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Abstract

Problems on Large Sparse Graphs

by

Payam Delgosha

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

and the Designated Emphasis in

Communication, Computation and Statistics

University of California, Berkeley

Professor Venkat Anantharam, Chair

In this thesis, we study two category of problems involving large sparse graphs, namely the
problem of compression for graphical data, and load balancing in networks. We achieve this
by employing the framework of local weak convergence, or so called the objective method.
This framework provides a viewpoint which enables one to make sense of a notion of sta-
tionary stochastic processes for sparse graphs.

By employing the local weak convergence framework, we introduce a notion of entropy for
probability distributions on rooted graphs. This is a generalization of the notion of entropy
introduced by Bordenave and Caputo to graphs which carry marks on their vertices and
edges. Such marks can represent information on real-world data. This notion of entropy
can be considered as a natural counterpart for the Shannon entropy rate in the world of
sparse graphical data. We illustrate this by introducing a universal compression scheme for
sparse marked graphs. Furthermore, we study distributed compression of graphical data. In
particular, we introduce a version of the Slepian–Wolf theorem for sparse marked graphs.

In addition to studying the problem of compression, we study the problem of load balancing
in networks. We do this by modeling the problem as a hypergraph where each hyperedge
represents a task carrying one unit of load, and each vertex represents a server. An allocation
is a way of distributing this load. we study balanced allocations, which are roughly speak-
ing those allocations in which no demand desires to change its allocation. Employing an
extension of the local weak convergence theory to hypergraphs, we study certain asymptotic
behaviors of balanced allocations, such as the asymptotic empirical load distribution at a
typical server, as well as the asymptotic of the maximum load.
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Problems studied in this thesis should be considered as examples showing the wide-range
applicability of the local weak convergence theory and the above mentioned notion of en-
tropy. In fact, this framework provides a viewpoint of stationary stochastic processes for
sparse marked graphs. The theory of time series is the engine driving an enormous range of
applications in areas such as control theory, communications, information theory and signal
processing. It is to be expected that a theory of stationary stochastic processes for com-
binatorial structures, in particular graphs, would eventually have a similarly wide-ranging
impact.
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Chapter 1

Introduction

One of the implications of the modern technology is that we deal with a type of information
that is best represented in forms of graphs in our daily lives. Whenever we search for a topic
on the internet, use social media, or use navigation applications to find the shortest path to
our destination, we are taking advantage of algorithms and methods which are executed on
graphs. A graph is an abstract combinatorial data structure which is capable of modeling
interactions between objects, and is used to represent a great variety of modern data. In
fact, the class of graphical data is much richer compared to the traditionally studied time
series or multidimensional time series. Such graphical data arise, for instance, in social
networks, molecular and systems biology, web graphs, road networks, and in several other
applications. For example, graphical data representing a social network would be a snapshot
view of the network at a given time. In this example, the graph may describe whether a
pair of individuals has ever had an interaction. Moreover, marks on the vertices represent
some characteristics of the individuals currently of interest for the data analysis task, e.g.
their preference for coffee versus tea. Furthermore, the marks on the edges represent the
characteristics of their interaction, e.g. whether they are friends or not.

Usually, the real–world graphical data are huge in size. Take the graph of the internet
as an example, where each vertex represents a web page, and each edge represents a link
between two web pages. The resulting graph has several billion vertices. The sheer size of
such graphical data makes it challenging to analyze and store them. This argues for the
necessity of finding efficient and optimal methods and algorithms for analyzing and storing
graphical data. PageRank is an example of such efficient algorithms which is widely used in
search engines to address search queries [PBMW99].

In practice, normally the graphical data has some form of sparsity property. Roughly
speaking, sparsity means that in a graph with n vertices, the number of edges scales much
slower than

(
n
2

)
. For instance, in a social network graph, where a vertex represents an

individual, and each edge represents a friendship interaction, one person is usually connected
to only a subset of other people rather than being connected to a majority of the whole
population.

One promising approach to study problems on graphs is through the lens of random
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graphs. The field of random graphs has been extensively studied, and there are a variety
of random graph models which can be used to model different types of graphical data for
a diverse class of applications [Bol98, VDH16]. However, when the size of the graph is
very large, it is advantageous to approximate it by an “infinite” object to simplify certain
analysis, in particular asymptotic analysis. This viewpoint is not limited to graphs, and
is also utilized in the definition of stochastic processes for times series. More precisely, a
stochastic process in its classical form is an infinite sequence of random variables which is
identified by its finite dimensional marginals. Moreover, given a time series, we may compute
its empirical distribution with a given window size, say k, and compare it with the finite
marginal distribution of the stochastic process with the same dimension k. If they are close,
we may think of the time series as “being typical” or “being consistent” with the stochastic
process. A conceptually similar approach can be employed for sparse graphs in order to
define a notion of stochastic process for them. The framework of local weak convergence or
so called the objective method provides such a viewpoint [BS01, AS04, AL07]. The sparsity
regime of interest for the local weak convergence framework is, roughly speaking, when the
number of edges in the graph proportional to the number of vertices in the graph.1 We use
this framework as a counterpart of stochastic processes in the world of sparse graphical data
to study some problems on sparse graphs. We will discuss these problems in the following.

We first give a very rough explanation of the main ideas behind the local weak convergence
framework here, without being mathematically rigorous. To simplify the discussion, here we
focus on unmarked graphs. However, the same ideas are applicable to marked graphs, as we
will discuss the details in Chapter 2. Given a finite graph G on the vertex set V , we define
the empirical distribution of G as follows. We pick a vertex v uniformly at random from V ,
and look at the structure of the graph from the point of view of this vertex v. This yields a
random rooted graph, which we denote by U(G). See Figure 1.1 for an example. Note that
in this process, we look at the structure of the graph by removing the vertex labels. Here,
the term label refers to the integer index 1, 2, . . . associated to a vertex, and is distinct from
a vertex mark. Therefore, the resulting object U(G) will be a probability distribution on the
space of unlabeled rooted graphs. In other words, U(G) keeps the frequency of different local
patterns existing in the graph G. When the graph G is large, we may be able to approximate
U(G) with a probability distribution on rooted graphs with possibly infinite depth. We denote
this set of unlabeled rooted graphs by G∗. Motivated by this, we may treat a probability
distribution µ on G∗ as a graph stochastic process. With this, we can think of a graph G as
being typical if U(G) is close to µ in a certain sense.

This framework naturally yields a notion of convergence for sparse graphs. In other
words, we may say that a sequence of finite graphs Gn converges in the local weak sense to a
probability distribution µ on G∗ if U(Gn) converges to µ in a certain sense. As an example,
assume that Gn is a realization of the sparse Erdős–Rényi random graph model G(n, α/n),
where α > 0 is fixed, and each edge in Gn is independently present with probability α/n. If n
is large, the degree of a vertex v in the graph chosen uniformly at random has approximately a

1this regime is sometimes referred to as the very sparse regime in the literature [BCCZ19]
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Figure 1.1: With G being the graph in (a), (b) depicts U(G), which is a probability
distribution the space of unlabeled rooted graphs. For the sake of simplicity, we have assumed
that G is unmarked in this figure. Note that if we pick a vertex v uniformly at random in G,
with probably 4/8 = 1/2, v belongs to the set {2, 3, 6, 7}. Furthermore, the structure of the
graph rooted at any of these four vertices is the same, and is the left–most object illustrated
in (b). Note that the term label refers to the integer index 1, 2, . . . , 8 associated to a vertex,
and is distinct from a vertex mark.

Poisson distribution with mean α. Moreover, the same argument holds for any of the vertices
adjacent to v. Also, it can be shown that the probability of having cycles in a neighborhood
of v is vanishing. Therefore, U(G) is approximately a Poisson Galton-Watson tree with mean
degree α. A Poisson Galton-Watson tree is a branching process where the root has a Poisson
number of children, each child has a Poisson number of children and so on. Therefore, we say
that the above sequence of sparse Erdős–Rényi graphs converges in the local weak sense to a
Poisson Galton-Watson tree. Due to the existence of a notion of convergence, this framework
has been useful in studying certain asymptotic problems on large spare graphs. For instance,
Aldous employed this framework to study the asymptotic behavior of the random assignment
problem [Ald01]. Lyons used this framework for asymptotic enumeration of spanning trees
in large graphs [Lyo05]. Other applications include, but not limited to, spectral graph theory
[BL10], planar triangulation [Ang03, AS03], and combinatorial optimization [AS04, Ste02,
GNS06, Gam04]. The concept of looking at a discrete process from the point of view of
an individual already exists in other frameworks, such as the Palm theory, which employs
a similar concept for point processes [BB12]. Baccelli et al. have recently introduced a
framework on finitely bounded discrete metric spaces which simultaneously generalizes the
local weak convergence theory and the Palm theory [BHMK20].
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1.1 Thesis Approach

In this thesis, we study two classes of problems on large sparse graphs. Namely, compression
and load balancing. We employ the framework of local weak convergence as a counterpart
of the notion of stochastic processes for sparse graphical data. In particular, we develop a
notion of entropy for this framework, and we show that it is indeed the information theoretical
limit of compression for sparse graphs. Below, we explain the structure of this thesis in more
details.

1.1.1 Part I: Local weak convergence and the marked BC
entropy

First, in Chapter 2, we review in detail the local weak convergence framework that we
highlighted above. Then, in Chapter 3, we introduce a notion of entropy for this framework,
which we call the marked BC entropy. This is a generalization of the notion of entropy
introduced by Bordenave and Caputo in [BC15] to the regime where vertices and edges in
the graph can carry marks on top of the connectivity structure of the graph.

Roughly speaking, the entropy associated to a probability distribution µ on the space G∗,
which we denote by Σ(µ), is defined through studying the asymptotic behavior of the size of
the set of typical graphs. Bordenave and Caputo observed in [BC15] that, roughly speaking,
if Gn,mn(µ, ε) denotes the set of graphs G on the vertex set {1, . . . , n} having mn edges such
that U(G) is ε–close to µ (with respect to a metric which we will discuss in detail), then we
have

log |Gn,mn(µ, ε)| ≈ mn log n+ nΣ(µ).

In other words, the log of the size of the set of typical graphs has a leading term which is
mn log n. Furthermore, the entropy, which is denoted by Σ(µ) here, is the coefficient of the
second order term which scales linearly in the number of vertices in the graph. As we will see
in Chapter 3, in the marked regime where vertices and edges in the graph can have marks
coming from a finite set, a similar scaling exists which leads to our definition of the marked
BC entropy. Recall that we assume that the graphs are sparse, and mn scales linearly with
n. In fact, mn ≈ d

2
n where d is the expected degree at the root in µ. Therefore, the leading

term mn log n scales as d
2
n log n. In fact, putting aside the leading term which is of order

n log n, this notion of entropy captures the per vertex growth rate of the size of the typical
graphs.

As we will see in Part II, this notion of entropy is indeed the information theoretic limit
of compression for sparse graphs. However, it is important to mention that this notion of
entropy, together with the local weak convergence as a counterpart of stochastic processes
for sparse graphical data, can have a wide range of applications in addressing many problems
for sparse graphs, not necessarily limited to compression.
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1.1.2 Part II: Compression of Graphical Data

As we discussed above, in practical application, usually the size of the graph underlying the
data is large. Designing efficient compression schemes to store and analyze the data is there-
fore of significant importance. In Chapter 4, we introduce a universal lossless compression
for sparse marked graphical data. Our notion of universality is similar in nature to that
of time series. For time series, a universal compression scheme is capable of achieving the
optimal compression rate without knowing the stochastic model from which the time series is
generated. We have a similar notion of universality for graphical data, where the stochastic
process is now replaced with the notion of local weak convergence, and the optimal compres-
sion rate is governed by the marked BC entropy. The results in Chapter 4 were previously
published in [DA17b] and [DA20].

For time series, the problem of universal compression has been extensively studied [CT12],
and efficient algorithms such as Lempel-Ziv [ZL77, ZL78, Wel84] are proposed which are
capable of achieving the optimal information theoretic limit of compression. For sparse
marked graphs, we propose a lossless compression scheme in Chapter 4. Moreover, this
scheme is universal in the sense that for a sequence of marked graphs Gn converging to a
limit object µ in the local weak sense, the normalized codeword length associated to Gn does
not asymptotically exceed the marked BC entropy of µ. To address universality, we assume
that the encoder does not know the limit object µ a priori.

The literature on compression and evaluating the information content of graphical data
can be divided into two categories based on whether there is a stochastic model for the graph-
ical data. Works that do not consider a stochastic model usually aim to compress specific
types of graphical data, such as web graphs [BBH+98, SMHM99, BKM+00, BV04], social
networks [CKL+09, MP10, BRSV11, Mas12], or biological networks [DWvW12, ADK12,
KK14, SSA+16, HPP16]. These works often take advantage of some properties specific to
a data source, where such properties are usually inferred through observing real-world data
samples. For example, Boldi and Vigna proposed the WebGraph framework to encode web
graphs, where each node represents a URL, and two nodes are connected if there is link be-
tween them [BV04]. Later, Boldi et al. proposed a method called layered label propagation
as a compression scheme for social networks [BRSV11].

Among models making stochastic assumptions, Choi and Szpankowski studied structural
compression of the Erdős–Rényi ensemble G(n, p) [CS12]. There has been a recent series
of works addressing the universal compression of binary trees, see for instance [KYS09],
[ZYK13], [MTS18], [GHLB19]. Aldous and Ross studied models of sparse random graphs
with vertex labels [AR14]. They considered several models on sparse random graphs, and
studied the asymptotic behavior of the entropy of such models. They observed that the
leading term in these models scales as n log n, where n is the number of vertices in the
graph. Abbe studied the asymptotic behavior of the entropy of stochastic block models, and
discussed the optimal compression rate for such models up to the first order term [Abb16].

The key property distinguishing our approach is universality, as we discussed above.
There has been some attempt to address universality for compressing graphs, but they are
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usually restricted to special contexts. For instance, Zhang et al. have addressed universal
compression of binary trees [ZYK13], and Basu and Varshney have addressed the problem of
source coding for deep neural networks, assuming that the network structure is known, but
the weights come from distributions with unknown parameters [BV17]. In contrast to such
approaches, by employing the local weak convergence framework, we introduce a general and
non-parametric approach. In addition to universality, the notion of entropy that we employ
captures the per vertex growth rate of typical graphs after appropriately separating out the
leading term. However, the existing literature usually consider the random graph ensemble
entropy up to only the leading term. Finally, we consider marked graphs rather than simple
graphs, where the marks, as we discussed above, can model certain types of information on
top of the connectivity structure of the graph.

We further go beyond source coding for a single graphical source by studying distributed
compression of graphical data in Chapter 5. As the data is not always available in one
location, it is also important to consider distributed compression of graphical data. Tra-
ditionally, when dealing with time series, distributed lossless compression is modeled using
two (or more) possibly dependent jointly stationary and ergodic processes representing the
components of the data at the individual locations. In this case, the rate region, which char-
acterizes how efficiently the data can be compressed, is given by the Slepian–Wolf Theorem
[CT12]. We adopt an analogous framework, namely that two jointly defined marked random
graphs on the same vertex set are presented to two encoders, one to each encoder. Each
encoder is then required to individually compress its data such that a third party, having
access to the two compressed representations, can recover both marked graph realizations
with a vanishing probability of error in the asymptotic limit of the size of the data. We char-
acterize the compression rate region for two scenarios, namely, a sequence of marked sparse
Erdős–Rényi ensembles and a sequence of marked configuration model ensembles. More-
over, we generalize this two graphical source result to the case where there are more than
two graphical sources. Part of the results in Chapter 5 was previously published in [DA18a].

1.1.3 Part III: Load Balancing

The problem of load balancing is ubiquitous in networks. As examples, consider the problem
of routing traffic through a communication network or of assigning tasks among the servers
in a cloud computing framework. What is common in these scenarios is a number of servers
and a number of tasks whose load should be distributed among the servers. Examples of
servers are paths through the network from a given source to a given destination in the
routing scenario, or processors in a cloud computing framework. Examples of tasks are the
amount of traffic to be routed from the source to the destination or the computational work
to be done at the servers, respectively. There are typically restrictions as to which resources
are available to a given task. Performance considerations require that the allocation of the
load of a task among the resources available to it should be done in a way that optimizes a
measure of performance, such as delay or queue length. When the problem size is large, it
may be expensive to compute the detailed characteristics of an optimal or sufficiently good
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allocation of the load. Instead, it is interesting to focus on the statistical characteristics
of the allocation, such as the empirical distribution of the load faced by a typical resource
in the network. Chapter 6 is concerned with developing such a viewpoint in the context
of a specific kind of load balancing problem which has broad applicability. The results in
Chapter 6 were previously published in [DA17a] and [DA18b].

We build upon the notion of load balancing which was studied by Hajek [Haj90] who, in
particular, formulated the notion of a balanced allocation. It is natural to expect that a task
would be happier to use servers that are currently handling less load, if available, as opposed
to those handling more load. Hajek modeled the load balancing problem as a graph, where
each vertex represents a server, and each edge represents a task which has a unit load, and
this unit load can be arbitrarily divided between the two servers corresponding to the two
endpoints of that edge. An allocation is therefore a way of distributing the load on each
edge among the two servers corresponding to that edge. Hence, every server (or vertex)
in the graph receives a total amount of load, which is the aggregation of individual loads
coming from the tasks (or the edges) connected to that vertex. Roughly speaking, a balanced
allocation is defined to be an allocation in which no demand desires to change its allocation.
Hajek then conjectured that if the underlying graph is randomly generated according to a
sparse Erdős–Rényi ensemble, the total load corresponding to a balanced allocation at a
vertex in the graph chosen uniformly at random converges to a limit distribution, as the
number of vertices in the graph goes to infinity. Moreover, he conjectured that this limit
distribution could be identified through a certain distributional fixed point equation.

Anantharam and Salez settled this conjecture using the framework of local weak conver-
gence [AS16]. In fact, as we discussed above, the local weak limit of the sparse Erdős–Rényi
random graphs is a Poisson Galton-Watson tree, and the recursive nature of this limit al-
lows one to identify the limiting load distribution at the root via a distributional fixed point
equation. In Chapter 6, we extend this analysis to the setting where each task can have
accesses to more than two servers. We model this using a hypergraph, where each hyperedge
represents a task, and the endpoints of this hyperedge represent the servers to which the task
has accesses to, i.e. the servers among which the unit load of the task can be distributed.
We study the problem of the convergence of the distribution of the total load in a balanced
allocation by employing the local weak convergence framework. To achieve this, we develop
a counterpart of the local weak convergence framework for hypergraphs in Chapter 6. We
believe that this generalized framework could be of independent interest in a variety of prob-
lems in which the underlying model is best expressed in terms of hypergraphs rather than
graphs.
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Chapter 2

The Framework of Local Weak
Convergence

In this chapter, we introduce the local weak convergence framework. The reader is referred
to [BS01, AS04, AL07] for background and further details. We begin with introducing
some notation in Section 2.1 which will be used throughout this thesis. In Section 2.2,
we review the notion of weak convergence in probability spaces. In Section 2.3, we set up
our notation for marked graphs, which is going to be used in this chapter as well as in
Chapters 3 through 5. In Section 2.4, we define the local topology on the space of rooted
marked graphs, use it to define convergence in the local weak sense, and give the definition
of unimodularity. In Section 2.5 we present some examples to illustrate the concept of
local weak convergence. Section 2.6 extends local weak convergence to multigraphs. In
Section 2.7, we introduce marked unimodular Galton–Waton trees, which form an important
class of unimodular probability distributions on the space of rooted marked trees. Finally,
we conclude the chapter in Section 2.8.

2.1 Notation

N denotes the set of natural numbers, Z+ the set of nonnegative integers, Z the set of integers,
and R the set of real numbers. For n ∈ N, [n] denotes the set {1, . . . , n}. All logarithms in
this document are to the natural base unless otherwise stated. We therefore use nats instead
of bits as the unit of information. For two sequences (an, n ≥ 1) and (bn, n ≥ 1) of positive
real numbers, we write an = O(bn) if supn an/bn <∞, and we write an = o(bn) if an/bn → 0
as n → ∞. We write {0, 1}∗ − ∅ for the set of sequences of zeros and ones of finite length,
excluding the empty sequence. For x ∈ {0, 1}∗ − ∅, we denote the length of the sequence x
by nats(x), which is obtained by multiplying the length of x in bits by log 2. Equality by
definition is denoted by := and =:. For a positive integer N and a sequence of nonnegative
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integers {ai}1≤i≤k such that
∑k

i=1 ai ≤ N , we define(
N

{ai}1≤i≤k

)
:=

N !

a1! . . . ak!(N − a1 − · · · − ak)!
.

We denote by 1 [A] the indicator of the event A. For a probability distribution P , X ∼ P
denotes that the random variable X has law P . A finite sequence of nonnegative integers
(d(1), . . . , d(n)) is said to be graphic if there is a simple graph on n vertices with vertex i
having degree d(i) for 1 ≤ i ≤ n. A simple characterization of graphic sequences is provided
by the well known theorem of Erdös and Gallai [Cho86, EG60]. For a probability distribution
Q = (q1, . . . , qn) defined on a finite set, H(Q) denotes the Shannon entropy of Q, which is
defined as

H(Q) :=
n∑
i=1

−qi log qi.

Throughout this thesis, we identify 0 log 0 with 0. Also, for a random variable X taking
values in a finite set, we denote by H(X) its Shannon entropy. Other notation used in this
document is introduced at its first appearance.

2.2 The Topology of Weak Convergence

A Polish space is a complete and separable metric space. For a Polish space X, let P(X) and
M(X) respectively denote the set of probability measures and nonnegative finite measures
on X, with respect to the Borel σ–field of X. When referring to a Polish space, we always
employ its Borel σ–field. We use the abbreviations “a.s.” and “a.e.” for the phrases “almost
surely” and “almost everywhere”, respectively. For a Polish space X, we say that a sequence
of probability measures µn converges weakly to a probability measure µ ∈ P(X), and write
µn ⇒ µ, if for any bounded continuous function f : X → R, we have

lim
n→∞

∫
fdµn =

∫
fdµ.

See [Bil71] and [Bil13] for more details on weak convergence of probability measures. The
following result, called the portmanteau theorem, gives useful conditions equivalent to weak
convergence.

Theorem 2.1 (Theorem 2.1 in [Bil13]). Given a Polish space X, a sequence of probability
measures µn on X, and µ ∈ P(X), the following conditions are equivalent:

1. µn ⇒ µ.

2. limn→∞
∫
fdµn =

∫
fdµ for all bounded, uniformly continuous f .

3. lim supn→∞ µn(F ) ≤ µ(F ) for all closed F .
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4. lim infn→∞ µn(G) ≥ µ(G) for all open G.

5. limn→∞ µn(A) = µ(A) for all Borel set A whose boundary has measure zero under µ
(such a set is called a µ–continuity set).

Now, we define a metric on P(X) for a Polish space X. For a Borel subset A of X and
ε > 0, the ε–extension of A, which we denote by Aε, is defined to be the union of ε–balls
around the elements in A. Given two probability measures µ and ν in P(X), the Lévy–
Prokhorov distance between µ and ν, which is denoted by dLP(µ, ν), is defined to be the
infimum over ε > 0 such that for all Borel set A, we have

µ(A) ≤ ν(Aε) + ε, and ν(A) ≤ µ(Aε) + ε.

It can be shown that dLP introduces a metric on P(X) which is equivalent to the topology
of weak convergence that we discussed above [Bil13].

Given two measurable spaces (X1,F1) and (X2,F2), a measurable mapping f : X1 → X2,
and a nonnegative measure µ1 on F1, the pushforward measure f∗(µ1) on F2 is defined by

f∗(µ1)(A) = µ1(f−1(A)),

for A ∈ F2.

2.3 Marked Graphs

All graphs in this document are defined on a finite or countably infinite vertex set, and are
assumed to be locally finite, i.e. the degree of each vertex is finite. Given a graph G, we
denote its vertex set by V (G). A simple graph is a graph without self-loops or multiple
edges between pairs of vertices. A simple marked graph is a simple graph where each edge
carries two marks coming from a finite edge mark set, one towards each of its endpoints, and
each vertex carries a mark from a finite vertex mark set. We denote the edge and vertex
mark sets by Ξ and Θ respectively. For an edge between vertices v, w ∈ V (G), we denote
its mark towards the vertex v by ξG(w, v), and its mark towards the vertex w by ξG(v, w).
Also, τG(v) denotes the mark of a vertex v ∈ V (G). Let Gn denote the set of graphs and Ḡn
the set of marked graphs on the vertex set [n]. See Figure 2.1 for an example. A marked
tree is a marked graph T where the underlying graph is a tree.

All graphs and marked graphs appearing in this document are also assumed to be simple,
unless otherwise stated. Therefore we will use the terms “graph” and “marked graph” as
synonymous with “simple locally finite graph” and “simple locally finite marked graph”
respectively. Further, since a graph can be considered to be a marked graph with the edge
and vertex mark sets being of cardinality 1, all definitions that are made for marked graphs
will be considered to have been simultaneously made for graphs.

Let G be a finite marked graph. We define the edge mark count vector of G by ~mG :=
(mG(x, x′) : x, x′ ∈ Ξ) where mG(x, x′) is the number of edges (v, w) in G where ξG(v, w) = x
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Figure 2.1: A marked graph G on the vertex set {1, . . . , 8} where edges carry marks from
Ξ = {Blue (solid),Orange (wavy)} (e.g. ξG(1, 2) = Orange while ξG(2, 1) = Blue; also,
ξG(2, 4) = ξG(4, 2) = Blue) and vertices carry marks from Θ = { , } (e.g. τG(3) = ).

and ξG(w, v) = x′, or ξG(v, w) = x′ and ξG(w, v) = x. Likewise, we define the vertex mark
count vector of G by ~uG := (uG(θ) : θ ∈ Θ) where uG(θ) is the number of vertices v ∈ V (G)
with τG(v) = θ.

For a marked graph G and vertices v, w ∈ V (G), we write v ∼G w to denote that v and

w are adjacent in G. Moreover, for a vertex o ∈ V (G), degx,x
′

G (o) denotes the number of
vertices v connected to o in G such that ξG(v, o) = x and ξG(o, v) = x′, and degG(o) denotes
the degree of o, i.e. the total number of vertices connected to o in G, which is precisely∑

x,x′∈Ξ degx,x
′

G (o).
A path between two vertices v and w in the marked graph G, is a sequence of distinct

vertices v0, v1, . . . , vk, such that v0 = v, vk = w and, for all 1 ≤ i ≤ k, we have vi−1 ∼G vi.
The length of such a path is defined to be k. Additionally, for vertices v, w ∈ V (G),
distG(v, w) denotes the distance between v and w, which is the length of the shortest path
connecting v to w. If there is no such path, the distance is defined to be ∞.

A marked forest is a marked graph with no cycles. A marked tree is a connected marked
forest.

2.4 Local Weak Convergence and Unimodularity

Given a connected marked graph G on a finite or countably infinite vertex set and a vertex
o ∈ V (G), we call the pair (G, o) a rooted connected marked graph. We extend this notation
to a marked graph G that is not necessarily connected and a vertex o ∈ V (G) by defining
(G, o) to be (G(o), o), where G(o) denotes the connected component of o in G. In general,
we call (G, o) a rooted marked graph.
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Definition 2.1. Let G and G′ be marked graphs. Let o ∈ V (G) and o′ ∈ V (G′). We say
that (G, o) and (G′, o′) are isomorphic, and write (G, o) ≡ (G′, o′), if there exists a bijection
between the sets of vertices of G(o) and G′(o′) which maps o to o′ while preserving vertex
marks, the adjacency structure of these connected components, and the edge marks.

Isomorphism defines an equivalence relation on rooted connected marked graphs. The
isomorphism class of a rooted marked graph (G, o) is denoted by [G, o], and is determined
by (G(o), o). The set comprised of the isomorphism classes [G, o] of all rooted marked graphs
on any finite or countably infinite vertex set, where the edge and vertex marks come from
the sets Ξ and Θ respectively, is denoted by Ḡ∗(Ξ,Θ). When the mark sets are clear from
the context, we use Ḡ∗ as a shorthand for Ḡ∗(Ξ,Θ). Likewise, let T̄∗(Ξ,Θ) denote the subset
of Ḡ∗(Ξ,Θ) consisting of all isomorphism classes [T, o] where (T, o) is a rooted marked forest.
As for general graphs, the isomorphism class of (T, o) is determined by the marked tree
(T (o), o), where T (o) is the connected component of the vertex o ∈ T . When the mark sets
are clear from the context, we use T̄∗ as a shorthand for T̄∗(Ξ,Θ).

For an integer h ≥ 0, we denote by (G, o)h the h–neighborhood of the vertex o ∈ V (G),
rooted at o. This is defined by considering the subgraph of G consisting of all the vertices
v ∈ V (G) such that distG(o, v) ≤ h and then making this subgraph rooted at o. The
isomorphism class of the h–neighborhood (G, o)h is denoted by [G, o]h. It is straightforward
to check that [G, o]h is determined by [G, o].

For [G, o], [G′, o′] ∈ Ḡ∗, we define d∗([G, o], [G
′, o′]) to be 1/(1 + h∗), where h∗ is the

maximum over integers h ≥ 0 such that (G, o)h ≡ (G′, o′)h. If (G, o)h ≡ (G′, o′)h for all h ≥ 0,
it is easy to see that (G, o) ≡ (G′, o′), i.e. [G, o] = [G′, o′]. In this case, d∗([G, o], [G

′, o′]) is
defined to be zero. It can be easily checked that Ḡ∗, equipped with d∗, is a metric space. In
particular, it satisfies the triangle equality. In fact, it can be shown, for any finite sets Ξ and
Θ, that Ḡ∗(Ξ,Θ) and T̄∗(Ξ,Θ) are complete and separable metric spaces, i.e. Polish spaces
[AL07].1

For an integer h ≥ 0, let Ḡh∗ ⊂ Ḡ∗ consist of isomorphism classes of rooted marked graphs
where all the vertices of the connected component of the root are at distance at most h from
the root. For instance, for [G, o] ∈ Ḡ∗, we have [G, o]h ∈ Ḡh∗ . We define T̄ h∗ ⊂ T̄∗ similarly.
Note that, by definition, we have Ḡ0

∗ ⊂ Ḡ1
∗ ⊂ · · · ⊂ Ḡ∗. Consequently, for [G, o] ∈ Ḡh∗ and

0 ≤ k ≤ h, we have [G, o]k ∈ Ḡk∗ .
For a marked graph G on a finite vertex set, we define U(G) ∈ P(Ḡ∗) as

U(G) :=
1

|V (G)|
∑

v∈V (G)

δ[G,v], (2.1)

where [G, v] denotes the isomorphism class of the connected component of v in G rooted at
v. In words, U(G) is the neighborhood structure of the graph G from the point of view of a

1In fact, a more general statement without requiring that Ξ and Θ be finite sets holds, but we refer the
reader to [AL07] for more details about this, as we do not need that more general statement here.
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vertex chosen uniformly at random. Moreover, for h ≥ 0, let

U(G)h :=
1

|V (G)|
∑

v∈V (G)

δ[G,v]h , (2.2)

be the depth h neighborhood structure of a vertex in G chosen uniformly at random. Note
that U(G)h ∈ P(Ḡh∗ ).

Given a sequence (Gn : n ∈ N) of marked graphs, if U(Gn) ⇒ µ for some µ ∈ P(Ḡ∗),
then we say that the sequence Gn converges in the local weak sense to µ, and say that µ is
the local weak limit of the sequence. A Borel probability measure µ ∈ P(Ḡ∗) is called sofic
if it is the local weak limit of a sequence of finite marked graphs. Not all Borel probability
measures on Ḡ∗ are sofic. A necessary condition for a measure to be sofic exists, called
unimodularity [AL07]. To define this, let Ḡ∗∗ be the set of isomorphism classes [G, o, v] of
marked connected graphs with two distinguished vertices o, v ∈ V (G) (which are ordered,
but need not be distinct). Here, isomorphism is naturally defined as a bijection preserving
marks and adjacency structure which maps the two distinguished vertices of one object to the
respective ones of the other. A measure µ ∈ P(Ḡ∗) is called unimodular if, for all measurable
non–negative functions f : Ḡ∗∗ → R+, we have∫ ∑

v∈V (G)

f([G, o, v])dµ([G, o]) =

∫ ∑
v∈V (G)

f([G, v, o])dµ([G, o]), (2.3)

where in each expression the summation is over v ∈ V (G) that are in the same connected
component of G as o, since otherwise the expression [G, o, v] is not defined. It can be seen
that, in order to check unimodularity, it suffices to check the above condition for functions
f such that f([G, o, v]) = 0 unless v is adjacent to o. This is called involution invariance
[AL07]. We denote the set of unimodular probability measures on Ḡ∗ by Pu(Ḡ∗). Similarly,
as T̄∗ ⊂ Ḡ∗, we can define the set of unimodular probability measures on T̄∗, which we denote
by Pu(T̄∗).

For µ ∈ P(Ḡ∗), and θ ∈ Θ, we denote by Πθ(µ) the probability under µ of the root having

mark θ, i.e. P (τG(o) = θ) where [G, o] has law µ.2 With this, let ~Π(µ) := (Πθ(µ) : θ ∈ Θ)
be the probability vector of the root mark. Also, for x, x′ ∈ Ξ, we define degx,x′(µ) :=

E
[
degx,x

′

G (o)
]

where [G, o] has law µ.3 In fact, degx,x′(µ) denotes the expected number of

edges connected to the root with mark x towards the root and mark x′ towards the other
endpoint. Moreover, let deg(µ) be the expected degree at the root. Note that, by definition,

we have deg(µ) =
∑

x,x′∈Ξ degx,x′(µ). Furthermore, let ~deg(µ) := (degx,x′(µ) : x, x′ ∈ Ξ).
All the preceding definitions and concepts have the obvious parallels in the case of un-

marked graphs. These can be arrived at by simply walking through the definitions while

2Here we observe that τG(o) is the same for all (G, o) in the equivalence class [G, o], so we can unam-
biguously write τG(o) given only the equivalence class [G, o].

3Here we observe that degx,x
′

G (o) is the same for all (G, o) in the equivalence class [G, o].
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restricting the mark sets Θ and Ξ to be of cardinality 1. It is convenient, however, to some-
times use the special notation for the unmarked case that matches the one currently in use
in the literature. We will therefore write G∗ for the set of rooted isomorphism classes of un-
marked graphs. This is just the set Ḡ∗ in the case where both Ξ and Θ are sets of cardinality
1. We will also denote the metric on G∗ by d∗, which is just d̄∗ when both Ξ and Θ are sets
of cardinality 1.

Every µ ∈ P(Ḡ∗) that appears in this document will be assumed to satisfy deg(µ) <∞.
However, for clarity, we will explicitly repeat this condition wherever necessary.

The following lemma gives a useful tool for establishing when local weak convergence
holds. This lemma is proved in Appendix A.1.

Lemma 2.1. Let {µn}n≥1 and µ be Borel probability measures on Ḡ∗ such that the support
of µ is a subset of T̄∗. Then µn ⇒ µ iff the following condition is satisfied: For all h ≥ 0
and for all rooted marked trees (T, i) with depth at most h, if

Ah(T,i) := {[G, o] ∈ Ḡ∗ : (G, o)h ≡ (T, i)}, (2.4)

then µn(Ah(T,i))→ µ(Ah(T,i)).

An important consequence of unimodularity is that, roughly speaking, every vertex has
a positive probability to be the root. The following is a rephrasing of Lemma 2.3 in [AL07].

Lemma 2.2 (Everything Shows at the Root). Let µ ∈ Pu(Ḡ∗) be unimodular. If for a subset
Θ0 ⊂ Θ the mark at the root is in Θ0 almost surely (with [G, o] distributed as µ), then the
mark at every vertex is in Θ0 almost surely. Furthermore, if for a subset A ⊂ Ξ×Ξ it holds
that for every vertex v adjacent to the root o the pair of edge marks (ξG(v, o), ξG(o, v)) on
the edge connecting o to v is in A almost surely (with [G, o] distributed as µ), then for every
edge (u,w) the pair of edge marks (ξG(u,w), ξG(w, u)) is in A almost surely.

2.5 Some Examples

We next present some examples to illustrate the concepts defined so far.

1. Let Gn be the finite lattice {−n, . . . n} × {−n, . . . , n} in Z2. As n goes to infinity,
the local weak limit of this sequence is the distribution that gives probability one to
the lattice Z2 rooted at the origin. The reason is that, if we fix a depth h ≥ 0, then
for n large almost all of the vertices in Gn cannot see the borders of the lattice when
they look at the graph around them up to depth h, so these vertices cannot locally
distinguish the graph on which they live from the infinite lattice Z2.

2. Suppose Gn is a cycle of length n. The local weak limit of this sequence of graphs gives
probability one to an infinite 2–regular tree rooted at one of its vertices. The intuitive
explanation for this is essentially identical to that for the preceding example.
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3. Let Gn be a realization of the sparse Erdős–Rényi graph G(n, α/n) where α > 0, i.e. Gn

has n vertices and each edge is independently present with probability α/n. One can
show that if all the Gn are defined on a common probability space then, almost surely,
the local weak limit of the sequence is the Poisson Galton–Watson tree with mean α,
rooted at the initial vertex. To justify why this should be true without going through
the details, note that the degree of a vertex in Gn is the sum of n − 1 independent
Bernoulli random variables, each with parameter α/n. For n large, this approximately
has a Poisson distribution with mean α. This argument could be repeated for any of
the vertices to which the chosen vertex is connected, which play the role of the offspring
of the initial vertex in the limit. The essential point is that the probability of having
loops in the neighborhood of a typical vertex up to a depth h is negligible whenever h
is fixed and n goes to infinity.

4. Let Gn be a marked bipartite graph on the 2n vertices {1, . . . , 2n}, the edge mark set
having cardinality 1 and the vertex mark set being Θ = {R,B}. Suppose {1, . . . , n}
is the set of left vertices, all of them having the mark R, and {n + 1, . . . , 2n} is the
set of right vertices, all of them having the mark B. There are 3n edges in the graph,
comprised of the edges (i, n + JiK), (i, n + Ji + 1K), and (i, n + Ji + 2K) for 1 ≤ i ≤ n,
where for an integer k, JkK is defined to be n if k mod n = 0, and k mod n otherwise,
so that 1 ≤ JkK ≤ n. See Figure 2.2a for an example. The local weak limit of
this sequence of graphs gives probability 1

2
to the equivalence class of each of the

two rooted marked infinite graphs described below. The underlying rooted unmarked
infinite graph equivalence class for each of these two rooted marked equivalence classes
is the same and can be described as follows: There is a single vertex at level 0, which
is the root, three vertices at level 1, and four vertices at each of the levels m for m ≥ 2.
For the purpose of describing the limit (there is no such numbering in the limit), one
can number the vertex at level zero as 0, the three vertices at level 1 as (1, 1), (1, 2)
and (1, 3), and the four vertices at level m, for each m ≥ 2, as (m, 1), (m, 2), (m, 3)
and (m, 4) such that the edges are the following: Vertex 0 is connected to each of the
vertices (1, 1), (1, 2) and (1, 3). Vertex (1, 1) is connected to (2, 1) and (2, 2), vertex
(1, 2) is connected to (2, 2) and (2, 3), and vertex (1, 3) is connected to (2, 3) and (2, 4).
The edges between the vertices at level k and those at level k+ 1, for k ≥ 2, are given
by the pattern ((k, 1), (k+1, 1)), ((k, 1), (k+1, 2)), ((k, 2), (k+1, 2)), ((k, 3), (k+1, 3)),
((k, 4), (k + 1, 3)), ((k, 4), (k + 1, 4)). There are no other edges. As for the distinction
between the two rooted marked equivalence classes which each get probability 1

2
in the

limit, this corresponds to the distinction between choosing the mark R for the root and
then alternating between marks B and R as one moves from level to level, or choosing
the mark B for the root and then alternating between marks R and B as one moves
from level to level. See Figure 2.2b for an example.
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Figure 2.2: The graph in Example 4, (a) illustrates the graph G6 which has 12 vertices and
18 edges. The vertex mark set is Θ = {B( ), R( )}, and the edge mark set Ξ has cardinality
1. The local weak limit of Gn is a random rooted graph which gives probability 1/2 to the
rooted marked infinite graph illustrated in (b), and gives probability 1/2 to a similar rooted
marked graph which has a structure identical to (b), but the mark of each vertex is switched
from R to B and vice versa.

2.6 Local Weak Convergence for Multigraphs

The framework above, which was defined for (locally finite, simple) graphs, can be extended
to multigraphs, as defined in [BC15, Section 2]. Here we give a brief introduction, and refer
the reader to [BC15], and also to [AS04], [AL07], for further reading.

A multigraph on a finite or countably infinite vertex set V is a pair G = (V, ω) where
ω : V 2 → Z+ is such that, for u, v ∈ V , ω(u, u) is even and ω(u, v) = ω(v, u). We interpret
ω(u, u)/2 as the number of self-loops at vertex u, and ω(u, v) as the number of edges between
vertices u and v. The degree of a vertex u is defined to be deg(u) :=

∑
v∈V ω(u, v). The no-

tions of path, distance and connectivity are naturally defined for multigraphs. A multigraph
G is called locally finite if deg(v) <∞ for all v ∈ V .

All multigraphs encountered in this document will be locally finite, so the term “multi-
graph” will be considered synonymous with “locally finite multigraph”. Further, we assume
that all multigraphs are unmarked.

It can be checked that a multigraph is a graph (i.e. a locally finite multigraph is a simple
locally finite graph) precisely when ω(u, v) ∈ {0, 1} for all pairs of vertices u and v (in
particular, ω(u, u) = 0 for all vertices u).

A rooted multigraph (G, o) is a multigraph on a finite or countably infinite vertex set V
together with a distinguished vertex o ∈ V .

Definition 2.2. Two rooted multigraphs (G1, o1) = ((V1, ω1), o1) and (G2, o2) = ((V2, ω2), o2)
are said to be isomorphic if there is a bijection σ between the sets of vertices of the respec-
tive connected components of the roots which preserves the roots and connectivity. Namely,
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σ(o1) = o2 and we have ω2(σ(v), σ(u)) = ω1(v, u) for all u and v in the connected component
of o1. We denote this by writing (G1, o1) ≡ (G2, o2).

This notion of isomorphism defines an equivalence relation on rooted connected multi-
graphs, where the equivalence class to which a rooted multigraph belongs is determined by
the connected component of the root. Let Ĝ∗ be the set of all equivalence classes [G, o] of
rooted multigraphs corresponding to this isomorphism relation.

For h ≥ 0, let (G, o)h denote the induced multigraph defined by the vertices in G with

distance no more than h from o, rooted at o. Let [G1, o1], [G2, o2] ∈ Ĝ∗ and (G1, o1) and
(G2, o2) be arbitrary members of [G1, o1] and [G2, o2], respectively. The distance between

[G1, o1], [G2, o2] ∈ Ĝ∗ is defined to be 1/(1 + h∗), where h∗ is the maximum h such that
(G1, o1)h ≡ (G2, o2)h. If (G1, o1)h ≡ (G2, o2)h for all h ≥ 0, then we define the distance to
be zero, because this occurs precisely when (G1, o1) ≡ (G2, o2). It can be checked that this

distance defined on Ĝ∗ is indeed a metric, and Ĝ∗ equipped with this metric is a Polish space
[AL07].

2.7 Marked Unimodular Galton–Watson Trees

In this section, we introduce an important class of unimodular probability distributions on
T̄∗, called marked unimodular Galton–Watson trees. These probability distributions can be
thought of as the counterpart of finite memory Markov processes in the local weak conver-
gence language. The construction here is a generalization of the one in Section 1.2 of [BC15].
Before giving the definition, we need to set up some notation.

Given µ ∈ P(Ḡ∗), let µh ∈ P(Ḡh∗ ) denote the law of [G, o]h, where [G, o] has law µ.
We similarly define µh ∈ P(T̄ h∗ ) for µ ∈ P(T̄∗), recalling that T̄∗ ⊂ Ḡ∗. For a marked
graph G, on a finite or countably infinite vertex set, and adjacent vertices u and v in G, we
define G(u, v) to be the pair (ξG(u, v), (G′, v)) where G′ is the connected component of v in
the graph obtained from G by removing the edge between u and v. Similarly, for h ≥ 0,
G(u, v)h is defined as (ξG(u, v), (G′, v)h). See Figure 2.3 for an example. Let G[u, v]
denote the pair (ξG(u, v), [G′, v]), so G[u, v] ∈ Ξ×Ḡ∗. Likewise, for h ≥ 0, let G[u, v]h denote
(ξG(u, v), [G′, v]h), so G[u, v]h ∈ Ξ× Ḡh∗ .

For g ∈ Ξ × Ḡ∗, we call the Ξ component of g its mark component and denote it by
g[m]. Moreover, we call the Ḡ∗ component of g its subgraph component and denote it by g[s].
Given a marked graph G and adjacent vertices u and v in G, and for g ∈ Ξ × Ḡ∗, we write
G(u, v) ≡ g to denote that ξG(u, v) = g[m] and also (G′, v) falls in the isomorphism class g[s].
We define the expression G(u, v)h ≡ g for g ∈ Ξ × Ḡh∗ in a similar fashion. For g ∈ Ξ × Ḡh∗
and an integer k ≥ 0, we define gk ∈ Ξ × Ḡmin{h,k}

∗ to have the same mark component as g,
i.e. gk[m] := g[m], and subgraph component the truncation of the subgraph component of g
up to depth k, i.e. gk[s] := (g[s])k. For a marked graph G, two adjacent vertices u, v in G,
and h ≥ 1, we define the depth h type of the edge (u, v) as

ϕhG(u, v) := (G[v, u]h−1, G[u, v]h−1) ∈ (Ξ× Ḡh−1
∗ )× (Ξ× Ḡh−1

∗ ). (2.5)
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Figure 2.3: (a) A marked graphG on the vertex set {1, . . . , 5} with vertex mark set Θ = { , }
and edge mark set Ξ = {Blue (solid),Orange (wavy)}. In (b), G(1, 3) is illustrated where the
first component ξG(1, 3) is depicted as a half edge with the corresponding mark going towards
the root 3, and (c) illustrates G(1, 3)2. Note that G(1, 3) can be interpreted as cutting the
edge between 1 and 3 and leaving the half edge connected to 3 in place. Moreover, note
that, in constructing G(u, v), although we are removing the edge between u and v, it might
be the case that u is still reachable from v through another path, as is the case in the above
example.

Note that we have employed the convention that the first component on the right hand side
(i.e. G[v, u]h−1) is the neighborhood of the first vertex appearing on the left hand side (i.e.
u). See Figure 2.4 for an example.

For a rooted marked graph (G, o), integer h ≥ 1, and g, g′ ∈ Ξ× Ḡh−1
∗ , we define

Eh(g, g
′)(G, o) := |{v ∼G o : ϕhG(o, v) = (g, g′)}|. (2.6)

Also, for [G, o] ∈ Ḡ∗, we can write Eh(g, g
′)([G, o]) for Eh(g, g

′)(G, o), where (G, o) is an
arbitrary member of [G, o]. This notation is well-defined, since Eh(g, g

′)(G, o), thought of
as a function of (G, o) for fixed integer h ≥ 1 and g, g′ ∈ Ξ× Ḡh−1

∗ , is invariant under rooted
isomorphism.

For h ≥ 1, P ∈ P(Ḡh∗ ), and g, g′ ∈ Ξ× Ḡh−1
∗ , define

eP (g, g′) := EP [Eh(g, g
′)(G, o)] .

Here, (G, o) is a member of the isomorphism class [G, o] that has law P . This notation is
well-defined for the same reason as above.

Definition 2.3. Let h ≥ 1. A probability distribution P ∈ P(Ḡh∗ ) is called admissible if
EP [degG(o)] <∞ and eP (g, g′) = eP (g′, g) for all g, g′ ∈ Ξ× Ḡh−1

∗ .

The following simple lemma indicates the importance of the concept of admissibility.
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Figure 2.4: ϕ3
G(1, 3) for the graph in Figure 2.3, with the first component on the left and the

second component on the right. Note that the order in setting the notation ϕhG(u, v) is chosen
so that the first component (G[3, 1]2 here) is the neighborhood of the first vertex mentioned
in the notation (1 in this example), and the second component is the neighborhood of the
vertex mentioned second (3 in this example). Also note that the subgraph part of each of
the two components of ϕ3

G(1, 3) in this example is an equivalence class, which is the reason
why there are no vertex labels.

Lemma 2.3. Let h ≥ 1, and let µ ∈ Pu(Ḡ∗) be a unimodular probability measure with
deg(µ) <∞. Let P := µh. Then P is admissible.

Proof. Using the definition of unimodularity, for g, g′ ∈ Ξ× Ḡh−1
∗ , we have

eP (g, g′) = Eµ

[∑
v∼Go

1
[
ϕhG(o, v) = (g, g′)

]]

= Eµ

[∑
v∼Go

1
[
ϕhG(v, o) = (g, g′)

]]
= Eµ

[∑
v∼Go

1
[
ϕhG(o, v) = (g′, g)

]]
= eP (g′, g).

For the case of rooted marked trees, all the above notation can be defined similarly by
substituting for Ḡ∗ with T̄∗, since T̄∗ ⊂ Ḡ∗. While we have defined the notion of an admissible
probability distribution P for P ∈ P(Ḡh∗ ), h ≥ 1, we will soon see that it suffices to be focused
on the case P ∈ P(T̄ h∗ ), h ≥ 1.

For t, t′ ∈ Ξ × T̄∗, define t ⊕ t′ ∈ T̄∗ as the isomorphism class of the rooted tree (T, o)
where o has a subtree isomorphic to t[s], and o has an extra offspring v where the subtree
rooted at v is isomorphic to t′[s]. Furthermore, ξT (v, o) = t[m] and ξT (o, v) = t′[m]. See
Figure 2.5 for an example. Note that, in general, t ⊕ t′ is different from t′ ⊕ t. Also, note
that if t ∈ Ξ× T̄ k∗ and t′ ∈ Ξ× T̄ l∗ , then we have t⊕ t′ ∈ T̄ max{k,l+1}

∗ .
The operation ⊕ described above helps to elucidate the structure of marked rooted trees

of fixed depth, i.e. members of T̄ h∗ , h ≥ 0. Some of their properties are gathered in Ap-
pendix A.2.

Now, for h ≥ 1, given an admissible P ∈ P(T̄ h∗ ), we define a Borel probability measure
UGWTh(P ) ∈ P(T̄∗), which is called the marked unimodular Galton–Watson tree with depth
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t t′ t⊕ t′ t′ ⊕ t

Figure 2.5: t ⊕ t′ and t′ ⊕ t for t, t′ ∈ Ξ × T̄∗ depicted on the left. We have employed our
general convention in drawing objects in Ξ× T̄∗, which is to draw the mark component as a
half edge towards the root. In the figures for t⊕ t′ and t′ ⊕ t the root is vertex at the top of
the figure. Note that in this example t⊕ t′ is different from t′ ⊕ t.

h neighborhood distribution P , as follows. For t, t′ ∈ Ξ×T̄ h−1
∗ such that eP (t, t′) > 0, define

P̂t,t′ ∈ P(Ξ× T̄ h∗ ) via:

P̂t,t′(t̃) := 1
[
t̃h−1 = t

] P (t̃⊕ t′)Eh(t, t′)(t̃⊕ t′)
eP (t, t′)

, for t̃ ∈ Ξ× T̄ h∗ . (2.7)

Moreover, in case eP (t, t′) = 0, we define P̂t,t′(t̃) = 1
[
t̃ = t

]
.

We first check that P̂t,t′(t̃) defines a probability distribution over t̃. This is clear when
eP (t, t′) = 0, so assume that eP (t, t′) > 0. By definition, we have

eP (t, t′) =
∑
t′′∈T̄ h∗

P (t′′)Eh(t, t
′)(t′′).

Note that Eh(t, t
′)(t′′) > 0 iff for some t̃ ∈ Ξ× T̄ h∗ with t̃h−1 = t, we have t′′ = t̃⊕ t′. Also,

it is easy to see that two different t̃(1) and t̃(2) in Ξ × T̄ h∗ with t̃
(1)
h−1 = t̃

(2)
h−1 = t give rise to

different objects t̃(1) ⊕ t′ and t̃(2) ⊕ t′. This readily implies that summing P̂t,t′(t̃) over all

t̃ ∈ Ξ× T̄ h∗ such that t̃h−1 = t gives 1, and hence P̂t,t′(t̃) is a probability distribution over t̃.
With this, we define UGWTh(P ) to be the law of [T, o] where (T, o) is the random rooted

marked tree constructed as follows. First, we sample the h neighborhood of the root, (T, o)h,
according to P . Then, for each offspring v ∼T o of the root, we sample t̃ ∈ Ξ×T̄ h∗ according

to the law P̂t,t′(.) where t = T [o, v]h−1 and t′ = T [v, o]h−1. Note that, by definition, we have
t̃h−1 = t. This means that the subtree component of t̃ agrees with the subtree component of t
up to depth h−1. This allows us to add at most one layer to T (o, v)h−1 so that T (o, v)h ≡ t̃.
We carry out the same procedure independently for each offspring of the root. At this step,
the rooted tree has depth at most h + 1. Subsequently, we follow the same procedure for
vertices at depth 2, 3, and so on inductively to construct (T, o). More specifically, for a

vertex v at depth k of (T, o) with parent w, we sample t̃ from P̂t,t′(.) with t = T [w, v]h−1
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and t′ = T [v, w]h−1. Since by definition, we have t̃h−1 = t, we can add at most one layer to
T (w, v)h−1 so that T (w, v)h ≡ t̃. We do this independently for all vertices at depth k. If, at
the time we do the above procedure for vertices at depth k, there is no vertex at that depth,
we stop the procedure. Finally, we define UGWTh(P ) to be the law of [T, o].

As shown in Corollary A.1 in Appendix A.3, if [T, o] is outside a measure zero set with
respect to UGWTh(P ), for all vertices v ∈ V (T ) \ {o} we have eP (t, t′) > 0 where t =
T [w, v]h−1 and t′ = T [v, w]h−1, with w being the parent of v. This means that the need to

refer to the definition of P̂t,t′ when eP (t, t′) = 0 will not arise, with probability 1.
For each integer h ≥ 1, the probability distribution UGWTh(P ) ∈ P(T̄∗) satisfies a useful

continuity property in its defining admissible probability distribution P ∈ P(T̄ h∗ ). This is
stated in the following Lemma 2.4, whose proof is in Appendix A.4.

Lemma 2.4. Let h ≥ 1. Assume that an admissible probability distribution P ∈ P(T̄ h∗ )
together with a sequence of admissible probability distributions P (n) ∈ P(T̄ h∗ ) are given such
that P (n) ⇒ P and, for all t, t′ ∈ Ξ × T̄ h−1

∗ , we have eP (n)(t, t′) → eP (t, t′). Then we have
UGWTh(P

(n))⇒ UGWTh(P ).

The following Lemma 2.5 justifies the terminology used for the probability distribution
UGWTh(P ) ∈ P(T̄∗) constructed from an admissible probability distribution P ∈ P(T̄ h∗ ), by
establishing that UGWTh(P ) is unimodular. The proof is given in Appendix A.5.

Lemma 2.5. Let h ≥ 1. For an admissible probability distribution P ∈ P(T̄ h∗ ), let UGWTh(P ) ∈
P(T̄∗) denote the marked unimodular Galton–Watson tree with depth h neighborhood distri-
bution P . Then UGWTh(P ) is a unimodular distribution.

The following proposition states a key property of the probability distribution UGWTh(P ),
which should be reminiscent of a finite order Markov property. This is an important result for
understanding the structure of UGWTh(P ). The proof, which is provided in Appendix A.6,
is very similar to the proof of the second part of Proposition 1.1 in [BC15].

Proposition 2.1. Let h ≥ 1 and let P ∈ P(T̄ h∗ ), i.e. P is an admissible probability distri-
bution. Then, for all k ≥ h, we have

UGWTk((UGWTh(P ))k) = UGWTh(P ). (2.8)

The following proposition is not used in any way in the subsequent discussion. The
proof depends on several results to be developed during the course of this document, and is
provided in Appendix A.8.

Proposition 2.2. Given an integer h ≥ 1 and an admissible probability distribution P ∈
P(T̄ h∗ ), the probability distribution UGWTh(P ) is sofic.

For h ≥ 1 and admissible P ∈ P(T̄ h∗ ) such that d := EP [degT (o)] > 0, let πP denote the
probability distribution on (Ξ× T̄ h−1

∗ )× (Ξ× T̄ h−1
∗ ) defined as

πP (t, t′) :=
eP (t, t′)

d
.
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Since for each [T, o] ∈ T̄∗ we have

degT (o) =
∑

t,t′∈Ξ×T̄ h−1
∗

Eh(t, t
′)(T, o),

we have d =
∑

t,t′∈Ξ×T̄ h−1
∗

eP (t, t′). Consequently, πP is indeed a probability distribution.

For h ≥ 1 and admissible P ∈ P(T̄ h∗ ) with H(P ) <∞ and EP [degT (o)] > 0, define

Jh(P ) := −s(d) +H(P )− d

2
H(πP )−

∑
t,t′∈Ξ×T̄ h−1

∗

EP [logEh(t, t
′)!] , (2.9)

where d := EP [degT (o)] is the average degree at the root and s(d) = d
2
− d

2
log d. Note that

s(d) is finite, since d < ∞. Also, H(P ) < ∞, H(πP ) ≥ 0, and for each t, t′ ∈ Ξ × T̄ h−1
∗ ,

EP [logEh(t, t
′)!] ≥ 0. Thereby, Jh(P ) is well-defined and is in the range [−∞,∞).

Definition 2.4. For integer h ≥ 1, we say that a probability distribution P ∈ P(T̄ h∗ ) is
strongly admissible if P is admissible, H(P ) < ∞, and EP [degT (o) log degT (o)] < ∞. Let
Ph denote the set of strongly admissible probability distributions P ∈ P(T̄ h∗ ).

In part 2 of Corollary 2.1 of Lemma 2.6 below, we show that, for h ≥ 1 and P ∈ P(T̄ h∗ ),
the admissibility of P , together with the condition EP [degT (o) log degT (o)] <∞ is necessary
and sufficient for P to be strongly admissible, i.e. P ∈ Ph. Namely, the requirement
that H(P ) < ∞ in the definition of strong admissibility of P is automatic given the other
requirements, and need not be explicitly imposed.

In particular, this means that, for a unimodular µ ∈ Pu(T̄∗), if Eµ [degT (o) log degT (o)] <
∞, then for all h ≥ 1 we have µh ∈ Ph. This is because µ being unimodular with deg(µ) <∞
implies that µh is admissible for all h ≥ 1, as we show in Lemma 2.3.

The proof of Lemma 2.6 below is given in Appendix A.7.

Lemma 2.6. Given a unimodular µ ∈ Pu(T̄∗) and an integer h ≥ 1, assume that with

P := µh, we have P is strongly admissible, i.e. P ∈ Ph. Then, with P̃ := µh+1, we have
P̃ ∈ Ph+1.

Corollary 2.1. The following hold:

1. Assume that for a unimodular measure µ ∈ Pu(T̄∗), we have Eµ [degT (o) log degT (o)] <
∞. Then, for all integers h ≥ 1, we have µh ∈ Ph, i.e. µh is strongly admissible.

2. Let h ≥ 1 and P ∈ P(T̄ h∗ ). Then P ∈ Ph, i.e. P being strongly admissible, is equivalent
to P admissible and EP [degT (o) log degT (o)] <∞.

Proof. To prove part 1, let µ ∈ Pu(T̄∗) with Eµ [degT (o) log degT (o)] < ∞. By Lemma 2.6,
to show that µh ∈ Ph for all h ≥ 1, it suffices to show that µ1 ∈ P1. Let P := µ1.
From Eµ [degT (o) log degT (o)] <∞ we have Eµ [degT (o)] <∞. Since deg(µ) = Eµ [degT (o)],
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from Lemma 2.3 we see that P is admissible. We also have EP [degT (o) log degT (o)] =
Eµ [degT (o) log degT (o)] <∞. By the definition of strong admissibility in Definition 2.4, all
that remains to show is that H(P ) <∞. For this, observe that a rooted tree [T, o] ∈ T̄ 1

∗ is
uniquely determined by knowing the integers

N θ,θ′

x,x′(T, o) := |{v ∼T o : ξT (v, o) = x, τT (o) = θ, ξT (o, v) = x′, τT (v) = θ′}|,

for all x, x′ ∈ Ξ and θ, θ′ ∈ Θ. On the other hand, for x, x′ ∈ Ξ and θ, θ′ ∈ Θ, EP
[
N θ,θ′

x,x′(T, o)
]
≤

EP [degT (o)] < ∞. Consequently, when [T, o] ∼ P , the entropy of the random variable

N θ,θ′

x,x′(T, o) is finite. To see this, for k ≥ 0, let pk denote the probability under P that

N θ,θ′

x,x′(T, o) = k. Furthermore, let qk := 1
2k+1 . Then we have

H(N θ,θ′

x,x′(T, o)) =
∞∑
k=0

pk log
1

pk

(a)

≤
∞∑
k=0

pk log
1

qk
=
(

1 + EP
[
N θ,θ′

x,x′(T, o)
])

log 2 <∞,

where step (a) comes from Gibbs’ inequality, i.e. the nonnegativity of relative entropy,∑∞
k=0 pk log pk

qk
≥ 0. Since Ξ and Θ are finite sets, we have H(P ) <∞, which completes the

proof of part 1.
To see part 2, first note that, by definition, if P ∈ Ph then P is admissible and

EP [degT (o) log degT (o)] < ∞. To show the other direction, define µ := UGWTh(P ). By
Lemma 2.5 we have µ ∈ Pu(T∗). Further, we have

Eµ [degT (o) log degT (o)] = EP [degT (o) log degT (o)] <∞.

Consequently, the first part of this corollary implies that P = µh ∈ Ph, and this completes
the proof.

2.8 Conclusion

In this chapter, we reviewed the framework of local weak convergence. We saw that this
framework introduces a notion of convergence for sparse marked graphs by studying the local
neighborhood structure of a typical vertex. Therefore, the limit object is a probability dis-
tribution on the space of unlabeled marked rooted graphs. We also discussed unimodularity,
which can be considered as a certain stationarity condition for a probability distribution on
the space of unlabeled marked rooted graphs, and is a necessary condition for such an object
to appear as the local weak limit of a sequence of finite graphs. Furthermore, we introduced
the marked unimodular Galton–Watson trees, which form an important class of unimodular
distributions.
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Chapter 3

The Marked BC Entropy

In this chapter, we introduce a generalization of the notion of entropy defined in [BC15] for
the marked regime discussed in Chapter 2. Our entropy function is going to be defined for
probability distributions µ ∈ P(Ḡ∗) with 0 < deg(µ) <∞. We call this notion of entropy the
marked BC entropy after Bordenave and Caputo. In Section 3.1, we make the initial steps
towards defining our notion of entropy. Then, in Section 3.2, we give the formal definition
of the entropy in the marked regime and state its properties. Section 3.3 introduces a
generalization of the classical configuration model which is going to be crucial in proving
some properties of the marked BC entropy. In Section 3.4, we prove the main properties of
the marked BC entropy. Finally, we conclude the chapter in Section 3.5.

3.1 Towards the Definition of the Marked BC

Entropy

In this section, we make the initial steps towards defining our notion of entropy. Let the
finite edge and vertex mark sets Ξ and Θ respectively be given. An edge mark count vector
is defined to be a vector of nonnegative integers ~m := (m(x, x′) : x, x′ ∈ Ξ) such that
m(x, x′) = m(x′, x) for all x, x′ ∈ Ξ. A vertex mark count vector is defined to be a vector of
nonnegative integers ~u := (u(θ) : θ ∈ Θ). Since Ξ is finite, we may assume it is an ordered
set. We define ‖~m‖1 :=

∑
x≤x′∈Ξ m(x, x′) and ‖~u‖1 :=

∑
θ∈Θ u(θ).

For an integer n ∈ N and edge mark and vertex mark count vectors ~m and ~u, define G(n)
~m,~u

to be the set of marked graphs on the vertex set [n] such that ~mG = ~m and ~uG = ~u. Note

that G(n)
~m,~u is empty unless ‖~m‖1 ≤

(
n
2

)
and ‖~u‖1 = n. Furthermore, if these two conditions

are satisfied, it is easy to see that

|G(n)
~m,~u| =

n!∏
θ∈Θ u(θ)!

×
n(n−1)

2
!∏

x≤x′∈Ξ m(x, x′)!×
(
n(n−1)

2
− ‖~m‖1

)
!
× 2

∑
x<x′∈Ξ m(x,x′). (3.1)
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An average degree vector is defined to be a vector of nonnegative reals ~d = (dx,x′ :
x, x′ ∈ Ξ) such that for all x, x′ ∈ Ξ, we have dx,x′ = dx′,x. Moreover, we require that∑

x,x′∈Ξ dx,x′ > 0.

Definition 3.1. Given an average degree vector ~d and a probability distribution Q = (qθ :
θ ∈ Θ), we say that a sequence (~m(n), ~u(n)) of edge mark count vectors and vertex mark count

vectors ~m(n) and ~u(n) is adapted to (~d,Q), if the following conditions hold:

1. For each n, we have ‖~m(n)‖1 ≤
(
n
2

)
and ‖~u(n)‖1 = n.

2. For x ∈ Ξ, we have m(n)(x, x)/n→ dx,x/2.

3. For x 6= x′ ∈ Ξ, we have m(n)(x, x′)/n→ dx,x′ = dx′,x.

4. For θ ∈ Θ, we have u(n)(θ)/n→ qθ.

5. For x, x′ ∈ Ξ, dx,x′ = 0 implies m(n)(x, x′) = 0 for all n.

6. For θ ∈ Θ, qθ = 0 implies u(n)(θ) = 0 for all n.

If ~m(n) and ~u(n) are sequences such that (~m(n), ~u(n)) is adapted to (~d,Q) then, using
Stirling’s approximation, we have

log |G(n)

~m(n),~u(n) | = ‖~m(n)‖1 log n+ nH(Q) + n
∑
x,x′∈Ξ

s(dx,x′) + o(n), (3.2)

where

s(d) :=

{
d
2
− d

2
log d d > 0,

0 d = 0.

See Appendix B.1 for the details on how to derive (3.2). To simplify the notation, we may

write s(~d) for
∑

x,x′∈Ξ s(dx,x′).
To lead up to the definition of the BC entropy in Definition 3.3, we now give the definitions

of upper and lower BC entropy.

Definition 3.2. Assume µ ∈ P(Ḡ∗) is given, with 0 < deg(µ) < ∞. For ε > 0, and edge
and vertex mark count vectors ~m and ~u, define

G(n)
~m,~u(µ, ε) := {G ∈ G(n)

~m,~u : dLP(U(G), µ) < ε}.

Fix an average degree vector ~d and a probability distribution Q = (qθ : θ ∈ Θ), and also
fix sequences of edge and vertex mark count vectors ~m(n) and ~u(n) such that (~m(n), ~u(n)) is

adapted to (~d,Q). With these, define

Σ~d,Q(µ, ε)|(~m(n),~u(n)) := lim sup
n→∞

log |G(n)

~m(n),~u(n)(µ, ε)| − ‖~m(n)‖1 log n

n
,
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which we call the ε–upper BC entropy. Since this is increasing in ε, we can define the upper
BC entropy as

Σ~d,Q(µ)|(~m(n),~u(n)) := lim
ε↓0

Σ~d,Q(µ, ε)|(~m(n),~u(n)).

We may define the ε–lower BC entropy Σ~d,Q(µ, ε)|(~m(n),~u(n)) similarly as

Σ~d,Q(µ, ε)|(~m(n),~u(n)) := lim inf
n→∞

log |G(n)

~m(n),~u(n)(µ, ε)| − ‖~m(n)‖1 log n

n
.

Since this is increasing in ε, we can define the lower BC entropy Σ~d,Q(µ)|(~m(n),~u(n)) as

Σ~d,Q(µ)|(~m(n),~u(n)) := lim
ε↓0

Σ~d,Q(µ, ε)|(~m(n),~u(n)).

To close this section, we prove an upper semicontinuity result that will be superseded
later by the upper semicontinuity result of Theorem 3.4.

Lemma 3.1. Assume that a sequence µk ∈ P(Ḡ∗) together with µ ∈ P(Ḡ∗) are given such

that µk ⇒ µ. Let ~d = (dx,x′ : x, x′ ∈ Ξ) be an average degree vector and Q = (qθ : θ ∈ Θ) a

probability distribution. Let ~m(n), ~u(n) be sequences such that (~m(n), ~u(n)) is adapted to (~d,Q).
Then, we have

Σ~d,Q(µ)|(~m(n),~u(n)) ≥ lim sup
k→∞

Σ~d,Q(µk)|(~m(n),~u(n)).

Proof. For ε > 0, let B(µ, ε) denote the ball around µ of radius ε with respect to the Lévy–
Prokhorov distance. Since Ḡ∗ is Polish, weak convergence in P(Ḡ∗) is equivalent to conver-
gence with respect to the Lévy–Prokhorov metric. Hence, for ε > 0, µk ⇒ µ implies that
for k large enough, we have B(µ, ε) ⊇ B(µk, ε/2). Therefore, we have |G(n)

~m(n),~u(n)(µk, ε/2)| ≤
|G(n)

~m(n),~u(n)(µ, ε)|. Consequently,

Σ~d,Q(µ, ε)|(~m(n),~u(n)) ≥ Σ~d,Q(µk, ε/2)|(~m(n),~u(n)) ≥ Σ~d,Q(µk)|(~m(n),~u(n)).

Taking the limsup on the right hand side and then sending ε to zero on the left hand side,
we get the desired result.

3.2 Definition of the Marked BC Entropy and Main

Results

In this section, we state the main theorems proved in this document. These theorems
establish properties of the upper and lower marked BC entropy, which enable us to define
the marked BC entropy and establish some of its properties. The main propositions that
are used to prove these theorems are also stated in this section and we give the proofs of
these theorems, assuming that the propositions are proved. The proofs of the propositions
themselves are given later in the document.
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The following Theorem 3.1 shows that certain conditions must be met for the marked
BC entropy to be of interest.

Theorem 3.1. Let an average degree vector ~d = (dx,x′ : x, x′ ∈ Ξ) and a probability distri-
bution Q = (qθ : θ ∈ Θ) be given. Suppose µ ∈ P(Ḡ∗) with 0 < deg(µ) <∞ satisfies any one
of the following conditions:

1. µ is not unimodular.

2. µ is not supported on T̄∗.

3. degx,x′(µ) 6= dx,x′ for some x, x′ ∈ Ξ, or Πθ(µ) 6= qθ for some θ ∈ Θ.

Then, for any choice of the sequences ~m(n) and ~u(n) such that (~m(n), ~u(n)) is adapted to (~d,Q),
we have Σ~d,Q(µ)|(~m(n),~u(n)) = −∞.

Theorem 3.1 is proved by means of Propositions 3.1 and 3.2 below.

Proposition 3.1. Assume that µ ∈ P(Ḡ∗) with 0 < deg(µ) < ∞ is given. Also, assume

that a degree vector ~d = (dx,x′ : x, x′ ∈ Ξ) and a probability distribution Q = (qθ : θ ∈ Θ) are

given. Let ~m(n) and ~u(n) be sequences such that (~m(n), ~u(n)) is adapted to (~d,Q). If µ is not

unimodular, or ~d 6= ~deg(µ), or Q 6= ~Π(µ), we have Σ~d,Q(µ)|(~m(n),~u(n)) = −∞.

Proposition 3.2. Assume µ ∈ P(Ḡ∗) with 0 < deg(µ) < ∞ is given such that µ(T̄∗) < 1.

Then, if ~m(n) and ~u(n) are any sequences such that (~m(n), ~u(n)) is adapted to ( ~deg(µ), ~Π(µ)),
we have Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) = −∞.

The proofs of these statements are given in Section 3.4.1 and it is immediate to see that
they prove Theorem 3.1. A consequence of Theorem 3.1 is that the only case of interest
in the discussion of marked BC entropy is when µ ∈ Pu(T̄∗), ~d = ~deg(µ), Q = ~Π(µ), and

the sequences ~m(n) and ~u(n) are such that (~m(n), ~u(n)) is adapted to ( ~deg(µ), ~Π(µ)). Namely,
the only upper and lower marked BC entropies of interest are Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) and

Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) respectively.
The following Theorem 3.2 establishes that the upper and lower marked BC entropies

do not depend on the choice of the defining pair of sequences (~m(n), ~u(n)). Further, this
theorem establishes that the upper marked BC entropy is always equal to the lower marked
BC entropy,

Theorem 3.2. Assume that an average degree vector ~d = (dx,x′ : x, x′ ∈ Ξ) together with
a probability distribution Q = (qθ : θ ∈ Θ) are given. For any µ ∈ P(Ḡ∗) such that 0 <
deg(µ) <∞, we have

1. The values of Σ~d,Q(µ)|(~m(n),~u(n)) and Σ~d,Q(µ)|(~m(n),~u(n)) are invariant under the specific

choice of the sequences ~m(n) and ~u(n) such that (~m(n), ~u(n)) is adapted to (~d,Q). With
this, we may simplify the notation and unambiguously write Σ~d,Q(µ) and Σ~d,Q(µ).
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2. Σ~d,Q(µ) = Σ~d,Q(µ). We may therefore unambiguously write Σ~d,Q(µ) for this common

value, and call it the marked BC entropy of µ ∈ P(Ḡ∗) for the average degree vector
~d and a probability distribution Q = (qθ : θ ∈ Θ). Moreover, Σ~d,Q(µ) ∈ [−∞, s(~d) +
H(Q)].

From Theorem 3.1 we conclude that unless ~d = ~deg(µ), Q = ~Π(µ), and µ is a unimodular
measure on T̄∗, we have Σ~d,Q(µ) = −∞. In view of this, for µ ∈ P(Ḡ∗) with deg(µ) <∞, we

write Σ(µ) for Σ ~deg(µ),~Π(µ)(µ). Likewise, we may write Σ(µ) and Σ(µ) for Σ ~deg(µ),~Π(µ)(µ) and

Σ ~deg(µ),~Π(µ)(µ), respectively. Note that, unless µ ∈ Pu(T̄∗), we have Σ(µ) = Σ(µ) = Σ(µ) =
−∞.

We are now in a position to define the marked BC entropy.

Definition 3.3. For µ ∈ P(Ḡ∗) with 0 < deg(µ) <∞, the marked BC entropy of µ is defined
to be Σ(µ).

Next, we give a recipe to compute the marked BC entropy for the marked unimodular
Galton–Watson trees defined in Section 2.7. We also characterize the marked BC entropy
of any µ ∈ Pu(T̄∗) in terms of the marked BC entropies of the marked unimodular Galton–
Watson trees with neighborhood distribution given by the truncation of µ up to any depth.

Theorem 3.3. Let µ ∈ Pu(T̄∗) be a unimodular probability measure with 0 < deg(µ) < ∞.
Then,

1. If Eµ [degT (o) log degT (o)] =∞, then Σ(µ) = Σ(µ) = Σ(µ) = −∞.

2. If Eµ [degT (o) log degT (o)] < ∞, then, for each h ≥ 1, the probability measure µh is
admissible, and H(µh) < ∞. Furthermore, the sequence (Jh(µh) : h ≥ 1) is nonin-
creasing, and

Σ(µ) = Σ(µ) = Σ(µ) = lim
h→∞

Jh(µh).

Now, we proceed to state the propositions needed to prove Theorems 3.2 and 3.3 and
explain how they prove the two theorems. We give the proofs of these propositions in
Section 3.4. Our proof techniques are similar to those given in [BC15].

In view of Propositions 3.1 and 3.2, in order to address parts 1 and 2 of Theorem 3.2,
we may assume that µ ∈ Pu(T̄∗), ~d = ~deg(µ), and Q = ~Π(µ), since otherwise Σ~d,Q(µ) =

Σ~d,Q(µ) = −∞. To prove part 1 of Theorem 3.2, the strategy is to find a lower bound for

Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) and an upper bound for Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)), and then to show

that they match. We first prove a lower bound for Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) when µ is of the

form UGWTh(P ) for P ∈ Ph being strongly admissible.

Proposition 3.3. Let h ≥ 1. Let P ∈ Ph, i.e. P is strongly admissible. Assume that with
µ := UGWTh(P ) we have 0 < deg(µ) < ∞. Then, if ~m(n) and ~u(n) are any sequences such
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that (~m(n), ~u(n)) is adapted to ( ~deg(µ), ~Π(µ)), we have

Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) ≥ Jh(P ).

The proof of Proposition 3.3 is given in Section 3.4.2. Now, for a unimodular probability
measure µ ∈ Pu(T̄∗) such that 0 < deg(µ) < ∞ and Eµ [degT (o) log degT (o)] < ∞, Corol-
lary 2.1 implies that, for all h ≥ 1, µh is strongly admissible, i.e. µh ∈ Ph. In particular,
H(µh) <∞ and Jh(µh) is well defined. With this observation in mind, we next give, for each
h ≥ 1, an upper bound for Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)), for µ ∈ Pu(T̄∗) such that 0 < deg(µ) <∞
and H(µh) <∞.

Proposition 3.4. Let h ≥ 1. Let µ ∈ Pu(T̄∗) be a unimodular probability measure, with
0 < deg(µ) <∞ and H(µh) <∞. Then, if ~m(n) and ~u(n) are sequences such that (~m(n), ~u(n))

is adapted to ( ~deg(µ), ~Π(µ)), we have

Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) ≤ Jh(µh). (3.3)

The proof of Proposition 3.4 is given in Section 3.4.3. Now, we consider the case
Eµ [degT (o) log degT (o)] =∞ and show that the marked BC entropy is −∞ in this case.

Proposition 3.5. Let µ ∈ Pu(T̄∗) be a unimodular probability measure such that 0 <
deg(µ) < ∞ and Eµ [degT (o) log degT (o)] = ∞. Then, if ~m(n) and ~u(n) are sequences such

that (~m(n), ~u(n)) is adapted to ( ~deg(µ), ~Π(µ)), we have

Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) = −∞. (3.4)

Proposition 3.5 is proved in Section 3.4.4.
We now demonstrate how the propositions in this section can be used to prove The-

orems 3.2 and 3.3. We have already observed that Propositions 3.1 and 3.2 imply that,
in order to address parts 1 and 2 of Theorem 3.2, we may assume that µ ∈ Pu(T̄∗),
~d = ~deg(µ), and Q = ~Π(µ). Proposition 3.5 then immediately implies parts 1 and 2 of
Theorem 3.2 and part 1 of Theorem 3.3, for every µ ∈ P(Ḡ∗) for which 0 < deg(µ) <∞ and
Eµ [degG(o) log degG(o)] =∞.

Thus it remains to consider the case of unimodular µ ∈ Pu(T̄∗) with 0 < deg(µ) < ∞
and Eµ [degT (o) log degT (o)] <∞. We have already observed that Corollary 2.1 implies that
for such µ, for all h ≥ 1, µh is strongly admissible, i.e. µh ∈ Ph and that this implies, in
particular, that H(µh) <∞ and Jh(µh) is well defined.

We first show that, in this case, the sequence Jh(µh) is nonincreasing in h. For h ≥ 1,

let ν(h) := UGWTh(µh). Observe that ~deg(µ) = ~deg(ν(h)) and ~Π(µ) = ~Π(ν(h)). From
Propositions 3.3 and 3.4, we have

Jh+1(µh+1) ≤ Σ ~deg(µ),~Π(µ)(ν
(h+1))|(~m(n),~u(n))

≤ Σ ~deg(µ),~Π(µ)(ν
(h+1))|(~m(n),~u(n))
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≤ Jh((ν
(h+1))h)

= Jh(µh),

where the last equality uses the fact that (ν(h+1))h = (UGWTh+1(µh+1))h = µh, which is
proved in Proposition 2.1. Hence, J∞(µ) := limh→∞ Jh(µh) exists. Further, since Proposi-
tion 3.4 proves that Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) ≤ Jh(µh) holds for all h ≥ 1, we get

Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) ≤ J∞(µ).

Now, we show that Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) ≥ J∞(µ). Note that, since µh ∈ Ph is strongly

admissible, Proposition 3.3 implies that Σ ~deg(ν(h)),~Π(ν(h))(ν
(h))|(~m(n),~u(n)) ≥ Jh(µh) ≥ J∞(µ),

where we have noted that, since ~deg(µ) = ~deg(ν(h)) and ~Π(µ) = ~Π(ν(h)), the pair of sequences

(~m(n), ~u(n)) is adapted to ( ~deg(ν(h)), ~Π(ν(h))). On the other hand, ν(h) ⇒ µ. Therefore, using
Lemma 3.1, we have

Σ ~deg(µ),~Π(µ)(µ)|~m(n),~u(n) ≥ lim sup
h→∞

Σ ~deg(µ),~Π(µ)(ν
(h))|~m(n),~u(n)

= lim sup
h→∞

Σ ~deg(ν(h)),~Π(ν(h))(ν
(h))|~m(n),~u(n)

≥ J∞(µ)

We have established that J∞(µ) ≤ Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) ≤ Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) ≤
J∞(µ). This, in particular, implies that Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) = Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)).
To complete the proof of part 1 of Theorem 3.2 and the proof of part 2 of Theorem 3.3 note
that J∞(µ) does not depend on the choice of the sequences ~m(n) and ~u(n).

To complete the proof of part 2 of Theorem 3.2, note that the inequality Σ~d,Q(µ) ≤
s(~d) +H(Q) is a direct consequence of (3.2).

The proof of the propositions stated in this section rely on a generalization of the classical
graph configuration model called a colored configuration model , which was introduced in
[BC15]. In Section 3.3 below, we review this framework and generalize its properties to
the marked regime. Using the tools developed in Section 3.3, we give the proof of these
propositions in Section 3.4.

To close this section, assuming the truth of all the preceding propositions (which are
proved in the subsequent sections), we prove an upper semicontinuity result of marked BC
entropy, which supersedes the result of Lemma 3.1.

Theorem 3.4. Let an average degree vector ~d = (dx,x′ : x, x′ ∈ Ξ) and a probability
distribution Q = (qθ : θ ∈ Θ) be given. For any µ ∈ P(Ḡ∗) with 0 < deg(µ) < ∞,
the BC entropy Σ~d,Q(.) is upper semicontinuous at µ, i.e. if µk is a sequence in P(Ḡ∗)
converging weakly to µ ∈ P(Ḡ∗) such that 0 < deg(µk) < ∞ for all k, then we have
Σ~d,Q(µ) ≥ lim supk→∞Σ~d,Q(µk).
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Proof. Let ~m(n), ~u(n) be sequences such that (~m(n), ~u(n)) is adapted to (~d,Q). Then, as
established in part 1 of Theorem 3.2, Σ~d,Q(µ) equals Σ~d,Q(µ)|(~m(n),~u(n)) and Σ~d,Q(µk) equals
Σ~d,Q(µk)|(~m(n),~u(n)) for all k. The claim is therefore an immediate consequence of Lemma 3.1.

3.3 Colored Configuration Model

In this section, we review and generalize results from [BC15, Section 4]. First, in Sec-
tion 3.3.1, we review the notion of directed colored multigraphs from [BC15, Section 4.1].
Then, in Section 3.3.2, we review the colored configuration model from [BC15, Section 4.2].
In Sections 3.3.3 we review the notion of colored unimodular Galton–Watson trees and a local
weak convergence result related to such trees, from [BC15, Sections 4.4, 4.5]. In Sections 3.3.4
and 3.3.5, we draw a connection between directed colored multigraphs and marked graphs,
generalizing the results in [BC15, Sections 4.6]. We also discuss the colored configuration
model arising from the colored degree sequences associated to the directed colored graphs
arising from a marked graph. This discussion is used in Section 3.3.6 to prove a weak con-
vergence result for any admissible probability distribution P ∈ P(T̄ h∗ ) with finite support,
for any h ≥ 1. Finally, in Section 3.3.7, we use the tools developed in this section to prove
a local weak convergence result for marked graphs obtained from a colored configuration
model, which will be useful in our analysis in Section 3.4. Note that the terms color (defined
in this section) and mark (defined in Section 2.3) refer to two different concepts and should
not be confused with each other.

3.3.1 Directed Colored Multigraphs

Let L ≥ 1 be a fixed integer, and define C := {(i, j) : 1 ≤ i, j ≤ L}. Each element (i, j) ∈ C
is interpreted as a color. Note that the terms color and mark refer to different concepts and
should not be confused with each other. Let C= := {(i, i) ∈ C}, C< := {(i, j) ∈ C : i < j}
and C6= := {(i, j) ∈ C : i 6= j}. We define C≤, C>, and C≥ similarly. For c := (i, j) ∈ C, we
use the notation c̄ := (j, i).

