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ABSTRACT OF THE DISSERTATION

Los Angeles
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by
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Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Eleazar Eskin, Chair

An ever increasing wealth of biological data has become available in recent years, and

with it, the potential to understand complex traits and extract disease relevant information

from these many forms of data through computational methods. Understanding the genetic

architecture behind complex traits can help us understand disease risk and adverse drug

reactions, and to guide the development of treatment strategies. Many variants identified by

genome-wide association studies (GWAS) have been found to affect multiple traits, either

directly or through shared pathways. Analyzing multiple traits at once can increase power

to detect shared variant effects from publicly available GWAS summary statistics. Use of

multiple traits may also improve accuracy when estimating variant effects, which can be

used in polygenic scores to stratify individuals by disease risk. This dissertation presents a
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method, CONFIT, for combining GWAS in multiple traits for variant discovery, and explores

a few potential multi-trait methods for estimating polygenic scores. Computational methods

can also be used to identify patients already suffering from disease who would benefit from

treatment. Towards this end, this dissertation also presents work on deep learning to detect

patients with orbital disease from image data with high accuracy and recall.
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Chapter 1

Introduction

1.1 Motivation

Computational methods can help us make sense of the vast span of information in the

human genome. Understanding the genetic architecture behind complex traits can help us

predict traits such as disease risk and adverse drug reactions, and to guide the development

of treatment strategies. In a more direct way, computational methods can also be used to

identify patients already suffering from disease who would benefit from such treatment.

Both aims motivated this thesis work, which can be roughly split into statistical methods

for combining genome-wide association data from multiple traits, and deep learning for

disease diagnosis.
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1.2 Combining genetic association studies on multiple

traits

In the first part of my PhD research, I focused on two projects, (1) CONFIT, a method

to increasing power in association tests using study results from different traits, and (2) a

comparison of multi-trait models for effect sizes that allow for varying degrees of correlation

across the genome. Prior to that, I assisted in the development of RECOV, a random effects

model that allows for correlation between studies and was applied to model loci affecting

gene expression across related tissues (Duong et al., 2017). This experience inspired my

foray into multi-trait projects.

1.2.1 Background on genetic association studies

Before talking about these projects in more detail, I provide background on the type of data

used. Genome-wide association studies (GWAS) are used to find genetic variation correlated

with a phenotype such as height, gene expression level, or disease status. Typically they focus

on single-nucelotide polymorphisms (SNPs) where one nucleotide is swapped for another at

a single position in the genome in some portion of the population. Each individual may have

one of the swapped or unswapped versions (alleles) at each choromosome. The alleles may

be labeled as the major and minor alleles based on which is more common in the population,

or the derived and ancestral allele based on which originated first.

To conduct a GWAS, genotype and phenotype data is collected for many individuals –

perhaps a hundred or so for a brain tissue phenotype which is hard to collect, or hundreds of

thousands for concerted biobank efforts. Then for each position in the genome with a SNP,
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in essence a linear or logistic regression is performed with the allele count (how many copies

of the minor allele each person has) as the independent variable and the phenotype as the

dependent varible. This produces an estimate of the effect size and standard error for each

SNP, which are known as the summary statistics. These summary statistics often readily

available in contrast to the original genotype and phenotype data, due to privacy concerns

and requiring much greater computing resources to store and use compared to summary

statistics.

GWAS are not without their flaws, as addressed by numerous papers in the literature that

improve upon GWAS. However, their simplicity and ease of use, as well as the convenience

of sharing summary statistics, have made them an enduring feature of genetics research.

1.2.2 Association testing using GWAS from multiple traits

One limitation of GWAS is that SNP effect sizes may be very small and obtaining sample

sizes large enough to obtain sufficient statistical power infeasible. Combining results from

multiple studies can increase power. Many variants identified by genome-wide association

studies (GWAS) have been found to affect multiple traits, a phenomenon known as pleiotropy.

