 

collinearity measures are smaller than 1.5, indicating the absence of interdependence. 

Consequently, for layout 4, the size of parameter set that can be reliably estimated can be as 

large as 5, if parameters included are found to be influential to the experiment observations. 

 

 

Fig.7.5 - Box-Whisker plot of the calculated collinearity indices for all parameter subsets of size 
2-5. (the order of the parameter subsets is the same as the parameter set number as shown in 
Table 7.4). The upper and lower boundaries of the box mark the 75th and 25th percentile, and 
line within the box marks the median. Whiskers above and below indicate the 95th and 5th 
percentile. (top: experimental layout 3; bottom: experimental layout 4). 
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7.3.4. Exploring potential bias problem and prediction uncertainty  

It is noteworthy that the estimates obtained by identifiable parameter subset estimation are 

clearly conditional on fixed values of unidentifiable parameters, hence potentially causing 

estimate bias problems (Brun et al. 2002). Fig.7.6 shows the reestimated results of layouts 3 and 

4 using the parameter estimates shown in Table 7.5 as references, and Table 7.6 provides the 

average collinearity measures of all parameter subsets of size 2, composed of one identifiable 

parameter plus the fixed parameter, and the average estimate change of the corresponding 

identifiable parameter. As can be seen, the large average change is always associated with the 

large average collinearity measure, which indicates that the stronger the parameter is correlated 

to the fixed parameter, the more sensitive the estimate is to the change of the fixed parameter 

value. For layout 3, the small average collinearity measures of subsets {rh, β}, {V0, β} indicate 

the week interdependency between rh and β, Cg and β, and as a result, the estimates of the rh and 

Cg are almost insensitive to β, which is demonstrated by the low average changes (<10%). 

However, concerning α, the increase of β leads to a significant increase of α, and the 

corresponding average change can be as high as 49.7%. The strong sensitivity of the estimate of 

α to the fixing β can be attributed to the significant interdependency of α and β with average 

collinearity measure as high as 19, which means that changes in β can be compensated by 

corresponding changes of α. When it comes to layout 4, almost no interdependency exists in 

subsets {V0, β}, {rh, β} and {Cg, β} as their corresponding average collinearity indices approach 

to 1. Conversely, the collinearity measures of {α, β} are relatively larger, which leads to poor 

identifiability problem. Obviously, the estimates of α in layouts 3 and 4 can only be seen as 

reasonable values which leads to a sufficient description of experiment observations rather than 

"true parameter value".  
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Table 7.6 - The average collinearity indices of parameter subsets of size 2 consisting of one 
identifiable parameter plus the fixed parameter, and the average changes of the estimates of 
identifiable parameters. 

Experimental layout 3 Experimental layout 4 

Parameter Average γ Average change 
(%) Parameter Average γ Average change 

(%) 

rh 3.13 4.95 V0 1.15 4.39 

Cg 5.41 8.43 rh 1.31 3.02 

α 16.78 49.7 Cg 2.52 3.19 

   α 3.10 98.4 

 

To obtain prediction uncertainty of the hindered-compression model, we assume uncorrected 

parameters with the prior uncertainties as shown in Table 7.2, and zero uncertainty for the 

identifiable parameters of each layout. The model prediction uncertainty is calculated by using 

Latin hypercube sampling and Monte Carlo simulation. We consider the SST with the same 

configuration as proposed by Bürger et al. (2013), the volumetric flow Qu=80 m3/hr and Qf is 

modeled by the harmonic function developed by Carstensen et al. (1998). The feed concentration 

is chosen as 

( )
6 0 48
7.5 48 72
4 72 168

f

t hr
C t hr

t
t

hr

≤ <
= ≤ <
 ≤ <

                                                                                                                (12) 
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Fig.7.6 - Relative values of estimated parameter for different values of fixed parameters (left: 
experimental layout 3; right: experimental layout 4). 

Fig. 7.7 shows the uncertainty ranges of SBH which is one of the most significant model outputs 

for system robustness and efficiency analysis. Given that model simulations based on estimation 

results of layouts 1, 2 and 4 possess the same uncertainty source - the non-identifiable β, it is 

interesting to compare their corresponding prediction uncertainties. Clearly, after estimating the 

identifiable parameter subsets of layouts 1, 2 and 4, the model prediction uncertainties become 

low, and the 5th percentile almost overlaps with the 95th percentile for SBH in layouts 1 and 4. 