We now define a set Ĝ(C) of directed colored multigraphs with colors in C, comprised of
multigraphs (as defined in Section 2.6) where the edges are colored with elements in C in

a directionally consistent way. More precisely, each G ∈ Ĝ(C) is of the form G = (V, ω)
where V is a finite or a countable vertex set, and ω = (ωc : c ∈ C) where for each c ∈ C,
ωc : V 2 → Z+ with the following properties:

1. For c ∈ C=, ωc(v, v) is even for all v ∈ V , and ωc(u, v) = ωc(v, u) for all u, v ∈ V .

2. For c ∈ C6=, we have ωc(u, v) = ωc̄(v, u) for all u, v ∈ V .

3. For all u ∈ V and c ∈ C,
∑

v∈V ωc(u, v) <∞.
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See Figure 3 in [BC15] for an example of an element of Ĝ(C).
For a directed colored multigraph G = (V, ω) ∈ Ĝ(C) the associated colorblind multigraph

is the multigraph CB(G) := (V, ω̄) on the same vertex set V , where ω̄ : V 2 → Z+ is defined
via

ω̄(u, v) :=
∑
c∈C

ωc(u, v).

It can be checked that CB(G) is a multigraph, as defined in Section 2.6. Distinct directed
colored multigraphs can give rise to the same multigraph as their associated colorblind
multigraph, and we can think of each of them as arising from this multigraph by coloring it
in a directionally consistent way as expressed in properties 1 and 2.

Given G ∈ Ĝ(C), if CB(G) has no multiple edges and no self–loops, i.e. it is a graph,

then we call G a directed colored graph. We let G(C) denote the subset of Ĝ(C) comprised of
directed colored graphs.

We introduce the notation ML for the set of L × L matrices with nonnegative integer
valued entries.

Let G = (V, ω) ∈ Ĝ(C), where V is a finite set. For u ∈ V and c ∈ C, define

DG
c (u) :=

∑
v∈V

ωc(u, v).

DG
c (u) is the number of color c edges going out of the vertex u. Let DG(v) := (DG

c (v) : c ∈ C).
Note that DG(v) ∈ ML. DG(v) is called the colored degree matrix of the vertex v. Let
~DG := (DG(v) : v ∈ V ). We call ~DG the colored degree sequence corresponding to G.

3.3.2 Colored Configuration Model

Fix an integer L ≥ 1, and let C := {(i, j) : 1 ≤ i, j ≤ L} be the associated set of colors.
For n ∈ N, let Dn be the set of vectors (D(1), . . . , D(n)) where, for each 1 ≤ i ≤ n, we
have D(i) = (Dc(i) : c ∈ C) ∈ML and, further, S :=

∑n
i=1D(i) is a symmetric matrix with

even coefficients on the diagonal. Note that for G ∈ Ĝ(C) we have ~DG ∈ Dn. Given ~D =

(D(1), . . . , D(n)) ∈ Dn, define Ĝ( ~D) to be the set of directed colored multigraphs G ∈ Ĝ(C)
with the vertex set V = [n] such that, for all i ∈ [n], we have DG(i) = D(i). Further, given

n ∈ N, ~D ∈ Dn, and h ≥ 1, let G( ~D, h) be the set of directed colored multigraphs G ∈ Ĝ( ~D)

such that CB(G) has no cycles of length l ≤ h. Note that G( ~D, h + 1) ⊆ G( ~D, h) for all

h ≥ 1, and that G( ~D, 2) ⊂ G(C).
Now, given ~D = (D(1), . . . , D(n)) ∈ Dn, we give a recipe to generate a random directed

colored multigraph G ∈ Ĝ(C) such that ~DG = ~D, i.e. a random directed colored multigraph

in Ĝ( ~D). The procedure is similar to that in the classical configuration model. For each
c ∈ C, let Wc := ∪ni=1Wc(i) be a set of distinct half edges of color c where |Wc(i)| = Dc(i).
We think of the half edges in Wc(i) as attached to the vertex i. We require a half edge with
color c to get connected to another half edge with color c̄. For this, for c ∈ C<, let Σc be
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the set of bijections σc : Wc → Wc̄. Since ~D ∈ Dn, |Wc| = |Wc̄| and such bijections exist.

Likewise, for c ∈ C=, let Σc be the set of perfect matchings on the set Wc. Since ~D ∈ Dn,
|Wc| is even and such matchings exist.

Given a choice of σc ∈ Σc for each c ∈ C≤, we write σ for (σc : c ∈ C≤). Let Σ denote the
product of Σc for c ∈ C≤. Given σ ∈ Σ, we construct a directed colored multigraph, denoted
Γ(σ), as follows. For c ∈ C<, if σc maps a half edge of color c at vertex u to another half
edge of color c̄ at vertex v, then we place an edge directed from u towards v having color c
and an edge directed from v towards u, having color c̄. Here it is allowed that u = v. For
c ∈ C=, if σc matches a half edge of color c at vertex u to another half edge of the same
color at vertex v, then we place two directed edges, one directed from u towards v, and one
directed from v towards u, both with color c. Here also it is allowed that u = v.

Note that, for σ ∈ Σ, the construction above gives Γ(σ) ∈ Ĝ( ~D). For ~D ∈ Dn, let CM( ~D)
be the law of Γ(σ) where σ is chosen uniformly at random in Σ.

Theorem 3.5 below is from [BC15], and states a key property of the configuration model

defined above. To state that theorem, given a positive integer δ, let M(δ)
L denote the set of

L× L matrices with nonnegative integer entries bounded by δ. Assume that R ∈ P(M(δ)
L )

is given. Let ~D(n) = (D(n)(1), . . . , D(n)(n)) ∈ Dn be a sequence satisfying the following two
conditions:

D(n)(i) ∈M(δ)
L ∀i ∈ [n], (3.5a)

1

n

n∑
i=1

δD(n)(i) ⇒ R. (3.5b)

Theorem 3.5 states that, given the above conditions, for every h ≥ 1, a positive fraction of
random directed colored multigraphs generated from the above configuration model do not
have and cycles of length h or less.

Theorem 3.5 (Theorem 4.5 in [BC15]). Fix δ ∈ N, R ∈ P(M(δ)
L ), and a sequence ~D(n)

satisfying (3.5a) and (3.5b). Let Gn have distribution CM( ~D(n)) on Ĝ( ~D(n)). Then, for
every h ≥ 1, there exists αh > 0 such that

lim
n→∞

P
(
Gn ∈ G( ~D(n), h)

)
= αh.

To close this section, we give an asymptotic counting for the set G( ~D(n), h). This calcu-
lation is also from [BC15]. For two sequences an and bn we write an ∼ bn if an/bn → 1 as
n → ∞. Moreover, for an even integer N , (N − 1)!! is defined as N !

(N/2)!2N/2
, or equivalently

(N − 1)× (N − 3)× . . . 3× 1. Note that (N − 1)!! is the number of perfect matchings on a
set of size N .

Corollary 3.1 (Corollary 4.6 in [BC15]). In the setting of Theorem 3.5, write S
(n)
c :=∑

i∈[n] D
(n)
c (i), which, we recall, form the entries of a symmetric matrix. For all h ≥ 2 we
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have

|G( ~D(n), h)| ∼ αh

∏
c∈C< S

(n)
c !
∏

c∈C=(S
(n)
c − 1)!!∏

c∈C
∏n

i=1 D
(n)
c (i)!

.

We give a brief sketch of how this counting statement results from Theorem 3.5 and
refer the reader to [BC15] for the proof. By construction, |Σ|, which is the total number of

configurations, is equal to
∏

c∈C< S
(n)
c !
∏

c∈C=(S
(n)
c −1)!!. Each directed colored multigraph can

be constructed via different configurations. However, every G ∈ G( ~D, h) for h ≥ 2 is a colored

graph, i.e. is in G(C). It is easy to see that, for such G, there are precisely
∏

c∈C
∏n

i=1D
(n)
c (i)!

many configurations σ ∈ Σ for which Γ(σ) = G. Also, from Theorem 3.5, the asymptotic

probability of Γ(σ) being in G( ~D(n), h) is αh. This provides a rough explanation of where
Corollary 3.1 comes from.

3.3.3 Colored Unimodular Galton–Watson trees

In this section we review the definition of colored unimodular Galton–Watson trees from
[BC15, Section 4.4]. This should not be confused with the notion of marked unimodular
Galton–Watson trees defined in Section 2.7. Later, in Section 3.3.7, we explain the connection
between the two notions. To reduce the chance of confusion, we employ the notation CUGWT
to denote the object constructed here, which is slightly different from the notation used in
[BC15].

Given L ∈ N and the set of colors C := {(i, j) : 1 ≤ i, j ≤ L}, we first define a set of

equivalence classes of rooted directed colored multigraphs, denoted by Ĝ∗(C). Each member

of Ĝ∗(C) is of the form [G, o] where G ∈ Ĝ(C) is connected and o is a distinguished vertex in
G. [G, o] denotes the equivalence class corresponding to (G, o) where the equivalence relation
is defined through relabeling of the vertices, while preserving the root and the edge structure
together with the directed colors. As is discussed in [BC15], the framework of local weak
convergence introduced in Section 2.6 for multigraphs can be naturally extended to directed
colored multigraphs. An element [G, o] ∈ Ĝ∗(C) is called a rooted directed colored tree if its
associated colorblind multigraph CB(G) has no cycles.

Recall thatML denotes the set of L×L matrices with nonnegative integer valued entries.
Let P ∈ P(ML) be a probability distribution such that for all c ∈ C, we have E [Dc] = E [Dc̄],

where D ∈ML has law P . For c ∈ C such that E [Dc] > 0, define P̂ c ∈ P(ML) as follows:

P̂ c(M) :=
(Mc̄ + 1)P (M + E c̄)

E [Dc]
, (3.6)

where E c̄ ∈ML denotes the matrix with the entry at coordinate c̄ being 1 and all the other
entries being zero. If E [Dc] = 0, we set P̂ c(M) = 1 if M = 0 and zero otherwise. It is

straightforward to check that
∑

M∈ML
P̂ c(M) = 1 for all c ∈ C.

With this setup, we define the colored unimodular Galton–Watson tree CUGWT(P ) ∈
P(Ĝ∗(C)) to be the law of [T, o] where (T, o) is a rooted directed colored multigraph defined
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as follows. We start from the root o and generate D(o) with law P . Then, for each c ∈ C, we
attach Dc(o) many vertex offspring of type c to the root. For each offspring v of type c, we
add a directed edge from o to v with color c and another directed edge from v to o with color
c̄. Subsequently, for an offspring v of type c, we generate D(v) with law P̂ c, independent
from all other offspring. Then, we continue the process. Namely, for each c ∈ C, we add
Dc(v) many vertex offspring of type c to v where, for each offspring w of type c, there is an
edge directed from v towards w with color c and another edge directed from w towards v
with color c̄. This process is continued inductively to define CUGWT(P ).

Let G∗(C) denote the subset of Ĝ∗(C) consisting of equivalence classes of rooted directed
colored graphs, i.e. for which the associated colorblind multigraph CB(G) is a graph, see the
end of Section 3.3.1. Note that CUGWT(P ) is supported on G∗(C). The following result from
[BC15] will be useful for our future analysis.

Theorem 3.6 (Theorem 4.8 in [BC15]). Let R ∈ P(M(δ)
L ) be given. Let ~D(n) ∈ Dn be

a sequence satisfying (3.5a) and (3.5b). Moreover, assume that Gn ∈ Ĝ( ~D(n)) has law

CM( ~D(n)), and that Gn are jointly defined to be independent on a single probability space.
Then, with probability one, U(Gn) ⇒ CUGWT(R). Also, the same result holds when Gn is

uniformly sampled from G( ~D(n), h), for any h ≥ 2.

3.3.4 From a Marked Graph to a Directed Colored Graph and
Back

In this section we first associate, for any fixed h ≥ 1, a specific directed colored graph to
a given marked graph, by treating the types of edges, as defined in (2.5), as colors. We
also discuss a procedure that, starting with a directed colored graph whose colors can be
interpreted in terms of the types for a given h ≥ 1, returns a marked graph.

For a marked graph G on the vertex set [n] and an integer h ≥ 1, we define a directed
colored graph denoted by C(G). Let F ⊂ Ξ × Ḡh−1

∗ be the set of all distinct G[u, v]h−1 for
adjacent vertices u and v in G. Since G is finite, F is a finite subset of Ξ× Ḡh−1

∗ . Therefore,
with L := |F|, we can enumerate the elements in F in some order, with integers 1, . . . , L.
Recall from (2.5) that ϕhG(u, v) = (G[v, u]h−1, G[u, v]h−1) is the depth h type of the edge
(u, v). Now, we define C(G) to be a directed colored graph with colors in C = F ×F on the
vertex set [n] as follows. For two adjacent vertices u and v in G, in C(G) we put an edge
directed from u towards v with color ϕhG(u, v) and another directed edge from v towards u
with color ϕhG(v, u). Since G is simple, C(G) is a directed colored graph, i.e. C(G) ∈ G(C) .
In fact, CB(C(G)) is just the graph which results from G by erasing its marks.

We can also go in the other direction. Fix h ≥ 1. Let F ⊂ Ξ× Ḡh−1
∗ be a finite set with

cardinality L, whose elements are identified with the integers 1, . . . , L. Let C := F × F .
Given a directed colored graph H ∈ G(C), defined on a finite or countable vertex set V ,

and a sequence ~β = (β(v) : v ∈ V ) with elements in Θ, we define a marked graph on V ,

called the marked color blind version of (~β,H), denoted by MCB~β(H), as follows. For any
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g

(i)

H

(ii)

(g
, g

)
(g
, g

) (g, g)
(g, g)

(g, g)

(g, g)

MCB~β(H)

(iii)

Figure 3.1: (i): g ∈ Ξ × Ḡ2
∗ where Θ = { , } and Ξ = {Blue (solid),Orange (wavy)}. (ii):

a simple directed colored graph H ∈ G(C) where C = {(g, g)}, (iii): G = MCB~β(H) where
~β = { , , }. Note that none of ϕ2

G(1, 2), ϕ2
G(1, 3) and ϕ2

G(2, 3) is equal to (g, g).

pair of adjacent vertices u and v in H where the color of the edge directed from u to v is
(g, g′) (and hence the color of the edge directed from v to u is (g′, g)), we put an edge in
MCB~β(H) between u and v with the mark towards u and v being g[m] and g′[m], respectively.
Moreover, the mark of a vertex v ∈ V in MCB~β(H) is defined to be β(v).

Note that it is not necessarily the case that the colors of H are consistent with those in
the directed colored graph C(MCB~β(H)). Namely, ϕhMCB~β

(u, v) for adjacent vertices u, v can

be different from the color of the edge between u and v in H. See Figure 3.1 for an example.
Proposition 3.6 below gives conditions under which this consistency holds. To be able to
state this result, we first need some definitions and tools, which are gathered in the next
section.

3.3.5 Consistency in going from a directed colored graph to a
marked graph and back

In this section we first give conditions under which the edge colors of a directed colored
graph are related to the edge colors of the directed colored graph derived from its marked
colorblind version. This is done in Proposition 3.6. Next, building on this result, we study
the configuration model given by the colored degree sequence of the directed colored graph
associated to a given marked graph, and relate the marked color blind versions of the directed
colored graphs arising as realizations from this configuration model to the original marked
graph we started with.

Definition 3.4. Fix h ∈ N and assume F ⊂ Ξ × T̄ h−1
∗ is a finite set with cardinality L.

Define C := F ×F . Given a matrix D = (Dt,t′ : t, t′ ∈ F) ∈ML and θ ∈ Θ, we say that the
pair (θ,D) is “graphical” if there exists [T, o] ∈ T̄ h∗ such that τT (o) = θ and, for all t, t′ ∈ F ,
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(i) (ii)

Figure 3.2: (ii) depicts (θ, x)⊗ t for t ∈ Ξ× T̄ 2
∗ as shown in (i), θ = and x = Blue (solid).

We have used our convention of Figure 2.3 for showing t, i.e. the half edge towards the root
is the mark component.

we have Eh(t, t
′)(T, o) = Dt,t′. Moreover, for t̃, t̃′ ∈ Ξ × T̄ h−1

∗ such that either t̃ /∈ F or
t̃′ /∈ F , we require Eh(t̃, t̃

′)(T, o) to be zero.

From Lemma A.4 in Appendix A.2, [T, o] in the above definition, if it exists, is unique.
Fix an integer h ≥ 1. For t ∈ Ξ × T̄ h−1

∗ , x ∈ Ξ, and θ ∈ Θ, define (θ, x) ⊗ t to be the
element in T̄ h∗ where the root o has mark θ, and attached to it is one offspring v, where the
subtree of v is isomorphic to t[s] and the edge connecting o to v has mark x towards o and
t[m] towards v. See Figure 3.2 for an example. For s ∈ T̄∗ and x ∈ Ξ, let x×s be t ∈ Ξ×T̄∗
where t[m] = x and t[s] = s. For two rooted trees s, s′ ∈ T̄∗ which have the same vertex
mark at the root, define s � s′ to be the element in T̄∗ obtained by joining s and s′ at a
common root, see Figure 3.3 for an example. Note that � is commutative and associative.
Therefore, we may write

⊙k
i=1 sk for a collection si, 1 ≤ i ≤ k, of elements in T̄∗, which all

have the same mark at the root.
Let G be a locally finite marked graph on a finite or countable vertex set V . Let v and

w be adjacent vertices in G such that degG(v) ≥ 2. For h ≥ 1, if (G, v)h is a rooted tree,
then it is easy to see that we have

G[w, v]h = ξG(w, v)×

⊙
w′∼Gv
w′ 6=w

((τG(v), ξG(w′, v))⊗G[v, w′]h−1)

 . (3.7)

Also, if v is a vertex in G with degG(v) ≥ 1, it is easy to see that if (G, v)h is a rooted tree,
we have

[G, v]h =
⊙
w∼Gv

((τG(v), ξG(w, v))⊗G[v, w]h−1) . (3.8)
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s s′ s� s′

Figure 3.3: s� s′ for two rooted marked trees s, s′ ∈ T̄∗ that have the same vertex mark at
the root.

With this, we are ready to state conditions under which the edge colors of a directed
colored graph are related to the edge colors of the directed colored graph derived from its
marked colorblind version. The following proposition can be considered to be a generalization
of Lemma 4.9 in [BC15].

Proposition 3.6. Fix an integer h ≥ 1. Let F ⊂ Ξ×T̄ h−1
∗ be a finite set with cardinality L

and set C = F ×F . Let H ∈ G(C) be a simple directed colored graph on a finite or countable

vertex set V , and let ~β = (β(v) : v ∈ V ) have elements in Θ. Define Ah to be the set of
vertices v ∈ V such that the h–neighborhood of v in CB(H) is a rooted tree and also, for
all vertices w with distance no more than h from v in CB(H), (β(w), DH(w)) is graphical.
Then, if G = MCB~β(H), it holds that

1. For each vertex v ∈ Ah, we have (G, v)h ≡ [Tv, ov]h where [Tv, ov] is the rooted tree
corresponding to the graphical pair (β(v), DH(v)).

2. If v, w ∈ Ah are adjacent vertices in H and the edge directed from v towards w has
color (t, t′) in H, we have ϕhG(v, w) = (t, t′), i.e. G(w, v)h−1 ≡ t and G(v, w)h−1 ≡ t′.

Proof. For adjacent vertices u and v in H (which are, by definition, also adjacent in G), let
c(u, v) ∈ F be the first component of the color of the edge directed from u towards v. Note
that H is simple, meaning that there is only one edge directed from u towards v, so c(u, v) is
well-defined. Also, recall from the definition of G(C) that the color of the edge directed from
v towards u is c̄, with c being the color of the edge directed from u towards v. Therefore,
the color of the edge directed from u towards v is (c(u, v), c(v, u)). Define A0 to be the set of
vertices v ∈ V such that (β(v), DH(v)) is graphical. Moreover, for 1 ≤ l ≤ h, define Al to be
the set of vertices v ∈ V such that (G, v)l is a rooted tree and, for all w ∈ V with distance at
most l from v in G, (β(w), DH(w)) is graphical. Note that we have A0 ⊇ A1 ⊇ · · · ⊇ Ah. On
the other hand, note that removing the marks in G yields CB(H), hence Ah defined above
coincides with that in the statement of Proposition 3.6. For each v ∈ A0, let [Tv, ov] ∈ T̄ h∗
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be the rooted tree corresponding to the graphical pair (β(v), DH(v)), and let (Tv, ov) be an
arbitrary member of the isomorphism class [Tv, ov]. Observe that, for each vertex v ∈ A0

with degG(v) ≥ 1, there exists a bijection fv that maps the set of vertices adjacent to v in
G to the set of vertices adjacent to ov in Tv such that for all w ∼G v, we have

c(v, w) = Tv[fv(w), ov]h−1,

c(w, v) = Tv[ov, fv(w)]h−1.
(3.9)

This is because applying to (β(v), DH(v)) the definition of what it means to be a graphical
pair implies that, for each t, t′ ∈ Ξ×T̄ h−1

∗ , we have that Eh(t, t
′)(Tv, ov), which is the number

of vertices w̃ ∼Tv ov such that Tv(w̃, ov) ≡ t and Tv(ov, w̃) ≡ t′, is equal to the number of
vertices w ∼G v such that c(v, w) = t and c(w, v) = t′.

Now, for each pair of adjacent vertices (v, w) in G, and 0 ≤ r ≤ h − 1, we inductively
define Mr(v, w) ∈ Ξ × T̄ r∗ as follows, We first define M0(v, w) ∈ Ξ × T̄ 0

∗ to have its mark
component equal to ξG(w, v) = c(v, w)[m] and its subtree component a single vertex with
mark β(v). In fact, M0(v, w) = G[w, v]0. For v ∼G w and 1 ≤ r ≤ h− 1, if degG(v) = 1, i.e.
w is the only vertex adjacent to v, we define Mr(v, w) to be equal to M0(v, w). Otherwise,
we define

Mr(v, w) := c(v, w)[m]×

⊙
w′∼Gv
w′ 6=w

(β(v), c(v, w′)[m])⊗Mr−1(w′, v)

 . (3.10)

See Remark 3.1 below for a message passing interpretation for Mr(v, w) motivated by (3.7).
By induction on r, we show the following

v ∈ Ar, w ∼G v ⇒ Mr(v, w) = c(v, w)r, ∀0 ≤ r ≤ h− 1, (3.11a)

v ∈ Ar, w ∼G v ⇒ Mr(v, w) = G[w, v]r, ∀0 ≤ r ≤ h− 1. (3.11b)

Recall that c(v, w)r = (x, tr), where x and t are the mark and the subgraph components of
c(v, w) ∈ F , respectively. Then, we use (3.11a) and (3.11b) to show that

v ∈ Ar ⇒ (G, v)r ≡ (Tv, ov)r, ∀0 ≤ r ≤ h. (3.12)

Combining (3.11a) and (3.11b), we realize that for adjacent vertices v, w ∈ Ah, we have
G(v, w)h−1 ≡ c(w, v)h−1 = c(w, v) and G(w, v)h−1 ≡ c(v, w)h−1 = c(v, w), which is the
second part of the statement in Proposition 3.6. The first part is a result of (3.12) for r = h.
Therefore, it suffices to show (3.11a), (3.11b) and (3.12) to complete the proof.

To start the proof, note that, for r = 0, v ∈ A0, and w ∼G v, the mark component of
M0(v, w) is ξG(w, v) and its subtree component is a single root with mark β(v). On the other
hand, the mark component of c(v, w)0 is c(v, w)[m] = ξG(w, v) and its subtree component,
using (3.9), is the subtree component of Tv[fv(w), ov]0. But since the pair (β(v), DH(v)) is
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graphical, Tv[fv(w), ov]0 is a single root with mark β(v). This establishes (3.11a) for r = 0.
Moreover, (3.11b) follows from the facts that, by the definition of G = MCB~β(H), the mark
component of G[w, v]0 is ξG(w, v) = c(v, w)[m] and its subtree component is a single root
with mark β(v).

Now, we use induction to show (3.11a) and (3.11b). First, we directly show (3.11a)
and (3.11b) for a vertex v with degG(v) = 1. If w is the only vertex adjacent to such v,
we have Mr(v, w) = M0(v, w) ∈ Ξ × T̄ 0

∗ , by definition. Recall that the mark component
of M0(v, w) is ξG(w, v) = c(v, w)[m] and its subtree component is a single root with mark
β(v). But this is precisely G[w, v]0, which shows (3.11b). To show (3.11a), from (3.9), we
have c(v, w) = Tv[fv(w), ov]h−1. But since fv is a bijection, and the pair (β(v), DH(v)) is
graphical, we have degTv(ov) = 1 and hence the subtree component of Tv[fv(w), ov]h−1 is a
single root with mark β(v), which is precisely the subtree component of M0(v, w). The mark
components of Mr(v, w) = M0(v, w) and c(v, w) are both equal to ξG(w, v). This establishes
(3.11a) in case degG(v) = 1.

Now, we show (3.11a) and (3.11b) for v ∈ Ar such that degG(v) ≥ 2. If v ∈ Ar then all
the vertices adjacent to v are in Ar−1. Therefore, using the induction hypothesis (3.11a) for
r − 1 on the right hand side of (3.10), we realize that for such v and w ∼G v we have

Mr(v, w) = c(v, w)[m]×

⊙
w′∼Gv
w′ 6=w

(β(v), c(v, w′)[m])⊗ c(w′, v)r−1

 .
Using (3.9) and the fact that β(v) = τTv(ov), we get

Mr(v, w) = ξTv(fv(w), ov)×

⊙
w′∼Gv
w′ 6=w

(τTv(ov), ξTv(fv(w
′), ov))⊗ Tv[ov, fv(w′)]r−1

 .
Observe that fv is a bijection, hence the set of vertices w′ in G such with w′ ∼G v and
w′ 6= w is mapped by fv to the set of vertices w̃ in Tv such that w̃ ∼Tv ov and w̃ 6= fv(w).
With this, we can rewrite the above relation as

Mr(v, w) = ξTv(fv(w), ov)×

 ⊙
w̃∼Tv v
w̃ 6=fv(w)

(τTv(ov), ξTv(w̃, ov))⊗ Tv[ov, w̃]r−1

 .
Using (3.7), since (Tv, ov) is a rooted tree, the right hand side is precisely Tv[fv(w), v]r.
Another usage of (3.9) implies (3.11a).

To show (3.11b) for v ∈ Ar with degG(v) ≥ 2 and w ∼G v, again using the fact that
w′ ∈ Ar−1 for all w′ ∼G v, we realize that by first using (3.11b) for r− 1 and substituting in



CHAPTER 3. THE MARKED BC ENTROPY 42

the right hand side of (3.10), then using c(v, w′)[m] = ξG(w′, v) for all w′ ∼G v, and finally
using β(v) = τG(v), we get

Mr(v, w) = ξG(w, v)×

⊙
w′∼Gv
w′ 6=w

(τG(v), ξG(w′, v))⊗G[v, w′]r−1

 .
Since v ∈ Ar, (G, v)r is a rooted tree. Thereby, (3.7) implies that the right hand side of the
preceding equation is precisely G[w, v]r which completes the proof of (3.11b).

Now, it remains to show (3.12). We first do this for v ∈ Ar such that degG(v) ≥ 1.
Observe that, since v ∈ Ar, (G, v)r is a rooted tree. Consequently, using (3.8), we have

[G, v]r =
⊙
w∼Gv

(τG(v), ξG(w, v))⊗G[v, w]r−1.

Since w ∈ Ar−1 for all w ∼G v, using (3.11a) and (3.11b) for r − 1, we realize that, for each
w ∼G v on the right hand side, we have G[v, w]r−1 = c(w, v)r−1. Moreover, we have τG(v) =
β(v) = τTv(ov) for w ∼G v. Furthermore, by (3.9), ξG(w, v) = c(v, w)[m] = ξTv(fv(w), ov) for
all w ∼G v. Substituting these into the above relation and using (3.9), we get

[G, v]r =
⊙
w∼Gv

(τTv(ov), ξTv(fv(w), ov))⊗ Tv[ov, fv(w)]r−1.

Since fv induces a one to one correspondence between the neighbors w of v in G and the
neighbors w̃ of ov in Tv, we may rewrite the above as

[G, v]r =
⊙

w̃∼Tvov

(τTv(ov), ξTv(w̃, ov))⊗ Tv[ov, w̃]r−1.

Since (Tv, ov) is a rooted tree, (3.8) implies that the right hand side is precisely [Tv, ov]r. This
means that [G, v]r = [Tv, ov]r or equivalently (G, v)r ≡ (Tv, ov)r, which is precisely (3.12).

To show (3.12) for v ∈ Ar such that degG(v) = 0, note that, for such v, (G, v)r is
a single root with mark β(v). Moreover, since degG(v) =

∑
t,t′∈F D

H
t,t′(v), we must have

DH
t,t′(v) = 0 for all t, t′ ∈ F . Therefore, it must be the case that, for all t, t′ ∈ Ξ × T̄ ∗h−1,

Eh(t, t
′)(Tv, ov) = 0. This means that degTv(ov) = 0, and hence (Tv, ov) is a single root with

mark β(v). Therefore, (G, v)r ≡ (Tv, ov)r and the proof is complete.

Remark 3.1. Motivated by the definition of Mr(v, w) in (3.10), we can interpret Mr(v, w) as
the message the vertex v sends to the vertex w at time r, which is obtained by aggregating the
messages sent by the neighbors of v, except for w, at time r−1. The proof of Proposition 3.6
above implies that, if v ∈ Ar, Mr(v, w) is in fact the local r–neighborhood of v in G after
removing the edge between v and w, i.e. G[w, v]r. In fact, motivated by (3.7), the message
Mr(v, w) is inductively constructed in a way so that this holds.
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In the second part of Section 3.3.4, we started with a directed colored graph H ∈ G(C),
defined on a finite or countable vertex set V , and a sequence ~β = (β(v) : v ∈ V ) with elements
in Θ, and studied the corresponding marked color blind version, denoted by MCB~β(H). We
will now start with a marked graph, consider the associated directed colored graph, for a
given h ≥ 1, and study the configuration model given by the colored degree sequence of
this graph. The purpose is to relate the marked color blind versions of the directed colored
graphs arising as realizations from this configuration model to the original marked graph we
started with. The results we prove next are corollaries of Proposition 3.6.

Definition 3.5. A marked or unmarked graph G is said to be h tree–like if, for all vertices
v in G, the depth h local neighborhood of v in G, i.e. (G, v)h, is a rooted tree. This condition
is equivalent to requiring that there is no cycle of length 2h+ 1 or less in G.

Corollary 3.2. Let n ∈ N. Recall that Ḡn denotes the set of marked graphs on the vertex
set [n]. For h ≥ 1, assume that a marked h tree–like graph G ∈ Ḡn is given. Let ~D = ~DC(G)

be the colored degree sequence associated to the directed colored version, C(G), of G. Let
~β := (β(v) : 1 ≤ v ≤ n) denote the vertex mark vector of G. Then, for any directed colored

graph H ∈ G( ~D, 2h+ 1), we have (MCB~β(H), v)h ≡ (G, v)h for all v ∈ [n].

Proof. By definition, since H ∈ G( ~D, 2h+1) ⊂ Ĝ( ~D), we have DH(v) = D(v) = DC(G)(v) for
every vertex v ∈ [n]. Moreover, since (G, v)h is a rooted tree, using the rooted tree (G, v)h
in Definition 3.4, we realize that the pair (β(v), DC(G)(v)) is graphical. On the other hand,

since H ∈ G( ~D, 2h+ 1), the colorblind graph CB(H) is h tree–like. Consequently, the set Ah
in Proposition 3.6 coincides with [n]. Thus, the first part of Proposition 3.6 implies that for
all v ∈ [n], we have (MCB~β(H), v)h ≡ (G, v)h which completes the proof.

Corollary 3.3. Let n ∈ N and h ≥ 1. Let G ∈ Ḡn be an h tree–like graph. Define

Nh(G) := |{G′ ∈ Ḡn : U(G′)h = U(G)h}|. (3.13)

Then, we have
Nh(G) = n( ~D, ~β)|G( ~D, 2h+ 1)|,

where ~D := ~DC(G) and ~β = (β(i) : 1 ≤ i ≤ n) with β(i) := τG(i). Here n( ~D, ~β) denotes the

number of distinct pairs ( ~Dπ, ~βπ) where π ranges over the set of permutations π : [n] → [n]
and where, for 1 ≤ i ≤ n, Dπ(i) := D(π(i)) and βπ(i) := β(π(i)).

Proof. For a permutation π : [n]→ [n], define Gπ ∈ Ḡn to be the marked graph obtained from
G by relabeling vertices using π. More precisely, for v ∈ [n], we have τGπ(v) := τG(π(v)).
Also, we place an edge between the vertices v and w in Gπ if π(v) and π(w) are adjacent in G.
In this case, we set ξGπ(v, w) = ξG(π(v), π(w)). With this, for any permutation π : [n]→ [n]

and H ∈ G( ~Dπ, 2h + 1), Corollary 3.2 implies that U(MCB~βπ(H))h = U(Gπ)h = U(G)h.

On the other hand, if the permutations π and π′ are such that ( ~Dπ, ~βπ) and ( ~Dπ′ , ~βπ
′
) are
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distinct, the sets {MCB~βπ(H) : H ∈ G( ~Dπ, 2h+ 1)} and {MCB~βπ′ (H
′) : H ′ ∈ G( ~Dπ′ , 2h+ 1)}

are disjoint. Moreover, part 2 of Proposition 3.6 implies that for any permutation π and any
H ∈ G( ~Dπ, 2h+ 1), C(MCB~βπ(H)) = H. Thereby, distinct elements H1, H2 ∈ G( ~Dπ, 2h+ 1)
yield distinct marked colorblind graphs MCB~βπ(H1) and MCB~βπ(H2). This establishes the

inequality Nh(G) ≥ n( ~D, ~β)|G( ~D, 2h + 1)|. The other direction can be seen by observing
that if G′ ∈ Ḡn is such that U(G′)h = U(G)h, then there exists a permutation π : [n] → [n]
such that, for each vertex v ∈ [n], we have (G′, v)h ≡ (G, π(v))h. Consequently, for all
vertices v ∈ [n], we have DC(G′)(v) = DC(G)(π(v)) = Dπ(v) and τG′(v) = τG(π(v)) = βπ(v).

Also, since G is h tree–like, so is G′. Hence, with H := C(G′), we have H ∈ G( ~Dπ, 2h + 1)

and G′ = MCB~βπ(H). This shows that Nh(G) ≤ n( ~D, ~β)|G( ~D, 2h + 1)| and completes the
proof.

3.3.6 Realizing Admissible Probability Distributions with Finite
Support

Next, using the tools developed above, we show that, for all h ≥ 1 and any admissible
probability distribution P ∈ P(T̄ h∗ ) having finite support, there exists a sequence of marked
graphs which converges to P in the sense of local weak convergence. This result can be
considered a generalization of Lemma 4.11 in [BC15].

Lemma 3.2. Let h ≥ 1 and P ∈ P(T̄ h∗ ). Assume that P is admissible and has finite support.

For x, x′ ∈ Ξ, let dx,x′ := EP
[
degx,x

′

T (o)
]

and ~d := (dx,x′ : x, x′ ∈ Ξ). Moreover, for θ ∈ Θ,

let qθ be the probability of the mark at the root in P being θ and define Q = (qθ : θ ∈ Θ).
If ~m(n) and ~u(n) are sequences of edge and vertex mark count vectors such that (~m(n), ~u(n))

is adapted to (~d,Q), then there exists a finite set ∆ ⊂ T̄ h∗ and a sequence of marked graphs

Gn ∈ G(n)

~m(n),~u(n) such that the support of U(Gn)h is contained in ∆ for each n, and U(Gn)h ⇒
P .

Proof. Let S = {r1, . . . , rk} ⊂ T̄ h∗ be the finite support of P . Since S is finite, we can
construct, for each n ∈ N, a sequence (g(n)(i) : 1 ≤ i ≤ n) where g(n)(i) ∈ S, 1 ≤ i ≤ n, and

1

n

n∑
i=1

δg(n)(i) ⇒ P. (3.14)

Let δ be the maximum degree at the root over all the elements of S. Moreover, let F ⊂
Ξ × T̄ h−1

∗ be the set comprised of T [o, v]h−1 and T [v, o]h−1 for each [T, o] ∈ S and v ∼T o.
Since S is finite, F is finite, hence can be identified with {1, . . . , L} with L := |F|. With
this, define the color set C := F × F .

For each n ∈ N, define the sequences ~β(n) = (β(n)(i) : 1 ≤ i ≤ n) and ~D(n) = (D(n)(i) : 1 ≤
i ≤ n) as follows. For 1 ≤ i ≤ n, let β(n)(i) ∈ Θ be the mark at the root in g(n)(i). Further,

let D(n)(i) ∈ M(δ)
L be such that, for c ∈ C, D(n)

c (i) = Eh(c)(g
(n)(i)). Here, Eh(c)(g

(n)(i)) =
Eh(t, t

′)(g(n)(i)) with c = (t, t′), as was defined in (2.6).
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Now, we try to construct directed colored graphs given ~D(n). However, it might be the
case that ~D(n) /∈ Dn. Therefore, we modify ~D(n) slightly to get a sequence in Dn. In order to
do this, for c ∈ C, let S

(n)
c :=

∑n
i=1 D

(n)
c (i). Moreover, for c ∈ C=, let S̃

(n)
c := 2bS(n)

c /2c, and

for c ∈ C6=, let S̃
(n)
c := S

(n)
c ∧S(n)

c̄ . Note that, because of (3.14), for all c ∈ C, S(n)
c /n→ eP (c) as

n→∞. On the other hand, as P is admissible, we have eP (c) = eP (c̄). Hence, |S̃(n)
c −S(n)

c | =
o(n) for all c ∈ C. Therefore, we can find a sequence ~D

′(n) = (D
′(n)(i) : 1 ≤ i ≤ n) such that

for all 1 ≤ i ≤ n we have D
′(n)(i) ∈M(δ)

L , and for all c ∈ C we have D
′(n)
c (i) ≤ D

(n)
c (i), and we

have
∑n

i=1D
′(n)
c (i) = S̃

(n)
c . Moreover, since

∑
c∈C |S̃

(n)
c −S(n)

c | = o(n), we may construct ~D
′(n)

such that, for all but o(n) vertices, we have D
′(n)(i) = D(n)(i). In particular, if P̃ ∈ P(M(δ)

L )
is defined to be the law of D = (Dc : c ∈ C), where Dc = Eh(c)(r) with r having law P , we
have

1

n

n∑
i=1

δD′(n)(i) ⇒ P̃ . (3.15)

Indeed, due to (3.14), we have (
∑n

i=1 δD(n)(i))/n ⇒ P̃ , which implies (3.15) since D(n)(i) =

D
′(n)(i) for all but o(n) many 1 ≤ i ≤ n. Note that, by definition, S̃

(n)
c is even for c ∈ C=

and, for c ∈ C6=, S
(n)
c = S

(n)
c̄ . Therefore, ~D

′(n) ∈ Dn.

Furthermore, since conditions (3.5a) and (3.5b) are both satisfied for ~D
′(n) and P̃ , The-

orem 3.5 then implies that G( ~D
′(n), 2h+ 1) is non empty for n large enough. For such n, let

H(n) be a member of G( ~D
′(n), 2h+1) and let G̃(n) = MCB~β(n)(H(n)). Since for each 1 ≤ i ≤ n,

β(n)(i) and D(n)(i) are defined based on g(n)(i) ∈ T̄ h∗ , they form a graphical pair in the sense
of Definition 3.4. Also, D

′(n)(i) = D(n)(i) for all but o(n) vertices. On the other hand, all

the degrees in G̃(n) are bounded by δ. Therefore, the number of vertices v in G̃(n) such that
(β(n)(w), D

′(n)(w)) is graphical for all vertices w in the h–neighborhood of v is n − o(n).

Moreover, since H(n) ∈ G( ~D
′(n), 2h + 1), G̃(n) has no cycle of length 2h + 1 or less, which

means that G̃(n) is h tree–like. Thereby, Proposition 3.6 implies that the number of vertices
v in G̃(n) such that (G̃(n), v)h ≡ g(n)(v) is n− o(n). This means that U(G̃(n))h ⇒ P .

Now, the only remaining step is to modify G̃(n) to obtain a simple marked graph in
G(n)

~m(n),~u(n) . To do this, note that if (m̃(n)(x, x′) : x, x′ ∈ Ξ) is the edge mark count vector of

G̃(n), we have

m̃(n)(x, x′) =

{∑n
v=1

~D
′(n)
x,x′(v) x 6= x′,

1
2

∑n
v=1

~D
′(n)
x,x (v) x = x′,

where
D
′(n)
x,x′(v) :=

∑
t,t′∈F

t[m]=x,t′[m]=x′

D
′(n)
t,t′ (v).

This together with condition (3.15), implies that for x 6= x′ ∈ Ξ we have m̃(n)(x, x′)/n →
dx,x′ , and for x ∈ Ξ we have m̃(n)(x, x)/n→ dx,x/2. Consequently, |m̃(n)(x, x′)−m(n)(x, x′)| =
o(n). On the other hand, if (ũ(n)(θ) : θ ∈ Θ) is the vertex mark count vector of G̃(n), since
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~β(n) is the vertex mark vector of G̃(n), (3.14) implies that for θ ∈ Θ, ũ(n)(θ)/n → qθ and

hence
∑

θ∈Θ |ũ(n)(θ) − u(n)(θ)| = o(n). Now, we modify G̃(n) to obtain G(n). In order to do
this, for each x ≤ x′ ∈ Ξ such that m̃(n)(x, x′) < m(n)(x, x′), we add m(n)(x, x′)− m̃(n)(x, x′)
many edges with mark x, x′. We can do this for all such x, x′ so that all vertices in the
graph are connected to at most one of the newly added edges. This is possible for n large
enough since Ξ is finite,

∑
x≤x′∈Ξ |m(n)(x, x′) − m̃(n)(x, x′)| = o(n), and the total number

of edges in G̃(n) is O(n). Next, for x ≤ x′ ∈ Ξ such that m̃(n)(x, x′) > m(n)(x, x′), we
arbitrarily remove m̃(n)(x, x′) − m(n)(x, x′) many edges with mark x, x′. Moreover, since∑

θ∈Θ |u(n)(θ)− ũ(n)(θ)| = o(n), we may change the vertex mark of all but o(n) many vertices
so that for all θ ∈ Θ, the number of vertices with mark θ becomes precisely equal to u(n)(θ).

Let G(n) be the resulting simple marked graph, which is indeed a member of G(n)

~m(n),~u(n) .

Note that, by construction, all the degrees in G(n) are bounded by δ + 1. Hence, the
support of U(G(n))h is contained in the set ∆, defined as the set of [T, o] ∈ T̄ h∗ such that
the degrees of all vertices in T are bounded by δ + 1. Note that ∆ is finite. Also, adding
or removing each edge affects the h–neighborhood of at most 2(δ + 1)h+1 many vertices.
Likewise, changing the mark of a vertex can affect the h–neighborhood of at most (δ+ 1)h+1

many vertices. Hence, (G(n), v)h = (G̃(n), v)h for all but o(n) vertices v ∈ [n]. Consequently.
U(G(n))h ⇒ P and the proof is complete.

3.3.7 Local Weak Convergence of a Sequence of Graphs obtained
from a Colored Configuration Model

In Lemma 3.2 in the previous section, given h ≥ 1 and an admissible P ∈ P(T̄ h∗ ) with finite
support, we constructed a sequence of marked graphs G(n) such that U(G(n))h ⇒ P . In
this section, we show how to use a colored configuration model based on this sequence to
generate marked graphs which converge to UGWTh(P ) in the local weak sense. In the process
of doing this, we also draw a connection between the marked unimodular Galton–Watson
trees introduced in Section 2.7 and the colored unimodular Galton–Watson trees introduced
in Section 3.3.3.

Fix h ≥ 1. Let ∆ ⊂ T̄ h∗ be a fixed finite set. Let P ∈ P(T̄ h∗ ) be admissible with support
contained in ∆. We write F for the set of T [o, v]h−1 and T [v, o]h−1 arising from [T, o] ∈ ∆
and vertices v ∼T o. Since ∆ is finite, F is also finite. We use the notation L := |F|.
Define the color set C := F × F . Let δ be an upper bound for the degree of each vertex of
each [T, o] ∈ ∆. For r ∈ ∆, define D(r) ∈ M(δ)

L to be the matrix such that, for t, t′ ∈ F ,
Dt,t′(r) = Eh(t, t

′)(r). Furthermore, define θ(r) ∈ Θ to be the mark at the root in r.

Proposition 3.7. With the above setup, let (Γn : n ∈ N) be a sequence of marked graphs,
with Γn having the vertex set [n] and the support of U(Γn)h contained in ∆ for each n, and

such that U(Γn)h ⇒ P . Define ~D(n) = (D(n)(v) : v ∈ [n]) where for v ∈ [n], D(n)(v) ∈M(δ)
L is

defined such that for t, t′ ∈ F , D
(n)
t,t′ (v) := Eh(t, t

′)(Γn, v). Moreover, define ~β(n) = (β(n)(v) :

v ∈ [n]) such that β(n)(v) := τΓn(v) for v ∈ [n]. For n ≥ 1, let Hn be a random directed
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colored graph uniformly distributed in G( ~D(n), 2h + 1), and assume that (Hn : n ∈ N) are
independent on a joint probability space. Let Gn := MCB~β(n)(Hn). Then, with probability
one, we have U(Gn)⇒ UGWTh(P ).

We prove this proposition in two steps. First, in Lemma 3.3 below, we draw a connection
between UGWTh(P ) and a colored unimodular Galton–Watson tree. Then, we use this to
state Lemma 3.4, which will then complete the proof of the above statement. Before this,
we need to set up some notation.

Let P̃ ∈ P(M(δ)
L ) be the law of D(r) where r ∼ P . Since P is admissible, we have

EP̃ [Dc] = EP̃ [Dc̄] for all c ∈ C. Now, we generate a random rooted directed colored tree
(F, o) using the procedure described in Section 3.3.3 by starting with D(0) = D(r(0)) with
r(0) ∼ P at the root, and then adding further layers as in the colored unimodular Galton–
Watson tree. Let Q ∈ P(Θ × G∗(C)) be the law of the pair (θ(r(0)), [F, o]). Furthermore,

let Q1 and Q2 be the law of θ(r) and [F, o], respectively. Note that Q2 = CUGWT(P̃ ). For
vertices v, w in F , let c(v, w) ∈ F be the first component of the color of the edge going from
v towards w. For a vertex v in F other than the root, let p(v) be the parent of v, and let

c(v) be the shorthand for (c(v, p(v)), c(p(v), v)). Moreover, for a vertex v, let M(v) ∈ M(δ)
L

be such that for c ∈ C,

Mc(v) := |{w : p(w) = v, c(v, w) = c}|.

In fact, M(v) is the part of the colored degree matrix of v corresponding to its offspring, so
that if v 6= o, DF (v) = M(v) + Ec(v) and DF (o) = M(o). Recall that Ec(v) ∈ ML is the
matrix with value 1 in entry c(v) and zero elsewhere.

A matrix D ∈ M(δ)
L is said to be ∆–graphical if there exists r ∈ ∆ such that D = D(r).

If D ∈ M(δ)
L is ∆–graphical and nonzero, define θ(D) to be the mark at the root for some

r ∈ T̄ h∗ for which we have D = D(r). To see why θ(D) is well-defined for D 6= 0, take
r, r′ ∈ ∆ so that D = D(r) = D(r′). Since D is nonzero, there exist t, t′ ∈ Ξ× F such that
Dt,t′ = Dt,t′(r) = Dt,t′(r

′) > 0. Hence, the marks at the root in both r and r′ are the same as
the mark at the root in the subgraph part of t, i.e. t[s]. This shows that θ(D) is well defined.
In fact this together with Lemma A.4 in Appendix A.2 implies that if D 6= 0 is ∆–graphical
there is only one r ∈ ∆ such that D = D(r).

We say that a rooted directed colored graph [F, o] ∈ G∗(C) is ∆–graphical if for each
vertex v in F , DF (v) is ∆–graphical. Let H be the subset of Θ × G∗(C) which consists of
the pairs (θ, [F, o]) such that [F, o] is a ∆–graphical rooted directed colored graph, and if o
is not isolated in F we have θ = θ(DF (o)). For (θ, [F, o]) ∈ H, by an abuse of notation, we
define MCBθ(F ) to be the simple marked graph defined as follows. Let β(o) := θ, and for
v 6= o in F , define β(v) := θ(DF (v)). Note that if v is a vertex other than the root, since F is
connected by definition, v is not isolated and hence DF (v) is not the zero matrix. Thereby,

θ(DF (v)) is well-defined. With this, let ~β be the vector consisting of β(v) for vertices v in F ,
and define MCBθ(F ) := MCB~β(F ). Note that if (θ, [F, o]) ∼ Q then, with probability one,

we have (θ, [F, o]) ∈ H. The reason is that DF (o) = D(r(0)) and θ = θ(r(0)), where r(0) is in
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the support of P and hence in ∆. Moreover, by the construction of CUGWT(P̃ ) and (3.6),
with probability one, for all vertices v 6= o in F , DF (v) = M(v) + Ec(v) is in the support of

P̃ , and hence DF (v) is ∆–graphical.
Now we are ready to state two lemmas. Lemma 3.4 will prove Proposition 3.7, and itself

depends on Lemma 3.3. The proposition will be proved assuming the truth of the lemmas,
and then the lemmas will be proved.

Lemma 3.3. If (θ, [F, o]) has the law Q described above, then [MCBθ(F ), o] has the law
UGWTh(P ).

Lemma 3.4. With the above setup, assume that a sequence ~D(n) ∈ Dn together with a
sequence ~β(n) = (β(n)(v) : v ∈ [n]) are given such that β(n)(v) ∈ Θ for all v ∈ V . Moreover,

assume that for each n ∈ N and v ∈ [n], we have D(n)(v) ∈ M(δ)
L and (β(n)(v), D(n)(v)) =

(θ(r), D(r)) for some r ∈ ∆. Also, with Q̃ being the law of (θ(r), D(r)) when r ∼ P , assume
that

1

n

n∑
v=1

δ(β(n)(v),D(n)(v)) ⇒ Q̃. (3.16)

With Hn uniformly distributed in G( ~D(n), 2h+1) and independently for each n, define Gn :=
MCB~β(n)(Hn). Then, with probability one, we have U(Gn)⇒ UGWTh(P ).

Proof of Proposition 3.7. Note that since U(Γn)h ⇒ P , the sequences ~β(n) and ~D(n) obtained
from Γn as in the statement of the proposition satisfy (3.16). Therefore, Lemma 3.4 completes
the proof.

Proof of Lemma 3.3. Note that, with probability one, (θ, [F, o]) ∈ H. Let T := MCBθ(F ).
Since [F, o] is almost surely ∆–graphical and T is a simple marked tree, Proposition 3.6
implies that, for all vertices v in T , we have [T, v]h ∈ ∆ almost surely. Therefore, given
r ∈ ∆, using Proposition 3.6, we have (T, o)h ≡ r iff M(o) = D(r) and θ is the mark at the
root in r, i.e. (θ,M(o)) = (θ(r), D(r)). By the definition of Q, this has probability P (r). To
sum up, we have P ((T, o)h ≡ r) = P (r).

Now, assume that v ∼T o is an offspring of the root in T such that T (o, v)h−1 ≡ t and
T (v, o)h−1 ≡ t′. If t̃ ∈ Ξ×T̄ h∗ is such that t̃h−1 = t, Lemma A.2 in Appendix A.2 implies that
T (o, v)h ≡ t̃ iff (T, v)h ≡ t̃⊕ t′. Since [T, v]h ∈ ∆ almost surely, T (o, v)h ≡ t̃ has probability
zero unless t̃⊕ t′ ∈ ∆. Assuming that t̃⊕ t′ ∈ ∆ is satisfied, by the construction of MCBθ(F )
and Proposition 3.6, we know that (T, v)h ≡ t̃ ⊕ t′ iff DF (v) = D(t̃ ⊕ t′), or equivalently,
M(v) = D(t̃⊕ t′)− E(t,t′). From (3.6), the probability of this is precisely

̂̃
P
c(v)

(M(v)) =
(Mc(v)(v) + 1)P̃ (M(v) + Ec(v))

eP (c(v))
.

Since c(v) = (t, t′), we have Mc(v)(v) + 1 = D(t,t′)(t̃ ⊕ t′) = Eh(t, t
′)(t̃ ⊕ t′). On the other

hand, P̃ (M(v) + Ec(v)) = P̃ (D(t̃ ⊕ t′)) = P (t̃ ⊕ t′). Comparing this with (2.7), we realize
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that

P
(
T (o, v)h ≡ t̃|T (o, v)h−1 ≡ t, T (v, o)h−1 ≡ t′

)
= 1

[
t̃⊕ t′ ∈ ∆

]
P̂t,t′(t̃) = P̂t,t′(t̃),

where the last equality uses the fact that the support of P is contained in ∆. Comparing
these with the definition of UGWTh(P ), the proof is complete by repeating this argument
inductively for further depths in T and noting that the choice of M(v) in F is done condi-
tionally independently for vertices with the same parent.

Proof of Lemma 3.4. From Theorem 3.6 we know that, with probability one, we have U(Hn)⇒
Q2 = CUGWT(P̃ ). Moreover, we claim that, with probability one,

1

n

n∑
v=1

δ(β(n)(v),[Hn,v]) ⇒ Q. (3.17)

Recall that [Hn, v] ∈ G∗(C) is the isomorphism class of the connected component of v in Hn

rooted at v. Since Hn ∈ G( ~D(n), 2h + 1), for each v ∈ [n], it holds that [Hn(v), v] ∈ G∗(C)
is a simple colored directed rooted graph. Here, to make sense of the weak convergence, we
turn Θ× G∗(C) into a metric space with the metric

d((θ, [H, o]), (θ′, [H ′, o′])) = dΘ(θ, θ′) + dG∗(C)([H, o], [H
′, o′]),

where dΘ in the first term on the right hand side is an arbitrary metric on the finite set Θ,
e.g. the discrete metric, and dG∗(C) denotes the the local metric of G∗(C) from Section 3.3.3.
To show (3.17), we take a bounded continuous function f : Θ× G∗(C)→ R and show that

1

n

n∑
v=1

f(β(n)(v), [Hn, v])→
∫
fdQ a.s.. (3.18)

With such a function f , define f1 : G∗(C)→ R as follows: for [F, o] ∈ G∗(C), if o is not isolated
in F and DF (o) is ∆–graphical, define f1([F, o]) := f(θ(DF (o)), [F, o]). Recall that, since
DF (o) is nonzero and ∆–graphical, θ(DF (o)) is well-defined. Otherwise, if o is isolated in F
or if DF (o) is not ∆–graphical, define f1([F, o]) to be zero. Moreover, define f2 : Θ×ML → R
as follows: for θ ∈ Θ and D ∈ ML, if D is not the zero matrix, define f2(θ,D) to be zero.
Otherwise, define f2(θ,D) := f(θ, [F, o]) where [F, o] ∈ G∗(C) is an isolated root. Now, take
(θ, [F, o]) ∈ Θ × G∗(C) such that (θ,DF (o)) = (θ(r), D(r)) for some r ∈ ∆. If o is isolated
in F , f1([F, o]) = 0 and f2(θ,DF (o)) = f(θ, [F, o]). Otherwise, f1([F, o]) = f(θ, [F, o]) and
f2(θ,DF (o)) = 0. In both cases, we have

f(θ, [F, o]) = f1([F, o]) + f2(θ,DF (o)). (3.19)

On the other hand, if (θ, [F, o]) ∼ Q, with probability one, we have (θ,DF (o)) = (θ(r), D(r))
for some r ∈ ∆. Thereby,

f(θ, [F, o]) = f1([F, o]) + f2(θ,DF (o)) Q–a.s.. (3.20)
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Note that, by assumption, for all n ∈ N and v ∈ [n], we have (β(n)(v), D(n)(v)) =
(θ(r), D(r)) for some r ∈ ∆. Also, we have DHn(v) = D(n)(v). Consequently, from (3.19),
for all n ∈ N and v ∈ [n], we have

f(β(n)(v), [Hn, v]) = f1([Hn, v]) + f2(β(n)(v), D(n)(v)) a.s.. (3.21)

Moreover, if (θ, [F, o]) ∼ Q, [F, o] is distributed according to Q2 and (θ,DF (o)) is distributed

according to Q̃. Thereby, using (3.20), we have∫
fdQ =

∫
f1dQ2 +

∫
f2dQ̃. (3.22)

It is easy to see that if f is continuous, both f1 and f2 are continuous. Therefore, using the
fact that, with probability one, U(Hn)⇒ Q2, we realize that,

1

n

n∑
v=1

f1([Hn, v]) =

∫
f1dU(Hn)→

∫
f1dQ2 a.s.. (3.23)

Also, due to (3.16), we have

1

n

n∑
v=1

f2(β(n)(v), D(n)(v))→
∫
f2dQ̃. (3.24)

Substituting (3.23) and (3.24) into (3.21) and comparing with (3.22), we arrive at (3.18)
which shows (3.17).

Now, define the function J that maps (θ, [F, o]) ∈ H to [MCBθ(F ), o] ∈ Ḡ∗. It is easy to
see that J is continuous. Moreover, Lemma 3.3 asserts that the pushforward of Q under the
mapping J is precisely UGWTh(P ). On the other hand, since for all n ∈ N and v ∈ [n] we
have (β(n)(v), D(n)(v)) = (θ(r), D(r)) for some r ∈ ∆, we realize that, with probability one,
(β(n)(v), [Hn, v]) ∈ H and J(β(n)(v), [Hn, v]) = [MCB~β(n)(Hn), v] = [Gn, v]. Consequently,
the pushforward of the left hand side in (3.17) under the map J is precisely U(Gn), while
the pushforward of its right hand side under the map J is UGWT(P ). This means that, with
probability one, U(Gn)⇒ UGWT(P ) and this completes the proof.

3.4 Properties of the Entropy

In this section, we give the proof of steps taken in Section 3.2 in order to prove Theorems 3.1,
3.2 and 3.3. First, in Section 3.4.1, we prove Propositions 3.1 and 3.2, which specify con-
ditions under which the entropy is −∞. Afterwards, in Section 3.4.2, we prove the lower
bound result of Proposition 3.3. In Section 3.4.3, we prove the upper bound result of Propo-
sitions 3.4. Finally, in Section 3.4.4, we prove the upper bound result of Proposition 3.5.
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3.4.1 Conditions under which the entropy is −∞
In this section, we prove Propositions 3.1 and 3.2. Before that, we state and prove the
following useful lemma:

Lemma 3.5. If, for integers n and 0 ≤ m ≤
(
n
2

)
, Gn,m denotes the set of simple unmarked

graphs on the vertex set [n] having exactly m edges, we have,

log |Gn,m| = log

∣∣∣∣((n2)m
)∣∣∣∣ ≤ m log n+ ns

(
2m

n

)
,

where s(x) := x
2
− x

2
log x for x > 0 and s(0) := 0. Moreover, since s(x) ≤ 1/2 for all x ≥ 0,

we have in particular

log |Gn,m| ≤ m log n+
n

2
.

Proof. Using the classical upper bound
(
r
s

)
≤ (re/s)s, we have

log

∣∣∣∣((n2)m
)∣∣∣∣ ≤ m log

n2e

2m
= m log n+m log

ne

2m
= m log n+ ns(2m/n),

which completes the first part. Also, it is easy to see that s(x) is increasing for x ≤ 1,
decreasing for x > 1 and attains its maximum value 1/2 at x = 1. Therefore, s(x) ≤ 1/2.
This completes the proof of the second statement.

Proof of Proposition 3.1. Suppose Σ~d,Q(µ)|(~m(n),~u(n)) > −∞. Then, for all ε > 0, G(n)

~m(n),~u(n)(µ, ε)

is non empty for infinitely many n. Therefore, there exists a sequence of integers ni going
to infinity together with simple marked graphs G(ni) ∈ G(ni)

~m(ni),~u(ni)
such that U(G(ni)) ⇒ µ.

This already implies that if Σ~d,Q(µ)|(~m(n),~u(n)) > −∞, µ must be sofic and hence unimodular.

In other words, if µ is not unimodular, Σ~d,Q(µ)|(~m(n),~u(n)) = −∞.

Consequently, it remains to show that if either ~d 6= ~deg(µ) or Q 6= ~Π(µ) we have
Σ~d,Q(µ)|(~m(n),~u(n)) = −∞. Similar to the above, assume Σ~d,Q(µ)|(~m(n),~u(n)) > −∞ and take the

above sequence of simple marked graphs G(ni). First note that, for any α > 0, and x, x′ ∈ Ξ,
the function [G, o] 7→ degx,x

′

G (o) ∧ α is continuous and bounded on Ḡ∗. Thereby,∫
degx,x

′

G (o)dU(G(ni))([G, o]) ≥
∫

(degx,x
′

G (o) ∧ α)dU(G(ni))([G, o])

→
∫

(degx,x
′

G (o) ∧ α)dµ([G, o]).

Sending α to infinity on the right hand side and using the monotone convergence theorem,
we realize that

lim inf
i→∞

∫
degx,x

′

G (o)dU(G(ni))([G, o]) ≥ degx,x′(µ). (3.25)
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On the other hand, we have∫
degx,x

′

G (o)dU(G(ni))([G, o]) =

{
m(ni)(x, x′)/n x 6= x′,

2m(ni)(x, x′)/n x = x′.

We know that if x 6= x′ we have m(n)(x, x′)/n→ dx,x′ , and we also have m(n)(x, x)/n→ dx,x/2
for all x. Comparing this with (3.25), we realize that if Σ~d,Q(µ)|(~m(n),~u(n)) > −∞ then, for all
x, x′ ∈ Ξ, we have dx,x′ ≥ degx,x′(µ). Similarly, using the fact that for all θ ∈ Θ the mapping

[G, o] 7→ 1 [τG(o) = θ] is continuous and bounded on Ḡ∗, we realize that, if Σ~d,Q(µ)|(~m(n),~u(n)) >

−∞, with the sequence G(ni) as above we have u(ni)(θ)→ Πθ(µ). But u(n)(θ)/n→ qθ. This

means that Q = ~Π(µ). As a result, to complete the proof, we assume that for some x̃, x̃′ ∈ Ξ,
we have dx̃,x̃′ > degx̃,x̃′(µ) and then we show that Σ~d,Q(µ)|(~m(n),~u(n)) = −∞. In order to do
this it suffices to prove that for any sequence εn → 0 we have

lim sup
n→∞

1

n

(
log |G(n)

~m(n),~u(n)(µ, εn)| − ‖m(n)‖1 log n
)

= −∞. (3.26)

For an integer ∆ > 0 define A∆ := {[G, o] ∈ Ḡ∗ : degx̃,x̃
′

G (o) > ∆}. Recall that, by definition

of the Lévy–Prokhorov distance, if G(n) ∈ G(n)

~m(n),~u(n)(µ, εn) then

U(G(n))(A∆) ≤ µ(Aεn∆ ) + εn, (3.27)

where Aεn∆ is the εn–extension of the set A∆. Note that if we have d∗([G, o], [G
′, o′]) < 1/2 for

[G, o] and [G′, o′] in Ḡ∗ then we have [G, o]1 ≡ [G′, o′]1 and hence degx̃,x̃
′

G (o) = degx̃,x̃
′

G′ (o′). This
implies that if εn < 1/2, which indeed holds for n large enough, then Aεn∆ = A∆. Therefore,
using (3.27), we realize that if n is large enough so that εn < 1/2, for any ∆ > 0 we have

|{v ∈ [n] : degx̃,x̃
′

G(n)(v) > ∆}| ≤ n(µ(A∆) + εn). (3.28)

A similar argument shows that, for n large enough such that εn < 1/2, for any integer k and

any G(n) ∈ G(n)

~m(n),~u(n)(µ, εn), we have

|{v ∈ [n] : degx̃,x̃
′

G(n)(v) = k}| ≤ n
(
µ
({

[G, o] : degx̃,x̃
′

G (o) = k
})

+ εn

)
. (3.29)

Now, fix a sequence of integers ∆n such that as n → ∞, ∆n → ∞, but ∆2
nεn → 0. For

instance, one could make the choice ∆n = dε−1/3
n e. Using (3.29) for k = 0, . . . ,∆n, we realize

that, for n large enough and for any G(n) ∈ G(n)

~m(n),~u(n)(µ, εn), we have

∑
v∈[n]:degx̃,x̃

′

G(n)
(v)≤∆n

degx̃,x̃
′

G(n)(v) ≤
∆n∑
k=0

kn
(
µ
({

[G, o] : degx̃,x̃
′

G (o) = k
})

+ εn

)
≤ n

(
Eµ
[
degx̃,x̃

′

G (o)1
[
degx̃,x̃

′

G (o) ≤ ∆n

]]
+ ∆2

nεn

)
≤ n degx̃,x̃′(µ) + n∆2

nεn.

(3.30)
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On the other hand, for G(n) ∈ G(n)

~m(n),~u(n)(µ, εn) we have

∑
v∈[n]

degx̃,x̃
′

G (v) =

{
m(n)(x̃, x̃′) x̃ 6= x̃′,

2m(n)(x̃, x̃′) x̃ = x̃′.

Moreover, as n→∞, for x̃ 6= x̃′ we havem(n)(x̃, x̃′)/n→ dx̃,x̃′ and we also havem(n)(x̃, x̃)/n→
dx̃,x̃/2 for all x̃. Consequently, we have∑

v∈[n]

degx̃,x̃
′

G(n)(v) = n(dx̃,x̃′ + αn),

where αn is a sequence such that αn → 0 as n→∞. Comparing this with (3.30), we realize

that for n large enough and G(n) ∈ G(n)

~m(n),~u(n)(µ, εn) we have∑
v∈[n]:degx̃,x̃

′

G(n)
(v)>∆n

degx̃,x̃
′

G(n)(v) ≥ n(dx̃,x̃′ − degx̃,x̃′(µ) + αn −∆2
nεn).

Recall that, by assumption, dx̃,x̃′ > degx̃,x̃′(µ), αn → 0 and ∆2
nεn → 0. Hence, there exists

δ > 0 such that for n large enough and G(n) ∈ G(n)

~m(n),~u(n)(µ, εn) we have∑
v∈[n]:degx̃,x̃

′

G(n)
(v)>∆n

degx̃,x̃
′

G(n)(v) ≥ nδ. (3.31)

Comparing this to (3.28), we realize that, for n large enough, G(n) ∈ G(n)

~m(n),~u(n)(µ, εn) im-

plies that for the subset Sn ⊂ [n] defined as Sn := {v ∈ [n] : degx̃,x̃
′

G(n)(v) > ∆n} we have∑
v∈S degx̃,x̃

′

G(n)(v) ≥ nδ and |Sn| ≤ nβn, where βn := µ(A∆n) + εn. Note that, since ∆n →∞
and εn → 0, we have βn → 0. Observe that

∑
v∈S degx̃,x̃

′

G(n)(v) ≥ nδ implies that there are at

least nδ/2 many edges in G(n) with mark x̃, x̃′ with at least one endpoint in the set Sn. Let
Sn denote the family of subsets Sn ⊂ [n] with |Sn| ≤ nβn. For Sn ∈ Sn, let Bn(Sn) denote

the set of simple marked graphs G(n) ∈ G(n)

~m(n),~u(n) such that there are at least nδ/2 many

edges with mark x̃, x̃′ with at least one endpoint in Sn. The above discussion implies that,
for n large enough, we have

G(n)

~m(n),~u(n)(µ, εn) ⊂
⋃
S∈Sn

Bn(Sn). (3.32)

Now, in order to find an upper bound for the size of the set on the right hand side, note that
for Sn ∈ Sn there are

(|Sn|
2

)
+ |Sn|(n− |Sn|) many slots to choose for the edges with at least

one endpoint in Sn and with marks x̃, x̃′. Since there are at least nδ/2 many such edges, the
number of ways to pick the x̃, x̃′ edges of a graph in Bn(Sn) is at most((|Sn|

2

)
+ |Sn|(n− |Sn|)
nδ/2

)( (
n
2

)
m(n)(x̃, x̃′)− nδ/2

)
2m

(n)(x̃,x̃′) =: Cn(Sn).
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Here, the term 2m
(n)(x̃,x̃′) is an upper bound for the number of ways we can apply the marks

x̃ and x̃′ for the chosen edges (if x̃ = x̃′, this number is in fact 1). Now, since |Sn| ≤ nβn
for Sn ∈ Sn, using the standard bound

(
r
s

)
≤ (re/s)s and Lemma 3.5, if n is large enough so

that βn ≤ 1/2, we get

max
Sn∈Sn

logCn(Sn) ≤ nδ

2
log

(
ne

β2
n

2
+ βn(1− βn)

δ/2

)
+ (m(n)(x̃, x̃′)− nδ/2) log n

+
n

2
+m(n)(x̃, x̃′) log 2

= m(n)(x̃, x̃′) log n+ n

(
1

2
+
δ

2
− δ

2
log

δ

2
+
m(n)(x̃, x̃′)

n
log 2

+
δ

2
log

(
β2
n

2
+ βn(1− βn)

))
.

Note that δ > 0 is fixed. On the other hand, as n → ∞, m(n)(x̃, x̃′)/n either converges to
dx̃,x̃′ or dx̃,x̃′/2, depending on whether x̃ 6= x̃′ or x̃ = x̃′ respectively. But, in any case, it
remains bounded. However, βn → 0, hence δ log(β2

n/2 + βn(1− βn))→ −∞. Consequently,
we have

lim
n→∞

1

n

(
max
S∈Sn

logCn(Sn)−m(n)(x̃, x̃′) log n

)
= −∞. (3.33)

Now, in order to find an upper bound for |Bn(Sn)| given Sn ∈ Sn, we multiply the term
Cn(Sn) defined above by the number of ways we can add vertex marks to the graph and also
add edges with marks different from x̃, x̃′, to get

|Bn(Sn)| ≤ Cn(Sn)|Θ|n
∏

x≤x′∈Ξ

(x,x′) 6=(x̃,x̃′)

( (
n
2

)
m(n)(x, x′)

)
2m

(n)(x,x′).

Using (3.33) and Lemma 3.5 for each term, we realize that

lim
n→∞

1

n

(
max
S∈Sn

log |Bn(Sn)| − ‖~m(n)‖1 log n

)
= −∞. (3.34)

Moreover, if n is large enough so that βn < 1/2, we have

|Sn| ≤
nβn∑
k=0

(
n

k

)
≤ (1 + nβn)

(
n

nβn

)
.

Observe that, since βn → 0, we have 1
n

log |Sn| → 0 as n → ∞. Putting this together with
(3.34) and comparing with (3.32), we arrive at (3.26), which completes the proof.
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Proof of Proposition 3.2. Let G∗ denote the space of isomorphism classes of rooted simple
unmarked connected graphs, which is defined in a similar way as Ḡ∗, with the difference that
vertices and edges do not carry marks. We can equip G∗ with a local metric similar to that
of Ḡ∗. With this, let F : Ḡ∗ → G∗ be such that [G, o] is mapped to [G̃, o] under F , where G̃ is
the unmarked graph obtained from G by removing all vertex and edge marks. For [G, o] and

[G′, o′] in Ḡ∗, let G̃ and G̃′ be obtained from G and G′ by removing vertex and edge marks,

respectively. Observe that if [G, o]h ≡ [G′, o′]h for h ≥ 0, then [G̃, o]h ≡ [G̃′, o′]h. This means
that F is 1–Lipschitz, and in particular continuous.

Now, let ~m(n), ~u(n) be any sequences such that (~m(n), ~u(n)) is adapted to ( ~deg(µ), ~Π(µ))
and define mn = ‖~m(n)‖1. Moreover, for integer n, let Gn,mn be the set of simple unmarked

graphs on the vertex set [n] having mn edges. Observe that if G(n) ∈ G(n)

~m(n),~u(n)(µ, ε) for some

ε > 0 and n ∈ N, and G̃(n) ∈ Gn,mn is the unmarked graph obtained from G(n) by removing

all vertex and edge marks, then U(G̃(n)) is the pushforward of U(G(n)) under the mapping
F . Let ρ ∈ P(G∗) be the pushforward of µ under F . Since F is 1–Lipschitz, it is easy to

see that for G(n) ∈ G(n)

~m(n),~u(n) , we have dLP(U(G̃(n)), ρ) ≤ dLP(U(G(n)), µ) < ε. Therefore, if

Gn,mn(ρ, ε) denotes the set of unmarked graphs H ∈ Gn,mn such that dLP(U(H), ρ) < ε, the

above discussion implies that for G(n) ∈ G(n)

~m(n),~u(n) , we have G̃(n) ∈ Gn,mn(ρ, ε). Moreover, for

a simple unmarked graph H ∈ Gn,mn , there are at most (|Ξ|2)mn |Θ|n many ways of adding
marks to vertices and edges. Thereby,

|G(n)

~m(n),~u(n)(µ, ε)| ≤ |Gn,mn(ρ, ε)|(|Ξ|2)mn|Θ|n.

Note that as n→∞, mn/n→ d/2 where d = deg(µ) = deg(ρ). Consequently,

lim sup
n→∞

log |G(n)

~m(n),~u(n)(µ, ε)| − ‖~m(n)‖1 log n

n
≤ lim sup

n→∞

log |Gn,mn(ρ, ε)| −mn log n

n

+ d log |Ξ|+ log |Θ|.
(3.35)

Now, the assumption µ(T̄∗) < 1 implies that ρ(T∗) < 1. Hence, Theorem 1.2 in [BC15]
implies that the unmarked BC entropy of ρ is −∞, i.e.

lim
ε→0

lim sup
n→∞

log |Gn,mn(ρ, ε)| −mn log n

n
= −∞.

Comparing this with (3.35), we realize that Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) = −∞ which completes
the proof.

3.4.2 Lower bound

In this section, we prove the lower bound result of Proposition 3.3.
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Proof of Proposition 3.3. For x, x′ ∈ Ξ, let dx,x′ := degx,x′(µ) and ~d := (dx,x′ : x, x′ ∈ Ξ).
Furthermore, for θ ∈ Θ, let qθ := Πθ(µ) and Q := (qθ : θ ∈ Θ). We prove the result in two
steps: first we assume that P has a finite support, and then relax this assumption.

Case 1: P has a finite support: Using Lemma 3.2 from Section 3.3.6 we realize that there

exists a finite set ∆ ⊂ T̄ h∗ containing the support of P , and a sequence of simple marked

graphs Γn ∈ G(n)

~m(n),~u(n) such that U(Γn)h ⇒ P and, for all n, the support of U(Γn)h is

contained in ∆. To find a lower bound for G(n)

~m(n),~u(n)(µ, ε), we may restrict ourselves to the

graphs G ∈ G(n)

~m(n),~u(n) such that U(G)h = U(Γn)h, since

|G(n)

~m(n),~u(n)(µ, ε)| ≥ |{G ∈ G
(n)

~m(n),~u(n) : U(G)h = U(Γn)h, dLP(U(G), µ) < ε}|. (3.36)

In order to find a lower bound for the right hand side of (3.36), we employ the tools from
Section 3.3.

More precisely, define F ⊂ Ξ× T̄ h−1
∗ to be the set comprised of T [o, v]h−1 and T [v, o]h−1

for all [T, o] ∈ ∆ and v ∼T o. Since ∆ is finite, F is also finite and hence can be identified
with the set of integers {1, . . . , L} where L = |F|. Moreover, define the color set C := F×F .
Also, let δ be the maximum degree at the root among the members of ∆. Since the support
of U(Γn)h lies in ∆, the colored version of Γn, C(Γn), is a member of G(C). Let ~D(n) :=
~DC(Γn) be the colored degree sequence of C(Γn). Recall that, for t, t′ ∈ F and v ∈ [n], we

have D
(n)
t,t′ (v) = Eh(t, t

′)(Γn, v). Moreover, since the support of U(Γn)h lies in ∆, we have

~D(n)(v) ∈M(δ)
L for all n and v ∈ [n]. Furthermore, define ~β(n) = (β(n)(v) : v ∈ [n]) such that

for v ∈ [n], β(n)(v) := τΓn(v).
From Corollary 3.3, we know that Nh(Γn), which is the number of simple marked graphs

G in Ḡn such that U(G)h = U(Γn)h, is precisely n( ~D(n), ~β(n))|G( ~D(n), 2h + 1)|. Note that

if U(G)h = U(Γn)h, then ~mG = ~mΓn = ~m(n) and ~uG = ~uΓn = ~u(n), thus G ∈ G(n)

~m(n),~u(n) .

Moreover, from the proof of Corollary 3.3, we know that for two permutations π and π′,
if (( ~D(n))π, (~β(n))π) 6= (( ~D(n))π

′
, (~β(n))π

′
), the sets {MCB(~β(n))π(H) : H ∈ G(( ~D(n))π, 2h +

1)} and {MCB(~β(n))π
′ (H) : H ∈ G(( ~D(n))π

′
, 2h + 1)} are disjoint. On the other hand, for

Hn 6= H ′n ∈ G( ~D(n), 2h + 1), we have MCB~β(n)(Hn) 6= MCB~β(n)(H ′n). These observations,

together with (3.36), imply that with H̃n being uniformly distributed in G( ~D(n), 2h+ 1) and
G̃n := MCB~β(n)(H̃n), we have

|G(n)

~m(n),~u(n)(µ, ε)| ≥ n( ~D(n), ~β(n))|{Hn ∈ G( ~D(n), 2h+ 1) : dLP(U(MCB~β(n)(Hn)), µ) < ε}|

= n( ~D(n), ~β(n))
∣∣∣G(n)( ~D(n), 2h+ 1)

∣∣∣P(dLP(U(G̃n), µ) < ε
)

= Nh(Γn)P
(
dLP(U(G̃n), µ) < ε

)
.

From Proposition 3.7, we know that, for any ε > 0, P
(
dLP(U(G̃n), µ) < ε

)
→ 1 as n→∞.
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Therefore, we have

lim inf
n→∞

log |G(n)

~m(n),~u(n)(µ, ε)| − ‖~m(n)‖1 log n

n
≥ lim inf

n→∞

logNh(Γn)− ‖~m(n)‖1 log n

n
.

Consequently, if we show that

lim
n→∞

1

n

(
logNh(Γn)− ‖~m(n)‖1 log n

)
= Jh(P ), (3.37)

then we can conclude that for ε > 0, Σ~d,Q(µ, ε)|(~m(n),~u(n)) ≥ Jh(P ) and hence Σ~d,Q(µ)|(~m(n),~u(n)) ≥
Jh(P ), which completes the proof for this case. Thereby, it suffices to show (3.37).

In order to do this, first note that, as a result of Lemma A.4 in Appendix A.2, for
v, w ∈ [n] we have (Γn, v)h ≡ (Γn, w)h iff (β(n)(v), D(n)(v)) = (β(n)(w), D(n)(w)). Thereby,
since U(Γn)h ⇒ P and ∆ is finite, we have

lim
n→∞

1

n
log n( ~D(n), ~β(n)) = H(P ). (3.38)

Moreover, from Corollary 3.1 and Stirling’s approximation, if, for c ∈ C, S(n)
c denotes∑n

v=1D
(n)
c (v), we have

log |G( ~D(n), 2h+ 1)| =
∑
c∈C<

(
S(n)
c logS(n)

c − S(n)
c

)
+
∑
c∈C=

(
S

(n)
c

2
logS(n)

c −
S

(n)
c

2

)

−
∑
c∈C

n∑
v=1

logD(n)
c (v)! + o(n)

=
1

2

∑
c∈C

(
S(n)
c logS(n)

c − S(n)
c

)
−
∑
c∈C

n∑
v=1

logD(n)
c (v)! + o(n).

(3.39)

Here, we have used the following facts: (i) log k! = k log k − k + o(k), (ii) log(k − 1)!! =
k
2

log k − k
2

+ o(k), (iii) for all c ∈ C, lim supn→∞ S
(n)
c /n < ∞ or equivalently S

(n)
c = O(n),

and (iv) for c ∈ C, S(n)
c = S

(n)
c̄ . Note that, since U(Γn)h ⇒ P and ∆ is finite, for each

c = (t, t′) ∈ C we have

1

n
S(n)
c =

1

n

n∑
v=1

D(n)
c (v) −→

n→∞
EP [Eh(t, t

′)(T, o)] = eP (t, t′).

Likewise, for c = (t, t′) ∈ C, we have

1

n

n∑
v=1

logD(n)
c (v)! −→

n→∞
EP [logEh(t, t

′)(T, o)!] .
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Using these in (3.39) and simplifying, we get

log |G( ~D(n), 2h+ 1)| = n

2

∑
c∈C

(
S

(n)
c

n
log

S
(n)
c

n
+
S

(n)
c

n
log n− S

(n)
c

n

)

− n
∑
c∈C

1

n

n∑
v=1

logD(n)
c (v)! + o(n)

= ‖~m(n)‖1 log n− ‖~m(n)‖1 +
n

2

∑
t,t′∈F

eP (t, t′) log eP (t, t′)

− n
∑
t,t′∈F

EP [logEh(t, t
′)(T, o)!] + o(n),

(3.40)

where in the second line we have used
∑

c∈C S
(n)
c = 2‖~m(n)‖1. Note that, since ~m(n) and ~u(n)

are such that (~m(n), ~u(n)) is adapted to ( ~deg(µ), ~Π(µ)), as n → ∞ we have ‖~m(n)‖1/n →
deg(µ)/2. From (3.38) and (3.40), with d := deg(µ), we get

logNh(Γn)− ‖~m(n)‖1 log n

n
= H(P )− d

2
+

1

2

∑
t,t′∈F

eP (t, t′) log eP (t, t′)

−
∑
t,t′∈F

EP [logEh(t, t
′)(T, o)!] + o(1)

= H(P )− d

2
+
d

2

∑
t,t′∈F

eP (t, t′)

d

(
log d+ log

eP (t, t′)

d

)
−
∑
t,t′∈F

EP [logEh(t, t
′)(T, o)!] + o(1)

(a)
= −s(d) +H(P ) +

d

2

∑
t,t′∈Ξ×T̄ h−1

∗

πP (t, t′) log πP (t, t′)

−
∑

t,t′∈Ξ×T̄ h−1
∗

EP [logEh(t, t
′)(T, o)!] + o(1)

= Jh(P ) + o(1),

where in (a) we have used the facts that the support of P is contained in ∆ and∑
t,t′∈Ξ×T̄ h−1

∗

eP (t, t′) = d.

This shows (3.37) and thus completes the proof for the finite support case.
Case 2: For general P : We use a truncation procedure together with the proof in the

above finite support case. More precisely, for an integer k > 1, we start from a random
rooted marked tree (T, o) with law µ and, for all vertices v in T with degree more than k,
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we remove all the edges connected to v. Let T (k) denote the connected component of the
root in the resulting forest. With this, define µ(k) to be the law of [T (k), o]. It is easy to see
that µ(k) is unimodular. Furthermore, let Pk := (µ(k))h ∈ P(T̄ h∗ ) be the law of the depth h
neighborhood of the root in µ(k). Since µ(k) is unimodular, Pk is admissible. On the other
hand, Pk has a finite support, and hence Pk is strongly admissible, i.e. Pk ∈ Ph.

With the above construction, we have degx,x′(µ
(k)) ≤ degx,x′(µ) for all x, x′ ∈ Ξ and

~Π(µ(k)) = ~Π(µ). We do not directly apply the result of the previous case to Pk, since the

sequences ~m(n) and ~u(n) are such that (~m(n), ~u(n)) is adapted to ( ~deg(µ), ~Π(µ)) which might

be different from ( ~deg(µ(k)), ~Π(µ(k))). Instead, we modify µ(k) to obtain a measure µ̃(k) such

that ( ~deg(µ̃(k)), ~Π(µ̃(k))) = ( ~deg(µ), ~Π(µ)). In order to do this, for each pair of edge marks
x ≤ x′ ∈ Ξ, we choose an integer d̃x,x′ > 2(|Ξ|2dx,x′ ∨ 1). Moreover, define νx,x′ to be the law
of [T, o] ∈ T̄∗ where (T, o) is the random rooted marked d̃x,x′–regular tree defined as follows.
With probability 1/2, we have

ξT (v, w) =

{
x distT (o, w) is even,

x′ distT (o, w) is odd,
∀v, w ∈ V (T ),

and with probability 1/2, we have

ξT (v, w) =

{
x′ distT (o, w) is even,

x distT (o, w) is odd,
∀v, w ∈ V (T ).

Additionally, each vertex in T is independently given a mark with distribution ~Π(µ). It is easy

to check that νx,x′ is unimodular, ~Π(νx,x′) = ~Π(µ), and degx,x′(νx,x′) = degx′,x(νx,x′) = d̃x,x′/2.
Let Ux,x′ := (νx,x′)h ∈ P(T̄ h∗ ) be the law of the depth h neighborhood of the root in νx,x′ . Due
to the way we chose d̃x,x′ for x ≤ x′ ∈ Ξ, we can choose pk ∈ [0, 1] together with nonnegative
numbers (αkx,x′ : x ≤ x′ ∈ Ξ) so that pk +

∑
x≤x′∈Ξ α

k
x,x′ = 1 and such that with

P̃k := pkPk +
∑

x≤x′∈Ξ

αkx,x′Ux,x′ , (3.41)

we have EP̃k
[
degx,x

′

T (o)
]

= dx,x′ for all x, x′ ∈ Ξ. More precisely, with dkx,x′ := degx,x′(µ
(k)),

we may set

pk :=
1−

∑
x≤x′∈Ξ 2dx,x′/d̃x,x′

1−
∑

x≤x′∈Ξ 2dkx,x′/d̃x,x′
,

and, for x ≤ x′ ∈ Ξ,

αkx,x′ :=
2(dx,x′ − pkdkx,x′)

d̃x,x′
.