Analyzing multiple traits at once can increase power to detect and estimate shared variant

effects. For combining multiple GWAS on the same phenotype, one can use meta-analysis

increase power, as in (Postmus et al., 2016; Nikpay et al., 2015; Berndt et al., 2016). However,

meta-analysis methods may have decreased power when effects are unique to a particular

study or subset of studies in the analysis, making them unsuitable for combining studies in

different traits. In this project, we developed CONFIT, a method for association testing from
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summary statistics in multiple traits. CONFIT allows different “configurations” of non-zero

effects amongst traits, i.e. effects may be present in different subsets of traits used in the

analysis. The CONFIT test statistic is a likelihood ratio averaged over these configurations,

where the contribution of each configuration is weighted by a prior estimated from the data.

Using simulated data, we show that CONFIT properly controls false positive rate and

increases power when traits are correlated. When applied to a set of five metabolic traits

measured in the North Finland Birth Cohort, CONFIT was able to discover eight of nine

GWAS-significant loci, as well as two additional loci that were replicated in larger studies.

We also applied CONFIT to four metabolic traits in the UK Biobank, and discovered 44

novel loci related to both high cholesterol and use of cholesterol medication. This work was

published in Bioinformatics in June 2018 (Gai and Eskin, 2018) and is also presented in

Chapter 2.

1.2.3 Estimating effects and computing polygenic scores using

GWAS from multiple traits

Polygenic scores (PGS) have emerged as a promising tool for disease risk assessment (Shieh

et al., 2016; Logue et al., 2018), which can inform the need for early screening or lifestyle

changes. PGS estimate an individual’s phenotype based on their genetics by aggregating the

effects from many variants, typically using effect sizes estimated from GWAS on the trait

of interest. Improving the accuracy of the estimates would in turn improve the predictive

power of the PGS. Many pairs of traits exhibit genetic correlation, i.e. their effect sizes are

correlated, and exhibit significant genetic correlation even in the absence of any significantly
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associated loci (Bulik-Sullivan et al., 2015a; Shi et al., 2017). Modeling effects across multiple

traits jointly can improve estimate shared variant effects by using this genetic correlation.

In this project, we consider several multi-trait models for effect sizes and assess their

performance on a variety of traits from the UK Biobank. We find that multi-trait PGS

methods can increase PGS accuracy, particularly when the GWAS for the trait of interest is

small and it has strong genetic with other traits in the analysis, but can perform worse than

the original GWAS in other scenarios. We also find that models allowing for variable patterns

of genetic correlation across the genome do not consistently offer performance benefits over

a method that assumes uniform genetic correlation (Turley et al., 2018), or against GWAS

itself. This work is presented in Chapter 3.

1.3 Identifying an orbital disease from image data

using neural networks

The second part of my PhD work was on deep learning methods for biology and medicine.

My primary work here was to develop and evaulate an ensemble of neural networks model

for identifying patients with thyroid eye disease from digital photographs, presented in

Chapter 4and summarized below. I also worked on two projects led by Dat Duong on

applying deep learning to Gene Ontology (GO) terms: a comparison of graph convolutional

networks, ELMo, and BERT for producing embedding of GO terms (Duong et al., 2020b),

and GO annotation based on the transformer framework (GOAT), a method for predicting

GO terms for a protein sequence (Duong et al., 2020a).
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Thyroid eye disease (TED) is an autoimmune disease causing inflammation of the orbital

tissues (Bahn, 2010). Severe cases may result in disfigurement, chronic eye pain, and

misalignment of the eyes (Bahn, 2010; Sabini et al., 2017). Timely treatment can reduce the

degree of inflammation and severity of final outcome. However, the time from a patient’s

initial hospital visit to diagnosis often takes months or even years (Mellington et al., 2017;

Estcourt et al., 2009).

Deep learning has shown excellent performance in many areas of image recognition, and

holds great promise in the medical domain. In ophthalmology, it has been primarily been

applied to identify conditions from fundus (retina images), optical coherence tomography

(OCT), or computed tomography (CT).

In this project, we developed a deep learning-based classifier to identify TED from simple

digital photos of the face, with the goal of helping primary care physicians or even patients

themselves to quickly and effectively screen for TED in the future. The classifier is an

ensemble of neural networks, trained on 1,252 control images and 692 TED images obtained

from UCLA Stein Eye Institute (SEI) clinical data. It achieved an overall accuracy of 89%

and recall rate of 93% on 46 held out patient images from SEI. When applied to 122 patient

images from a separate clinical practice wholly unseen during training, it achieved a recall

rate of 92% with higher recall for more severe cases. The full details of this work are given

in Chapter 4.
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Chapter 2

Finding associated variants in

genome-wide association studies on

multiple traits

This work was published in Bioinformatics in 2018.