Similar tendencies of SBH are obtained; however the difference in the prediction of peak SBH 

uncertainties can cause a discrepancy in developing control strategies. For layout 2 and 4, the 5th 

percentile of peak SBH is above 3m (the feed inlet), which indicates a high opportunity of 

thickening failure, and the 95th percentile is close to 4m (the effluent weir), which implies the 

potential risk of clarification failure. Hence, in order to avoid failure, a proper operating 

adjustment is needed from t= 48 to 72 hr, such as increasing the underflow rate. Conversely, for 

layout 1, since the 95th percentile of peak SBH uncertainty is below 3.5m, failure is not expected. 

For layout 3 where two uncertainty sources (V0 and β) exist, the uncertainty of SBH remains 
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large, which implies that SBH is sensitive to these two parameters. If the unidentifiable 

parameters characterize the sludge with good settleability and compressibility, the growth of 

SBH can be moderate as the 5th percentile line shows. However, if the unidentifiable parameters 

lead to poor settleability and compressibility, a rapid change of SBH is expected as 95th 

percentile line shows, which can potentially cause thickening and clarification failures. Therefore, 

further operational adjustments are required to account for the shock increase of the solids flux 

for layout 3.   

 

Fig.7.7 - Uncertainty of SBH based on parameter subset estimation of experimental layout 1-4. 
The blue and red dot lines indicate the 95th and the 5th percentile respectively. (top left: 
experimental layout 1; top right: experimental layout 2; bottom left: experimental layout 3; 
bottom right: experimental layout 4). 
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7.4. Conclusion 

In this chapter, we provide a systematic analysis of model parameter identifiability in different 

experimental layouts, as well as the influence of selecting initial parameter values on parameter 

identifiability. Additionally, we further investigate the bias introduced by fixing parameters, and 

evaluate the model prediction uncertainties based on the estimation of identifiable parameter 

subsets. Specific conclusions can be made as follows: 

1. As shown by the global sensitivity results, the hindered settling parameters are more 

influential in situations where only batch settling curve observations are available, while 

the sensitivity to compression parameters can be greatly increased if concentration profile 

observations are included. This supports the previous conclusion that concentration 

profile observations are informative for compression parameter calibration. 

2. The identifiability analysis shows that at least three model parameters are conditionally 

identifiable, and β is most difficult to identify. Parameter estimates obtained from data 

sets only including the batch settling curves or the concentration profile fail to provide 

adequate description of the concentration profile observations and batch settling curve 

observations respectively, which implies the risk of calibrating model by using 

experimental measurements without sufficient information content. 

3. Because of the application of local sensitivity functions, the parameter identifiability 

analysis can be sensitive to the initial parameter value selection. Determining the initial 

values of the hindered parameters and Cg by measuring the hindered settling velocities 

and the top concentration of the static sediment respectively is highly recommended to 
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minimize the sensitivity of parameter subset identifiability to the change of initial 

parameter values. 

4. Estimates obtained by identifiable parameter subsets estimation are conditional on the 

values of fixed parameters. For these identifiable parameters, the more correlated they are 

to fixed parameters, the more sensitive their estimates are to the change of the fixed 

parameters. Reliably estimating identifiable parameters can reduce the model prediction 

uncertainty of SBH to some degree. However, in terms of the prediction uncertainty of 

peak SBH, the uncertainty analysis based on the estimates of different layouts cannot lead 

to consistent operation strategies, which implies that the hindered-compression 

continuous settling model cannot be used as quantitative prediction tool if calibrated 

without comprehensive data measurements. 

It is worthy to note that in this chapter, we investigate the practical identifiability of SST model 

mostly based on the state-of-the-art settling model, since the prior uncertainty of all parameters 

in the model are well documented in previous investigations. Currently, several more advanced 

settling models have been developed to improve the model predictions, for example the 

hindered-transient-compression model developed by Ramin et al. (2014c) have been 

demonstrated to be more effective than the state-of-the-art settling model for batch settling 

predication. For these advanced SST models, the increase of model complexity can be expected, 

such as the size of model parameters can be close 10. The procedures and techniques used in this 

study, can also be a reliable framework for the parameter identifiability analysis of these 

advanced SST models.  
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8. Conclusion 

This dissertation focuses on the one-dimensional (1-D) modeling of secondary settling tanks 

(SSTs), including the numerical analysis to introduce and select efficient (high accuracy and low 

computation cost) solution techniques, sensitivity and practical identifiability analysis to 

facilitate the reliable calibration of 1-D SST models, and evaluation the implications  of 

secondary settling modeling on the design and control of waste water treatment plants. Specific 

conclusions of this dissertation can be made as follows: 

1. Accurately solving the ideal continuous settling model is challenging because of solution 

discontinuities. As the only available method for analytical solution development of ideal 

continuous settling model, the method of characteristics has been successfully implemented 

to investigate the dynamics of SST for three typical solids loading transients: underloading-

underloading, underloading-overloading and overloading-underloading.  