Then, using d̃x,x′ > 2(|Ξ|2dx,x′∨1) and dkx,x′ < dx,x′ , all the desired properties mentioned above

would follow. On the other hand, since degx,x′(µ
(k)) ↑ degx,x′(µ) as k →∞, we have pk → 1
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as k →∞. Furthermore, since Pk is admissible and νx,x′ is unimodular, P̃k is admissible, and

in addition has a finite support. This implies that P̃k is strongly admissible, i.e. P̃k ∈ Ph.
Thus, with µ̃(k) := UGWTh(P̃k), we have ~Π(µ̃(k)) = ~Π(µ) and ~deg(µ̃(k)) = ~deg(µ). Now, we
claim that

lim
k→∞

eP̃k(t, t
′) = eP (t, t′) ∀t, t′ ∈ Ξ× T̄ h−1

∗ . (3.42)

In order to show this, note that from (3.41) we have

eP̃k(t, t
′) = pkePk(t, t

′) +
∑

x≤x′∈Ξ

αkx,x′eUx,x′ (t, t
′), ∀t, t′ ∈ Ξ× T̄ h−1

∗ . (3.43)

But Ux,x′ are fixed, Ξ is finite, and αkx,x′ → 0. Hence, to show (3.42), it suffices to show that

lim
k→∞

ePk(t, t
′) = eP (t, t′) ∀t, t′ ∈ Ξ× T̄ h−1

∗ . (3.44)

Observe that for t, t′ ∈ Ξ×T̄ h−1
∗ we have ePk(t, t

′) = Eµ
[
Eh(t, t

′)([T (k), o])
]
. But, for [T, o] ∈

T̄∗, if k is large enough, [T (k), o]h = [T, o]h. Thereby, Eh(t, t
′)([T (k), o]) → Eh(t, t

′)([T, o]) as
k →∞. On the other hand, Eh(t, t

′)([T (k), o]) ≤ degT (k)(o) ≤ degT (o). Hence,

Eµ
[
Eh(t, t

′)([T (k), o])
]
≤ Eµ [degT (o)] <∞.

This together with the dominated convergence theorem implies (3.44). Thus, we arrive

at (3.42). On the other hand, we have Pk ⇒ P , and from (3.41) we have P̃k ⇒ P . Therefore
Lemma 2.4 in Appendix A.4 implies that µ̃(k) ⇒ µ as k → ∞. Therefore, from Lemma 3.1
and the lower bound for the finite support case, we have

Σ~d,Q(µ)|(~m(n),~u(n)) ≥ lim sup
k→∞

Σ~d,Q(UGWTh(P̃k))|(~m(n),~u(n)) ≥ lim sup
k→∞

Jh(P̃k) ≥ lim inf
k→∞

Jh(P̃k).

(3.45)
Here, all the entropy terms are obtained via the same sequences ~m(n) and ~u(n). Therefore, it
suffices to show that lim infk→∞ Jh(P̃k) ≥ Jh(P ). Note that, by definition, we have

Jh(P̃k) = −s(d) +H(P̃k)−
d

2
H(πP̃k)−

∑
t,t′∈Ξ×T̄ h−1

∗

EP̃k [logEh(t, t
′)!] ,

where d = deg(µ). We claim that

lim inf
k→∞

Jh(P̃k) ≥ lim inf
k→∞

Jh(Pk). (3.46)

Note that Pk is admissible and is finitely supported, and hence H(Pk) < ∞. Furthermore,
since d > 0, for k large enough Pk has positive expected degree at the root. Hence Jh(Pk) is
well defined for k large enough. In order to show (3.46), first note that if dk is the average
degree at the root in Pk then we have dk → d as k →∞. Hence we have

lim
k→∞

s(dk) = s(d). (3.47)
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On the other hand, using (3.41), we have

H(P̃k) = pk log
1

pk
+
∑

x≤x′∈Ξ

αkx,x′ log
1

αkx,x′
+ pkH(Pk) +

∑
x≤x′∈Ξ

αkx,x′H(Ux,x′).

Here, Ux,x′ are fixed distributions and have no dependence on k. Also, pk → 1 and αkx,x′ → 0
for all x ≤ x′ ∈ Ξ. Hence, if we show that the sequence H(Pk) is bounded, we can conclude

that lim infk→∞H(P̃k) ≥ lim infk→∞H(Pk). In order to show that the sequence H(Pk) is
bounded, recall that Pk is the distribution of [T (k), o]h. Observe that [T (k), o]h is a function of
[T, o]h+1. The reason is that, by definition, T (k) is obtained from T by removing all the edges
connected to vertices with degree more than k, and the degree of a vertex with distance at
most h from the root is completely determined by [T, o]h+1. This means that H(Pk) ≤ H(R)
where R := µh+1 ∈ P(T̄ h+1

∗ ) is the law of the h + 1 neighborhood of the root in µ. From
Lemma 2.6, we have R ∈ Ph+1 and hence H(R) <∞. This shows that H(Pk) is a bounded
sequence and

lim inf
k→∞

H(P̃k) ≥ lim inf
k→∞

H(Pk). (3.48)

On the other hand, from (3.43), we have

πP̃k =
dk
d
pkπPk +

∑
x≤x′∈Ξ

d̃x,x′

d
αkx,x′πUx,x .

But, as k → ∞, we have dk → d, pk → 1, and αkx,x′ → 0 for all x ≤ x′ ∈ Ξ. Also, Ux,x′ for
x ≤ x′ ∈ Ξ are fixed and do not depend on k. Thereby, we conclude that

lim sup
k→∞

H(πP̃k) ≤ lim sup
k→∞

H(πPk). (3.49)

Moreover, from (3.41), we have

EP̃k

 ∑
t,t′∈Ξ×T̄ h−1

∗

logEh(t, t
′)!

 = pkEPk

 ∑
t,t′∈Ξ×T̄ h−1

∗

logEh(t, t
′)!


+
∑

x≤x′∈Ξ

αkx,x′EUx,x′

 ∑
t,t′∈Ξ×T̄ h−1

∗

logEh(t, t
′)!

 .
Again, as k →∞, we have pk → 1 and αkx,x′ → 0 for all x ≤ x′ ∈ Ξ. Hence

lim sup
k→∞

EP̃k

 ∑
t,t′∈Ξ×T̄ h−1

∗

logEh(t, t
′)!

 ≤ lim sup
k→∞

EPk

 ∑
t,t′∈Ξ×T̄ h−1

∗

logEh(t, t
′)!

 . (3.50)
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Putting together (3.47), (3.48), (3.49) and (3.50), we arrive at (3.46). Comparing this
with (3.45), in order to complete the proof, it suffices to show that

lim inf
k→∞

Jh(Pk) ≥ Jh(P ). (3.51)

Without loss of generality, for the rest of the proof, we may assume that Jh(P ) > −∞,
otherwise nothing remains to be proved. In order to show (3.51), it suffices to show the
following

lim inf
k→∞

H(Pk) ≥ H(P ), (3.52a)

lim
k→∞

∑
t,t′∈Ξ×T̄ h−1

∗

EPk [logEh(t, t
′)!] =

∑
t,t′∈Ξ×T̄ h−1

∗

EP [logEh(t, t
′)!] , (3.52b)

lim sup
k→∞

H(πPk) ≤ H(πP ). (3.52c)

First, to show (3.52a), note that for all [T̃ , õ] ∈ T̄ h∗ , we have Pk([T̃ , õ]) =
∫
1[[T (k), o]h =

[T̃ , õ]]dµ([T, o]). Therefore, the dominated convergence theorem implies that Pk([T̃ , õ]) →
P ([T̃ , õ]) as k → ∞. Hence, (3.52a) follows from this and lower semi–continuity of the
Shannon entropy (see, for instance [HY10]).

Now we turn to showing (3.52b). Define C := (Ξ × T̄ h−1
∗ ) × (Ξ × T̄ h−1

∗ ). Moreover, for
r ∈ T̄∗, let F (r) :=

∑
c∈C logEh(c)(r)!. With this, we have

∑
t,t′∈Ξ×T̄ h−1

∗
EPk [logEh(t, t

′)!] =

Eµ
[
F ([T (k), o])

]
. Recall that [T (k), o] ∈ T̄∗, as defined above, is the rooted tree obtained from

[T, o] by removing all edges connected to vertices with degree larger than k followed by taking
the connected component of the root. Likewise, the right hand side of (3.52b) is precisely
Eµ [F ([T, o])]. Observe that for each [T, o] ∈ T̄∗, if k is large enough, [T (k), o]h = [T, o]h.
Thereby, F ([T (k), o]) → F ([T, o]) pointwise. Now, for [T, o] ∈ T̄∗, using the inequality
log a! ≤ a log a that holds for any nonnegative integer a by interpreting 0 log 0 = 0, we get

F ([T, o]) ≤
∑
c∈C

Eh(c)(T, o) logEh(c)(T, o)

≤
∑
c∈C

Eh(c)(T, o) log degT (o)

= degT (o) log degT (o).

Consequently,

EP
[
|F ([T (k), o])|

]
= EP

[
F ([T (k), o])

]
≤ EP [degT (k)(o) log degT (k)(o)] ≤ EP [degT (o) log degT (o)] .

The fact that P ∈ Ph implies that the right hand side is finite. Thereby, we arrive at (3.52b)
using the dominated convergence theorem.
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Next, we show (3.52c). Recall that, without loss of generality, we have assumed that
Jh(P ) > −∞, which means H(πP ) <∞. Consequently, we have∑

c∈C

|eP (c) log eP (c)| ≤
∑
c∈C

|eP (c) log eP (c)− eP (c) log d|+ |eP (c) log d|

=
∑
c∈C

eP (c) log
d

eP (c)
+
∑
c∈C

eP (c) log d

= dH(πP ) + d log d <∞,

(3.53)

where, in the second line, we have used the fact that eP (c) ≤ d for all c ∈ C. Therefore, the
sequence eP (c) log eP (c) is absolutely summable. Hence, we may write

H(πP ) =
∑
c∈C

eP (c)

d
log

d

eP (c)
= log d− 1

d

∑
c∈C

eP (c) log eP (c).

On the other hand, Pk has finite support. Hence, with dk =
∑

c∈C ePk(c) being the expected
degree at the root in Pk, we have

H(πPk) = log dk −
1

dk

∑
c∈C

ePk(c) log ePk(c).

Therefore, as dk ↑ d, in order to show (3.52c), it suffices to show that

lim inf
k→∞

∑
c∈C

ePk(c) log ePk(c) ≥
∑
c∈C

eP (c) log eP (c). (3.54)

Recall from (3.44) that for all c ∈ C, we have ePk(c) → eP (c) as k → ∞. Now, for a
nonnegative integer δ, define C(δ) ⊂ C to be the set of (t, t′) ∈ C such that all vertices in the
subgraph components of t and t′, i.e. t[s] and t′[s], have degrees bounded by δ. Therefore,
due to (3.53) and the fact that C = ∪∞δ=1C(δ), we have∑

c/∈C(δ)

|eP (c) log eP (c)| < ε1(δ), (3.55)

where ε1(δ) → 0 as δ → ∞. Note that C(δ) is finite. This together with (3.44) and (3.55)
implies that for δ > 0 we have

lim
k→∞

∑
c∈C(δ)

ePk(c) log ePk(c) =
∑
c∈C(δ)

eP (c) log eP (c)

≥
∑
c∈C

eP (c) log eP (c)− ε1(δ).
(3.56)

Hence, we may write

lim inf
k→∞

∑
c∈C

ePk(c) log ePk(c) ≥ lim inf
k→∞

∑
c∈C(δ)

ePk(c) log ePk(c) + lim inf
k→∞

∑
c/∈C(δ)

ePk(c) log ePk(c)
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≥
∑
c∈C

eP (c) log eP (c)− ε1(δ) + lim inf
k→∞

∑
c/∈C(δ)

ePk(c) log ePk(c).

As this holds for all δ > 0 and since ε1(δ)→ 0 when δ → 0, in order to show (3.54) it suffices
to prove that for all positive integers k and δ such that k > δ, we have∑

c/∈C(δ)

ePk(c) log ePk(c) ≥ −ε2(δ), (3.57)

where ε2(δ)→ 0 as δ →∞. Now, we fix positive integers k > δ and show that (3.57) holds

for an appropriate choice of ε2(δ). For an integer r > 0, let A(r)
h ⊂ T̄ h∗ be the set of marked

rooted trees of depth at most h where all degrees are bounded by r. We define A(r)
h+1 ⊂ T̄ h+1

∗
similarly. Note that Pk has a finite support and so the left hand side of (3.57) is a finite sum.

Indeed, Pk is supported on the finite set A(k)
h ⊂ T̄ h∗ and ePk(c) = 0 for c /∈ C(k). Consequently,

we have

∑
c/∈C(δ)

ePk(c) log ePk(c) =
∑

c∈C(k)\C(δ)

 ∑
s∈A(k)

h

Pk(s)Eh(c)(s)

 log

 ∑
s′∈A(k)

h

Pk(s
′)Eh(c)(s

′)


≥

∑
c∈C(k)\C(δ)

∑
s∈A(k)

h

Pk(s)Eh(c)(s) log(Pk(s)Eh(c)(s)).

(3.58)

Note that if c /∈ C(δ) and s ∈ A(δ)
h , we have Eh(c)(s) = 0. Thereby,∑

c/∈C(δ)

ePk(c) log ePk(c) ≥
∑

s∈A(k)
h \A

(δ)
h

∑
c∈C(k)\C(δ)

Pk(s)Eh(c)(s) log(Pk(s)Eh(c)(s))

≥
∑

s∈A(k)
h \A

(δ)
h

∑
c∈C(k)\C(δ)

Pk(s)Eh(c)(s) logPk(s)

≥
∑

[T,o]∈A(k)
h \A

(δ)
h

degT (o)Pk([T, o]) logPk([T, o])

(3.59)

where the last inequality uses the fact that for [T, o] ∈ A(k)
h \ A

(δ)
h , we have∑

c∈C(k)\C(δ)

Eh(c)([T, o]) ≤
∑
c∈C

Eh(c)([T, o]) = degT (o),

and Pk([T, o]) logPk([T, o]) ≤ 0. As we discussed above, for [T, o] ∈ T̄∗, [T (k), o]h is de-
termined by [T, o]h+1, since the degree of all vertices up to depth h is determined by the

structure of the tree up to depth h + 1. Moreover, define Fk : T̄ h+1
∗ → A(k)

h such that for
[T, o] ∈ T̄ h+1

∗ , we have Fk([T, o]) := [T (k), o]h. With this, Pk is the pushforward of R := µh+1
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under the mapping Fk, i.e. for [T, o] ∈ A(k)
h , Pk([T, o]) = R(F−1

k ([T, o])). On the other hand,

for [T, o] ∈ A(k)
h , if [T ′, o′] ∈ F−1

k ([T, o]), then R([T ′, o′]) ≤ R(F−1
k ([T, o])) = Pk([T, o]). Using

these in (3.59), we have∑
c/∈C(δ)

ePk(c) log ePk(c) ≥
∑

[T,o]∈A(k)
h \A

(δ)
h

∑
[T ′,o′]∈F−1

k ([T,o])

degT (o)R([T ′, o′]) logPk([T, o])

≥
∑

[T,o]∈A(k)
h \A

(δ)
h

∑
[T ′,o′]∈F−1

k ([T,o])

degT (o)R([T ′, o′]) logR([T ′, o′])

=
∑

[T ′,o′]∈T̄ h+1
∗

1

[
Fk([T

′, o′]) /∈ A(δ)
h

]
degFk([T ′,o′])(o

′)R([T ′, o′]) logR([T ′, o′]).

Here, in the last equality, we were allowed to change the order of summations since all the
terms are nonpositive. Also note that, by definition, for [T ′, o′] ∈ T̄ h+1

∗ we have Fk([T
′, o′]) ∈

A(k)
h . Since the mapping Fk decreases the degree of all the vertices, for all [T ′, o′] ∈ T̄ h+1

∗ we

have 1

[
Fk([T

′, o′]) /∈ A(δ)
h

]
≤ 1

[
[T ′, o′] /∈ A(δ)

h+1

]
and degFk([T ′,o′])(o

′) ≤ deg[T ′,o′](o
′). Using

these observations in the above chain of inequalities, since all the terms in the summation
are nonpositive, we get∑

c/∈C(δ)

ePk(c) log ePk(c) ≥
∑

[T ′,o′]∈T̄ h+1
∗ \A(δ)

h+1

degT ′(o
′)R([T ′, o′]) logR([T ′, o′]). (3.60)

Since P is strongly admissible, i.e. P ∈ Ph, Lemma 2.6 implies that R ∈ Ph+1, which means
H(R) <∞. Also, ER [degT (o) log degT (o)] = EP [degT (o) log degT (o)] <∞. Therefore, from
Lemma A.6, we have ∑

[T ′,o′]∈T̄ h+1
∗

degT ′(o
′)R([T ′, o′]) logR([T ′, o′]) > −∞.

Since ∪δA(δ)
h+1 = T̄ h+1

∗ , we have∑
[T ′,o′]∈T̄ h+1

∗ \A(δ)
h+1

degT ′(o
′)R([T ′, o′]) logR([T ′, o′]) ≥ −ε2(δ),

where ε2(δ) → 0 as δ → ∞. Putting this into (3.60), we arrive at (3.57), which completes
the proof.

3.4.3 Upper bound

In this section, we prove the upper bound result of Proposition 3.4.
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Proof of Proposition 3.4. Let P := µh. Since µ is unimodular and d <∞, from Lemma 2.3
we see that P is admissible. Further, since P ∈ P(T̄∗) with EP [degT (o)] = d > 0 and
H(P ) < ∞, we see that Jh(P ), as introduced in (2.9), is well-defined. From the local
topology on Ḡ∗ one sees that, for all h ≥ 1 and ε > 0, there exists η1(ε) such that, for all
ρ1, ρ2 ∈ P(Ḡ∗), dLP(ρ1, ρ2) < ε implies dTV((ρ1)h, (ρ2)h) < η1(ε). Here the function η1(.)
depends only on h and has the property that η1(ε)→ 0 as ε→ 0. Therefore, if for δ > 0 we
define

A
(n)

~m(n),~u(n)(P, δ) := {G ∈ G(n)

~m(n),~u(n) : dTV(U(G)h, P ) < δ},

we have
G(n)

~m(n),~u(n)(µ, ε) ⊆ A
(n)

~m(n),~u(n)(P, η1(ε)).

Hence, to show (3.3), it suffices to show that

lim
ε→0

lim sup
n→∞

1

n

(
log |A(n)

~m(n),~u(n)(P, ε)| − ‖~m(n)‖1 log n
)
≤ Jh(P ). (3.61)

In order to do this, fix a finite subset ∆ ⊂ T̄ h∗ and define F(∆) ⊂ Ξ×T̄ h−1
∗ to be the set of

T [o, v]h−1 and T [v, o]h−1 for [T, o] ∈ ∆ and v ∼T o. Since ∆ is finite, F(∆) is also finite and
can be identified with the set of integers {1, . . . , L} where L = L(∆) := |F(∆)|. With this,
define the color set C(∆) := F(∆)×F(∆). Furthermore, let F̄(∆) := F(∆) ∪ {?x : x ∈ Ξ},
where ?x for x ∈ Ξ are additional distinct elements not present in F(∆). Note that F̄(∆) is
finite, thus can be identified with the set of integers {1, . . . , L̄} where L̄ = L̄(∆) = L(∆)+|Ξ|,
where the first L elements represent F(∆). Finally, extend the color set C(∆) to C̄(∆) :=
F̄(∆)× F̄(∆).

Now, for a fixed ∆ as above, given a simple marked graph G on the vertex set [n], we

construct a simple directed colored graph G̃ ∈ G(C̄(∆)) on the same vertex set [n], with color
set C̄(∆), as follows. For each edge between vertices u and v in G, if ϕhG(u, v) ∈ C(∆), we

place an edge in G̃ directed from u towards v with color ϕhG(u, v), and another edge directed

from v towards u with color ϕhG(v, u). Otherwise, if ϕhG(u, v) /∈ C(∆), we place an edge in G̃
directed from u towards v with color (?x, ?x′) and an edge directed from v towards u with

color (?x′ , ?x), where x = ξG(v, u) and x′ = ξG(u, v). Let ~DG̃ be the colored degree sequence

of G̃. More precisely, for a vertex v, DG̃(v) ∈ ML̄(∆) has the following form. For c ∈ C(∆),

DG̃
c (v) is the number of vertices w ∼G v such that ϕhG(v, w) = c. Moreover, for x, x′ ∈ Ξ,

DG̃
(?x,?x′ )

(v) is the number of vertices w ∼G v such that ϕhG(v, w) /∈ C(∆), ξG(w, v) = x and

ξG(v, w) = x′. Note that, for x ∈ Ξ and t ∈ F(∆), we have DG̃
(?x,t)

(v) = DG̃
(t,?x)(v) = 0.

With an abuse of notation, for a marked rooted graph (G, o) on a finite or countable
vertex set, and c ∈ C̄(∆) of the form c = (?x, ?x′), x, x

′ ∈ Ξ, we define

Eh(?x, ?x′)(G, o) = |{v ∼G o : ϕhG(o, v) /∈ C(∆), ξG(v, o) = x, ξG(o, v) = x′}|, (3.62)

and, for x ∈ Ξ, we define

Eh(?x, t)(G, o) = Eh(t, ?x)(G, o) = 0, ∀t ∈ F(∆). (3.63)
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With this convention, define the map F∆ : Ḡh∗ → Θ ×ML̄(∆), such that for [G, o] ∈ Ḡh∗ ,
F ([G, o]) := (θ,D) where θ = τG(o) is the mark at the root in G, and for c ∈ C̄(∆), Dc =
Eh(c)(G, o). Moreover, let P̄∆ ∈ P(Θ ×ML̄(∆)) be the law of F∆([T, o]) when [T, o] ∼ P .

Note that if G is a marked graph on the vertex set [n], with the directed colored graph G̃

defined above then for all vertices v in G, we have (τG(v), DG̃(v)) = F∆([G, v]h). Therefore,

if G ∈ A(n)

~m(n),~u(n)(P, ε), since dTV(U(G)h, P ) < ε, we have

dTV

(
1

n

n∑
i=1

δ(τG(v),DG̃(v)), P̄
∆

)
< ε. (3.64)

Let B
(n)

~m(n),~u(n)(P,∆, ε) be the set of pairs of sequences (~β, ~D), ~β = (β(i) : 1 ≤ i ≤ n) and

~D = (D(i) : 1 ≤ i ≤ n) ∈ Dn where, for 1 ≤ i ≤ n, β(i) ∈ Θ, D(i) ∈ ML̄(∆) are such that
with

R(~β, ~D) :=
1

n

n∑
i=1

δ(β(i),D(i)), (3.65)

we have

dTV(R(~β, ~D), P̄∆) < ε, (3.66a)
n∑
i=1

∑
c∈C̄(∆)

Dc(i) = 2‖~m(n)‖1, (3.66b)

n∑
i=1

1 [β(i) = θ] = u(n)(θ), ∀θ ∈ Θ, (3.66c)

D(?x,t)(v) = D(t,?x)(v) = 0, ∀x ∈ Ξ, t ∈ F(∆), i ∈ [n]. (3.66d)

Let ~τG denote (τG(v) : v ∈ V (G)). Note that, from (3.64), for G ∈ A
(n)

~m(n),~u(n)(P, ε) we

have (~τG, ~D
G̃) ∈ B(n)

~m(n),~u(n)(P,∆, ε). Now, we claim that for (~β, ~D) ∈ B(n)

~m(n),~u(n)(P,∆, ε) and a

colored directed graph H ∈ G( ~D, 2), there is at most one marked graph G ∈ A(n)

~m(n),~u(n)(P, ε)

such that ~τG = ~β and G̃ = H. The reason is that, to start with, the condition ~τG = ~β uniquely
determines vertex marks for G. Moreover, since G̃ = H, vertices v and w are adjacent in
G iff they are adjacent in H. Let v and w be adjacent vertices in H with c ∈ C̄(∆) being
the color of the edge directed from v towards w. Note that, by the definition of the set
B

(n)

~m(n),~u(n)(P,∆, ε), c is either of the form (t, t′) where t, t′ ∈ F(∆), or c = (?x1 , ?x2) for some

x1, x2 ∈ Ξ. Since G̃ = H, in the former case, we have ξG(w, v) = t[m] and ξG(v, w) = t′[m],
while, in the latter case, we have ξG(w, v) = x1 and ξG(v, w) = x2. This implies that there

is at most one marked graph satisfying ~τG = ~β and G̃ = H. Consequently, we have

|A(n)

~m(n),~u(n)(P, ε)| ≤ |B
(n)

~m(n),~u(n)(P,∆, ε)| max
(~β, ~D)∈B(n)

~m(n),~u(n)
(P,∆,ε)

|G( ~D, 2)|. (3.67)
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Now, we find bounds for the two terms on the right hand side of (3.67).

Bounding |B(n)

~m(n),~u(n)(P,∆, ε)|: we claim that

lim
ε→0

lim sup
n→∞

1

n
log |B(n)

~m(n),~u(n)(P,∆, ε)| ≤ H(P ). (3.68)

Note that P and P̄∆ are not necessarily finitely supported, so this is not a direct consequence
of (3.66a) and requires some work. In order establish the claim, fix a finite subset X ⊂
Θ × ML̄(∆) of the form X = {(β1, D1), . . . , (β|X|, D|X|)}. With this, for 1 ≤ j ≤ |X|,
let p̄j := P̄∆(βj, Dj). Furthermore, define p̄0 := 1 −

∑|X|
j=1 p̄j = 1 − P̄∆(X). Now, fix

(~β, ~D) ∈ B(n)

~m(n),~u(n)(P,∆, ε) and let Ij := {i ∈ [n] : (β(i), D(i)) = (βj, Dj)} for 1 ≤ j ≤ |X|.
Additionally, let I0 := {i ∈ [n] : (β(i), D(i)) /∈ X}. Moreover, define aj := |Ij|/n for
0 ≤ j ≤ |X|. Then, because of (3.66a), we have |aj − p̄j| < ε for 0 ≤ j ≤ |X|. Also, due to
(3.66b), we have

∑
i∈I0

∑
c∈C̄(∆)

Dc(i) = 2‖~m(n)‖1 −
|X|∑
j=1

∑
i∈Ij

∑
c∈C̄(∆)

Dc(i)

= 2‖~m(n)‖1 −
|X|∑
j=1

naj
∑
c∈C̄(∆)

Dj
c

≤ 2‖~m(n)‖1 − n
|X|∑
j=1

p̄j
∑
c∈C̄(∆)

Dj
c + nε

|X|∑
j=1

∑
c∈C̄(∆)

Dj
c

= 2‖~m(n)‖1 − nd̄(X) + nεα(X),

(3.69)

where

d̄(X) :=

|X|∑
j=1

p̄j
∑
c∈C̄(∆)

Dj
c = EP̄∆

1 [(β,D) ∈ X]
∑
c∈C̄(∆)

Dc

 ,
and

α(X) :=

|X|∑
j=1

∑
c∈C̄(∆)

Dj
c .

Motivated by this, in order to find an upper bound for B
(n)

~m(n),~u(n)(P,∆, ε), we may first

count the number of choices for I0, . . . , I|X|, and then the number of pairs (~β, ~D) consistent

with each of them. For this, let Y
(n)
ε be the set of (a0, . . . , a|X|) such that

∑n
j=0 aj = 1

and such that for 0 ≤ j ≤ |X| we have naj ∈ Z+ and |aj − p̄j| < ε. We can see that

|Y (n)
ε | ≤ (2nε)1+|X|. Moreover, given (a0, . . . , a|X|), there are

(
n

na0...na|X|

)
many ways to chose

a partition I0, . . . , I|X| of [n] such that |Ij| = naj, 0 ≤ j ≤ |X|. Fixing such a partition,
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for i ∈ Ij, j 6= 0, we must have (β(i), D(i)) = (βj, Dj). Hence, we only need to count the
number of choices for {(β(i), D(i)) : i ∈ I0}. Note that, there are at most |Θ||I0| ≤ |Θ|n(p̄0+ε)

many ways to choose β(i) for i ∈ I0. On the other hand, for (Dc(i) : i ∈ I0, c ∈ C̄(∆)) there
are |I0|C̄(∆) = na0|C̄(∆)| many nonnegative integers satisfying (3.69). Hence, there are at
most (

2‖~m(n)‖1 − nd̄(X) + nεα(X) + na0|C̄(∆)|
na0|C̄(∆)|

)
many ways to choose D(i) for i ∈ I0. Putting all these together, we have

log |B(n)

~m(n),~u(n)(P,∆, ε)| ≤ (1 + |X|) log(2nε) + max
(a0,...,a|X|)∈Y

(n)
ε

log

(
n

na0 . . . na|X|

)
+ n(p̄0 + ε) log |Θ|

+ max
(a0,...,a|X|)∈Y

(n)
ε

log

(
2‖~m(n)‖1 − nd̄(X) + nεα(X) + na0|C̄(∆)|

na0|C̄(∆)|

)
.

(3.70)

Furthermore, using Stirling’s approximation, one can show that for (a0, . . . , a|X|) ∈ Y (n)
ε , we

have

log

(
n

na0 . . . na|X|

)
≤ 1 +

1

2
log n− n

|X|∑
j=0

aj log aj

≤ 1 +
1

2
log n− n

|X|∑
j=0

p̄j log p̄j + nη2(ε),

(3.71)

where, in the second inequality, η2(ε) → 0 as ε → 0, and we have used the fact that
x 7→ x log x is uniformly continuous on (0, 1] and also the assumption that |aj − p̄j| < ε for
0 ≤ j ≤ |X|. Note that

−
|X|∑
j=0

p̄j log p̄j = −

 ∑
(β,D)∈X

P̄∆(β,D) log P̄∆(β,D)

− (1− P̄∆(X)) log(1− P̄∆(X))

≤ H(P̄∆) ≤ H(P ),
(3.72)

where the last inequality follows from the fact that P̄∆ is the pushforward of P under F∆.
Putting (3.72) back in (3.71), we get

lim
ε→0

lim sup
n→∞

1

n
max

(a0,...,a|X|)∈Y
(n)
ε

log

(
n

na0 . . . na|X|

)
≤ H(P ). (3.73)

On the other hand, using the general inequality log
(
r
s

)
≤ log 2r ≤ r, which holds for

integers r ≥ s ≥ 0, together with a0 ≤ p̄0 + ε, we realize that for all (a0, . . . , a|X|) ∈ Y (n)
ε , we

have

1

n
log

(
2‖~m(n)‖1 − nd̄(X) + nεα(X) + na0|C̄(∆)|

na0|C̄(∆)|

)
≤ 2
‖~m(n)‖1

n
−d̄(X)+εα(X)+(p̄0+ε)|C̄(∆)|.
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Since the sequences ~m(n) and ~u(n) are such that (~m(n), ~u(n)) is adapted to ( ~deg(µ), ~Π(µ)), as
n→∞ we have ‖~m(n)‖1/n→ d/2, where d = deg(µ) is the average degree at the root in µ.
Therefore,

lim
ε→0

lim sup
n→∞

1

n
max

(a0,...,a|X|)∈Y
(n)
ε

log

(
2‖~m(n)‖1 − nd̄(X) + nεα(X) + na0|C̄(∆)|

na0|C̄(∆)|

)
≤ d− d̄(X) + (1− P̄∆(X))|C̄(∆)|. (3.74)

Using (3.73) and (3.74) in (3.70), we get

lim
ε→0

lim sup
n→∞

1

n
log |B(n)

~m(n),~u(n)(P,∆, ε)| ≤ H(P ) + d− d̄(X) + (1− P̄∆(X))(log |Θ|+ |C̄(∆)|).

(3.75)
Since this holds for any finite X ⊂ Θ×ML̄(∆), we may take a nested sequence Xk converging
to Θ×ML̄(∆)+1 so that P̄∆(Xk)→ 1 and

d̄(Xk) = EP̄∆

1 [(β,D) ∈ Xk]
∑
c∈C̄(∆)

Dc

→ EP̄∆

 ∑
c∈C̄(∆)

Dc

 = EP [degT (o)] = deg(µ) = d.

Using this in (3.75), we arrive at (3.68).

Bounding |G( ~D, 2)|: Now, we find an upper bound for the second term in the right hand

side of (3.67). We claim that for (~β, ~D) ∈ B(n)

~m(n),~u(n)(P,∆, ε), we have

|G( ~D, 2)| ≤
∏

c∈C̄(∆)<
S

(n)
c ( ~D)!

∏
c∈C̄(∆)=

(S
(n)
c ( ~D)− 1)!!∏

c∈C̄(∆)

∏n
v=1Dc(v)!

, (3.76)

where S
(n)
c ( ~D) =

∑n
v=1 Dc(v). In order to show this, we take a simple directed colored graph

H ∈ G( ~D, 2) and construct N :=
∏

c∈C̄(∆)

∏n
v=1Dc(v)! many configurations in the space Σ.

Recall from Section 3.3.2 that Σ is the set of all possible matchings of half edges. Note that
by the definition of the set B

(n)

~m(n),~u(n)(P,∆, ε), we have ~D ∈ Dn and Σ is well-defined. For

v ∈ [n] and c ∈ C(∆), we consider all the possible numberings of Dc(v) many edges going
out of the vertex v, which is Dc(v)!. It is easy to see that since H does not have loops and
there is at most one directed edge between each two pair of vertices, the N many objects
constructed in this way are all distinct members of Σ. Also, for distinct simple directed
colored graphs H 6= H ′ ∈ G( ~D, 2), the N many objects corresponding to H are indeed

distinct from the N many objects corresponding to H ′. Hence, |G( ~D, 2)|N ≤ |Σ|. But |Σ|
is precisely

∏
c∈C̄(∆)<

S
(n)
c ( ~D)!

∏
c∈C̄(∆)=

(S
(n)
c ( ~D) − 1)!!. This establishes (3.76). Applying
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Stirling’s approximation to (3.76), in a manner similar to what we did in (3.39), we get

log |G( ~D, 2)| ≤ 1

2

∑
c∈C̄(∆)

(
S(n)
c ( ~D) logS(n)

c ( ~D)− S(n)
c ( ~D)

)
−

n∑
v=1

∑
c∈C̄(∆)

logDc(v)! + o(n)

=
n

2

∑
c∈C̄(∆)

(
S

(n)
c ( ~D)

n
log

S
(n)
c ( ~D)

n
− S

(n)
c ( ~D)

n

)
−

n∑
v=1

∑
c∈C̄(∆)

logDc(v)!

+
1

2

∑
c∈C̄(∆)

S(n)
c ( ~D) log n+ o(n)

=
n

2

∑
c∈C̄(∆)

(
S

(n)
c ( ~D)

n
log

S
(n)
c ( ~D)

n
− S

(n)
c ( ~D)

n

)
−

n∑
v=1

∑
c∈C̄(∆)

logDc(v)!

+ ‖~m(n)‖1 log n+ o(n),
(3.77)

where the o(n) term does not depend on ~D. Now, we claim that, for c ∈ C̄(∆),

lim sup
ε→0

lim sup
n→∞

max
(~β, ~D)∈B(n)

~m(n),~u(n)
(P,∆,ε)

|S(n)
c ( ~D)/n− EP̄∆ [Dc] | = 0. (3.78)

Note that for c ∈ C̄(∆), we have EP̄∆ [Dc] ≤ d = deg(µ), which is finite. On the other hand,

we have S
(n)
c ( ~D)/n = ER(~β, ~D) [Dc]. Therefore, condition (3.66a) implies that for any integer

k > 0 and any (~β, ~D) ∈ B(n)

~m(n),~u(n)(P,∆, ε), we have

S(n)
c ( ~D)/n ≥ ER(~β, ~D) [Dc ∧ k] ≥ EP̄∆ [Dc ∧ k]− 2kε.

Taking the lim inf as n→∞ and then sending ε to zero, we get

lim inf
ε→0

lim inf
n→∞

min
(~β, ~D)∈B(n)

~m(n),~u(n)
(P,∆,ε)

S
(n)
c ( ~D)

n
≥ EP̄∆ [Dc ∧ k] .

Furthermore, sending k →∞, we get

lim inf
ε→0

lim inf
n→∞

min
(~β, ~D)∈B(n)

~m(n),~u(n)
(P,∆,ε)

S
(n)
c ( ~D)

n
≥ EP̄∆ [Dc] . (3.79)

Now, we show that a matching upper bound exists. To do this, note that due to (3.66b),

for c ∈ C̄(∆), we have S
(n)
c ( ~D) = 2‖~m(n)‖1 −

∑
c′∈C̄(∆)

c′ 6=c
S

(n)
c′ ( ~D). Using 2‖~m(n)‖1/n → d =
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deg(µ) ∈ (0,∞) and (3.79), since C̄(∆) is finite, we get

lim sup
ε→0

lim sup
n→∞

max
(~β, ~D)∈B(n)

~m(n),~u(n)
(P,∆,ε)

S
(n)
c ( ~D)

n
≤ d−

∑
c′∈C̄(∆)

c′ 6=c

lim inf
ε→0

lim inf
n→∞

min
(~β, ~D)∈B(n)

~m(n),~u(n)
(P,∆,ε)

S
(n)
c′ ( ~D)

n

≤ d−
∑

c′∈C̄(∆)

c′ 6=c

EP̄∆ [Dc′ ]

=
∑

c′′∈C̄(∆)

EP̄∆ [Dc′′ ]−
∑

c′∈C̄(∆)

c′ 6=c

EP̄∆ [Dc′ ]

= EP̄∆ [Dc] .

This together with (3.79) completes the proof of (3.78).

On the other hand, observe that for (~β, ~D) ∈ B(n)

~m(n),~u(n)(P,∆, ε) and c ∈ C̄(∆), 1
n

∑n
v=1 logDc(v)! =

ER(~β, ~D) [logDc!]. Therefore, a similar truncation argument as in (3.79) implies that

lim inf
ε→0

lim inf
n→∞

min
(~β, ~D)∈B(n)

~m(n),~u(n)
(P,∆,ε)

1

n

n∑
v=1

logDc(v)! ≥ EP̄∆ [logDc!] . (3.80)

Note that logDc! ≥ 0, hence EP̄∆ [logDc!] is well-defined, although it can be ∞. Also, C̄(∆)
is finite. Therefore, using (3.80) together with (3.78) in (3.77) and simplifying, we get

lim sup
ε→0

lim sup
n→∞

max
(~β, ~D)∈B(n)

~m(n),~u(n)
(P,∆,ε)

1

n

(
log |G( ~D, 2)− ‖~m(n)‖1 log n

)
≤ 1

2

∑
c∈C̄(∆)

(EP̄∆ [Dc] logEP̄∆ [Dc]− EP̄∆ [Dc])−
∑
c∈C̄(∆)

EP̄∆ [logDc!]

= −s(d) +
d

2

∑
c∈C̄(∆)

EP̄∆ [Dc]

d
log

EP̄∆ [Dc]

d
−
∑
c∈C̄(∆)

EP̄∆ [logDc!] .

Note that, for each c ∈ C̄(∆), 0 ≤ EP̄∆ [Dc] ≤ d <∞, hence each term in the first summation
is nonpositive and finite. Also, EP̄∆ [logDc!] ≥ 0 for c ∈ C̄(∆). As a result, the bound on
the right hand side is well-defined, although it can be −∞. Also, since each term in the first
summation is nonpositive while each term in the second summation is nonnegative, we may
restrict both the summations to C(∆) ⊂ C̄(∆) to find an upper bound for the right hand
side. But for c ∈ C(∆), we have EP̄∆ [Dc] = eP (c) and EP̄∆ [logDc!] = EP [logEh(c)!], which
yields

lim sup
ε→0

lim sup
n→∞

max
(~β, ~D)∈B(n)

~m(n),~u(n)
(P,∆,ε)

1

n

(
log |G( ~D, 2)| − ‖~m(n)‖1 log n

)
≤ −s(d) +

d

2

∑
c∈C(∆)

πP (c) log πP (c)−
∑
c∈C(∆)

EP [logEh(c)!] .

(3.81)
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Again, note that the terms in the first summation are finite and nonpositive, while the terms
in the second summation are nonnegative, but possibly +∞. Thereby, the above bound is
well-defined, although it can be −∞.

By assumption, we have H(P ) < ∞. Therefore, we can put the bounds in (3.81) and
(3.68) back in (3.67) to get

lim
ε→0

lim sup
n→∞

1

n

(
log |A(n)

~m(n),~u(n)(P, ε)| − ‖~m(n)‖1 log n
)

≤ −s(d) +H(P )− d

2

∑
c∈C(∆)

πP (c) log
1

πP (c)
−
∑
c∈C(∆)

EP [logEh(c)!] .
(3.82)

Note that this holds for any finite ∆ ⊂ T̄ h∗ , and that πP (c) log 1
πP (c)

≥ 0 and EP [logEh(c)!] ≥
0 for all c ∈ (Ξ×T̄ h−1

∗ )× (Ξ×T̄ h−1
∗ ). Interpreting the summations on the right hand side of

(3.82) as integrals, restricted to C(∆), with respect to the uniform measure on (Ξ× T̄ h−1
∗ )×

(Ξ× T̄ h−1
∗ ), by sending ∆ to T̄ h∗ and using the monotone convergence theorem, we arrive at

(3.61) which completes the proof.

3.4.4 Proof of Proposition 3.5

In this section, we prove the upper bound result of Proposition 3.5.

Proof of Proposition 3.5. Let P := µ1 ∈ P(T̄ 1
∗ ) be the distribution of the depth–1 neigh-

borhood of the root in µ. Borrowing the idea in the proof of Corollary 2.1, note that each
rooted tree equivalence class [T, o] ∈ T̄ 1

∗ is uniquely determined by knowing the integers

N θ,θ′

x,x′(T, o) := |{v ∼T o : ξT (v, o) = x, τT (o) = θ, ξT (o, v) = x′, τT (v) = θ′}|, (3.83)

for each x, x′ ∈ Ξ and θ, θ′ ∈ Θ. Now, for x, x′ ∈ Ξ and θ, θ′ ∈ Θ, we have EP
[
N θ,θ′

x,x′(T, o)
]
≤

EP [degT (o)] < ∞. Consequently, when [T, o] ∼ P , the entropy of the random variable

N θ,θ′

x,x′(T, o) is finite for all x, x′ ∈ Ξ and θ, θ′ ∈ Θ. Therefore, since Ξ and Θ are finite sets,
we conclude that H(P ) <∞. Hence, using Proposition 3.4 for h = 1, we have

Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) ≤ −s(d) +H(P )− d

2
H(πP )−

∑
t,t′∈Ξ×T̄ 0

∗

EP [logE1(t, t′)!] . (3.84)

Now we show that there exist t and t′ in Ξ × T̄ 0
∗ such that EP [logE1(t, t′)!] = ∞. Since

every element of T̄ 0
∗ is a marked isolated vertex, T̄ 0

∗ can be identified with Θ. With an abuse
of notation, we may therefore write t, t′ ∈ Ξ× T̄ 0

∗ as t = (x, θ) and t′ = (x′, θ′) respectively,

where x, x′ ∈ Ξ and θ, θ′ ∈ Θ. With this, for [T, o] ∈ T̄∗, we have Eh(t, t
′)(T, o) = N θ,θ′

x,x′(T, o).

Therefore, from (3.84), it suffices to prove that EP
[
logN θ,θ′

x,x′(T, o)!
]

=∞ for some x, x′ ∈ Ξ,

θ, θ′ ∈ Θ.



CHAPTER 3. THE MARKED BC ENTROPY 74

We prove this by contradiction. Assume that EP
[
logN θ,θ′

x,x′(T, o)!
]
<∞ for all x, x′ ∈ Ξ,

θ, θ′ ∈ Θ. Using Stirling’s approximation, for k ≥ 0, we have log k! ≥ k log k − k, where
0 log 0 is interpreted as 0. Therefore, for x, x′ ∈ Ξ and θ, θ′ ∈ Θ, we have

∞ > EP
[
logN θ,θ′

x,x′(T, o)!
]
≥ EP

[
N θ,θ′

x,x′(T, o) logN θ,θ′

x,x′(T, o)
]
− EP

[
N θ,θ′

x,x′(T, o)
]
. (3.85)

On the other hand, degT (o) =
∑

x,x′∈Ξ

θ,θ′∈Θ
N θ,θ′

x,x′(T, o) for all [T, o] ∈ T̄∗. Also, we have EP [degT (o)] =

deg(µ) <∞. Hence EP
[
N θ,θ′

x,x′(T, o)
]
<∞ for all x, x′ ∈ Ξ and θ, θ′ ∈ Θ. Using this in (3.85),

we realize that

EP
[
N θ,θ′

x,x′(T, o) logN θ,θ′

x,x′(T, o)
]
<∞ ∀x, x′ ∈ Ξ and θ, θ′ ∈ Θ (3.86)

Moreover, for [T, o] ∈ T̄∗, using degT (o) =
∑

x,x′∈Ξ

θ,θ′∈Θ
N θ,θ′

x,x′(T, o) and the convexity of x 7→
x log x, we have

degT (o)

|Ξ|2|Θ|2
log

degT (o)

|Ξ|2|Θ|2
≤ 1

|Ξ|2|Θ|2
∑
x,x′∈Ξ

θ,θ′∈Θ

N θ,θ′

x,x′(T, o) logN θ,θ′

x,x′(T, o),

where as usual, we interpret 0 log 0 as 0. Taking the expectation with respect to P on both
sides we realize that EP [degT (o) log degT (o)] < ∞, which is a contradiction. Hence, there

must exist x, x′ ∈ Ξ and θ, θ′ ∈ Θ such that EP
[
logN θ,θ′

x,x′ !
]

=∞. Finally, using this in (3.84)

implies Σ ~deg(µ),~Π(µ)(µ)|(~m(n),~u(n)) = −∞ and completes the proof.

3.5 Conclusion

In this chapter, we introduced the marked BC entropy, which is a notion of entropy for
probability distributions on the space of marked rooted graphs, and discussed its properties.
This is a generalization of the notion of entropy defined in [BC15] for the marked regime.
We saw that the marked BC entropy is only interesting for probability distributions which
are unimodular and are supported on marked rooted trees. As we will see in Chapters 4
and 5, the marked BC entropy can be considered as a natural counterpart of the Shannon
entropy rate in the context of local weak convergence.
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Part II

Compression of Graphical Data
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Chapter 4

Universal Lossless Compression of
Graphical Data

The problem of graph compression has drawn a lot of attention in different fields. There
have been two main type of work in the literature under the subject of graph compression.
Some authors assume that the graphical data is generated from a certain statistical model
and the encoder aims to achieve the entropy of the input distribution. For instance, Choi
and Szpankowski studied the structural entropy of the Erdős–Rényi model, i.e. the entropy
associated to the isomorphism class of such graphs [CS12]. Moreover, they proposed a
compression scheme which asymptotically achieves the structural entropy up to the first two
terms. Aldous and Ross studied the asymptotics of the entropy of several models of random
graphs, including the sparse Erdős–Rényi ensemble [AR14]. Abbe studied the asymptotic
behavior of the entropy of stochastic block models, and discussed the optimal compression
rate for such models up to the first order term [Abb16]. They also considered the case
where vertices in a stochastic block model can carry data which is conditionally independent
given their community membership.  Luczak et al. studied the asymptotics of the entropy
associated to the preferential attachment model, both for labeled and unlabeled regimes,
and built upon their analysis to design optimal compression schemes [ LMS19]. Turowski
et al. studied the information content of the duplication model [TMS20]. They analyzed
the asymptotic behavior of the entropy of such models for both the labeled and unlabeled
regimes, and designed compression algorithms to achieve their entropy bounds.

A second line of research offers an alternative approach to compress specific types of
graphical data, such as web graphs [BBH+98, SMHM99, BKM+00, BV04], social networks
[CKL+09, MP10, BRSV11, Mas12], or biological networks [DWvW12, ADK12, KK14, SSA+16,
HPP16]. These works usually take advantage of some properties specific to a specific data
source, where such properties are often inferred through observing real-world data samples.
For instance, the web graph framework of [BV04] employ the locality and similarity proper-
ties existing in web graphs to design efficient compression algorithm tailored for such data.
The locality property refers to the fact that a web page usually refers to other web pages
whose URLs have a long prefix in common, while the similarity property refers to the fact
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that if we sort web pages based on the lexicographic order of their URLs, web pages that are
close to each other tend to have many successors in common. Therefore, techniques such as
reference encoding and gap encoding are useful in compressing web graphs. Due to the na-
ture of this approach, results in this category of work usually do not come with information
theoretic guarantees of optimality. The reader is referred to [BH18] for a survey on graph
compression methods.

The key property distinguishing our approach from the existing ones is universality.
More precisely, in this chapter, we introduce a compression scheme which roughly speaking
has the property that if a sequence of marked graphs is given to the encoder which is
converging in the local weak sense of Chapter 2, the normalized codeword length associated
to this sequence does not asymptotically exceed the marked BC entropy (as was defined
in Chapter 3) associated to the limit. This scheme is universal in the sense that the above
condition holds without a priori knowledge of the local weak limit of the sequence. In addition
to this, recalling from Chapter 3, the notion of marked BC entropy captures the per vertex
growth rate of the size of the typical graphs after carefully separating out the leading term.
This is while the existing literature usually consider the random graph ensemble entropy
up to only the leading term. Finally, since we allow for marked graphs instead of simple
unmarked graphs, our framework is capable of modeling information associated to vertices
and edges in the graph on top of the connectivity structure. This in particular is highly
advantageous from a practical point of view.

This chapter is organized as follows. Then in Section 4.1, we precisely formulate the
problem and state the main results. In Section 4.2, we introduce our universal compres-
sion scheme and provide the proof of its optimality. Finally, we conclude the chapter in
Section 4.3.

To close this discussion we introduce some notation that will be needed when we develop
our compression algorithm for graphical data. For a locally finite graph G and integer ∆,
let G∆ be the graph with the same vertex set that includes only those edges of G such
that the degrees of both their endpoints are at most ∆ (without reference to their marks).
Another way to put this is that to arrive at G∆ from G we remove all the edges in G that
are connected to vertices with degree strictly bigger than ∆. This construction is used as
a technical device in the proof of the main result, the main point being that the maximum
degree in G∆ is at most ∆.

4.1 Main Results

Recall that Ḡn is the set of marked graphs on the vertex set {1, . . . , n}, with edge marks
from Ξ and vertex marks from Θ. Our goal is to design a compression scheme, comprised
of compression and decompression functions fn and gn for each n, such that fn maps Ḡn
to {0, 1}∗ − ∅ and gn maps {0, 1}∗ − ∅ to Ḡn, with the condition that gn ◦ fn(G) = G
for all G ∈ Ḡn. Motivated by the notion of entropy introduced in Chapter 3, we want
our compression scheme to be universally optimal in the following sense: if µ ∈ P(T̄∗) is
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unimodular and G(n) is a sequence of marked graphs with local weak limit µ, then, with
~m(n) := ~mG(n) , we have

lim sup
n→∞

nats(fn(G(n)))− ‖~m(n)‖1 log n

n
≤ Σ(µ). (4.1)

In Section 4.2, we design such a universally optimal compression scheme and prove its opti-
mality. This is stated formally in the next theorem.

Theorem 4.1. There is a compression scheme that is optimal in the above sense for all
µ ∈ Pu(T̄∗) such that deg(µ) ∈ (0,∞).

We also prove the following converse theorem, which justifies the claim of optimality for
compression schemes that satisfy the condition in (4.1).

Theorem 4.2. Assume that a compression scheme {fn, gn}∞n=1 is given. Fix some unimod-
ular µ ∈ Pu(T̄∗) such that deg(µ) ∈ (0,∞) and Σ(µ) > −∞. Moreover, fix a sequence ~m(n)

and ~u(n) of edge mark count vectors and vertex mark count vectors respectively, such that
(~m(n), ~u(n)) is adapted to ( ~deg(µ), ~Π(µ)). Then, there exists a sequence of positive real num-
bers εn going to zero, together with a sequence of independent graph–valued random variables
{G(n)}∞n=1 defined on a joint probability space, with G(n) being uniform in G(n)

~m(n),~u(n)(µ, εn),

such that with probability one

lim inf
n→∞

nats(fn(G(n)))− ‖~m(n)‖1 log n

n
≥ Σ(µ).

Proof. First note that any marked graph on n vertices can be represented with O(n2) bits.
Hence, without loss of generality, we may assume that, for some finite positive constant c,
we have nats(fn(G(n))) ≤ cn2 for all G(n) on n vertices. Consequently, by adding a header of
size O(log n2) = O(log n) to the beginning of each codeword in fn, in order to describe its
length, we can make fn prefix–free. Thus, without loss of generality, we may assume that fn
is prefix–free for all n.

From the definition of Σ(µ), one can find a sequence of positive numbers εn going to zero,
such that

Σ(µ) = lim inf
n→∞

log |G(n)

~m(n),~u(n)(µ, εn)| − ‖~m(n)‖1 log n

n
.

From Theorem 3.2, we have Σ(µ) = Σ(µ), and since Σ(µ) > −∞ by assumption, G(n)

~m(n),~u(n)(µ, εn)

is nonempty once n is large enough. Using Kraft’s inequality, we have∑
G∈G(n)

~m(n),~u(n)
(µ,εn)

e−nats(fn(G)) ≤ 1.

With G(n) being uniform in G(n)

~m(n),~u(n)(µ, εn), the Markov inequality then implies that

P
(
nats(fn(G(n))) < log |G(n)

~m(n),~u(n)(µ, εn)| − 2 log n
)
≤ 1

n2
.
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From this, using the Borel-Cantelli lemma, we have nats(fn(G(n))) ≥ log |G(n)

~m(n),~u(n)(µ, εn)| −
2 log n eventually. Therefore, with probability 1, we have

lim inf
n→∞

nats(fn(G(n)))− ‖~m(n)‖1 log n

n
≥ lim inf

n→∞

log |G(n)

~m(n),~u(n)(µ, εn)| − ‖~m(n)‖1 log n

n
= Σ(µ) = Σ(µ),

which completes the proof.

Remark 4.1. Note that the existence of a sequence of graph–valued random variables {G(n)}∞n=1

for which with probability one the normalized codeword length is asymptotically no less than
the BC entropy Σ(µ), as is implied by Theorem 4.2 above, in particular implies the existence
of a sequence of deterministic graphs for which the normalized codeword length is asymptot-
ically no less than the BC entropy. This draws a connection between our converse setup of
Theorem 4.2 and the achievability result of Theorem 4.1 in which a sequence of deterministic
graphs is considered which is convergent in the local weak limit sense.

4.2 The Universal Compression Scheme

In this section, we propose our compression scheme. First, in Section 4.2.1, we introduce
our compression scheme under certain assumptions. Then, in Section 4.2.2, we relax these
assumptions.

4.2.1 A First–step Scheme

We first give an outline of the compression scheme, then illustrate it via an example, and
finally formally describe it and prove its optimality. Fix two sequences of integers kn and ∆n

as design parameters, which will be specified in Section 4.2.2. Given a marked graph G(n) on
n vertices, with maximum degree no more than ∆n, we first encode its depth–kn empirical
distribution, i.e. U(G(n))kn (defined in (2.2)). We do this by counting the number of times
each marked rooted graph with depth at most kn and maximum degree at most ∆n appears
in the graph G(n). Then, in the set of all graphs which result in these counts, we specify the
target graph G(n). Figure 4.1 illustrates an example of this procedure. In this example, the
marked graph on n = 4 vertices in Figure 4.1a is given and the design parameters kn = 1 and
∆n = 2 are chosen. We then list all the rooted marked graphs with depth at most kn = 1
and maximum degree at most ∆n = 2, and count the number of times each of these patterns
appears in the graph, as depicted in Figure 4.1b. Finally, we consider all the graphs that
would result in the same counts if we run this procedure on them (shown in Figure 4.1c for
this example), and specify the input graph within this collection of graphs. In principle,
this scheme is similar to the conventional universal coding for sequential data in which we
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3 4

(a)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2

2

(b)

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

(c)

Figure 4.1: An example of encoding via the compression function associated to our com-
pression scheme with the parameter k = 1 and the graph G(4) on n = 4 vertices, with vertex
mark set Θ = { , } and edge mark set Ξ with cardinality 1, shown for (a) acting as the
input. (b) depicts all members in the set A1,2 with the corresponding number of times each

of them appears in the graph, i.e. the vector (|ψ(4)

G(4)([G, o])|, [G, o] ∈ A1,2) and (c) illustrates
all the graphs with the same count vector, i.e. W4.

first specify the type of a given sequence and then specify the sequence itself among all the
sequences that have this type.

Before formally explaining the compression scheme, we need some definitions. For inte-
gers k and ∆, let Ak,∆ be the set of equivalence classes of rooted marked graphs [G, o] ∈ Ḡ∗
with depth at most k and maximum degree at most ∆. Note that since k and ∆ are finite
and the mark sets are also finite sets, Ak,∆ is a finite set.

For a marked graph G(n) on the vertex set {1, . . . , n}, with maximum degree at most ∆n,

and for [G, o] ∈ Akn,∆n , we denote the set {1 ≤ i ≤ n : [G(n), i]kn = [G, o]} by ψ
(n)

G(n)([G, o]).

This is the set of vertices in G(n) with local structure [G, o] up to depth kn. Recall that
[G(n), i]kn = [G, o] means that G(n) rooted at i is isomorphic to (G, o) up to depth kn. Note
that when the maximum degree in G(n) is no more than ∆n, [G(n), i]kn is a member of Akn,∆n ,

for all 1 ≤ i ≤ n. Therefore, the subsets ψ
(n)

G(n)([G, o]), as [G, o] ranges over Akn,∆n , form a
partition of {1, . . . , n}.

We encode a marked graph G(n) with vertex set {1, . . . , n} and maximum degree no more
than ∆n as follows:

1. Encode the vector (|ψ(n)

G(n)([G, o])|, [G, o] ∈ Akn,∆n). Since we have |ψ(n)

G(n)([G, o])| ≤ n
for all [G, o] ∈ Akn,∆n , this can be done with at most |Akn,∆n|(1 + blog2 nc) log 2 nats.

2. LetWn be the set of marked graphsG on the vertex set {1, . . . , n} with degrees bounded
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by ∆n such that

|ψ(n)
G ([G′, o′])| = |ψ(n)

G(n)([G
′, o′])|, ∀ [G′, o′] ∈ Akn,∆n . (4.2)

Specify G(n) among the elements of Wn by sending (1 + blog2 |Wn|c) log 2 nats to the
decoder.

See Figure 4.1 for an example of the running of this procedure.

Remark 4.2. The vector (ψ
(n)

G(n)([G, o]) : [G, o] ∈ Akn,∆n) is directly compressed in the above
scheme; therefore, we are capable of making local queries in the compressed form without
going through the decompression process. An example of such a query is “how many triangles
exist in the graph?”

Now we show the optimality of this compression scheme under an assumption on kn
and ∆n that allows us to bound the size of the set Akn,∆n . Lemma 4.4, which is proved in
Appendix C.1, shows that the assumptions made in Proposition 4.1 below are not vacuous.
To avoid confusion, we use f̃n for the compression function in this section and fn for that of
Section 4.2.2 (which does not require any a priori assumed bound on the maximum degree
of the graph on n vertices, G(n)).

Proposition 4.1. Fix the parameters kn and ∆n such that |Akn,∆n| = o( n
logn

), and kn →∞
as n→∞. Assume that a sequence of marked graphs {G(n)}∞n=1 is given such that G(n) is on
the vertex set {1, . . . , n}, the maximum degree in G(n) is no more than ∆n, and {G(n)}∞n=1

converges in the local weak sense to a unimodular µ ∈ Pu(T̄∗) as n → ∞. Furthermore,
assume that deg(µ) ∈ (0,∞). Then we have

lim sup
n→∞

nats(f̃n(G(n)))− ‖~m(n)‖1 log n

n
≤ Σ(µ), (4.3)

where ~m(n) := ~mG(n).

Before proving this proposition, we need the following tools. Lemma 4.1 is stated in a
way which is stronger than what we need here, but this stronger form will prove useful later
on. The proofs of Lemmas 4.1 and 4.2 are given in Appendix C.1.

Lemma 4.1. Let G and G′ be marked graphs on the vertex set {1, . . . , n}. For a permutation
π ∈ Sn and an integer h ≥ 0, let L be the number of vertices 1 ≤ i ≤ n such that (G, i)h ≡
(G′, π(i))h. Then, we have

dLP(U(G), U(G′)) ≤ max

{
1

1 + h
, 1− L

n

}
.
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Lemma 4.2. Assume that a unimodular µ ∈ Pu(T̄∗) is given such that deg(µ) ∈ (0,∞).
Moreover, assume that sequences of edge and vertex mark count vectors ~m(n) and ~u(n) re-
spectively are given such that

lim inf
n→∞

m(n)(x, x′)

n
≥ degx,x′(µ), ∀x 6= x′ ∈ Ξ; (4.4a)

lim inf
n→∞

m(n)(x, x)

n
≥

degx,x(µ)

2
, ∀x ∈ Ξ; (4.4b)

lim
n→∞

u(n)(θ)

n
= Πθ(µ), ∀θ ∈ Θ. (4.4c)

Then, for any sequence εn of positive reals converging to zero, we have

lim sup
n→∞

log |G(n)

~m(n),~u(n)(µ, εn)| −
∥∥~m(n)

∥∥
1

log n

n
≤ Σ(µ). (4.5)

Proof of Proposition 4.1. For our compression scheme, we have

lim sup
n→∞

nats(f̃n(G(n)))− ‖~m(n)‖1 log n

n
≤ lim sup

n→∞

|Akn,∆n|(log 2 + log n)

n

+
log 2 + log |Wn| − ‖~m(n)‖1 log n

n

= lim sup
n→∞

log |Wn| − ‖~m(n)‖1 log n

n
,

(4.6)

where the last equality employs the assumption |Akn,∆n| = o(n/ log n). We now show that

Wn ⊆ G(n)

~m(n),~u(n)

(
µ, εn +

1

1 + kn

)
, (4.7)

where εn := dLP(U(G(n)), µ) and ~u(n) := ~uG(n) . For this, let G ∈ Wn. By definition, for all

[G′, o′] ∈ Akn,∆n , we have |ψ(n)

G(n)([G
′, o′])| = |ψ(n)

G ([G′, o′])|. Hence there exists a permutation

π on the set of vertices {1, . . . , n} such that (G(n), i)kn ≡ (G, π(i))kn for all 1 ≤ i ≤ n. Using
Lemma 4.1 above with h = kn and L = n, we have

dLP(U(G(n)), U(G)) ≤ 1

1 + kn
.

Consequently,
dLP(U(G), µ) < εn + 1/(1 + kn). (4.8)

We claim that for G ∈ Wn we have ~mG = ~m(n) and ~uG = ~u(n). To see this, note that for
θ ∈ Θ we have

uG(θ) =
n∑
i=1

1 [τG(i) = θ]
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=
∑

[G′,o′]∈Akn,∆n

∑
i∈ψ(n)

G ([G′,o′])

1 [τG(i) = θ] .

Note that for i ∈ ψ(n)
G ([G′, o′]) we have τG(i) = τG′(o

′). Therefore,

uG(θ) =
∑

[G′,o′]∈Akn,∆n :τG′ (o
′)=θ

|ψ(n)
G ([G′, o′])|.

A similar argument implies

u(n)(θ) =
∑

[G′,o′]∈Akn,∆n :τG′ (o
′)=θ

|ψ(n)

G(n)([G
′, o′])|.

Hence u(n)(θ) = uG(θ). Likewise, for G ∈ Wn and x 6= x′ ∈ Ξ, we can write, for n large
enough,

mG(x, x′) =
n∑
i=1

degx,x
′

G (i)

=
∑

[G′,o′]∈Akn,∆n

degx,x
′

G′ (o′)|ψ(n)
G ([G′, o′])|

=
∑

[G′,o′]∈Akn,∆n

degx,x
′

G′ (o′)|ψ(n)

G(n)([G
′, o′])|

= m(n)(x, x′).

The proof of mG(x, x) = m(n)(x, x) for x ∈ Ξ is similar. This, together with (4.8), implies

that G ∈ G(n)

~m(n),~u(n)(µ, εn + 1/(1 + kn)) which completes the proof of (4.7).

Note that, for fixed t > 0 and x, x′ ∈ Ξ, the mapping [G, o] 7→ degx,x
′

G (o) ∧ t is bounded
and continuous. Therefore, for x 6= x′ ∈ Ξ, we have

m(n)(x, x′)

n
=

∫
degx,x

′

G (o)dU(G(n))([G, o])

≥
∫

(degx,x
′

G (o) ∧ t)dU(G(n))([G, o])

n→∞−−−→
∫

(degx,x
′

G (o) ∧ t)dµ.

Sending t to infinity, we get

lim inf
n→∞

m(n)(x, x′)

n
≥ degx,x′(µ).

Similarly, for x ∈ Ξ, we have lim infn→∞mn(x, x)/n ≥ degx,x(µ)/2. On the other hand, for
θ ∈ Θ, the mapping [G, o] 7→ 1 [τG(o) = θ] is bounded and continuous. This implies that

lim
n→∞

u(n)(θ) = Πθ(µ).
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Thus, substituting (4.7) into (4.6), using the fact that εn + 1/(1 + kn) → 0, and using
Lemma 4.2 above, we get

lim sup
n→∞

nats(f̃n(G(n)))− ‖~m(n)‖1 log n

n
≤ lim sup

n→∞

log
∣∣∣G(n)

~m(n),~u(n)

(
µ, εn + 1

1+kn

)∣∣∣− ‖~m(n)‖1 log n

n

≤ Σ(µ),

which completes the proof.

4.2.2 Step 2: The General Compression Scheme

In Section 4.2.1 we introduced a compression scheme which achieves the BC entropy of µ by
focusing on the depth kn empirical distribution of the graph G(n) in the sequence of graphs
{G(n)}∞n=1, under the assumption that the maximum degree of G(n) is bounded above by ∆n

which does not grow too fast, in the sense that |Akn,∆n| = o(n/ log n). In principle, we can
choose the design parameter kn, but we have no control over the maximum degree ∆n. In
order to overcome this and drop the restriction on the compression scheme in Section 4.2.1,
we first choose kn and ∆n and then trim the input graph by removing some edges to make
its maximum degree no more than ∆n. Then, we encode the resulting trimmed graph by
the compression function in Section 4.2.1. Finally, we encode the removed edges separately.
More precisely, we encode a graph G(n) ∈ Ḡn as follows:

1. Define ∆n := log log n.

2. Let G̃(n) := (G(n))
∆n

be the trimmed graph obtained by removing each edge connected
to any vertex with degree more than ∆n. Moreover, define

Rn := {1 ≤ i ≤ n : degG(n)(i) > ∆n or degG(n)(j) > ∆n for some j ∼G(n) i},

which consists of the endpoints of the removed edges.

3. Encode the graph G̃(n) by the compression function introduced in Section 4.2.1, with
kn =

√
log log n.

4. Encode |Rn| using at most (1 + blog2 nc) log 2 nats.

5. Encode the set Rn using at most (1 + blog2

(
n
|Rn|

)
c) log 2 nats.

6. Let ~m(n) = ~mG(n) and ~̃m
(n)

= ~mG̃(n) . Note that the edges present in G(n) but not in

G̃(n) have both endpoints in the set Rn. So we can first encode m(n)(x, x′)− m̃(n)(x, x′)
for all x, x′ ∈ Ξ by |Ξ|2(1 + blog2 n

2c) log 2 ≤ 2|Ξ|2(1 + blog2 nc) log 2 nats and then
encode these removed edges using∑

x≤x′∈Ξ

(
1 +

⌊
log2

( (|Rn|
2

)
m(n)(x, x′)− m̃(n)(x, x′)

)⌋)
log 2
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nats by specifying the removed edges of each pair of marks separately.

Now we show that this general compression scheme asymptotically achieves the upper
BC entropy rate, as was stated in Theorem 4.1. Before this, we need the results of the
following lemmas. We postpone the proofs of these lemmas to Appendix C.1.

Lemma 4.3. Assume that {G(n)}∞n=1 is a sequence of marked graphs with local weak limit
µ ∈ P(T̄∗), where G(n) is on the vertex set {1, . . . , n}. If ∆n is a sequence of integers going

to infinity as n→∞, µ is also the local weak limit of the trimmed sequence {(G(n))
∆n}∞n=1.

Lemma 4.4. If ∆n ≤ log log n and kn ≤
√

log log n, then |Akn,∆n| = o(n/ log n).

Lemma 4.5. Assume that {G(n)}∞n=1 is a sequence of marked graphs with local weak limit
µ ∈ P(T̄∗), where G(n) is on the vertex set {1, . . . , n}. Let {∆n}∞n=1 be a sequence of integers
such that ∆n →∞ and define

Rn := {1 ≤ i ≤ n : degG(n)(i) > ∆n or degG(n)(j) > ∆n for some j ∼G(n) i}.

Then |Rn|/n→ 0 as n goes to infinity.

Proof of Theorem 4.1. Let f̃n be the compression function of the scheme in Section 4.2.1.
We have

nats(fn(G(n))) ≤ nats(f̃n(G̃(n))) + log n+ log

(
n

|Rn|

)
+ 2|Ξ|2 log n

+
∑

x≤x′∈Ξ

log

( (|Rn|
2

)
m(n)(x, x′)− m̃(n)(x, x′)

)
+ C log 2,

where C = 2 + 3|Ξ|2. Using the inequality
(
r
s

)
≤ (re/s)s and Lemma 3.5 above, we have

nats(fn(G(n))) ≤ nats(f̃n(G̃(n))) + (1 + 2|Ξ|2) log n

+ |Rn| log
ne

|Rn|

+ (‖~m(n)‖1 − ‖ ~̃m
(n)
‖1) log |Rn|

+
|Rn||Ξ|2

2
+ C log 2.

Using the fact that |Rn| ≤ n, this gives

nats(fn(G(n))) ≤ nats(f̃n(G̃(n))) + (1 + 2|Ξ|2) log n
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+ |Rn| log
ne

|Rn|

+ (‖~m(n)‖1 − ‖ ~̃m
(n)
‖1) log n

+
|Rn||Ξ|2

2
+ C log 2.

Hence,

lim sup
n→∞

nats(fn(G(n))− ‖~m(n)‖1 log n

n
≤ lim sup

n→∞

nats(f̃n(G̃(n))− ‖ ~̃m
(n)
‖1 log n

n

+ lim sup
n→∞

|Rn||Ξ|2

2n
+ lim sup

n→∞

|Rn|
n

log
ne

|Rn|
.

(4.9)

Now, we claim that the conditions of Proposition 4.1 hold for the sequence G̃(n) and the
parameters kn and ∆n defined above. To show this, note that both kn and ∆n go to infinity
by definition. Lemma 4.3 then implies that µ is also the local weak limit of the sequence
G̃(n). Moreover, by Lemma 4.4, |Akn,∆n| = o(n/ log n). On the other hand, the maximum

degree in G̃(n) is at most ∆n. Therefore, all the conditions of Proposition 4.1 are satisfied
and

lim sup
n→∞

nats(f̃n(G̃(n)))− ‖ ~̃m
(n)
‖1 log n

n
≤ Σ(µ).

Furthermore, all the other terms in (4.9) go to zero, since, by Lemma 4.5, |Rn|/n → 0,
and the function δ 7→ δ log δ goes to zero as δ → 0. Therefore,

lim sup
n→∞

nats(fn(G(n)))− ‖~m(n)‖1 log n

n
≤ lim sup

n→∞

nats(f̃n(G̃(n))− ‖ ~̃m
(n)
‖1 log n

n

≤ Σ(µ),

which completes the proof.

Remark 4.3. From Lemma 4.5 above, for typical graphs, |Rn| = o(n). Hence, similar to
our discussion in Remark 4.2, we are capable of answering local queries with an error of o(n)
without needing to go through the decompression process.

4.3 Conclusion

In this chapter, employing the local weak convergence framework from Chapter 2 and the
marked BC entropy from Chapter 3, we formalized the problem of compressing graphical
data without assuming prior knowledge of its stochastic properties. More precisely, we
proposed a universal compression scheme which is asymptotically optimal in the size of the
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underlying graph, where optimality is characterized using the marked BC entropy. Moreover,
this compression scheme is capable of performing local data queries in the compressed form,
with an error negligible compared to the number of vertices.
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Chapter 5

Distributed Compression of Graphical
Data

In Chapter 4, we introduced a universal compression scheme for a single source of graphical
data. As the data is not always available in one location, it is also important to consider
distributed compression of graphical data. This latter question is the focus of this chapter.
Traditionally, when dealing with time series, distributed lossless compression is modeled us-
ing two (or more) possibly dependent jointly stationary and ergodic processes representing
the components of the data at the individual locations. In this case, the rate region, which
characterizes how efficiently the data can be compressed, is given by the Slepian–Wolf The-
orem [CT12]. We adopt an analogous framework, namely that two jointly defined marked
random graphs on the same vertex set are presented to two encoders, one to each encoder.
Each encoder is then required to individually compress its data such that a third party, hav-
ing access to the two compressed representations, can recover both marked graph realizations
with a vanishing probability of error in the asymptotic limit of the size of the data.

We characterize the compression rate region for two scenarios, namely, a sequence of
marked sparse Erdős–Rényi ensembles and a sequence of marked configuration model en-
sembles. We employ the framework of local weak convergence of Chapter 2 as a counterpart
of stochastic processes for sparse marked graphs. Our characterization of the rate region is
best understood in terms of the marked BC entropy which was introduced in Chapter 3.

This chapter is organized as follows. In Section 5.1 we introduce the notation and formally
state the problem. In Section 5.2, we study the local weak limits of the marked sparse
Erdős–Rényi and the marked configuration model ensembles, we analyze the asymptotic
behavior of their entropy, and connect this asymptotic behavior to the marked BC entropy
of their respective local weak limits. Then, in Section 5.3, we characterize the rate region
for distributed lossless compression in the scenarios of Section 5.1. Also, in Section 5.3.5, we
generalize this result to the case where there are more than two graphical sources. Finally,
we conclude the chapter in Section 5.4.
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5.1 Problem Statement

In this chapter, for the sake of simplicity, we assume that in all marked graphs, and in all
edges in such a marked graph, the two marks towards the endpoints of that edge are the
same. In other words, each edge effectively carries one mark. Therefore, with an abuse
of notation, an edge mark count vector in this setting is a vector of nonnegative integers
~m = (m(x) : x ∈ Ξ), where m(x) denotes the number of edges with mark x.

Let G be a marked graph on a finite vertex set with edges and vertices carrying marks
in the sets Ξ and Θ, respectively. With an abuse of notation, we denote the edge mark
count vector of G by ~mG = {mG(x)}x∈Ξ, where mG(x) is the number of edges in G carrying
mark x. In fact, comparing to the notation in Section 2.3, we have mG(x) = mG(x, x), and
mG(x, x′) = 0 when x 6= x′. Also, recall from Section 2.3 that we denote the vertex mark
count vector of G by ~uG = {uG(θ)}θ∈Θ, where uG(θ) denotes the number of vertices in G
carrying mark θ. Additionally, for a graph G on the vertex set [n], we denote the degree

sequence of G by
−→
dgG = (degG(1), . . . , degG(n)), where degG(i) denotes the degree of vertex

i. For a degree sequence ~d = (d(1), . . . , d(n)) and a nonnegative integer k, we define

ck(~d) := |{1 ≤ i ≤ n : d(i) = k}|. (5.1)

Also, for two degree sequences ~d = (d(1), . . . , d(n)) and ~d′ = (d′(1), . . . , d′(n)), and two
nonnegative integers k and l, we define

ck,l(~d, ~d
′) := |{1 ≤ i ≤ n : d(i) = k, d′(i) = l}|. (5.2)

Given a degree sequence ~d = (d(1), . . . , d(n)), we let G(n)
~d

denote the set of simple unmarked

graphs G on the vertex set [n] such that degG(i) = d(i) for 1 ≤ i ≤ n.
When discussing distributed compression of graphical data with two sources, we assume

that Ξ1 and Ξ2 are two fixed and finite sets of edge marks and Θ1 and Θ2 are two fixed
and finite sets of vertex marks. For i ∈ {1, 2} and n ∈ N, let G(n)

i denote the set of marked
graphs on the vertex set [n] with edge and vertex mark sets Ξi and Θi respectively. For two

graphs G1 ∈ G(n)
1 and G2 ∈ G(n)

2 , G1 ⊕ G2 denotes the superposition of G1 and G2 which is
a marked graph defined as follows: a vertex 1 ≤ v ≤ n in G1 ⊕G2 carries the mark (θ1, θ2)
where θi is the mark of v in Gi. Furthermore, we place an edge in G1⊕G2 between vertices
v and w if there is an edge between them in at least one of G1 of G2, and mark this edge
(x1, x2), where, for 1 ≤ i ≤ 2, xi is the mark of the edge (v, w) in Gi if it exists and ◦i
otherwise. Here ◦1 and ◦2 are auxiliary marks not present in Ξ1 ∪ Ξ2. Note that G1 ⊕G2 is
a marked graph with edge and vertex mark sets Ξ1,2 := (Ξ1 ∪{◦1})× (Ξ2 ∪{◦2}) \ {(◦1, ◦2)}
and Θ1,2 := Θ1 × Θ2, respectively. We use the terminology jointly marked graph to refer to
a marked graph with edge and vertex mark sets Ξ1,2 and Θ1,2 respectively. With this, let

G(n)
1,2 denote the set of jointly marked graphs on the vertex set [n]. Moreover, for i ∈ {1, 2},

we say that a graph is in the i–th domain if its edge and vertex marks come from Ξi and
Θi respectively. For a jointly marked graph G1,2 and 1 ≤ i ≤ 2, the i–th marginal of G1,2,
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denoted by Gi, is the marked graph in the i–th domain obtained by projecting all vertex and
edge marks onto Ξi and Θi, respectively, followed by removing edges with mark ◦i. Note that
any jointly marked graph G1,2 is uniquely determined by its marginals G1 and G2, because
G1,2 = G1⊕G2. Given an edge mark count vector ~m = {m(x)}x∈Ξ1,2 , for x1 ∈ Ξ1∪{◦1} and
x2 ∈ Ξ2 ∪ {◦2}, with an abuse of notation we define

m(x1) :=
∑

(x′1,x
′
2)∈Ξ1,2 :x′1=x1

m((x′1, x
′
2)), m(x2) :=

∑
(x′1,x

′
2)∈Ξ1,2 :x′2=x2

m((x′1, x
′
2)). (5.3)

Likewise, given a vertex mark count vector ~u = {u(θ)}θ∈Θ1,2 , we define, for θ1 ∈ Θ1 and
θ2 ∈ Θ2,

u(θ1) :=
∑
θ′2∈Θ2

u((θ1, θ
′
2)), u(θ2) :=

∑
θ′1∈Θ1

u((θ′1, θ2)). (5.4)

Assume that we have a sequence of random marked graphs G
(n)
1,2 ∈ G

(n)
1,2 , defined for

all n sufficiently large, drawn for each n according to some ensemble distribution on G(n)
1,2 .

Additionally, assume that there are two encoders who want to compress realizations of such
jointly marked graphs in a distributed fashion. Namely, the i–th encoder, 1 ≤ i ≤ 2, has
only access to the i–th marginal G

(n)
i . We assume that the distribution of G

(n)
1,2 is known.

Definition 5.1. A sequence of 〈n, L(n)
1 , L

(n)
2 〉 codes is a sequence of triples (f

(n)
1 , f

(n)
2 , g(n)),

defined for all sufficiently large n, such that

f
(n)
i : G(n)

i → [L
(n)
i ], i ∈ {1, 2},

and
g(n) : [L

(n)
1 ]× [L

(n)
2 ]→ G(n)

1,2 .

The probability of error for this code corresponding to the ensemble of G
(n)
1,2 , which is denoted

by P
(n)
e , is defined as

P (n)
e := P

(
g(n)(f

(n)
1 (G

(n)
1 ), f

(n)
2 (G

(n)
2 )) 6= G

(n)
1,2

)
.

Now we define our achievability criterion.

Definition 5.2. A rate tuple (α1, R1, α2, R2) ∈ R4 is said to be achievable for distributed

compression of the sequence of random graphs G
(n)
1,2 ∈ G

(n)
1,2 if there is a sequence of 〈n, L(n)

1 , L
(n)
2 〉

codes such that

lim sup
n→∞

logL
(n)
i − (αin log n+Rin)

n
≤ 0, i ∈ {1, 2}, (5.5)

and also P
(n)
e → 0. The rate region R ∈ R4 is defined as follows: for fixed α1 and α2, if

there are sequences R
(m)
1 and R

(m)
2 with limit points R1 and R2 in R, respectively, such that

for each m the rate tuple (α1, R
(m)
1 , α2, R

(m)
2 ) is achievable, then we include (α1, R1, α2, R2)

in the set R.
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In this chapter, we characterize the above rate region for the following two sequences of
ensembles:

A sequence of Erdős–Rényi ensembles: Assume that nonnegative real numbers
~p = {px}x∈Ξ1,2 together with a probability distribution ~q = {qθ}θ∈Θ1,2 are given such that,
for all x1 ∈ Ξ1 and x2 ∈ Ξ2, we have∑

(x′1,x
′
2)∈Ξ1,2

x′1=x1

p(x′1,x
′
2) > 0 and

∑
(x′1,x

′
2)∈Ξ1,2

x′2=x2

p(x′1,x
′
2) > 0, (5.6)

and, for all (θ1, θ2) ∈ Θ1,2, we have∑
θ′2∈Θ2

q(θ1,θ′2) > 0 and
∑
θ′1∈Θ1

q(θ′1,θ2) > 0. (5.7)

For n ∈ N large enough, we define the probability distribution G(n; ~p, ~q) on G(n)
1,2 as follows:

for each pair of vertices 1 ≤ i < j ≤ n, the edge (i, j) is present in the graph and has
mark x ∈ Ξ1,2 with probability px/n, and is not present with probability 1 −

∑
x∈Ξ1,2

px/n.
Furthermore, each vertex in the graph is given a mark θ ∈ Θ1,2 with probability qθ. The
choice of edge and vertex marks is done independently.

The conditions in (5.7) and the conditions for xi ∈ Ξi, i = 1, 2, in (5.6) are required only
to ensure that the sets of vertex marks and edge marks are chosen to be as small as possible,
and these conditions could be relaxed if desired.

A sequence of configuration model ensembles: Fix ∆ ∈ N. Suppose that a prob-
ability distribution ~r = {rk}∆

k=0 supported on the set {0, . . . ,∆} is given, such that r0 < 1.
Moreover, assume that probability distributions ~γ = {γx}x∈Ξ1,2 and ~q = {qθ}θ∈Θ1,2 on the
sets Ξ1,2 and Θ1,2, respectively, are given. We assume that, for all x1 ∈ Ξ1 ∪ {◦1} and
x2 ∈ Ξ2 ∪ {◦2}, we have∑

(x′1,x
′
2)∈Ξ1,2

x′1=x1

γ(x′1,x
′
2) > 0 and

∑
(x′1,x

′
2)∈Ξ1,2

x′2=x2

γ(x′1,x
′
2) > 0, (5.8)

and, for all (θ1, θ2) ∈ Θ1,2, we have∑
θ′2∈Θ2

q(θ1,θ′2) > 0 and
∑
θ′1∈Θ1

q(θ′1,θ2) > 0. (5.9)

Furthermore, for each n, the degree sequence ~d(n) = {d(n)(1), . . . , d(n)(n)} is given such
that, for all 1 ≤ i ≤ n, we have d(n)(i) ≤ ∆ and also

∑n
i=1 d

(n)(i) is even. Let mn :=

(
∑n

i=1 d
(n)(i))/2. Additionally, if, for 0 ≤ k ≤ ∆, ck(~d

(n)) denotes the number of 1 ≤ i ≤ n
such that d(n)(i) = k, we assume that, for some constant K > 0, we have

∆∑
k=0

|ck(~d(n))− nrk| ≤ Kn1/2. (5.10)
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Now, for fixed ~r, ~γ and ~q as above, and a sequence ~d(n) satisfying (5.10), we define the law

G(n; ~d(n), ~γ, ~q, ~r) on G(n)
1,2 , for n ∈ N large enough, as follows. First, we pick an unmarked

graph on the vertex set [n] uniformly at random among the set of graphs G with maximum

degree ∆ such that for each 0 ≤ k ≤ ∆, ck(
−→
dgG) = ck(~d

(n)).1 Then, we assign i.i.d. marks
with law ~γ on the edges and i.i.d. marks with law ~q on the vertices.

The conditions in (5.9) and the conditions for xi ∈ Ξi, i = 1, 2, in (5.8) are required only
to ensure that the sets of vertex marks and edge marks are chosen to be as small as possible,
and these conditions could be relaxed if desired. However, the conditions in (5.8) for xi = ◦i,
i = 1, 2, are essential, as will be pointed out at the appropriate point in the proofs, since
they ensure that neither of the two underlying unmarked graphs is a subgraph of the other.