2.1 Introduction

Over the past few decades, genome wide association studies (GWAS) have found numerous

genetic variants associated with phenotypic variation (McCarthy et al., 2008; Dorn and

Cresci, 2009; Eskin, 2015). These phenotypes include a wide range of diseases and medically

relevant traits such as heart disease (Dorn and Cresci, 2009; Lee et al., 2013; Nikpay et al.,

2015), cholesterol level (Postmus et al., 2016), and depression (Cai et al., 2015; Hyde

et al., 2016), among others. In some cases, variants have been found to affect multiple
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traits, a phenomenon known as pleiotropy (Andreassen et al., 2014). For example, multiple

psychiatric disorders, immune diseases, and nervous system phenotypes have been found

to share causal variants (Solovieff et al., 2013; Cross-Disorder Group of the Psychiatric

Genomics Consortium, 2013; Chen et al., 2016; Chesler et al., 2005; Zeggini and Ioannidis,

2009). Variants associated with disease have also been found to be associated with tissue-

specific gene expression phenotypes (Liu et al., 2016). Considering multiple traits at once

may increase power to detect variant effects when there is pleiotropy.

One approach to combine information from different studies is to apply meta-analysis.

Meta-analysis methods are often used in GWAS to combine results from different studies on

the same trait to increase power (Postmus et al., 2016; Nikpay et al., 2015; Berndt et al.,

2016). Intuitively, one can effectively increase the sample size by pooling summary statistics

from multiple small studies, which also have the benefit of being more readily obtainable

compared to individual level data. The two classic versions of meta-analysis are fixed effects

(FE) meta-analysis and random effects (RE) meta-analysis (Fleiss, 1993). In the FE model,

a variant is assumed to have the same effect in each study, which is only realistic if all

studies in the meta-analysis measure the same phenotype in the same population. If instead

the true effect size differs between studies, we say there is heterogeneity. The random

effects (RE) model allows for heterogeneity by assuming study-specific effect sizes are drawn

independently from a normal distribution. The binary effects (BE) model also allows for

heterogeneity (Han and Eskin, 2012). In BE meta-analysis, a variant may either have an

effect of fixed size or no effect in each study (Han and Eskin, 2012). A variant’s configuration

of effects across traits may then be expressed as binary vector with entries indicating whether

or not the effect is zero for each trait.
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However, it is problematic to directly apply meta-analysis to combine studies that analyze

different traits for a number of reasons. First, some traits share many causal variants while

others share very few. Existing meta-analysis methods do not allow for varying degrees

of shared variants between traits, and combining unrelated traits in a meta-analysis may

actually decrease power compared to independent analysis of such traits. Second, a variant

that affects one trait may have no effect in a different trait. While RE meta-analysis and

related methods allow for differences in effect size between studies, such methods inherently

assume an effect is present in all studies in the meta-analysis. Finally, studies may share

individuals across traits. For example, data on several traits may be collected from the same

cohort of individuals. Meta-analysis techniques assume that the studies are independent,

but this only holds if the studies are performed on non-overlapping individuals.

In this paper, we present CONFIT, a novel meta-analysis method for multiple traits

that addresses these shortcomings. CONFIT estimates the degree of shared effects between

traits from the data using GWAS summary statistics, then uses these estimates to analyze

multiple traits while allowing effects to be present in only a subset of the traits. CONFIT is

inspired by the existence of pleiotropy and its potential to increase power to detect variants

that affect multiple traits. Unlike traditional meta-analysis methods, CONFIT is designed

to combine GWAS on different traits and does not assume a particular relationship between

the different traits. Our test statistic is a likelihood ratio averaged over many models, where

each model assumes the variant to have non-zero effect in a particular subset of traits and

is weighted by a prior estimated from the data.

We tested CONFIT and show it has increased power compared to multiple independent

GWAS in simulated data when variants have effect in multiple traits. We also show CONFIT
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accounts for correlated effect size estimates from overlapping individuals between studies.