2. The Yee-Roe-Davis method determines the calculation behavior in terms of the solution 

gradient, and provides both numerically and physically acceptable solutions that satisfy the 

Courant-Friedrichs-Lewy condition and entropy condition. Therefore, the Yee-Roe-Davis 

method is a reliable numerical technique for solving the nonlinear hyperbolic partial 

differential equation of the SST model, and can be an acceptable alternative to the Godunov 

and Enquist-Osher methods.  

3. By using solutions of method of characteristics as reference, the convergence analysis of 

Methods Simplied-Godunov, Godunov and Yee-Roe-Davis shows that all are reliable, since 

they are able to provide arbitrarily close approximations to the reference solutions as 
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discretization is refined. For a given discretization level, the Yee-Roe-Davis method is most 

efficient in reducing error, and provides the most accurate approximations. However, this 

advantage of high accuracy of the Yee-Roe-Davis method is at the cost of larger computation 

time and coding complexity when compared with Methods Simplied-Godunov and Godunov. 

The simplified numerical flux calculation technique used in Method Simplied-Godunov 

increases error, but greatly reduces the coding complexity and computation cost. Method 

Godunov performs well in both accuracy and computation cost comparisons.  

4. The choice of numerical methods can greatly impact the model outputs. Compared with 

the Yee-Roe-Davis method, using the Stenstrom-Vitasovic-Takács method can produce 

unrealistic solids accumulation during underloading condition, and underestimate the time-

to-failure in thickening and clarification failures, thus potentially leading to conservative 

design and operation strategies.  

5. Based on the global sensitivity analysis (GSA) results, the important parameters are 

identified for the hindered-compression-dispersion SST model (Bürger-Diehl model) 

calibration under non-ideal flow and settling conditions. Given that strong parameter 

interactions exist in the case of Ce prediction, advanced GSA techniques, such as Extended-

Fourier Amplitude Testing, are required for reliable GSA results. 

6. The sensitivity of the hindered-compression-dispersion SST model (Bürger-Diehl model) 

outputs to parameters is strongly impacted by the imposed simulation conditions, resulting in 

different parameter subsets for model calibration. Moreover, reliable reduction of the 

hindered-compression-dispersion SST model can be achieved based on GSA results; for 

example under the bulking condition, the hindered-compression-dispersion model can be 
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reduced to the hindered-dispersion model without impacting model outputs, which occurs 

because none of model outputs are sensitive to the compression settling parameters. The 

model uncertainty analysis is demonstrated as an efficient approach to evaluate the reliability 

of model reduction. 

7. In terms of the calibration of hindered-compression-dispersion model, the global 

sensitivity analysis results show that the hindered settling parameters are more influential in 

situations where only batch settling data observations are available, while the sensitivity to 

compression parameters can be greatly increased if concentration profile observations are 

included. This supports the previous conclusion that concentration profile observations are 

informative for compression parameter calibration. 

8. The practical identifiability analysis shows that parameter estimates obtained from data 

sets only including the batch settling curves or the concentration profile fail to provide 

adequate description of the concentration profile observations and batch settling curve 

observations respectively. This implies a risk of calibrating a model using experimental 

measurements without sufficient information content.  

9. Because of the application of local sensitivity functions, the parameter identifiability 

analysis can be sensitive to the initial parameter value selection. Estimates obtained by 

identifiable parameter subsets estimation are conditional on the values of fixed parameters. 

For these identifiable parameters, the more correlated they are to fixed parameters, the more 

sensitive their estimates are to the change of the fixed parameters. 

10. For an activated sludge process design, the bioreactor and SST should be designed as a 
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whole, and a safety constraint can be introduced in the design process to greatly improve the 

system’s efficiency and reliability. The designed alternatives based on the safety constraint 

show that the requirement of bioreactor volume decreases with an increase of SST size, and 

this can help prevent overdesigning the activated sludge process size and land waste. A 

comprehensive selection of the designed alternatives should consider three aspects: economic 

plausibility, contaminant removal efficiency, and system robustness. Least-cost points can 

usually be attained, but their locations will vary depending on the weighting of the relative 

cost factor. 
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	As can be seen in Fig.3.3, SSTs can convey most feed sludge towards to the bottom and produce low turbidity effluent in underloading case, which matches the previous experiments observations (Tracy 1973). Sludge is thickened in the thickening zone for...
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