As we will discuss in Section 5.2 below, the sequence of Erdős–Rényi ensembles defined
above converges in the local weak sense to a marked Poisson Galton Watson tree. Moreover,
the sequence of configuration model ensembles converges in the same sense to a marked
Galton Watson process with degree distribution ~r. In Section 5.3, we will characterize the
achievable rate regions for lossless distributed compression of graphical data modeled as
coming from one of the two sequences of ensembles above in terms of these limiting objects
for the above two sequences of ensembles respectively. The formulation of this result will be
in terms of the marked BC entropy which we discussed in Chapter 3.

Remark 5.1. It should be pointed out that a rate region in the sense of Definition 5.2 need not
be a closed set, in contrast to what one is used to in the discussion of the Slepian-Wolf region
in the traditional case. Further, while α1 and α2 can be restricted to being nonnegative, R1

and R2 should be thought of as real numbers. Indeed, the rate regions for the two sequences
of ensembles considered in this chapter, which are characterized in Theorem 5.1, are not
closed sets. The correct way to think of such a rate region is in terms of the subsets of
(R1, R2) ∈ R2, parametrized by (α1, α2) ∈ R2, for which (α1, R1, α2, R2) lies in the rate
region, and each such subset is closed as a subset of R2. Further, for any (α1, R1, α2, R2) in
the rate region, if α′1 > α1 then (α′1, R

′
1, α2, R2) lies in the rate region for all R′1 ∈ R, and a

similar statement holds if one replaces the index 1 by the index 2.

5.2 Asymptotic of the Erdős–Rényi and the

configuration model ensembles

In this section, we first study the local weak limits of the marked sparse Erdős–Rényi and
the marked configuration model ensembles introduced in Section 5.1. Then, we analyze the
asymptotic behavior of the entropy of each of the two models, and connect it to the marked
BC entropy of the limit associated to that model.

1The fact that each degree is bounded by ∆, r0 < 1 and the sum of degrees is even implies that ~d(n) is
a graphic sequence for n ∈ N large enough. This is, for instance, a consequence of Theorem 4.5 in [BC15].
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5.2.1 The local weak limit of the Erdős–Rényi and the
configuration model ensembles

Let G
(n)
1,2 be a random jointly marked graph with law G(n; ~p, ~q) and let vn be a vertex chosen

uniformly at random in the set [n]. A simple Poisson approximation implies that Dx(vn),
the number of edges adjacent to vn with mark x ∈ Ξ1,2, converges in distribution to a
Poisson random variable with mean px, as n goes to infinity. Moreover, {Dx(vn)}x∈Ξ1,2 are
asymptotically mutually independent. A similar argument can be repeated for any other
vertex in the neighborhood of vn. Also, it can be shown that the probability of having cycles
of any fixed length converges to zero. In fact, the isomorphism class of (G

(n)
1,2 , vn)h converges

in distribution to that of a rooted marked Poisson Galton Watson tree with depth h.
More precisely, let (TER

1,2 , o) be a rooted jointly marked tree defined as follows. First,
the mark of the root is chosen with distribution ~q. Then, for x ∈ Ξ1,2, we independently
generate Dx with law Poisson(px). We then add Dx many edges with mark x to the root o.
For each offspring, i.e. vertex at the other end of an edge connected to the root, we repeat
the same procedure independently, i.e. choose its vertex mark according to the distribution
~q and then attach additional edges with each edge mark from the corresponding Poisson
distribution with mean px, independently for each edge mark in Ξ1,2. Recursively repeating
this, we get a connected jointly marked tree TER

1,2 rooted at o, which has possibly countably
infinitely many vertices. Let µER

1,2 denote the law of the isomorphism class [TER
1,2 , o]. Note that

µER
1,2 is a probability distribution on G∗(Ξ1,2,Θ1,2). µER

1,2 depends on the underlying choice of
the parameters (~p, ~q), but we suppress this from the notation, for readability. The above

discussion implies that, for all h ≥ 0, [G
(n)
1,2 , vn]h converges in distribution to [TER

1,2 , o]h. In fact,
even a stronger statement can be proved, which is the following: If we consider the sequence
of random graphs G

(n)
1,2 independently on a joint probability space, U(G

(n)
1,2 ) converges weakly

to µER
1,2 with probability one. With this, we say that, almost surely, µER

1,2 is the local weak

limit of the sequence G
(n)
1,2 , where the term “local” is meant to indicate that we require the

convergence in distribution of the isomorphism class of each fixed depth neighborhood of a
typical vertex (i.e. a vertex chosen uniformly at random).

With the construction above, let TER
i be the i–th marginal of TER

1,2 , for 1 ≤ i ≤ 2.
Moreover, let µER

i be the law of [TER
i (o), o]. Therefore, µER

i is a probability distribution on
G∗(Ξi,Θi). Similarly to the argument above, one can see that, almost surely, µER

i is the local

weak limit of the sequence G
(n)
i .

A similar picture also holds for the configuration model. Let (TCM
1,2 , o) be a rooted jointly

marked random tree constructed as follows. First, we generate the degree of the root o with
law ~r. Then, for each offspring w of o, we independently generate the offspring count of w
with law ~r′ = {r′k}∆−1

k=0 defined as

r′k =
(k + 1)rk+1

E [X]
, 0 ≤ k ≤ ∆− 1,

where X has law ~r. We continue this process recursively, i.e. for each vertex other than the
root, we independently generate its offspring count with law ~r′. The distribution ~r′ is called
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the size-biased distribution, and takes into account the fact that each vertex other than the
root has an extra edge by virtue of its being defined via an edge to an earlier defined vertex,
and hence its degree should be biased in order to get the correct degree distribution ~r. Then,
for each vertex and edge existing in the graph TCM

1,2 , we generate marks independently with
laws ~q and ~γ, respectively. Let µCM

1,2 be the law of [TCM
1,2 , o]. Moreover, for 1 ≤ i ≤ 2, let

µCM
i be the law of [TCM

i (o), o]. It can be shown that if G
(n)
1,2 has law G(n; ~d(n), ~γ, ~q, ~r), with

these random graphs being constructed independently on a joint probability space, then,
almost surely, µCM

1,2 is the local weak limit of G
(n)
1,2 , and µCM

i is the local weak limit of G
(n)
i ,

for 1 ≤ i ≤ 2. µCM
1,2 depends on the choice of the underlying parameters (~γ, ~q, ~r), but we

suppress this from the notation, for readability.

5.2.2 Asymmptotic behavior of the entropy for the Erdős–Rényi
and the configuration model ensembles

The following general lemma, whose proof is straightforward using Stirling’s approximation,
is often used in this chapter. See Appendix D.1 for a proof.

Lemma 5.1. Let k ∈ N. Let an and bn1 , . . . , b
n
k be sequences of integers, defined for all

sufficiently large n.

1. Assume that an =
∑k

i=1 b
n
k for all n. If an/n → a > 0 and, for each 1 ≤ i ≤ k,

bni /n→ bi ≥ 0 where a =
∑k

i=1 bi, we have

lim
n→∞

1

n
log

(
an

{bni }1≤i≤k

)
= aH

({
bi
a

}
1≤i≤k

)
.

2. Assume that an ≥
∑k

i=1 b
n
k for all n. If an/

(
n
2

)
→ 1 and bni /n→ bi ≥ 0, we have

lim
n→∞

log
(

an
{bni }1≤i≤k

)
−
(∑k

i=1 b
n
i

)
log n

n
=

k∑
i=1

s(2bi),

where s(x) is defined to be x
2
− x

2
log x for x > 0 and 0 if x = 0.

We next connect the asymptotic behavior of the entropy of the ensembles defined in
Section 5.1 to the marked BC entropy of their local weak limits. We first consider a sequence
of Erdős–Rényi ensembles. Let n ∈ N be large enough, and assume that G

(n)
1,2 has law

G(n; ~p, ~q). Let dER
1,2 := deg(µER

1,2 ) =
∑

x∈Ξ1,2
px. For xi ∈ Ξi and θi ∈ Θi, 1 ≤ i ≤ 2, let

px1 :=
∑

x′2∈Ξ2∪{◦2}

p(x1,x′2), px2 :=
∑

x′1∈Ξ1∪{◦1}

p(x′1,x2),

qθ1 :=
∑
θ′2∈Θ2

q(θ1,θ′2), qθ2 :=
∑
θ′1∈Θ1

q(θ′1,θ2).
(5.11)
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For 1 ≤ i ≤ 2, let dER
i := deg(µER

i ) =
∑

xi∈Ξi
pxi . If Q = (Q1, Q2) has law ~q, it can be

verified that we have

H(G
(n)
1,2 ) =

dER
1,2

2
n log n+ n

H(Q) +
∑
x∈Ξ1,2

s(px)

+ o(n), (5.12a)

H(G
(n)
1 ) =

dER
1

2
n log n+ n

H(Q1) +
∑
x1∈Ξ1

s(px1)

+ o(n), (5.12b)

H(G
(n)
2 ) =

dER
2

2
n log n+ n

H(Q2) +
∑
x2∈Ξ2

s(px2)

+ o(n). (5.12c)

Using Theorem 3.3 from Chapter 3, it can be seen that the coefficients of n in equations
(5.12a)–(5.12c) are Σ(µER

1,2 ), Σ(µER
1 ) and Σ(µER

2 ), respectively.
Before discussing configuration model ensembles, we state two lemmas, which are used

at several points. The proof of the following Lemma 5.2 is straightforward, and is therefore
omitted.

Lemma 5.2. Let ∆ ∈ N. Let Y be a random variable taking values in {0, 1, . . . ,∆}, and let
0 ≤ ε ≤ 1. Let {Vi}i≥1 be a sequence of i.i.d. Bernoulli random variables with P (Vi = 1) = ε,
and let Y1 :=

∑Y
i=1 Vi, where Y1 = 0 when Y = 0. Then, we have

H(Y1, Y − Y1) = H(Y1, Y ) = H(Y ) + E [Y ]H(V1)− E
[
log

(
Y

Y1

)]
.

�
The proof of the following Lemma 5.3 is given in Appendix D.2.

Lemma 5.3. Let ∆ ∈ N. Let Y be a random variable taking values in {0, 1, . . .∆}, such
that d := E [Y ] > 0. For all n ∈ N large enough, let ~a(n) = (a(n)(1), . . . , a(n)(n)) be a degree
sequence of length n with entries bounded by ∆ such that bn :=

∑n
i=1 a

(n)(i) is even and, for
0 ≤ k ≤ ∆, we have ck(~a

(n))/n→ P(Y = k). Then, we have

lim
n→∞

log |G(n)

~a(n)| − bn
2

log n

n
= −s(d)− E [log Y !] ,

where we recall that G(n)

~a(n) denotes the set of simple unmarked graphs G on the vertex set [n]

such that degG(i) = a(n)(i) for 1 ≤ i ≤ n.

Remark 5.2. The assumption E [Y ] > 0 in the above lemma is crucial and cannot be relaxed.
To see this, consider the following example: let Y = 0 with probability one, and let ~a(n) be
such that a(n)(1) = a(n)(2) = 3 and a(n)(i) = 0 for i > 2. Then, although bn is even, ~a(n) is

not graphic and G(n)

~a(n) is empty. Therefore, the above limit of interest is −∞ and the equality
does not hold.
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Consider now a sequence of configuration model ensembles. Namely, for all n ∈ N large
enough, let G

(n)
1,2 be distributed according to G(n; ~d(n), ~γ, ~q, ~r). Let X be a random variable

with law ~r and Γk = (Γk1,Γ
k
2), 1 ≤ k ≤ ∆, an i.i.d. sequence distributed according to ~γ. With

this, let

X1 :=
X∑
k=1

1
[
Γk1 6= ◦1

]
, X2 :=

X∑
k=1

1
[
Γk2 6= ◦2

]
, (5.13)

where X1 = X2 = 0 if X = 0. Then, if dCM
1,2 := deg(µCM

1,2 ) and, for 1 ≤ i ≤ 2, dCM
i :=

deg(µCM
i ), it can be seen that

H(G
(n)
1,2 ) =

dCM
1,2

2
n log n+ n

(
− s(dCM

1,2 ) +H(X)− E [logX!]

+H(Q) +
dCM

1,2

2
H(Γ)

)
+ o(n), (5.14a)

H(G
(n)
1 ) =

dCM
1

2
n log n+ n

(
− s(dCM

1 ) +H(X1)− E [logX1!]

+H(Q1) +
dCM

1

2
H(Γ1|Γ1 6= ◦1)

)
+ o(n), (5.14b)

H(G
(n)
2 ) =

dCM
2

2
n log n+ n

(
− s(dCM

2 ) +H(X2)− E [logX2!]

+H(Q2) +
dCM

2

2
H(Γ2|Γ2 6= ◦2)

)
+ o(n), (5.14c)

where Γ is distributed according to ~γ. Also, using Theorem 3.3 from Chapter 3, it can be
seen that the coefficients of n in equations (5.14a)–(5.14c) are Σ(µCM

1,2 ), Σ(µCM
1 ) and Σ(µCM

2 ),
respectively. The proof of equations (5.14a)–(5.14c), which is given in Appendix D.3, and
depends on both Lemma 5.2 and Lemma 5.3.

If µ1,2 is any one of the two distributions µER
1,2 or µCM

1,2 , and µ1 and µ2 are its marginals, we
define the conditional marked BC entropies as Σ(µ2|µ1) := Σ(µ1,2)−Σ(µ1) and Σ(µ1|µ2) :=
Σ(µ1,2)− Σ(µ2).

5.3 Main Results

Now, we are ready to state our main result, which is to characterize the rate region in
Definition 5.2 for a sequence of Erdős–Rényi ensembles and a sequence of configuration model
ensembles. In the following, for pairs of reals (α,R) and (α′, R′), we write (α,R) � (α′, R′) if
either α > α′, or α = α′ and R > R′. We also write (α,R) � (α′, R′) if either (α,R) � (α′, R′)
or (α,R) = (α′, R′).

Theorem 5.1. Assume µ1,2 is a member of either of the two families of distributions µER
1,2

(parametrized by (~p, ~q)) or µCM
1,2 (parametrized by (~γ, ~q, ~r)) defined in Section 5.2. Then,
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if R is the rate region for the sequence of ensembles corresponding to µ1,2, as defined in
Section 5.1, a rate tuple (α1, R1, α2, R2) ∈ R if and only if

(α1, R1) � ((d1,2 − d2)/2,Σ(µ1|µ2)), (5.15a)

(α2, R2) � ((d1,2 − d1)/2,Σ(µ2|µ1)), (5.15b)

(α1 + α2, R1 +R2) � (d1,2/2,Σ(µ1,2)), (5.15c)

where d1,2 := deg(µ1,2), d1 := deg(µ1) and d2 := deg(µ2).

We prove the achievability for the Erdős–Rényi case and the configuration model case in
Sections 5.3.1 and 5.3.2, respectively. Subsequently, we prove the converses for the two cases
in Sections 5.3.3 and 5.3.4, respectively.

As is the case for the classical Slepian–Wolf theorem, one can generalize the above result
to more than two sources. The definition of the rate region as well as its characterization can
be naturally extended to this case. In Section 5.3.5 below, we generalize the Erdős–Rényi and
configuration model ensembles to more than two sources, define the corresponding Slepian-
Wolf rate region, and characterize the rate region for each of these cases in Theorem 5.2.
The proof structure is similar to that for the scenario with two sources, and is highlighted
in Appendix D.6.

5.3.1 Proof of Achievability for the Erdős–Rényi case

Here we show that a rate tuple (α1, R1, α2, R2) is achievable for the Erdős–Rényi ensemble
if it satisfies the following

(α1, R1) � ((dER
1,2 − dER

2 )/2,Σ(µER
1 |µER

2 )), (5.16a)

(α2, R2) � ((dER
1,2 − dER

1 )/2,Σ(µER
2 |µER

1 )), (5.16b)

(α1 + α2, R1 +R2) � (dER
1,2/2,Σ(µER

1,2 )). (5.16c)

Note that if a rate tuple (α′1, R
′
1, α

′
2, R

′
2) satisfies the weak inequalities (5.15a)–(5.15c) then,

for any ε > 0, (α′1, R
′
1 + ε, α′2, R

′
2 + ε) satisfies the strict inequalities (5.16a)–(5.16c). As

we show below, this implies that (α′1, R
′
1 + ε, α′2, R

′
2 + ε) is achievable. Hence, after sending

ε→ 0, we get (α′1, R
′
1, α

′
2, R

′
2) ∈ R.

We show that any (α1, R1, α2, R2) satisfying (5.16a)–(5.16c) is achievable by employing

a random binning method. More precisely, for i ∈ {1, 2}, we set L
(n)
i = bexp(αin log n +

Rin)c and for each Gi ∈ G(n)
i , we assign f

(n)
i (Gi) uniformly at random in the set [L

(n)
i ] and

independent of everything else.
To describe our decoding scheme, we first need to set up some notation. LetM(n) denote

the set of edge count vectors ~m = {m(x)}x∈Ξ1,2 such that∑
x∈Ξ1,2

|m(x)− npx/2| ≤ n2/3.
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Moreover, let U (n) denote the set of vertex mark count vectors ~u = {u(θ)}θ∈Θ1,2 such that∑
θ∈Θ1,2

|u(θ)− nqθ| ≤ n2/3.

Furthermore, we define G(n)
~p,~q to be the set of graphs H

(n)
1,2 ∈ G

(n)
1,2 such that ~m

H
(n)
1,2
∈M(n) and

~u
H

(n)
1,2
∈ U (n). Upon receiving (i, j) ∈ [L

(n)
1 ] × [L

(n)
2 ], we form the set of graphs H

(n)
1,2 ∈ G

(n)
~p,~q

such that f
(n)
1 (H

(n)
1 ) = i and f

(n)
2 (H

(n)
2 ) = j, where H

(n)
1 and H

(n)
2 are the marginals of H

(n)
1,2 .

If this set has only one element, we output this element as the decoded graph; otherwise, we
report an error.

In what follows, assume that G
(n)
1,2 is a random graph with law G(n; ~p, ~q). We consider

the following four error events corresponding to the above scheme:

E (n)
1 := {G(n)

1,2 /∈ G(n)
~p,~q },

E (n)
2 := {∃H(n)

1,2 ∈ G
(n)
~p,~q : H

(n)
1 6= G

(n)
1 , H

(n)
2 6= G

(n)
2 , f

(n)
i (H

(n)
i ) = f

(n)
i (G

(n)
i ), i ∈ {1, 2}},

E (n)
3 := {∃H(n)

2 6= G
(n)
2 : G

(n)
1 ⊕H

(n)
2 ∈ G(n)

~p,~q , f
(n)
2 (H

(n)
2 ) = f

(n)
2 (G

(n)
2 )},

E (n)
4 := {∃H(n)

1 6= G
(n)
1 : H

(n)
1 ⊕G(n)

2 ∈ G(n)
~p,~q , f

(n)
1 (H

(n)
1 ) = f

(n)
1 (G

(n)
1 )}.

Note that outside the above four events the decoder successfully decodes the input graph
G

(n)
1,2 .

Using Chebyshev’s inequality, for some κ > 0 we have P(E (n)
1 ) ≤ κn−1/3, which converges

to zero as n goes to infinity. Moreover, using the union bound, we have

P
(
E (n)

2

)
≤
|G(n)
~p,~q |

L
(n)
1 L

(n)
2

. (5.17)

Note that, for each graph H
(n)
1,2 ∈ G

(n)
~p,~q , the mark count vectors ~m

H
(n)
1,2

and ~u
H

(n)
1,2

are in

the sets M(n) and U (n) respectively. Additionally, we have |M(n)| ≤ (2n2/3 + 1)|Ξ1,2| and
|U (n)| ≤ (2n2/3 + 1)|Θ1,2|. Therefore,

|G(n)
~p,~q | ≤ (2n2/3 + 1)(|Ξ1,2|+|Θ1,2|) max

~m∈M(n)

~u∈U(n)

A1(~m, ~u), (5.18)

where

A1(~m, ~u) :=

(
n

{u(θ)}θ∈Θ1,2

)( (
n
2

)
{m(x)}x∈Ξ1,2

)
.

Now, let ~m(n) and ~u(n) be sequences in M(n) and U (n), respectively. Then, for all x ∈ Ξ1,2

and θ ∈ Θ1,2, we have m(n)(x)/n → px/2 and u(n)(θ)/n → qθ. Thereby, using Lemma 5.1,
we have

lim
n→∞

logA1(~m(n), ~u(n))− (
∑

x∈Ξ1,2
m(n)(x)) log n

n
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= H(~q) +
∑
x∈Ξ1,2

s(px) = Σ(µER
1,2 ).

Substituting this into (5.18) and using the fact that
∑
|m(n)(x)− npx/2| ≤ n2/3, we have

lim sup
n→∞

log |G(n)
~p,~q | − n

dER
1,2

2
log n

n
≤ Σ(µER

1,2 ). (5.19)

Substituting this into (5.17), we have

lim sup
1

n
logP

(
E(n)

2

)
≤ lim sup

log |G(n)
~p,~q | − n

dER
1,2

2 log n− nΣ(µER
1,2 )

n

+ lim sup
n(

dER
1,2

2 − α1 − α2) log n+ n(Σ(µER
1,2 )−R1 −R2)

n

+ lim sup
n(α1 + α2) log n+ n(R1 +R2)− logL

(n)
1 L

(n)
2

n
.

The first term is nonpositive due to (5.19), the second term is strictly negative due to the

assumption (5.16c), and the third term is nonpositive due to our choice of L
(n)
1 and L

(n)
2 .

Consequently, the RHS is strictly negative, which implies that P(E (n)
2 )→ 0.

Now, we show that P(E (n)
3 \ E (n)

1 ) vanishes. In order to do so, for H
(n)
1 ∈ G(n)

1 , define

S
(n)
2 (H

(n)
1 ) := {H(n)

2 ∈ G(n)
2 : H

(n)
1 ⊕H(n)

2 ∈ G(n)
~p,~q }. Using the union bound, we have

P
(
E (n)

3 \ E (n)
1

)
≤

∑
H

(n)
1,2 ∈G

(n)
~p,~q

P(G
(n)
1,2 = H

(n)
1,2 )
|S(n)

2 (H
(n)
1 )|

L
(n)
2

≤ 1

L
(n)
2

max
H

(n)
1,2 ∈G

(n)
~p,~q

|S(n)
2 (H

(n)
1 )|.

(5.20)

It can be shown that (See Appendix D.4)

lim sup
n→∞

max
H

(n)
1,2 ∈G

(n)
~p,~q

log |S(n)
2 (H

(n)
1 )| − n

dER
1,2 − dER

1

2
log n

n
≤ Σ(µER

2 |µER
1 ),

(5.21)

where H
(n)
1 is the first marginal of H

(n)
1,2 . Substituting this in (5.20), we get

lim sup
1

n
logP

(
E(n)

3 \ E(n)
1

)
≤ lim sup

n
dER

1,2−dER
1

2 log n+ nΣ(µER
2 |µER

1 )− logL
(n)
2

n

≤ lim sup
n(

dER
1,2−dER

1

2 − α2) log n+ n(Σ(µER
2 |µER

1 )−R2)

n

+ lim sup
nα2 log n+ nR2 − logL

(n)
2

n
.

(5.22)
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Note that the first term is strictly negative due to the assumption (5.16b), while the second

term is nonpositive due to our way of choosing L
(n)
2 . This means that P(E (n)

3 \ E (n)
1 ) goes to

zero as n goes to infinity. Similarly, P(E (n)
4 \ E (n)

1 ) converges to zero as n→∞. This means
that there exists a sequence of deterministic codebooks with vanishing probability of error,
which completes the proof of achievability.

5.3.2 Proof of Achievability for the Configuration model

Our achievability proof for this case is very similar in nature to that for the Erdős–Rényi
case, with the modifications discussed below.

Let D(n) be the set of degree sequences ~d with entries bounded by ∆ such that ck(~d) =

ck(~d
(n)) for all 0 ≤ k ≤ ∆. Moreover, redefine M(n) to be the set of mark count vectors

~m such that
∑

x∈Ξ1,2
m(x) = mn and

∑
x∈Ξ1,2

|m(x) − mnγx| ≤ n2/3, where we recall that

mn = (
∑n

i=1 d
(n)(i))/2. We use the same definition for U (n) as in the previous section, i.e.

the set of vertex mark count vectors ~u such that
∑

θ∈Θ1,2
|u(θ)− nqθ| ≤ n2/3.

In what follows, let X be a random variable with law ~r, X1 and X2 defined as in (5.13),
and Γ = (Γ1,Γ2) a random variable with law ~γ.

We define W(n) to be the set of graphs H
(n)
1,2 ∈ G

(n)
1,2 such that: (i)

−→
dg

H
(n)
1,2
∈ D(n), (ii)

~m
H

(n)
1,2
∈ M(n), (iii) ~u

H
(n)
1,2
∈ U (n), (iv) for all 0 ≤ l ≤ k ≤ ∆, recalling the notation in (5.2),

we have
|ck,l(
−→
dg

H
(n)
1,2
,
−→
dg

H
(n)
1

)− nP (X = k,X1 = l) | ≤ n2/3, (5.23)

and (v) for all 0 ≤ l ≤ k ≤ ∆ we have

|ck,l(
−→
dg

H
(n)
1,2
,
−→
dg

H
(n)
2

)− nP (X = k,X2 = l) | ≤ n2/3. (5.24)

We employ a similar random binning framework as in Section 5.3.1. For decoding, upon
receiving a pair (i, j), we form the set of graphs H

(n)
1,2 ∈ W(n) such that f

(n)
1 (H

(n)
1 ) = i and

f
(n)
2 (H

(n)
2 ) = j. If this set has only one element, we output it as the source graph; otherwise,

we output an indication of error. In order to prove the achievability, we consider the four
error events E (n)

i , 1 ≤ i ≤ 4, defined exactly like those in the previous section, with G(n)
~p,~q

being replaced with W(n).
It can be shown that if G

(n)
1,2 ∼ G(n; ~d(n), ~γ, ~q, ~r), the probability of G

(n)
1,2 ∈ W(n) goes to

one as n goes to infinity (see Lemma D.1 in Appendix D.3). Therefore, P(E (n)
1 ) goes to zero

as n→∞.
To show that P(E (n)

2 ) vanishes, similar to the analysis in Section 5.3.1, we find an asymp-
totic upper bound for log |W(n)|. By only considering the conditions (i), (ii) and (iii) in the
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definition of W(n), we have

log |W(n)| ≤ log

(
n

{ck(~d(n))}∆
k=0

)
+ log |G(n)

~d(n)
|

+ log

(
(2n2/3 + 1)|Ξ1,2| max

~m∈M(n)

(
mn

{m(x)}x∈Ξ1,2

))
+ log

(
(2n2/3 + 1)|Θ1,2| max

~u∈U(n)

(
n

{u(θ)}θ∈Θ1,2

))
.

(5.25)

By assumption, we have r0 < 1, hence dCM
1,2 > 0. The condition (5.10) together with

Lemma 5.3 in Appendix D.3 then implies that

lim
n→∞

log |G(n)
~d(n)
| − nd

CM
1,2

2
log n

n
= lim

n→∞

log |G(n)
~d(n)
| −mn log n

n
+ lim

n→∞

(mn − ndCM
1,2 /2) log n

n
= −s(dCM

1,2 )− E [logX!] ,
(5.26)

where on the second line we have used the bound |mn−ndCM
1,2 /2| ≤ K∆n1/2 which is implied

by (5.10). Using this together with Lemma 5.1 for the other terms in (5.25), we have

lim sup
n→∞

log |W(n)| − nd
CM
1,2

2
log n

n
≤ −s(dCM

1,2 ) +H(X)

+
dCM

1,2

2
H(Γ) +H(Q)− E [logX!] = Σ(µCM

1,2 ),

where Γ and Q are random variables with law ~γ and ~q, respectively.
Now, in order to show that P(E (n)

3 \E
(n)
1 ) vanishes, we prove a counterpart for (5.21). For

H
(n)
1 ∈ G(n)

1 , we define S
(n)
2 (H

(n)
1 ) to be the set of graphs H

(n)
2 ∈ G(n)

2 such that H
(n)
1 ⊕H

(n)
2 ∈

W(n). Then, it can be shown (see Appendix D.5) that

lim sup
n→∞

max
H

(n)
1,2 ∈W(n)

log |S(n)
2 (H

(n)
1 )| − n

dCM
1,2 − dCM

1

2
log n

n
≤ Σ(µCM

2 |µCM
1 ).

(5.27)

Then, similar to (5.22), this shows that P(E (n)
3 \E

(n)
1 ) vanishes as n→∞. Similarly, P(E (n)

4 \
E (n)

1 ) vanishes as n→∞. This completes the proof of achievability.

5.3.3 Proof of the Converse for the Erdős–Rényi case

In this section, we show that every rate tuple (α1, R1, α2, R2) ∈ R for the Erdős–Rényi sce-
nario must satisfy the conditions (5.15a)–(5.15c). By definition, for a rate tuple (α1, R1, α2, R2) ∈
R, there exist sequences R

(m)
1 and R

(m)
2 such that for each m, (α1, R

(m)
1 , α2, R

(m)
2 ) is achiev-

able and, besides, we have R
(m)
1 → R1 and R

(m)
2 → R2. If we show that (α1, R

(m)
1 , α2, R

(m)
2 )
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satisfies (5.15a)–(5.15c) for each m, it is easy to see that (α1, R1, α2, R2) must also satisfy
the same inequalities. Therefore, it suffices to show that any achievable rate tuple satisfies
(5.15a)–(5.15c).

For this, take an achievable rate tuple (α1, R1, α2, R2) together with a corresponding

sequence of 〈n, L(n)
1 , L

(n)
2 〉 codes (f

(n)
1 , f

(n)
2 , g(n)). By definition, we have

lim sup
n→∞

logL
(n)
i − (αin log n+Rin)

n
≤ 0 i ∈ {1, 2}, (5.28)

and also the error probability P
(n)
e goes to zero as n goes to infinity. Now, we define the set

A(n) ⊆ G(n)
1,2 as

A(n) := G(n)
~p,~q ∩ {H

(n)
1,2 ∈ G

(n)
1,2 : g(n)(f

(n)
1 (H

(n)
1 ), f

(n)
2 (H

(n)
2 )) = H

(n)
1,2 }, (5.29)

where G(n)
~p,~q was defined in Section 5.3.1. In fact, A(n) is the set of “typical” graphs with

respect to the Erdős–Rényi model that are successfully decoded by the code (f
(n)
1 , f

(n)
2 , g(n)).

In the following, let G
(n)
1,2 ∼ G(n)(n; ~p, ~q) be distributed according to the Erdős–Rényi model.

Moreover, let P
(n)
ER be the law of G

(n)
1,2 , i.e. for H

(n)
1,2 ∈ G

(n)
1,2 , P

(n)
ER (H

(n)
1,2 ) := P(G

(n)
1,2 = H

(n)
1,2 ).

With this, we define a random variable G̃
(n)
1,2 whose distribution is the conditional distribution

of G
(n)
1,2 , conditioned on lying in A(n), i.e.

P
(
G̃

(n)
1,2 = H

(n)
1,2

)
=

{
P

(n)
ER (H

(n)
1,2 )/πn H

(n)
1,2 ∈ A(n),

0 otherwise.
(5.30)

where πn := P
(
G

(n)
1,2 ∈ A(n)

)
is the normalizing factor. Note that, since P

(n)
e → 0 as n→∞

and P (G
(n)
1,2 ∈ A(n)) → 1 as n → ∞, we have πn > 0 for all sufficiently large n, and in fact

πn → 1 as n→∞. Additionally, let P̃
(n)
ER be the law of G̃

(n)
1,2 . If, for i ∈ {1, 2}, M̃ (n)

i denotes

f
(n)
i (G̃

(n)
i ), we have

logL
(n)
1 + logL

(n)
2 ≥ H(M̃

(n)
1 ) +H(M̃

(n)
2 ) ≥ H(M̃

(n)
1 , M̃

(n)
2 )

= H(G̃
(n)
1,2 ),

(5.31)

where the last equality follows from the fact that, by definition, G̃
(n)
1,2 takes values among the

graphs that are successfully decoded, and hence is uniquely identified given M̃
(n)
1 and M̃

(n)
2 .

Now, we find a lower bound for H(G̃
(n)
1,2 ). For doing so, note that for H

(n)
1,2 ∈ G

(n)
1,2 and n
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large enough, we have

− logP
(n)
ER (H

(n)
1,2 ) = −

∑
x∈Ξ1,2

m
H

(n)
1,2

(x) log
px
n
−

(n
2

)
−
∑
x∈Ξ1,2

m
H

(n)
1,2

(x)

 log

(
1−

∑
x∈Ξ1,2

px

n

)
−
∑
θ∈Θ1,2

u
H

(n)
1,2

(θ) log qθ.

(5.32)

On the other hand, due to the definition of G(n)
~p,~q , if H

(n)
1,2 ∈ G

(n)
~p,~q then, for all x ∈ Ξ1,2 and

θ ∈ Θ1,2, we have

n
px
2
− n2/3 ≤ m

H
(n)
1,2

(x) ≤ n
px
2

+ n2/3, and

nqθ − n2/3 ≤ u
H

(n)
1,2

(θ) ≤ nqθ + n2/3.

Substituting these in (5.32) and using the inequality log(1 − x) ≤ −x which holds for
x ∈ (0, 1), for n large enough, we have

− logP
(n)
ER (H

(n)
1,2 ) ≥

∑
x∈Ξ1,2

(
n
px
2
− n2/3

)
(log n− log px)

+

(n
2

)
−
∑
x∈Ξ1,2

(
n
px
2

+ n2/3
) ∑x∈Ξ1,2

px

n

−
∑
θ∈Θ1,2

(nqθ − n2/3) log qθ.

Using
∑

x∈Ξ1,2
px = dER

1,2 and simplifying the above, we realize that there exists a constant

c > 0 that does not depend on n or H
(n)
1,2 , such that, for all H

(n)
1,2 ∈ G

(n)
~p,~q and thus, in particular,

for all H
(n)
1,2 ∈ A(n), we have

− logP
(n)
ER (H

(n)
1,2 ) ≥ n

dER
1,2

2
log n− n

∑
x∈Ξ1,2

px
2

log px + n
∑
x∈Ξ1,2

px
2
− n

∑
θ∈Θ1,2

qθ log qθ − cn2/3 log n

= n
dER

1,2

2
log n+ nΣ(µER

1,2 )− cn2/3 log n.

(5.33)

Now, if G̃
(n)
1,2 is the random variable defined in (5.30), we have

H(G̃
(n)
1,2 ) = −

∑
H

(n)
1,2 ∈A(n)

P̃
(n)
ER (H

(n)
1,2 ) log P̃

(n)
ER (H

(n)
1,2 )

= log πn −
1

πn

∑
H

(n)
1,2 ∈A(n)

P
(n)
ER (H

(n)
1,2 ) logP

(n)
ER (H

(n)
1,2 ).



CHAPTER 5. DISTRIBUTED COMPRESSION OF GRAPHICAL DATA 104

Note that since the probability of error of the above code vanishes, i.e. P
(n)
e → 0, and

P
(
G

(n)
1,2 ∈ G

(n)
~p,~q

)
→ 1, we have πn → 1 as n → ∞. On the other hand, with probability

one, we have G̃
(n)
1,2 ∈ G

(n)
~p,~q . Also, by the definition of πn, we have

∑
H

(n)
1,2 ∈A(n) P

(n)
ER (H

(n)
1,2 ) = πn.

Thereby, employing the bound (5.33), we have

lim inf
n→∞

H(G̃
(n)
1,2 )− nd

ER
1,2

2
log n

n
≥ Σ(µER

1,2 ). (5.34)

Now, using the assumption (5.28) together with the bound (5.31), we have

0 ≥ lim sup
n→∞

logL
(n)
1 + logL

(n)
2 − (α1 + α2)n log n− n(R1 +R2)

n

≥ lim inf
n→∞

H(G̃
(n)
1,2 )− nd

ER
1,2

2
log n− nΣ(µER

1,2 )

n

+ lim inf
n→∞

n
dER

1,2

2
log n+ nΣ(µER

1,2 )− (α1 + α2)n log n− n(R1 +R2)

n
.

(5.35)

The first term is nonnegative due to (5.34). Consequently,

0 ≥ lim inf
n→∞

n
(
dER

1,2

2
− α1 − α2

)
log n+ n(Σ(µER

1,2 )−R1 −R2)

n
. (5.36)

Note that this is impossible unless α1 +α2 ≥ dER
1,2/2. Furthermore, if α1 +α2 = dER

1,2 , it must
be the case that R1 +R2 ≥ Σ(µER

1,2 ). But this is precisely (5.15c) for µ1,2 = µER
1,2 .

Now, we turn to showing (5.15a). We have

logL
(n)
1 ≥ H(M̃

(n)
1 ) ≥ H(M̃

(n)
1 |M̃

(n)
2 )

= H(G̃
(n)
1 , M̃

(n)
1 |M̃

(n)
2 )−H(G̃

(n)
1 |M̃

(n)
1 , M̃

(n)
2 )

(a)
= H(G̃

(n)
1 |M̃

(n)
2 )

(b)

≥ H(G̃
(n)
1 |G̃

(n)
2 )

= H(G̃
(n)
1,2 )−H(G̃

(n)
2 ),

(5.37)

where (a) uses the facts that M̃
(n)
1 is a function of G̃

(n)
1 and also, since G̃

(n)
1,2 ∈ A(n), given

M̃
(n)
1 and M̃

(n)
2 we can unambiguously determine G̃

(n)
1,2 and hence G̃

(n)
1 . Also, (b) uses data

processing inequality. Now, we find an upper bound for H(G̃
(n)
2 ). Note that since G̃

(n)
1,2 ∈ A(n)

with probability one, we have
H(G̃

(n)
2 ) ≤ log |A(n)

2 |, (5.38)

where
A(n)

2 := {H(n)
2 ∈ G(n)

2 : H
(n)
1 ⊕H(n)

2 ∈ A(n) for some H
(n)
1 ∈ G(n)

1 }.
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Now, take H
(n)
2 ∈ A(n)

2 and let H
(n)
1 ∈ G(n)

1 be such that H
(n)
1,2 := H

(n)
1 ⊕H(n)

2 ∈ A(n). Since

A(n) ⊆ G(n)
~p,~q , by definition we have that, for all x ∈ Ξ1,2 and all θ ∈ Θ1,2,∑

x∈Ξ1,2

|m
H

(n)
1,2

(x)− npx/2| ≤ n2/3 and
∑
θ∈Θ1,2

|u
H

(n)
1,2

(θ)− nqθ| ≤ n2/3.

Moreover, for x2 ∈ Ξ2 and θ2 ∈ Θ2 we have m
H

(n)
2

(x2) =
∑

x1∈Ξ1∪{◦1}mH
(n)
1,2

((x1, x2)) and

u
H

(n)
2

(θ2) =
∑

θ1∈Θ1
m
H

(n)
1,2

((θ1, θ2)). Using this in the above and using the triangle inequality,

we realize that for H
(n)
2 ∈ A(n)

2 we have ~m
H

(n)
2
∈ M(n)

2 and ~u
H

(n)
2
∈ U (n)

2 , where M(n)
2 is the

set of edge mark count vectors ~m such that
∑

x2∈Ξ2
|m(x2)− npx2/2| ≤ n2/3 and U (n)

2 is the

set of vertex mark count vectors ~u such that
∑

θ2∈Θ2
|u(θ2)− nqθ2| ≤ n2/3. Consequently, we

have

|A(n)
2 | ≤ (2n2/3 + 1)(|Ξ2|+|Θ2|)

(
max
~m∈M(n)

2

( (
n
2

)
{m(x2)}x2∈Ξ2

))(
max
~u∈U(n)

2

(
n

{u(θ2)}θ2∈Θ2

))
.

Using Lemma 5.1 and the definition of M(n)
2 and U (n)

2 above, with Q = (Q1, Q2) ∼ ~q, an
argument similar to the one that was used to establish (5.19) implies that

lim sup
n→∞

log |A(n)
2 | − n

dER
2

2
log n

n
≤ H(Q2) +

∑
x2∈Ξ2

s(px2) = Σ(µER
2 ).

Substituting this into (5.38), we get

lim sup
n→∞

logH(G̃
(n)
2 )− nd

ER
2

2
log n

n
≤ Σ(µER

2 ).

Using this together with (5.34) and substituting into (5.37) we get

lim inf
n→∞

logL
(n)
1 − n

dER
1,2−dER

2

2
log n

n
≥ Σ(µER

1,2 )− Σ(µER
2 ) = Σ(µER

1 |µER
2 ).

Using a similar method as in (5.35) and (5.36), this implies (5.15a). The proof of (5.15b) is
similar. This completes the proof of the converse for the Erdős–Rényi case.

5.3.4 Proof of the Converse for the Configuration Model

The proof of the converse for the configuration model is similar to that for the Erdős–
Rényi model presented in the previous section. Take an achievable rate tuple (α1, R1, α2, R2)

together with a sequence of 〈n, L(n)
1 , L

(n)
2 〉 codes (f

(n)
1 , f

(n)
2 , g(n)) achieving this rate tuple.

Moreover, redefine the set A(n) to be

A(n) :=W(n) ∩ {H(n)
1,2 ∈ G

(n)
1,2 : g(n)(f

(n)
1 (H

(n)
1 ), f

(n)
2 (H

(n)
2 )) = H

(n)
1,2 }, (5.39)
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where the set W(n) was defined in Section 5.3.2. Now, let G
(n)
1,2 ∼ G(n; ~d(n), ~γ, ~q, ~r) be dis-

tributed according to the configuration model ensemble, and let G̃
(n)
1,2 ∈ A(n) have the distri-

bution obtained from that of G
(n)
1,2 by conditioning on it lying in the set A(n). Note that the

normalizing constant πn := P(G
(n)
1,2 ∈ A(n)) goes to 1 as n → ∞ since P(G

(n)
1,2 ∈ W(n)) → 1

and the error probability of the code, P
(n)
e , vanishes. Moreover, let P

(n)
CM and P̃

(n)
CM be the

laws of G
(n)
1,2 and G̃

(n)
1,2 , respectively. In the following, we show that

lim inf
n→∞

H(G̃
(n)
1,2 )− nd

CM
1,2

2
log n

n
≥ Σ(µCM

1,2 ), (5.40)

and

lim sup
n→∞

H(G̃
(n)
2 )− nd

CM
2

2
log n

n
≤ Σ(µCM

2 ). (5.41)

The rest of the proof is then identical to that of the previous section, so we only focus on
proving the statements in (5.40) and (5.41).

For (5.40), note that for H
(n)
1,2 ∈ G

(n)
1,2 such that

−→
dg

H
(n)
1,2
∈ D(n), where D(n) was defined in

Section 5.3.2, we have

− logP
(n)
CM(H

(n)
1,2 ) = log

(
n

{ck(~d(n))}∆
k=0

)
+log |G(n)

~d(n)
|−
∑
x∈Ξ1,2

m
H

(n)
1,2

(x) log γx−
∑
θ∈Θ1,2

u
H

(n)
1,2

(θ) log qθ.

Now, if H
(n)
1,2 ∈ W(n), using the definition of W(n) we realize that there exists a constant

c > 0 such that

− logP
(n)
CM(H

(n)
1,2 ) ≥ log

(
n

{ck(~d(n))}∆
k=0

)
+ log |G(n)

~d(n)
| −

∑
x∈Ξ1,2

mnγx log γx

−
∑
θ∈Θ1,2

nqθ log qθ − cn2/3 =: Kn.

Note that the right hand side is a constant independent of H
(n)
1,2 and is denoted by Kn. Since

G̃
(n)
1,2 falls in W(n) with probability one, this means that H(G̃

(n)
1,2 ) ≥ log πn +Kn. But πn → 1

as n → ∞. Therefore, using the assumption (5.10) together with (5.26) from Section 5.3.2
and also the fact that mn/n→ dCM

1,2 /2, we realize that

lim inf
n→∞

H(G̃
(n)
1,2 )− nd

CM
1,2

2
log n

n
≥ H(X)− s(dCM

1,2 )− E [logX!] +
dCM

1,2

2
H(Γ) +H(Q),

where X ∼ ~r, Γ ∼ ~γ and Q ∼ ~q. Note that the right hand side is precisely Σ(µCM
1,2 ). Hence

we have proved (5.40).
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In order to show (5.41), note that H(G̃
(n)
2 ) ≤ log |A(n)

2 | where A(n)
2 consists of graphs

H
(n)
2 ∈ G(n)

2 such that, for some H
(n)
1 ∈ G(n)

1 , we have H
(n)
1 ⊕H

(n)
2 ∈ A(n). Since A(n) ⊆ W(n),

we have for all H
(n)
2 ∈ A(n)

2 that∑
x2∈Ξ2

|m
H

(n)
2

(x2)−mnγx2| ≤ n2/3 and
∑
θ2∈Θ2

|u
H

(n)
2

(θ2)− nqθ2| ≤ n2/3. (5.42)

On the other hand, the condition (5.24) implies that
−→
dg

H
(n)
2
∈ D(n)

2 where D(n)
2 denotes the

set of degree sequences ~d of size n with elements bounded by ∆ such that

|ck(~d)− nP (X2 = k) | ≤ (∆ + 1)n2/3, ∀0 ≤ k ≤ ∆, (5.43)

where X2 is the random variable defined in (5.13). Consequently, we have

log |A(n)
2 | ≤ log |D(n)

2 |+ max
~d∈D(n)

2

log |G(n)
~d
|+ max

H
(n)
2 ∈A(n)

2

log

(∑
x2∈Ξ2

m
H

(n)
2

(x2)

{m
H

(n)
2

(x2)}x2∈Ξ2

)
+ max

H
(n)
2 ∈A(n)

2

log

(
n

{u
H

(n)
2

(θ2)}θ2∈Θ2

)
.

(5.44)

Note that (5.43) implies that |D(n)
2 | ≤ (2(∆+1)n2/3 +1)∆+1 max~d∈D(n)

2

(
n

{ck(~d)}∆k=0

)
. Therefore,

Lemma 5.1 implies that

lim sup
n→∞

1

n
log |D(n)

2 | ≤ H(X2). (5.45)

On the other hand, the assumptions r0 < 1 and (5.8) imply that dCM
2 > 0. Hence, using

Lemma 5.3, we have

lim sup
n→∞

max~d∈D(n)
2

log |G(n)
~d
| − nd

CM
2

2
log n

n
≤ −s(dCM

2 )− E [logX2!] . (5.46)

Moreover, if H
(n)
2 is a sequence in A(n)

2 , from (5.42), for all x2 ∈ Ξ2, we have

lim
n→∞

m
H

(n)
2

(x2)∑
x′2∈Ξ2

m
H

(n)
2

(x′2)
=

γx2∑
x′2∈Ξ2

γx′2
= P (Γ2 = x2|Γ2 6= ◦2) ,

where Γ = (Γ1,Γ2) has law ~γ. Additionally, we have

lim
n→∞

1

n

∑
x2∈Ξ2

m
H

(n)
2

(x2) =
dCM

2

2
.

Thereby, from Lemma 5.1, we have

lim sup
n→∞

1

n
max

H
(n)
2 ∈A(n)

2

log

(∑
x2∈Ξ2

m
H

(n)
2

(x2)

{m
H

(n)
2

(x2)}x2∈Ξ2

)
≤ dCM

2

2
H(Γ2|Γ2 6= ◦2). (5.47)
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Finally, as we have u
H

(n)
2

(θ2)/n → qθ2 for all θ2 ∈ Θ2, another usage of Lemma 5.1 implies

that

lim sup
n→∞

1

n
max

H
(n)
2 ∈A(n)

2

log

(
n

{u
H

(n)
2

(θ2)}θ2∈Θ2

)
≤ H(Q2), (5.48)

where Q = (Q1, Q2) has law ~q. Now, combining (5.45), (5.46), (5.47) and (5.48) and substi-

tuting into (5.44), and also using the bound H(G̃
(n)
2 ) ≤ log |A(n)

2 |, we realize that

lim sup
n→∞

H(G̃
(n)
2 )− nd

CM
2

2
log n

n
≤ H(X2)−s(dCM

2 )−E [logX2!] +
dCM

2

2
H(Γ2|Γ2 6= ◦2) +H(Q2).

But the right hand side is precisely Σ(µCM
2 ). This completes the proof of (5.41). As was

mentioned before, the rest of the proof is identical to that in the previous section.

5.3.5 Generalization to more than two sources

Assume we have k ≥ 2 sources of graphical data. For 1 ≤ i ≤ k, let Θi and Ξi denote the
vertex and edge mark sets for the ith domain. For i ∈ [k] and n ∈ N, G(n)

i denotes the set
of marked graphs on the vertex set [n] with vertex and edge marks coming from Θi and

Ξi, respectively. Given A ⊆ [k] nonempty and for Gi ∈ G(n)
i , i ∈ A, we define

⊕
i∈AGi to

be the superposition of graphs in A, which is a simple marked graph on the vertex set [n]
such that a vertex v ∈ [n] carries a vertex mark (θi : i ∈ A) ∈ ΘA :=

∏
i∈A Θi such that

θi is the mark of v in Gi. Moreover, an edge between vertices v and w exists in
⊕

i∈AGi if
such an edge exists in at least one of the graphs Gi, i ∈ A. If this is the case, the mark of
this edge is defined to be (xi : i ∈ A), where for i ∈ A, xi is the mark of the edge (v, w)
in Gi if such an edge exists in Gi. Otherwise, we set xi = ◦i, where ◦i for i ∈ [k] is an
auxiliary mark not present in Ξi. For nonempty A ⊆ [k], we denote (◦i : i ∈ A) by ◦A. Note
that with ΞA := (

∏
i∈A(Ξi ∪ {◦i})) \ {◦A},

⊕
i∈AGi is a marked graph with vertex and edge

mark sets ΘA and ΞA, respectively. Let G(n)
A denote the set of marked graphs in domain A,

which is the set of marked graphs on the vertex set [n] together with vertex and edge mark

sets ΘA and ΞA, respectively. Given G ∈ G(n)
[k] and A ⊂ [k], we can naturally define the

projection of G onto domain A by projecting all vertex and edge marks onto ΘA and ΞA,
respectively, followed by removing edges with mark ◦A. It can be checked that the resulting
graph, denoted by GA, lies in domain A, i.e. GA ∈ G(n)

A .

A sequence of 〈n, L(n)
i : i ∈ [k]〉 codes is defined as a sequence of tuples ((f

(n)
i : i ∈

[k]), g(n)) such that f
(n)
i : G(n)

i → [L
(n)
i ] for i ∈ A are encoding functions, and g(n) :∏

i∈[k][L
(n)
i ] → G(n)

[k] is the corresponding decoding function. Given a sequence of ensembles

G
(n)
[k] on G(n)

[k] , the probability of error P
(n)
e is defined to be the probability that g(n)((f

(n)
i (G

(n)
i ) :

i ∈ [k])) 6= G
(n)
[k] .

We say that a rate tuple ((αi, Ri) : i ∈ [k]) is achievable for the distributed compression

of the sequence of random graphs G
(n)
[k] ∈ G

(n)
[k] if there is a sequence of 〈n, L(n)

i : i ∈ [k]〉 codes
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such that for i ∈ [k],

lim sup
n→∞

logL
(n)
i − (αin log n+Rin)

n
≤ 0,

and also P
(n)
e → 0. We say that ((αi, Ri) : i ∈ [k]) lies in the rate region R if there exist

sequences R
(m)
i for i ∈ [k] such that R

(m)
i → Ri as m→∞ and, for each m, ((αi, R

(m)
i ) : i ∈

[k]) is achievable.
We can naturally generalize the Erdős–Rényi and the configuration model ensembles of

Section 5.1 to the above setting.
A sequence of Erdős–Rényi ensembles: Given a sequence of nonnegative real num-

bers ~p = {px}x∈Ξ[k]
and a probability distribution ~q = {qθ}θ∈Θ[k]

, assume that for all i ∈ [k]
and xi ∈ Ξi we have ∑

(x′j :j∈[k])∈Ξ[k]:x
′
i=xi

p(x′j :j∈[k]) > 0. (5.49)

Moreover, assume that for all i ∈ [k] and all θi ∈ Θi we have∑
(θ′i:i∈[k])∈Θ[k]:θ

′
i=θi

q(θ′i:i∈[k]) > 0. (5.50)

For n ∈ N large enough, the probability distribution G(n; ~p, ~q) on G(n)
[k] is defined as follows:

for each pair of vertices 1 ≤ i < j ≤ n, the edge (i, j) exists and has a mark x ∈ Ξ[k] with
probability px/n, and is not present with probability 1−

∑
x∈Ξ[k]

px/n. Moreover, each vertex

is independently given a mark θ ∈ Θ[k] with probability qθ. The choices of edge and vertex
marks are done independently.

The conditions in (5.49) and (5.50) are required only to ensure that the sets of vertex
marks and edge marks are chosen to be as small as possible, and these conditions could be
relaxed if desired.

A sequence of configuration model ensembles: Similar to the configuration model
ensemble for two sources as we defined in Section 5.1, assume that ∆ ∈ N and a probability
distribution ~r = {ri}∆

i=0 is given such that r0 < 1. Moreover, for each n, the degree sequence
~d(n) = {d(n)(1), . . . , d(n)(n)} is given such that for i ∈ [n], d(n)(i) ≤ ∆,

∑n
i=1 d

(n)(i) is even,
and (5.10) is satisfied. Additionally, assume that probability distributions ~γ = {γx}x∈Ξ[k]

and ~q = {qθ}θ∈Θ[k]
are given such that for all i ∈ [k] and xi ∈ Ξi we have∑

(x′j :j∈[k])∈Ξ[k]:x
′
i=xi

γ(x′j :j∈[k]) > 0, (5.51)

and for all A ⊂ [k] nonempty, A 6= [k], we have∑
(x′j :j∈[k])∈Ξ[k]:(x

′
i:i∈A)=◦A

γ(x′j :j∈[k]) > 0. (5.52)
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We also assume that for all i ∈ [k] and θi ∈ Θi we have∑
(θ′j :j∈[k])∈Θ[k]:θ

′
i=θi

q(θ′j :j∈[k]) > 0. (5.53)

With these, for n large enough, we define the probability distribution G(n; ~d(n), ~γ, ~q, ~r) on

G(n)
[k] as follows. Similar to the ensemble for two sources, we pick an unmarked graph on the

vertex set [n] uniformly at random among the set of graphs with maximum degree ∆ such

that for 0 ≤ k ≤ ∆, ck(
−→
dgG) = ck(~d

(n)). Then, we assign i.i.d. marks with law ~γ on the edges
and i.i.d. marks with law ~q on the vertices.

The conditions in (5.51) and (5.53) are required only to ensure that the sets of vertex
marks and edge marks are chosen to be as small as possible, and these conditions could be
relaxed if desired. However, the conditions in (5.52) are essential, since they ensure that
for all A ⊂ [k] nonempty, A 6= [k], the underlying unmarked graph of the projection of the
overall graph onto domain A is not a subgraph of the underlying unmarked graph of the
projection onto domain Ac.

Similar to our discussion in Section 5.2, it can be seen that the local weak limit of the
sequence of Erdős–Rényi ensembles above is a marked Poisson Galton–Watson tree, which
we denote by µER

[k] . Likewise, the local weak limit of the sequence of configuration model
ensembles above is a marked Galton–Watson tree with degree distribution ~r, which we denote
by µCM

[k] . For A ⊆ [k] nonempty, we denote the projection of µER
[k] and µCM

[k] to domain A by

µER
A and µCM

A , respectively. For nonempty A ⊂ [k], A 6= [k], we define Σ(µER
A |µER

Ac ) to be
Σ(µER

[k] )− Σ(µER
Ac ). We similarly define Σ(µCM

A |µCM
Ac ).

We are now ready to characterize the rate region for the multi-source scenarios above in
the following Theorem 5.2. This is a generalization of Theorem 5.1, and its proof is similar
to that of Theorem 5.1. We highlight the proof of Theorem 5.2 in Appendix D.6.

Theorem 5.2. Assume µ[k] is either of the two distributions µER
[k] or µCM

[k] defined above.
Then, if R is the rate region for the sequence of ensembles corresponding to µ[k], as defined
above, a rate tuple ((αi, Ri) : i ∈ [k]) ∈ R if and only if for every nonempty A ⊂ [k], A 6= [k],
we have (∑

i∈A

αi,
∑
i∈A

Ri

)
� ((d[k] − dAc)/2,Σ(µA|µAc)),

and ∑
i∈[k]

αi,
∑
i∈[k]

Ri

 � (d[k]/2,Σ(µ[k])),

where d[k] = deg(µ[k]) and dAc = deg(µAc).
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5.4 Conclusion

We gave a counterpart of the Slepian–Wolf Theorem for distributed compression of graphical
data, employing the framework of local weak convergence. We derived the rate region for
two families of sequences of graph ensembles, namely sequences of Erdős–Rényi ensembles
having a local weak limit and sequences of configuration model ensembles having a local weak
limit. Furthermore, we gave a generalization of this result for Erdős–Rényi and configuration
model ensembles with more than two sources.
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Part III

Load Balancing
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Chapter 6

Asymptotic Behavior of Load
Balancing in Hypergrphas

So far, in Chapters 4 and 5, we have studied compression for sparse graphical data. We
did so by viewing the local weak convergence framework as a counterpart of the notion of
stochastic processes for sparse graphical data. This viewpoint suggests that the applicability
of this framework should not be considered as being limited to the problem of graphical data
compression. In fact, this framework can potentially be employed in any context involving
sparse graphical data. In particular, in this chapter, we employ this framework to study the
problem of load balancing. A load balancing network consists of a set of tasks and a set
of servers. Each task has an amount of load which can be distributed among a subset of
the servers that are accessible to that task. In order to ensure the efficiency of the network,
it is important to balance the load among the servers. When the problem size is large, it
may be expensive to compute the detailed characteristics of an optimal or sufficiently good
allocation of the load. Instead, it is interesting to focus on the statistical characteristics of
the allocation, such as the empirical distribution of the load faced by a typical server in the
network. This chapter is concerned with developing such a viewpoint in the context of a
specific kind of the load balancing problem which has broad applicability. Specifically, we
build upon the notion of load balanced introduce by Hajek [Haj90].

The structure of this chapter is as follow. In Section 6.1, we present our model and
discuss the prior work. In particular, we model the load balancing network as a hypergraph.
In Section 6.2, we set up our notation, and discuss the extension of the local weak convergence
framework to hypergraphs. We then state our main results in Section 6.3, and discuss the
proof techniques and details in the subsequent sections.

6.1 Model and Prior Work

We model the load balancing problem by a bipartite graph in which every node on the right
represents a task and every node on the left represents a server. Each server is accessible to a
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certain subset of the tasks. Equivalently each task has access to only a certain subset of the
servers. We view the bipartite graph as a hypergraph, with each vertex of the hypergraph
representing a server and each hyperedge representing a task. The vertices of a hyperedge
are then the servers that are accessible to it. Let {v1, . . . , vn} and {e1, . . . , em} denote the
set of servers and tasks, or equivalently vertices and hyperedges, respectively. Therefore,
vi ∈ ej means that server vi can be used to contribute to the performance of task ej. See
Figure 6.1 for an example. In general, we might want to consider the scenario where task
ej has an amount of load equal to lj, which could be arbitrarily allocated among the servers
vi ∈ ej. For simplicity, we will consider in this chapter only the case where all the lj equal
1, but we leave the discussion general for the moment. Let θ be an allocation of the load
of tasks among the servers, i.e. θ(ej, vi) is the amount of load coming from task ej assigned
to server vi. Hence, θ(ej, vi) ≥ 0 and

∑
vi∈ej θ(ej, vi) = lj. For a server vi, let ∂θ(vi) be the

total amount of load assigned to vi, i.e. ∂θ(vi) =
∑

ej :vi∈ej θ(ej, vi).

This formulation of load balancing was studied by Hajek [Haj90] who, in particular,
formulated the notion of a balanced allocation. It is natural to expect that a task would be
happier to use servers that are currently handling less load, if available, as opposed to those
handling more load. An allocation θ is said to be balanced if no task desires to change the
allocation of its load. For finite load balancing problems, this turns out to be equivalent to
the statement that the allocation minimizes

∑
i f(∂θ(vi)) for any given fixed strictly convex

function f . One can think of
∑

i f(∂θ(vi)) as the aggregate cost we need to pay to process
all the tasks. Hajek showed the existence of balanced allocations and uniqueness of the total
load at nodes under any balanced allocation, and suggested algorithms to find a balanced
allocation. It is particularly remarkable that the notion of a balanced allocation does not
depend on the specific choice of the strictly convex cost function f .

With the aim of understanding the statistical characteristics of balanced allocations in
large load balancing problems, Hajek assumed that each task could be performed by only two
servers – hence the underlying hypergraph reduces to a graph – and he assumed that each
edge in this graph carries one unit of load. He then studied such a load balancing problem
in large random graphs [Haj90]. In particular, Hajek considered the sparse Erdős–Rényi
model to generate these graphs, where αn edges are distributed among n vertices uniformly
at random, with α being a fixed parameter. Recall from Chapter 2 that the asymptotic
structure of the local neighborhood of a typical vertex in a sparse Erdős–Rényi model is given
by a Poisson Galton–Watson tree. This suggests that the behavior of balanced allocations in
Galton–Watson trees might be a good proxy for the load distribution in large Erdős–Rényi
graphs. Hajek conjectured that the recursive nature of a Galton–Watson process helps one
analyze the distribution of balanced allocations by studying fixed point equations. He was
even able to suggest the form of the fixed point equation for the Poisson Galton–Watson
tree. However, it turns out that this approach is more subtle than it looks. For one thing,
Hajek realized that the notion of balanced allocation in an infinite graph as a proxy for large
graphs is not well defined [Haj96]. See Figure 6.2 for an example.

Hajek’s conjecture for the graph regime (i.e. when each task could only be distributed
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Figure 6.1: Load balancing with 3 tasks and 4 servers. (a) illustrates the bipartite rep-
resentation together with an allocation. While the load of e1 could be served by nodes in
{v1, v2, v3}, half of its load is being assigned to v1 and the other half to v3, i.e. θ(e1, v1) = 1/2,
θ(e1, v2) = 0 and θ(e1, v3) = 1/2. (b) shows the hypergraph representation. The total load
at a node i is denoted by ∂θ(i). For instance, ∂θ(v3) = θ(e1, v3) + θ(e3, v3) = 1/2.
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Figure 6.2: Hajek’s example to show non–uniqueness of the load for infinite graphs. Con-
sider the rooted 3–regular graph with infinite depth as shown. We send all of the unit load
corresponding to each edge in the direction of the shown arrows. The red path goes to
infinity in both pictures. The allocation in (a) makes the total load at every vertex equal
to 2 while that in (b) makes the total load at all vertices equal to 1. Therefore, both are
balanced.
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among two servers) was settled by Anantharam and Salez [AS16]. They achieved this by
employing the framework of local weak convergence that we discussed in Chapter 2. In
particular, they settled Hajek’s conjecture by first defining a notion of balancedness for uni-
modular random rooted graphs. Moreover, they showed that if a sequence of finite graphs
Gn converges to a random rooted graph in the above local weak sense, the total load asso-
ciated to a balanced allocation at a vertex chosen uniformly at random in Gn converges in
distribution to the total load associated to the balanced allocation at the root of the limit.
Additionally, they managed to express a certain functional of the distribution of the load at
the root of the Galton–Watson tree in terms of a fixed point distributional equation, settling
Hajek’s conjecture in the graph regime. Beyond this, they also proved the convergence of the
maximum load for a sequence of finite graphs resulting from a certain configuration model
to that of their local weak limit, under some additional conditions.

6.1.1 Our Contributions

We study the above load balancing problem in the more general regime where each task
could have access to more than two servers, i.e. the underlying network is a hypergraph
instead of a graph.

Our machinery for deriving results analogous to those in the graph regime will be a gen-
eralized method of local weak convergence on hypergraphs. One novelty of our development
is to introduce a notion analogous to unimodularity for processes on random rooted hyper-
graphs. We believe that this generalized framework could be of independent interest in a
variety of problems in which the underlying model is best expressed in terms of hypergraphs
rather than graphs.

In particular, we prove that for any unimodular probability distribution on the set of
rooted hypergraphs with finite expected degree, there exists a balanced allocation which
is consistent with the local weak limit theory, i.e. the load distribution of a sequence of
hypergraphs converges to that of the limit. For a special class of branching process on
rooted hypertrees which is a generalization of Galton–Watson processes, we show that the
distribution of the load at the root can be specified via a fixed point distributional equation.
Finally, we study the convergence of the maximum load for a sequence of random hypergraphs
generated from a configuration model to that of the limit, under some additional conditions.

6.2 Prerequisites and Notation

In this section, we set up our notation, and discuss our extension of the local weak conver-
gence for hypergraphs. Throughout this chapter, R≥0 denotes the set of nonnegative real
numbers. Moreover, Q denotes the set of rational numbers. N denotes the set of positive
integers and N0 := N ∪ {0}. For a real number x ∈ R, we denote max{x, 0} by x+, and we
denote min{x+, 1} by [x]10.
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6.2.1 Hypergraphs

We work with simple hypergraphs defined on a countable vertex set, where each edge is a
finite subset of the vertex set. For a hypergraph H, the sets of vertices and edges are denoted
by V (H) and E(H), respectively. We write H as 〈V,E〉, where V = V (H) and E = E(H).
We say a hypergraph is simple if E(H) ⊂ 2V (H). This means that in any edge each vertex
can show up at most once, and that each subset of vertices can show up at most once as
an edge. All hypergraphs appearing in this chapter will be simple, unless otherwise stated.
For a vertex i ∈ V (H), denote its degree by degH(i) := |{e ∈ E(H) : e 3 i}|. For a given
hypergraph H, let

Ψ(H) := {(e, i) : e ∈ E(H), i ∈ e} (6.1)

denote the set of all edge-vertex pairs in the hypergraph.

Definition 6.1. A hypergraph H is said to be locally finite if degH(i) is finite for all i ∈ V (H)
and e is finite for all e ∈ E(H).

Note that the above definition does not imply that there is a uniform bound on edge
sizes or vertex degrees. Hence, a locally finite hypergraph can have arbitrarily large edges
or vertex degrees. Throughout this chapter, we assume that all the hypergraphs are locally
finite, unless otherwise stated. Thus, by default, the term hypergraph in this chapter means
a simple, locally finite hypergraph on a countable vertex set.

For technical reasons, it is sometimes easier to work with bounded hypergraphs in proofs
and then relax the boundedness condition.

Definition 6.2. A hypergraph H is said to be bounded if degH(i) ≤ ∆ for all i ∈ V (H) and
also |e| ≤ L for all e ∈ E(H), for finite constants ∆ and L.

A path from node i to node j is an alternating vertex–edge sequence i0, e1, i1, e2, i2, . . . , en, in
with i0 = i and in = j, and ik ∈ ek+1 for 0 ≤ k < n. The length of such a path is defined to
be n. The distance between vertices i and j, denoted by dH(i, j), is defined to be the length
of the shortest path between i and j if i 6= j, and 0 when i = j. A path is called closed if
i0 = in.

Definition 6.3. A hypergraph H is called a hypertree if there is no closed path

i0, e1, i1, . . . , en−1, in−1, en, in

with n ≥ 2 such that ij 6= il and ej 6= el for 1 ≤ j 6= l ≤ n.

Remark 6.1. Note that a hypertree need not be connected. It is straightforward to prove
that if there is a path between vertices i and j in a hypertree, then the shortest path between
these vertices is unique.
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Definition 6.4. For a hypergraph H and a subset W ⊂ V (H), define EH(W ) := {e ∈
E(H) : e ⊂ W}. EH(W ) is comprised of the edges of H with all endpoints in the set W .
For i ∈ V (H) and d ≥ 0, define V H

i,d := {j ∈ V (H) : dH(i, j) ≤ d} and DH
i,d := {j ∈ V (H) :

dH(i, j) = d}. In particular, V H
i,0 = DH

i,0 = {i}.

Definition 6.5. A vertex rooted hypergraph is a hypergraph H with a distinguished vertex
i ∈ V (H). We denote this by (H, i). An edge-vertex rooted hypergraph is a hypergraph with
a distinguished edge e ∈ E(H) and a distinguished vertex i ∈ V (H) such that i ∈ e. This is
denoted by (H, e, i) .

Definition 6.6. We say that two hypergraphs H and H ′ are isomorphic and write H ≡ H ′

when there is a bijection φ : V (H) → V (H ′) such that e ∈ E(H) if and only if φ(e) :=
{φ(j) : j ∈ e} ∈ E(H ′). Also we say two vertex rooted hypergraphs (H, i) and (H ′, i′) are
isomorphic and write (H, i) ≡ (H ′, i′) if the above bijection φ exists and we have φ(i) = i′

as well. Furthermore, we say two edge-vertex rooted hypergraphs (H, e, i) and (H ′, e′, i′) are
isomorphic and write (H, e, i) ≡ (H ′, e′, i′) if the above bijection exists, and we have φ(i) = i′

and φ(e) = e′.

Instead of working with global isomorphisms as above, we can consider local isomor-
phisms, i.e. comparing two rooted hypergraphs up to some given depth.

Definition 6.7. We say two vertex rooted hypergraphs (H, i) and (H ′, i′) are isomorphic up
to depth d and write (H, i) ≡d (H ′, i′) if their truncations up to depth d are isomorphic,
i.e. 〈V H

i,d , EH(V H
i,d)〉 ≡ 〈V H′

i′,d , EH′(V
H′

i′,d)〉 and also φ(i) = i′, where φ : V H
i,d → V H′

i′,d is the
vertex bijection establishing this isomorphism. Also, for d ≥ 1, we say two edge-vertex
rooted hypergraphs (H, e, i) and (H ′, e′, i′) are isomorphic up to depth d and write (H, e, i) ≡d
(H ′, e′, i′) if 〈V H

i,d , EH(V H
i,d)〉 ≡ 〈V H′

i′,d , EH′(V
H′

i′,d)〉, φ(i) = i′, and φ(e) = e′, where φ(e) :=

{φ(j) : j ∈ e}. Here φ : V H
i,d → V H′

i′,d is the vertex bijection establishing this isomorphism.

Definition 6.8. Given two hypergraphs H and H ′, for i ∈ V (H) and i′ ∈ V (H ′) we say
that (H, i) has a local embedding up to depth d ≥ 1 into (H ′, i′) and write (H, i) ↪→d (H ′, i′)
if there is an injective mapping φ : V H

i,d ↪→ V H′

i′,d such that:

1. φ(i) = i′, and

2. for all e ∈ EH(V H
i,d), we have φ(e) ∈ E(H ′) where φ(e) := {φ(j) : j ∈ e}.

Definition 6.9. Given a hypergraph H, a node i ∈ V (H) and d ≥ 1, let (H, i)d denote the
vertex rooted hypergraph (〈V H

i,d , EH(V H
i,d)〉, i). In fact, (H, i)d is the d–neighborhood of vertex

i.
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6.2.2 Balanced allocations on a hypergraph

Definition 6.10. An allocation on hypergraph H = 〈V,E〉 is a mapping θ : Ψ(H) → [0, 1]
such that θ(e, i) with i ∈ e ∈ E tells us how much load from resource e is being given to node
i. More formally, it is characterized by the properties:

θ(e, i) ≥ 0 , ∀e ∈ E(H), i ∈ e, and∑
j∈e

θ(e, j) = 1 , ∀e ∈ E(H) .

In any allocation, a given vertex i ∈ V (H) receives a portion θ(e, i) of the total unit
load of resource e. The total load at the vertex is then the sum of portions it receives from
resources e 3 i. The following definition establishes the notation to discuss this load.

Definition 6.11. Given an allocation θ on a hypergraph H = 〈V,E〉, define the function
∂θ : V (H)→ R≥0 by

∂θ(i) :=
∑
e:i∈e

θ(e, i) , for all i ∈ V (H).

Definition 6.12. For a hypergraph H = 〈V,E〉, an allocation θ is called balanced if for all
e ∈ E and i, j ∈ e we have

∂θ(i) > ∂θ(j) ⇒ θ(e, i) = 0.

Much of the chapter is concerned with understanding the structure of balanced allocations
on hypergraphs, and of the load resulting from such allocations. As we will soon see via
examples, balanced allocations can exhibit phenomena analogous to phase transitions in
statistical mechanics models. This is because the hard constraint defining balancedness can
be thought of as analogous to a zero temperature limit. Following this analogy further, it
is therefore convenient to deal with what might be called a positive temperature notion of
balancedness, and then to send the temperature to zero. This is captured in the concept of
ε–balance.

Definition 6.13. For a hypergraph H = 〈V,E〉, an allocation θ is called ε–balanced, if for
all e ∈ E and i ∈ e we have

θ(e, i) =
exp(−∂θ(i)/ε)∑
j∈e exp(−∂θ(j)/ε)

.

Remark 6.2. Let θ be an ε-balanced allocation on a hypergraph H. Note that if e ∈ E and
i, j ∈ e are such that ∂θ(i) > ∂θ(j) then

θ(e, i) =
exp(−∂θ(i)/ε)∑
j exp(−∂θ(j)/ε)

≤ 1

1 + exp
(
∂θ(i)−∂θ(j)

ε

) .
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Roughly speaking, if ∂θ(i) > ∂θ(j) and ε is small, then θ(e, i) ≈ 0 and hence θ is approx-
imately balanced. Also, roughly speaking, the smaller ε is, the more balanced an ε-balanced
allocation is.

In the above, we defined balancedness when all the loads come from the edges of the
hypergraph. We can generalize this to the case where, in addition to the internal load
imposed by the edges, we have external load as well. External load is modeled by a function
b : V (H)→ R, called the baseload function. For a vertex i ∈ V (H), b(i) denotes the external
load applied to node i. Throughout this chapter, we assume that each baseload function is
bounded, but we do not assume a uniform bound on all baseload functions. More precisely,
for each baseload function b on a given hypergraph H, we assume that there exists M <∞
such that |b(i)| < M for all i ∈ V (H), where the constant M may depend on H and b. The
concept of balancedness can be extended to the scenario with baseloads as follows.

Definition 6.14. For a hypergraph H = 〈V,E〉, together with a baseload function b :
V (H)→ R, an allocation θ : Ψ(H)→ [0, 1] is called balanced with respect to the baseload b,
if for all e ∈ E and i, j ∈ e we have

∂θ(i) + b(i) > ∂θ(j) + b(j) ⇒ θ(e, i) = 0.

Note that ∂θ(i) + b(i) is the total load at node i where ∂θ(i) is the internal load and
b(i) is the contribution from the external load. We use the notation ∂bθ as a shorthand for
∂θ + b.

The concept of an ε–balanced allocations can be similarly extended to the scenario with
baseloads.

Definition 6.15. For a given hypergraph H = 〈V,E〉, together with a baseload function
b : V (H) → R, we say an allocation θ : Ψ(H) → [0, 1] is ε–balanced with respect to the
baseload b, if for all e ∈ E(H) and i ∈ e we have

θ(e, i) =
exp (−∂bθ(i)/ε)∑
j∈e exp (−∂bθ(j)/ε)

. (6.2)

It is known that if the hypergraph is finite, then balanced allocations exist with respect
to any baseload and the resulting load vector is the same for all balanced allocations for
the given baseload (see Theorem 2 and Corollary 5 in [Haj90]). This result is stated in the
following proposition.

Proposition 6.1. If H = 〈V,E〉 is a finite hypergraph, and b : V (H) → R is a given
baseload function, then there exists at least one balanced allocation θ on H with respect to
the baseload b. Moreover, if θ and θ′ are two balanced allocations on H with respect to b,
then ∂bθ(i) = ∂bθ

′(i) for all i ∈ V (H).
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Figure 6.3: A graph with 3 vertices and three edges and two different balanced allocations
with zero baseload. Note that the total load at each vertex is the same for the two allocations
and is equal to 1 at each vertex.

Later, in Section 6.4, we will study ε–balanced allocations with baseload for hypergraphs
that are not necessarily finite. In particular, we will show in Corollary 6.4 therein that for
bounded hypergraphs, for any baseload function, the total load at any vertex corresponding
to any ε–balanced allocation is uniquely defined.

Note that for finite hypergraphs, although the balanced allocations with respect to a
given baseload might not be uniquely defined, the total loads at the vertices resulting from
any two balanced allocations necessarily have to be the same. See Figure 6.3 for an example.
The case for infinite hypergraphs is more complicated though; in this case, the loads at
the vertices also may not be unique, see Figure 6.2. See [Haj96] for more discussion on
this. However, we can state a weak uniqueness result in this case. The proof is given in
Appendix E.1.

Proposition 6.2. Given the hypergraph H = 〈V,E〉 with the baseload function b : V (H)→
R, suppose θ and θ′ are two balanced allocations on H with respect to the baseload b. If∑

i∈V (H) |∂bθ(i)− ∂bθ′(i)| <∞ then ∂bθ(i) = ∂bθ
′(i) for all i ∈ V (H).

6.2.3 H∗ and H∗∗
It is easy to check that the isomorphism between vertex rooted hypergraphs defined in
Definition 6.6 is an equivalence relation. For a vertex rooted hypergraph (H, i), let [H, i]
denote the equivalence class corresponding to (H, i). Also, the isomorphism between edge-
vertex rooted hypergraphs defined in Definition 6.6 is an equivalence relation. Let [H, e, i]
be the equivalence class corresponding to (H, e, i).

Definition 6.16. Let H∗ be the set of all equivalence classes of connected vertex rooted
hypergraphs and H∗∗ the set of all equivalence classes of connected edge-vertex rooted hyper-
graphs. Hence, each element of H∗ is of the form [H, i], where [H, i] denotes the equivalence
class of (H, i), where i ∈ V (H) for some connected hypergraph H = 〈V,E〉. Similarly, each
element of H∗∗ is of the form [H, e, i], where e ∈ E(H) and i ∈ V (H) such that i ∈ e for
some connected hypergraph H = 〈V,E〉.
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Definition 6.17. For two vertex rooted hypergraphs (H, i) and (H ′, i′), define

d∗((H, i), (H
′, i′)) :=

1

1 +m∗
,

where m∗ := sup{m ≥ 1 : (H, i) ≡m (H ′, i′)}, and m∗ := 0 if there is no m ≥ 1 satisfying
this. For two equivalence classes [H, i] ∈ H∗ and [H ′, i′] ∈ H∗, define dH∗([H, i], [H

′, i′])
to be d∗((H, i), (H

′, i′)) where (H, i) and (H ′, i′) are arbitrary members of [H, i] and [H ′, i′],
respectively. For two edge-vertex rooted hypergraphs (H, e, i) and (H ′, e′, i′), define

d∗∗((H, e, i), (H
′, e′, i′)) :=

1

1 +m∗
,

where m∗ := sup{m ≥ 1 : (H, e, i) ≡m (H ′, e′, i′)}, and m∗ := 0 if there is no m ≥ 1
satisfying this. For two equivalence classes [H, e, i] ∈ H∗∗ and [H ′, e′, i′] ∈ H∗∗, define
dH∗∗([H, e, i], [H

′, e′, i′]) to be d∗∗((H, e, i), (H
′, e′, i′)) where (H, e, i) and (H ′, e′, i′) are arbi-

trary members of [H, e, i] and [H ′, e′, i′], respectively.

Since all members of [H, i] are isomorphic, it is not difficult to see that dH∗ is well–
defined. Note that (H, i) ≡m (H ′, i′) and (H ′, i′) ≡m′ (H ′′, i′′) implies (H, i) ≡min{m,m′}
(H ′′, i′′). Hence dH∗ satisfies the triangle inequality. Moreover, dH∗([H, i], [H

′, i′]) = 0 iff
(H, i) ≡m (H ′, i′) for all m, i.e. [H, i] = [H ′, i′]. Hence dH∗ defines a metric on H∗. We will
show in Appendix E.2 that H∗ with the metric dH∗ is a Polish space (see Corollary E.1).
Similarly, dH∗∗ is well defined and gives a metric on H∗∗. In Appendix E.2 we will also show
that H∗∗ with dH∗∗ is a Polish space.

Remark 6.3. One can think of a function f on H∗ as a function on vertex rooted hypergraphs
which is loyal to the isomorphism relation, i.e. f((H, i)) = f((H ′, i′)) whenever (H, i) ≡
(H ′, i′). This allows us to abuse notation and write f(H, i) instead of f([H, i]). We will
follow a similar convention for functions on H∗∗.

Definition 6.18. By abuse of notation, let T∗ and T∗∗ denote the set of equivalence classes of
connected vertex rooted hypertrees and connected edge–vertex rooted hypertrees, respectively.
It can be checked that T∗ (respectively T∗∗) is a closed subset of H∗ (respectively H∗∗).

The set T∗ of the above definition should not be confused with the set of rooted trees
from Chapter 2. Throughout this chapter, and throughout Appendix E, we use T∗ to denote
the set of equivalence classes of connected vertex rooted hypertrees.

6.2.4 Operators for total load and average load: ∂ and ∇
Definition 6.19. For a function f : H∗∗ → R, define ∂f : H∗ → R as follows. For an
equivalence class [H, i] ∈ H∗, pick an arbitrary (H ′, i′) ∈ [H, i] and define

∂f([H, i]) =
∑

e′∈E(H′),e′3i′
f([H ′, e′, i′])
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Remark 6.4. Note that in the above definition, [H ′, e′, i′] denotes the equivalence class of
edge–vertex rooted hypergraph (H ′, e′, i′). Also, since all the representatives of [H, i] are
isomorphic, it is easy to check that the above expression is not dependent on the specific
choice of (H ′, i′). More precisely, if (H1, i1) and (H2, i2) are both members of [H, i], then
if φ : V (H1) → V (H2) is the function establishing the isomorphism, φ gives a one to one
mapping between the set {e ∈ E(H1), e 3 i1} and {e ∈ E(H2), e 3 i2} and also [H1, e, i1] ≡
[H2, φ(e), i2]. Hence ∑

e∈E(H1),e3i1

f([H1, e, i1]) =
∑

e∈E(H2),e3i2

f([H2, e, i2]),

which shows that ∂f is well–defined.

Remark 6.5. By the above discussion, we may write ∂f(H, i) =
∑

e3i f(H, e, i), where by
(H, i) we mean any arbitrary member of [H, i].

Remark 6.6. By abuse of notation, we can think of ∂f as a function on H∗∗ by identifying
∂f(H, e, i) := ∂f(H, i). This will be helpful when we have functions both on H∗ and H∗∗ and
want to unify the domain.

Definition 6.20. For a function f : H∗∗ → R, define the function ∇f : H∗∗ → R as follows.
Given [H, e, i] ∈ H∗∗, take an arbitrary representative (H ′, e′, i′) ∈ [H, e, i] and define

∇f([H, e, i]) :=
1

|e′|
∑
j′∈e′

f([H ′, e′, j′]).

Remark 6.7. As in our discussion in Remark 6.4, it can be easily checked that the above
expression does not depend on the specific choice (H ′, e′, i′). We can therefore abuse notation
and write ∇f(H, e, i) = 1

|e|
∑

j∈e f(H, e, j).

Definition 6.21. For a distribution µ ∈ P(H∗), define

deg(µ) :=

∫
H∗

degH(i)dµ.

6.2.5 From µ ∈ P(H∗) to its directed version ~µ ∈M(H∗∗)
Definition 6.22. Given µ ∈ P(H∗) with deg(µ) < ∞, define the measure ~µ ∈ M(H∗∗) as
the one with the property that for any Borel function f : H∗∗ → [0,∞), we have∫

H∗∗
fd~µ =

∫
H∗
∂fdµ.

Note that deg(µ) =
∫
H∗∗ 1d~µ = ~µ(H∗∗) is the total mass of ~µ. Hence the assumption

deg(µ) <∞ guarantees ~µ(H∗∗) <∞ and so ~µ ∈M(H∗∗).
This following useful lemma is proved in Appendix E.3.
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Lemma 6.1. (i) Assume A ⊆ H∗ happens µ–almost surely Then Ã ⊆ H∗∗ defined as

Ã := {[H, e, i] ∈ H∗∗ : [H, i] ∈ A},

happens ~µ–almost everywhere, i.e. ~µ(Ã) = ~µ(H∗∗).
(ii) Assume B ⊆ H∗∗ happens ~µ–almost everywhere. Then, B̃ := {[H, i] ∈ H∗ : [H, e, i] ∈

B ∀ e 3 i} happens µ–almost surely.

The following fact relating the convergence of a sequence of functions on H∗ and that of
their counterparts on H∗∗ will be useful later. This is proved in Appendix E.3.

Lemma 6.2. Let fk : H∗ → R, k ≥ 0, be measurable functions such that we have limk→∞ fk =
f0, µ–almost surely. Then, if we define their H∗∗ counterparts f̃k : H∗∗ → R via

f̃k(H, e, i) := fk(H, i),

then we have f̃k → f̃0, ~µ–almost everywhere.

Another useful lemma is the following one, which relates the convergence of a sequence
of functions on H∗∗ to that of their ∂ on H∗. This lemma is also proved in Appendix E.3.

Lemma 6.3. Given µ ∈ P(H∗) and a sequence of functions fk : H∗∗ → R, k ≥ 0, assume
that we have fk → f0 ~µ–almost everywhere. Then we have ∂fk → ∂f0 µ–almost surely.

6.2.6 Local Weak Convergence

For a finite hypergraph H, define uH ∈ P(H∗) by choosing a vertex uniformly at random
in H as the root. More precisely, if i is a vertex in H and H(i) denotes the connected
component of i, define

uH :=
1

|V (H)|
∑

i∈V (H)

δ[H(i),i].