We then demonstrate that CONFIT finds unique loci when combining studies on multiple

traits using the North Finland Birth Cohort (NFBC) data set and the UK Biobank data

set. CONFIT has many potential applications due to the vast variety of GWAS data sets

available.

2.2 Methods

2.2.1 Finding associated variants in one trait using a genome-wide

association study (GWAS)

We now describe how to test a variant v for association in a trait t using a GWAS. Let gvt

be the vector of genotype values in nt individuals collected in the study for trait t. Denote

entry j in gvt as gvt,j, which corresponds to the genotype of the jth individual in study t, i.e.

the number of copies of variant v they possess. Thus gvt,j ∈ {0, 1, 2}. Let xvt be the vector of

standardized genotype values in study t. In other words, xvt is obtained by mean-centering

and scaling gvt to have a sample variance of 1.

Let yt be the vector of phenotype values in nt individuals for trait t. Assume yt has been

centered to have mean 0. Given xvt,yt, GWAS assumes the linear model

yt = βvtxvt + et (2.1)

where βvt is the effect of v on trait t and et ∼ N(0, σ2
eI) is gaussian noise (Eskin, 2015).

The magnitude of βvt indicates how predictive v is. One then finds the estimated effect β̂vt
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by linear regression. The solution given by ordinary least squares (OLS) is

β̂vt = (xᵀ
vtxvt)

−1xᵀ
vtyk (2.2)

where

β̂vt ∼ N(βvt, (x
ᵀ
vtxvt)

−1σ2
e) (2.3)

Since σ2
e is unknown, we estimate it as σ̂2

e = 1
nt−1 ||yt − β̂vtxvt||22. Let dvt = (xᵀ

vtxvt)
−1σ̂2

e .

The summary statistic for v in study t is then the pair (β̂vt, dvt). One may also estimate β̂vt

and dvt using a linear mixed model (LMM), which corrects for population structure within

the study cohort (Kang et al., 2010; Furlotte and Eskin, 2015).

Because the variance may differ from study to study, we normalize each effect by its

standard error to obtain a z-score, where for each variant v, we have

zvt = β̂vt/
√
dvt ∼ N(λvt, 1) (2.4)

where λvt is the true normalized effect size. One may then use zvt as a test statistic to test

whether v is associated with t. Let α be the desired significance level. If |zvt| exceeds some

threshold value zα, or equivalently, p(zvt) = Pr(|z| ≥ |zvt| |H0) ≤ α, then we conclude v is

significantly associated with t.

Because a typical GWAS may test millions of variants, α should be set to account for

multiple testing at the variant level. Say 0.05 is the desired significance level for the whole

family of tests. A simple way to correct for multiple testing is to apply the Bonferroni

correction, which yields α = 0.05/|V |. However, due to the presence of linkage disequilibrium
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(LD) in the human genome, the Bonferroni correction on the total number of variants is

overly conservative. In the GWAS community, αGWAS = 5× 10−8 is commonly accepted as

a significance level that takes into account the number of SNPs and presence of LD in the

human genome (Consortium, 2005; Pe’er et al., 2008; McCarthy et al., 2008).

2.2.2 Finding associated variants in at least one of multiple traits

using multiple independent GWAS

Suppose we have a variant v and a set of traits T = {t1, ..., tk}, and we are given GWAS

effect sizes and variance (β̂vt, d
2
vt) of v for each trait t in T . To perform multiple independent

(MI) GWAS on a set of traits, one simply performs a GWAS as described above for each

variant v on each trait to obtain a vector of z-scores across traits z = (zvt1 , zvt2 , ..., zvtk)>.

The MI GWAS test statistic is then maxt |zvt|, or equivalently the smallest GWAS p-value

across traits, mint p(zvt). In MI GWAS, one must correct for two levels of multiple testing

- multiple variants and multiple traits. If we assume each trait to be an independent test,

then we may apply Bonferroni correction for k traits to αGWAS, yielding multiple testing

corrected significance level αMI = αGWAS/k. Then v is significant if mint p(zvt) ≤ αMI .