The reason why we take the connected component of H is that H∗ is the space of equivalence
classes of connected vertex rooted hypergraphs.

If, for a sequence of finite hypergraphs {Hn}, uHn converges weakly to some measure
µ ∈ P(H∗), we say that µ is the “local weak limit” of the sequence Hn. The following lemma
is useful in checking when local weak convergence occurs. See Appendix E.4 for a proof.

Lemma 6.4. Given a sequence {µn}n≥1 in P(H∗), and µ ∈ P(H∗) such that supp(µ) ⊆ T∗,
µn ⇒ µ iff the following condition is satisfied: for all d ≥ 1 and for all rooted hypertrees
(T, i) with depth at most d, if

A(T,i) := {[H, j] ∈ H∗ : (H, j)d ≡ (T, i)},

then µn(A(T,i))→ µ(A(T,i)).
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The way to understand uHn ⇒ µ is that the local structure around a uniformly chosen
vertex in Hn, where local means up to a fixed depth, looks more and more similar to that
corresponding to µ, hence the term “local” weak convergence. In particular, Lemma 6.4 says
that if we have a sequence of finite hypergraphs Hn, then uHn ⇒ µ, where µ ∈ P(T∗), if
and only if for each d ≥ 1 and all rooted hypertrees (T, i), if we choose a vertex v in Hn

uniformly at random, the probability that the local structure of Hn rooted at v, i.e. (Hn, v)d,
is isomorphic to (T, i) of depth at most d converges to the probability that the rooted tree
with law µ up to depth d is isomorphic to T . See [BS01], [AS04], [AL07], [Bor14] for a review
of the notion of local weak convergence in the graph regime.

6.2.7 Balanced allocations with respect to a distribution on H∗
Definition 6.23. A function Θ : H∗∗ → [0, 1] is called a Borel allocation, or just an alloca-
tion, if Θ is a Borel function and also

∇Θ(H, e, i) =
1

|e|
.

From Definition 6.20 and using our simplified notational conventions, we can equivalently
say that Θ is an allocation precisely when it is a Borel function and

∑
i∈e Θ(H, e, i) = 1 for the

edge–vertex rooted hypergraph (H, e, i). It may seem strange that the condition is required
only at the root edge. This will become more clear when we discuss unimodular measures
in the next subsection, see especially Proposition 6.3.

Definition 6.24. Assume µ ∈ P(H∗). A Borel allocation Θ : H∗∗ → [0, 1] is called balanced
with respect to µ if for ~µ almost all [H, e, i] ∈ H∗∗ and any (H ′, e′, i′) ∈ [H, e, i] we have:

∀j1, j2 ∈ e′, ∂Θ([H ′, e′, j1]) > ∂Θ([H ′, e′, j2]) ⇒ Θ([H ′, e′, j1]) = 0.

Remark 6.8. As in our discussion in Remarks 6.4 and 6.7, the above predicate does not
depend on the specific choice of (H ′, e′, i′) ∈ [H, e, i]. Hence, by abuse of notation, we may
write the above predicate simply as “for ~µ almost all (H, e, i) and j1, j2 ∈ e, ∂Θ(H, j1) >
∂Θ(H, j2) implies Θ(H, e, j1) = 0”.

Similar to our notion of ε–balanced allocation for a specific hypergraph, we can define
ε–balanced allocations with respect to a measure µ ∈ P(H∗). As in the discussion in Re-
mark 6.8, we use a simplified language in describing the definition.

Definition 6.25. Assume µ ∈ P(H∗). A Borel allocation Θε : H∗∗ → [0, 1] is called ε–
balanced with respect to µ if for ~µ almost all [H, e, i] ∈ H∗∗ we have

Θε(H, e, i) =
exp (−∂Θε(H, i)/ε)∑
j∈e exp (−∂Θε(H, j)/ε)

.
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6.2.8 Unimodularity

Definition 6.26. A probability measure µ ∈ P(H∗) is called unimodular if for every Borel
function f : H∗∗ → [0,∞) we have ∫

fd~µ =

∫
∇fd~µ.

We denote the set of unimodular measures on H∗ by Pu(H∗).

See [AL07] for a definition of unimodularity for graphs. It can be easily checked that our
definition of unimodularity reduces to the definition in [AL07] when we restrict to graphs,
i.e. when we restrict µ to have support on hypergraphs with all edges having size two.

It can be shown that for a finite hypergraph, uH defined in Section 6.2.6 is unimodular.
Moreover, if a sequence of finite hypergraphs has a local weak limit µ, then µ is unimodular1.
See Appendix E.5 for a proof. Roughly speaking, unimodular measures are extensions of
the kinds of measures on equivalence classes of vertex rooted hypergraphs that arise from
choosing the root uniformly at random in finite hypergraphs.

The following property of unimodular measures is crucial in our analysis. It essentially
says that “everything shows at the root” of a unimodular measure. See Appendix E.5 for
its proof.

Proposition 6.3. Assume τ : H∗∗ → R and µ ∈ Pu(H∗) is a unimodular probability measure
such that τ = 1 ~µ–almost everywhere. Then there exists some A ⊂ H∗∗ such that ~µ(Ac) = 0
and

∀[H, e, i] ∈ A τ([H, e′, i′]) = 1, ∀e′ ∈ E(H), i′ ∈ e′,∀(H, e, i) ∈ [H, e, i] .

Note that this statement is consistent with our intuition regarding unimodular measures:
when some property holds at the root, since the root is chosen “uniformly” and so all vertices
have the same “weight”, that property should hold everywhere. See Lemma 2.3 in [AL07]
for a version of the above statement for graphs.

6.2.9 Unimodular Galton–Watson hypertrees

In this section, we introduce an analogue of Galton Watson processes on graphs for hyper-
trees. In the graph regime, a Galton–Watson process is defined by generating the degree of
the root at random from a given distribution and then, iteratively, the degree of each child
is generated at random and so forth. In order to generalize the notion of a Galton–Watson
process to hypertrees, since there might exist edges of different sizes, one needs to make
sense of the “degree” of edges of each possible size at each node.

To this end, we introduce the notion of type as a generalization of the notion of degree.
The type of each node is a vector of integers specifying how many edges of each size a node

1Whether the converse is true is an open question, even in the graph regime
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is connected to. More precisely, since we want all the hypergraphs to be locally finite, we
define the set of types, denoted by Λ, as

Λ := {γ ∈ N{2,3,... }0 : γ(k) = 0, k > k0 for some k0 ≥ 2}, (6.3)

where N0 := N ∪ {0}. For a type γ ∈ Λ, γ(k) determines the number of edges of size k a
node is connected to. For instance (2, 1, 0, 1) means a node is connected to 2 edges of size
2, 1 edge of size 3 and 1 edge of size 5 (we haven’t shown the rest of the sequence, which is
zero).

For γ ∈ Λ define

‖γ‖1 :=
∑
k≥2

γ(k), (6.4)

and
h(γ) := max{k ≥ 2 : γ(k) > 0}. (6.5)

For k ≥ 2, define ek ∈ Λ to be the vector with value 1 at coordinate k and zero elsewhere.
Assume P ∈ P(Λ) is a probability distribution over the set of types, such that E [Γ(m)] <

∞ for m ≥ 2, where Γ is a random variable with law P . For m ≥ 2 such that E [Γ(m)] > 0,
we define the size biased distributions P̂m as

P̂m(γ) =
(γ(m) + 1)P (γ + em)

E [Γ(m)]
, (6.6)

where it is easy to check that the normalizing term makes P̂m a probability distribution. In
case E [Γ(m)] = 0, or equivalently Γ(m) = 0 with probability one, we define P̂m to be an
arbitrary distribution, e.g. P̂m(γ) = 1 when γ is the type with all coordinates being zero.

Let ∅ denote the root of the Galton–Watson hypertree and let Nvertex denote the set
of vertices, so ∅ ∈ Nvertex. Let Nedge denote the set of hyperedges of the Galton–Watson
hypertree. Each non-root element of Nvertex will be of the form (s1, e1, i1, . . . , sk, ek, ik) where
sj ≥ 2, ej ≥ 1, and 1 ≤ ij ≤ sj − 1 for all 1 ≤ j ≤ k. The semantics of (s1, e1, i1) is that it
is the vertex numbered i1 of the e1-th copy of a hyperedge of size s1 attached to the root,
and so on. Thus, for example (3, 5, 2, 5, 8, 3) represents the vertex numbered 3 of the eighth
hyperedge of size 5 that attaches to the vertex labeled 2 of the fifth hyperedge of size 3 that
attaches to the root. The elements of Nedge are thus of the form (s1, e1, i1, . . . , sk, ek), where
sj ≥ 2, ej ≥ 1, and 1 ≤ ij ≤ sj − 1 for all 1 ≤ j ≤ k − 1.

Given a sequence of types {γa}a∈Nvertex , we can construct a hypertree with vertex set and
edge set Nvertex and Nedge, respectively, where for a ∈ Nvertex, γa determines the type of the
node a in the subtree below node a. See Figure 6.4 for an example.

Definition 6.27. Let P ∈ P(Λ) such that E [Γ(m)] <∞ for m ≥ 2, where Γ has the distri-
bution P . Construct a random rooted tree (T, ∅) by generating (Γa, a ∈ Nvertex) independently
such that Γ∅ has law P and for any non–root node a = (s1, e1, i1, . . . , sk, ek, ik), Γa has law
P̂sk . Then UGWHT(P ) is the law of [((T, ∅), ∅)] where [((T, ∅), ∅)] denotes the equivalence
class of ((T, ∅), ∅) in H∗, with (T, ∅) being the connected component of ∅ in T .
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∅

(2, 1, 1) (2, 2, 1) (3, 1, 1)

(3, 1, 2)

(3, 1, 2, 2, 1, 1)

Figure 6.4: The tree rooted at ∅ generated by the sequence {γa}a∈Nvertex where γ∅ = (2, 1).
Furthermore, γ(3,1,2), which determines the type of (3, 1, 2) in the subtree below (3, 1, 2), is
equal to (2) (which results in the single edge of size 2 below (3, 1, 2)), and γa is the zero
vector for all other nodes a.

One important observation is that UGWHT(P ), as in Definition 6.27, is unimodular. See
Appendix E.6 for the proof.

Proposition 6.4. Assume P ∈ P(Λ) is a distribution over types such that E [Γ(k)] <∞ for
k ≥ 2, then UGWHT(P ) is unimodular.

Note that if (T, ∅) is generated as in Definition 6.27 and (s1, e1, i1) is a child of the root
present in T , the subtree rooted at i1 has a similar distribution to (T, ∅) except that the
type of its root has law P̂s1 . It is useful for our subsequent discussion to define a notation
for this distribution.

Definition 6.28. Let P ∈ P(Λ) such that E [Γ(l)] < ∞ for l ≥ 2 and fix some k ≥ 2.
Construct a random rooted tree (T, ∅) by generating (Γa, a ∈ Nvertex) independently such
that Γ∅ has law P̂k and for any non–root node a = (s1, e1, i1, . . . , sr, er, ir), Γa has law P̂sr .
Then GWTk(P ) denotes the law of [(T, ∅), ∅] where [(T, ∅), ∅] denotes the equivalence class
of ((T, ∅), ∅) in H∗.

6.2.10 Equivalence classes of marked hypergraphs: H̄∗(Ξ) and
H̄∗∗(Ξ)

Recall thatH∗ andH∗∗ are Polish spaces of isomorphism classes of vertex rooted hypergraphs
and edge–vertex rooted hypergraphs respectively. We can extend the procedure by which
these spaces were created to hypergraphs with marks on their edges. Hypergraphs with
marks on their edges would be called “hypernetworks”, following the terminology in Aldous
and Lyons [AL07]. However, we prefer to call them marked hypergraphs.

Definition 6.29. Assume H is a locally finite simple hypergraph on a countable vertex set
and Ξ is a complete separable metric space. A Ξ–valued edge mark on H is a function

ξ : Ψ(H)→ Ξ,
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where we recall that Ψ(H) denotes the set of edge-vertex pairs of H. A hypergraph carrying
such a mark is called a marked hypergraph, and is denoted (H, ζ).

A vertex rooted marked hypergraph is a marked hypergraph (H, ξ) together with a distin-
guished vertex i ∈ V (H), and is denoted ((H, ξ), i). An edge-vertex rooted marked hypergraph
is a marked hypergraph (H, ξ) together with a distinguished edge e ∈ E(H), and a distin-
guished vertex i ∈ e. It is denoted ((H, ξ), e, i).

Remark 6.9. To simplify the notation, we employ the notation H̄ to denote a marked hy-
pergraph, where its mark function is denoted by ξH̄ , and its underlying unmarked hypergraph
is denoted by H. Moreover, we may use V (H̄), E(H̄) and Ψ(H̄) instead of V (H), E(H)
and Ψ(H).

Definition 6.30. We call two vertex rooted marked hypergraphs (H̄1, i1) and (H̄2, i2) iso-
morphic, and write (H̄1, i1) ≡ (H̄2, i2) if there is a bijection φ : V (H̄1) → V (H̄2), such that
φ(i1) = i2, and e ∈ E(H̄1) iff φ(e) ∈ E(H̄2), where φ(e) := {φ(i) : i ∈ e}. Moreover, for
(e, i) ∈ Ψ(H̄1), we require that ξH̄1

(e, i) = ξH̄2
(φ(e), φ(i)).

We say two edge-vertex rooted marked hypergraphs (H̄1, e1, i1) and (H̄2, e2, i2) are isomor-
phic, and write (H̄1, e1, i1) ≡ (H̄2, e2, i2), if there is a bijection φ : V (H̄1) → V (H̄2), such
that φ(i1) = i2, φ(e1) = e2, and such that e ∈ E(H̄1) iff φ(e) ∈ E(H̄2). Moreover, we must
have ξH̄1

(e, i) = ξH̄2
(φ(e), φ(i)) for (e, i) ∈ Ψ(H̄1).

Definition 6.31. Let H̄∗(Ξ) be the space of equivalence classes of connected vertex rooted
marked hypergraphs with marks taking values in Ξ, with the equivalence class of (H̄, i) being
denoted [H̄, i]. Similarly, let H̄∗∗(Ξ) be the space of equivalence classes of edge-vertex rooted
marked hypergraphs with marks taking values in Ξ, with the equivalence class of (H̄, e, i)
being denoted [H̄, e, i].

We endow H̄∗(Ξ) with the metric d̄∗ where the distance between [H̄1, i1] and [H̄2, i2] is
defined in the following way: take arbitrary representatives (H̄ ′1, i

′
1) ∈ [H̄1, i1] and (H̄ ′2, i

′
2) ∈

[H̄2, i2], then let m∗ be the supremum over all m such that (H ′1, i
′
1) ≡m (H ′2, i

′
2), and the

Ξ–distance between the corresponding marks up to level m is at most 1/m, i.e. if φ is the
level m isomorphism, then

dΞ(ξH̄1
(ẽ, ĩ), ξH̄2

(φ(ẽ), φ(̃i))) ≤ 1

m
, ∀ẽ ∈ EH′1

(
V
H′1
i′1,m

)
,

where dΞ denotes the metric on Ξ. If there is no m satisfying the above conditions, we set
m∗ to be 0. Then, d̄∗([H̄1, i1], [H̄2, i2]) is defined to be 1/(1 + m∗). Since all the members
in [H̄, i] are isomorphic as vertex rooted marked hypergraphs, d̄∗ can be easily checked to
be well defined. One can also check that it is a metric; in particular it satisfies the triangle
inequality.

Similarly, we endow H̄∗∗(Ξ) with the metric d̄∗∗ where the distance between [H̄1, e1, i1]
and [H̄2, e2, i2] is defined in the following way: take arbitrary representatives (H̄ ′1, e

′
1, i
′
1) ∈

[H̄1, e1, i1] and (H̄ ′2, e
′
2, i
′
2) ∈ [H̄2, e2, i2], then let m∗∗ be the supremum over all m such that
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(H ′1, e
′
1, i
′
1) ≡m (H ′2, i

′
2, e
′
2) and the Ξ–distance between the corresponding marks up to level

m is at most 1/m. If there is no m satisfying these conditions, we set m∗ to be 0. Finally,
define d̄∗∗([H̄1, e1, i1], [H̄2, e2, i2]) to be 1/(1 +m∗∗).

In Appendix E.2 we prove that H̄∗(Ξ) and H̄∗∗(Ξ) with their respective metrics are Polish
spaces, see Proposition E.1.

Similar to what we did for H∗ and H∗∗, we can define ∂ and ∇ operators as follows, where
we use a simplified notation, whose validity can be justified as in Remarks 6.5 and 6.7:

∂f(H̄, i) :=
∑

e∈E(H̄),e3i

f(H̄, e, i),

and

∇f(H̄, e, i) :=
1

|e|
∑
j∈e

f(H̄, e, j).

Remark 6.10. The preceding notation, strictly speaking, applies only to real valued functions
on H∗∗. However, if we consider the function f : H̄∗∗(Ξ)→ Ξ defined as f(H̄, e, i) = ξH̄(e, i),
then, when Ξ has an additive structure, we may define ∂f : H̄∗(Ξ)→ Ξ as

∂f(H̄, i) :=
∑

e∈E(H),e3i

f(H̄, e, i) =
∑

e∈E(H̄),e3i

ξH̄(e, i).

By abuse of notation, we may use the notation ∂ξH̄(i) instead of ∂f(H̄, i) with f defined
above, and similarly for ∇ξH̄(i). We will use such notation in this document because the
marks we are interested in will be real valued.

For a probability measure µ ∈ P(H̄∗(Ξ)), we define ~µ ∈M(H̄∗∗(Ξ)) in a manner similar
to what was done in Section 6.2.5. Namely, ~µ ∈M(H̄∗∗(Ξ)) is defined by requiring that for
every nonnegative Borel function f : H̄∗∗(Ξ)→ [0,∞) we have∫

fd~µ =

∫
∂fdµ.

A probability measure µ ∈ P(H̄∗(Ξ)) is called unimodular if for every nonnegative Borel
function f : H̄∗∗(Ξ)→ [0,∞) we have∫

fd~µ =

∫
∇fd~µ.

By removing marks, we get a natural projection ProjH̄∗(Ξ)→H∗ : H̄∗(Ξ)→ H∗ defined as

ProjH̄∗(Ξ)→H∗([H̄, i]) = [H, i] . (6.7)

This can easily be checked to be continuous.
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As was done in Section 6.2.8, choosing a vertex uniformly at random from a finite marked
hypergraph results in a unimodular measure. More precisely, if H is a finite hypergraph
together with a mark ξ taking values in Ξ,

uH̄ :=
1

|V (H̄)|
∑

i∈V (H̄)

δ[H̄(i),i],

is unimodular. Here, H̄(i) denotes the connected component of i in H̄. Moreover, the
local weak limit of finite marked hypergraphs, i.e. the weak limit of the measures uHn , is
unimodular, if it exists. See Appendix E.5 for a proof.

6.3 Main Results

We now summarize the main results of the chapter. We first prove some properties of
balanced Borel allocations, as defined in Definition 6.24.

Theorem 6.1. Let µ ∈ P(H∗) be a unimodular probability measure such that deg(µ) <∞.
The following are true.

1. There exists a Borel allocation Θ : H∗∗ → [0, 1] which is balanced with respect to µ.

2. Let Θ be a balanced Borel allocation with respect to µ. Then we have the following
variational characterization of the mean excess load under Θ above the load level t.
For any t ∈ R: ∫

(∂Θ− t)+dµ = max
f :H∗→[0,1]

Borel

∫
f̃mind~µ− t

∫
fdµ,

where f̃min is defined as

f̃min(H, e, i) :=
1

|e|
min
j∈e

f(H, j).

3. The following are equivalent for a Borel allocation Θ : H∗∗ → [0, 1]:

a) Θ is balanced with respect to µ.

b) Θ minimizes
∫
f ◦ ∂Θdµ among all Borel allocations, for some strictly convex

function f : [0,∞)→ [0,∞).

c) Θ minimizes
∫
f ◦ ∂Θdµ among all Borel allocations for every convex function

f : [0,∞)→ [0,∞).

4. Assume Θ0 is a balanced allocation with respect to µ and Θ is any other allocation on
H∗∗. Then Θ is balanced if and only if ∂Θ0 = ∂Θ, µ–almost surely.
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5. Let {Hn}n≥1 be a sequence of finite hypergraphs with local weak limit µ. Let LHn
denote the distribution of the total load at a vertex in Hn chosen uniformly at random.
Namely, LHn = 1

|V (Hn)|
∑

i∈V (Hn) δ∂θn(i), where (∂θn(i), i ∈ V (Hn)) denotes the load
vector corresponding to any balanced allocation θn, which we recall exists and is unique,
due to Proposition 6.1. Let L denote the law of the total load at the root of the balanced
allocation on µ, i.e. the pushforward of µ under the mapping ∂Θ, which we have just
shown is well defined and unique, due to parts 1 and 4 of this theorem. Then LHn
converges weakly to L.

The proof of the above theorem is given in Section 6.6. Before that, we first investigate,
in Section 6.4, the properties of ε–balanced allocations for a specific hypergraph, as intro-
duced in Definition 6.13. We then investigate, in Section 6.5, the properties of ε–balanced
allocations on H∗∗ for a given µ ∈ P(H∗), as defined in Definition 6.25. Then, by sending ε
to zero, we prove part 1 of the above theorem in Section 6.6.1. The proofs of other parts of
the theorem are given in Sections 6.6.2 through 6.6.5 respectively.

Note that, as a result of part 4 of the theorem, for a given t ∈ R, the value of the integral∫
(∂Θ− t)+dµ for a balanced allocation Θ does not depend on the particular choice of Θ. It

only depends on µ and t, so it can be written as

Φµ(t) :=

∫
(∂Θ− t)+dµ. (6.8)

The function Φµ is called the mean–excess function. Knowledge of Φµ is equivalent to
determining the distribution L of the load at the root associated to a balanced allocation
Θ. We now describe Φµ for the class of unimodular Galton–Watson process defined in
Section 6.2.9.

Recall the notation Λ defined in (6.3). Assume P ∈ P(Λ) and t ∈ R are fixed. For a

sequence of Borel probability measures (Ql, l ≥ 2) on real numbers, let F
(k)
P,t ({Ql}l≥2) be the

distribution of the random variable

t−
∑
k′≥2

Γ(k′)∑
i=1

[
1−X+

k′,i,1 − · · · −X
+
k′,i,k′−1

]1
0
, (6.9)

where Γ has law P̂k, and Xk′,i,j are random variables which are mutually independent and

independent of Γ, with Xk′,i,j having law Qk′ . Note that P̂k is the size biased version of P
defined in (6.6). Also note that the first sum on the right hand side of (6.9) is a finite sum,
because Γ has finite support, pointwise.

Let Q be the set of sequences {Ql}l≥2 such that, for all k ≥ 2, we have:

Qk = F
(k)
P,t ({Ql}l≥2). (6.10)

Now, we are ready to provide a characterization of the mean excess function. We give
the proof of the following result in Section 6.8.
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Theorem 6.2. Let P be a distribution on Λ such that E [‖Γ‖1] < ∞ where Γ has law P .
Then, with µ := UGWHT(P ), for any t ∈ R, we have

Φµ(t) = max
{Qk}k≥2∈Q

(
∞∑
k=2

E [Γ(k)]

k
P

(
k∑
i=1

X+
k,i < 1

))
− tP

h(Γ)∑
k=2

Γ(k)∑
i=1

Yk,i > t

 , (6.11)

where, in the first expression, Γ is a random variable on Λ with law P and {Xk,i}k,i are
i.i.d. such that Xk,i has law Qk. Also, in the second expression, Γ has law P and {Yk,i}k,i
are independent from each other and from Γ, with Yk,i having the law of the random variable
[1− (Z+

1 + · · ·+ Z+
k−1)]10, where Zj are i.i.d. with law Qk.

For a finite hypergraph H, we define %(H) to be the maximum load corresponding to a
balanced allocation on H, i.e. if θ is a balanced allocation on H,

%(H) := max
v∈V (H)

∂θ(v), (6.12)

which is well defined due to Proposition 6.1. From [Haj90, Corollary 7] we know that there
is a duality between this parameter and the subgraph of maximum edge density, i.e.

%(H) = max
S⊆V (H),S 6=∅

|EH(S)|
|S|

, (6.13)

where EH(S) denotes the set of edges of H with all endpoints in S.
For a unimodular probability distribution µ on H∗ with finite deg(µ), we define

%(µ) := sup{t ∈ R : Φµ(t) > 0}, (6.14)

where Φµ(.) is the mean excess function defined above. In other words, if Θ is the balanced
allocation corresponding to µ introduced in Theorem 6.1 and Lµ is the law of ∂Θ under µ,
then

%(µ) = sup{t ∈ R : Lµ([t,∞)) > 0}.
One question is whether local weak convergence implies convergence of maximum load, i.e.,
if Hn is a sequence of graphs with local weak limit µ, does %(Hn) converge to %(µ)? Similar
to the graph case, this is not true in general, since we can always add an arbitrary but
bounded clique to boost %(Hn) without changing the local weak limit. We prove convergence,
under some conditions, for the special case where the limit µ is the UGWT model defined
in Section 6.2.9 and, for each n, Hn is a random hypergraph obtained from a generalized
hypergraph configuration model defined in Section 6.9.1.

Theorem 6.3. Let P be a probability distribution on Λ such that, if Γ is a random variable
with law P , P (Γ(k) > 0) > 0 for finitely many k and E [Γ(k)] <∞ for all k ≥ 2. Moreover,
let µ := UGWHT(P ). Then, if {Hn}∞n=1 is a sequence of random hypergraphs obtained from
a configuration model, under some conditions stated in Proposition 6.18, %(Hn) converges in
probability to %(µ).

This theorem is proved in Section 6.9.
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6.4 ε–balancing with baseloads

In this section, we analyze the properties of ε–balanced allocations with respect to a baseload,
which were introduced in Definition 6.15. Note that throughout this section, we are dealing
with a given hypergraph, not a distribution onH∗. By setting the baseload function b to zero,
our results here reduce to those for ε–balanced allocations as introduced in Definition 6.13.

6.4.1 Existence

The existence of ε–balanced allocations with respect to a baseload b on hypergraphs is a
consequence of the Schauder–Tychonoff fixed point theorem (see, for instance, [AMO09]).
Here we give the details. Fix a hypergraph H = 〈V,E〉 and define the topological vector
space W to be:

W := {θ : Ψ(H)→ R} = RΨ(H),

with the product topology of R. Here, we recall that Ψ(H) is the set of all edge–vertex pairs
of the hypergraph (6.1), and that this is a countable set. Define the following convex subset
of functions with values in [0, 1]:

A := {θ : Ψ(H)→ [0, 1]}.

Since we have employed the product topology, Tychonoff’s theorem tells us that A is a
compact set (see, for instance, [Mun00]). Define the mapping T : A→ A via:

(Tθ)(e, i) :=
exp

(
−∂bθ(i)

ε

)
∑

j∈e exp
(
−∂bθ(j)

ε

) .
We want to show that T has a fixed point. In order to do so, we need to show that T is
continuous. Since we have employed the product topology, we need to show that, for all
(e, i) ∈ Ψ(H), the projected version Te,i defined as:

Te,i(θ) := (Tθ)(e, i),

which is a mapping from A to [0, 1], is continuous. In order to show this, note that Te,i is
the concatenation of a projection Proje : A→ R|Ue|, where

Ue := {(e′, j) : e′ ∈ E, e′ ∩ e 6= ∅, j ∈ e ∩ e′},

and an addition function from R|Ue| to R|e|, which gives us the vector [∂θ(j)]j∈e, and then a
function f : R|e| → R defined as:

f([xj]j∈e) :=
e−(xi+b(i))/ε∑
e−(xj+b(j))/ε

.
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Since all these three functions are continuous (note that Ue is a finite set since we have
assumed that the graph is locally finite and all edges have finite size), T is also continuous.
Therefore, since W is Hausdorff and locally convex, A is compact, and T is continuous, the
Schauder–Tychonoff fixed point theorem implies that T has a fixed point (see, for instance,
[AMO09, Theorem 8.2]). Note that θ′ := T (θ) satisfies

∑
i∈e θ

′(e, i) = 1 for any θ ∈ W .
Therefore this fixed point is an allocation in the sense of Definition 6.10, and is also ε–
balanced.

6.4.2 Monotony and Uniqueness

Intuitively, we expect that when we add more edges to a hypergraph and increase baseloads,
the total load for an ε–balanced allocation would increase. We also expect that the effect of an
increase in baseload at any vertex tends to dissipate as one moves away from the vertex, when
comparing the respective balanced allocations. Lemmas 6.5 and 6.7 below quantify these
phenomena. They are formulated in the language of vertex rooted hypergraph embedding
from Definition 6.8.

Lemma 6.5 (depth 1 local contraction). Assume the vertex rooted hypergraph (H, i) can be
embedded up to depth 1 into the vertex rooted hypergraph (H ′, i′), i.e. (H, i) ↪→1 (H ′, i′), with
embedding φ : V H

i,1 ↪→ V H′

i′,1 . Let θε and θ′ε be ε–balanced allocations on H and H ′ respectively,
with respective baseload functions b and b′, with b(i) ≤ b′(i′). If

M := max
j:dH(i,j)=1

∂bθε(j)− ∂b′θ′ε(φ(j)),

then we have

∂b′θ
′
ε(i
′) ≥ ∂bθε(i)−

|DH
i,1|

|DH
i,1|+ 4ε

M+,

where DH
i,1 is the set of nodes at distance one from node i as was defined in Definition 6.4.

Note that, in this lemma, θε and θ′ε are two arbitrary ε–balanced allocations on H and H ′

respectively, with respective baseload functions b and b′. We know from Section 6.4.1 that
such allocations exist, but they might a priori not be unique. We will later prove uniqueness
for the special case of bounded hypergraphs, which were introduced in Definition 6.2.

Before proving this result, we need the following tool, whose proof is given after the proof
of Lemma 6.5.

Lemma 6.6. Assume that for ε > 0, the function fε : Rk → R is defined in the following
way:

fε(x1, . . . , xk) =
1

1 +
∑k

i=1 e
−xi

ε

.

Then, for arbitrary real valued sequences (x1, . . . , xk) and (x′1, . . . , x
′
k), we have,

fε(x1, . . . , xk)− fε(x′1, . . . , x′k) ≤
1

4ε

k∑
i=1

[xi − x′i]+.
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Proof of Lemma 6.5. Since φ(e) ∈ E(H ′) for e 3 i, and θ′ε is a nonnegative function, we have∑
e′3i′

θ′ε(e
′, i′) ≥

∑
e3i

θ′ε(φ(e), i′). (6.15)

On the other hand, we have

∂bθε(i)− ∂b′θ′ε(i′)
(a)

≤
∑
e3i

θε(e, i)−
∑
e′3i′

θ′ε(e
′, i′)

(b)

≤
∑
e3i

θε(e, i)− θ′ε(φ(e), i′)

(c)
=
∑
e3i

(
1

1 +
∑

j∈e
j 6=i

exp
(
−∂bθε(j)−∂bθε(i)

ε

)
− 1

1 +
∑

j∈e
j 6=i

exp
(
−∂b′θ

′
ε(φ(j))−∂b′θ′ε(i′)

ε

))
(d)

≤ 1

4ε

∑
e3i

∑
j∈e
j 6=i

[(∂bθε(j)− ∂bθε(i))− (∂b′θ
′
ε(φ(j))− ∂b′θ′ε(i′))]

+
,

(6.16)

where (a) results from b(i) ≤ b′(i′), (b) uses (6.15), (c) is a substitution from Definition 6.14,
and (d) uses Lemma 6.6.

Now, let

I := {(e, j) : e 3 i, j ∈ e, j 6= i, ∂bθε(j)− ∂b′θ′ε(φ(j)) ≥ ∂bθε(i)− ∂b′θ′ε(i′)}.

Then the inequality in (6.16) together with the definition of M implies

∂bθε(i)− ∂b′θ′ε(i′) ≤
1

4ε
|I|(M − (∂bθε(i)− ∂b′θ′ε(i′))).

Rearranging the terms, we get

∂bθε(i)− ∂b′θ′ε(i′) ≤
|I|

|I|+ 4ε
M ≤

|DH
i,1|

|DH
i,1|+ 4ε

M+,

which is exactly what we wanted to prove.

Proof of Lemma 6.6. First we prove the statement for k = 1. In this case, the function
fε(x) = 1

1+e−
x
ε

is 1
4ε

–Lipschitz and increasing in x, hence the statement holds for k = 1.

Now assume k > 1 is arbitrary. We have

fε(x1, . . . , xk)− fε(x′1, . . . , x′k) =
k∑
i=1

e−
x′i
ε − e−

xi
ε(

1 +
∑k

r=1 e
−xr

ε

)(
1 +

∑k
s=1 e

−x
′
s
ε

) . (6.17)
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Now, for each 1 ≤ i ≤ k, if x′i ≥ xi then

e−
x′i
ε − e−

xi
ε(

1 +
∑k

r=1 e
−xr

ε

)(
1 +

∑k
s=1 e

−x
′
s
ε

) ≤ 0 =
1

4ε
[xi − x′i]+.

On the other hand, if x′i < xi, then we have

e−
x′i
ε − e−

xi
ε(

1 +
∑k

r=1 e
−xr

ε

)(
1 +

∑k
s=1 e

−x
′
s
ε

) ≤ e−
x′i
ε − e−

xi
ε(

1 + e−
xi
ε

)(
1 + e−

x′
i
ε

)
=

1

1 + e−
xi
ε

− 1

1 + e−
x′
i
ε

≤ 1

4ε
[xi − x′i]+,

where the last step uses the statement for k = 1. Therefore, in either case, we have proved
that for all 1 ≤ i ≤ k we have:

e−
x′i
ε − e−

xi
ε(

1 +
∑k

r=1 e
−xr

ε

)(
1 +

∑k
s=1 e

−x
′
s
ε

) ≤ 1

4ε
[xi − x′i]+.

Substituting this into (6.17) we get the desired result.

Now we generalize Lemma 6.5 to depth d local embeddings.

Lemma 6.7 (depth d local contraction). Assume (H, i) ↪→d (H ′, i′) with embedding φ :
V H
i,d ↪→ V H′

i′,d . Also let θε and θ′ε be ε–balanced allocations on H and H ′ respectively, with
respective baseload functions b and b′, where b(j) ≤ b′(φ(j)) for all j such that dH(i, j) ≤ d−1.
Then we have:

∂b′θ
′
ε(i
′) ≥ ∂bθε(i)−

(
L∆

4ε+ L∆

)d
M+

d ,

where
Md := max

j∈DHi,d
∂bθε(j)− ∂b′θ′ε(φ(j)),

and

L := max
e∈EH(V Hi,d)

|e| ,

∆ := max
j∈V Hi,d−1

degH(j) .



CHAPTER 6. ASYMPTOTIC BEHAVIOR OF LOAD BALANCING IN
HYPERGRPHAS 138

Proof. Take some j ∈ V (H) with dH(i, j) = k. If j′ ∈ V (H) is such that dH(j, j′) = 1, the
triangle inequality implies that

|dH(i, j′)− dH(i, j)| ≤ dH(j, j′) = 1.

Thus
DH
j,1 ⊂ DH

i,k−1 ∪DH
i,k ∪DH

i,k+1. (6.18)

Hence, if dH(i, j) ≤ d − 1, using the same embedding map φ we have (H, j) ↪→1 (H ′, φ(j)).
Hence, if we define

Mk := max
j:dH(i,j)=k

∂bθε(j)− ∂b′θ′ε(φ(j)) 0 ≤ k ≤ d,

and

α :=
L∆

4ε+ L∆
,

then using Lemma 6.5 and (6.18) we have

Mk ≤ α(M+
k−1 ∨M

+
k ∨M

+
k+1) 1 ≤ k ≤ d− 1, (6.19)

and
M0 ≤ αM+

1 . (6.20)

We show by induction that M+
k ≤ αM+

k+1 for 0 ≤ k ≤ d − 1. For k = 0, this follows from
(6.20) and the fact that x 7→ x+ is increasing. For k ≥ 1 we have from (6.19) that

M+
k ≤ α(M+

k−1 ∨M
+
k ∨M

+
k+1) ≤ α((αM+

k ∨M
+
k ) ∨M+

k+1) = α(M+
k ∨M

+
k+1).

We claim that M+
k ≤ αM+

k+1. The above inequality means that either M+
k ≤ αM+

k or
M+

k ≤ αM+
k+1. The latter case is precisely what we have claimed, while in the former case,

as α < 1, we have Mk = 0 and the inequality M+
k ≤ αM+

k+1 is automatic. This implies that
M0 ≤ αdM+

d and completes the proof.

Using the above local results, we now show that if we add edges to a hypergraph and/or
increase the baseload, the total load should increase.

Proposition 6.5. Let H and H ′ be two hypergraphs defined on the same vertex set V =
V (H) = V (H ′), such that E(H) ⊂ E(H ′), and H is bounded (but H ′ is not necessarily
bounded). Suppose two bounded baseload functions b, b′ : V → R are given, such that b(i) ≤
b′(i) for all i ∈ V . If θε and θ′ε are two ε–balanced allocations on H and H ′, respectively, for
the respective baseload functions b and b′, then we have ∂bθε(i) ≤ ∂b′θ

′
ε(i) for all i ∈ V .

Proof. Since H is bounded, there are constants ∆ and L such that, for all i ∈ V , degH(i) ≤ ∆
and |e| ≤ L for all e ∈ E(H). Also, as b is bounded, for some K > 0 and all i ∈ V , we have
|b(i)| ≤ K.
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Now, fix some i ∈ V . Since E(H) ⊂ E(H ′), we have (H, i) ↪→1 (H ′, i) with the identity
map as the embedding function. With this, define

M := sup
j∈V

∂bθε(j)− ∂b′θ′ε(j).

Note that, since ∂bθ
b
ε is bounded to ∆ + K, the above quantity is finite and well defined.

Now, using Lemma 6.5, we have

∂bθ
b
ε(i)− ∂b′θb

′

ε (i) ≤ ∆L

4ε+ ∆L
M+.

Taking the supremum over i on the left hand side, we get

M ≤ ∆L

4ε+ ∆L
M+,

which, since ∆L
4ε+∆L

< 1, implies M ≤ 0 and completes the proof.

If we have a fixed bounded hypergraph H with a baseload function, and θε, θ
′
ε are two

ε–balanced allocations on H, repeating the above proposition twice, we get ∂θε ≤ ∂θ′ε and
∂θ′ε ≤ ∂θε, which implies uniqueness. To sum up, we have:

Corollary 6.1. If a hypergraph H is bounded, there is a unique ε–balanced allocation with
respect to any given baseload on it.

6.4.3 ε–balanced allocations for unbounded hypergraphs with
respect to a baseload: canonical allocations

We now produce ε–balanced allocations on a hypergraph H with respect to a given baseload
even when the hypergraph is not necessarily bounded. Note that we do not make any claims
about uniqueness.

For a given hypergraph H and ∆ ∈ N, define H∆ to be the hypergraph with vertex set
V (H) and edge set E∆, where

E∆ := {e ∈ E(H) : |e| ≤ ∆, degH(i) ≤ ∆ ∀i ∈ e}. (6.21)

Given the baseload function b, define θ∆
ε to be the unique ε–balanced allocation on H∆ with

respect to the baseload b, where the existence and uniqueness of θ∆
ε is a consequence of

Corollary 6.1 above. Since E∆ increases to E(H) as ∆ increases, Proposition 6.5 implies
that ∂bθ

∆
ε is pointwise increasing in ∆. Since it is also pointwise bounded, it is convergent.

For a node i ∈ V (H), define
li := lim

∆→∞
∂bθ

∆
ε (i),
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Now, for e ∈ E(H) and i ∈ e, define

θε(e, i) :=
exp

(
− li

ε

)∑
j∈e exp

(
− lj

ε

) . (6.22)

Now we prove that θε is an ε–balanced allocation with respect to the baseload b. First,
observe that, because of the normalizing term in the denominator,

∑
i∈e θε(e, i) = 1 for all

e ∈ E(H). We now show that li = ∂bθε(i). Note that

∑
e3i

θε(e, i) =
∑
e3i

exp
(
− li

ε

)∑
j∈e exp

(
− lj

ε

)
= lim

∆→∞

∑
e3i

exp
(
−∂bθ

∆
ε (i)
ε

)
∑

j∈e exp
(
−∂bθ∆

ε (j)
ε

) .
Observe that, for ∆ > maxe3i (|e| ∨maxj∈e degH(j)), we have e ∈ E∆ for all e 3 i. Hence,
the term inside the summation is θ∆

ε (e, i), because θ∆
ε is the unique ε-balanced allocation on

H∆ with respect to the baseload b. Since we are taking ∆ → ∞, we can assume it is big
enough to get

∂bθε(i) = b(i) + lim
∆→∞

∑
e3i

θ∆
ε (e, i) = lim

∆→∞
∂bθ

∆
ε (i) = li.

Substituting this into (6.22), we conclude that θε is ε–balanced, with respect to the baseload
b.

Remark 6.11. Note that the above procedure gives rise to an ε–balanced allocation with
respect to any given baseload, but we do not know if it is the only possible ε–balanced allocation
or not. In fact, we have proved uniqueness for bounded hypergraphs only. To emphasize this
and avoid confusion, we call the ε–balanced allocation resulting from the procedure above the
“canonical” allocation with respect to the given baseload. A special case of the procedure
yields the canonical ε–balanced allocation when there is no baseload.

Now, we generalize the monotonicity property of Proposition 6.5 to the case of not
necessarily bounded hypergraphs, for these canonical allocations.

Proposition 6.6. Given hypergraphs H and H ′ on the same vertex set V , with E(H) ⊆
E(H ′), and baseload functions b, b′ : V → R such that b(i) ≤ b′(i) for all i ∈ V , if θε and
θ′ε are the canonical ε–balanced allocations on H and H ′, with respect to baseloads b and b′,
respectively, then ∂bθε(i) ≤ ∂b′θ

′
ε(i) for all i ∈ V .

Proof. Set E := E(H) and E ′ := E(H ′). Note that since E ⊆ E ′ and the vertex sets are
the same for H and H ′, E∆ ⊆ E ′ for any ∆. Thus, if θ∆

ε is the unique ε–balanced allocation
on 〈V,E∆〉 with respect to the baseload b and θ′ε is the canonical ε–balanced allocation on
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〈V,E ′〉 with respect to the baseload b′, Proposition 6.5 implies that ∂bθ
∆
ε (i) ≤ ∂b′θ

′
ε(i) for all

i ∈ V (note that in Proposition 6.5 only the smaller hypergraph needs to be bounded, hence
we only need to truncate E). By sending ∆ to infinity, we get the desired result.

6.4.4 Nonexpansivity

Proposition 6.7. Let H be a given hypergraph and b, b′ be two baseload functions. Let θ and
θ′ be the canonical ε–balanced allocations on H with respect to b and b′, respectively. Then,
we have

‖∂bθε − ∂b′θ′ε‖l1(V (H)) ≤ ‖b− b
′‖l1(V (H)) .

Proof. To start with, assume that H is bounded. Later, we will relax this assumption.
Consider first the special case b(i) ≥ b′(i) for all i ∈ V (H). Then, using the monotonicity

property of Proposition 6.5, we have ∂bθε(i) ≥ ∂b′θ
′
ε(i) for all i ∈ V (H). In particular,

‖∂bθε − ∂b′θ′ε‖l1(V (H)) =
∑

i∈V (H)

∂bθε(i)− ∂b′θ′ε(i).

Now, let {Vn} be a nested sequence of finite subsets of V (H) converging to V (H), i.e.
Vn ↑ V (H). Let θn,ε and θ′n,ε be the ε–balanced allocations on 〈Vn, EH(Vn)〉 with respect to
the restrictions of b and b′ to Vn, respectively. The monotonicity property of Proposition 6.5
and an argument similar to the one given in Section 6.4.3 above, implies that ∂bθn,ε and ∂b′θ

′
n,ε

converge to ε–balanced allocations on H and H ′ with respect to b and b′, respectively. Since
H is bounded, there is a unique ε–balanced allocations with respect to any baseload function.
Therefore, we have ∂bθn,ε ↑ ∂bθε and ∂b′θ

′
n,ε ↑ ∂b′θ′ε as n → ∞. Using the conservation of

mass, we have∑
i∈Vn

∂bθn,ε(i)− ∂b′θ′n,ε(i) =
∑
i∈Vn

b(i)− b′(i) ≤
∑

i∈V (H)

b(i)− b′(i) = ‖b− b′‖l1(V (H)) ,

where we have used the assumption b ≥ b′. In fact, for any finite subset of verticesK ⊂ V (H),
we have K ⊂ Vn for n large enough and so using ∂bθn,ε ↑ ∂bθε and ∂b′θ

′
n,ε ↑ ∂b′θ′ε and also the

monotonicity property of Proposition 6.5, we have∑
i∈K

∂bθε(i)− ∂b′θ′ε(i) = lim
n→∞

∑
i∈K

∂bθn,ε(i)− ∂b′θ′n,ε(i)

≤ lim
n→∞

∑
i∈Vn

∂bθn,ε(i)− ∂b′θ′n,ε(i)

≤ ‖b− b′‖l1(V (H)) .

Since this holds for every finite subset K ⊂ V (H), we conclude that

‖∂bθε − ∂b′θ′ε‖l1(V (H)) ≤ ‖b− b
′‖l1(V (H)) .
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Now, continuing to assume that H is bounded, suppose the condition b ≥ b′ does not
necessarily hold. Define b′′ := b ∧ b′ with θ′′ε being the unique ε–balanced allocation on H
with respect to b′′. Due to monotonicity property of Proposition 6.5, we have ∂bθε ≥ ∂b′′θ

′′
ε

and ∂b′θ
′
ε ≥ ∂b′′θ

′′
ε . Thus, using the above argument and the triangle inequality, we have

‖∂bθε − ∂b′θ′ε‖l!(V (H)) ≤ ‖∂bθε − ∂b′′θ
′′
ε ‖l1(V (H)) + ‖∂b′θ′ε − ∂b′′θ′′ε ‖l1(V (H))

≤ ‖b− b′′‖l1(V (H)) + ‖b′ − b′′‖l1(V (H))

=
∑

i∈V (H)

b(i)− b′′(i) + b′(i)− b′′(i)

=
∑

i∈V (H)

|b(i)− b′(i)| = ‖b− b′‖l1(V (H)) .

Finally, we relax the boundedness assumption on H.
We take a not necessarily bounded hypergraph H and let H∆ be the truncation of H,

as defined in Section 6.4.3. Let θ∆
ε and θ′,∆ε be the unique ε–balanced allocations on H∆,

with respect to the baseloads b and b′, respectively. Since H∆ is bounded, using the above
argument, we have ∥∥∂bθ∆

ε − ∂b′θ′,∆ε
∥∥
l1(V (H))

≤ ‖b− b′‖l1(V (H)) .

Hence, for any finite subset K ⊆ V (H), we have∑
i∈K

|∂bθ∆
ε (i)− ∂b′θ′,∆ε (i)| ≤

∥∥∂bθ∆
ε − ∂b′θ′,∆ε

∥∥
l1(V (H))

≤ ‖b− b′‖l1(V (H)) .

Sending ∆ to infinity and using the facts that ∂θ∆
ε and ∂θ′,∆ε converge to ∂θε and ∂θ′ε,

respectively, and also the fact that K is finite, we have∑
i∈K

|∂bθε(i)− ∂b′θ′ε(i)| ≤ ‖b− b′‖l1(V (H)) .

Since the above is true for all finite K, we have

‖∂bθε − ∂b′θ′ε‖l1(V (H)) ≤ ‖b− b
′‖l1(V (H)) ,

and the proof is complete.

6.4.5 Regularity property for canonical ε-balanced allocations
with respect to a baseload

In this section, we give a regularity property of canonical allocations which is crucial in our
analysis.

Let T be a hypertree. For a node i ∈ V (T ) and e ∈ E(T ), e 3 i, define Te→i to the
connected subtree with root i that does not contain the part of T directed from e. To be
more precise, the vertex set of Te→i is the set of vertices j ∈ V (T ) such that the shortest
path from i to j does not contain e. The edge set of Te→i contains all the edges with all their
end points in this subset, i.e. ET (V (Te→i)) in the notation of Section 6.2.1.
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Proposition 6.8. Let T be a hypertree, b a baseload function on T , and θ the canonical
ε–balanced allocation on T with respect to the baseload b. Let e ∈ E(T ) and i ∈ e, and let
θTe→i denote the restriction of θ to Te→i, i.e.

θTe→i(e
′, i′) = θ(e′, i′) , e′ ∈ E(Te→i), i

′ ∈ e′.

Then, θTe→i is the canonical ε–balanced allocation on Te→i with respect to the baseload function
b̃ defined as

b̃(i) = b(i) + θ(e, i),

and b̃(j) = b(j) for j ∈ V (Te→i) \ {i}.

Proof. It is straightforward to check that θTe→i is an ε–balanced allocation on Te→i with
baseload function b̃. Thus, the content of the theorem is the statement about this ε–balanced
allocation being the canonical ε–balanced allocation on Te→i with the baseload function b̃.

Let θ̃ denote the canonical ε-balanced allocation on Te→i with respect to the baseload b̃.
Moreover, let θ̃∆ denote the unique ε-balanced allocation on the bounded tree (Te→i)

∆ with
respect to the baseload b̃. Throughout this proof, we assume that ∆ > ∆0 where

∆0 := |e| ∨max{degH(j) : j ∈ e}.

If ∆ satisfies this property, then e ∈ E(T∆), and one can also check that

(Te→i)
∆ ≡ (T∆)e→i, (6.23)

so we can unambiguously write T∆
e→i for this tree. (Note that T∆ need not be connected, but

this is not relevant.) If θ∆ denotes the unique ε–balanced allocation on T∆ with respect to
the baseload b and θ∆

Te→i
is its restriction to T∆

e→i, then, since ∆ ≥ ∆0, θ∆
Te→i

is the unique ε-
balanced allocation on T∆

e→i with respect to the baseload b∆ defined as b∆(i) = b(i) +θ∆(e, i)
and b∆(j) = b(j) for j 6= i. Now, θ̃∆ and θ∆

Te→i
are canonical ε-balanced allocations on T∆

e→i
with respect to the baseloads b̃ and b∆, respectively. Using Proposition 6.7, we conclude that
for an arbitrary vertex k ∈ V (Te→i) we have

|∂b∆θ∆
Te→i

(k)− ∂b̃θ̃
∆(k)| ≤

∥∥∥∂b∆θ∆
Te→i
− ∂b̃θ̃

∆
∥∥∥
l1(V (Te→i))

≤ |θ∆(e, i)− θ(e, i)|.

Now, sending ∆ to infinity and noting the fact that θ∆(e, i)→ θ(e, i), we have |∂b∆θ∆
Te→i

(k)−
∂b̃θ̃

∆(k)| → 0. Since θ∆
Te→i

is the restriction to T∆
e→i of the ε-balanced allocation θ∆ on T∆

with respect to the baseload b, we have ∂b∆θ
∆
Te→i

(k) = ∂bθ
∆(k) for all k ∈ V (T∆

e→i). Since

∂bθ
∆(k)→ ∂bθ(k) and ∂b̃θ̃

∆(k)→ ∂b̃θ̃(k) for all k ∈ V (T ) as ∆→∞, we conclude that

∂b̃θ̃(k) = ∂bθ(k) , ∀k ∈ V (Te→i).

But it is straightforward to check that ∂bθ(k) = ∂b̃θTe→i(k) for all k ∈ V (Te→i). From
the definition of ε-balanced allocations, we conclude that θTe→i(e

′, i′) equals θ̃(e′, i′) for all
e′ ∈ E(Te→i) and all i′ ∈ e′, i.e. that θTe→i is the canonical ε-balanced allocation on Te→i
with respect to the baseload b̃, which was what was to be shown.
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6.5 ε–balanced allocations on H∗∗
In this section, we discuss how to find an ε–balanced allocation on H∗∗, in the sense of
Definition 6.25, with respect to a unimodular measure µ ∈ P(H∗). Recall that this is a
Borel allocation Θε : H∗∗ → [0, 1] such that

Θε(H, e, i) =
exp(−∂Θε(H, i)/ε)∑
j∈e exp(−∂Θε(H, j)/ε)

, ~µ–a.e..

What we do here is in fact stronger, in the sense that we introduce a Borel allocation Θε

such that the above condition is satisfied pointwise, i.e.

Θε(H, e, i) =
exp(−∂Θε(H, i)/ε)∑
j∈e exp(−∂Θε(H, j)/ε)

∀[H, e, i] ∈ H∗∗. (6.24)

In fact, we can define Θε(H, e, i) to be θHε (e, i) where θHε is the canonical ε-balanced allocation
for H, as was introduced in Section 6.4.3. Defining Θε in this way guarantees that (6.24) is
satisfied. Therefore, it remains to show that Θε is a Borel allocation. In the following, we
construct Θε differently, but as we will see later, the Θε(H, e, i) we construct will be equal
to θHε (e, i) (see Remark 6.12 below).

For the construction, given ∆ ∈ N, define F∆
ε : H∗ → R via F∆

ε (H, i) := ∂θH
∆

ε (i),
where H∆ is the truncated hypergraph introduced in Section 6.4.3. The uniqueness property
of ε–balanced allocations for bounded hypergraphs (Corollary 6.1) implies that the above
definition does not depend on the specific choice of (H, i) in the equivalence class. Therefore,
F∆
ε is well defined. We claim that F∆

ε is a continuous function on H∗. Indeed, if (H1, i1) ≡d
(H2, i2), then (H∆

1 , i1) ≡d−1 (H∆
2 , i2), and using Lemma 6.7 we have∣∣∣∂θH∆

1
ε (i1)− ∂θH∆

2
ε (i2)

∣∣∣ ≤ ( ∆2

4ε+ ∆2

)d−1

∆ .

This implies that F∆
ε is (uniformly) continuous. Moreover, Proposition 6.5 implies that F∆

ε

is pointwise increasing in ∆. On the other hand, F∆
ε (H, i) ≤ degH(i). Hence, there is a

pointwise limit
Fε(H, i) := lim

∆→∞
F∆
ε (H, i). (6.25)

We now define Θε : H∗∗ → [0, 1] in the following way:

Θε(H, e, i) :=
exp(−Fε(H, i)/ε)∑
j∈e exp(−Fε(H, j)/ε)

. (6.26)

We want to show that Θε is an ε–balanced allocation on H∗∗. Since F∆
ε is continuous, Fε

is Borel, and hence Θε is a Borel map. Also, the normalization factor in the denominator
guarantees that

∑
i∈e Θε(H, e, i) = 1, and hence Θε is a Borel allocation. Comparing (6.24)

with (6.26), it suffices to show that

∂Θε(H, i) = Fε(H, i). (6.27)
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In order to show this, note that

∂Θε(H, i) =
∑
e3i

Θε(H, e, i)

=
∑
e3i

exp(−Fε(H, i)/ε)∑
j∈e exp(−Fε(H, j)/ε)

= lim
∆→∞

∑
e3i

exp(−F∆
ε (H, i)/ε)∑

j∈e exp(−F∆
ε (H, j)/ε)

.

Now, when ∆ ≥ maxe3i |e| and also ∆ ≥ maxj∈e,e3i degH(j)), we have e ∈ E(H∆), and we
have

exp(−F∆
ε (H, i)/ε)∑

j∈e exp(−F∆
ε (H, j)/ε)

=
exp(−∂θH∆

ε (H, i)/ε)∑
j∈e exp(−∂θH∆

ε (H, j)/ε)
= θH

∆

ε (H, e, i).

Consequently,

∂Θε(H, i) = lim
∆→∞

∑
e3i

θH
∆

ε (H, e, i)

= lim
∆→∞

∂θH
∆

ε (H, i)

= lim
∆→∞

F∆
ε (H, i)

= Fε(H, i).

Therefore, we have shown (6.27), which shows that Θε satisfies (6.24) and hence is an ε–
balanced allocation (both pointwise and ~µ–almost everywhere).

Remark 6.12. Note that (6.25) means that Fε(H, i) = ∂θHε (i), where θHε is the canonical ε-
balanced allocation in H. Hence, (6.26) implies that Θε(H, e, i) is pointwise equal to θHε (e, i).

The following Proposition proves an almost sure uniqueness property for Borel ε–balanced
allocations which is similar in flavor to part 4 of Theorem 6.1. The proof of this statement
is given in Appendix E.8.

Proposition 6.9. Assume µ is a unimodular measure on H∗ such that deg(µ) <∞. Given
ε > 0, let Θε be the ε–balanced allocation defined in this section, and let Θ′ε be any other ε–
balanced allocation, both with respect to µ. Then, we have ∂Θε = ∂Θ′ε, µ–a.s. and Θε = Θ′ε,
~µ–a.e..

6.6 Properties of balanced allocations

6.6.1 Existence

In this section we prove the existence of balanced allocations (part 1 of Theorem 6.1):
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Proposition 6.10. Assume µ ∈ P(H∗) is unimodular with deg(µ) < ∞. Then, there is a
sequence εk ↓ 0 such that Θεk converges to a balanced allocation Θ0, with the convergence
being both in L2(~µ) and ~µ–almost everywhere.

Proof. First, we show that Θε is Cauchy in L2(~µ). To do so, we take ε, ε′ > 0 and try to
bound ‖Θε −Θε′‖L2(~µ). For an integer ∆ > 0, define the function Θ∆

ε on H∗∗ as follows:

Θ∆
ε (H, e, i) =

{
θH

∆

ε (e, i) if e ∈ E(H∆),

0 otherwise,
(6.28)

where H∆ is the truncated hypergraph introduced in Section 6.4.3 and θH
∆

ε is the unique
ε–balanced allocation associated to it.

Take a locally finite hypergraph H and an edge e in E(H∆). As θH
∆

ε is ε–balanced on
H∆ and e ∈ E(H∆), for i, j ∈ e we have

θH
∆

ε (e, i)

θH∆

ε (e, j)
=

exp(−∂θH∆

ε (i)/ε)

exp(−∂θH∆

ε (j)/ε)
.

By the definition of Θ∆
ε , if e ∈ E(H∆), then for all j′ ∈ e, Θ∆

ε (H, e, j′) = θH
∆

ε (e, j′) and
∂Θ∆

ε (H, j′) = ∂θH
∆

ε (j′). Taking logarithms on both sides of the above equation, we have

∂Θ∆
ε (H, i) + ε log Θ∆

ε (H, e, i) = ∂Θ∆
ε (H, j) + ε log Θ∆

ε (H, e, j), ∀i, j ∈ e,

with this equation holding pointwise whenever e ∈ E(H∆). As this equality holds for
all i, j ∈ e, any two convex combinations of the values of ∂Θ∆

ε + ε log Θ∆
ε evaluated at

nodes in e are equal, whenever e ∈ E(H∆). In particular, if Θ∆
ε′ denotes the ε′–balanced

allocation on H∗∗ defined similarly to the above, then, whenever e ∈ E(H∆), we have∑
i∈e Θ∆

ε (H, e, i) =
∑

i∈e Θ∆
ε′ (H, e, i) = 1. Hence we have:∑

i∈e

Θ∆
ε (H, e, i)

(
∂Θ∆

ε (H, i) + ε log Θ∆
ε (H, e, i)

)
=
∑
i∈e

Θ∆
ε′ (H, e, i)

(
∂Θ∆

ε (H, i) + ε log Θ∆
ε (H, e, i)

)
,

(6.29)

which holds pointwise, whenever e ∈ E(H∆). On the other hand, if e /∈ E(H∆), then, by
definition, Θ∆

ε (H, e, j) as well as Θ∆
ε′ (H, e, j) are zero for all j ∈ e. In this case the above

equality again holds, with 0 log 0 being interpreted as 0. In other words, pointwise on H∗∗,
we have

∇(Θ∆
ε (∂Θ∆

ε + ε log Θ∆
ε )) = ∇(Θ∆

ε′ (∂Θ∆
ε + ε log Θ∆

ε )),

where, by abuse of notation, we have treated ∂Θ∆
ε as a function on H∗∗ rather than on H∗,

via ∂Θ∆
ε (H, e, i) := ∂Θ∆

ε (H, i), and likewise for ∂Θ∆
ε′ . Rewriting the above identity, we have:

∇
(
Θ∆
ε ∂Θ∆

ε + εΘ∆
ε log Θ∆

ε −Θ∆
ε′ ∂Θ∆

ε

)
= ε∇(Θ∆

ε′ log Θ∆
ε ). (6.30)
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Note that ∂Θ∆
ε is pointwise bounded by ∆ by definition. Moreover, deg(µ) < ∞, which

implies that ~µ has finite total measure. Hence, all terms in the above equation have finite
integral. On the other hand, from the definition of ~µ, we have:∫

(Θ∆
ε −Θ∆

ε′ )∂Θ∆
ε d~µ =

∫
∂((Θ∆

ε −Θ∆
ε′ )∂Θ∆

ε )dµ =

∫
(∂Θ∆

ε − ∂Θ∆
ε′ )∂Θ∆

ε dµ.

Substituting this into (6.30) and using unimodularity, we have

〈∂Θ∆
ε − ∂Θ∆

ε′ , ∂Θ∆
ε 〉+ ε

∫
Θ∆
ε log Θ∆

ε d~µ = ε

∫
Θ∆
ε′ log Θ∆

ε d~µ, (6.31)

where 〈., .〉 denotes the inner product of two functions in L2(µ). Now, changing the order of
ε and ε′, we have

〈∂Θ∆
ε′ − ∂Θ∆

ε , ∂Θ∆
ε′ 〉+ ε′

∫
Θ∆
ε′ log Θ∆

ε′ d~µ = ε′
∫

Θ∆
ε log Θ∆

ε′ d~µ. (6.32)

Summing up these two equalities, we have:∥∥∂Θ∆
ε − ∂Θ∆

ε′

∥∥2

2
= ε

∫
Θ∆
ε′ log Θ∆

ε d~µ− ε
∫

Θ∆
ε log Θ∆

ε d~µ

+ ε′
∫

Θ∆
ε log Θ∆

ε′ d~µ− ε′
∫

Θ∆
ε′ log Θ∆

ε′ d~µ.

(6.33)

We now use the following information theoretic notation. For functions Θ,Θ′ : H∗∗ → [0, 1],
we define

H(Θ) := −
∫

Θ log Θd~µ, and

D(Θ‖Θ′) :=

∫
Θ log

Θ

Θ′
d~µ,

where 0 log 0 is interpreted as 0, and Θ(H, e, i) is assumed to be zero whenever Θ′(H, e, i) is
zero (by definition, Θ∆

ε and Θ∆
ε′ have this property). Rearranging the terms in (6.33),∥∥∂Θ∆

ε − ∂Θ∆
ε′

∥∥2

2
+ εD(Θ∆

ε′ ‖Θ∆
ε ) + ε′D(Θ∆

ε ‖Θ∆
ε′ ) = (ε− ε′)(H(Θ∆

ε )−H(Θ∆
ε′ )). (6.34)

Note that, since deg(µ) <∞ and ∂Θ∆
ε and ∂Θ∆

ε′ are pointwise bounded to ∆, all the terms
are finite. With, A := {[H, e, i] ∈ H∗∗ : e ∈ E(H∆)}, we have

D(Θ∆
ε′ ‖Θ∆

ε ) =

∫
A

Θ∆
ε′ log

Θ∆
ε′

Θ∆
ε

d~µ

=

∫
A
∇
(

Θ∆
ε′ log

Θ∆
ε′

Θ∆
ε

)
d~µ

=

∫
A

1

|e|
DKL((Θ∆

ε′ (H, e, j))j∈e‖(Θ∆
ε (H, e, j))j∈e)d~µ(H, e, i)

≥ 0,

(6.35)
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whereDKL denotes the standard KL divergence, and for [H, e, i] ∈ A, by definition, (Θ∆
ε′ (H, e, j))j∈e

and (Θ∆
ε′ (H, e, j))j∈e are vectors of nonnegative values summing up to one. Similarly, one

can show that D(Θ∆
ε ‖Θ∆

ε′ ) ≥ 0. Therefore, all the terms on the left hand side of (6.34) are
nonnegative. As a result

ε > ε′ ⇒ H(Θ∆
ε ) ≥ H(Θ∆

ε′ ). (6.36)

As H(Θ∆
ε ) ≥ 0 for all ε > 0, the above inequality implies that H(Θ∆

ε ) converges to some
value as ε ↓ 0. Another result of (6.34) is that for ε > ε′,

εD(Θ∆
ε′ ‖Θ∆

ε ) ≤ (ε− ε′)(H(Θ∆
ε )−H(Θ∆

ε′ )).

Dividing by ε and using ε > ε′ and H(Θ∆
ε ) ≥ H(Θ∆

ε′ ), we get

D(Θ∆
ε′ ‖Θ∆

ε ) ≤ H(Θ∆
ε )−H(Θ∆

ε′ ). (6.37)

Using (6.35) and Pinsker’s inequality (see, for instance, [CK11]),

D(Θ∆
ε′ ‖Θ∆

ε ) =

∫
A

1

|e|
DKL((Θ∆

ε′ (H, e, j))j∈e‖(Θ∆
ε (H, e, j))j∈e)d~µ

(a)

≥
∫
A

1

|e|
1

2

∑
j∈e

|Θ∆
ε′ (H, e, j)−Θ∆

ε (H, e, j)|2d~µ

(b)
=

1

2

∫
A
|Θ∆

ε′ −Θ∆
ε |2d~µ

=
1

2

∥∥Θ∆
ε −Θ∆

ε′

∥∥2

2
,

where (a) uses the Pinsker’s inequality, and (b) uses unimodularity of µ. Combining this
with (6.37), for ε, ε′ > 0 we have∥∥Θ∆

ε −Θ∆
ε′

∥∥2

2
≤ 2|H(Θ∆

ε )−H(Θ∆
ε′ )|.

Now, as we send ∆ to infinity, Θ∆
ε converges pointwise to the function Θε defined in Sec-

tion 6.5. Moreover, deg(µ) < ∞ and the function x log x is bounded for x ∈ [0, 1]. Hence,
using dominated convergence theorem, we have

‖Θε −Θε′‖2
2 ≤ 2|H(Θε)−H(Θε′)|. (6.38)

Similarly, sending ∆→∞, (6.36) implies that

ε > ε′ > 0 ⇒ H(Θε) ≥ H(Θε′). (6.39)

This means that, as H(Θε) ≥ 0 for all ε > 0, H(Θε) is convergent as ε ↓ 0. In particular, this
together with (6.38) implies that there is a sequence of positive values εk converging to zero
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such that Θεk converges to some Θ0 : H∗∗ → [0, 1] in L2(~µ). Therefore, there is a subsequence
of this sequence converging to Θ0 ~µ–almost everywhere. Without loss of generality, we may
assume this subsequence is the whole sequence. With this, Θεk converges to Θ0 both in
L2(~µ) and ~µ–almost everywhere. Using Lemma 6.3, we have ∂Θεk → ∂Θ0 µ–almost surely.
Lemma 6.3 then implies that for µ–almost all [H, i] ∈ H∗, ∂Θεk(H, j) → ∂Θ0(H, j) for all
j ∈ e. Following Remark 6.6, we can treat ∂Θ0 and the ∂Θεk as functions on H∗∗ instead of
H∗. Then, Lemma 6.2 implies that

∂Θεk(H, e, j)→ ∂Θ0(H, e, j) ∀j ∈ e, ~µ–a.e.. (6.40)

Now, we are ready to show that Θ0 is actually ~µ–balanced. To do so, assume that ∂Θ0(H, i) >
∂Θ0(H, j) for some i, j ∈ e. Equivalently, ∂Θ0(H, e, i) > ∂Θ0(H, e, j). Then (6.40) implies
that, outside a measure zero set, for some fixed δ, and for k large enough,

∂Θεk(H, e, i)− ∂Θεk(H, e, j) > δ ~µ–a.e..

On the other hand, using the definition of an ε–balanced allocation, we have

Θεk(H, e, i) ≤
1

1 + exp
(
−∂Θεk (H,e,j)−∂Θεk (H,e,i)

εk

) ≤ 1

1 + exp(δ/εk)
.

Sending k to infinity, since δ is fixed, the above inequality implies that Θεk(H, e, i) converges
to zero. Also, we know that Θεk → Θ0 ~µ–almost everywhere. Thus, we have shown that

∂Θ0(H, i) > ∂Θ0(H, j) for i, j ∈ e ⇒ Θ0(H, e, i) = 0, ~µ–a.e.,

which shows that Θ0 is balanced and the proof is complete.

6.6.2 Variational characterization

In this section, we prove the variational characterization (part 2) of Theorem 6.1.

Proposition 6.11. Assume Θ is a Borel allocation on H∗∗ and µ ∈ P(H∗) is unimodular
with deg(µ) <∞. Then, for all t ∈ R we have∫

(∂Θ− t)+dµ ≥ sup
f :H∗→[0,1]

Borel

∫
f̃mind~µ− t

∫
fdµ, (6.41)

where f̃min is defined as

f̃min(H, e, i) =
1

|e|
min
j∈e

f(H, j).

Furthermore, equality happens for all t ∈ R if and only if Θ is balanced. Moreover, when Θ
is balanced, the function f = 1∂Θ>t achieves the supremum.
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Proof. Note that for any real number x, we have x+ ≥ xy for y ∈ [0, 1]. Therefore, for any
Borel function f : H∗ → [0, 1], we have∫

(∂Θ− t)+dµ ≥
∫

(∂Θ− t)fdµ =

∫
f∂Θdµ− t

∫
fdµ. (6.42)

The assumption that deg(µ) <∞ guarantees that both integrals on the RHS are finite, and
hence

∫
(∂θ− t)fdµ exists. It is easy to see that f∂Θ = ∂(f̃Θ), where f̃ : H∗∗ → R is defined

as f̃(H, e, i) := f(H, i). Therefore, using the unimodularity of µ, we have∫
f∂Θdµ =

∫
f̃Θd~µ =

∫
∇(f̃Θ)d~µ. (6.43)

Now, we have

∇(f̃Θ)(H, e, i) =
1

|e|
∑
j∈e

f̃(H, e, j)Θ(H, e, j)

=
1

|e|
∑
j∈e

f(H, j)Θ(H, e, j)

(a)

≥ 1

|e|
min
j∈e

f(H, j)

= f̃min(H, e, i),

(6.44)

where (a) holds since
∑

j∈e Θ(H, e, j) = 1 and Θ(H, e, j) ≥ 0 for all j ∈ e. This, together
with (6.42) and (6.43), proves (6.41).

Now, we show that equality holds if and only if Θ is balanced. First, assume Θ is balanced.
We show that equality holds in (6.41) for all t ∈ R. Take f = 1∂Θ>t. Then, (6.42) becomes
an equality. Therefore, it remains to show that (6.44) also becomes an equality, ~µ–almost
everywhere. Note that if f(H, j) = 0 for all j ∈ e or f(H, j) = 1 for all j ∈ e, equality holds
in (6.44). Thereby, it suffices to consider the case that for some j ∈ e, f(H, j) = 0 and for
some other j′ ∈ e, f(H, j′) = 1. This implies ∂Θ(H, j′) ≥ t > Θ(H, j). As Θ is balanced,
outside a measure zero set, we can conclude from the above that Θ(H, e, j′) = 0, and so its
contribution in (6.44) vanishes. Since this is true for any j′ with f(H, j′) = 1, both sides of
the inequality (a) in (6.44) become equal to zero. As this argument holds outside a measure
zero set, the above discussion shows that (6.41) becomes an equality when Θ is balanced.
Moreover, the function f = 1∂Θ>t achieves the supremum.

Now, we show that if (6.41) is an equality for all t ∈ R, then Θ is balanced. Fix some
t ∈ R. First, we claim that the supremum on the RHS of (6.41) is a maximum. To see
this, note that we have already shown in Section 6.6.1 that a balanced allocation Θ0 with
respect to µ exists, and the above discussion then implies that f = 1∂Θ0>t achieves the
equality in (6.41) with Θ being replaced with Θ0. But the RHS of (6.41) has no dependence
on Θ. Thereby, the RHS of (6.41) always has f := 1∂Θ0>t as a maximizer, whenever µ is
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unimodular with bounded mean. Since f ∈ [0, 1], we have (∂Θ− t)+ ≥ (∂Θ− t)f pointwise.
However, equality holds in (6.41), so by (6.44), we must have

(∂Θ− t)f = (∂Θ− t)+ µ–a.s.. (6.45)

Using Lemma 6.1, this means that

(∂Θ− t)f̃ = (∂Θ− t)+ ~µ–a.e., (6.46)

where, by abuse of notation, we have treated ∂Θ as being defined on H∗∗ via ∂Θ(H, e, i) =
∂Θ(H, i). On the other hand, (6.44) must be an equality and

∇(f̃Θ) = f̃min ~µ–a.e.. (6.47)

Now, we show that Θ must be balanced by checking the conditions in Defintion 6.24. For
the above fixed t, if for some [H, e, i] ∈ H∗∗ and some j ∈ e we have

∂Θ(H, e, i) > t > ∂Θ(H, e, j),

then (6.46) implies that outside a measure zero set, we can conclude that f(H, i) = 1 and
f(H, j) = 0. This can be seen by comparing the left hand side and right hand side of (6.46)
in each of the two cases, and then recalling that f̃(H, e, i) = f(H, i).

Hence, by definition, f̃min(H, e, i) = 0. Therefore, (6.47) implies that outside a measure
zero set, we have

0 = ∇(f̃Θ)(H, e, i) =
1

|e|
∑
k∈e

f(H, k)Θ(H, e, k)

≥ 1

|e|
f(H, i)Θ(H, e, i)

=
1

|e|
Θ(H, e, i),

which implies that Θ(H, e, i) = 0.
So far we have shown that, for a fixed t, for almost all [H, e, i] ∈ H∗∗, if for some j ∈ e

we have Θ(H, e, i) > t > Θ(H, e, j), then Θ(H, e, i) = 0. Since this holds for all t ∈ Q,
and Q is countable and dense in R, we can conclude that for ~µ–almost every [H, e, i] ∈ H∗∗,
∂Θ(H, i) > ∂Θ(H, j) for some j ∈ e implies that Θ(H, e, i) = 0. Using Proposition 6.3,
we can conclude that for ~µ–almost all [H, e, i] ∈ H∗∗, ∂Θ(H, e, j1) ≥ ∂Θ(H, e, j2) for some
j1, j2 ∈ e implies that ∂Θ(H, j1) = 0. Thus, Θ is balanced.

6.6.3 Optimality

In this section, we prove part 3 of Theorem 6.1. We do this in three steps:
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(a)⇒ (c) Let Θ be a balanced allocation with respect to µ. Let Θ′ be any other allocation,
and f : [0,∞)→ [0,∞) be convex. We will show that∫

f ◦ ∂Θdµ ≤
∫
f ◦ ∂Θ′dµ.

Using Proposition 6.11, since Θ is balanced and Θ′ is a Borel allocation we have, for any
t ∈ R, ∫

(∂Θ− t)+dµ = sup
f :H∗→[0,1]

Borel

∫
f̃mind~µ− t

∫
fdµ ≤

∫
(∂Θ′ − t)+dµ. (6.48)

On the other hand, ∫
∂Θdµ =

∫
Θd~µ =

∫
∇Θd~µ =

∫
1

|e|
d~µ.

The same chain of equalities holds for Θ′. Hence,
∫
∂Θd~µ =

∫
∂Θ′d~µ. Standard results in

the convex ordering of random variables (see Theorem 3.A.1 of [SS07] for instance) show that
(6.48) implies that Θ �cx Θ′, where �cx denotes the partial order defined by the property
that

∫
f ◦Θdµ ≤

∫
f ◦Θ′dµ for any convex function f .

(c)⇒ (b) Just restrict to the given strictly convex function.
(b)⇒ (a) Assume Θ0 is a balanced allocation w.r.t. µ (from Section 6.6.1 we know it

exists). As we showed above,
∫
f ◦∂Θ0dµ ≤

∫
f ◦∂Θdµ for the given strictly convex function

f : [0,∞)→ [0,∞). But Θ is a minimizer. Therefore,∫
f ◦ ∂Θdµ =

∫
f ◦ ∂Θ0dµ.

Now, define Θ′ : H∗∗ → [0, 1] as Θ′ = (Θ + Θ0)/2. Note that Θ′ is a Borel allocation. Also,
using the convexity of f , we have∫

f ◦ ∂Θ′dµ ≤ 1

2

(∫
f ◦ ∂Θdµ+

∫
f ◦ ∂Θ0dµ

)
=

∫
f ◦ ∂Θ0dµ. (6.49)

On the other hand, since Θ′ is a Borel allocation and Θ0 is balanced, the (a) ⇒ (c) part
implies that ∫

f ◦ ∂Θ0dµ ≤
∫
f ◦ ∂Θ′dµ.

Hence, we have equality in (6.49). As f is nonnegative, it must be the case that

f ◦ ∂Θ′ =
f ◦ ∂Θ0 + f ◦ ∂Θ

2
µ–a.s..

Now, since f is strictly convex, this implies that ∂Θ = ∂Θ0, µ–almost surely. Therefore, for
any value of t, we have ∫

(∂Θ− t)+dµ =

∫
(∂Θ0 − t)+dµ.

Comparing this with (6.41), we realize that Θ achieves the equality therein, which means,
from Proposition 6.11, that Θ is balanced.
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6.6.4 Uniqueness of ∂Θ

In this section we prove part 4 of Theorem 6.1. If Θ is balanced, part 3 of the theorem, which
was proved in the preceding section, implies that for a strictly convex function f ,

∫
f ◦∂Θdµ

is minimized. Then, in the proof of the (b) ⇒ (a) part of Section 6.6.3 it was shown that
∂Θ = ∂Θ0 µ–almost surely. This is precisely what we want to show.

For the converse, assume that ∂Θ = ∂Θ0, µ-almost surely. Then, for all t, we have∫
(∂Θ− t)+dµ =

∫
(∂Θ0 − t)+dµ,

so Proposition 6.11 implies that Θ is balanced, by the same logic that was used at the end
of the preceding section.

6.6.5 Continuity with respect to the local weak limit

In this section we prove Part 5 of Theorem 6.1. Prior to that, we need some notation and
tools.

Recall the notion of marked hypergraphs from Section 6.2.10. Let ProjH̄∗(Ξ)→H∗ : H̄∗(Ξ)→
H∗ be the function that removes marks, i.e.

ProjH̄∗(Ξ)→H∗([H̄, i]) = [H, i], (6.50)

where H is the underlying hypergraph associated to H̄. It can be easily checked that
ProjH̄∗(Ξ)→H∗ is a continuous map.

Note that allocations could be considered as marks with values in [0, 1]. Hence, we can
capture the notion of a balanced allocation using the formalism in Section 6.2.10, via the
following definition.

Consider the function f : H̄∗∗(Ξ) → Ξ defined as f(H̄, e, i) = ξH̄(e, i). When Ξ has an
additive structure (e.g. Ξ = [0, 1]) we may consider ∂f : H̄∗(Ξ)→ Ξ, defined as

∂f(H̄, i) =
∑

e∈E(H̄),e3i

f(H̄, e, i) =
∑

e∈E(H̄),e3i

ξH̄(e, i). (6.51)

By abuse of notation, we may write ∂ξH̄(i) instead of ∂f(H̄, i) with the above f .

Definition 6.32. A measure µ̄ ∈ P(H̄∗([0, 1])) is called balanced if for ~̄µ–almost every
[H̄, e, i] ∈ H̄∗([0, 1]), we have ∑

j∈e

ξH̄(e, j) = 1, (6.52)

and
∂ξH̄(j) > ∂ξH̄(j′) for some j, j′ ∈ e =⇒ ξH̄(e, j) = 0. (6.53)

Before proving the result of this section, we state the following lemmas and postpone
their proofs until the end of this section.
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Lemma 6.8. If µ̄n is a sequence of balanced probability measures on H̄∗([0, 1]) with weak
limit µ̄, then µ̄ is also balanced.

Lemma 6.9. Assume θ1, . . . , θn and θ′1, . . . , θ
′
n are non–negative real numbers such that∑

i θi =
∑

i θ
′
i = 1. Also, assume that nonnegative real numbers l1, . . . , ln and l′1, . . . , l

′
n

are given such that for 1 ≤ i, j ≤ n, li > lj implies θi = 0. Similarly, assume that l′i > l′j
implies θ′i = 0. Then, we have

n∑
i=1

(θi − θ′i)1li>l′i ≤ 0.

Lemma 6.10. Assume K is a compact subset of H∗ and Ξ is a compact metric space. Define
K̄ ⊂ H̄∗(Ξ) as

K̄ := {[H̄, i] ∈ H̄∗(Ξ) : [H, i] ∈ K}.

Then, K̄ is compact in H̄∗(Ξ).

Proposition 6.12. Let {Hn}n≥1 be a sequence of finite hypergraphs with local weak limit µ.
Then, if LHn denotes the distribution of balanced load on Hn with a vertex chosen uniformly
at random, and L is the law of ∂Θ corresponding to the balanced allocation Θ on µ, we have

LHn ⇒ L.

Proof. Define θn to be a balanced allocation on Hn and H̄n to be the marked hypergraph
obtained by adding θn to Hn as edge marks, i.e. ξH̄n(e, i) = θn(e, i) for (e, i) ∈ Ψ(H). Note
that Hn is a finite hypergraph; hence, θn is well defined and ∂θn(i) is unique for i ∈ V (Hn).
Now, define µ̄n ∈ P(H̄∗([0, 1])) to be the distribution of [H̄n, v] where v ∈ V (Hn) is chosen
uniformly at random. We claim that {µ̄n}∞n=1 is a tight sequence, which means that it has a
convergent subsequence. Since µn converges weakly to µ, Prokhorov’s theorem implies that
µn is tight in P(H∗) (see, for instance, [Bil13, Theorems 5.1 and 5.2]). Consequently, for
ε > 0, there is a compact set K ⊂ H∗ such that µn(Kc) ≤ ε for all n. Define

K̄ := {[H̄, i] ∈ H̄∗([0, 1]) : [H, i] ∈ K}.

From Lemma 6.10, K̄ is compact in H̄∗([0, 1]). It is easy to see that µ̄n(K̄c) = µn(Kc) which
means that µ̄n is a tight sequence. Hence, it has a subsequence converging weakly to some
µ̄ ∈ P(H̄∗). In order to simplify the notation, assume that this subsequence is the whole
sequence.

With the projection map ProjH̄∗([0,1])→H∗ defined in (6.7), define νn and ν to be the push-
forward measures on H∗ corresponding to µ̄n and µ̄, respectively. As ProjH̄∗([0,1])→H∗ removes
marks, we have νn = µn and ν = µ. Now, note that µ̄n ⇒ µ̄ implies (ProjH̄∗([0,1])→H∗)∗µ̄n ⇒
(ProjH̄∗([0,1])→H∗)∗µ̄ which means that µn ⇒ (ProjH̄∗([0,1])→H∗)∗µ̄. On the other hand, we know
µn ⇒ µ. Thereby, (ProjH̄∗([0,1])→H∗)∗µ̄ = µ.
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Note that, with the above construction, LHn is the pushforward of µ̄n under the mapping
[H̄, i] 7→ ∂ξH̄(i) defined in (6.51). Therefore, as µ̄n ⇒ µ̄, LHn converges weakly to the law of
∂ξH̄(i) under µ̄. Consequently, to show that LHn ⇒ L, it suffices to show that

∂ξH̄(i) = ∂Θ0([H, i]) µ̄–a.s.. (6.54)

From Proposition E.2 in Appendix E.5 we know that µ̄ is unimodular. Hence, we have∫
(∂ξH̄(i)− ∂Θ0([H, i]))+ dµ̄(H̄, i)

=

∫
(∂H̄ξ(i)− ∂Θ0([H, i]))1∂ξH̄(i)>∂Θ0([H,i])dµ̄([H̄, i])

=

∫
(ξH̄(e, i)−Θ0([H, e, i]))1∂ξH̄(i)>∂Θ0([H,i])d~̄µ([H̄, e, i])

=

∫
1

|e|
∑
j∈e

(ξH̄(e, j)−Θ0([H, e, j]))1∂ξH̄(j)>∂Θ0([H,j])d~̄µ([H̄, e, i),

where the last equality follows from unimodularity of µ̄. From Lemma 6.8, µ̄ is balanced
in the sense of Definition 6.32 above. Also, Lemma 6.9 together with the balancedness
of µ̄ and Θ0, implies that the integrand is non–positive almost everywhere, which means
that ∂ξH̄(i) ≤ ∂Θ0([H, i]) µ̄-almost surely. It could be proved in a similar fashion that
∂Θ0(H, i) ≤ ∂ξH̄(i) µ̄-almost surely. This proves (6.54).

So far, we have shown that LHn has a subsequence LHnk such that LHnk ⇒ L. This
argument could be repeated for any subsequence of Hn, i.e. any subsequence Hnk has a
further subsequence Hnkl

such that LHnkl ⇒ L. This implies that LHn ⇒ L (see, for

instance, Theorem 2.2 in [Bil71]).