2.2.3 Finding associated variants using CONFIT

CONFIT attempts to find variants v ∈ V that affect at least one of k traits t1, . . . , tk, given

summary statistics from a GWAS on each trait. CONFIT assumes each variant v either has

zero effect on the trait, or if it has non-zero effect, that its normalized effect size, i.e. its

non-centrality parameter (NCP), follows a Fisher polygenic model. We describe whether the

12



variant has non-zero effect in each of the k traits using a binary vector c = [c1 . . . ck]
ᵀ, where

ct = 1 if the variant is active in trait t in that configuration and 0 otherwise.

For convenience, we use a fixed λ for all traits and variants when explaining the test

statistic in this section. This fixed λ assumption is very strong. Later we describe how this

assumption can be relaxed to allow different NCPs for each variant v. We also assume the

z-scores are independent across studies given the activity configuration, but will also relax

this assumption in a later section. Let zv = [zvt1 , ..., zvtk ]> Then

zv ∼ N(λc, I) (2.5)

Our test statistic at v is a likelihood ratio with multiple alternate models, where model

is a different activity configuration. The statistic has the likelihoods of each alternate

configuration against c0, weighted by a prior on each configuration Pr(c). Let C denote

the set of all possible configurations and c0 denote the null configuration c0 = [0 . . . 0]ᵀ, and

CA denote the set of alternate configurations, CA = C \ {c0}. Then

Fv =
∑
c∈CA

p(z|c, λ) Pr(c)

p(z|c0) Pr(c0)
(2.6)

2.2.4 Setting a prior on each activity configuration

Many choices of prior on the configurations are possible. We set an initial prior Pr0(c)

as the fraction of variants which have univariate GWAS p-value less than threshold 10−4

in the subset of traits that are active in c. We chose 10−4 as a threshold because we

wished to capture shared effects between variants which are not necessarily strong enough
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to reach GWAS significance. If c contains only one active trait, we set the final prior Pr(c)

by averaging Pr0(c
′) over all configurations c′ with a single active trait. Otherwise we set

Pr(c) = Pr0(c). The reason for this is that the CONFIT model assumes a similar distribution

of GWAS z-scores for each trait, but in real life, some traits may tend to have larger effects

and others to have smaller effects. We mitigate this by averaging the prior for each trait

alone being active. Then traits with large effect sizes will still have high power even with a

smaller prior on their configuration, and traits with small effect sizes will now have a power

boost with a larger prior. This is the default choice of prior for CONFIT.

2.2.5 Significance testing with Fv

We now describe how to find a p-value and perform significance testing for variant v using

Fv.

We find a null distribution for Fv by generating GWAS summary statistics at a variant

v under the null hypothesis, by drawing vector of z-scores for each trait z ∼ N(0, I). To

generate GWAS summary statistics under the null in the real dataset, one may permute the

labels on the set of phenotypes for each trait, such that the correlation between traits is

preserved but variant-phenotype correlation is not before performing GWAS, or one could

perform GWAS on the real genotypes and simulated phenotypes generated under the null.

The null distribution of Fv also depends on the estimated priors {Pr(c) : c ∈ C}. Say

we have estimated priors {Pr(c) : c ∈ C} from the data. We generate GWAS summary

statistics for 5 × 109 variants under the null hypothesis and compute Fv on the null data

using the {Pr(c) : c ∈ C} from the original data. Then we have obtained a null distribution
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for Fv. The p-value of Fv, p(Fv) is the fraction of null variants with test statistic less than

Fv. Let pα be the desired p-value threshold. If p(Fv) ≤ pα, we then conclude variant v is

associated with at least one of the k traits.

In a simulated data set containing m independent variants, one may set pα as the

Bonferroni corrected threshold pα = 0.05/m. However, the Bonferroni correction is overly

stringent when LD is present between variants, as is the case in real data sets. For the

NFBC and UKB data sets, we perform significance testing with Fv at the p-value threshold

pα = 5 × 10−8. This threshold is widely used by the GWAS community to account for

multiple testing across the human genome (Pe’er et al., 2008; McCarthy et al., 2008).

2.2.6 Setting a prior on the NCP

We now return to our assumption that NCP λvt = λ is fixed for all variants. We instead

relax this assumption by allowing each variant to have an NCP drawn from a zero-mean

normal distribution with variance σ2, as in the Fisher polygenic model. Consider a vector

of z-scores at the same variant across traits, rather than across variants. Recall our earlier

simple formulation, with fixed λv for all variants.