Proof of Lemma 6.8. First, we show that µ̄ satisfies (6.53). Define

A∗∗ := {[H̄, e, i] ∈ H̄∗∗([0, 1]) : ∀j, j′ ∈ e, ∂ξH̄(j) > ∂ξH̄(j′)⇒ ξH̄(e, j) = 0},

and

A∗ := {[H̄, i] ∈ H̄∗([0, 1]) : ∀e 3 i, j, j′ ∈ e, ∂ξH̄(j) > ∂ξH̄(j′)⇒ ξH̄(e, j) = 0}.

We claim balancedness of µ̄ ∈ P(H∗([0, 1])) is equivalent to µ̄(A∗) = 1. By definition, µ̄
being balanced means µ̄(A∗∗) = µ̄(H̄∗∗([0, 1])). This is equivalent to

∫
1A∗∗d~̄µ =

∫
1d~̄µ, or∫

∂1A∗∗dµ̄ =
∫

degH(i)dµ̄. But we have ∂1A∗∗ ≤ degH(i) pointwise. Therefore, ∂1A∗∗(H, i, ξ) =
degH(i), µ̄–almost surely. This is equivalent to [H̄, e, i] ∈ A∗∗ for all e 3 i, µ̄–almost surely,
or [H̄, i] ∈ A∗ µ̄–almost surely which is in turn equivalent to µ̄(A∗) = 1.

Now, we claim that A∗ is closed in H̄∗([0, 1]) (with respect to the topology induced by
the distance d̄∗ defined in Section 6.2.10). Equivalently, we show that Ac∗ is open. Take
an arbitrary [H̄, i] ∈ Ac∗. Since [H̄, i] /∈ A∗, there exists e 3 i and j, j′ ∈ e such that
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∂ξH̄(j) > ∂ξH̄(j′) but ξH̄(e, j) > 0. If [H̄ ′, i′] ∈ H̄∗([0, 1]) is such that d := d̄∗([H̄, i], [H̄
′, i′])

satisfies d < 1/4, then [H, i] ≡3 [H ′, i′] (recall that H and H ′ are the underlying unmarked
hypergraphs associated to H̄ and H̄ ′, respectively). Moreover, if we define

ε = min

{
∂ξH̄(j)− ∂ξH̄(j′)

3
,
ξH̄(e, j)

2

}
,

and
∆ = max

k:dH(i,k)≤3
degH(k),

then if

d <
1

1 + ∆
ε

,

one can check that ∂ξH̄′(φ(j)) > ∂ξH̄′(φ(j′)) while ξH̄′(φ(e), φ(j)) > 0, where φ is the local
isomorphism between H and H ′ following from [H, i] ≡3 [H ′, i′]. This in particular means
that [H̄ ′, i′] /∈ A∗. Consequently, the ball with radius min{1/4, 1/(1 + (∆/ε))} around [H̄, i]
is in Ac∗. This means that A∗ is closed.

Notice that since µ̄n is balanced, µ̄n(A∗) = 1. On the other hand, as µ̄n ⇒ µ̄ and A∗ is
closed, we have

µ̄(A∗) ≥ lim sup µ̄n(A∗) = 1,

which means that µ̄(A∗) = 1 and µ̄ is balanced.
Now we turn to showing that µ̄ also satisfies (6.52). Similar to the above approach, if we

define
B∗∗ := {[H̄, e, i] ∈ H∗∗([0, 1]) :

∑
j∈e

ξH̄(e, j) = 1},

and
B∗ := {[H̄, i] ∈ H∗([0, 1]) : [H̄, e, i] ∈ B∗∗ ∀e 3 i},

we can show that for ~̄µ–almost every [H̄, e, i] ∈ H∗∗([0, 1]) we have
∑

j∈e ξH̄(e, j) = 1. Hence,
all the conditions in Definition 6.32 are satisfied and µ̄ is balanced.

Proof of Lemma 6.9. Define L := mini li and A := {1 ≤ i ≤ n : li = L}. Likewise, let
L′ := mini l

′
i and A′ := {1 ≤ i ≤ n : l′i = L′}. The given condition implies that θj = 0 for

j /∈ A and similarly θ′j = 0 for j /∈ A′.
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First assume that L > L′. In this case, we have∑
i

(θi − θ′i)1li>l′i
(a)
=

∑
i∈A∪A′

(θi − θ′i)1li>l′i

=
∑
i∈A\A′

(θi − θ′i)1li>l′i +
∑
i∈A′

(θi − θ′i)1li>l′i

(b)
=
∑
i∈A\A′

θi1L>l′i +
∑
i∈A′

(θi − θ′i)1li>l′i

(c)
=
∑
i∈A\A′

θi1L>l′i +
∑
i∈A′

(θi − θ′i)

≤
∑
i∈A\A′

θi +
∑
i∈A′

θi − θ′i

= 1− 1 = 0,

where (a) holds since θ and θ′ are zero outside A∪A′, (b) uses θ′i = 0 for i /∈ A′, and (c) uses
the fact that for i ∈ A′, li ≥ L > L′ = l′i.

Now, for the case L ≤ L′ we have

n∑
i=1

(θi − θ′i)1li>l′i =
∑
i∈A

(θi − θ′i)1li>l′i +
∑
i∈A′\A

(θi − θ′i)1li>l′i

(a)
=
∑
i∈A′\A

(θi − θ′i)1li>l′i

(b)
=
∑
i∈A′\A

−θ′i1li>l′i

≤ 0,

where (a) follows from the fact that for i ∈ A, li = L ≤ L′ ≤ l′i and (b) employs θi = 0 for
i /∈ A. This completes the proof.

Proof of Lemma 6.10. We take a sequence [H̄n, in] in K̄ and try to find a converging sub-
sequence. Notice that [Hn, in] is a sequence in K. Therefore, it has a convergent subse-
quence. Without loss of generality, assume this subsequence is the whole sequence, con-
verging to some [H, i] ∈ H∗. By reducing to a further subsequence, we may assume that
dH∗([Hn, in], [H, i]) ≤ 1/(n+1). This means that, for all m ≥ n, we have (Hm, im) ≡n (H, i).
Since (H, i) is locally finite, there are finitely many marks up to level n in (H, i) which
all have values in the compact space Ξ. Hence, there is a subsequence where the marks
in the first n levels in H̄n are convergent. With this, we may associate marks to (H, i)n
using the limiting values. Since this is true for all n, via a diagonalization argument we may
construct a marked rooted hypergraph (H̄, i) together with a subsequence (H̄ml , iml) such
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that the underlying unmarked hypergraph is identical to H and also, for any integer k, the
marks up to depth k in (H̄ml , iml) converge to those in (H̄, i) as m → ∞. This means that
[H̄ml , iml ]→ [H̄, i] and completes the proof.

6.7 Response Functions

Let H be a fixed hypergraph (not necessary bounded) and i ∈ V (H) be a vertex in H. Fix
ε > 0. The response function ρε(H,i) : R → R is defined as follows: ρε(H,i)(t) is the total load
at node i corresponding to the canonical ε–balanced allocation with respect to an external
load with value t at node i (recall the definition of canonical ε–balanced allocations from
Section 6.4.3). More precisely, given t ∈ R, let bt,i : V (H) → R be the baseload function

such that bt,i(i) = t and bt,i(j) = 0 for j 6= i. Moreover, let θ
bt,i
ε be the canonical ε–balanced

allocation on H with respect to the baseload bt,i, as was defined in Section 6.4.3. We then
define

ρε(H,i)(t) := ∂bt,iθ
bt,i
ε (i).

It turns out that this function has the following properties:

Proposition 6.13. Given a vertex rooted hypergraph (H, i), for any ε > 0 and x < y, we
have

0 ≤ ρε(H,i)(y)− ρε(H,i)(x) ≤ y − x. (6.55)

Also,
0 ≤ ρε(H,i)(x)− x ≤ degH(i). (6.56)

Proof. Let θ
bx,i
ε be the canonical ε–balanced allocation with respect to the baseload bx,i, as

defined above. Then, by definition, ρε(H,i)(x) = ∂bx,iθ
bx,i
ε (i). Let by,i and θ

by,i
ε be defined

similarly, with x being replaced by y. As x < y, Proposition 6.6 implies that ∂bx,iθ
bx,i
ε (i) ≤

∂by,iθ
by,i
ε (i), which means ρε(H,i)(x) ≤ ρε(H,i)(y).

In order to show that ρε(H,i)(y)− ρε(H,i)(x) ≤ y − x, let dx,i be the baseload function such

that dx,i(i) = 0 and dx,i(j) = −x for j ∈ V (H), j 6= i. Moreover, let dy,i be the baseload

function such that dy,i(i) = 0 and dy,i(j) = −y for j ∈ V (H), j 6= i. Let θ
bx,i,∆
ε and θ

by,i,∆
ε be

the canonical ε–balanced allocations on H∆ with respect to bx,i and by,i, respectively. It is

easy to see that, on H∆, θ
bx,i,∆
ε and θ

by,i,∆
ε are ε–balanced with respect to dx,i and dy,i as well,

respectively. This is because bx,i(j) = dx,i(j) + x and by,i(j) = dy,i(j) + y, for all j ∈ V (H).
As dx,i(i) = 0 and bx,i(i) = x, we have

∂dx,iθ
bx,i,∆
ε (i) = ∂bx,iθ

bx,i,∆
ε (i)− x.

Likewise, ∂dy,iθ
by,i,∆
ε (i) = ∂by,iθ

by,i,∆
ε (i) − y. On the other hand, as dx,i(j) ≥ dy,i(j) for all

j ∈ V (H), using Proposition 6.5, ∂dx,iθ
bx,i,∆
ε (i) ≥ ∂dy,iθ

by,i,∆
ε (i). Comparing with the above,

this means that
∂bx,iθ

bx,i,∆
ε (i)− x ≥ ∂by,iθ

by,i,∆
ε (i)− y.
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Sending ∆→∞, we have ∂by,iθ
by,i
ε (i)−∂bx,iθ

bx,i
ε ≤ y−x. This means that ρε(H,i)(y)−ρε(H,i)(x) ≤

y − x.
To show (6.56), simply note that ρε(H,i)(x) − x is ∂θ

bx,i
ε (i), which is the sum of degH(i)

many numbers in the interval [0, 1], hence is in the interval [0, degH(i)].

In view of Proposition 6.13, it is convenient to define the following class of functions:

Definition 6.33. For C > 0, let Υ(C) denote the class of functions g : R → R satisfying
the following conditions:

(i) g is nondecreasing.

(ii) g is nonexpansive, i.e. for x ≤ y we have g(y)− g(x) ≤ y − x.

(iii) 0 ≤ g(x)− x ≤ C.

In this notation, Proposition 6.13 implies that for any vertex rooted hypergraph (H, i)
and ε > 0,

ρε(H,i)(.) ∈ Υ(degH(i)).

It is easy to check the following properties of this class of functions:

Lemma 6.11. For any function g ∈ Υ(C) we have

(i) g is continuous.

(ii) limx→±∞ g(x) = ±∞.

(iii) For any t ∈ R, the set {x ∈ R : g(x) = t} is a nonempty bounded closed interval in R.

(iv) The function g−1 : R→ R defined as

g−1(t) := max{x ∈ R : g(x) = t}, (6.57)

is well defined, nondecreasing and right–continuous. Moreover, if D denotes its set of
discontinuities of g−1, D is countable. Furthermore, the set {x : g(x) = t} has exactly
one element iff t /∈ D.

(v) Let D be the set of discontinuities of g−1 and t /∈ D. If for some a, a < g−1(t), then
we have g(a) < t. Moreover, if for some a we have a > g−1(t), then we have g(a) > t.
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6.7.1 Recursion for Response functions on Hypertrees

Recall from Section 6.4.5 that if T is a hypertree, then for (e, i) ∈ Ψ(T ), Te→i is obtained
by removing e from T and looking at the connected component of the resulting hypertree
rooted at i.

Given x ∈ R, let bx be the baseload function on Te→i with bx(i) = x and bx(j) = 0, j 6= i.
With this, let θbxε be the canonical ε–balanced allocation on Te→i with respect to bx. As was
discussed above, ρεTe→i(x) = x+ ∂θbxε (i).

Now we attempt to find some recursive expressions for such response functions. Before
that, we need the following general lemma, whose proof is postponed to the end of this
section.

Lemma 6.12. Given C > 0 and a collection of nondecreasing functions gi : [0, 1] → R,
1 ≤ i ≤ n, the set of fixed point equations

θi =
e−gi(θi)∑n

j=1 e
−gj(θj) + C

1 ≤ i ≤ n, (6.58)

has a unique solution (θ1, . . . , θn) ∈ [0, 1]n.

Proposition 6.14. Assume T is a locally finite hypertree (not necessarily bounded), ε > 0,
and (e, i) ∈ Ψ(T ). Then, ρεTe→i(.) is an invertible function, and for t ∈ R, we have

(
ρεTe→i

)−1
(t) = t−

∑
e′3i:e′ 6=e

(
1−

∑
j∈e′,j 6=i

ζεe′,j

)
, (6.59)

where {ζεe′,j} for e′ 3 i, e′ 6= e, j ∈ e′, j 6= i are the unique solutions to the set of equations

ζεe′,j =

exp

(
−
ρεTe′→j

(ζε
e′,j)

ε

)
e−t/ε +

∑
l∈e′,l 6=i exp

(
−
ρεTe′→l

(ζε
e′,l)

ε

) . (6.60)

Proof. Note that Lemma 6.11 implies that the set A(t) := {x ∈ R : ρεTe→i(x) = t} is not
empty. Hence, in order to show that ρεTe→i(.) is invertible, we should show that A(t) is a
singleton for all t ∈ R. By definition, x ∈ A(t) means that we have

t = x+
∑

e′3i,e′ 6=e

(
1−

∑
j∈e′,j 6=i

θbxε (e′, j)

)
. (6.61)

For each (e′, j) in the above summation, as Te′→j is a subtree of Te→i, we can treat θbxε as an
allocation on Te′→j via the identity projection. With this, Proposition 6.8 implies that θbxε
is the canonical ε–balanced allocation on Te′→j with respect to the baseload function that
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evaluates to θε(e′, j) at j and zero elsewhere. Thereby, by the definition of the response
function, for each such pair (e′, j), we have ∂θbxε (j) = ρεTe′→j(θ

ε(e′, j)). Consequently,

θbxε (e′, j) =

exp

(
−
ρεTe′→j

(θbxε (e′,j))

ε

)
e−t/ε +

∑
l∈e′,l 6=i exp

(
−
ρεTe′→l

(θbxε (e′,l))

ε

) .
Lemma 6.12 guarantees that for each e′ 3 i, e′ 6= e, there is a unique set of solutions to these
equations. From (6.61), we realize that for any t ∈ R, there is a unique solution for x. This
implies the invertibility of ρεTe→i . Rearranging (6.61), we get (6.59), with ζe′,j = θbxε (e′, j).

Now, we will send ε to zero in the above Proposition and show that, under some con-
ditions, the sequence of response functions converges pointwise to a limit which satisfies a
certain fixed point equation. To do so, we need the following lemma, whose proof is given
at the end of this section.

Lemma 6.13. Assume {gn}∞n=1 is a sequence of functions in Υ(C) that converge pointwise to
a function g, i.e. g(x) = limn→∞ gn(x) for all x ∈ R. Then, g is also in Υ(C). Furthermore,
if Dn denotes the set of discontinuities of gn and D denotes the set of discontinuities of g,
then for t /∈ (

⋃
nDn) ∪D we have

lim
n→∞

g−1
n (t) = g−1(t). (6.62)

Now, we can write recursive equations for the limit of ρεTe→i , if it exists.

Proposition 6.15. Assume T is a locally finite hypertree (not necessarily bounded) and εn
is a sequence of positive numbers converging to zero, with θεn being the canonical εn–balanced
allocation on T . If li := limn→∞ ∂θεn(i) exists for all i ∈ V (T ), then, for all (e, i) ∈ Ψ(T ),
ρεnTe→i(.) converges pointwise to some ρTe→i(.) ∈ Υ(degT (i)− 1). Moreover, for all t ∈ R, we
have

ρ−1
Te→i

(t) = t−
∑

e′3i:e′ 6=e

[
1−

∑
j∈e′,j 6=i

(
ρ−1
Te′→j

(t)
)+
]1

0

, (6.63)

where the inverse functions are defined as in (6.57). Furthermore, for a node i ∈ V (T ) we
have

li > t ⇐⇒
∑
e3i

[
1−

∑
j∈e,j 6=i

(
ρ−1
Te→j

(t)
)+
]1

0

> t. (6.64)

Proof. First we fix x ∈ R and (e, i) ∈ Ψ(T ) and show that, as n→∞, ρεnTe→i(x) is convergent.
We call the limit ρTe→i(x). Let θbxεn denote the canonical εn–balanced allocation on Te→i with
baseload bx, which equals x at i and is zero elsewhere. By definition, ρεnTe→i(x) = x+ ∂θbxεn(i).
Thus, it suffices to show that ∂θbxεn(i) is convergent. Note that θbxεn is a sequence in the
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compact space [0, 1]Ψ(Te→i) equipped with the product topology. On the other hand, ∂θbxεn(i)
is a bounded sequence depending only on a finite number of coordinates, namely degT (i)−1.
As a result, in order to show that ∂θbxεn(i) is convergent, it suffices to show that if θ1 and θ2

are two subsequential limits of θbxεn in [0, 1]Ψ(Te→i), then ∂θ1(i) = ∂θ2(i). Passing to the limit
in (6.2), we realize that both θ1 and θ2 are balanced allocations on Te→i with respect to the
baseload bx. Using Proposition 6.2, it suffices to show that ‖∂θ1 − ∂θ2‖l1(V (Te→i))

<∞. From
Proposition 6.8, we know that the restriction of θεn to Te→i is the canonical εn–balanced
allocation with baseload θεn(e, i) at i and zero elsewhere. Hence, if K is a finite subset of
V (Te→i) \ {i}, using Proposition 6.7, we have∑

j∈K

|∂θbxεn(j)− ∂θεn(j)| ≤ |x|+ θεn(e, i) ≤ |x|+ 1.

Using the triangle inequality, for integers n and m,∑
j∈K

|∂θbxεn(j)− ∂θbxεm(j)| ≤ 2(|x|+ 1) +
∑
j∈K

|∂θεn(j)− ∂θεm(j)|.

Now, send n to infinity along the subsequence of θbxεn that converges to θ1. Likewise, send
m to infinity along the subsequence of θbxεn that converges to θ2. Using the assumption that
∂θεn(j) is convergent, and since K is finite, we get∑

j∈K

|∂θ1(j)− ∂θ2(j)| ≤ 2(|x|+ 1).

Since K is arbitrary, sending K to V (Te→i) \ {i} we get∑
j∈V (Te→i)

|∂θ1(j)− ∂θ2(j)| = |∂θ1(i)− ∂θ2(i)|+

∑
j∈V (Te→i)\{i}

|∂θ1(j)− ∂θ2(j)|

≤ 2(|x|+ 1) + 2 degT (i) <∞,

which means ‖∂θ1 − ∂θ2‖l1(V (Te→i))
< ∞. This means that for all x ∈ R and (e, i) ∈ Ψ(T ),

ρεnTe→i(x)→ ρTe→i(x). As ρεnTe→i(.) ∈ Υ(degT (i)− 1), this in particular implies that ρTe→i(.) ∈
Υ(degT (i)− 1).

Now, we prove (6.63). Using part (iv) of Lemma 6.11, both sides of (6.63) are right
continuous functions of t. Hence, if D denotes the union of the discontinuity sets of ρ−1

Te→i

and ρ−1
Te′→j

for e′ 3 i and j ∈ e′, D is countable and hence Dc is dense in R. Thus, due to the

right continuity, it suffices to show (6.63) for t /∈ D.
Now, take some t ∈ Dc. Using Lemma 6.13 we have

ρ−1
Te→i

(t) = lim
n→∞

(
ρεnTe→i

)−1
(t),
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for t in a dense subset of Dc. By abuse of notation, we continue to denote this subset by Dc.
Using Proposition 6.14, (ρεnTe→i)

−1 is expressed in terms of ζεne′,j which are solutions to (6.60).
Comparing this to (6.63), it suffices to prove that for each e′ 3 i, e′ 6= e, we have

lim
n→∞

1−
∑

j∈e′,j 6=i

ζεne′,j =

[
1−

∑
j∈e′,j 6=i

(
ρ−1
Te′→j

(t)
)+
]1

0

. (6.65)

Fixing such an e′, since for each j ∈ e′, j 6= i, the sequence {ζεne′,j}∞n=1 is in the compact set

[0, 1], it suffices to show that if for all j ∈ e′, j 6= i, there is a subsequence ζ
εnk
e′,j converging to

some ζ∗e′,j, then

1−
∑

j∈e′,j 6=i

ζ∗e′,j =

[
1−

∑
j∈e′,j 6=i

(
ρ−1
Te′→j

(t)
)+
]1

0

. (6.66)

Without loss of generality and in order to simplify the notation, we may assume that the
subsequence is the whole sequence, i.e. for all j ∈ e′, j 6= i, ζεne′,j → ζ∗e′,j. We show (6.66) in
different cases:

Case I:
∑

j∈e′,j 6=i

(
ρ−1
Te′→j

(t)
)+

≤ 1: since
∑

j∈e′,j 6=i

(
ρ−1
Te′→j

(t)
)+

is nonnegative, it suffices

to show that ζ∗e′,j =
(
ρ−1
Te′→j

(t)
)+

for each j ∈ e′, j 6= i. For such a j, we do this in two

subcases:
Case Ia: First, assume ρ−1

Te′→j
(t) ≤ 0, in which case we should show ζ∗e′,j = 0. If this is

not the case, as ζ∗e′,j ∈ [0, 1], there must be the case that ζ∗e′,j > 0 ≥ ρ−1
Te′→j

(t). Then, part

(v) of Lemma 6.11 implies that ρTe′→j(ζ
∗
e′,j) ≥ t+ δ for some δ > 0. With this,

ρεnTe′→j(ζ
εn
e′,j)− t = ρεnTe′→j(ζ

εn
e′,j)− ρ

εn
Te′→j

(ζ∗e′,j)

+ ρεnTe′→j(ζ
∗
e′,j)− ρTe′→j(ζ

∗
e′,j)

+ ρTe′→j(ζ
∗
e′,j)− t

≥ −|ζεne′,j − ζ
∗
e′,j|

+ ρεnTe′→j(ζ
∗
e′,j)− ρTe′→j(ζ

∗
e′,j)

+ ρTe′→j(ζ
∗
e′,j)− t.

Note that the first two terms converge to zero as n → ∞ and hence they could be made
smaller than δ/3 by choosing n large enough. Thus ρεnTe′→j(ζ

εn
e′,j)− t ≥ δ/3 for n large enough.

On the other hand

ζεne′,j ≤
1

1 + exp

(
−
t−ρεnTe′→j

(ζεn
e′,j)

εn

)
≤ 1

1 + eδ/(3εn)
.
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Sending n to infinity, since δ is fixed, we realize that ζεne′,j converges to zero, which is a
contradiction with the assumption that ζ∗e′,j > 0.

Case Ib: Now consider the case ρ−1
Te′→j

(t) > 0. If ζ∗e′,j > ρ−1
Te′→j

(t), following a similar

argument as in case Ia, we can conclude that ζ∗e′,j = 0, which is a contradiction. Hence,

assume ζ∗e′,j < ρ−1
Te′→j

(t). Since t ∈ Dc is a continuity point of ρ−1
Te′→j

, using Lemma 6.11 part

(v), we have ρTe′→j(ζ
∗
e′,j) ≤ t − δ for some δ > 0. An argument similar to that in case Ia

implies ρεnTe′→j(ζ
εn
e′,j) ≤ t− δ/3 for n large enough. Now

1−
∑

l∈e′,l 6=i

ζ∗e′,l = lim
n→∞

1−
∑

l∈e′,l 6=i

ζεne′,l

= lim
n→∞

1

1 +
∑

l∈e′,l 6=i exp

(
−
ρεnTe′→l

(ζεn
e′,l)−t

εn

)
≤ lim

n→∞

1

1 + exp

(
−
ρεnTe′→j

(ζεn
e′,j)−t

εn

)
≤ 1

1 + eδ/(3εn)
.

Since δ is fixed, sending n to infinity we realize that
∑

l∈e′,l 6=i ζ
∗
e′,l = 1. This, together with

our earlier assumption of Case I, means that∑
l∈e′,l 6=i

ζ∗e′,l = 1 ≥
∑

l∈e′,l 6=i

(
ρ−1
Te′→l

(t)
)+

=
∑

l∈e′,l 6=i,ρ−1
Te′→l

(t)>0

ρ−1
Te′→l

(t).

Since we have assumed that ζ∗e′,j < ρ−1
Te′→j

(t), this means there exists some j′ ∈ e′, j′ 6= i such

that ρ−1
Te′→j′

(t) > 0 and ζ∗e′,j′ > ρ−1
Te′→j

(t) > 0. This, as we discussed above, results in ζ∗e′,j′ = 0,

which is a contradiction. Hence, ζ∗e′,j should be equal to ρ−1
Te′→j

(t) and the proof of this case

is complete.

Case II:
∑

j∈e′,j 6=i

(
ρ−1
Te′→j

(t)
)+

> 1, in which case we need to show that 1−
∑

j∈e′,j 6=i ζ
∗
e′,j =

0 to conclude (6.66). Since∑
j∈e′,j 6=i

ζ∗e′,j = lim
n→∞

∑
j∈e′,j 6=i

ζεne′,j

= lim
n→∞

∑
l∈e′,l 6=i exp(−ρεnTe′→l(ζ

εn
e′,l)/ε)

e−t/ε +
∑

l∈e′,l 6=i exp(−ρεnTe′→l(ζ
εn
e′,l)/ε)

≤ 1 <
∑

j∈e′,j 6=i

(
ρ−1
Te′→j

(t)
)+

,
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there should exist some j∗ ∈ e′, j∗ 6= i such that ζ∗e′,j∗ < ρ−1
Te′→j∗

(t) and ρ−1
Te′→j∗

> 0. Since

t /∈ D, using Lemma 6.11 we have ρTe′→j∗ (ζ
∗
e′,j∗) ≤ t − δ for some δ > 0. Using calculations

similar to those in case Ia above, for n large enough we have ρεnTe′→j∗ (ζ
εn
e′,j∗) ≤ t− δ/3. Now,

1−
∑

j∈e′,j 6=i

ζεne′,j =
1

1 +
∑

j∈e′,j 6=i exp

(
−
ρεnTe′→j

(ζεn
e′,j)−t

εn

)
≤ 1

1 + exp

(
−
ρεnTe′→j∗

(ζεn
e′,j∗ )−t

εn

)
≤ 1

1 + eδ/(3εn)
.

Since δ is fixed, sending n to infinity we conclude that 1−
∑

j∈e′,j 6=i ζ
∗
e′,j = 0, which completes

the argument of this case.
Having verified (6.66) in all cases, we conclude (6.63). Now, we prove (6.64). Note that

in the above discussion we started with the rooted tree Te→i. However, it can be verified
that all the arguments are valid if we start with the tree T rooted at an arbitrary vertex
i ∈ V (T ), i.e. (T, i). Convergence of ρ(T,i) is also similar. In this case, repeating the above
argument, (6.63) becomes

ρ−1
(T,i)(t) = t−

∑
e3i

[
1−

∑
j∈e,j 6=i

(
ρ−1
Te→j

(t)
)+
]1

0

. (6.67)

On the other hand, note that

li = lim
n→∞

∂θn(i) = lim
n→∞

ρεn(T,i)(0) = ρ(T,i)(0).

Hence, li > t iff ρ(T,i)(0) > t, or equivalently, using part (v) of Lemma 6.11, ρ−1
(T,i)(t) < 0.

Substituting into (6.67), we conclude (6.64), and the proof is complete.

Proof of Lemma 6.12. Assume (θ1, . . . , θn) and (θ′1, . . . , θ
′
n) are two distinct solutions to this

set of equations. We claim that it cannot be the case that θ′i > θi for some i and θ′j ≤ θj for
some other j 6= i. Assume this holds. Since the right hand side of (6.58) is positive, all θi’s
and θ′i’s are positive. On the other hand, we have

e−gi(θ
′
i)

e−gj(θ
′
j)

=
θ′i
θ′j
>
θi
θj

=
e−gi(θi)

e−gj(θj)
,

which means
gi(θ

′
i) + gj(θj) < gj(θ

′
j) + gi(θi).

But θ′i > θi implies gi(θ
′
i) ≥ gi(θi) since gi is nondecreasing. On the other hand, θ′j ≤ θj

implies gj(θ
′
j) ≥ gj(θj) which is a contradiction with the above inequality.
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Hence, without loss of generality, we may assume that θ′i ≥ θi for all 1 ≤ i ≤ n. If it is
not the case that θi = θ′i for all 1 ≤ i ≤ n, then∑n

i=1 e
−gi(θi)∑n

i=1 e
−gi(θi) + C

=
∑

θi <
∑

θ′i =

∑n
i=1 e

−gi(θ′i)∑n
i=1 e

−gi(θ′i) + C
.

On the other hand, θ′i ≥ θi and gi being nondecreasing implies that e−gi(θi) ≥ e−gi(θ
′
i) for all

1 ≤ i ≤ n, which is in contradiction with the above inequality.

Proof of Lemma 6.13. Sending n to infinity in the three conditions of Definition 6.33 and
using the fact that gn converges pointwise to g implies that g is in Υ(C). To show (6.62),
given t /∈ (

⋃
nDn) ∪ D, define xn := g−1

n (t) and x := g−1(t). Since gn ∈ Υ(C), we have
xn ≤ gn(xn) ≤ xn + C or xn ∈ [t − C, t], which is a compact set. Hence, it suffices to show
that any subsequential limit of xn is equal to x. Thus, without loss of generality, we may
assume that xn → x′, and we show that x′ = x.

If x′ < x, since t is a continuity point for g, Lemma 6.11 part (iv) implies that g(x′) < t.
Thereby, g(x′) ≤ t− δ for some δ > 0. Now,

gn(xn) = gn(xn)− gn(x′) + gn(x′)− g(x′) + g(x′)

≤ |xn − x′|+ |gn(x′)− g(x′)|+ g(x′),

where the last inequality employs the fact that gn ∈ Υ(C). Since xn → x′ and gn converges
pointwise to g, for large n the first two terms could be made smaller than δ/3. Thus, for
large n, gn(xn) ≤ t− δ/3, which is a contradiction with gn(xn) = t. The assumption x′ > x
similarly results in contradiction. As a result, x′ = x, and the proof is complete.

6.8 Characterization of the Mean Excess Function for

Galton Watson Processes

In this section, we prove Theorem 6.2. This is done in two steps. First, in Section 6.8.1, we
prove that for any set of fixed points {Ql}l≥2, the LHS of (6.11) is no less than the RHS.
This is proved in Proposition 6.16. Later, in Section 6.8.2, we show that there exists a set
of fixed points achieving the maximum in (6.11). This is done in Proposition 6.17.

6.8.1 Lower Bound

In this section, we use the indexing notation Nvertex and Nedge, which was introduced in
Section 6.2.9. The level of a vertex (s1, e1, i1, . . . , sk, ek, ik) ∈ Nvertex is defined to be k, and
the level of ∅ is defined to be zero. Likewise, the level of an edge (s1, e1, i1, . . . , sk, ek) ∈ Nedge

is defined to be k. Also, recall that for v ∈ Nvertex, s ≥ 2 and e ≥ 1, (v, s, e) is an element
in Nedge obtained by concatenating (s, e) to the end of the string representing v in Nvertex.
Likewise, for s ≥ 2, e ≥ 1 and 1 ≤ i ≤ s− 1, (v, s, e, i) ∈ Nvertex is defined similarly.
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We need the following tool before proving our lower bound. In the following lemma,
ProjH̄∗(R)→H∗ : H̄∗(R)→ H∗ is the projection defined in (6.7).

Lemma 6.14. Let t ∈ R together with distributions P and {Qk}k≥2 ∈ Q be given as in
Theorem 6.2. Given a probability distribution W on Λ, there is a random marked rooted
tree (T̄W , ∅), with marks taking values in R, and with vertex set and edge set Nvertex and
Nedge, respectively, such that the underlying unmarked rooted tree is a Galton Watson tree
such that the type of the root is distributed according to W , and the type of a non–root vertex
v = (s1, e1, i1, . . . , sr, er, ir) in the subtree below v is distributed according to P̂sr . Moreover,
the marks of T̄W satisfy

ξT̄W (e, i) = t−
∑

e′3i,e′ 6=e

[
1−

∑
j∈e′,j 6=i

ξT̄W (e′, j)+

]1

0

, (6.68)

for all (e, i) ∈ Ψ(T̄W ). Furthermore, for any L ≥ 1, conditioned on the structure of the
tree up to depth L, the set of marks from edges in level L towards vertices in that level
are independent, and for any edge–vertex pair (e, i) both in level L, ξT̄W (e, i) is distributed
according to Qk where k is the size of e.

In particular, when W = P , the measure ν ∈ P(H̄∗(R)), which is defined to be the law
of [T̄P , ∅], is unimodular and (ProjH̄∗(R)→H∗)∗ν = UGWHT(P ).

Proof. We first generate the collection of random variables Γ∅, (Γv, Xv)v∈Nvertex\{∅}, such that
Γv for v ∈ Nvertex takes value in Λ and Xv for v ∈ Nvertex \ {∅} takes values in R, with the
following properties: (i) (Γv)v∈Nvertex are independent from each other such that Γ∅ has law
W and for v = (s1, e1, i1, . . . , sr, er, ir) ∈ Nvertex, Γv has law P̂sr ; (ii) For any v ∈ Nvertex \{∅},
we have

Xv = t−
h(Γv)∑
k=2

Γv(k)∑
l=1

[
1−X+

(v,k,l,1) − · · · −X
+
(v,k,l,k−1)

]1

0
; (6.69)

(iii) For any L ≥ 1, Xv for nodes v at level L are independent and for v = (s1, e1, i1, . . . , sL, eL, iL)
at level L, Xv is distributed according to QsL .

We construct the law of the above random variables satisfying the above conditions using
Kolmogorov’s extension theorem (see, for instance, [Tao11]). For an integer L ≥ 1, define AL
to be the set of nodes in Nvertex with level at most L. For each L ≥ 1, we introduce the law
of a subset of the above family of random variables, namely Γ∅, (Xv,Γv)v∈AL\{∅}, and denote
this law by νL. To start with, we generate Γv, v ∈ AL independently such that Γ∅ has law W
and Γv for v = (s1, e1, i1, . . . , sr, er, ir), Xv has law P̂sr . In the next step, we generate Xv for
nodes v with depth equal to L independently such that Xv for v = (s1, e1, i1, . . . , sL, eL, iL)
has law QsL . Next, we define Xv for nodes at levels 1 through L − 1 using the relation
(6.69) inductively starting from level L − 1 all the way up to level 1. Using the fact that

Qk = F
(k)
P,t ({Ql}l≥2), see (6.9), and also that Γv for v = (s1, e1, i1, . . . , sr, er, ir) has law

P̂sr , it is evident that the set of measures {νL}L≥1 are consistent. Therefore, Kolmogorov’s
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extension theorem implies that the set of random variables with the conditions stated above
exist.

Now, we turn these random variables into a marked random rooted tree T̄W having vertex
set and edge set Nvertex and Nedge, respectively. To do so, we first construct the underlying
unmarked tree T̄W given the types Γv, v ∈ Nvertex. In the next step, for any edge e and
vertex v being at the same level in the tree, we set ξT̄W (e, v) := Xv. It can be easily seen
that the “upward” marks, i.e. marks from edges towards nodes above them, are immediately
unambiguously defined. To see this, for an edge e at level 1, we define ξT̄W (e, ∅) using (6.68).
We then inductively go down one level at a time, to define all the other upward marks.

Now, we show that the measure ν, which is defined to be the law of [T̄P , ∅], is unimodular.
Our proof technique is similar to that of Lemma E.2 in Appendix E.6. Take a Borel function
f : H̄∗∗(R)→ [0,∞) and note that due to our above construction,

∫
fd~ν =

∫
∂fdν = E

h(Γ∅)∑
k=2

Γ∅(k)∑
l=1

f(T̄P , (k, l), ∅)

 .
Using the symmetry in the construction, we have∫

fd~ν =
∑
γ∈Λ

P (γ)

h(γ)∑
k=2

γ(k)E
[
f(T̄P , (k, 1), ∅)|Γ∅ = γ

]
.

As all the terms are nonnegative, we may change the order of summation. Also using the
definition of P̂ , if Γ is a random variable with law P , we get∫

fd~ν =
∞∑
k=2

E [Γ(k)]
∑
γ∈Λ

P̂k(γ)E
[
f(T̄P , (k, 1), ∅)|Γ∅ = γ + ek

]
.

Now, for each k ≥ 2, define P̃k to be the law of the random variable Γk + ek where Γk has
law P̂k. With this, for each k ≥ 2, the inner summation over γ in the above expression could
be interpreted as an expectation with respect to a tree with root type distribution P̃k, i.e.
T̄P̃k . In fact, this shows that∫

fd~ν =
∞∑
k=2

E [Γ(k)]E
[
f(T̄P̃k , (k, 1), ∅)

]
. (6.70)

Now, note that for each k ≥ 2, due to the definition of P̃k, the tree (T̄P̃k)(k,1)→∅ rooted at ∅
(which we recall is obtained by removing (k, 1) and then taking the subtree rooted at ∅) has
an underlying unmarked structure which is precisely GWTk(P ). This, in particular, implies
that ξT̄

P̃k

((k, 1), ∅) has law Qk. Also, by construction, for 1 ≤ i ≤ k − 1, (T̄P̃k)(k,1)→(k,1,i)

have independent underlying unmarked structures, all with law GWTk(P ). Moreover, the
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downward marks in (T̄P̃k)(k,1)→∅ and (T̄P̃k)(k,1)→(k,1,i) for 1 ≤ i ≤ k − 1 are independent
from each other and have the same distribution. Thereby, ξT̄

P̃k

((k, 1), v) for v ∈ (k, 1) are

independent and all have distribution Qk. Now, we claim that for all v ∈ (k, 1), (T̄P̃k)(k,1)→v
are equal in distribution. To see this, note that for all v ∈ (k, 1), the unmarked structure
of (T̄P̃k)(k,1)→v is GWTk(P ) and the downward marks are constructed following the same
recipes. As was discussed above, to construct upward marks, we start from the root and go
down inductively. The fact that ξT̄

P̃k

((k, 1), v) for v ∈ (k, 1) are i.i.d. with law Qk guarantees

that the downward marks in (T̄P̃k)(k,1)→v are equally distributed for all v ∈ (k, 1). This in
particular implies that for 1 ≤ i ≤ k − 1,

E
[
f(T̄P̃k , (k, 1), ∅)

]
= E

[
f(T̄P̃k , (k, 1), (k, 1, i))

]
.

Using this and writing (6.70) for
∫
∇fdµ, we conclude that

∫
fd~ν =

∫
∇fd~ν which completes

the proof of the unimodularity of ν.

Before proving our lower bound, we state a modified version of our variational represen-
tation in Proposition 6.11 and a general lemma. The proof of the following lemmas are given
at the end of this section.

Lemma 6.15. Assume µ is a distribution on H∗ with deg(µ) < ∞ and ν is a unimodular
distribution on H̄∗(R) such that

(
ProjH̄∗(R)→H∗

)
∗ ν = µ. Then, for any Borel allocation

Θ : H∗∗ → [0, 1] and any function f : H̄∗(R)→ [0, 1], we have∫
(∂Θ− t)+dµ ≥

∫
f̃mind~ν − t

∫
fdν,

where

f̃min([H̄, e, i]) :=
1

|e|
min
j∈e

f([H̄, j]).

Lemma 6.16. Assume x1, . . . , xn are real numbers. Then xi <
[
1−

∑
j 6=i x

+
j

]1

0
for all

1 ≤ i ≤ n if and only if
∑
x+
i < 1.

Proposition 6.16. Assume P is a distribution on Λ such that E [‖Γ‖1] < ∞ where Γ has
law P . Then, with µ = UGWHT(P ), for any t ∈ R, and any set of probability distributions

on real numbers {Qk}k≥2 such that for all k ≥ 2 we have Qk = F
(k)
P,t ({Ql}l≥2), it holds that

Φµ(t) ≥

(
∞∑
k=2

E [Γ(k)]

k
P

(
k∑
i=1

X+
k,i < 1

))
− tP

h(Γ)∑
k=2

Γ(k)∑
i=1

Yk,i > t

 .

Here, in the first expression, Γ is a random variable on Λ with law P and {Xk,i}k,i are
independent such that Xk,i has law Qk. Also, in the second expression, Γ has law P and
{Yk,i}k,i are independent from each other and from Γ such that Yk,i has the law of the random
variable [1− (Z+

1 + · · ·+ Z+
k−1)]10 where Zj are i.i.d. with law Qk.
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Proof. Note that the condition E [‖Γ‖1] < ∞ guarantees that deg(µ) < ∞. Define the
functions F : H̄∗∗(R)→ [0, 1] and f : H̄∗ → [0, 1] as

F ([H̄, e, i]) =

[
1−

∑
j∈e,j 6=i

ξH̄(e, j)+

]1

0

,

and f([H̄, i]) := 1∂F ([H̄,i])>t. Using the unimodular measure ν constructed in Lemma 6.14
and the variational characterization in Lemma 6.15, we have

Φµ(t) ≥
∫
f̃mind~ν − t

∫
fdν, (6.71)

where

f̃min(H̄, e, j) =
1

|e|
min
j∈e

f(H̄, j) =
1

|e|
1
[
∂F (H̄, j) > t ∀ j ∈ e

]
.

Following the proof of Lemma 6.14, and in particular Equation (6.70) therein, we have∫
f̃mind~ν =

∑
k≥2

E [Γ(k)]E
[
f̃min(T̄P̃k , (k, 1), ∅)

]
. (6.72)

Due to the definition of f , f̃min(T̄P̃k , (k, 1), ∅) = 1
k
1

[
∂F (T̄P̃k , v) > t ∀ v ∈ (k, 1)

]
. For v ∈

(k, 1),

∂F (T̄P̃k , v) =
∑
e′3v

F (T̄P̃k , e
′, v)

=

1−
∑

w∈(k,1),w 6=v

ξT̄
P̃k

((k, 1), w)+

1

0

+

∑
e′3v,e′ 6=(k,1)

[
1−

∑
w∈e′,w 6=v

ξT̄
P̃k

(e′, w)+

]1

0

.

Using (6.68), this yields

∂F (T̄P̃k , v) =

1−
∑

w∈(k,1),w 6=v

ξT̄
P̃k

((k, 1), w)+

1

0

+ t− ξT̄
P̃k

((k, 1), v).

Therefore, ∂F (T̄P̃k , v) > t for all v ∈ (k, 1) if and only if for all v ∈ (k, 1),

ξT̄
P̃k

((k, 1), v) <

1−
∑

w∈(k,1),w 6=v

ξT̄
P̃k

((k, 1), w)+

1

0

.
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Using Lemma 6.16, this is equivalent to
∑

v∈(k,1) ξT̄P̃k
((k, 1), v)+ < 1. Therefore,

E
[
f̃min(T̄P̃k , (k, 1), ∅)

]
=

1

k
P

 ∑
v∈(k,1)

ξT̄
P̃k

((k, 1), v)+ < 1

 .

But as was shown in Lemma 6.14, ξT̄
P̃k

((k, 1), v) for v ∈ (k, 1) are i.i.d. with law Qk.

Consequently, substituting in (6.72) we get∫
f̃mind~ν =

∞∑
k=2

E [Γ(k)]

k
P

(
k∑
i=1

X+
k,i < 1

)
, (6.73)

where Xk,i, k ≥ 2, 1 ≤ i ≤ k are independent such that Xk,i has law Qk.
On the other hand,∫

fdν = P
(
∂F (T̄P , ∅) > t

)
= P

h(Γ∅)∑
k=2

Γ∅(k)∑
i=1

F (T̄P , (k, i), ∅) > t


= P

h(Γ∅)∑
k=2

Γ∅(k)∑
i=1

[
1−

k−1∑
j=1

ξT̄P ((k, i), (k, i, j))+

]1

0

> t

 .

But, as we saw in Lemma 6.14, ξT̄P ((k, i), (k, i, j)) for k ≥ 2, i ≤ Γ∅(k), 1 ≤ j ≤ k − 1, are
independent, and ξT̄P ((k, i), (k, i, j)) has law Qk. Thereby,∫

fdν = P

h(Γ)∑
k=2

Γ(k)∑
i=1

Yk,i > t

 , (6.74)

with Yk,i being independent from each other such that Yk,i has the law of the random variable
[1 − (Z+

1 + · · · + Z+
k−1)]10 with Zj’s being i.i.d. with law Qk. The proof is complete by

substituting (6.73) and (6.74) into (6.71).

Proof of Lemma 6.15. By interpreting Θ as a function on H∗∗(R) via Θ(H̄, e, i) := Θ(H, e, i)
(where we recall that H is the underlying unmarked hypergraph associated to H̄), and also
using the inequality x+ ≥ xy which holds for y ∈ [0, 1], we have∫

(∂Θ− t)+dµ

∫
(∂Θ− t)+dν ≥

∫
f∂Θdν − t

∫
fdν. (6.75)

Since deg(µ) < ∞, all the integrals are finite and well defined. Due to the definition of ~ν
and the unimodularity of ν we have

∫
f∂Θdν =

∫
fΘd~ν =

∫
∇(fΘ)dν. On the other hand,

∇(fΘ)(H̄, e, i) =
1

|e|
∑
j∈e

f(H̄, j)Θ(H, e, j) ≥ 1

|e|
min
j∈e

f(H̄, j) = f̃min(H̄, i),

where the inequality holds since
∑

j∈e Θ(H, e, j) = 1 and Θ([H, e, j]) ≥ 0 for all j ∈ e.
Substituting this into (6.75) completes the proof.
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Proof of Lemma 6.16. First, assume that xi <
[
1−

∑
j 6=i x

+
j

]1

0
for all i. If xi ≤ 0 for all

i then nothing remains to be proved. Hence, assume that xi > 0 for some i. Since xi <[
1−

∑
j 6=i x

+
j

]1

0
, we have 0 <

∑
j 6=i x

+
j < 1, which means that 1−

∑
j 6=i x

+
j ∈ [0, 1]. Therefore,[

1−
∑

j 6=i x
+
j

]1

0
= 1−

∑
j 6=i x

+
j . On the other hand,

x+
i = xi <

[
1−

∑
j 6=i

x+
j

]1

0

= 1−
∑
j 6=i

x+
j ,

which implies
∑
x+
i < 1.

In order to prove the other direction, take 1 ≤ i ≤ n and note that

xi ≤ x+
i =

n∑
k=1

x+
k −

∑
j 6=i

x+
j < 1−

∑
j 6=i

x+
j .

Moreover,
∑

j 6=i x
+
j ≤

∑
x+
i < 1. Thereby, 1 −

∑
j 6=i x

+
j ∈ [0, 1] and 1 −

∑
j 6=i x

+
j =[

1−
∑

j 6=i x
+
j

]1

0
. Substituting this into the above inequality completes the proof.

6.8.2 Upper Bound

In this section, we show that there exists a family of probability distributions {Qk}k≥2

satisfying the fixed points equations (6.10) and achieving the maximum on the RHS of
(6.11).

Proposition 6.17. Assume P is a distribution on Λ such that E [‖Γ‖1] < ∞, where Γ has
law P . Let µ = UGWHT(P ). Given t ∈ R, there exists a family of probability distributions

{Ql}l≥2 on the set of real numbers such that, for each k ≥ 2, Qk = F
(k)
P,t ({Ql}l≥2), and such

that we have

Φµ(t) =

(
∞∑
k=2

E [Γ(k)]

k
P

(
k∑
i=1

X+
k,i < 1

))
− tP

h(Γ)∑
k=2

Γ(k)∑
i=1

Yk,i > t

 .

Here, in the first expression, Γ is a random variable on Λ with law P and {Xk,i}k,i are i.i.d.
such that Xk,i has law Qk. Also, in the second expression, Γ has law P and {Yk,i}k,i are
independent from each other and from Γ such that Yk,i has the law of the random variable
[1− (Z+

1 + · · ·+ Z+
k−1)]10 where Zj are i.i.d. with law Qk.

Proof. The condition E [‖Γ‖1] < ∞ guarantees that deg(µ) < ∞. Therefore, Proposi-
tion 6.10 implies that there exists a sequence εn ↓ 0 such that the sequence of εn–balanced
allocations Θεn converges ~µ–a.e. to a Borel allocation Θ0 which is balanced with respect to µ.



CHAPTER 6. ASYMPTOTIC BEHAVIOR OF LOAD BALANCING IN
HYPERGRPHAS 173

As ~µ is supported on T∗∗, Proposition 6.3 then implies that for ~µ–almost all [T, e, i] ∈ T∗∗, we
have that for all (e′, i′) ∈ Ψ(T ), Θεn(T, e′, i′) → Θ0(T, e′, i′). Since all hypertrees in T∗∗ are
locally finite, this means that for ~µ–almost all [T, e, i] ∈ T∗∗, we have that for all i′ ∈ V (T ),
∂Θεn(T, i)→ ∂Θ0(T, i). Recall from Remark 6.12 that Θεn(T, e, i) = θTεn(e, i) where θTεn is the
canonical εn–balanced allocation for T . Thereby, for ~µ–almost [T, e, i] ∈ T∗∗, the conditions
of Proposition 6.15 are satisfied. Thereby, for ~µ–almost all [T, e, i], for all (e′, i′) ∈ Ψ(T ),
ρεnTe′→i′ (.) converges pointwise to some ρTe′→i′ (.). Moreover, for ~µ–almost all [T, e, i], we have

that for all (e′, i′) ∈ Ψ(T ),

ρ−1
Te′→i′

(t) = t−
∑

e′′3i′:e′′ 6=e′

[
1−

∑
j∈e′′,j 6=i′

(
ρ−1
Te′′→j

(t)
)+
]1

0

, (6.76)

and

∂Θ0(T, i′) > t ⇐⇒
∑
e′′3i′

[
1−

∑
j∈e′′,j 6=i′

(
ρ−1
Te′′→j

(t)
)+
]1

0

> t. (6.77)

For [T, e, i] such that Θεn(e′, i′) is not convergent for some (e′, i′) ∈ Ψ(T ), we may define
ρ−1
Te′′→i′′

(.) arbitrarily for (e′′, i′′) ∈ Ψ(T ). This will not impact our argument, as this happens

only on a measure zero set. Using Lemma 6.1 part (ii), we conclude that for µ–almost all
[T, i] ∈ T∗, we have that for all (e′, i′) ∈ Ψ(T ), (6.76) and (6.77) hold.

With this, we define the functions F and G on T∗∗ as follows:

G(T, e, i) := ρ−1
Te→i

(t),

and

F (T, e, i) :=

[
1−

∑
j∈e,j 6=i

(
ρ−1
Te→j

(t)
)+
]1

0

=

[
1−

∑
j∈e,j 6=i

G(T, e, j)+

]1

0

.

Moreover, define the function f : T∗ → {0, 1} as f(T, i) = 1∂F (T,i)>t. From (6.77), µ–a.s. we
have f = 1∂Θ0>t. Hence, using the variational characterization in Proposition 6.11, we have∫

(∂Θ0 − t)+dµ =

∫
f̃mind~µ− t

∫
fdµ, (6.78)

where f̃min : H∗∗ → [0, 1] is defined as

f̃min(T, e, i) =
1

|e|
min
j∈e

f(T, j).

With this and the definition of f , we have

f̃min(T, e, i) =

{
1
|e| ∂F (T, j) > t ∀j ∈ e,
0 otherwise.
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From (6.76), for ~µ–almost every [T, e, i] we have

G(T, e, j) = t−
∑

e′3j,e′ 6=e

F (T, e′, j) = t− ∂F (T, j) + F (T, e, j).

Therefore, ~µ–almost everywhere, ∂F (T, j) > t iff F (T, e, j) > G(T, e, j). Consequently,
~µ–a.e., we have

f̃min(T, e, i) =

{
1
|e| F (T, e, j) > G(T, e, j) ∀j ∈ e,
0 otherwise.

(6.79)

Note that, by definition, we have F (T, e, j) =
[
1−

∑
l∈e,l 6=j G(T, e, l)+

]1

0
. Thereby, using

Lemma 6.16 in Section 6.8.1, ~µ–a.e. we have

f̃min(T, e, i) =

{
1
|e|

∑
j∈eG(T, e, j)+ < 1,

0 otherwise.

Note that the condition E [‖Γ‖1] < ∞ in particular implies that for all k ≥ 2 we have
E [Γ(k)] <∞. With this, using Lemma E.2 in Appendix E.6, we have∫

f̃mind~µ =
∞∑
k=2

E [Γ(k)]
∑
γ∈Λ

P̂k(γ)E [f(T, (k, 1), ∅)|Γ∅ = γ + ek] ,

where T is the random rooted hypertree of Definition 6.28. Following the argument in the
proof of Proposition 6.4 in Appendix E.6, this can be written as∫

f̃mind~µ =
∞∑
k=2

E [Γ(k)]E
[
f̃min(T̃k, (k, 1), ∅)

]
,

where for k ≥ 2, T̃k is a tree with root ∅ that has an edge (k, 1) of size k connected to the
root, with the type of the other edges connected to the root being P̂k, and with the subtrees
at the other vertices of all the edges (including the edge (k, 1)) generated according to the
rules of UGWHT(P ). Now, using the definition of f̃min, we have

∫
f̃mind~µ =

∞∑
k=2

E [Γ(k)]

k
P

 ∑
v∈(k,1)

G(T̃k, (k, 1), v)+ < 1

 .

Now, for every k and 1 ≤ i ≤ k − 1, let T̃k,i be the hypertree below vertex (k, 1, i) rooted
at (k, 1, i). Moreover, let T̃k,k be the hypertree rooted at ∅ obtained from T̃k by removing
the edge (k, 1) and all its subtree. Now, due to the construction of T̃k, T̃k,i, for 1 ≤ i ≤ k
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are i.i.d. GWTk(P ) hypertrees. Hence, G(T̃k, (k, 1), v) for v ∈ (k, 1) are independent and
identically distributed. Let Qk be the common distribution. This means that∫

f̃mind~µ =
∞∑
k=2

E [Γ(k)]

k
P

(
k∑
i=1

X+
k,i < 1

)
, (6.80)

where for each k ≥ 2, Xk,i, 1 ≤ i ≤ k are i.i.d. with law Qk.
On the other hand, with T being the random rooted hypertree of Definition 6.28, we have

∫
fdµ = P (∂F (T, ∅) > t) = P

h(Γ∅)∑
k=2

Γ∅(k)∑
i=1

F (T, (k, i), ∅) > t


= P

h(Γ∅)∑
k=2

Γ∅(k)∑
i=1

[
1−

k−1∑
j=1

G(T, (k, i), (k, i, j))+

]1

0

> t

 ,

where Γ∅ is the type of the root in T. But by definition, G(T, (k, i), (k, i, j)) = ρ−1
T(k,i)→(k,i,j)

(t).

But T(k,i)→(k,i,j) for 2 ≤ k ≤ Γ∅, 1 ≤ i ≤ Γ∅(k), 1 ≤ j ≤ k−1 are independent and T(k,i)→(k,i,j)

has law GWTk(P ). Comparing this to the above definition of the distributions Qk, k ≥ 2, we
realize that G(T, (k, i), (k, i, j)) for 2 ≤ k ≤ Γ∅, 1 ≤ i ≤ Γ∅(k), 1 ≤ j ≤ k−1 are independent
and G(T, (k, i), (k, i, j)) has law Qk. Consequently, as Γ∅ in the above expression has law P ,
we have ∫

fdµ = P

h(Γ)∑
k=2

Γ(k)∑
i=1

Yk,i > t

 , (6.81)

where Γ has law P and {Yk,i}k,i are independent from each other and from Γ such that Yk,i
has the law of the random variable [1− (Z+

1 + · · ·+Z+
k−1)]10 where Zj are i.i.d. with law Qk.

This together with (6.80) and the variational expression (6.78), completes the proof.

6.9 Convergence of Maximum Load

In this section, we first introduce our configuration model and conditions under which it
converges to the unimodular Galton–Watson hypertree model defined in Section 6.2.9. This
is done in Section 6.9.1 below, specifically Theorem 6.4. We then state the conditions under
which we prove Theorem 6.3 in Section 6.9.2, Proposition 6.18 and give the proof.

Before introducing our configuration model, we need to formally define multihypergraphs.
Here, we only work with finite multihypergraphs.

Definition 6.34. A finite multihypergraph H = 〈V,E = (ej, j ∈ J)〉 consists of a finite
vertex set V together with a finite edge index set J such that each hyperedge ej is a multiset
of vertices in V .
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Here, the assumption of ej being a multiset allows for vertices to appear more than once
in each edge. In this case, we call such an edge “improper”. Moreover, it might be the case
that ej = ej′ for j 6= j′ ∈ I, in which case we call ej and ej′ “multiple edges”.

6.9.1 Configuration model on Hypergraphs

We proposed a generalized Galton Watson process for hypertrees in Section 6.2.9 and showed
that it is unimodular. In this section, we propose a configuration model which converges to
it in the local weak sense under certain conditions.

Assume that, for each integer n, a type sequence γ(n) = (γ
(n)
1 , . . . , γ

(n)
n ) is given such that

γ
(n)
i ∈ Λ and

γ
(n)
i (k) = 0 ∀ 1 ≤ i ≤ n, k > n, and (6.82a)

k

∣∣∣∣ n∑
i=1

γ
(n)
i (k) ∀ 2 ≤ k ≤ n, (6.82b)

where the latter means that k divides
∑n

i=1 γ
(n)
i (k). In what follows, we generate a random

multihypergraph on the vertex set {1, . . . , n} such that the type of node i is γ
(n)
i . For each

2 ≤ k ≤ n and 1 ≤ i ≤ n, we attach γ
(n)
i (k) many objects eki,1, . . . , e

k

i,γ
(n)
i (k)

called “1/k–edges”

to the node i . For each k, let ∆(n)(k) be defined as the set of all 1/k–edges, i.e.

∆(n)(k) :=
n⋃
i=1

{eki,1, . . . , eki,γ(n)
i (k)
},

and let ∆(n) := ∪k∆(n)(k) be the set of all “partial edges”, where by a partial edge we mean

a 1/k–edge for some k. Also, let ∆
(n)
i be the set of all partial edges connected to a node

i ∈ {1, . . . , n}, i.e.

∆
(n)
i =

⋃
k:γ

(n)
i (k)>0

{eki,1, . . . , eki,γ(n)
i (k)
}.

For a partial edge e ∈ ∆(n), define ν(e) to be the node it corresponds to, i.e. ν(eki,j) = i.
Also, define |e| to be the size of e, i.e. |eki,j| = k.

We say that a permutation σk is a k–matching on the set ∆(n)(k) if it is a permutation
on ∆(n)(k) with no fixed points and also with all the cycles having size exactly equal to k.

Due to the condition k|
∑n

i=1 γ
(n)
i (k), such k–matchings exist for all k such that ∆(n)(k) 6= ∅.

In fact, if for a finite nonempty set A, whose cardinality is divisible by k, we denote the set
of k–matchings on A by Mk(A), it can be easily checked that |Mk(A)| = |A|!

k|A|/k(|A|/k)!
.

Given this, for each k such that ∆(n)(k) 6= ∅, we pick σk uniformly at random from
Mk(∆

(n)(k)), independently over k. With this, we generate a random multihypergraph
Hn on the set of vertices {1, . . . , n}. This is done by identifying each cycle of σk such that
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(c)

Figure 6.5: An example of an instance of the configuration model on n = 5 vertices
with vertex types γ

(n)
1 = (0, 2), γ

(n)
2 = (1, 2), γ

(n)
3 = (0, 3), γ

(n)
4 = (1, 1), γ

(n)
5 = (1, 2).

Here, a type γ is represented by a vector where the first coordinate is γ(2), the second
is γ(3) and so on. (a) illustrates the set of partial edges connected to vertices. (b) de-
picts the multihypergraph Hn formed by matching the partial edges using the permutations
σ2 and σ3 which are represented in the cycle notation as σ2 = (e2

2,1, e
2
4,1)(e2

5,1, e
2
5,2) and

σ3 = (e3
1,1, e

3
2,1, e

3
3,1)(e3

1,2, e
3
2,2, e

3
3,2)(e3

3,3, e
3
4,1, e

3
5,1). (c) illustrates the simple hypergraph He

n

formed by removing the multiple edges of size 3 on vertices 1, 2, 3 and also the improper
edge on vertex 5.

∆(n)(k) 6= ∅ of the form (e, σk(e), . . . , σ
(k−1)
k (e)) with the edge {ν(e), ν(σk(e)), . . . , ν(σ

(k−1)
k (e))}

in Hn. Here, e ∈ ∆(n)(k) and σ
(l)
k denotes the permutation σk begin applied l times. Note

that it is possible that two realizations of permutations as above result in the same multi-
hypergraph Hn. As an example, if n = 3, γ

(n)
1 (2) = 2, γ

(n)
2 (2) = γ

(n)
3 (2) = 1, and γ

(n)
i (k) = 0

for k 6= 2, 1 ≤ i ≤ 3, then the two permutations σ2 and σ′2 on ∆(n)(2) presented in the cycle
notation as σ2 = (e2

1,1, e
2
2,1)(e2

1,2, e
2
3,1) and σ′2 = (e2

1,2, e
2
2,1)(e2

1,1, e
2
3,1) would result in the same

multihypergraph (which turns out to be a simple graph in this example).
Note that, in general, Hn might not be simple. In particular, it might contain edges

which contain a vertex more than once (we call such an edge “improper”), or it might be the
case that two edges exist in Hn with the exact same multiset of vertices (we call such an edge
a “multiple edge”), or these two can happen simultaneously. Having generated Hn, we may
generate a simple hypergraph He

n by deleting all such improper edges and multiple edges in
Hn, i.e. we first remove all improper edges and, subsequently, we delete all edges with the
same set of endpoints. See Figure 6.5 for an example of an instance of the configuration
model.

If one fixes a type sequence γ(n) = (γ
(n)
1 , . . . , γ

(n)
n ) for each n, then the above configuration

model generates a sequence of random hypergraphs He
n. Since He

n is random, uHe
n

is also
a random probability distribution over H∗. Let E

[
uHe

n

]
be the expectation with respect to
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the randomness of He
n, i.e. a weighted average over all the possible configurations of He

n (the
number of such configurations is indeed finite for each n). Hence, E

[
uHe

n

]
is a sequence of

probability distributions over H∗ and one can ask whether it has a weak limit. On the other
hand, one can build all He

n on a common probability space under which He
n are independent

for different n. Then, for some µ ∈ P(H∗), we say that uHe
n
⇒ µ almost surely when outside

a measure zero set in this common probability space, this convergence holds. The following
theorem shows that under some conditions on the type sequence, He

n has a local weak limit.
See Appendix E.7 for a proof.

Theorem 6.4. Assume that a probability distribution P on Λ is given and define I := {k ≥
2 : P ({γ ∈ Λ : γ(k) > 0}) > 0}. Furthermore, let γ(n) = (γ

(n)
1 , . . . , γ

(n)
n ) be a type sequence

satisfying (6.82a) and (6.82b) such that

γ
(n)
i (k) = 0 ∀k /∈ I ∀n, i, (6.83a)

lim
n→∞

1

n

n∑
i=1

1
γ

(n)
i =γ

= P (γ) ∀γ ∈ Λ, (6.83b)

lim sup
n→∞

1

n

n∑
i=1

‖γ(n)
i ‖2

1 <∞. (6.83c)

Additionally, assume that there are constants c1, c2, c3, ε > 0 such that for n large enough,

max
1≤i≤n

‖γ(n)
i ‖1 ≤ c1(log n)c2 , (6.84a)

max
1≤i≤n

h(γ
(n)
i ) ≤ c1(log n)c2 , (6.84b)

∀2 ≤ k ≤ n ∆(n)(k) = ∅ or |∆(n)(k)| ≥ c3n
ε. (6.84c)

Then, if He
n is the random hypergraph generated from the configuration model corresponding

to γ(n) described above, we have uHe
n
⇒ UGWHT(P ) almost surely.

Remark 6.13. Note that the index set I would allow us to consider cases where there are
only certain edge sizes in our model. For instance, when I = {2}, this theorem reduces to a
statement for the graph pairing model, and when I = {k : k ≥ 2} it allows for all edge sizes
to be present.

Remark 6.14. For a fixed k and for each n, define Xn to be an integer valued random
variable taking value γ

(n)
i (k) with probability 1/n for 1 ≤ i ≤ n. Then, the condition (6.83c)

implies that the sequence {Xn} is uniformly integrable. Also, (6.83b) implies that Xn
d→ Γ(k)

where Γ has law P . Thus, E [Xn]→ E [Γ(k)], i.e.

lim
n→∞

1

n

n∑
i=1

γ
(n)
i (k) = E [Γ(k)] ∀k > 1. (6.85)

This identity is useful in our future analysis.
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Remark 6.15. It can be proved that, under some regularity conditions for P , when the type
sequence is generated i.i.d., the conditions of Theorem 6.4 are satisfied with probability one.
However, we omit the proof of this claim here, since it is not central to our discussion.

We will use the following simplified version of the above theorem in this section.

Corollary 6.2. Assume that a probability distribution P over Λ is given such that for a
finite set I ⊂ {2, 3, . . . , }, if Γ is a random variable with law P , we have P (Γ(k) > 0) > 0

for k ∈ I and P (Γ(k) > 0) = 0 for k /∈ I. Furthermore, assume γ(n) = (γ
(n)
1 , . . . , γ

(n)
n ) is a

type sequence satisfying (6.82a), (6.82b), (6.83a) and (6.83b). Additionally, assume that for
some θ > 0,

lim sup
n→∞

1

n

n∑
i=1

eθ‖γ
(n)
i ‖1 <∞. (6.86)

Then, uHe
n
⇒ UGWHT(P ) almost surely.

Proof. We check that in this regime, all the conditions of Theorem 6.4 are satisfied. Note
that

1

n

n∑
i=1

γ
(n)
i (k)2 ≤ 2!

θ2

1

n

n∑
i=1

eθγ
(n)
i (k) ≤ 2!

θ2

1

n

n∑
i=1

eθ‖γ
(n)
i ‖1 ,

which, together with (6.86), implies (6.83c). In order to show (6.84a), note that (6.86) implies

there is a constant λ <∞ such that 1
n

∑n
i=1 e

θ‖γ(n)
i ‖1 < λ for all n. Now, exp(θmax1≤i≤n ‖γ(n)

i ‖1) ≤∑n
i=1 e

θ‖γ(n)
i ‖1 ≤ nλ. Hence, max1≤i≤n ‖γ(n)

i ‖1 ≤ (log n + log λ)/θ, which shows (6.84a). On

the other hand, h(γ
(n)
i ) ≤ max{k : k ∈ I} for all i and n. Hence, (6.84b) also holds.

For a fixed k ∈ I, using (6.85), which follows from (6.83c) which was proved above, for n

large enough we have |∆(n)(k)| =
∑n

i=1 γ
(n)
i (k) ≥ nE [Γ(k)] /2. Since there are finitely many

k ∈ I, for n large enough we have |∆(n)(k)| ≥ nmink′∈I E [Γ(k′)] /2. But for k′ ∈ I, we
have E [Γ(k′)] ≥ P (Γ(k′) > 0) > 0 by assumption. Consequently, (6.84c) holds with ε = 1
and c3 := mink′∈I E [Γ(k′)] /2 > 0. This means that all the conditions of Theorem 6.4 are
satisfied and uHe

n
⇒ UGWHT(P ) almost surely.

6.9.2 Statement of the result

Here, we state the conditions under which we prove Theorem 6.3.

Proposition 6.18. Assume that a probability distribution P over Λ is given such that for
a finite set I ⊂ {2, 3, . . . , }, if Γ is a random variable with law P , we have P (Γ(k) > 0) > 0
for k ∈ I and P (Γ(k) > 0) = 0 for k /∈ I. Moreover, assume that for all k ∈ I, E [Γ(k)] <∞.
Also, with kmin being the minimum element in I, assume that P (Γ(kmin) = 0)+P (Γ(kmin) = 1) <

1. Moreover, assume that a sequence of types γ(n) = (γ
(n)
1 , . . . , γ

(n)
n ) is given satisfying

(6.82a), (6.82b), (6.83a) (6.83b) and (6.86). Then, if He
n is the simple hypergraph generated
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by the configuration model in Section 6.9.1, %(He
n) converges in probability to %(µ), where

µ = UGWHT(P ).

Before proving this proposition, we need the following two lemmas, whose proofs are
given at the end of this section.

Lemma 6.17. With the assumptions of Proposition 6.18, there is a constant c4 > 0 such
that for n large enough, for any subset S ⊂ {1, . . . , n}, the number of edges in He

n with all
endpoints in S is stochastically dominated by the sum of s independent Bernoulli random
variables, each having mean c4s

kmin−1/nkmin−1, where s :=
∑

i∈S ‖γ
(n)
i ‖1.

Lemma 6.18. With the assumptions of Proposition 6.18, if t > 1
kmin−1

, there exists δ > 0

such that if Z
(n)
δ,t denotes the number of subsets S of {1, . . . , n} with size at most nδ where He

n

has at least t|S| many edges with all endpoints in S, we have P
(
Z

(n)
δ,t > 0

)
→ 0 as n→∞.

Proof of Proposition 6.18. Let µn denote uHe
n
, which is a random probability distribution on

H∗. Then, Corollary 6.2 guarantees that µn ⇒ µ almost surely. As a result, if Ln is the
law of the balanced load for He

n and L is the law of ∂Θ, where Θ is the balanced allocation
corresponding to µ, then, using Theorem 6.1, we have Ln ⇒ L almost surely. Now, let
t := %(µ), and fix ε > 0. Due to the definition of %(µ), L((t− ε,∞)) > 0. As a result, using
the portmanteau theorem (Theorem 2.1 in Chapter 2) since µn ⇒ µ almost surely, we have

lim inf
n
Ln((t− ε,∞)) > 0 a.s..

This means that
P (%(He

n) ≤ t− ε) = P (Ln((t− ε,∞)) = 0)→ 0. (6.87)

Now we show that P (%(He
n) ≥ t+ ε) also converges to zero. To do so, fix some δ > 0 and

note that

P (%(He
n) ≥ t+ ε) = P (Ln([t+ ε,∞)) > 0)

= P (Ln([t+ ε,∞)) > δ) + P (0 < Ln([t+ ε,∞)) ≤ δ) .
(6.88)

The portmanteau theorem implies that P (Ln([t+ ε,∞)) > δ) converges to zero. Now, we
argue that the second term also converges to zero. If θn denotes the balanced allocation on
He
n, then, by the definition of Ln, on the event 0 < Ln([t + ε,∞)) ≤ δ, the set S := {1 ≤

i ≤ n : ∂θn(i) ≥ t+ ε} is non–empty and |S| ≤ δn. Now if e ∈ E(He
n) with i, j ∈ e such that

i ∈ S and j ∈ Sc, then, since ∂θn(j) < t + ε ≤ ∂θn(i), we have θn(e, i) = 0. Hence, for all
i ∈ S, ∂θn(i) =

∑
e⊆S,e∈E(He

n) θn(e, i). Thus,∑
i∈S

∂θn(i) = |{e ∈ E(He
n) : e ⊆ S}| = |EHe

n
(S)|.

On the other hand, we have
∑

i∈S ∂θn(i) ≥ |S|(t + ε). Hence, |EHe
n
(S)| ≥ (t + ε)|S|, where

EHe
n
(S) denotes the set of edges in He

n with all endpoints in S. As a result, if Z
(n)
δ,t+ε denotes
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the number of subsets S ⊂ {1, . . . , n} with size at most nδ such that He
n has at least (t+ε)|S|

many edges with all endpoints in S, we have

P (0 < Ln([t+ ε,∞)) < δ) ≤ P

(
∃S ⊆ {1, . . . , n}, 0 < |S| ≤ δn,

|EHe
n
(S)| ≥ (t+ ε)|S|

)
≤ P

(
Z

(n)
δ,t+ε > 0

)
.

If we have t ≥ 1/(kmin − 1), Lemma 6.18 above implies that P
(
Z

(n)
δ,t+ε > 0

)
goes to zero

as n → ∞ and we are done. We now argue why this is the case. For this, note that
Proposition 6.10 together with Proposition 6.3 imply that there exists a sequence of εm–
balanced allocations Θεm such that for µ–almost all [H, i] ∈ H∗, for all vertices j ∈ V (H),
∂Θεm(H, j) → ∂Θ0(H, j) where Θ0 is a balanced allocation with respect to µ. Moreover,
using Remark 6.12, ∂Θεm(H, j) = ∂θHεm(j) where θHεn is the canonical ε–balanced allocation
on H.

On the other hand, the assumption P (Γ(kmin) = 0)+P (Γ(kmin) = 1) < 1 guarantees that
for all integer M ≥ 2, there is a nonzero probability under µ that the Galton–Watson process
has a finite sub–hypertree containing the root, and having M edges with all these edge having
size kmin. It can be easily seen that a finite hypertree with M edges all having size c has
1 +M(c−1) vertices and there is a balanced allocation on such a hypertree such that all the
vertices get the same amount of load, which is equal to M

1+M(c−1)
. Motivated by the discussion

in the previous paragraph, for µ–almost all [H, i] ∈ H∗, ∂Θ0(H, i) = limm→∞ ∂θ
H
εm(i) where

θHεm is the canonical εm–balanced allocation on H. This, together with Proposition 6.6,
implies that for each integer M , there is a nonzero probability under µ that ∂Θ0(H, i) is at
least M/(1+M(kmin−1)). Sending M →∞, this means that t = %(µ) ≥ 1/(kmin−1). As was

discussed above, using Lemma 6.18, we have P
(
Z

(n)
δ,t+ε > 0

)
→ 0. Thus, P (%(He

n) ≥ t+ ε)

goes to zero as n goes to infinity. This together with (6.87) proves that %(He
n)

p→ %(µ).

Proof of Lemma 6.17. For k ∈ I, let sk :=
∑

i∈S γ
(n)
i (k) and mk := |∆(n)(k)|. As the set of

edges in He
n is a subset of that of Hn, we may prove the result for Hn instead. This allows us

to directly analyze the configuration model. Let A be the set of the partial edges connected
to vertices in S. Note that |A| = s. We order the elements in A arbitrarily. At time t = 1,
we pick the smallest element in A. Let k1 be the size of this edge. Then, we choose k1 − 1
other partial edges in ∆(n)(k1) uniformly at random to form an edge in Hn. We continue
this process until all the elements in A are used up. More precisely, at time t, we pick the
smallest available partial edge in A, namely et, and if kt is the size of et, we match et with
kt − 1 other elements in the available partial edges in ∆(n)(kt) uniformly at random to form
an edge in Hn. At time t, let skt(t) and mkt(t) be the number of available partial edges of
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size kt in A and ∆(n)(kt), respectively. With this, if pt denotes the probability that et is
matched with partial edges all inside A,

pt =
skt(t)− 1

mkt(t)− 1
× skt(t)− 2

mkt(t)− 2
× · · · × skt(t)− (kt − 1)

mkt(t)− (kt − 1)
≤
(
skt(t)

mkt(t)

)kt−1

.

Note that if lt denotes the number of partial edges of size kt among e1, . . . , et−1, mkt(t) is
precisely mkt − ltkt. On the other hand, skt(t) ≤ skt − lt, where equality holds only if all the
partial edges of size k among e1, . . . , et−1 are matched with partial edges outside A. With
this,

pt ≤
(
ktskt
mkt

)kt−1

.

This is because, if ktskt ≤ mkt , the even stronger inequality pt ≤
(
skt
mkt

)kt−1

holds, while

otherwise the RHS is at least 1, and the inequality is trivial. Furthermore, as we saw in
the proof of Corollary 6.2, there exists α > 0 such that for n large enough and all k ∈ I,
mk ≥ nα. This together with the fact that sk ≤ s for all k ∈ I implies

pt ≤ kkmax−1
max

( s

nα

)kmin−1

,

where kmax denotes the maximum element in I. As this upper bound is a constant, and the
above process can continue for at most s steps until we match all partial edges in A, the num-

ber of edges with all endpoints in S is stochastically dominated by Binomial(s, kkmax−1
max

(
s
nα

)kmin−1
).

The proof is complete by setting c4 := kkmax−1
max /αkmin−1.

Proof of Lemma 6.18. For positive integers L and r, let X
(n)
L,r denote the number of subsets

S ⊂ {1, . . . , n} with size L such that He
n has at least r many edges with all endpoints in S.

With this, E
[
Z

(n)
δ,t

]
=
∑bnδc

L=1 E
[
X

(n)
L,dLte

]
. Now, fix integers L and r such that L ≤ nδ, with

δ > 0 sufficiently small. Let SL denote the set of S ⊂ {1, . . . , n} with size equal to L. Using
Lemma 6.17 and the fact that for a binomial random variable Z, P (Z ≥ r) ≤ (E [Z])r/r!,
we have

E
[
X

(n)
L,r

]
≤
∑
S∈SL

1

r!

c4

(∑
i∈S ‖γ

(n)
i ‖1

)kmin

nkmin−1


r

.

Using the inequality xm ≤ m!ex which holds for x ≥ 0 and integer m, this yields

E
[
X

(n)
L,r

]
≤
∑
S∈SL

(rkmin)!cr4
r!θrkminnr(kmin−1)

∏
i∈S

eθ‖γ
(n)
i ‖1

≤ (rkmin)!cr4
r!θrkminnr(kmin−1)

1

L!

(
n∑
i=1

eθ‖γ
(n)
i ‖1

)L

,
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where θ > 0 is as in the statement of Corollary 6.2. Using the assumption (6.86), there

exists λ > 0 such that
∑n

i=1 e
θ‖γ(n)

i ‖1 < nλ for all n. Using this, together with the inequalities
L! ≥ (L/e)L and (rkmin)!/r! ≤ (rkmin)r(kmin−1), and rearranging the terms, this yields

E
[
X

(n)
L,r

]
≤
(c5r

n

)r(kmin−1)
(
enλ

L

)L
,

where c5 := kminc
1

kmin−1

4 /θ
kmin
kmin−1 . Note that we may assume c5 > 1; otherwise, we may replace

it with c5 ∨ 1 which makes this quantity even bigger; for, the exponent of c5 is positive.
Using this bound for r = dLte, we have

E
[
X

(n)
L,dLte

]
≤
(
c5dLte
n

)dLte(kmin−1)(
enλ

L

)L
=

(
c5dLte
L

)dLte(kmin−1)

(eλ)L
(
L

n

)dLte(kmin−1)−L

.

Using c5 > 1, L/n < 1, Lt ≤ dLte ≤ L(t + 1) and the assumption t > 1/(kmin − 1), we get
the upper bound

E
[
X

(n)
L,dLte

]
≤ f

(
L

n

)L
,

where
f(x) := c6x

t(kmin−1)−1,

with c6 := eλ(c5(t+ 1))(t+1)(kmin−1). Note that f(L/n)L = exp(−ng(L/n)), where

g(x) := −x log c6 − (t(kmin − 1)− 1)x log x.

As t > 1/(kmin − 1), there exists a > 0 such that g(x) is strictly increasing and strictly
positive in (0, a). Now, we choose δ > 0 such that δ < a and also f(δ) < 1. This is possible
since the assumption t > 1/(kmin − 1) guarantees f(δ) → 0 as δ ↓ 0. With this, for any
0 < ζ < δ, we have

E
[
Z

(n)
δ,t

]
≤
bnδc∑
L=1

f(L/n)L

=

bnζc∑
L=1

f(L/n)L +

bnδc∑
L=bnζc+1

exp(−ng(L/n)).

Using the facts that f is increasing in (0,∞), g is increasing in (0, a) and 0 < L/n ≤ δ < a,
we have

E
[
Z

(n)
δ,t

]
≤

bnζc∑
L=1

f(ζ)L

+ nδ exp(−ng(ζ)).
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But f(ζ) < f(δ) < 1. Therefore,

E
[
Z

(n)
δ,t

]
≤ f(ζ)

1− f(ζ)
+ nδ exp(−ng(ζ)).

Now, by sending n to infinity, the second term vanishes, because g(ζ) > 0, and we get

lim supE
[
Z

(n)
δ,t

]
≤ f(ζ)/(1 − f(ζ)). Furthermore, by sending ζ → 0, we get E

[
Z

(n)
δ,t

]
→ 0

which means P
(
Z

(n)
δ,t > 0

)
→ 0, as Z

(n)
δ,t is integer valued.

6.10 Conclusion

We studied the asymptotic behavior of balanced allocations for a sequence of hypergraphs
converging to a local weak limit. This is done by defining and analyzing balanced Borel
allocations directly on the limit. We expressed the mean excess for the Galton–Watson limit
in terms of fixed point distributional equations. Moreover, we proved the convergence of the
maximum load under some conditions.
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Chapter 7

Concluding Remarks

In this thesis, we discussed two main category of problems on large sparse graphs, namely
the graphical data compression, and load balancing. We employed the framework of local
weak convergence, or so called the objective method, to make sense of a notion of stochastic
processes for sparse marked graphs. We also discussed a notion of entropy for such processes
on sparse marked graphs, which we called the marked BC entropy. In the process of studying
the problem of compression, we realized that this notion of entropy is indeed the information
theoretic limit of compression for our framework. In particular, we introduced a universal
lossless compression scheme which is capable of compressing a sequence of sparse marked
graphs converging in the local weak sense, without a priori knowing the limit. Specifically,
this compression scheme is capable of achieving the marked BC entropy associated to this
unknown limit. Furthermore, we discussed a distributed compression scheme for sparse
marked graphs. In particular, we introduced a version of the Slepian–Wolf theorem for
sparse marked graphs which characterizes the rate region when the statistical description
of the distributed graphical data can be modeled as being one of two types – as a member
of a sequence of marked sparse Erdős–Rényi ensembles or as a member of a sequence of
marked configuration model ensembles. Furthermore, we gave a generalization of this result
for Erdős–Rényi and configuration model ensembles with more than two sources.

In addition to studying the problem of compression, we studied the problem of load
balancing in networks. We did this by modeling the problem as a hypergraph where each
hyperedge represents a task carrying one unit of load, and each node represents a server. In
this model, the load of each hyperedge can be distributed among it endpoints. An allocation
is a way of distributing this load. Motivated by the work of Hajek [Haj90], we studied
balanced allocations, which are roughly speaking those allocations in which no demand
desires to change its allocation. We analyzed the properties of the empirical distribution
of the loads faced by the resources in balanced allocations for a sequence of hypergraphs
converging in the local weak sense as their size goes to infinity. In the special case of
unimodular hypergraph Galton–Watson processes, we characterized the asymptotic empirical
load distribution at a typical resource via a fixed point distributional equation. Moreover,
we characterized the asymptotics of the maximum load at a resource under some additional
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conditions. We achieved these in particular by generalizing the local weak convergence theory
to hypergraphs. Our work is an extension to hypergraphs of Anantharam and Salez [AS16],
which considered load balancing in graphs, and is aimed at more comprehensively resolving
conjectures of Hajek [Haj90].

Motivated by the fact that real–world graphical data is usually sparse, the framework
discussed in this thesis has broad applicability in studying problems involving sparse graph-
ical data. Additionally, since we allow for graphs to be marked, our framework allows for
modeling both the interaction between objects in a complex network, as well as additional
data associated to such objects as a marked graph. Examples of such scenarios include social
networks, internet graphs, and genomics and proteomics data.

Problems studied in this thesis should be considered as examples showing the wide-range
applicability of the local weak convergence theory and the notion of marked BC entropy. In
fact, this framework provides a viewpoint of stationary stochastic processes for sparse marked
graphs. The theory of time series is the engine driving an enormous range of applications in
areas such as control theory, communications, information theory and signal processing. It is
to be expected that a theory of stationary stochastic processes for combinatorial structures,
in particular graphs, would eventually have a similarly wide-ranging impact.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Lemma 2.1

We first prove that if the condition mentioned in Lemma 2.1 is satisfied, then µn ⇒ µ.
Let f : Ḡ∗ → R be a uniformly continuous and bounded function. Since f is uniformly
continuous, for fixed ε > 0 there exists δ > 0 such that |f([G, o]) − f([G′, o′])| < ε for all
[G, o] and [G′, o′] such that d̄∗([G, o], [G

′, o′]) < δ. For this δ, choose k such that 1/(1+k) < δ.
Note that since Ξ and Θ are finite there are countably many locally finite rooted trees with
marks in Ξ and Θ and depth at most k. Therefore, one can find countably many rooted trees
{(Tj, ij)}∞j=1 with depth at most k such that Ak(Tj ,ij)∩T̄∗ partitions T̄∗. On the other hand, as

µ is a probability measure with its support being a subset of T̄∗, one can find finitely many
of these (Tj, ij), which we may index without loss of generality by 1 ≤ j ≤ m, such that∑m

j=1 µ(Ak(Tj ,ij)) ≥ 1 − ε. To simplify the notation, we use Aj for Ak(Tj ,ij), 1 ≤ j ≤ m. Note

that if [G, o] ∈ Aj, d̄∗([G, o], [Tj, ij]) ≤ 1
1+k

< δ. Hence, if A denotes ∪mj=1Aj, we have∣∣∣∣∣
∫
fdµ−

m∑
j=1

f([Tj, ij])µ(Aj)

∣∣∣∣∣
≤

m∑
j=1

∣∣∣∣∣
∫
Aj

fdµ− f([Tj, ij])µ(Aj)

∣∣∣∣∣+ ‖f‖∞ µ(Ac)

≤ ε(1 + ‖f‖∞),
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where the last inequality uses the facts that µ(Ac) ≤ ε, 1/(1 + k) < δ, and |f([G, o]) −
f([Tj, ij])| < ε for [G, o] ∈ Aj. Similarly, we have∣∣∣∣∣

∫
fdµn −

m∑
j=1

f([Tj, ij])µ(Aj)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
fdµn −

m∑
j=1

f([Tj, ij])µn(Aj)

∣∣∣∣∣
+

m∑
j=1

|f([Tj, ij])||µn(Aj)− µ(Aj)|

≤ ‖f‖∞

(
1−

m∑
j=1

µn(Aj)

)
+ ε

+ ‖f‖∞
m∑
j=1

|µn(Aj)− µ(Aj)|.

Combining the two preceding inequalities, we have∣∣∣∣∫ fdµn −
∫
fdµ

∣∣∣∣ ≤ ‖f‖∞
(

1−
m∑
j=1

µn(Aj)

)

+ ‖f‖∞
m∑
j=1

|µn(Aj)− µ(Aj)|+ ε(2 + ‖f‖∞).

Now, as n goes to infinity, µn(Aj) → µ(Aj) by assumption and also 1 −
∑m

j=1 µn(Aj) →
µ(Ac) ≤ ε. Thus,

lim sup
n→∞

∣∣∣∣∫ fdµn −
∫
fdµ

∣∣∣∣ ≤ 2ε(1 + ‖f‖∞).

Since ‖f‖∞ <∞ and ε > 0 is arbitrary,
∫
fdµn →

∫
fdµ, whereby µn ⇒ µ.

For the converse, fix an integer h ≥ 0 and a rooted marked tree (T, i) with depth at
most h. Since 1Ah

(T,i)
([G, o]) = 1Ah

(T,i)
([G′, o′]) when d̄∗([G, o], [G

′, o′]) < 1/(1+h), we see that

1Ah
(T,i)

is a bounded continuous function. This immediately implies that

µn(Ah(T,i)) =

∫
1Ah

(T,i)
dµn →

∫
1Ah

(T,i)
dµ = µ(Ah(T,i)),

which completes the proof.
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A.2 Some Properties of Marked Rooted Trees of

Finite Depth

In this section we gather some useful properties of marked rooted trees of finite depth, which
are used at various points during the discussion.

Given a marked rooted tree (T, o), integers k, l ≥ 1, t ∈ Ξ × T̄ k−1
∗ , and t′ ∈ Ξ × T̄ l−1

∗ ,
define

Ek,l(t, t
′)(T, o) := |{v ∼T o : T (v, o)k−1 ≡ t, T (o, v)l−1 ≡ t′}|.

When k = l this reduces to the notation we defined in Section 2.7, i.e. Ek,k(t, t
′)(T, o) is the

same as Ek(t, t
′)(T, o).

Lemma A.1. Assume (T, o) is a rooted marked tree with finite depth, and v and v′ are
offspring of the root. Then, if T (o, v) ≡ T (o, v′) and ξT (v, o) = ξT (v′, o), we have T (v, o) ≡
T (v′, o).

Proof. We construct the rooted automorphism f : V (T )→ V (T ) as follows. We set f(o) = o,
f(v) = v′ and f(v′) = v. Moreover, we use the isomorphism T (o, v) ≡ T (o, v′) to map the
nodes in the subtree of v to the nodes in the subtree of v′ and vice versa. Finally, we set f to
be the identity map on the rest of the tree. Indeed, f is an adjacency preserving bijection.
On the other hand, the assumptions ξT (v, o) ≡ ξT (v′, o) and T (o, v) ≡ T (o, v′) imply that f
preserves the marks. Therefore, f is an automorphism which maps T (v, o) to T (v′, o). This
completes the proof.

Lemma A.2. Assume t(1), t(2) ∈ Ξ×T̄ h∗ and t′ ∈ Ξ×T̄ k∗ are given such that t(1)⊕t′ = t(2)⊕t′.
Further, assume that t(1)[m] = t(2)[m]. Then, we have t(1) = t(2).

Proof. Let (T, o) be an arbitrary member of the equivalence class t(1) ⊕ t′. Therefore, we
have T (v, o) ≡ t(1) and T (o, v) ≡ t′ for some v ∼T o. On the other hand, by assumption,
(T, o) is also a member of the equivalence class t(2) ⊕ t′. This means that T (v′, o) ≡ t(2)

and T (o, v′) ≡ t′ for some v′ ∼T o. Moreover, by assumption, ξT (v, o) = t(1)[m] = t(2)[m] =
ξT (v′, o). Since T (o, v) ≡ T (o, v′) ≡ t′, Lemma A.1 above implies that T (v, o) ≡ T (v′, o), or
equivalently t(1) = t(2).

Lemma A.3. Assume (T, o) is a rooted marked tree with depth at most k ≥ 1. Moreover,
assume that, for some l ≥ 1, t ∈ Ξ× T̄ l∗ , and t′ ∈ Ξ× T̄ k−1

∗ , we have El+1,k(t, t
′)(T, o) > 0.

Then,
El+1,k(t, t

′)(T, o) = |{v ∼T o : T (o, v)k−1 ≡ t′, ξT (v, o) = t[m]}|.

Proof. From the definition of El+1,k(t, t
′)(T, o), we have

El+1,k(t, t
′)(T, o) = |{v ∼T o : T (o, v)k−1 ≡ t′, T (v, o)l ≡ t}|

≤ |{v ∼T o : T (o, v)k−1 ≡ t′, ξT (v, o) = t[m]}|.
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Now, we show the inequality in the opposite direction. The assumption El+1,k(t, t
′)(T, o) > 0

implies that there exists v ∼T o such that T (o, v)k−1 ≡ t′ and T (v, o)l ≡ t. This in particular
means that ξT (v, o) = t[m]. On the other hand, if v′ ∼T o is such that T (o, v′)k−1 ≡ t′ and
ξT (v′, o) = t[m], Lemma A.1 above implies that T (v′, o) ≡ T (v, o), which means T (v′, o)l ≡ t.
This establishes the other direction of the inequality and completes the proof.

Lemma A.4. Given h ≥ 1 and two marked rooted trees (T, o) and (T ′, o′) with depth at most
h, assume that the mark at the root in T and T ′ are the same and also, for all t, t′ ∈ Ξ×T̄ h−1

∗ ,
we have Eh(t, t

′)(T, o) = Eh(t, t
′)(T ′, o′). Then, (T, o) ≡ (T ′, o′).

Proof. Note that the assumption regarding the mark at the root in T and that in T ′ being
equal is necessary in this statement. To see this, consider the example where (T, o) and
(T ′, o′) are isolated roots, then we automatically have Eh(t, t

′)(T, o) = Eh(t, t
′)(T ′, o′) = 0

for all t, t′ ∈ Ξ × T̄ h−1
∗ , but (T, o) ≡ (T ′, o′) only when the marks at the root in the two

rooted trees are the same.
Since the root marks in [T, o] and [T ′, o′] are the same, it suffices to show that for all

x ∈ Ξ and t ∈ Ξ× T̄ h−1
∗ we have

|{v ∼T o : ξT (v, o) = x, T (o, v)h−1 ≡ t}| = |{v ∼T ′ o′ : ξT ′(v, o′) = x, T ′(o′, v)h−1 ≡ t}|.
(A.1)

Note that if |{v ∼T o : ξT (v, o) = x, T (o, v)h−1 ≡ t}| > 0 then there exists v ∼T o
such that ξT (v, o) = x and T (o, v)h−1 ≡ t. This means that with t′ := T [v, o]h−1, we have
Eh(t

′, t)(T, o) > 0. Moreover, Lemma A.3 implies that Eh(t
′, t)(T, o) = |{v ∼T o : ξT (v, o) =

x, T (o, v)h−1 ≡ t}|. On the other hand, from the hypothesis of this lemma, we also know
that Eh(t

′, t)(T ′, o′) = Eh(t
′, t)(T, o) > 0. Another usage of Lemma A.3 shows (A.1). So far,

we have shown that |{v ∼T o : ξT (v, o) = x, T (o, v)h−1 ≡ t}| > 0 implies (A.1). Similarly,
|{v ∼T ′ o : ξT ′(v, o

′) = x, T ′(o′, v)h−1 ≡ t}| > 0 implies (A.1). This completes the proof.

A.3 Some Properties of Unimodular Galton–Watson

Trees with given Neighborhood Distribution

Fix h ≥ 1 and P ∈ P(T̄ h∗ ) admissible. In this section, we prove some properties of
UGWTh(P ).

Given [T, o] ∈ T̄∗, and v ∈ V (T ) with v 6= o, let p(v) denote the parent node of v. For
such v, we denote (T [p(v), v]h−1, T [v, p(v)]h−1) by c(v) and (T [v, p(v)]h−1, T [p(v), v]h−1) by
c̄(v). Let

γ[T,o](v) =

{
P ([T, o]h) v = o,

P̂c(v)(T [p(v), v]h) v 6= o.
(A.2)

When the marked rooted tree [T, o] is clear from the context we will simply write γ(v) for
γ[T,o](v).
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Lemma A.5. Given [T, o] ∈ T̄∗ and v ∈ V (T ) with distT (v, o) = k where k ≥ 1, let
o = v0, v1, . . . , vk = v denote the path connecting v to the root.

Then, if γ(vi) > 0 for all 0 ≤ i ≤ k − 1, we have P ([T, vi]h) > 0 for 0 ≤ i ≤ k − 1, and
eP (c(vi)) > 0 for 1 ≤ i ≤ k.

Proof. We prove this by induction on k. First, consider k = 1. In this case, we have
γ(v0) = γ(o) = P ([T, o]h), and so the hypothesis that γ(v0) > 0 implies that P ([T, v0]h) =
P ([T, o]h) > 0, which establishes the first claim. Using this, we get

eP (c̄(v)) = eP (T [v, o]h−1, T [o, v]h−1) ≥ P ([T, o]h)Eh(T [v, o]h−1, T [o, v]h−1)([T, o]h)

≥ P ([T, o]h) > 0,

where the last equality uses the fact that, by definition, Eh(T [v, o]h−1, T [o, v]h−1)([T, o]h) ≥ 1.
But, since P is admissible, we have eP (c(v)) = eP (c̄(v)) > 0 which completes the proof for
k = 1.

Now, for k > 1, we have eP (c(vk−1)) > 0 from the induction hypothesis. This implies
that, with t := T [vk−2, vk−1]h−1, t′ := T [vk−1, vk−2]h−1 and t̃ := T [vk−2, vk−1]h, we have

0 < γ(vk−1) = P̂t,t′(t̃)

=
P (t̃⊕ t′)Eh(t, t′)(t̃⊕ t′)

eP (t, t′)
.

In particular, we have P (t̃⊕ t′) > 0. But t̃⊕ t′ = [T, vk−1]h. This together with the induction
hypothesis implies that P ([T, vi]h) > 0 for 0 ≤ i ≤ k − 1. Moreover, we have

eP (c̄(v)) ≥ P ([T, vk−1]h)Eh(c̄(v))([T, vk−1]h) ≥ P ([T, vk−1]h) > 0,

where the last equality follows from the fact that, by definition, we have

Eh(c̄(v))([T, vk−1]h) ≥ 1.

The proof is complete by noting that, since P is admissible, we have eP (c̄(v)) = eP (c(v)).

Corollary A.1. Let µ = UGWTh(P ) with h ≥ 1 and let P ∈ P(T̄ h∗ ), i.e. P admissible.
Then, for µ–almost all [T, o] ∈ T̄∗, we have γ[T,o](v) > 0 for all v ∈ V (T ) and eP (c(w)) > 0
for all w ∈ V (T ) \ {o}.

Proof. First recall that γ[T,o](o) = P ([T, o]h) is the probability of sampling [T, o]h in the
process of generating [T, o] with law µ = UGWTh(P ). Hence, µ–almost surely, we have

γ[T,o](o) > 0. Moreover, for a vertex v ∈ V (T ) \ {o}, γ[T,o](v) = P̂c(v)(T [p(v), v]h) is the
probability of sampling T [p(v), v]h given T [p(v), v]h−1 and T [v, p(v)]h−1 in the process of
generating [T, o] with law µ. Since there are countably many vertices in [T, o] ∈ T̄∗, µ–
almost surely we have γ[T,o](v) > 0 for all v ∈ V (T ).

Motivated by the above discussion, if [T, o] ∈ T̄∗ is outside a measure zero set with
respect to µ, we have γ[T,o](v) > 0 for all v ∈ V (T ). Thus, Lemma A.5 above implies that
eP (c(w)) > 0 for all w ∈ V (T ) \ {o} and completes the proof.
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A.4 A Convergence Property of Unimodular

Galton–Watson Trees with respect to the

Neighborhood Distribution

In this section we give the proof of Lemma 2.4.

Proof of Lemma 2.4. Let µ(n) := UGWTh(P
(n)) and µ := UGWTh(P ). We claim that for

any integer l ∈ N and [T̂ , ô] ∈ T̄ l∗ , we have

lim
n→∞

µ(n)(A[T̂ ,ô]) = µ(A[T̂ ,ô]), (A.3)

where
A[T̂ ,ô] := {[T, o] ∈ T̄∗ : [T, o]l = [T̂ , ô]}.

Before proving our claim, we show why this implies µ(n) ⇒ µ. To do this, we take a bounded
and uniformly continuous function f : T̄∗ → R and show that

∫
fdµ(n) →

∫
fdµ. Fix

ε > 0. Due to the local topology on T̄∗, there is l ∈ N such that for all [T̂ , ô] ∈ T̄ l∗ and
[T, o] ∈ A[T̂ ,ô], we have d∗([T, o], [T̂ , ô]) < ε. Recall that d∗ denotes the local metric on T̄∗.
Since f is uniformly continuous, this implies that |f([T, o])−f([T̂ , ô])| < η(ε) where η(ε)→ 0
as ε→ 0. Now, fix a finite collection S of marked rooted trees [T̂ , ô] ∈ T̄ l∗ such that∑

[T̂ ,ô]∈S

µ(A[T̂ ,ô]) > 1− ε.

Then, (A.3) implies that, for n large enough, we have∑
[T̂ ,ô]∈S

µ(n)(A[T̂ ,ô]) > 1− 2ε.

This implies that∣∣∣∣∫ fdµ(n) −
∫
fdµ

∣∣∣∣ ≤ 2η(ε) + 3ε‖f‖∞ +
∑

[T̂ ,ô]∈S

|f([T̂ , ô])||µ(n)(A[T̂ ,ô])− µ(A[T̂ ,ô])|.

By first sending n to infinity and then ε to zero, we get our desired result.
We now get back to proving our claim in (A.3). First, observe that, by the definition of

UGWTh(P ), we have

µ(A[T̂ ,ô]) = C
∏
v∈B

γ(v), (A.4)

where C is a constant which only depends on [T̂ , ô], and B := {v ∈ V (T̂ ) : distT̂ (v, ô) ≤
(l−h)+} where (l−h)+ := max{l−h, 0}. Here, we have employed the notation γ(v) = γ[T̂ ,ô](v)
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from (A.2) in Appendix A.3. On the other hand, if we define γ(n) by replacing P with P (n)

and P̂c(v) with P̂
(n)
c(v) in the definition of γ, we have

µ(n)(A[T̂ ,ô]) = C
∏
v∈B

γ(n)(v). (A.5)

Note that, as C only depends on [T̂ , ô], the constants on (A.4) and (A.5) are the same. With
this, we show (A.3) by considering two cases.

Case 1, µ(A[T̂ ,ô]) > 0: Using (A.4), this means that for all v ∈ B, we have γ(v) > 0. In

particular, P ([T̂ , ô]h) > 0 and Lemma A.5 above implies that for all v ∈ B, v 6= ô, we have
eP (c(v)) > 0. Hence, for v ∈ B, v 6= ô, we have

0 < γ(v) = P̂c(v)(T̂ [p(v), v]h) =
P ([T̂ , v]h)Eh(c(v))([T̂ , v]h)

eP (c(v))
.

Consequently, we have P ([T̂ , v]h) > 0. As a result, for n large enough, we have P (n)([T̂ , v]h) >
0. On the other hand, since eP (n)(c(v))→ eP (c(v)), for n large enough, we have eP (n)(c(v)) >
0 for all v ∈ B, v 6= ô. Therefore, for v ∈ B, v 6= ô and n large enough, we have

γ(n)(v) =
P (n)([T̂ , v]h)Eh(c(v))([T̂ , v]h)

eP (n)(c(v))
→ P ([T̂ , v]h)Eh(c(v))([T̂ , v]h)

eP (c(v))
= γ(v). (A.6)

Moreover,
γ(n)(ô) = P (n)([T̂ , ô]h)→ P ([T̂ , ô]h) = γ(ô).

Thus, together with (A.6), and comparing with (A.4) and (A.5), we realize that µ(n)(A[T̂ ,ô])→
µ(A[T̂ ,ô]).

Case 2, µ(A[T̂ ,ô]) = 0: Using (A.4), there is at least one node v ∈ B such that γ(v) = 0.

If γ(ô) = P ([T̂ , ô]h) = 0, we have P (n)([T̂ , ô]h) → P ([T̂ , ô]h) = 0. Hence, µ(n)(A[T̂ ,ô]) → 0
and we are done. Otherwise, let v ∈ B, v 6= ô, be a node with minimal depth such that
γ(v) = 0, i.e. if 1 ≤ k = distT̂ (v, ô) and ô = v0, v1, . . . , vk = v is the path connecting v to the
root, we have γ(vi) > 0 for 0 ≤ i ≤ k − 1 and γ(vk) = 0. Using Lemma A.5, we conclude
that eP (c(vk)) > 0 and thus

0 = γ(vk) =
P ([T̂ , vk]h)Eh(c(vk))([T̂ , vk]h)

eP (c(vk))

≥ P ([T̂ , vk]h)

eP (c(vk))
,

where the last line uses the fact that Eh(c(vk))([T̂ , vk]h) ≥ 1. This implies that P ([T̂ , vk]h) =
0. Furthermore, since P (n)([T̂ , vk]h) → P ([T̂ , vk]h) = 0 and eP (n)(c(vk)) → eP (c(v)) > 0, we
realize that for n large enough,

γ(n)(vk) =
P (n)([T̂ , vk]h)Eh(c(vk))([T̂ , vk]h)

eP (n)(c(vk))
→ 0.

Consequently, using (A.5), we have µ(n)(A[T̂ ,ô])→ 0 = µ(A[T̂ ,ô]) which completes the proof.
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A.5 Unimodularity of UGWTh(P )

We give a proof of Lemma 2.5. Let h ≥ 1 and P ∈ P(T̄ h∗ ) be an admissible probability
distribution. Let µ = UGWTh(P ). In order to show that µ is unimodular, we need to show
that for any Borel function f : T̄∗∗ → R+, we have

Eµ

[∑
v∼T o

f(T, o, v)

]
= Eµ

[∑
v∼T o

f(T, v, o)

]
.

Without loss of generality, we may assume that deg(µ) > 0, since otherwise nothing remains
to be proved. We have

Eµ

[∑
v∼T o

f(T, o, v)

]
=
∑
g∈T̄ h∗

P (g)Eµ

[∑
v∼T o

f(T, o, v)

∣∣∣∣(T, o)h ≡ g

]

=
∑

g∈T̄ h∗ :deg(g)>0

deg(g)P (g)Eµ

[
1

deg(g)

∑
v∼T o

f(T, o, v)

∣∣∣∣(T, o)h ≡ g

]
,

(A.7)

where deg(g) denotes the degree at the root in g. Define the probability distribution P̃ ∈
P(T̄ h∗ ) such that

P̃ ([T, o]) :=
P ([T, o]) degT (o)

d
,

where d := EP [degT (o)] is the expected degree at the root in P . Moreover, define the
probability measure µ̃ ∈ P(T̄∗) in a way identical to UGWTh(P ), with the exception that

(T, o)h in µ̃ is sampled from P̃ instead of P , and we use the distributions P̂t,t′ to extend (T, o)h
exactly as in UGWTh(P ). Since, by definition, conditioned on (T, o)h, the distribution of
(T, o) is the same in µ and µ̃, we may write (A.7) as follows

Eµ

[∑
v∼T o

f(T, o, v)

]
= d

∑
g∈T̄ h∗

P̃ (g)Eµ̃

[
1

deg(g)

∑
v∼T o

f(T, o, v)

∣∣∣∣(T, o)h ≡ g

]
.

With v̂ being a node chosen uniformly at random among the nodes v ∼T o adjacent to the
root in [T, o] ∼ µ̃, we may rewrite the above expression as follows,

Eµ

[∑
v∼T o

f(T, o, v)

]
= dEµ̃ [f(T, o, v̂)] . (A.8)

Note that, µ̃–almost surely, degT (o) > 0 and v̂ is well defined. Now, we find the distribution
of [T, o, v̂] ∈ T̄∗∗ when [T, o] ∼ µ̃ and v̂ is chosen uniformly at random among the neighbors
of the root, as was defined above.
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In order to do so, we define the probability measure ν ∈ P(T̄∗∗) to be the law of [H, o, o′]
where H is a connected random marked tree with two distinguished adjacent vertices o and
o′, defined as follows. We first sample t, t′ from the distribution πP (t, t′) = eP (t, t′)/d, and
construct H such that H(o′, o) = H(o′, o)h−1 ≡ t and H(o, o′) = H(o, o′)h−1 ≡ t′. Then,
similar to the construction of UGWTh(P ), we extend H(o′, o) and H(o, o′) inductively to

construct H. More precisely, first we sample t̃ from P̂t,t′(.) and use it to add at most one

layer to H(o′, o)h−1 so that H(o′, o)h ≡ t̃. Similarly, we sample t̃′ from P̂t′,t(.) and use it
to add at most one layer to H(o, o′)h−1 so that H(o, o′)h ≡ t̃′. Next, independently for

v ∼H o, v 6= o′, we sample t̃ from P̂H[o,v]h−1,H[v,o]h−1
(.) and use it to add at most one layer to

H(o, v)h−1 such that H(o, v)h ≡ t̃. We apply the same procedure to w ∼H o′, w 6= o. We
continue this procedure inductively and define ν to be the law of [H, o, o′].

We now claim that if [T, o] has distribution µ̃ and ν̂ is chosen uniformly at random among
the neighbors of the root in T as above, then [T, o, v̂] has distribution ν. Before proving this,
we show how it completes the proof of the unimodularity of µ. Note that, with this claim
proved, (A.8) becomes

Eµ

[∑
v∼T o

f(T, o, v)

]
= dEν [f(H, o, o′)] .

Similarly, we have

Eµ

[∑
v∼T o

f(T, v, o)

]
= dEν [f(H, o′, o)] .

However, the admissibility of P implies that πP (t, t′) = πP (t′, t) for all t, t′ ∈ Ξ × T̄ h−1
∗ .

Therefore, ν is symmetric in the sense that [H, o, o′] and [H, o′, o] have the same distribution.
Therefore, we have Eµ

[∑
v∼T o f(T, o, v)

]
= Eµ

[∑
v∼T o f(T, v, o)

]
, which is precisely what

we needed to show.
Therefore, it remains to prove that with [T, o] ∼ µ̃ and v̂ defined as above, [T, o, v̂] ∼ ν.

First, we claim that since [T, o]h ∼ P̃ , we have (T [v̂, o]h−1, T [o, v̂]h−1) has distribution πP .

In order to show this, note that due to the definition of P̃ above, for [T, o] ∼ P̃ , we have
degT (o) ≥ 1 almost surely. Let Q be the distribution of (T [v̂, o]h−1, T [o, v̂]h−1) with [T, o]
and v̂ as stated. Then, for t, t′ ∈ Ξ× T̄ h−1

∗ , we have

Q(t, t′) =
∑

[T,o]∈T̄ h∗ :degT (o)≥1

P̃ ([T, o])
Eh(t, t

′)(T, o)

degT (o)

=
∑

[T,o]∈T̄ h∗ :degT (o)≥1

P ([T, o]) degT (o)

d

Eh(t, t
′)(T, o)

degT (o)

=
eP (t, t′)

d
= πP (t, t′),
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which completes the proof of our claim. This, in particular, implies that, µ̃–almost surely,
we have πP (T [v̂, o]h−1, T [o, v̂]h−1) > 0. Moreover, we claim that for t, t′ ∈ T̄ h−1

∗ such that
πP (t, t′) > 0 and t̃ ∈ T̄ h∗ such that t̃h−1 = t, we have

Pµ̃
(
T [v̂, o]h = t̃

∣∣T [o, v̂]h−1 = t′, T [v̂, o]h−1 = t
)

= P̂t,t′(t̃). (A.9)

In order to show this, first note that, as was mentioned above, we have

Pµ̃ (T [o, v̂]h−1 = t′, T [v̂, o]h−1 = t) = πP (t, t′). (A.10)

On the other hand, we have

Pµ̃
(
T [v̂, o]h = t̃, T [o, v̂]h−1 = t′

) (a)
= Pµ̃

(
[T, o]h = t̃⊕ t′

) 1

deg(t̃⊕ t′)
Eh+1,h(t̃, t

′)(t̃⊕ t′)

=
P̃ (t̃⊕ t′)

deg(t̃⊕ t′)
Eh+1,h(t̃, t

′)(t̃⊕ t′)

=
1

d
P (t̃⊕ t′)Eh+1,h(t̃, t

′)(t̃⊕ t′),

where (a) is obtained by employing the assumption that v̂ is chosen uniformly at random
among the neighbors of the root, and the fact that conditioned on [T, o]h = t̃⊕ t′, there are
precisely Eh+1,h(t̃, t

′)(t̃ ⊕ t′) many v ∼T o such that T [v, o]h = t̃ and T [o, v]h−1 = t′. Here,
deg(t̃⊕ t′) denotes the degree at the root in t̃⊕ t′. Using this together with (A.10), we get

Pµ̃
(
T [v̂, o]h = t̃

∣∣T [o, v̂]h−1 = t′, T [v̂, o]h−1 = t
)

=
P (t̃⊕ t′)Eh+1,h(t̃, t

′)(t̃⊕ t′)
dπP (t, t′)

=
P (t̃⊕ t′)Eh+1,h(t̃, t

′)(t̃⊕ t′)
eP (t, t′)

.

(A.11)

Now, if õ denotes the root in t̃⊕ t′, we have

Eh+1,h(t̃, t
′)(t̃⊕ t′) (a)

= |{v ∼t̃⊕t′ õ : (t̃⊕ t′)(õ, v)h−1 ≡ t′, ξt̃⊕t′(v, õ) = t̃[m]}|
(b)
= |{v ∼t̃⊕t′ õ : (t̃⊕ t′)(õ, v)h−1 ≡ t′, ξt̃⊕t′(v, õ) = t[m]}|
(c)
= Eh(t, t

′)(t̃⊕ t′),

where in (a) we have used Lemma A.3, (b) is implied by the fact that t[m] = t̃[m], and in
(c) we have again used Lemma A.3. Substituting this into (A.11) and comparing with the

definition of P̂t,t′ , we arrive at (A.9).
So far, we have shown that the distribution of (T [o, v̂]h−1, T [v̂, o]h) is the same as that of

(H[o, o′]h−1, H[o′, o]h) when [H, o, o′] ∼ ν. Observe that T [o, v̂]h−1 and T [v̂, o]h together form

[T, o]h. Moreover, by definition, conditioned on (T, o)h, (T, o) is constructed using the P̂t,t′(.)
distributions, in a way similar to the process of defining (H, o, o′) above. Consequently, the
distribution of [T, o, v̂] is identical to ν. As was discussed above, this completes the proof of
the unimodularity of UGWTh(P ).
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A.6 Proof of Proposition 2.1

In this section, we prove Proposition 2.1.

Proof of Proposition 2.1. Let µ := UGWTh(P ). Using induction, it suffices to show (2.8)
only for k = h+ 1, i.e. with Q := µh+1, we claim that

UGWTh+1(Q) = µ. (A.12)

Recall from Section 2.7 that µ is the law of [T, o] where (T, o)h is sampled from P and the

distributions (P̂t,t′ : t, t′ ∈ Ξ × T̄ h−1
∗ ) are used to extend depth h − 1 rooted trees to depth

h rooted trees in a recursive fashion. However, this process is equivalent to the following:
first, we sample (T, o)h+1 using Q and then recursively use (P̂t,t′ : t, t′ ∈ Ξ× T̄ h−1

∗ ) to extend
depth h − 1 trees to depth h trees, starting from nodes at depth 2. More precisely, for
v being an offspring of the root and w being an offspring of v, we extend T (v, w)h−1 to

T (v, w)h using P̂T [v,w]h−1,T [w,v]h−1
. This is done independently for all nodes w with depth 2.

Equivalently, for each offspring v of the root, T (o, v)h is extended to T (o, v)h+1, independent
from all other offspring v′ of the root. However, motivated by the above discussion, in order
to extend T (o, v)h, we need to know T [v, w]h−1 and T [w, v]h−1 for the offspring w of v. But
this is known if we are given T (o, v)h and T (v, o)h (in fact, it is easy to see that even knowing
T (o, v)h and T (v, o)h−2 is sufficient). In other words, the distribution of T [o, v]h+1 is uniquely
determined by knowing T [o, v]h and T [v, o]h. Motivated by this, for s, s′ ∈ Ξ× T̄ h∗ such that

eQ(s, s′) = Eµ [Eh+1(s, s′)(T, o)] > 0 and s̃ ∈ T̄ h+1
∗ such that s̃h = s, define P̃s,s′(s̃) to be the

probability of T (o, v)h+1 ≡ s̃ given T (o, v)h ≡ s and T (v, o)h ≡ s′. The unimodularity of µ
implies that if eQ(s, s′) = 0 for some s, s′ ∈ Ξ × T̄ h∗ , the probability under µ of observing
a node w with parent v such that T (v, w)h ≡ s and T (w, v)h ≡ s′ is zero; therefore, we

may define P̃s,s′ arbitrarily for such s, s′. Continuing this argument recursively for nodes at
higher depths, we realize that µ is the law of (T, o) where (T, o)h+1 is sampled from Q and

then (P̃s,s′(.) : s, s′ ∈ Ξ × T̄ h∗ ) is used to extend subtrees of depth h to subtrees of depth
h + 1. Comparing this with the construction of UGWTh+1(Q), we realize that in order to
show (A.12), it suffices to show that for every s, s′ ∈ Ξ × T̄ h∗ with eQ(s, s′) > 0, and for all
s̃ ∈ Ξ× T̄ h+1

∗ , we have

Q̂s,s′(s̃) = P̃s,s′(s̃), (A.13)

where Q̂s,s′ is defined using (2.7) based on the distribution Q. More precisely, for s, s′ ∈
Ξ× T̄ h∗ such that eQ(s, s′) > 0, and s̃ ∈ Ξ× T̄ h+1

∗ , we have

Q̂s,s′(s̃) = 1 [s̃h = s]
Q(s̃⊕ s′)Eh+1(s, s′)(s̃⊕ s′)

eQ(s, s′)
. (A.14)

We now fix s, s′ ∈ Ξ× T̄ h∗ and show (A.13). Without loss of generality, we may assume
that s̃h = s, since otherwise both sides of (A.13) are zero. We claim that

P̃s,s′(s̃) =
Eµ [Eh+1,h+2(s′, s̃)(T, o)]

Eµ [Eh+1(s′, s)(T, o)]
. (A.15)
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To see this, note that

Eµ [Eh+1,h+2(s′, s̃)(T, o)] =
∑

r∈T̄ h+1
∗

Q(r)Eµ

[∑
v∼T o

1 [T (v, o)h ≡ s′, T (o, v)h+1 ≡ s̃]

∣∣∣∣∣(T, o)h+1 ≡ r

]

=
∑

r∈T̄ h+1
∗

Q(r)Eµ

[∑
v∼T o

1 [T (v, o)h ≡ s′, T (o, v)h ≡ s]1 [T (o, v)h+1 ≡ s̃]

∣∣∣∣∣(T, o)h+1 ≡ r

]
.

Note that the event {T (o, v)h+1 ≡ s̃} is conditionally independent of the event {(T, o)h+1 ≡
r}, given the event {T (v, o)h ≡ s′, T (o, v)h ≡ s}. Therefore,

Eµ [Eh+1,h+2(s′, s̃)(T, o)] =
∑

r∈T̄ h+1
∗

Q(r)Eh+1(s′, s)(r)P̃s,s′(s̃) = Eµ [Eh+1(s′, s)(T, o)] P̃s,s′(s̃).

(A.16)
Using the unimodularity of µ, we have

Eµ [Eh+1(s′, s)(T, o)] = Eµ [Eh+1(s, s′)(T, o)] = eQ(s, s′). (A.17)

Thereby, eQ(s, s′) > 0 implies that Eµ [Eh+1(s′, s)(T, o)] > 0. Therefore, dividing both sides
of (A.16) by Eµ [Eh+1(s′, s)(T, o)], we arrive at (A.15). Now, we simplify the right hand side
of (A.15) to establish (A.13). Using the unimodularity of µ for the numerator, we have

Eµ [Eh+1,h+2(s′, s̃)(T, o)] = Eµ [Eh+2,h+1(s̃, s′)(T, o)] .

Observe that Eh+2,h+1(s̃, s′)(T, o) > 0 iff (T, o)h+1 ≡ s̃⊕s′. On the other hand, if (T, o)h+1 ≡
s̃⊕ s′, we have Eh+2,h+1(s̃, s′)(T, o) = Eh+2,h+1(s̃, s′)(s̃⊕ s′). Consequently,

Eµ [Eh+1,h+2(s′, s̃)(T, o)] = Pµ ((T, o)h+1 ≡ s̃⊕ s′)Eh+2,h+1(s̃, s′)(s̃⊕ s′)
= Q(s̃⊕ s′)Eh+2,h+1(s̃, s′)(s̃⊕ s′).

(A.18)

Note that s̃⊕ s′ by construction has the property that Eh+2,h+1(s̃, s′)(s̃⊕ s′) ≥ 1. Thereby,
Lemma A.3 implies that Eh+2,h+1(s̃, s′)(s̃⊕s′) = |{v ∼s̃⊕s′ o : (s̃⊕s′)(o, v)h ≡ s′, ξs̃⊕s′(v, o) =
s̃[m]}|. Here, o denotes the root in s̃ ⊕ s′. Likewise, since s̃h = s, Eh+1(s, s′)(s̃ ⊕ s′) ≥ 1,
and another usage of Lemma A.3 implies that Eh+1(s, s′)(s̃ ⊕ s′) = |{v ∼s̃⊕s′ o : (s̃ ⊕
s′)(o, v)h ≡ s′, ξs̃⊕s′(v, o) = s[m]}|. Also, s̃h = s in particular means s[m] = s̃[m]. Therefore,
Eh+2,h+1(s̃, s′)(s̃⊕ s′) = Eh+1(s, s′)(s̃⊕ s′). Substituting into (A.18), we get

Eµ [Eh+1,h+2(s′, s̃)(T, o)] = Q(s̃⊕ s′)Eh+1(s, s′)(s̃⊕ s′). (A.19)

Putting (A.17) and (A.19) back into (A.15) and comparing with (A.14), we arrive at (A.13),
which completes the proof.
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A.7 Proof of Lemma 2.6

In this section we prove Lemma 2.6. First, we state the following lemma from [BC15] which
will be useful in the proof.

Lemma A.6 (Lemma 5.4 in [BC15]). Let P = {px, x ∈ X} be a probability measure on a
discrete space X such that H(P ) <∞. Let (`x)x∈X be a sequence with `x ∈ Z+, x ∈ X , such
that

∑
x px`x log `x <∞. Then −

∑
x px`x log px <∞.

Proof of Lemma 2.6. By Lemma 2.3, since µ is unimodular, P̃ is admissible. Also,

EP̃ [degT (o) log degT (o)] = EP [degT (o) log degT (o)] <∞.

Therefore, we only need to verify that H(P̃ ) < ∞. Define ν := UGWTh(P ) and let P ′ :=
νh+1 ∈ P(T̄ h+1

∗ ) be the distribution of the h+1–neighborhood of the root in ν. Here we have
again used Lemma 2.3 to note that the unimodularity of µ implies that P is admissible, and
hence UGWTh(P ) is well-defined. Now, we claim that∑

s∈T̄ h+1
∗

P̃ (s) log
1

P ′(s)
<∞. (A.20)

Using Gibbs’ inequality, this implies that H(P̃ ) < ∞ and completes the proof. Hence, it
suffices to show (A.20).

Recall that, by the definition of UGWTh(P ), for [T, o] ∈ T̄ h+1
∗ we have

P ′([T, o]) = CP ([T, o]h)
∏
v∼T o

P̂T [o,v]h−1,T [v,o]h−1
(T [o, v]h), (A.21)

where C ≥ 1 is a constant that only depends on [T, o] and counts the number of extensions
of [T, o]h that result in [T, o]. Now, take [T, o] ∈ T̄ h+1

∗ such that P ′([T, o]) > 0 and note
that, using (A.21), we have P ([T, o]h) > 0. This, together with the fact that P is admissible,
implies that for all v ∼T o we have

eP (T [o, v]h−1, T [v, o]h−1) = eP (T [v, o]h−1, T [o, v]h−1)

≥ P ([T, o]h)Eh(T [v, o]h−1, T [o, v]h−1)(T, o)

≥ P ([T, o]h) > 0.

(A.22)

Therefore, for v ∼T o, with t := T [o, v]h−1 and t′ := T [v, o]h−1, we have eP (t, t′) > 0 and,
using (2.7),

P̂t,t′(T [o, v]h) =
P ([T, v]h)Eh(t, t

′)([T, v]h)

eP (t, t′)

≥ P ([T, v]h)

eP (t, t′)
,

(A.23)
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where the last line follows from the fact that Eh(t, t
′)([T, v]h) ≥ 1. Note that, as we have

assumed P ′([T, o]) > 0, from (A.21) we have P̂t,t′(T [o, v]h) > 0. Thereby, the first line
in (A.23) implies that P ([T, v]h) > 0. So far, we have shown that for [T, o] ∈ T̄ h+1

∗ such that
P ′([T, o]) > 0, for all v ∼T o we have P ([T, v]h) > 0 and

P̂T [o,v]h−1,T [v,o]h−1
(T [o, v]h) ≥

P ([T, v]h)

eP (T [o, v]h−1, T [v, o]h−1)
.

Substituting this in (A.21), we realize that for [T, o] ∈ T̄ h+1
∗ with P ′([T, o]) > 0, we have

log
1

P ′([T, o])
≤ log

1

P ([T, o]h)
+
∑
v∼T o

log
1

P ([T, v]h)
+
∑
v∼T o

log eP (T [o, v]h−1, T [v, o]h−1).

(A.24)

Next, we claim that P̃ � P ′. Observe that from (A.21), for [T, o] ∈ T̄ h+1
∗ , P ′([T, o]) = 0

implies that either P ([T, o]h) = 0 or P ([T, o]h) > 0 and P̂T [o,v]h−1,T [v,o]h−1
(T [o, v]h) = 0

for some v ∼T o. But if P ([T, o]h) > 0, (A.22) implies that for all v ∼T o, we have

eP (T [o, v]h−1, T [v, o]h−1) > 0. Therefore, using (A.23), if P̂T [o,v]h−1,T [v,o]h−1
(T [o, v]h) = 0 for

some v ∼T o, it must be the case that P ([T, v]h) = 0. Consequently, P ′([T, o]) = 0 implies
that either P ([T, o]h) = 0 or P ([T, o]h) > 0 and for some v ∼T o, we have P ([T, v]h) = 0.

Note that since P̃h = P , if P ([T, o]h) = 0, we have P̃ ([T, o]) = 0. Now, we claim that if

P ([T, v]h) = 0 for some v ∼T o, then P̃ ([T, o]) = 0. In order to establish this claim, using

P̃ = µh+1, we have

EP̃

[∑
v∼T o

1 [P ([T, v]h) = 0]

]
=

∫ ∑
v∼T o

1 [P ([T, v]h) = 0] dµ([T, o])

(a)
=

∫ ∑
v∼T o

1 [P ([T, o]h) = 0] dµ([T, o])

=

∫
degT (o)1 [P ([T, o]h = 0)] dµ([T, o])

(b)
= 0,

where (a) uses the unimodularity of µ and (b) uses the fact that µh = P . This means that for

P̃–almost all [T, o] ∈ T̄ h+1
∗ , P ([T, v]h) > 0 for all v ∼T o. Equivalently, if P ([T, v]h) = 0 for

v ∼T o, we have P̃ ([T, o]) = 0. To sum up, we showed that for [T, o] ∈ T̄ h+1
∗ , P ′([T, o]) = 0

implies P̃ ([T, o]) = 0 and hence P̃ � P ′. As a result, using this and (A.24), we may write
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the LHS of (A.20) as∑
s∈T̄ h+1
∗

P̃ (s) log
1

P ′(s)
=

∑
s∈T̄ h+1
∗ :P ′(s)>0

P̃ (s) log
1

P ′(s)

≤
∑

[T,o]∈T̄ h+1
∗ :P ′([T,o])>0

P̃ ([T, o])

(
log

1

P ([T, o]h)
+
∑
v∼T o

log
1

P ([T, v]h)

+
∑
v∼T o

log eP (T [o, v]h−1, T [v, o]h−1)

)
.

(A.25)

We may bound each component separately as follows. First, note that the facts P̃ � P ′,
P̃ = µh+1 and P = µh imply that∑

[T,o]∈T̄ h+1
∗ :P ′([T,o])>0

P̃ ([T, o]) log
1

P ([T, o]h)
=

∫
log

1

P ([T, o]h)
dµ([T, o])

= −
∑
s∈T̄ h∗

P (s) logP (s) = H(P ) <∞.
(A.26)

We also have∑
[T,o]∈T̄ h+1

∗ :P ′([T,o])>0

P̃ ([T, o])
∑
v∼T o

log
1

P ([T, v]h)
=

∫ ∑
v∼T o

log
1

P ([T, v]h)
dµ([T, o])

(a)
=

∫ ∑
v∼T o

log
1

P ([T, o]h)
dµ([T, o])

=

∫
degT (o) log

1

P ([T, o]h)
dµ([T, o])

= −
∑

[T,o]∈T̄ h∗

degT (o)P ([T, o]) logP ([T, o])

(b)
< ∞

(A.27)
where (a) follows from unimodularity of µ and (b) follows from Lemma A.6 and the fact that
since P is strongly admissible, i.e. P ∈ Ph, we have EP [degT (o) log degT (o)] < ∞. Finally,
for the third component, note that since

d = EP [degT (o)] = EP

 ∑
t,t′∈Ξ×T̄ h−1

∗

Eh(t, t
′)(T, o)

 =
∑

t,t′∈Ξ×T̄ h−1
∗

eP (t, t′),
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we have eP (T [o, v]h−1, T [v, o]h−1) ≤ d for all [T, o] ∈ T̄ h+1
∗ and v ∼T o. Consequently,∑

[T,o]∈T̄ h+1
∗ :P ′([T,o])>0

P̃ ([T, o])
∑
v∼T o

log eP (T [o, v]h−1, T [v, o]h−1)

=

∫ ∑
v∼T o

log eP (T [o, v]h−1, T [v, o]h−1)dµ([T, o])

≤
∫

degT (o)(log d)dµ([T, o]) = d log d <∞.

(A.28)

Putting (A.26), (A.27) and (A.28) back in (A.25) we arrive at (A.20), which completes the
proof.

A.8 Proof of Proposition 2.2

In this section, we prove Proposition 2.2.

Proof of Proposition 2.2. Let µ := UGWTh(P ). If P has a finite support then, as implied
by Lemma 3.2 in Section 3.3.6 and Proposition 3.7 in Section 3.3.7, µ is sofic. If P does not
have a finite support then, along the lines of the proof of Proposition 3.3 in Section 3.4.2,
for k > 1, let µ(k) be the law of [T (k), o] obtained from [T, o] ∼ µ as follows. For each vertex
v ∈ V (T ), we remove all the edges connected to v if degT (v) ≥ k. Then, we let T (k) denote
the connected component of the root in the resulting forest. As was shown in the proof of
Proposition 3.3, with Pk := (µ(k))h, as k →∞, we have Pk ⇒ P and ePk(t, t

′)→ eP (t, t′) for
all t, t′ ∈ Ξ×T̄ h−1

∗ (see (3.44)). Note that, from Lemma 2.5 in Appendix A.5, µ is unimodular.
Thereby, it is easy to see that µ(k) is also unimodular. Furthermore, from Lemma 2.3, Pk
is admissible. The above discussion together with Lemma 2.4 in Appendix A.4 implies
that UGWTh(Pk) ⇒ µ. On the other hand, as we have discussed above, since Pk has a
finite support, UGWTh(Pk) is sofic. Therefore, a diagonal argument implies that µ is also
sofic and completes the proof. It is worth recalling that we have earlier directly shown the
unimodularity of µ in Appendix A.5. However, in general, being sofic might be a stronger
property than being unimodular for all one knows at the moment.
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Appendix B

Proofs for Chapter 3

B.1 Calculations for Deriving (3.2)

First note that since u(n)(θ)/n→ qθ for all θ ∈ Θ, we have

log
n!∏

θ∈Θ u
(n)(θ)!

= nH(Q) + o(n). (B.1)

Furthermore, since m(n)(x, x′)/n→ dx,x′ for x 6= x′, we have

log 2
∑
x<x′ m

(n)(x,x′) = n
∑
x<x′

m(n)(x, x′)

n
log 2

= n

(∑
x<x′

dx,x′ log 2 + o(1)

)
= n

∑
x<x′

dx,x′ log 2 + o(n).

(B.2)

Moreover, from Stirling’s approximation for the factorial, for a positive integer k we have
log k! = k log k − k + O(log k). Moreover, since for all x 6= x′ ∈ Ξ we have m(n)(x, x′)/n →
dx,x′ < ∞ and for x ∈ Ξ we have m(n)(x, x)/n → dx,x/2 < ∞, we conclude that we have
m(n)(x, x′) = O(n) for all x, x′ ∈ Ξ, and so

log
n(n−1)

2
!∏

x≤x′∈Ξ m
(n)(x, x′)!×

(
n(n−1)

2
− ‖~m(n)‖1

)
!

=
n(n− 1)

2
log

n(n− 1)

2
− n(n− 1)

2

−
∑
x≤x′

(
m(n)(x, x′) logm(n)(x, x′)−m(n)(x, x′)

)
−
[(

n(n− 1)

2
− ‖~m(n)‖1

)
log

(
n(n− 1)

2
− ‖~m(n)‖1

)
−
(
n(n− 1)

2
− ‖~m(n)‖1

)]
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+O(log n)

=
n(n− 1)

2
log

n(n− 1)

2
−
∑
x≤x′

m(n)(x, x′) logm(n)(x, x′)

− n(n− 1)

2
log

(
n(n− 1)

2
− ‖~m(n)‖1

)
+ ‖~m(n)‖1 log

(
n(n− 1)

2
− ‖~m(n)‖1

)
+ o(n)

= −n(n− 1)

2
log

(
1− 2‖~m(n)‖1

n(n− 1)

)
− n

∑
x≤x′

m(n)(x, x′)

n
log

m(n)(x, x′)

n
− n

∑
x≤x′

m(n)(x, x′)

n
log n

+ ‖~m(n)‖1 log

[
n2

(
n− 1

2n
− ‖~m

(n)‖1

n2

)]
+ o(n).

Using the facts that 2‖~m(n)‖1/n(n− 1)→ 0 and log(1− x) = −x+O(x2), this simplifies to

= −n(n− 1)

2

[
−2‖~m(n)‖1

n(n− 1)
+O

(
4‖~m(n)‖2

1

(n(n− 1))2

)]
− n

(∑
x<x′

dx,x′ log dx,x′ +
∑
x

dx,x
2

log
dx,x
2

)

− ‖~m(n)‖1 log n+ 2‖~m(n)‖1 log n+ n
‖~m(n)‖1

n
log

(
n− 1

2n
− ‖~m

(n)‖1

n2

)
+ o(n).

Since, by assumption, ‖~m(n)‖1/n →
∑

x<x′ dx,x′ +
∑

x dx,x/2 =
∑

x,x′ dx,x′/2, this simplifies
to

= n
‖~m(n)‖1

n
+O

(
‖~m(n)‖2

1

n(n− 1)

)
︸ ︷︷ ︸

O(1)

−n

(∑
x<x′

dx,x′ log dx,x′ +
∑
x

dx,x
2

log
dx,x
2

)

+ ‖~m(n)‖1 log n+ n

(∑
x,x′

dx,x′

2
log

1

2
+ o(1)

)
+ o(n)

= ‖~m(n)‖1 log n+ n
∑
x,x′

s(dx,x′)− n
∑
x<x′

dx,x′ log 2 + o(n).

Using this together with (B.1) and (B.2), we get

log |G(n)

~m(n),~u(n)| = nH(Q) + ‖~m(n)‖1 log n+ n
∑
x,x′

s(dx,x′)− n
∑
x<x′

dx,x′ log 2

+ n
∑
x<x′

dx,x′ log 2 + o(n)

= ‖~m(n)‖1 log n+ nH(Q) + n
∑
x,x′

s(dx,x′) + o(n),

which is precisely what was stated in (3.2).
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Appendix C

Proofs for Chapter 4

C.1 Proofs for Section 4.2

Proof of Lemma 4.1. Let A be the set of 1 ≤ i ≤ n such that [G, i]h = [G′, π(i)]h. Then, for
any Borel set B ⊂ Ḡ∗, we have

U(G)(B) =
1

n

n∑
i=1

1 [[G, i] ∈ B]

≤ 1

n

∑
i∈A

1 [[G, i] ∈ B] + 1− L

n
.

Note that if for some i ∈ A we have [G, i] ∈ B then, since (G, i)h ≡ (G′, π(i))h, we have
d∗([G, i], [G

′, π(i)]) ≤ 1
1+h

. This means that, for such i, [G′, π(i)] ∈ Bδ+1/(1+h) for arbitrary
δ > 0. Continuing the chain of inequalities, we have

U(G)(B) ≤ 1

n

∑
i∈A

1
[
[G′, π(i)] ∈ Bδ+1/(1+h)

]
+ 1− L

n

≤ 1

n

n∑
i=1

1
[
[G′, i] ∈ Bδ+1/(1+h)

]
+ 1− L

n

= U(G′)(Bδ+1/(1+h)) + 1− L

n
.

Changing the order of G and G′, we have

dLP(U(G), U(G′)) ≤ max

{
1

1 + h
+ δ, 1− L

n

}
.

We get the desired result by sending δ to zero.

Next, we prove Lemma 4.2. Before that, we state and prove the following lemmas which
will be useful in our proof. For a marked graph G on a finite or countably infinite vertex set,
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let UM(G) denote the unmarked graph which has the same set of vertices and edges as in
G, but is obtained from G by removing all the vertex and edge marks. Given a probability
distribution µ ∈ P(G∗) on the space of isomorphism classes of rooted unmarked graphs, for
ε > 0 and integers n and m, let Gn,m(µ, ε) denote the set of unmarked graphs G on the vertex
set {1, . . . , n} with m edges such that dLP(U(G), µ) < ε.

Lemma C.1. For [G, o] and [G′, o′] in Ḡ∗, we have

d∗([UM(G), o], [UM(G′), o′]) ≤ d̄∗([G, o], [G
′, o′]).

Proof. By definition, for ε > 0, the condition d̄∗([G, o], [G
′, o′]) < ε means that for some k

with 1/(1 + k) < ε, we have [G, o]k ≡ [G′, o′]k. This implies [UM(G), o]k ≡ [UM(G′), o′]k,
which in particular means that d∗([UM(G), o], [UM(G′), o′]) ≤ 1/(1 + k) < ε.

Lemma C.2. Assume µ ∈ P(Ḡ∗) is given. Let µ̃ ∈ P(G∗) be the law of [UM(G), o] when
[G, o] has law µ. Then, given an integer n, edge and vertex mark count vectors ~m(n) and

~u(n) respectively, and ε > 0, for all G ∈ G(n)

~m(n),~u(n)(µ, ε), we have UM(G) ∈ Gn,mn(µ̃, ε) where

mn := ‖~m(n)‖1.

Proof. Fix G ∈ G(n)

~m(n),~u(n)(µ, ε). Note that UM(G) has mn edges, and we only need to show

that dLP(U(UM(G)), µ̃) < ε. Let δ := dLP(U(G), µ). This means that for all δ′ > δ, and
for all Borel sets A in Ḡ∗, we have (U(G))(A) ≤ µ(Aδ

′
) + δ′ and µ(A) ≤ (U(G))(Aδ

′
) + δ′,

where, Aδ
′

denotes the δ′–extension of A. Define T : Ḡ∗ → G∗ that maps [G, o] ∈ Ḡ∗ to
[UM(G), o] ∈ G∗. Lemma C.1 above implies that T is continuous and in fact 1–Lipschitz. It
is easy to see that U(UM(G)) is the pushforward of U(G) under the mapping T . Also, µ̃ is
the pushforward of µ under T . Using the fact that T is 1–Lipschitz, it is easy to see that
for any Borel set B in G∗, and any ζ > 0, we have (T−1(B))ζ ⊂ T−1(Bζ). Putting these
together, for δ′ > δ and a Borel set B in G∗, we have

U(UM(G))(B) = U(G)(T−1(B)) ≤ µ((T−1(B))δ
′
) + δ′

≤ µ(T−1(Bδ′)) + δ′ = µ̃(Bδ′) + δ′.

Similarly,

µ̃(B) = µ(T−1(B)) ≤ (U(G))((T−1(B))δ
′
) + δ′

≤ (U(G))(T−1(Bδ′)) + δ′

= (U(UM(G)))(Bδ′) + δ′.

Since this holds for any δ′ > δ and any Borel set B in G∗, we have dLP(U(UM(G)), µ̃) ≤ δ =
dLP(U(G), µ) < ε. Consequently, we have UM(G) ∈ Gn,mn(µ̃, ε) and the proof is complete.

Now, we are ready to prove Lemma 4.2.
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Proof of Lemma 4.2. To simplify the notation, for ε > 0 define

an(ε) :=
log |G(n)

~m(n),~u(n)(µ, ε)| − ‖~m(n)‖ log n

n
.

Note that there exists a subsequence {nk} such that lim supn→∞ an(εn) = limk→∞ ank(εnk).
Moreover, there is a further subsequence nkr such that for all x, x′ ∈ Ξ, there exists d̄x,x′ ∈
[0,∞] where

m(nkr )(x, x′)

nkr
→ d̄x,x′ , x 6= x′; (C.1a)

2m(nkr )(x, x)

nkr
→ d̄x,x. (C.1b)

Observe that since ank(εnk) is convergent, it suffices that we focus on the subsequence {nkr}
and show that lim ankr (εnkr ) ≤ Σ(µ). Note that due to conditions (4.4a) and (4.4b), we
have d̄x,x′ ≥ degx,x′(µ) for all x, x′ ∈ Ξ. Therefore, there are two possible cases: either
d̄x,x′ = degx,x′(µ) for all x, x′ ∈ Ξ, or there exist x, x′ ∈ Ξ such that d̄x,x′ > degx,x′(µ). To
simplify the notation, without loss of generality, we may assume that the subsequence nkr
is the whole sequence, i.e. an(εn) is convergent, and (C.1a) and (C.1b) hold for the whole
sequence.

Case 1: d̄x,x′ = degx,x′(µ) for all x, x′ ∈ Ξ. We define edge and vertex mark count vectors

~̃m
(n)

= (m̃(n)(x, x′) : x, x′ ∈ Ξ) and ~̃u
(n)

= (ũ(n)(θ) : θ ∈ Θ) as follows. For x, x′ ∈ Ξ, define
m̃(n)(x, x′) to be m(n)(x, x′) if degx,x′(µ) > 0 and 0 otherwise. Also, fix some θ0 ∈ Θ such
that Πθ0(µ) > 0. For θ ∈ Θ, define

ũ(n)(θ) :=


0, Πθ(µ) = 0,

u(n)(θ), Πθ(µ) > 0, θ 6= θ0,

u(n)(θ0) +
∑
θ′:Πθ′ (µ)=0 u

(n)(θ′) θ = θ0.

Note that, by construction and from (C.1a) and (C.1b), the sequences ~̃m
(n)

and ~̃u
(n)

are

adapted to ( ~deg(µ), ~Π(µ)). Also, m(n)(x, x′) ≥ m̃(n)(x, x′) for all n and all x, x′ ∈ Ξ.
Now, fix ε > 0, and pick an integer h such that 1/(1 + h) < ε. Define B to be the set

of [G, o] ∈ Ḡ∗ such that either for some x, x′ ∈ Ξ with degx,x′(µ) = 0 there exists an edge
in [G, o]h with pair of marks x, x′, or, for some θ ∈ Θ with Πθ(µ) = 0, there exists a vertex
in [G, o]h with mark θ. Then, from Lemma 2.2, we have µ(B) = 0. On the other hand,
for n large enough that εn < 1/(1 + h), we have Bεn = B. Hence, for large enough n and

G ∈ G(n)

~m(n),~u(n)(µ, εn), we have U(G)(B) ≤ εn. For such G, we construct a marked graph G̃

which is obtained from G by removing all edges which have their pair of marks x, x′ with
degx,x′(µ) = 0. Moreover, if a vertex v in G has mark θ with Πθ(µ) = 0, we change its

mark to θ0 in G̃, with the θ0 defined above. Note that G̃ ∈ G(n)

~̃m
(n)
,~̃u

(n) . Furthermore, since
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U(G)(B) ≤ εn, the number of vertices v in G such that (G, v)h ≡ (G̃, v)h is at least n(1−εn).

Consequently, using Lemma 4.1, when n is large enough that εn < ε, we have dLP(G, G̃) ≤
max {1/(1 + h), εn} < ε. This means that G̃ ∈ G(n)

~̃m
(n)
,~̃u

(n)(µ, εn + ε) ⊂ G(n)

~̃m
(n)
,~̃u

(n)(µ, 2ε).

Motivated by this discussion, for n large enough, we have

|G(n)

~m(n),~u(n)(µ, εn)| ≤ |G(n)

~̃m
(n)
,~̃u

(n)(µ, 2ε)|

×
∏

x≤x′∈Ξ

degx,x′ (µ)=0

|Gn,m(n)(x,x′)−m̃(n)(x,x′)| × 2m
(n)(x,x′)−m̃(n)(x,x′)

×
∏
θ∈Θ

(
n

|u(n)(θ)− ũ(n)(θ)|

)
.

(C.2)

Here we have assumed that, since Ξ is finite, it is an ordered set. For x ≤ x′ ∈ Ξ with
degx,x′(µ) = 0, using Lemma 3.5, we have

log
(
|Gn,m(n)(x,x′)−m̃(n)(x,x′)| × 2m

(n)(x,x′)−m̃(n)(x,x′)
)
≤ (m(n)(x, x′)− m̃(n)(x, x′)) log n

+ ns

(
2(m(n)(x, x′)− m̃(n)(x, x′))

n

)
+ (m(n)(x, x′)− m̃(n)(x, x′)) log 2.

Note that, for all x, x′ ∈ Ξ, 1
n
(m(n)(x, x′)− m̃(n)(x, x′))→ 0. Also, for all θ ∈ Θ, 1

n
|u(n)(θ)−

ũ(n)(θ)| → 0. Additionally, s(y)→ 0 as y → 0. Using these in (C.2) and simplifying, we get

lim sup
n→∞

log |G(n)

~m(n),~u(n)(µ, εn)| − ‖~m(n)‖1 log n

n
≤ lim sup

n→∞

log |G(n)

~̃m
(n)
,~̃u

(n)(µ, 2ε)| − ‖ ~̃m
(n)
‖1 log n

n

≤ Σ ~deg(µ),~Π(µ)(µ, 2ε)| ~̃m(n)
,~̃u

(n) ,

where the last inequality employs the fact that, by construction, ~̃m
(n)

and ~̃u
(n)

are adapted
to ( ~deg(µ), ~Π(µ)). The above inequality holds for all ε > 0. Therefore, from Theorem 3.2,
as ε→ 0, the right hand side converges to Σ(µ). This completes the proof for this case.

Case 2: d̄x,x′ > degx,x′(µ) for some x, x′ ∈ Ξ. Let d̄ :=
∑

x,x′∈Ξ d̄x,x′ . Note that d̄ > deg(µ).

First, assume that d̄ =∞. Observe that

|G(n)

~m(n),~u(n)(µ, ε)| ≤ |G
(n)

~m(n),~u(n)|

≤ |Θ|n
∏

x≤x′∈Ξ

|Gn,m(n)(x,x′)|2m
(n)(x,x′).
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Using Lemma 3.5,

|G(n)

~m(n),~u(n)(µ, ε)| ≤ n log |Θ|+ ‖~m(n)‖1 log n+ n
∑

x≤x′∈Ξ

(
s

(
2m(n)(x, x′)

n

)
+m(n)(x, x′) log 2

)

= n log |Θ|+ ‖~m(n)‖1 log n+ 2n
∑

x≤x′∈Ξ

s

(
m(n)(x, x′)

n

)
.

(C.3)
Since we have assumed d̄ =∞, there exist x̄ ≤ x̄′ ∈ Ξ such that d̄x̄,x̄′ =∞. Therefore, (C.1a)
and (C.1b) imply that m(n)(x̄, x̄′)/n→∞. On the other hand, s(y)→ −∞ as y →∞. Using
these in (C.3), we get lim supn→∞ an(εn) = −∞ which completes the proof. Therefore, it
remains to consider the case d̄ <∞.

Let µ̃ ∈ P(T̄∗) be the law of [UM(T ), o] when [T, o] has law µ, and let mn := ‖~m(n)‖1.

From Lemma C.2, if G ∈ G(n)

~m(n),~u(n)(µ, εn), we have UM(G) ∈ Gn,mn(µ̃, εn). Moreover, by

finding an upper bound on the number of possible ways to mark vertices and edges for an
unmarked graph in Gn,mn , we have

|G(n)

~m(n),~u(n)(µ, εn)| ≤ |Gn,mn(µ̃, εn)| × |Θ|n × mn!∏
x≤x′m

(n)(x, x′)!
× 2mn . (C.4)

Note that mn/n → d̄/2 < ∞, and m(n)(x, x′)/n converges to d̄x,x′/2 when x = x′, and d̄x,x′
when x 6= x′. Hence,

lim
n→∞

1

n
log

(
|Θ|n × mn!∏

x≤x′m
(n)(x, x′)!

× 2mn

)
= log |Θ|+

∑
x<x′∈Ξ

d̄x,x′ log
d̄

d̄x,x′

+
∑
x∈Ξ

d̄x,x
2

log
2d̄

d̄x,x
=: α.

Note that, as d̄ < ∞, α is a bounded real number. Also, since εn → 0, for each ε > 0 fixed
we have εn < ε for n large enough. Putting these in (C.4), we get

lim sup
n→∞

an(εn) ≤ α + lim sup
n→∞

log |Gn,mn(µ̃, ε)| −mn log n

n
. (C.5)

Note that deg(µ̃) = deg(µ). Moreover, mn/n → d̄ > deg(µ) = deg(µ̃) > 0. Furthermore,
our notion of marked BC entropy reduces to the unmarked BC entropy of [BC15] when Θ
and Ξ have cardinality one. Therefore, since d̄ 6= deg(µ̃), from part 3 of Theorem 3.1, (or
equivalently from part 3 of Theorem 1.2 in [BC15]), the right hand side of (C.5) goes to −∞
as ε→ 0. Therefore, lim supn→∞ an(εn) = −∞, which completes the proof.

Proof of Lemma 4.3. Let µn and µ̃n denote U(G(n)) and U((G(n))∆n) respectively. For an
integer k ≥ 0 and a marked rooted tree (T, i) with depth at most k, define

Ak(T,i) := {[G, o] ∈ Ḡ∗ : (G, o)k ≡ (T, i)},
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as in (2.4). From Lemma 2.1 in Section 2.4, in order to show µ̃n ⇒ µ, it suffices to show
that µ̃n(Ak(T,i)) → µ(Ak(T,i)) for all such k and (T, i). We will now do this. Fix some integer
k ≥ 0 throughout the rest of the discussion. For an integer ∆, define

B∆ := {[G, o] ∈ Ḡ∗ : degG(j) > ∆ for some j with distance at most k + 1 from o}.

With this, we have

lim
∆→∞

µ((B∆)c) = µ

(
∞⋃

∆=1

(B∆)c

)
= µ

(
degG(j) <∞ for all j with distanceat most k + 1 from o

)
= 1,

(C.6)

where the last equality comes from the fact that all graphs in Ḡ∗ are locally finite. Next,
define

Cn := {i ∈ V (G(n)) : degG(n)(j) ≤ ∆n for all nodes

j in G(n) with distance at most k + 1 from i}
= {i ∈ V (G(n)) : [G(n), i] ∈ (B∆n)c}.

Now, since V (G(n)) = {1, . . . , n}, we have

µ̃n(A(T,i)) =
1

n

n∑
j=1

1

[
((G(n))

∆n
, j)k ≡ (T, i)

]
=

1

n

∑
j∈Cn

1

[
((G(n))

∆n
, j)k ≡ (T, i)

]
+

1

n

∑
j∈Ccn

1

[
((G(n))

∆n
, j)k ≡ (T, i)

]
=

1

n

∑
j∈Cn

1
[
(G(n), j)k ≡ (T, i)

]
+

1

n

∑
j∈Ccn

1

[
((G(n))

∆n
, j)k ≡ (T, i)

]
.

Comparing this to

µn(A(T,i)) =
1

n

n∑
j=1

1
[
(G(n), j)k ≡ (T, i)

]
,

we realize that

|µ̃n(A(T,i))− µn(A(T,i))| ≤
1

n
|Cc

n| = µn(B∆n).

Now, fix an integer ∆ > 0. Since ∆n →∞, we have ∆ < ∆n for n large enough. Moreover,
as B∆ is closed,

lim sup
n→∞

|µ̃n(A(T,i))− µn(A(T,i))| ≤ lim sup
n→∞

µn(B∆)

≤ µ(B∆).



APPENDIX C. PROOFS FOR CHAPTER 4 211

This is true for all ∆ > 0; therefore, sending ∆ to infinity and using (C.6), we have
|µ̃n(A(T,i))− µn(A(T,i))| → 0. On the other hand, we have assumed that µn ⇒ µ. Therefore,
Lemma 2.1 implies that µn(A(T,i)) → µ(A(T,i)). This means that µ̃n(A(T,i)) → µ(A(T,i)).
Since this is true for all k and (T, i), Lemma 2.1 implies that µ̃n ⇒ µ, which completes the
proof.

Proof of Lemma 4.4. In order to count |Akn,∆n|, note that, for ∆n ≥ 2, a rooted graph of
depth at most kn and maximum degree at most ∆n has at most

1 + ∆n + ∆2
n + · · ·+ ∆kn

n ≤ ∆kn+1
n ,

many vertices, each of which has |Θ| many choices for the vertex mark. On the other hand,

such a graph can have at most ∆
2(kn+1)
n many edges, each of which can be present or not,

and, if present, has |Ξ|2 many choices for the edge mark. Consequently,

|Akn,∆n| ≤ (1 + |Ξ|2)∆
2(kn+1)
n |Θ|∆

kn+1
n .

Therefore,

log |Akn,∆n| ≤ ∆2(1+kn)
n log(1 + |Ξ|2) + ∆1+kn

n log |Θ|
≤ ∆2(1+kn)

n log(|Θ|(1 + |Ξ|2))

≤ ∆4kn
n log(|Θ|(1 + |Ξ|2)),

where the last inequality holds for n large enough that kn ≥ 1. Note that in order to show
|Akn,∆| = o(n/ log n), it suffices to show that log |Akn,∆n| − log(n/ log n)→ −∞. Motivated
by the above inequality, we observe that this is satisfied if ∆4kn

n = O(
√

log n). Suppose now
that ∆n ≤ log log n and kn ≤

√
log log n. For n large enough, we have

log(∆4kn
n ) ≤ 4

√
log log n log log log n

≤ 1

2

√
log log n

√
log log n

=
1

2
log log n.

This means that for n large enough we have ∆4kn
n ≤

√
log n. This completes the proof.

Proof of Lemma 4.5. For ∆ > 0, define B∆ ⊂ Ḡ∗ as

B∆ := {[G, o] ∈ Ḡ∗ : degG(o) ≤ ∆ and degG(i) ≤ ∆ for all i ∼G o}.

Since all graphs in Ḡ∗ are locally finite, we have µ(B∆)→ 1 as ∆→∞. On the other hand,

|Rn|
n

= U(G(n))(Bc
∆n

).
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Since ∆n →∞, we have B∆ ⊆ B∆n for n large enough, for any value of ∆. Moreover, B∆ is
both open and closed. Therefore,

|Rn|
n

= U(G(n))(Bc
∆n

) ≤ U(G(n))(Bc
∆)→ µ(Bc

∆).

But this is true for all ∆, and µ(B∆) → 1 as ∆ → ∞. Consequently, |Rn|/n → 0, and the
proof is complete.
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Appendix D

Proofs for Chapter 5

D.1 Proof of Lemma 5.1

Throughout this section, we treat 0 log 0 as equal to 0. Consider the first part of Lemma 5.1.
Since an/n→ a > 0 as n→∞, using Stirling’s approximation we have log an! = an log an −
an + o(n). Similarly, from the assumption that bni /n → bi ≥ 0 as n → ∞ for 1 ≤ i ≤ k,
we have log bni ! = bni log bni − bni + o(n), which holds irrespective of whether bi > 0 or bi = 0.
Hence we have

log

(
an

{bni }1≤i≤k

)
= an log an − an −

k∑
i=1

bni log bni +
k∑
i=1

bni + o(n)

= an log
an
n
−

k∑
i=1

bni log
bni
n

+ o(n),

where we have used an =
∑k

i=1 b
n
i . This gives

lim
n→∞

1

n
log

(
an

{bni }1≤i≤k

)
= a log a−

k∑
i=1

bi log bi

= aH

({
bi
a

}
1≤i≤k

)
.

Next, consider the second part of Lemma 5.1. Since an/
(
n
2

)
→ 1 as n → ∞, using

Stirling’s approximation we have log an! = an log an − an + o(n). As noted earlier, since
bni /n → bi ≥ 0 as n → ∞ for 1 ≤ i ≤ k, we have log bni ! = bni log bni − bni + o(n), which
holds irrespective of whether bi > 0 or bi = 0. Moreover, with bn :=

∑k
i=1 b

n
i , we have

log(an − bn)! = (an − bn) log(an − bn)− (an − bn) + o(n). Therefore, we have

log

(
an

{bni }1≤i≤k

)
= an log an − an −

k∑
i=1

bni log bni +
k∑
i=1

bni − (an − bn) log(an − bn)
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+ (an − bn) + o(n)

= an log
an
n
−

k∑
i=1

bni log
bni
n
− (an − bn) log

an − bn
n

+ o(n),

where we have used an = bn + (an − bn). This gives

1

n
log

(
an

{bni }1≤i≤k

)
=
an
n

log
an
n
−

k∑
i=1

bni
n

log
bni
n
− an − bn

n
log

an − bn
n

+ o(1)

= −an
n

log

(
1− bn

an

)
+
bn
n

log
an − bn

n2

2

+
bn
n

log
n

2
−

k∑
i=1

bni
n

log
bni
n

+ o(1).

(D.1)
Since bn/an → 0 as n → ∞, we write log(1 − bn/an) = −bn/an + O(b2

n/a
2
n). Consequently,

we have

−an
n

log

(
1− bn

an

)
=
bn
n

+O

(
b2
n

nan

)
,

and since b2
n/(nan)→ 0 we have

lim
n→∞

−an
n

log

(
1− bn

an

)
= b. (D.2)

Further, since (an − bn)/(n2/2)→ 1 we have

lim
n→∞

bn
n

log
an − bn

n2

2

= 0. (D.3)

Using (D.2) and (D.3) in (D.1), we get

lim
n→∞

log
(

an
{bni }1≤i≤k

)
− bn log n

n
= b− b log 2−

k∑
i=1

bi log bi

=
k∑
i=1

s(2bi),

which completes the proof.

D.2 Proof of Lemma 5.3

The assumptions of the lemma imply that bn/n → d/2 > 0 and, in particular, bn → ∞ as
n→∞. Therefore, Theorem 4.6 in [McK85] implies that

lim
n→∞

|G(n)

~a(n) |

αn
(bn − 1)!!∏n
i=1 a

(n)(i)!

= 1,
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where

αn := exp
(
−λn − λ2

n

)
, λn :=

1

2bn

n∑
i=1

a(n)(i)(a(n)(i)− 1),

and

(bn − 1)!! := (bn − 1)× (bn − 3)× · · · × 3× 1 =
bn!

2bn/2(bn/2)!
.

Under the assumptions of the lemma, we have bn/n → d/2 as n → ∞. Therefore, using
Stirling’s approximation, we have log(bn − 1)!! = bn

2
log n − ns(d) + o(n). Moreover, since

ck(~a
(n))/n→ P (Y = k) as n→∞ for all 0 ≤ k ≤ ∆, we have

1

n
log

n∏
i=1

a(n)(i)! =
1

n

∆∑
k=0

ck(~a
(n)) log k! = E [log Y !] + o(1).

On the other hand, we have

lim
n→∞

λn = lim
n→∞

1

2bn/n

1

n

n∑
i=1

a(n)(i)(a(n)(i)− 1)

=
1

d
lim
n→∞

1

n

∆∑
k=1

ck(~a
(n))k(k − 1)

=
1

d
E [Y (Y − 1)] =: λ.

This implies that, as n → ∞, αn → α := exp(−λ − λ2) > 0. Therefore, 1
n

logαn → 0 as
n→∞. Putting these together, we get the desired result.

D.3 Asymptotic behavior of the entropy of the

configuration model

Here, we prove (5.14a)–(5.14c). Let X be a random variable with law ~r, and let X1 and X2

be defined as in (5.13). Let Γ = (Γ1,Γ2) and Q = (Q1, Q2) denote random variables with
laws ~γ and ~q, respectively. Let β1 := P(Γ1 6= ◦1) and let Γ̃1 be a random variable on Ξ1 with
the law of Γ1 conditioned on Γ1 6= ◦1.

As in Section 5.3.2, we let D(n) denote the set of degree sequences ~d = (d(1), . . . , d(n))

with entries bounded by ∆ such that ck(~d) = ck(~d
(n)) for all 0 ≤ k ≤ ∆. Let F

(n)
1,2 be

a simple unmarked graph chosen uniformly at random from the set ∪~d∈D(n)G(n)
~d

, where we

recall that G(n)
~d

denotes the set of simple unmarked graphs G on the vertex set [n] such that

degG(i) = d(i) for 1 ≤ i ≤ n. By definition, G
(n)
1,2 ∼ G(n; ~d(n), ~γ, ~q, ~r) is obtained from F

(n)
1,2

by adding independent edge and vertex marks according to the laws of ~γ and ~q respectively.
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If we first create G
(n)
1,2 from F

(n)
1,2 , and then drop the edges with the first domain mark ◦1,

if F
(n)
1 denotes the unmarked version of the resulting marked graph, then F

(n)
1 is effectively

obtained from F
(n)
1,2 by independently removing each edge with probability 1 − β1. Also,

the corresponding first domain marked graph, i.e. G
(n)
1 , obtained from G

(n)
1,2 in this way is

effectively obtained from F
(n)
1 by adding independent vertex and edge marks to F

(n)
1 with

the laws of Q1 and Γ̃1, respectively. With this viewpoint, we may consider G
(n)
1,2 , F

(n)
1,2 , G

(n)
1

and F
(n)
1 as being defined on a joint probability space.

As in Section 5.3.2, we let W(n) denote the set of graphs H
(n)
1,2 ∈ G

(n)
1,2 such that: (i)

−→
dg

H
(n)
1,2
∈ D(n), (ii) ~m

H
(n)
1,2
∈M(n), (iii) ~u

H
(n)
1,2
∈ U (n), (iv) for all 0 ≤ l ≤ k ≤ ∆, recalling the

notation in (5.2), we have

|ck,l(
−→
dg

H
(n)
1,2
,
−→
dg

H
(n)
1

)− nP (X = k,X1 = l) | ≤ n2/3,

and (v) for all 0 ≤ l ≤ k ≤ ∆ we have

|ck,l(
−→
dg

H
(n)
1,2
,
−→
dg

H
(n)
2

)− nP (X = k,X2 = l) | ≤ n2/3.

Here, as in Section 5.3.2,M(n) denotes the set of mark count vectors ~m such that
∑

x∈Ξ1,2
m(x) =

mn and
∑

x∈Ξ1,2
|m(x)−mnγx| ≤ n2/3, where we recall that mn := (

∑n
i=1 d

(n)(i))/2, while, as

in Section 5.3.2, U (n) denotes the set of vertex mark count vectors ~u such that
∑

θ∈Θ1,2
|u(θ)−

nqθ| ≤ n2/3.
We can now prove the following lemma.

Lemma D.1. If G
(n)
1,2 ∼ G(n; ~d(n), ~γ, ~q, ~r), we have P(G

(n)
1,2 /∈ W(n)) ≤ κn−1/3 for some

constant κ > 0.

Proof. Condition (i) in the definition ofW(n) holds for every realization of G
(n)
1,2 . Chebyshev’s

inequality implies that conditions (ii) and (iii) hold with probability at least 1 − κ1n
−1/3,

for some κ1 > 0. To show (iv), fix 0 ≤ l ≤ k ≤ ∆ and, for 1 ≤ i ≤ n, let Yi be the
indicator of the event that deg

G
(n)
1,2

(i) = k and deg
G

(n)
1

(i) = l. With Y :=
∑n

i=1 Yi, we have

ck,l(
−→
dg

G
(n)
1,2
,
−→
dg

G
(n)
1

) = Y . Note that an edge of G
(n)
1,2 exists in G

(n)
1 if its mark is not of the

form (◦1, x2), which happens with probability β1. Therefore,

E
[
Yi|F (n)

1,2

]
= 1

[
deg

F
(n)
1,2

(i) = k
](deg

F
(n)
1,2

(i)

l

)
βl1(1− β1)k−l.

Consequently,

E
[
Y |F (n)

1,2

]
= ck(~d

(n))

(
k

l

)
βl1(1− β1)k−l.



APPENDIX D. PROOFS FOR CHAPTER 5 217

Since this is a constant, it is also equal to E [Y ]. Now, if sk,l := P (X = k,X1 = l), we have
sk,l = rk

(
k
l

)
βl1(1− β1)k−l. Hence the assumption in (5.10) implies that

|E [Y ]− nsk,l| ≤ Kn1/2

(
k

l

)
βl1(1− β1)k−l. (D.4)

Furthermore, since edge marks are chosen independently conditioned on F
(n)
1,2 , if i and j are

nonadjacent vertices in F
(n)
1,2 , then Yi are Yj are conditionally independent, conditioned on

F
(n)
1,2 . As a result, if I denotes the set of (i, j) with 1 ≤ i 6= j ≤ n such that i and j are not

adjacent in F
(n)
1,2 , we have

E
[
Y 2|F (n)

1,2

]
=

n∑
i=1

E
[
Y 2
i |F

(n)
1,2

]
+

∑
1≤i 6=j≤n

E
[
YiYj|F (n)

1,2

]
≤ n+

∑
(i,j)/∈I

E
[
YiYj|F (n)

1,2

]
+
∑

(i,j)∈I

E
[
YiYj|F (n)

1,2

]
≤ n+ 2mn +

∑
(i,j)∈I

E
[
YiYj|F (n)

1,2

]
(a)
= n+ 2mn +

∑
(i,j)∈I

E
[
Yi|F (n)

1,2

]
E
[
Yj|F (n)

1,2

]
≤ n+ 2mn +

∑
1≤i 6=j≤n

E
[
Yi|F (n)

1,2

]
E
[
Yj|F (n)

1,2

]
≤ n+ 2mn + E

[
Y |F (n)

1,2

]2

,

where (a) uses the fact that, conditioned on F
(n)
1,2 , the random variables Yi and Yj are condi-

tionally independent for (i, j) ∈ I. From (5.10), we have |mn − ndCM
1,2 /2| ≤ κ2Kn

1/2, where

κ2 := (∆ + 1)/2 and dCM
1,2 := deg(µCM

1,2 ) =
∑∆

k=0 krk. As a consequence of the above discus-

sion, we have Var(Y |F (n)
1,2 ) ≤ κ3n for some κ3 > 0. On the other hand, as we saw above,

E
[
Y |F (n)

1,2

]
= E [Y ]. Therefore, using the law of total variance, we have Var(Y ) ≤ κ3n. This,

together with (D.4) and Chebyshev’s inequality, implies that the condition (iv) holds with
probability at least 1 − κ4n

−1/3, for some κ4 > 0. Similarly, the same statement holds for
condition (v).

Let B
(n)
1,2 be the set of pairs of degree sequences ~d and ~δ with n elements bounded by ∆

such that for all 0 ≤ k, l ≤ ∆, |ck,l(~d, ~δ) − nP(X1 = k,X − X1 = l)| ≤ n2/3. Moreover, let

B
(n)
1 be the set of ~d such that for some ~δ, we have (~d, ~δ) ∈ B(n)

1,2 . For ~d ∈ B(n)
1 , let B

(n)
2|1 (~d) be

the set of degree sequences ~δ such that (~d, ~δ) ∈ B(n)
1,2 .
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In order to show (5.14a), note that since G
(n)
1,2 is formed by adding independent vertex

and edge marks to F
(n)
1,2 , we have

H(G
(n)
1,2 ) = log |D(n)|+ log |G(n)

~d(n)
|+mnH(Γ) + nH(Q).

From (5.10), we have |mn − ndCM
1,2 /2| ≤

(∆+1)K
2

n1/2. Moreover, we have E [X] > 0. Conse-

quently, using Lemma 5.3 and the fact that 1
n

log |D(n)| → H(X), we get (5.14a).

We now turn to showing (5.14b). Since the expected number of the edges in F
(n)
1 is

ndCM
1 /2, we have

H(G
(n)
1 ) = H(F

(n)
1 ) + n

dCM
1

2
H(Γ1|Γ1 6= ◦1) + nH(Q1). (D.5)

With this, we focus on H(F
(n)
1 ). With En being the indicator of the event that G

(n)
1,2 /∈ W(n),

we have

H(F
(n)
1 ) ≤ H(F

(n)
1 , En) ≤ 1 +H(F

(n)
1 |En)

= 1 +H(F
(n)
1 |En = 0)P(En = 0)

+H(F
(n)
1 |En = 1)P(En = 1).

Note that F
(n)
1 is obtained from F

(n)
1,2 by removing some edges. Hence, we may write

H(F
(n)
1 |En = 1) ≤ H(F

(n)
1 ) ≤ log |D(n)|+ log |G(n)

~d(n)
|+mn log 2

≤ H(G
(n)
1,2 ) +mn log 2

≤ κ′n log n,

(D.6)

where in the last line, κ′ > 0 is obtained from (5.14a). Putting this together with Lemma D.1,
we have

H(F
(n)
1 |En = 1)P(En = 1) ≤ κ′n log nκn−1/3. (D.7)

Note that the right hand side of (D.7) above is o(n). On the other hand, by the defini-

tion of W(n), if E = 0, we have
−→
dg

F
(n)
1
∈ B

(n)
1 . Therefore, H(F

(n)
1 |En = 0) ≤ log |B(n)

1 | +
max~d∈B(n)

1
log |G(n)

~d
|. The assumption r0 < 1 together with (5.8) imply that dCM

1 > 0. Addi-

tionally note that, by definition, for ~d ∈ B(n)
1 , we have |ck(~d) − nP (X1 = k) | ≤ n2/3 for all

0 ≤ k ≤ ∆. Thereby, we have

lim sup
n→∞

log |B(n)
1 |

n
≤ H(X1).
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Putting the above together with Lemma 5.3 and (D.7), we have

lim sup
n→∞

H(F
(n)
1 )− nd

CM
1

2
log n

n
≤ lim sup

n→∞

log |B(n)
1 |+ max~d∈B(n)

1
log |G(n)

~d
| − nd

CM
1

2
log n

n

≤ lim sup
n→∞

log |B(n)
1 |

n
+ max

~d∈B(n)
1

log |G(n)
~d
| −

∑n
i=1 d(i)

2
log n

n

+ max
~d∈B(n)

1

∑n
i=1 d(i)

2
log n− nd

CM
1

2
log n

n

≤ −s(dCM
1 ) +H(X1)− E [logX1!] ,

(D.8)

where in the last line, have used the fact that due to the definition of B
(n)
1 , for ~d ∈ B

(n)
1 ,

we have |
∑n

i=1 d(i) − dCM
1 | ≤ ∆n2/3 = o(n/ log n). Now, let F̃

(n)
1 be the unmarked graph

consisting of the edges removed from F
(n)
1,2 to obtain F

(n)
1 , and note that

H(F
(n)
1 ) = H(F

(n)
1 , F̃

(n)
1 )−H(F̃

(n)
1 |F

(n)
1 )

= H(F
(n)
1,2 ) +mnH(β1)−H(F̃

(n)
1 |F

(n)
1 ).