(z|λv, c) ∼ N(λvc, I)

This assumption about λv is strong and not necessarily realistic. We instead model

the NCP for a given variant as a vector, and allow it to differ between traits. Let λv =

[λvt1 , . . . , λvtk ] be the vector of NCPs across traits for variant v. Supposing a true causal
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status c, we then put a prior on λv:

λv|c ∼ N(0, σ2Ik×k) (2.7)

where Ik×k is the k-dimensional identity matrix. This prior assumes a Fisher polygenic

model on the active traits, where the parameter σ2 is a fixed value set by the user. In our

experiments, we set σ2 = 25. However, the performance is not that sensitive to choice of σ2,

as shown in power simulation results for CONFIT with σ2 = {4, 10, 36} in Table S2.

2.2.7 Correcting for overlapping individuals across studies

We may also relax the assumption that the estimated effects are independent across traits

given the NCPs. This is useful in scenarios where there are overlapping individuals across

studies, such as studies where multiple traits are collected from the same individuals. When

the cohorts fully overlap between studies (i.e. the k traits are collected from the same

individuals), we assume a linear model in each trait

yt1 = βvt1xvt1 + et1 , . . .ytk = βvtkxvtk + etk (2.8)

where for each individual j, we have yj = (yt1,j,yt1,j)
> following the model

yj = βvxv,j + ej (2.9)
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where ej ∼ N(0, σ2
eΣe). Σe is a k by k covariance matrix representing how the environmental

effect on an individual is correlated across traits. Note that under this single-variant linear

model,

Σe = Cov(et1,j, ..., etk,j) = Cov(yt1,j, ...,ytk,j) (2.10)

Let Y be the matrix of phenotype values such that entry yij is the value of ith trait in

the jth individual. The correlation between traits can be modeled as a mix of correlation

explained by genetics and correlation explained by shared environment. Σe should represent

correlation explained by the environment. Assume the proportion of covariance explained by

genetics is 50%, i.e. each trait in the analysis is 50% heritable. Then Σe may be estimated

as

Σ̂e =
1

2

(
Y Y >

n− 1
+ Ik×k

)
(2.11)

where n is the number of individuals.

If individual level phenotype data is not available, as is often the case with publicly

released summary statistics, Σe may instead be approximated using the correlation between

z-scores across traits, assuming that the contribution of any particular variant is small and

the heritability is known. Let Z be the matrix of phenotype values such that entry zij is the

value of ith trait in the jth SNP. Then if m is the number of SNPs,

Σ̂e =
1

2

(
ZZT

m− 1
+ Im×m

)
(2.12)

Under this model with correlated environmental effects for each individual, the distribution

of zv under the null becomes N(0,Σe) instead of N(0, I), and given a particular alternate
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configuration c, then z|c ∼ N(λc,Σe) instead of N(λc, I). We then compute test statistic

Fv as in Eq. (2.13) using this distribution for z to account for correlation due to sharing of

individuals between studies.

To generate null CONFIT test statistics to set a significance threshold when studies are

correlated, we now draw z ∼ N(0,ΣZ), where ΣZ = ZZT

m−1 is the empirical correlation matrix

for the GWAS z-scores. Again assuming that the contribution of any particular variant is

small, ΣZ will capture correlation of z-scores between traits due to the environment and due

to variants besides the one being tested.

2.3 Results

2.3.1 Method overview

CONFIT tests whether variant v affects at least one of k traits t1, . . . , tk, given summary

statistics from a GWAS on each trait. Assume that for each trait, variant v either has

an effect on the trait or not, and in each trait where there is an effect, v’s non-centrality

parameter λvt (i.e. its standardized effect size or NCP) follows a Fisher polygenic model

and is drawn from λvt ∼ N(0, σ2). If the variant has non-zero effect on a phenotype,

then it is considered “active” in that phenotype. We can then describe a potential activity

configuration of a variant in the k traits as a binary vector c = [c1 . . . ck]
ᵀ, where ct = 1 if it is

active in trait t and 0 otherwise. Let C denote the set of all possible configurations, c0 denote

the null configuration c0 = [0 . . . 0]ᵀ, and CA denote the set of alternate configurations.