(D.9)

Furthermore, conditioned on En = 0, we have
−→
dg

F̃
(n)
1
∈ B(n)

2|1 (
−→
dg

F
(n)
1

). Moreover, the assump-

tion (5.8), for x1 = ◦1, together with r0 < 1, implies that dCM
1,2 − dCM

1 > 0. Hence, using a
similar method to that used in proving (D.8), we have

lim sup
n→∞

H(F̃
(n)
1 |F

(n)
1 )− nd

CM
1,2 −dCM

1

2
log n

n
≤ −s(dCM

1,2 − dCM
1 )

+H(X −X1|X1)− E [log(X −X1)!] .

(D.10)

To see this, with En as defined previously, we may write

H(F̃
(n)
1 |F

(n)
1 ) ≤ 1 +H(F̃

(n)
1 |F

(n)
1 , En = 0)P (En = 0) +H(F̃

(n)
1 |F

(n)
1 , En = 1)P (En = 1) .

Since F̃
(n)
1 is obtained from F

(n)
1,2 by removing some edges, similar to (D.6), we have

H(F̃
(n)
1 |F

(n)
1 , En = 1)P (En = 1) = o(n).

Moreover, conditioned on En = 0, we have
−→
dg

F̃
(n)
1
∈ B

(n)
2|1 (
−→
dg

F
(n)
1

). This implies that when

En = 0, for any realization f
(n)
1 of F

(n)
1 , we have

H(F̃
(n)
1 |F

(n)
1 = f

(n)
1 , En = 0) ≤ log |B(n)

2|1 (
−→
dg

f
(n)
1

)|+ max
~δ∈B(n)

2|1 (
−→
dg
f

(n)
1

)

log |G(n)
δ |.
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Note that, conditioned on En = 0, we have
−→
dg

f
(n)
1
∈ B(n)

1 . Hence, we have log |B(n)
2|1 (
−→
dg

f
(n)
1

)| =

nH(X−X1|X1)+o(n). Furthermore, using Lemma 5.3 and the fact that for ~δ ∈ B(n)
2|1 (
−→
dg

f
(n)
1

),

we have |
∑n

i=1 δ(i)− (dCM
1,2 − dCM

1 )/2| ≤ ∆n2/3 = o(n/ log n), we have

max
~δ∈B(n)

2|1 (
−→
dg
f

(n)
1

)

log |G(n)
δ | = n(−s(dCM

1,2 − dCM
1 )− E [log(X −X1)!]) + n

dCM
1,2 − dCM

1

2
log n+ o(n).

Putting the above together, we arrive at (D.10).

On the other hand, using the definition of F
(n)
1,2 , we have H(F

(n)
1,2 ) = log |D(n)|+log |G(n)

~d(n)
|.

Employing Lemma 5.3 and using the assumption (5.10), we have

lim
n→∞

log |G(n)
~d(n)
| − nd

CM
1,2

2
log n

n
= −s(dCM

1,2 )− E [logX!] .

Furthermore, we have 1
n

log |D(n)| → H(X). Therefore, we have

lim
n→∞

H(F
(n)
1,2 )− nd

CM
1,2

2
log n

n
= −s(dCM

1,2 ) +H(X)− E [logX!] . (D.11)

Using (D.10) and (D.11) back in (D.9), followed by a simplification using Lemma 5.2, we get
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lim inf
n→∞

H(F
(n)
1 )− nd

CM
1

2
log n

n
= lim inf

n→∞

1

n

(
H(F

(n)
1,2 )− n

dCM
1,2

2
log n+mnH(β1)

−H(F̃
(n)
1 |F

(n)
1 ) + n

dCM
1,2 − dCM

1

2
log n

)

≥ lim inf
n→∞

H(F
(n)
1,2 )− nd

CM
1,2

2
log n

n
+
dCM

1,2

2
H(β1)

− lim sup
n→∞

H(F̃
(n)
1 |F

(n)
1 )− nd

CM
1,2 −dCM

1

2
log n

n

≥ −s(dCM
1,2 ) +H(X)− E [logX!] +

dCM
1,2

2
H(β1)

−
(
−s(dCM

1,2 − dCM
1 ) +H(X −X1|X1)− E [log(X −X1)!]

)
= H(X) + dCM

1,2 H(β1)− E
[
log

(
X

X1

)]
− E [logX1!]

−
dCM

1,2

2
H(β1)− s(dCM

1,2 ) + s(dCM
1,2 − dCM

1 )−H(X −X1|X1)

(a)
= H(X1, X −X1)−H(X −X1|X1)− E [logX1!]

− s(dCM
1,2 ) + s(dCM

1,2 − dCM
1 )−

dCM
1,2

2
H(β1)

= H(X1)− E [logX1!]− s(dCM
1,2 ) + s(dCM

1,2 − dCM
1 )−

dCM
1,2

2
H(β1),

(D.12)
where in (a), we have used Lemma 5.2. Since β1 = dCM

1 /dCM
1,2 , we may write

−s(dCM
1,2 ) + s(dCM

1,2 − dCM
1 )−

dCM
1,2

2
H(β1) =

dCM
1,2

2
log dCM

1,2 −
dCM

1,2

2
+
dCM

1,2

2
− dCM

1

2

−
dCM

1,2

2
log(dCM

1,2 − dCM
1 ) +

dCM
1

2
log(dCM

1,2 − dCM
1 )

+
dCM

1

2
log dCM

1 − dCM
1

2
log dCM

1,2

+
dCM

1,2

2
log(dCM

1,2 − dCM
1 )

− dCM
1

2
log(dCM

1,2 − dCM
1 )−

dCM
1,2

2
log dCM

1,2

+
dCM

1

2
log dCM

1,2
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= −d
CM
1

2
+
dCM

1

2
log dCM

1

= −s(dCM
1 ).

Substituting this into (D.12), we arrive at

lim inf
H(F

(n)
1 )− nd

CM
1

2
log n

n
≥ −s(dCM

1 ) +H(X1)− E [logX1!] . (D.13)

This, together with (D.8) and (D.5), completes the proof of (5.14b). The proof of (5.14c) is
similar.

D.4 Bounding |S(n)
2 (H

(n)
1 )| for H

(n)
1,2 ∈ G

(n)
1,2 in the

Erdős–Rényi case

Note that for H
(n)
1,2 ∈ G

(n)
1,2 and G

(n)
2 ∈ G(n)

2 , if H
(n)
1 ⊕G(n)

2 ∈ G(n)
~p,~q , we have ~m

H
(n)
1 ⊕G(n)

2
∈M(n)

and ~u
H

(n)
1 ⊕G(n)

2
∈ U (n). On the other hand, for fixed ~m ∈ M(n) and ~u ∈ U (n), the number of

G
(n)
2 such that ~m

H
(n)
1 ⊕G(n)

2
= ~m and ~u

H
(n)
1 ⊕G(n)

2
= ~u is at most

A2(~m, ~u) :=

 ∏
x1∈Ξ1

(
m(x1)

{m(x1, x2)}x2∈Ξ2∪{◦2}

)× ((n2)−∑x1∈Ξ1
m(x1)

{m(◦1, x2)}x2∈Ξ2

)

×

 ∏
θ1∈Θ1

(
u(θ1)

{u(θ1, θ2)}θ2∈Θ2

) ,

where we have used the notational conventions in (5.3) and (5.4). Consequently, we have

max
H

(n)
1,2 ∈G

(n)
~p,~q

|S(n)
2 (H

(n)
1 )| ≤ |M(n)||U (n)| max

~m∈M(n)

~u∈U(n)

A2(~m, ~u)

≤ (2n2/3 + 1)(|Ξ1,2|+|Θ1,2|) max
~m∈M(n)

~u∈U(n)

A2(~m, ~u).
(D.14)

Now, if ~m(n) and ~u(n) are sequences in M(n) and U (n), respectively, then for all x ∈ Ξ1,2 we
have m(n)(x)/n → px/2. Furthermore, for all x1 ∈ Ξ1 and θ1 ∈ Θ1, we have m(n)(x1)/n →
px1/2 and u(n)(θ1)/n→ qθ1 . As a result, using Lemma 5.1, for any such sequences ~m(n) and
~u(n), with Q = (Q1, Q2) having law ~q, we have

lim
n→∞

logA2(~m(n), ~u(n))− (
∑

x2∈Ξ2
m(n)(◦1, x2)) log n

n

=
∑
x2∈Ξ2

s(p◦1,x2) +
∑
x1∈Ξ1

px1

2
H

({
p(x1,x2)

px1

}
x2∈Ξ2∪{◦2}

)
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+
∑
θ1∈Θ1

qθ1H

({
qθ1,θ2
qθ1

}
θ2∈Θ2

)
= H(Q2|Q1) +

∑
x∈Ξ1,2

s(px)−
∑
x1∈Ξ1

s(px1)

= Σ(µER
2 |µER

1 ),

where the second equality follows by rearranging the terms and using the definition of s(.).
Using the fact that |m(n)(◦1, x2)− np◦1,x2/2| ≤ n2/3, we have

lim
n→∞

logA2(~m(n), ~u(n))− nd
ER
1,2−dER

1

2
log n

n
= Σ(µER

2 |µER
1 ).

This together with (D.14) implies (5.21).

D.5 Bounding |S(n)
2 (H

(n)
1 )| for H

(n)
1,2 ∈ W (n) in the

configuration model

Here, we find an upper bound for max
H

(n)
1,2 ∈W(n) |S

(n)
2 (H

(n)
1 )|, where W(n) is defined in Sec-

tion 5.3.2, and use it to show (5.27). Take H
(n)
1,2 ∈ W(n) and assume Ĥ

(n)
2 ∈ S(n)

2 (H
(n)
1 ). With

Ĥ
(n)
1,2 := H

(n)
1 ⊕ Ĥ(n)

2 , let H̃
(n)
2 be the subgraph of Ĥ

(n)
1,2 consisting of the edges not present in

H
(n)
1 . Employing the notation of Appendix D.3, we have

−→
dg

H̃
(n)
2
∈ B(n)

2|1 (
−→
dg

H
(n)
1

), which follows

from the definition of the set W(n). Therefore, we can think of Ĥ
(n)
1,2 as being constructed

from H
(n)
1 by adding a graph to H

(n)
1 with degree sequence

−→
dg

H̃
(n)
2
∈ B(n)

2|1 (
−→
dg

H
(n)
1

), marking

its edges, adding second domain marks to edges in H
(n)
1 , and also adding second domain

marks to vertices. Motivated by this, we have

max
H

(n)
1,2 ∈W(n)

log |S(n)
2 (H

(n)
1 )| ≤ max

H
(n)
1,2 ∈W(n)

log |B(n)
2|1 (
−→
dg

H
(n)
1

)|+ max
H

(n)
1,2 ∈W(n),~δ∈B(n)

2|1 (
−→
dg
H

(n)
1

)

log |G(n)
~δ
|

+ max
~m∈M(n)

log

(
mn −

∑
x1∈Ξ1

m(x1)

{m((◦1, x2))}x2∈Ξ2

) ∏
x1∈Ξ1

(
m(x1)

{m((x1, x2))}x2∈Ξ2

)
+ max
~u∈U(n)

log
∏
θ1∈Θ1

(
u(θ1)

{u((θ1, θ2))}θ2∈Θ2

)
.

(D.15)

We establish an upper bound for each term. The definition of B
(n)
2|1 implies that

lim
n→∞

1

n
max

H
(n)
1,2 ∈W(n)

log |B(n)
2|1 (
−→
dg

H
(n)
1

)| = H(X −X1|X1), (D.16)
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where (X,X1) are defined as in Section 5.3.2. Note that the assumption (5.8), for x1 = ◦1,
together with r0 < 1, implies that dCM

1,2 − dCM
1 > 0. On the other hand, we have

lim sup
n→∞

max
H

(n)
1,2 ∈W

(n)

~δ∈B(n)
2|1 (
−→
dg
H

(n)
1

)

log |G(n)
~δ
| − nd

CM
1,2 −dCM

1

2
log n

n
≤ lim sup

n→∞
max

H
(n)
1,2 ∈W

(n)

~δ∈B(n)
2|1 (
−→
dg
H

(n)
1

)

log |G(n)
~δ
| −

∑n
i=1 δi
2

log n

n

+ lim sup
n→∞

max
H

(n)
1,2 ∈W

(n)

~δ∈B(n)
2|1 (
−→
dg
H

(n)
1

)

1

n

(∑n
i=1 δi
2

log n− n
dCM

1,2 − dCM
1

2
log n

)
.

(D.17)

By definition, for ~δ = (δ1, . . . , δn) ∈ B(n)
2|1 (
−→
dg

H
(n)
1

), we have∣∣∣∣∣
(

n∑
i=1

δi

)
− n(dCM

1,2 − dCM
1 )

∣∣∣∣∣ =

∣∣∣∣∣
(

∆∑
k=0

kck(~δ)

)
− nE [X −X1]

∣∣∣∣∣
≤

∆∑
k=0

k|ck(~δ)− nP (X −X1 = k) |

≤
∆∑
k=0

k
∆∑
j=0

|cj,k(
−→
dg

H
(n)
1
, ~δ)− nP (X1 = j,X −X1 = k) |

≤ ∆3n2/3.

This implies that the second term in the right hand side of (D.17) vanishes. Therefore,
Lemma 5.3 implies that

lim sup
n→∞

max
H

(n)
1,2 ∈W

(n)

~δ∈B(n)
2|1 (
−→
dg
H

(n)
1

)

log |G(n)
~δ
| − nd

CM
1,2 −dCM

1

2
log n

n
≤ −s(dCM

1,2 − dCM
1 )− E [log(X −X1)!] .

(D.18)
Furthermore, if ~m(n) is a sequence inM(n), by definition we have

∑
x∈Ξ1,2

|m(n)(x)−mnγx| ≤
n2/3. Therefore, we have

lim
n→∞

mn −
∑

x1∈Ξ1
m(n)(x1)

n
=
dCM

1,2

2

(
1−

∑
x1∈Ξ1

γx1

)
,

where γx1 for x1 ∈ Ξ1 is defined to be
∑

x2∈Ξ2∪{◦2} γ(x1,x2). Similarly, for x2 ∈ Ξ2, we have

lim
n→∞

m(n)((◦1, x2))

mn −
∑

x1∈Ξ1
m(n)(x1)

=
γ(◦1,x2)

1−
∑

x1∈Ξ1
γx1

=
γ(◦1,x2)∑

x′2∈Ξ2
γ(◦1,x′2)

.
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Consequently, using Lemma 5.1, we have

lim
n→∞

1

n
log

(
mn −

∑
x1∈Ξ1

m(n)(x1)

{m(n)((◦1, x2))}x2∈Ξ2

)
=
dCM

1,2

2

(
1−

∑
x1∈Ξ1

γx1

)
H

({
γ(◦1,x2)∑

x′2∈Ξ2
γ(◦1,x′2)

}
x2∈Ξ2

)

=
dCM

1,2

2
P (Γ1 = ◦1)H(Γ2|Γ1 = ◦1).

(D.19)
Here, Γ = (Γ1,Γ2) has law ~γ. On the other hand, for x1 ∈ Ξ1 and x2 ∈ Ξ2, we have

m(n)(x1)/n → dCM
1,2

2
γx1 , and m(n)((x1,x2))

m(n)(x1)
→ γ(x1,x2)

γx1
. Consequently, another use of Lemma 5.1

implies that for all x1 ∈ Ξ1, we have

lim
n→∞

1

n
log

(
m(n)(x1)

{m(n)((x1, x2))}x2∈Ξ2

)
=
dCM

1,2

2
γx1H

({
γ(x1,x2)

γx1

}
x2∈Ξ2

)

=
dCM

1,2

2
P (Γ1 = x1)H(Γ2|Γ1 = x1).

(D.20)

Putting together (D.19) and (D.20), we realize that

lim
n→∞

max
~m∈M(n)

log

(
mn −

∑
x1∈Ξ1

m(x1)

{m((◦1, x2))}x2∈Ξ2

) ∏
x1∈Ξ1

(
m(x1)

{m((x1, x2))}x2∈Ξ2

)

=
dCM

1,2

2

(
P (Γ1 = ◦1)H(Γ2|Γ1 = ◦1)

+
∑
x1∈Ξ1

P (Γ1 = x1)H(Γ2|Γ1 = x1)

)

=
dCM

1,2

2
H(Γ2|Γ1).

(D.21)

Using a similar technique, if ~u(n) is a sequence in U (n), for all θ1 ∈ Θ1 and θ2 ∈ Θ2, we

have u(n)(θ1)
n
→ qθ1 and u(n)((θ1,θ2))

u(n)(θ1)
→ q(θ1,θ2)

qθ1
. Thereby, using Lemma 5.1, for all θ1 ∈ Θ1, we

have

lim
n→∞

1

n
log

(
u(n)(θ1)

{u(n)((θ1, θ2))}θ2∈Θ2}

)
= qθ1H

({
q(θ1,θ2)

qθ1

}
θ2∈Θ2

)
= P (Q1 = θ1)H(Q2|Q1 = θ1),

where Q = (Q1, Q2) has law ~q. Consequently, we have

lim
n→∞

1

n
max
~u∈U(n)

log
∏
θ1∈Θ1

(
u(θ1)

{u((θ1, θ2))}θ2∈Θ2

)
=
∑
θ1∈Θ1

P (Q1 = θ1)H(Q2|Q1 = θ1) = H(Q2|Q1).

(D.22)
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Putting (D.16), (D.18), (D.21), and (D.22) back into (D.15), we get

lim
n→∞

max
H

(n)
1,2 ∈W(n) log |S(n)

2 (H
(n)
1 )| − nd

CM
1,2 −dCM

1

2
log n

n
= −s(dCM

1,2 − dCM
1 ) +H(X −X1|X1)

−E [log(X −X1)!] +
dCM

1,2

2
H(Γ2|Γ1) +H(Q2|Q1).

Using Lemma 5.2 and rearranging, this is precisely equal to Σ(µCM
2 |µCM

1 ), which completes
the proof of (5.27).

D.6 Proof of Theorem 5.2: generalization to multiple

sources

The proof of Theorem 5.2 is similar to that of Theorem 5.1 which was given in Section 5.3.
It is easy to verify that if G

(n)
[k] is distributed according to either the multi-source Erdős–

Rényi ensembles or the multi-source configuration model ensembles discussed in Section 5.3.5,
then given any nonempty A ⊂ [k], A 6= [k], the joint distribution of (G

(n)
A , G

(n)
Ac ) is similar to

that of a two–source ensemble as in Section 5.1 with the following mark sets:

Ξ̃1 :=

xA ∈ ΞA :
∑

(x′j :j∈[k]):(x′j :j∈A)=xA

p(x′j :j∈[k]) > 0


Ξ̃2 :=

xAc ∈ ΞAc :
∑

(x′j :j∈[k]):(x′j :j∈Ac)=xAc

p(x′j :j∈[k]) > 0


Ξ̃1,2 := Ξ[k]

Θ̃1 :=

θA ∈ ΘA :
∑

(θ′j :j∈[k]):(θ′j :j∈A)=θA

q(θ′j :j∈[k]) > 0


Θ̃2 :=

θAc ∈ ΘAc :
∑

(θ′j :j∈[k]):(θ′j :j∈Ac)=θAc

q(θ′j :j∈[k]) > 0


Θ̃1,2 := Θ[k]

Moreover, we set ◦̃1 := ◦A and ◦̃2 := ◦Ac . To establish the analogy, for the Erdős–Rényi
ensemble, we define ~̃p = {p̃x}x∈Ξ̃1,2

such that p̃x = px for x ∈ Ξ̃1,2. Furthermore, we define

~̃q = {q̃θ}θ∈Θ̃1,2
such that q̃θ = qθ for θ ∈ Θ̃1,2. Similarly, for the configuration model ensemble,

we let ~̃γ = {γ̃x}x∈Ξ̃1,2
such that γ̃x = γx for x ∈ Ξ̃1,2, and define ~̃q = {q̃θ}θ∈Θ̃1,2

where q̃θ = qθ
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for θ ∈ Θ̃1,2. It can be easily verified that (5.6) and (5.7) follow from the assumptions (5.49)
and (5.50). Likewise, (5.8) and (5.9) follow from (5.51), (5.52) and (5.53).

Using this observation together with (5.12a)–(5.12c), we realize that for the multi-source
Erdős–Rényi ensemble and nonempty A ⊆ [k], we have

H(G
(n)
A ) =

dER
A

2
n log n+ n

(
H(QA) +

∑
x∈ΞA

s(px)

)
+ o(n), (D.23)

where dER
A := deg(µER

A ), and with Q = (Qi : i ∈ [k]) having law ~q, we let QA := (Qi : i ∈
A). In fact, the coefficient of n in the above expression is Σ(µER

A ). Similarly, the above
observation together with (5.14a)–(5.14c) establishes that for the multi-source configuration
model ensemble and for nonempty A ⊆ [k],

H(G
(n)
A ) =

dCM
A

2
n log n+ n

(
− s(dCM

A ) +H(XA)− E [logXA!]

+H(QA) +
dCM
A

2
H(ΓA|ΓA 6= ◦A)

)
+ o(n)

where dCM
A := deg(µCM

A ). In the above expression, with X ∼ ~r and Γi = (Γij : j ∈ [k]) for

1 ≤ i ≤ ∆ which are i.i.d. with law ~γ, we define XA :=
∑X

i=1 1
[
Γij 6= ◦j for some j ∈ A

]
.

Here, if X = 0, then XA := 0. Moreover, Q = (Qi : i ∈ [k]) has law ~q and QA := (Qi : i ∈ A).
Furthermore, Γ = (Γi : i ∈ [k]) has law ~γ and ΓA := (Γi : i ∈ A). It can be seen that the
coefficient of n in the above expression is Σ(µCM

A ).

D.6.1 Proof of converse

Observe that for both the Erdős–Rényi and the configuration model ensembles, for A ⊂ [k]
nonempty, A 6= [k], even if all the encoders in the set A as well as all the encoders in

the set Ac can cooperate, since the distribution of (G
(n)
A , G

(n)
Ac ) is identical to a two–source

ensemble as was discussed above, using the converse result corresponding to the two–source
case (i.e. Sections 5.3.3 and 5.3.4), with αB :=

∑
i∈B αi and RB :=

∑
i∈B Ri for B ⊂ [k], for

((αi, Ri) : i ∈ [k]) ∈ R, we must have

(αA, RA) � ((d[k] − dAc)/2,Σ(µA|µAc))
(αAc , RAc) � ((d[k] − dA)/2,Σ(µAc|µA))

(α[k], R[k]) � (d[k]/2,Σ(µ[k])).

Here, µ denotes µER or µCM, depending on the ensemble. Repeating this for all nonempty
A ⊂ [k], A 6= [k], recovers all the necessary inequalities and completes the converse proof.

D.6.2 Proof of achievability for the Erdős–Rényi ensemble

Similar to Section 5.3.1, we employ a random binning codebook construction with L
(n)
i =

bexp(αin log n + Rin)c for i ∈ [k]. More precisely, For i ∈ [k] and H
(n)
i ∈ G(n)

i , we generate
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f
(n)
i (H

(n)
i ) uniformly in [L

(n)
i ]. The choice of f

(n)
i (H

(n)
i ) is made independently for each

H
(n)
i ∈ G(n)

i and also for each domain i ∈ [k]. To explain the decoding procedure, similar to
Section 5.3.1, let M(n) be the set of ~m = {m(x)}x∈Ξ[k]

such that
∑

x∈Ξ[k]
|m(x) − npx/2| ≤

n2/3. Furthermore, let U (n) be the set of ~u = {u(θ)}θ∈Θ[k]
such that

∑
θ∈Θ[k]

|u(θ)−nqθ| ≤ n2/3.

With these, let G(n)
~p,~q be the set of H

(n)
[k] ∈ G

(n)
[k] such that ~m

H
(n)
[k]

∈ M(n) and ~u
H

(n)
[k]

∈ U (n). At

the receiver, upon receiving bin indices ij, 1 ≤ j ≤ k, we form the set of H
(n)
[k] ∈ G

(n)
~p,~q such

that f
(n)
j (H

(n)
j ) = ij for j ∈ [k]. If there is only one graph in this set, the decoder outputs

that graph; otherwise, it reports an error. It can be easily seen that the error events are as
follows:

E (n)
1 = {G(n)

[k] /∈ G
(n)
~p,~q },

and, for each nonempty A ⊂ [k],

E (n)
A = {∃H(n)

[k] ∈ G
(n)
~p,~q : H

(n)
i = G

(n)
i for i /∈ A,

H
(n)
i 6= G

(n)
i , f

(n)
i (H

(n)
i ) = f

(n)
i (G

(n)
i ) for i ∈ A}.

For nonempty A ⊂ [k] and H
(n)
A ∈ G(n)

A , we denote (f
(n)
i (H

(n)
i ) : i ∈ A) by f

(n)
A (H

(n)
A ). Note

that we may treat f
(n)
A (H

(n)
A ) as an integer in the range

∏
i∈A L

(n)
i ≈ bexp(αAn log n+RAn)c.

Recall that αA =
∑

i∈A αi and RA =
∑

i∈ARi. Observe that due to our random binning

procedure, f
(n)
A (H

(n)
A ) is uniformly distributed in the range

∏
i∈A L

(n)
i . Moreover, for H

(n)
[k]

such that H
(n)
i 6= G

(n)
i for i ∈ A, f

(n)
A (H

(n)
A ) is independent from f

(n)
A (G

(n)
A ). Thereby, for

nonempty A ⊂ [k], A 6= [k], using the previously discussed fact that (G
(n)
A , G

(n)
Ac ) is distributed

according to a two–source ensemble, and using the analysis of Section 5.3.1, we realize
that the probabilities of the error events E (n)

A , E (n)
Ac , E (n)

[k] , and E (n)
1 vanish as n → ∞ given

that (αA, RA) � ((d[k] − dAc)/2,Σ(µER
A |µER

Ac )), (αAc , RAc) � ((d[k] − dA)/2,Σ(µER
Ac |µER

A )), and
(α[k], R[k]) � (d[k]/2,Σ(µER

[k] )). Repeating this argument for all nonempty A ⊂ [k], A 6= [k],
we realize that the probabilities of all error events vanish, which completes the proof of
achievability.

D.6.3 Proof of achievability for the configuration model ensemble

We again employ a random binning procedure as in the above, where, for i ∈ [k] and H
(n)
i ∈

G(n)
i , we choose f

(n)
i (H

(n)
i ) uniformly in the set [L

(n)
i ] with L

(n)
i = bexp(αin log n+Rin)c. To

explain the decoding procedure, similar to the setup in Section 5.3.2, we define D(n) be the
set of degree sequences ~d such that ci(~d) = ci(~d

(n)) for all 0 ≤ i ≤ ∆. Moreover, letM(n) be
the set of ~m = (m(x) : x ∈ Ξ[k]) such that

∑
x∈Ξ[k]

m(x) = mn, where mn := (
∑n

i=1 d
(n)(i))/2,

and
∑

x∈Ξ[k]
|m(x)−mnγx| ≤ n2/3. Also, let U (n) be the set of ~u = (u(θ) : θ ∈ Θ[k]) such that∑

θ∈Θ[k]
|u(θ) − nqθ| ≤ n2/3. Let the random variables X and XA for A ⊂ [k] nonempty be

defined as above, i.e. X ∼ ~r and with Γi = (Γij : j ∈ [k]) for 1 ≤ i ≤ ∆ being i.i.d. with law
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~γ, we define XA :=
∑X

i=1 1
[
Γij 6= ◦j for some j ∈ A

]
if X > 0, and XA := 0 if X = 0. With

this, let W(n) be the set of H
(n)
[k] ∈ G

(n)
[k] such that (i)

−→
dg

H
(n)
[k]

∈ D(n), (ii) ~m
H

(n)
[k]

∈ M(n), (iii)

~u
H

(n)
[k]

∈ U (n), and (iv) for all A ⊂ [k] nonempty and 0 ≤ j ≤ i ≤ ∆, we have

|ci,j(
−→
dg

H
(n)
[k]

,
−→
dg

H
(n)
A

)− nP (X = i,XA = j) | ≤ n2/3.

At the decoder, upon receiving ij : 1 ≤ j ≤ k, we form the set of graphs H
(n)
[k] ∈ W(n) such

that f (n)(H
(n)
j ) = ij for 1 ≤ j ≤ k. If there is only one graph in this set, the decoder outputs

this graph; otherwise, it reports an error. It can be easily seen that the error events are as
follows:

E (n)
1 = {G(n)

[k] /∈ W(n)},

and for nonempty A ⊂ [k],

E (n)
A = {∃H(n)

[k] ∈ W
(n) : H

(n)
i = G

(n)
i for i /∈ A

H
(n)
i 6= G

(n)
i , f (n)(H

(n)
i ) = f (n)(G

(n)
i ) for i ∈ A}.

Similar to the above discussion in Section D.6.2, since for A ⊂ [k] nonempty, A 6= [k],

the distribution of (G
(n)
A , G

(n)
Ac ) is identical to a two–source configuration model ensemble,

using the analysis in Section 5.3.2, we realize that the probabilities of the error events E (n)
A ,

E (n)
Ac , E (n)

[k] , and E (n)
1 vanish as n → ∞ given that (αA, RA) � ((d[k] − dAc)/2,Σ(µCM

A |µCM
Ac )),

(αAc , RAc) � ((d[k]− dA)/2,Σ(µCM
Ac |µCM

A )), and (α[k], R[k]) � (d[k]/2,Σ(µCM
[k] )). Repeating this

argument for all nonempty A ⊂ [k], A 6= [k], we realized that the probabilities of all error
events vanish, which completes the proof of achievability.
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Appendix E

Proofs for Chapter 6

E.1 Weak uniqueness of balanced allocations

Proof of Proposition 6.2. For a fixed δ > 0, define the set

Aδ := {i ∈ V (H) : ∂bθ(i)− ∂bθ′(i) > δ}.

By assumption, we have
∑

i∈V (H) |∂bθ(i)− ∂bθ′(i)| <∞. Hence, Aδ is a finite set. Moreover∑
i∈Aδ

∂bθ(i)− ∂bθ′(i) =
∑
i∈Aδ

∑
e3i,e*Aδ

θ(e, i)− θ′(e, i). (E.1)

Now, fix some e ∈ E(H) such that e∩Aδ 6= ∅ and e * Aδ. For i ∈ e∩Aδ and j ∈ e \Aδ, we
have

∂bθ(j)− ∂bθ′(j) ≤ δ < ∂bθ(i)− ∂bθ(i′),

which means that
∂bθ(j)− ∂bθ(i) < ∂bθ

′(j)− ∂bθ′(i).

Hence it is either the case that ∂bθ
′(j) > ∂bθ

′(i) or ∂bθ(j) < ∂bθ(i).
If θ(e, i) = 0 for all i ∈ e ∩ Aδ, then

∑
i∈e∩Aδ θ(e, i)− θ

′(e, i) ≤ 0. If θ(e, i∗) 6= 0 for some
i∗ ∈ e ∩ Aδ, then ∂bθ(i

∗) ≤ ∂bθ(j) for all j ∈ e \ Aδ. Consequently, ∂bθ
′(j) > ∂bθ

′(i∗) for
all j ∈ e \ Aδ; thereby, θ′(e, j) = 0 for all j ∈ e \ Aδ. This means that

∑
i∈e∩Aδ θ

′(e, i) =
1 ≥

∑
i∈e∩Aδ θ(e, i). Hence, we have observed that, in either case, we have

∑
i∈e∩Aδ θ(e, i)−

θ′(e, i) ≤ 0. Since this is true for all e such that e ∩ Aδ 6= ∅ and e * Aδ, substituting into
(E.1) we realize that ∑

i∈Aδ

∂bθ(i)− ∂bθ′(i) ≤ 0.

On the other hand,
∑

i∈Aδ ∂bθ(i) − ∂bθ
′(i) ≥ δ|Aδ|. Combining these two we conclude that

Aδ = ∅. Symmetrically, the set Bδ := {i ∈ V (H) : ∂bθ
′(i) − ∂bθ(i) > δ} should be empty.

Since δ is arbitrary, we conclude that ∂θ ≡ ∂θ′, i.e. ∂bθ ≡ ∂bθ
′, which completes the proof.
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E.2 H̄∗(Ξ) and H̄∗∗(Ξ) are Polish spaces

In this section, we prove that H̄∗(Ξ) and H̄∗∗(Ξ) are Polish spaces when Ξ is a Polish space.
In particular, by setting Ξ = {∅}, this means that H∗ and H∗∗ are Polish spaces.

Proposition E.1. Assume Ξ is a Polish space. Then, H̄∗(Ξ) and H̄∗∗(Ξ) are Polish spaces.

Proof. We give the proof for H̄∗(Ξ) here. The proof for H̄∗∗(Ξ) is similar, and is therefore
omitted.

First, we show H̄∗(Ξ) is separable. Since Ξ is separable, it has a countable dense subset
X = {ζ1, ζ2, . . . } ⊆ Ξ. Define An to be the set of all hypergraphs with n vertices with marks
taking values in X, i.e.

An := {[H̄, i] ∈ H̄∗(Ξ) : |V (H̄)| = n, ξH̄(e, i) ∈ X ∀(e, i) ∈ Ψ(H̄)}.

Since there are finitely many hypergraphs on n vertices and X is countable, we see that An is
countable. Now, define A = ∪nAn, which is countable. We claim that A is dense in H̄∗(Ξ).
To see this, for [H̄, i] ∈ H̄∗(Ξ) and ε > 0 given, pick (H̄, i) ∈ [H̄, i]. Then take n large
enough such that 1

1+n
< ε. With H being the underlying unmarked hypergraph associated

to H̄, we now define a marked rooted hypergraph (H̄ ′, i′) where the underlying unmarked
hypergraph H ′ has the property that (H ′, i′) is the truncation of (H, i) up to depth n and
the mark function ξH̄′ is defined as follows. For (ẽ, ĩ) ∈ Ψ(H ′), define ξH̄′(ẽ, ĩ) ∈ X such that
dΞ(ξH′(ẽ, ĩ), ξH̄(ẽ, ĩ)) < 1/(n+ 1). In this way, we have

d̄∗([H̄, i], [H̄
′, i′]) ≤ 1

1 + n
< ε.

But, (H̄ ′, i′) is finite, and the edge marks are in X; hence, [H̄ ′, i′] ∈ A. Since ε was arbitrary,
this shows that A is dense in H̄∗(Ξ). Thus, H̄∗(Ξ) is separable.

Now, we turn to showing that H̄∗(Ξ) is complete. Take a Cauchy sequence [H̄n, in] in
H̄∗(Ξ) and let (H̄n, in) be an arbitrary member of [H̄n, in]. Without loss of generality, by
taking a subsequence if needed, we can assume that for m > n we have

d̄∗([H̄n, in], [H̄m, im]) <
1

1 + n
.

This means that, with Hk being the underlying unmarked hypergraph associated to H̄k for
k ≥ 1, we have

(Hn, in) ≡n (Hm, im) ∀m > n, (E.2)

and

dΞ(ξH̄n(e′, i′), ξH̄m(φn,m(e′), φn,m(i′))) <
1

1 + n
, (E.3)

for all e′ ∈ EHn(V Hn
in,n

) and i′ ∈ e′, where φn,m is the depth n isomorphism between Hn and
Hm. Note that we can choose φn,m for n > m so that

φn,m = φm−1,m ◦ · · · ◦ φn,n+1. (E.4)
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In fact, since the RHS of (E.4) defines a depth n isomorphism from (Hn, in) to (Hm, im), one
can define φn,m in this way.

In view of (E.2), we can construct a rooted hypergraph (H, i) so that (H, i) ≡n (Hn, in)
for all n. Further, there are depth n isomorphisms, φn, from (H, i) to (Hn, in), which satisfy
the consistency condition

φm = φn,m ◦ φn ∀m > n. (E.5)

So far we have constructed a rooted hypergraph (H, i) such that [Hn, in]→ [H, i]. Now,
we construct a marked rooted hypergraph (H̄, i), where its underlying unmarked rooted
hypergraph is (H, i), and the mark function ξH̄ : Ψ(H) → Ξ is defined as follows. Take
(e′, i′) ∈ Ψ(H) and choose d such that e′ ∈ EH(V H

i,d). We claim that the sequence

{ξH̄n(φn(e′), φn(i′))}n≥d,

is Cauchy in Ξ. Indeed, for m > n, using (E.3), we have

dΞ(ξH̄n(φn(e′), φn(i′)), ξH̄m(φn,m ◦ φn(e′), φn,m ◦ φn(i′))) <
1

1 + n
.

Using (E.5), this means

dΞ(ξH̄n(φn(e′), φn(i′)), ξH̄m(φm(e′), φm(i′))) <
1

1 + n
,

which means that the sequence is Cauchy in Ξ. Since Ξ is complete, we can define ξH̄(e′, i′)
to be the limit of this sequence.

Now, we show that [H̄n, in]→ [H̄, i]. For a given d ∈ N, define

Ad := {(e′, i′) : e′ ∈ EH(V H
i,d), i

′ ∈ e′}.

Since Hn are locally finite, H is also locally finite, and thus Ad is finite. On the other hand,
since ξH̄n(φn(e′), φn(i′)) → ξH̄(e′, i′) for all (e′, i′) ∈ Ad, there exists a Nd > d such that for
all n > N , we have

dΞ(ξH̄n(φn(e′), φn(i′)), ξH̄(e′, i′)) <
1

1 + d
∀(e′, i′) ∈ Ad.

Moreover, since n > Nd > d, [Hn, in] ≡d [H, i]. Hence,

d̄∗([H̄n, in], [H̄, i]) <
1

1 + d
∀n > Nd.

Since d was arbitrary, this means that [H̄n, in]→ [H̄, i] and H̄∗(Ξ) is complete.

As was mentioned earlier, by setting Ξ = {∅}, we conclude that H∗ and H∗∗ are Polish
spaces. This is explicitly stated below as a corollary.

Corollary E.1. The spaces H∗ and H∗∗ are Polish spaces.
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E.3 Some properties of measures on H∗
Proof of Lemma 6.1. Part (i): We have

~µ(Ã) =

∫
1Ãd~µ =

∫
∂1Ãdµ.

But,

∂1Ã(H, i) =
∑
e3i

1Ã(H, e, i) =
∑
e3i

1A(H, i) = degH(i)1A(H, i).

Hence

~µ(Ã) =

∫
1A(H, i) degH(i)dµ =

∫
degH(i)dµ =

∫
d~µ = ~µ(H∗∗),

which shows that Ã happens ~µ almost everywhere and the proof is complete.
Part (ii): Note that

~µ(B) =

∫
H∗∗

1 [[H, e, i] ∈ B] d~µ([H, e, i]) =

∫
H∗

∑
e3i

1 [[H, e, i] ∈ B] dµ([H, i]).

On the other hand, ~µ(B) = ~µ(H∗∗) = deg(µ) =
∫

degH(i)dµ([H, i]). Moreover, for all
[H, i] ∈ H∗,

∑
e3i 1 [[H, e, i] ∈ B] ≤ degH(i). Consequently, it must be the case that for

µ–almost all [H, i] ∈ H∗,
∑

e3i 1 [[H, e, i] ∈ B] = degH(i), or equivalently [H, e, i] ∈ B for all
e 3 i.

Proof of Lemma 6.2. If we define

A := {[H, i] ∈ H∗ : fk([H, i])→ f0([H, i])},

and
Ã := {[H, e, i] ∈ H∗∗ : f̃k([H, e, i])→ f̃0([H, e, i])},

then we have
Ã = {[H, e, i] ∈ H∗∗ : [H, i] ∈ A}.

Then the proof is an immediate consequence of Lemma 6.1.

Proof of Lemma 6.3. Define B := {[H, e, i] ∈ H∗∗ : fk(H, e, i) → f0(H, e, i)}. As ~µ(B) =
~µ(H∗∗), from part (ii) of Lemma 6.1, for µ–almost all [H, i] ∈ H∗, for all e 3 i, fk(H, e, i)→
f0(H, e, i). This in particular implies that for µ–almost all [H, i] ∈ H∗, ∂fk(H, i)→ ∂f0(H, i).
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E.4 Proof of Lemma 6.4

We first prove that if the condition mentioned in Lemma 6.4 is satisfied, then µn ⇒ µ. Fix
ε > 0. Let f : H∗ → R be a uniformly continuous and bounded function. There is some
δ > 0 such that |f([H, i])− f([H ′, i′])| < ε when dH∗([H, i], [H

′, i′]) < δ. Now choose d such
that 1/(1 + d) < δ. For all rooted trees [H, i] ∈ T∗, [H, i] ∈ A(H,i)d . Hence, one can find
countably many rooted trees {Tj, ij}∞j=1 with depth at most d such that A(Tj ,ij) partitions
T∗; hence, one can find finitely many (Tj, ij), 1 ≤ j ≤ m such that

∑m
j=1 µ(A(Tj ,ij)) ≥ 1− ε.

If A denotes ∪mj=1A(Tj ,ij), then we have∣∣∣∣∣
∫
fdµ−

m∑
j=1

f([Tj, ij])µ(A(Tj ,ij))

∣∣∣∣∣ ≤
m∑
j=1

∣∣∣∣∣
∫
A(Tj,ij)

fdµ− f([Tj, ij])µ(A(Tj ,ij))

∣∣∣∣∣
+ ‖f‖∞ µ(Ac)

≤ ε(1 + ‖f‖∞),

where the last inequality uses the facts that µ(Ac) < ε and |f([H, i]) − f([Tj, ij])| < ε for
[H, i] ∈ A(Tj ,ij), 1 ≤ j ≤ m since 1/(1 + d) < ε. Similarly, we have∣∣∣∣∣

∫
fdµn −

m∑
j=1

f([Tj, ij])µ(A(Tj ,ij))

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
fdµn −

m∑
j=1

f([Tj, ij])µn(A(Tj ,ij))

∣∣∣∣∣
+

m∑
j=1

|f(Tj, ij)||µn(A(Tj ,ij))− µ(A(Tj ,ij))|

≤ ‖f‖∞

(
1−

m∑
j=1

µn(A(Tj ,ij))

)
+ ε

+ ‖f‖∞
m∑
j=1

|µn(A(Tj ,ij))− µ(A(Tj ,ij))|.

Combining these two, we have∣∣∣∣∫ fdµn −
∫
fdµ

∣∣∣∣ ≤ ‖f‖∞
(

1−
m∑
j=1

µn(A(Tj ,ij))

)
+ ‖f‖∞

∣∣∣∣∣
m∑
j=1

µn(A(Tj ,ij))− µ(A(Tj ,ij))

∣∣∣∣∣
+ ε(2 + ‖f‖∞).

Now, as n goes to infinity, µn(A(Tj ,ij))→ µ(A(Tj ,ij)) by assumption. Also, µ(Ac) < ε. Thus,
we have

lim sup
n→∞

∣∣∣∣∫ fdµn −
∫
fdµ

∣∣∣∣ ≤ ε(2 + 2 ‖f‖∞).

Since ‖f‖∞ <∞ and this is true for any ε > 0, we get
∫
fdµn →

∫
fdµ; hence, µn ⇒ µ.

For the converse, note that 1A(T,j)
is a continuous function since 1A(T,j)

([H, i]) = 1A(T,i)
([H ′, j′])

for dH∗([H, i], [H
′, i′]) < 1/(1 + d).
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E.5 Some properties of Unimodular Measures

First, we prove Proposition 6.3. Our proof depends on the following lemma:

Lemma E.1. Assume τ : H∗∗ → R is a measurable function and µ ∈ P(H∗) is a unimodular
measure such that τ = 1, ~µ–almost everywhere. Then, we have

1. With τ1(H, e, i) := 1 [τ(H, e′, i) = 1,∀e′ 3 i], it holds that τ1 = 1 ~µ–almost everywhere.

2. With τ2(H, e, i) := 1 [τ(H, e, i′) = 1,∀i′ ∈ e], it holds that τ2 = 1 ~µ–almost everywhere.

Proof. In order to prove the first part, note that from Lemma 6.1 part (ii), we have that for
µ–almost all [H, i] ∈ H∗, τ(H, e′, i) = 1 for all e′ 3 i. Now, part (i) of Lemma 6.1 implies
that for ~µ–almost all [H, e, i] ∈ H∗∗, τ(H, e, i) = 1 for all e′ 3 i, which is precisely what we
need to prove.

For the second part, since µ is unimodular, we have∫
1τ=1d~µ =

∫
∇1τ=1d~µ =

∫
1

|e|
∑
i′∈e

1τ(H,e,i′)=1d~µ(H, e, i).

But since 1τ=1 = 1 holds ~µ–almost everywhere and 0 ≤ 1
|e|
∑

i′∈e 1τ(H,e,i′)=1 ≤ 1, we conclude
that

1

|e|
∑
i′∈e

1τ(H,e,i′)=1 = 1, ~µ–a.e..

Since the summands are either zero or one, this means that τ(H, e, i′) = 1 for all i′ ∈ e,
~µ–almost everywhere, which is what we wanted to show.

Proof of Proposition 6.3. Define

Ak := {[H, e, i] ∈ H∗∗ : τ(H, e′, i′) = 1 ∀i′ ∈ V (H) : dH(i, i′) ≤ k, ∀e′ 3 i′}. (E.6)

Note that A0 = {[H, e, i] : τ(H, e, i) = 1}, for which it is known from the assumption that
~µ(A0) = ~µ(H∗∗). Now, we want to show that ~µ(Ak) = ~µ(H∗∗) for all k ≥ 0. We will do this by
induction on k. Assume that ~µ(Ak) = ~µ(H∗∗). Hence, with φk(H, e, i) := 1 [(H, e, i) ∈ Ak],
we have φk = 1 ~µ–almost everywhere. Now, we will use Lemma E.1 to prove that φk+1 = 1
~µ–almost everywhere.

To do so, using part 2 of Lemma E.1, if we define

Bk
1 := {[H, e, i] : ∀i′ ∈ e, φk(H, e, i′) = 1},

then we know ~µ(Bk
1 ) = ~µ(H∗∗). Then, applying part 1 of Lemma E.1 for the function 1Bk1

,
we get that

Bk
2 := {[H, e, i] : ∀e′ 3 i, [H, e′, i] ∈ Bk

1},
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has the property that ~µ(Bk
2 ) = ~µ(H∗∗). On the other hand,

Bk
2 = {[H, e, i] : ∀e′ 3 i, ∀i′ ∈ e′, [H, e′, i′] ∈ Ak} = Ak+1.

Hence, we have proved that ~µ(Ak+1) = ~µ(H∗∗), which is the inductive step.
Thus, ~µ(∩k∈NAk) = ~µ(H∗∗). Using the fact that the vertex set is countable, and that the

hypergraphs corresponding to the elements of H∗ are connected, the property τ holds for all
the directed edges ~µ–almost everywhere, in A := ∩k∈NAk. Hence, the proof is complete.

Now, we prove that the local weak limit of finite marked hypergraphs is a unimodular
probability distribution on H̄∗(Ξ). By setting Ξ = {∅} in the following proposition, we can
conclude that the local weak limit of finite simple hypergraphs is unimodular, as claimed in
Section 6.2.8.

Proposition E.2. Assume {H̄n} is a sequence of finite marked hypergraphs, with ξH̄n = ξn
the associated edge mark functions, taking values in some metric space Ξ. Now, if

µ̄n := uH̄n =
1

|V (H̄n)|
∑

i∈V (H̄n)

δ[(H̄n,i),i],

then µ̄n ∈ P(H̄∗(Ξ)) is unimodular for each n. Moreover, if µ̄n converge weakly to some
limit µ̄ ∈ P(H̄∗(Ξ)) such that deg(µ̄) <∞, µ̄ is also unimodular.

Proof. First, we show that µ̄n is unimodular for each n. For this, take a Borel function
f : H̄∗∗(Ξ)→ [0,∞) and note that∫

f(H̄, e, i)d~̄µn =

∫
∂f(H̄, i)dµ̄n

=
1

|V (H̄n)|
∑

i∈V (H̄n)

∂f(H̄n, i)

=
1

|V (H̄n)|
∑

i∈V (H̄n)

∑
e3i

f(H̄n, e, i)

=
1

|V (H̄n)|
∑

e∈E(H̄n)

∑
i∈e

f(H̄n, e, i)

=
1

|V (H̄n)|
∑

e∈E(H̄n)

∑
i∈e

∇f(H̄n, e, i)

=

∫
∇f(H̄, e, i)d~̄µn.

Since this holds for all nonnegative Borel functions f , µ̄n is unimodular, by definition.
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Now, for each n, define measures ~̄µ
(1)
n and ~̄µ

(2)
n on H̄∗∗(Ξ) so that for any Borel function

f : H̄∗∗(Ξ)→ [0,∞), we have∫
fd~̄µ(1)

n :=

∫ ∑
e3i

f(H̄, e, i)dµ̄n([H̄, i]), (E.7)

and ∫
fd~̄µ(2)

n :=

∫ ∑
e3i

1

|e|
∑
j∈e

f(H̄, e, j)dµ̄n([H̄, i]). (E.8)

We also define ~̄µ(1) and ~̄µ(2) for µ̄ in a similar fashion. Note that the RHS of (E.7) is∫
∂fdµ̄n =

∫
fd~̄µn. Therefore, ~̄µ

(1)
n = ~̄µn. Also, the RHS of (E.8) is

∫
∂∇fdµ̄n =

∫
∇fd~̄µn.

Hence,
∫
fd~̄µ

(2)
n =

∫
∇fd~̄µn. Since we have shown that µ̄n is unimodular, this implies that

~̄µ
(1)
n = ~̄µ

(2)
n .

Now, we claim that ~̄µ(1) = ~̄µ(2). To show this, take a bounded continuous function
f : H̄∗∗(Ξ)→ R. For k > 0, define

fk(H̄, e, i) :=

{
f(H̄, e, i) if degH(i) ≤ k,

0 otherwise.

It is easy to see that fk is continuous for each k, as f is continuous. Moreover, ∂fk and ∂∇fk
are bounded for each k. This, together with µ̄n ⇒ µ̄, implies that∫

fkd~̄µ
(1)
n =

∫
∂fkdµ̄n →

∫
∂fkdµ̄ =

∫
fkd~̄µ

(1),

and ∫
fkd~̄µ

(2)
n =

∫
∂∇fkdµ̄n →

∫
∂∇fkdµ̄ =

∫
fkd~̄µ

(2).

This, together with the fact that ~̄µ
(1)
n = ~̄µ

(2)
n , implies that for all k∫

fkd~̄µ
(1) =

∫
fkd~̄µ

(2).

Note that as all hypergraphs are locally finite, fk → f pointwise. Thus, sending k to infinity
and using the dominated convergence theorem, we have that for any bounded continuous
function f : H̄∗∗(Ξ)→ [0,∞), ∫

fd~̄µ(1) =

∫
fd~̄µ(2).

Since f can be an arbitrary bounded continuous function, we have ~̄µ(1) = ~̄µ(2). But the
definition of ~̄µ(1) and ~̄µ(2) then implies that for any nonnegative Borel function f we have∫
fd~̄µ =

∫
∇fd~̄µ, which means that µ̄ is unimodular.
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E.6 Proof of unimodularity of UGWHT(P )

Here we show that UGWHT(P ) is unimodular. Before that we prove the following lemma,
which is useful in calculating

∫
fdµ when µ = UGWHT(P ).

Lemma E.2. Let P ∈ P(Λ), and Γ a random variable with law P , where E [Γ(k)] <∞ for
all k ≥ 2. Moreover, let µ = UGWHT(P ). Then, for any Borel function f : H∗∗ → [0,∞),
we have ∫

fd~µ =
∞∑
k=2

E [Γ(k)]
∑
γ∈Λ

P̂k(γ)E [f(T, (k, 1), ∅)|Γ∅ = γ + ek] ,

where the expectation is with respect to the random rooted hypertree of Definition 6.28. Here,
ek ∈ Λ is such that ek(k) = 1 and ek(j) = 0 for j 6= k.

Proof. Due to the definition of ~µ, we have

∫
fd~µ =

∫
∂fdµ = E

h(Γ∅)∑
k=2

Γ∅(k)∑
i=1

f(T, (k, i), ∅)

 .
Since Γ∅ has distribution P , we have

E

h(Γ∅)∑
k=1

Γ∅(k)∑
i=1

f(T, (k, i), ∅)

 =
∑
γ∈Λ

P (γ)E

h(γ)∑
k=2

γ(k)∑
i=1

f(T, (k, i), ∅)

∣∣∣∣∣Γ∅ = γ

 .
Now, due to symmetry, conditioned on Γ∅ = γ, for a given k ≤ h(γ), all f(T, (k, i), ∅) for
1 ≤ i ≤ γ(k) have the same distribution, hence

∫
fd~µ =

∑
γ∈Λ

P (γ)

h(γ)∑
k=2

γ(k)E [f(T, (k, 1), ∅)|Γ∅ = γ]

=
∑
γ∈Λ

P (γ)
∞∑
k=2

γ(k)E [f(T, (k, 1), ∅)|Γ∅ = γ] ,

where the second equality uses the fact that γ(k) = 0 for k > h(γ). Now, since all the terms
are nonnegative, employing Tonelli’s theorem to switch the order of integrals we have∫

fd~µ =
∞∑
k=2

∑
γ∈Λ:γ(k)>0

P (γ)γ(k)E [f(T, (k, 1), ∅)|Γ∅ = γ] .
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Using the definition of P̂k, P (γ)γ(k) is equal to E [Γ(k)] P̂k(γ − ek) for γ ∈ Λ such that
γ(k) > 0, where ek ∈ Λ is such that ek(k) = 1 and ek(j) = 0 for j 6= k. Hence, we have∫

fd~µ =
∞∑
k=2

E [Γ(k)]
∑

γ∈Λ:γ(k)>0

P̂k(γ − ek)E [f(T, (k, 1), ∅)|Γ∅ = γ]

=
∞∑
k=2

E [Γ(k)]
∑
γ∈Λ

P̂k(γ)E [f(T, (k, 1), ∅)|Γ∅ = γ + ek] .

We can interpret the last expression above as follows. In computing
∫
fd~µ, when we consider

f([T, e, ∅]), the edge e attached to the root ∅ of the tree T is of size k with probability Γ(k).
This explains the outer summation. Since the contribution to the integral is the same
whichever edge of size k connected to the root is picked, suppose the edge picked is the edge
(k, 1). Then the type of the rest of the edges connected to the root is given by P̂k, and so
Γ∅ will equal γ + ek with probability P̂k(γ). This explains the inner summation.

Now we are ready to prove the unimodularity of UGWHT(P ):

Proof of Proposition 6.4. We need to prove that for a nonnegative measurable function f :
H∗∗ → [0,∞) we have

∫
fd~µ =

∫
∇fd~µ. Using Lemma E.2, we have∫

∇fd~µ (a)
=

∞∑
k=2

E [Γ(k)]E
[
∇f(T̃k, (k, 1), ∅)

]
=
∞∑
k=2

E [Γ(k)]
1

k

(
E
[
f(T̃k, (k, 1), ∅)

]
+

k−1∑
i=1

E
[
f(T̃k, (k, 1), (k, 1, i))

])
.

Here, for k ≥ 2, T̃k denotes a tree with root ∅ that has an edge (k, 1) of size k connected
to the root, with the type of the other edges connected to the root being P̂k, and with the
subtrees at the other vertices of all the edges (including the edge (k, 1)) generated according
to the rules of UGWHT(P ). Step (a) is justified because, for each k ≥ 2, we have

E
[
∇f(T̃k, (k, 1), ∅)

]
=
∞∑
k=2

E [Γ(k)]
∑
γ∈Λ

P̂k(γ)E [∇f(T, (k, 1), ∅)|Γ∅ = γ + ek] .

Now, because of the symmetry in the construction of T̃k, for each i = 1, . . . , k−1, (T̃k, (k, 1), (k, 1, i))

has the same distribution as (T̃k, (k, 1), ∅). Hence, E
[
f(T̃k, (k, 1), (k, 1, i))

]
= E

[
f(T̃k, (k, 1), ∅)

]
.

Substituting and simplifying we get∫
∇fd~µ =

∞∑
k=2

E [Γ(k)]E
[
f(T̃ , (k, 1), ∅)

]
=

∫
fd~µ,

where the last equality again uses Lemma E.2. This completes the proof of the unimodularity
of µ.
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E.7 Configuration model on hypergraphs and their

local weak limit: Proof of Theorem 6.4

In this section, we prove Theorem 6.4. We prove this in two steps: first, in Section E.7.2,
we prove that E

[
uHe

n

]
converges weakly to UGWHT(P ), where the expectation in E

[
uHe

n

]
is taken with respect to the randomness in the construction of He

n. Later, in Section E.7.3,
we conclude the almost sure convergence by a concentration argument. See [Bor14] for an
argument on the local weak convergence of the configuration model in the graph regime.

Throughout this section, we employ the vertex and edge indexing notations Nvertex and
Nedge defined in Section 6.2.9. By an abuse of notation, for a = (s1, e1, i1, . . . , sk, ek, ik) ∈
Nvertex where sj ≥ 2, ej ≥ 1, and 1 ≤ ij ≤ sj − 1 for all 1 ≤ j ≤ k, and integers s ≥ 2,
e ≥ 1 and 1 ≤ r ≤ s − 1, we write (a, s, e, r) for (s1, e1, i1, . . . , sk, ek, ik, s, e, r). For an edge
e ∈ Nedge with size k, and an integer 1 ≤ r ≤ k − 1, (e, r) is defined similarly. Furthermore,
T (Nvertex,Nedge) in this section denotes the set of hypertrees with vertex set and edge set
being subsets of Nvertex and Nedge, respectively. Such a hypertree is treated to be rooted at
∅, unless otherwise stated. Moreover, for a sequence of types {γa}a∈Nvertex , T ({γa}a∈Nvertex)
denotes the tree in T (Nvertex,Nedge) in which the type of each node a ∈ Nvertex in the hypertree
below that node is equal to γa (recall Figure 6.4 from Section 6.2.9 as an example).

Before going through the proof, we need to define a procedure called the “exploration
process” in Section E.7.1 below.

E.7.1 Exploration process

Assume that a random hypergraph Hn on the vertex set {1, . . . , n} is obtained from a given

type sequence γ(n) = (γ
(n)
1 , . . . , γ

(n)
n ) satisfying (6.82a) and (6.82b). Note that, following

our discussion in Section 6.9.1, Hn is identified by a set of random matchings σ2, . . . , σn.
Here, we introduce a procedure that choses a node v0 uniformly at random in {1, . . . , n} and
explores the local neighborhood of that node in a breadth–first manner. This process at each
step produces a hypertree in T (Nvertex,Nedge), which turns out to be locally isomorphic to
the neighborhood of v0 given that the local neighborhood of v0 in Hn is tree–like. A similar
process in the graph regime is introduced in [Bor14].

Formally speaking, the exploration process starts at time t = 0 with choosing a vertex
v0 ∈ {1, . . . , n} uniformly at random as the root. Then, at each time step, we explore one
edge in the neighborhood of v0. This is done in a breadth first manner, i.e. we first explore
edges adjacent to v0, then edges connected to neighbors of v0 and so on. More precisely, at
each time t ≥ 1, we have a node indexing function φt : Nvertex → {1, . . . , n} ∪ {×}. To begin
with, we define φ1(∅) = v0 and φ1(i) = × for ∅ 6= i ∈ Nvertex. Also, at each time step t, we
partition ∆(n) into three sets: an “active set” At, a “connected set” Ct, and an “undiscovered
set” Ut. These are initialized by setting A1 = ∆

(n)
v0 , C1 = ∅ and U1 = ∆(n) \A1. Moreover, at

time t, Nt ⊂ {1, . . . , n} contains the explored nodes at time t, and is initialized as N1 = {v0}.
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At time t, given the sets At, Ut, Ct and φt, we first form the set Wt := {(i, k, j) : φt(i) 6=
×, ekφt(i),j ∈ At}. If Wt is nonempty, we define (it, kt, jt) to be the lexicographically smallest

element in Wt and let et := ektφt(it),jt . In fact, et is the partial edge chosen at time t to be
matched with other partial edges to form an edge. Now, define

et,j := σ
(j−1)
kt

(et) 1 ≤ j ≤ kt − 1,

which are the kt − 1 other partial edges matched with et. Also, for 1 ≤ j ≤ kt − 1, let
ut,j := ν(et,j) be the node associated to et,j. Moreover, we update the sets Ct, At, Ut and Nt

as follows:

Ct+1 = Ct ∪ {et, et,1, . . . , et,kt−1}, (E.9a)

At+1 = At \ {et, et,1, . . . , et,kt−1}
kt−1⋃
j=1

(
∆(n)
ut,j
∩ Ut

)
, (E.9b)

Ut+1 = Ut \
kt−1⋃
j=1

∆(n)
ut,j
, (E.9c)

Nt+1 = Nt ∪ {ut,1, . . . , ut,kt−1}. (E.9d)

In order to update φt, define j̃t to be the minimum j such that

φt((it, kt, j, 1)) = ×.

With this, set φt+1 to be equal to φt except for the following values:

φt+1((it, kt, j̃t, l)) = ut,l 1 ≤ l ≤ kt − 1.

This in particular means that the set of nodes in {1, . . . , n} that appear in the range of φt+1

is precisely Nt+1.
At each time t, we define a rooted hypertree formed by the exploration process, which we

denote by Rt, which is a member of T (Nvertex,Nedge). Rt is identified through the mapping
φt, i.e. its vertex set is {i ∈ Nvertex : φt(i) 6= ×}, and its edge set is {(ir, kr, j̃r), 1 ≤ r ≤ t−1}.
This process continues until At = ∅, which results in exploring the connected component of
v0. Note that since the permutations determining the configuration model are random, the
exploration process is in fact a random process. Let Ft be the sigma field generated by all
the random variables defined above up to time t. Let τ be the stopping time corresponding
to Aτ = ∅. For the sake of simplicity, for t > τ , we define Rt = Rτ .

E.7.2 Convergence of expectation

In this section, we provide the proof of the convergence of E
[
uHe

n

]
. This is done in two

parts. Loosely speaking, we first show that, for any integer d ≥ 1, with high probability, Hn
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rooted at a vertex chosen uniformly at random up to depth d is a simple hypertree. Then,
we prove that the distribution of the limiting depth t is that of a Galton–Watson process.
The former is proved in Proposition E.3 below and the latter in Proposition E.4.

More precisely, let µ̄en and µ denote E
[
uHe

n

]
and UGWHT(P ), respectively. In order to

show that µ̄en ⇒ µ, using Lemma 6.4, it suffices to prove that for any d ≥ 1, and with (T, o)
being a rooted hypertree of depth at most d, µ̄en(A(T,o)) → µ(A(T,o)), where we recall that
A(T,o) = {[H, j] ∈ H∗ : (H, j)d ≡ (T, o)}. Note that, with v0 being chosen uniformly at
random in {1, . . . , n}, we have

µ̄en(A(T,o)) = E

[
1

n

n∑
i=1

δ[He
n(i),i](A(T,o))

]

= E

[
1

n

n∑
i=1

1[He
n(i),i]∈A(T,o)

]

=
1

n

n∑
i=1

P ((He
n, i)d ≡ (T, o))

= P ((He
n, v0)d ≡ (T, o)) .

(E.10)

Thus, motivated by the above discussion, we need to show that for all d ≥ 1 and (T, o) with
depth at most d, P ((He

n, v0)d ≡ (T, o)) → µ(A(T,o)). We prove this in two steps. First, we
prove in Proposition E.3 that the probability of (Hn, v0)d being a simple hypertree goes to one
as n goes to infinity. Subsequently, in Proposition E.4, we show that P ((He

n, v0)d ≡ (T, i))
converges to µ(A(T,i)).

In the following statement, γ(n) = (γ
(n)
1 , . . . , γ

(n)
n ) is a fixed type sequence and Hn is the

random multihypergraph resulting from the configuration model. Moreover, for an integer
d ≥ 1 and vertex v ∈ {1, . . . , n}, (Hn, v)d is the multihypergraph rooted at vertex v contain-
ing nodes with distance at most d from v and edges in Hn with all endpoints among this set
of vertices.

Proposition E.3. Assume conditions (6.84a), (6.84b) and (6.84c) are satisfied with con-
stants c1, c2, c3, ε > 0. Then, if v0 is chosen uniformly at random from {1, . . . , n},

lim
n→∞

P ((Hn, v0)d is a simple hypertree) = 1.

Proof. Note that (6.84a) and (6.84b) imply that the degrees of all vertices and the sizes
of all edges in Hn are bounded by αn := c1(log n)c2 . Therefore, there are at most βn :=
(αn)2d+5 edges in (Hn, v0)d+1. Since at each step of the exploration process we form one
edge, (Hn, v0)d+1 is completely observed up to step βn. On the other hand, if at step t, the
partial edge to be matched at that step, which is et in our notation, is matched to partial
edges outside At, all of the endpoints of the newly formed edge at step t are in N c

t , i.e. they
are not observed so far. If in addition to this property, all the kt− 1 vertices of these partial
edges that are matched with et are distinct, no improper edges or multiple edges are formed
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at step t. If these properties hold for all 1 ≤ t ≤ βn, (Hn, v0)d will be a simple hypertree.
Note that, in order to make sure that (Hn, v0)d is a simple hypertree, we need to make sure
that there is no improper edge in the exploration process up to depth d+ 1. This guarantees
that even vertices at depth d do not get connected to each other.

To formalize this, fix 1 ≤ t ≤ βn and assume that the exploration process is not termi-
nated up to step t, and at step t, we need to match the partial edge et of size kt. Let Et,1
denote the event that et,1 = σ

(1)
kt

(et) ∈ At ∩∆(n)(kt). Moreover, for 2 ≤ i ≤ kt− 1, let Et,i be
te event that

et,i = σ
(i)
kt

(et) ∈ (At ∩∆(n)(kt)) ∪

(
i−1⋃
j=1

∆
(n)
ν(et,j)

(kt)

)
,

where ∆
(n)
ν(et,j)

(kt) denotes the set of partial edges of size kt connected to the vertex associated

to et,j. Note that having chosen et,1, . . . , et,i−1, there are |∆(n)(kt)| − |∆(n)(kt) ∩ Ct| − i

many candidates for σ
(i)
kt

(et), each having the same chance of being chosen. We claim that

|At ∩∆(n)(kt)| ≤ tα2
n. The reason is that at each step in the exploration process, at most αn

many new vertices are added to Nt, each of which having at most αn many partial edges of
size kt. On the other hand, |∆(n)

ν(et,j)
(kt)| ≤ αn. Consequently,∣∣∣∣∣(At ∩∆(n)(kt)) ∪

(
i−1⋃
j=1

∆
(n)
ν(et,j)

(kt)

)∣∣∣∣∣ ≤ (t+ 1)α2
n.

Additionally, at each step, at most αn partial edges are added to Ct to form an edge;
therefore, |Ct| ≤ tαn. This, together with (6.84c), implies that for 1 ≤ i ≤ kt ≤ αn, we have
|∆(n)(kt)| − |∆(n)(kt) ∩ Ct| − i ≥ c3n

ε − (t + 1)αn. Since each of these candidates have the
same probability of being chosen, we have

P (Et,i) ≤
(t+ 1)α2

n

c3nε − (t+ 1)αn
1 ≤ i ≤ kt − 1.

If Et denotes ∪kt−1
i=1 Et,i, using kt ≤ αn and the union bound, we have

P
(
∪βnt=1Et

)
≤ (βn + 1)2α3

n

c3nε − (βn + 1)αn
.

Note that, αn and βn scale logarithmically in n, and d is fixed. Hence, due to the c3n
ε term

in the denominator, the above probability goes to zero as n goes to infinity. As was discussed
above, outside the event ∪βnt=1Et, the rooted hypergraph (Hn, v0)d is a simple hypertree.

Proposition E.4. With the assumptions of Theorem 6.4, for an integer d ≥ 1 and a rooted
hypertree (T, o) with depth at most d, if v0 is a node chosen uniformly at random from
{1, . . . , n}, we have

lim
n→∞

P ((He
n, v0)d ≡ (T, o)) = µ(A(T,o)).
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Note that, the above proposition, together with the discussion in (E.10), implies that
E
[
uHe

n

]
⇒ µ. In Section E.7.3 below, we show that uHe

n
is concentrated around its mean,

which completes the proof of Theorem 6.4.

Proof. Given the rooted hypertree (T, o) with depth at most d, let C[T,o] denote the set of

hypertrees T̃ ∈ T (Nvertex,Nedge) such that (T̃ , ∅) ≡ (T, o). For T̃ ∈ C[T,o], let eT̃1 , . . . , e
T̃
r be

the edges in T̃ with depth at most d − 1, ordered lexicographically in Nedge. Moreover, let

eT̃r+1, . . . , e
T̃
r+l denote the edges in T̃ with depth precisely d, ordered lexicographically (if there

is no such edge, l = 0). For a node i in T̃ , let γT̃i denote the type of the vertex i in the
subtree below i. Furthermore, define

πT̃ := P
(

(T ({Γa}a∈Nvertex), ∅)d = (T̃ , ∅)
)
,

under the probability in Definition 6.27. With the above notation, we have

πT̃ := P (γT̃∅ )
r∏
t=1

|eT̃t |−1∏
j=1

P̂|eT̃t |
(γT̃

(eT̃t ,j)
). (E.11)

By the definition of the distribution UGWHT(P ), we have

µ(A[T,o]) =
∑

T̃∈C[T,o]

πT̃ .

Recall that Rt denotes the hypertree in T (Nvertex,Nedge) which results from the explo-
ration process at step t. Note that if (Hn, v0)d is a simple hypertree, we have (Hn, v0)d ≡
(Rβn , ∅)d where βn is defined in Proposition E.3 above. With this, we have

P ((He
n, v0)d ≡ (T, o)) = P ((He

n, v0)d ≡ (T, o) and (Hn, v0)d is a simple hypertree)

+ P ((He
n, v0)d ≡ (T, o) and (Hn, v0)d is not a simple hypertree)

As is shown in Proposition E.3, the second term converges to zero; therefore, we need to
study only the first term. But, if (Hn, v0)d is a simple hypertree, (He

n, v0)d ≡ (T, o) if and
only if Rr+l+1 = T̃ for some T̃ ∈ C[T,o]. Consequently, it suffices for us to show that

lim
n→∞

P
(
Rr+l+1 = T̃ and (Hn, v0)d is a simple hypertree

)
= πT̃ ∀T̃ ∈ C[T,o]. (E.12)

For 1 ≤ t ≤ r, let Et be the event defined in Proposition E.3. Recall that Ec
t is the event

that ut,1, . . . , ut,kt−1 are all distinct and are not in Nt. From Proposition E.3, we know that
the probabilities of both the events “(Hn, v0)d is a simple hypertree” and ∩rt=1E

c
t converge

to 1 as n→∞. Therefore, it suffices to show that

lim
n→∞

P
(

(Rr+l+1 = T̃ ) ∩ (∩rt=1E
c
t )
)

= πT̃ ∀T̃ ∈ C[T,o]. (E.13)
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To prove this, fix some T̃ ∈ T (Nvertex,Nedge) with depth at most d and define S0 to be the

event that γ
(n)
v0 = γT̃∅ . From (6.83b), P (S0) → P (γT̃∅ ) as n → ∞. Moreover, for 1 ≤ t ≤ r,

define S̃t to be the event that

γ(n)
ut,s = γT̃

(it,kt,j̃t,s)
+ ekt 1 ≤ s ≤ kt − 1,

and let St = S̃t ∩ Ec
t , which is in fact the intersection of S̃t and the event

ut,j, 1 ≤ j ≤ kt − 1 are distinct and are not in Nt.

With this, let St = ∩ti=0Si. We claim that the event (Rr+l+1 = T̃ )∩ (∩rt=1E
c
t ) coincides with

Sr. The reason is that on the event Sr, for each 1 ≤ t ≤ r, the type of each of the kt − 1
subnodes of edge formed at step t matches with that of eT̃t . Moreover, on the event ∩rt=1E

c
t ,

there is no improper edges or cycles formed during the exploration process. In particular,
those partial edges connected to the vertex ut,s which are added to the active set are not
used until the process goes to vertex ut,s itself. Also, note that as T̃ has depth at most d,
its structure is determined by the type of the vertices of depth at most d − 1, which are
subnodes of edges of depth at most d− 1 in T̃ , which are precisely eT̃1 , . . . , e

T̃
r .

Now, we prove by induction that for 0 ≤ t ≤ r,

P
(
St
)
→ πT̃ (t) := P (γT̃∅ )

t∏
t′=1

|eT̃
t′ |−1∏
j=1

P̂|eT̃
t′ |

(γT̃
(eT̃
t′ ,j)

).

If πT̃ (t− 1) = 0, then P (St) ≤ P (St−1)→ 0 = πT̃ (t). If πT̃ (t− 1) 6= 0, we have P (St−1) > 0

for n large enough. Note that P (St) = P
(
St−1 ∩ S̃t ∩ Ec

t

)
. Thereby,

P
(
St−1

)
P
(
S̃t|St−1

)
− P (Et) ≤ P

(
St
)
≤ P

(
St−1

)
P
(
S̃t|St−1

)
.

But, we know that P (Et)→ 0. Consequently, it suffices to prove that

P
(
S̃t|St−1

)
→
|eT̃t |−1∏
j=1

P̂|eT̃t |
(γT̃

(eT̃t ,j)
). (E.14)

Since we construct one edge at a time in the exploration process, conditioned on St−1,
the first t− 1 edges are constructed in a way consistent with T̃ . Therefore, it is easy to see
that

P
(
S̃t|St−1

)
= P

(
γ(n)
ut,j

= γT̃
(eT̃t ,j)

+ e|eT̃t |
for 1 ≤ j ≤ |eT̃t | − 1

)
.

For 1 ≤ j ≤ |eT̃t | − 1, let S̃t,j denote the event that γ
(n)
ut,j = γT̃

(eT̃t ,j)
+ e|eT̃t |

. Now, we study

the probability of S̃t,j conditioned on St−1 and S̃t,1, . . . , S̃t,j−1. Note that, having chosen
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et,1, . . . , et,j−1, there are |∆(n)(kt)| − |∆(n)(kt)∩Ct| − j many candidates for et,j, each having

the same chance. With Bt,j := {e ∈ ∆(n)(|eT̃t |) : γ
(n)
v(e) = γT̃

(eT̃t ,j)
+e|eT̃t |

}, the event S̃t,j happens

iff et,j is chosen among the set Bt,j \ (Ct ∪ {et,1, . . . , et,j−1}). Therefore,

P
(
S̃t,j|St−1, S̃t,1, . . . , S̃t,j−1

)
=

|Bt,j \ (Ct ∪ {et,1, . . . , et,j−1})|
|∆(n)(|eT̃t |)| − |∆(n)(|eT̃t |) ∩ Ct| − j

.

Note that

1

n
|Bt,j| =

1

n

n∑
i=1

(γT̃
(eT̃t ,j)

(|eT̃t |) + 1)1
[
γ

(n)
i = γT̃

(eT̃t ,j)
+ e|eT̃t |

]
.

Using (6.83b), we have

1

n
|Bt,j| → (γT̃

(eT̃t ,j)
(|eT̃t |) + 1)P (γT̃

(eT̃t ,j)
+ e|eT̃t |

).

On the other hand, conditioned on St−1, |Ct| =
∑t−1

j=1 |eT̃j |, which is a constant. Consequently,

1

n
|Bt,j \ (Ct ∪ {et,1, . . . , et,j−1})| → (γT̃

(eT̃t ,j)
(|eT̃t |) + 1)P (γT̃

(eT̃t ,j)
+ e|eT̃t |

). (E.15)

Moreover, using (6.85),

1

n
|∆(n)(|eT̃t |)| =

1

n

n∑
i=1

γ
(n)
i (|eT̃t |)→ E

[
Γ(|eT̃t |)

]
. (E.16)

Note that we are conditioning on St−1 and assuming that P (St−1) 6= 0. On the other

hand, |eT̃t | is equal to the size of the partial edge et which is a member of ∆(n). Using the

assumption (6.83a), we have |eT̃t | ∈ I and hence E
[
Γ(|eT̃t |)

]
> 0. Putting (E.15) and (E.16)

together, we have

P
(
S̃t,j|St−1, S̃t,1, . . . , S̃t,j−1

)
→

(γT̃
(eT̃t ,j)

(|eT̃t |) + 1)P (γT̃
(eT̃t ,j)

+ e|eT̃t |
)

E
[
Γ(|eT̃t |)

] = P̂|eT̃t |
(γT̃

(eT̃t ,j)
)

Multiplying for 1 ≤ j ≤ |eT̃t | − 1, we get (E.14) which completes the proof.

E.7.3 Almost sure convergence

In this section we prove that, with the assumptions of Theorem 6.4, uHe
n
⇒ UGWHT(P )

almost surely.
For a fixed n, Let ∆(n)(k1) . . .∆(n)(kL) be the nonempty sets among ∆(n)(2), . . . ,∆(n)(n).

From (6.84b) we know that L ≤ c1(log n)c2 and also ki ≤ c1(log n)c2 for 1 ≤ i ≤ L. For the
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sake of simplicity, write σ for (σk1 , . . . , σkL) and Mi forMki(∆
(n)(ki)), 1 ≤ i ≤ L. From our

construction, we know that σki is drawn uniformly at random from Mi and is independent
from σkj , j 6= i. With He

n being the simple hypergraph constructed by the configuration
model, for a fixed d > 0 and a rooted tree (T, o) of depth at most d, define

F (σ) :=
1

n

n∑
i=1

1(He
n,i)d≡(T,i).

From Proposition E.4 we know that limn→∞ E [F (σ)] = µ(A(T,o)). We will show that F is
concentrated around its mean via a bounded difference argument.

Now, for each 1 ≤ j ≤ L, fix a permutation πkj ∈ Mj and define π = (πk1 , . . . , πkL).

Moreover, fix 1 ≤ i ≤ L and e, e′ ∈ ∆(n)(ki). With this, define π′ki := swape,e′ ◦ πki ◦ swape,e′ ,
which is the conjugation of πki with the permutation that swaps e and e′. In fact, the cycle
representation of π′ki is obtained by swapping e and e′ in the cycle representation of πki .
Moreover, let π′ = (πk1 , . . . , π

′
ki
, . . . , πkL) which differs from π only on the ith coordinate.

With this, the hypergraph obtained from π and the hypergraph obtained from π′ differ only
in at most two edges. Since all edge sizes and degrees in the graph are bounded to c1(log n)c2 ,
there are at most 2(c1(log n)c2)2d+1 many vertices in the hypergraph which have distance at
most d to a vertex in any of these two edges. Consequently,

|F (π)− F (π′)| ≤ 2(c1(log n)c2)2d+1

n
. (E.17)

Now, fix 1 ≤ i ≤ L and πkj ∈ Mj for j 6= i. Let σki being chosen uniformly at random

in Mi and define Fi(σki) = F (πk1 , . . . , σki , . . . , πkL). Since ∆(n)(ki) is finite, we can equip
it with an arbitrary total order. Let X1 be the smallest element in ∆(n)(ki) and define

Y1 = (X1, σki(X1), . . . , σ
(ki−1)
ki

(X1)), which is in fact the orbit of X1, or in the configuration
model language, the edge containing the partial edge X1. Let X2 be the smallest element
that does not appear in Y1 and let Y2 = (X2, σki(X2), . . . , σ

(ki−1)
ki

(X2)). We continue this
process inductively, i.e. let Xj be the smallest element that has not appeared in Y1, . . . , Yj−1

and let Yj = (Xj, σki(Xj), . . . , σ
(ki−1)
ki

(Xj)). This process yields Y1, . . . , Y|∆(n)(ki)|/ki . For

1 ≤ j ≤ |∆(n)(ki)|/ki, let Fj be the sigma field generated by Y1, . . . , Yj. Moreover, let
Zj = E [Fi(σki)|Fj] for 1 ≤ j ≤ |∆(n)(ki)|/ki and let Z0 = E [Fi(σki)]. Note that πkj , j 6= i
are fixed; therefore, the randomness in the expression is with respect to σki only. Indeed,
(Zj, 0 ≤ j ≤ |∆(n)(ki)|/ki) is a martingale. We claim that, almost surely, we have

|Zj+1 − Zj| ≤ ki
2(c1(log n)c2)2d+1

n
.

The reason is that changing the value of the ki variables in Yj+1 can change the value of Fi

by at most ki
2(c1(logn)c2 )2d+1

n
and the above inequality results from (E.17). Using Azuma’s

inequality and the fact that ki ≤ c1(log n)c2 , we have

P (|Fi(σki)− E [Fi(σki)] | > δ) < 2 exp

(
− δ2n2

4|∆(n)(ki)|(c1(log n)c2)4d+3

)
. (E.18)
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To obtain an upper bound for |∆(n)(ki)|, note that

|∆(n)(ki)| =

(
n∑
j=1

γ
(n)
j (ki)

)
≤ n

(
1

n

n∑
j=1

‖γ(n)
j ‖2

1

)
.

From (6.83c), there is a constant α independent of n and i that
∑
‖γ(n)

j ‖2
1 < αn. Hence,

|∆(n)(ki)| < αn. Incorporating this into (E.18), we have, for 1 ≤ i ≤ L,

P (|Fi(σki)− E [Fi(σki)] | > δ) < 2 exp

(
− δ2n

4α(c1(log n)c2)4d+3

)
. (E.19)

Since this is true for all i and πkj , j 6= i and also the σkj are independent, using the above
inequality L times and using the fact that L ≤ c1(log n)c2 , we have

P (|F (σ)− E [F (σ)] | > δ) ≤ 2c1(log n)c2 exp

(
− δ2n

4α(c1(log n)c2)4d+3

)
.

As the sum of the RHS over n is finite, using the Borel–Cantelli lemma and the fact that
E [F (σ)] → µ(A(T,o)), we have F (σ) → µ(A(T,o)) almost surely. But there are countably
many choices for d and the rooted hypertree (T, o). Thus, outside a measure zero set,
uHe

n
(A(T,o)) → µ(A(T,o)) for all rooted tree (T, o) with finite depth. The proof is complete,

using Lemma 6.4.

E.8 Proof of Proposition 6.9

Proof of Proposition 6.9. Since Θ′ε is ε–balanced, from Definition 6.25, for ~µ–almost every
[H, e, i] ∈ H∗∗, we have

Θ′ε(H, e, i) =
exp

(
−∂Θ′ε(H,i)

ε

)
∑

j∈e exp
(
−∂Θ′ε(H,j)

ε

) . (E.20)

Using Proposition 6.3, there exists a A ⊂ H∗∗ such that ~µ(Ac) = 0 and, for all [H, e, i] ∈ A,
we have

Θ′ε(H, e
′, i′) =

exp
(
−∂Θ′ε(H,i

′)
ε

)
∑

j∈e′ exp
(
−∂Θ′ε(H,j)

ε

) ∀ (e′, i′) ∈ Ψ(H).

Now, fix some [H, e, i] ∈ A and take an arbitrary element of this equivalence class (H, e, i) ∈
[H, e, i]. The above equation guarantees that if we define the allocation θ′Hε on H as
θ′Hε (e′, i′) := Θ′ε(H, e

′, i′) for (e′, i′) ∈ Ψ(H), then θ′Hε is an ε–balanced allocation on H.
Now, assume that θH

∆

ε is the (unique) ε–balanced allocation on the truncated hypergraph
H∆ defined in Section 6.4.3 (uniqueness comes from boundedness of H∆). Proposition 6.5
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then implies that ∂θH
∆

ε (i′) ≤ ∂θ′Hε (i′) for all i′ ∈ V (H). Sending ∆ to infinity, this means
that ∂θHε (i′) ≤ ∂θ′Hε (i′) for all i′ ∈ V (H), with θHε being the canonical ε–balanced alloca-
tion on H. Using Remark 6.12 and the definition of θ′Hε , this means that for ~µ–almost all
[H, e, i] ∈ H∗∗, ∂Θε(H, i) ≤ ∂Θ′ε(H, i). From part (ii) of Lemma 6.1, µ–almost surely we
have

∂Θε ≤ ∂Θ′ε. (E.21)

On the other hand, using unimodularity of µ and the fact that Θε is a Borel allocation,
we have ∫

∂Θεdµ =

∫
Θεd~µ =

∫
∇Θεd~µ =

∫
1

|e|
d~µ([H, e, i]).

Using the same logic,
∫
∂Θ′εdµ =

∫
1
|e|d~µ([H, e, i]). This means that

∫
∂Θεdµ =

∫
∂Θ′εdµ. As

deg(µ) <∞, this common value is finite. This, together with (E.21), implies that ∂Θε = ∂Θ′ε,
µ–almost surely. Therefore, Proposition 6.3 implies that for µ–almost all [H, i] ∈ H∗, we
have ∂Θε(H, j) = ∂Θ′ε(H, j) for all j ∈ V (H). Then, part (i) of Lemma 6.1 implies that
for ~µ–almost all [H, e, i] ∈ H∗∗, ∂Θε(H, j) = ∂Θ′ε(H, j) for all j ∈ V (H). Thereby, using
(E.20) for Θε and Θ′ε, we have Θε(H, e, i) = Θ′ε(H, e, i) for ~µ–almost all [H, e, i] ∈ H∗∗, which
completes the proof.
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