The CONFIT test statistic is a sum of the relative likelihoods for each alternate
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configuration c against c0, weighted by a prior on each configuration Pr(c):

Fv =
∑
c∈CA

p(z|c) Pr(c)

p(z|c0) Pr(c0)
(2.13)

where z = [z1, ..., zk]
> is a vector of standardized GWAS effect sizes for each trait t, zt ∼

N(λvt, 1). The null hypothesis is that v is not active in any trait (corresponding to the

null configuration c0), and the alternate hypothesis is that v is active in at least one trait.

We estimate the prior on configuration c, Pr(c), using GWAS summary statistics for each

variant and trait. More details of the method are given in Section 4. We then run CONFIT

on simulated datasets to evaluate its performance, and apply it to two real data sets on

metabolic traits to find novel variants.

2.3.2 CONFIT increases power when a variant has effect in

multiple traits

To measure the power of CONFIT, we generated simulated GWAS summary statistics for k

traits as follows. For each variant, we draw a true effect configuration from a multinomial

distribution with known probability Prs(c) for each configuration c ∈ C, where C is all

possible effect configurations. We set Prs(c) = 0.005 for each alternate configuration. Then

the probability of a variant being active in a given trait is dependent on whether it is active

in other traits.

Given the true configuration, for each variant we draw GWAS z-scores with mean zero in

traits where there is no effect, and mean λs ∼ N(0, 25) where there is an effect. For each of

the following experiments, we generated a panel of 5× 105 variants. We then run CONFIT
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by setting the priors on each configuration from the 5 × 105 variants, then computing the

CONFIT test statistic F for each variant. We run this experiment in two and three simulated

traits.

The CONFIT test statistic threshold is set using 5 × 109 null simulations for each

experiment, and we find no false positives in the these simulations. To demonstrate that

the threshold is properly calibrated, we compute the genomic control (GC) factor (Devlin

and Roeder, 1999) for CONFIT and for GWAS in each trait in the CONFIT analysis

(Tables 2.1,2.2). The GC factor measures how far the median test statistic or p-value

deviates from the expected median under the null hypothesis, where larger values indicate

more inflation. We find that the GC factor for CONFIT is similar or below the GC factors of

the input GWAS. We also show quantile-quantile plots for CONFIT p-values on the North

Finland Birth Cohort and UK Biobank data sets in the supplement of Gai and Eskin (2018)

in Figure S1.

Table 2.1: Genomic control (GC) factors for the North Finland Birth Cohort (NFBC) data set. We

report GC factors for univariate GWAS in each trait and for CONFIT on the glucose (GLU), high-

density lipoprotein (HDL), insulin (INS), low-density lipoprotein (LDL), and triglycerides (TG) traits.

Method GC

GLU 1.000761

HDL 0.998390

INS 1.002076

LDL 0.998764

TG 0.997929

CONFIT 0.841884

From our power simulations, we find that CONFIT loses power compared to MI GWAS

when the variant is only active in one trait, but strongly outperforms MI GWAS when the

variant is active in more than one trait (Tables 2.3 and 2.4). To understand when CONFIT
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Table 2.2: Genomic control (GC) factors for the UK Biobank (UKB) data set. We report GC factors

for univariate GWAS in each trait and for CONFIT applied to GWAS summary statistics in four traits.

Method GC

High cholesterol 1.125458

Cholesterol medication 1.101478

Insulin medication 1.030950

Elevated blood glucose 1.031507

CONFIT 1.106578

has more power over MI GWAS, we plotted the H0 rejection region for each method on

simulated GWAS z-scores in two traits (Figure 2.1a). MI GWAS is slightly more powerful

if the GWAS statistic is large in only one trait, but CONFIT is able to detect variants with

moderate effects in both traits.

In real datasets, it is possible that some traits will tend have larger or smaller effects than

others. To see how CONFIT performs in this case, we also ran simulations where non-zero

effects for one trait are drawn from λs1 N(0, 4) and λs1 N(0, 100), and non-zero effects in

the remaining traits are drawn λs ∼ N(0, 25). We found that CONFIT still increases power

when an effect is present in more than one trait (Table 2.5).

2.3.3 CONFIT increases power in polygenic variants when applied

to studies with overlapping cohorts

To model the scenario where each trait is measured in the same cohort, i.e. dependent

studies, we simulate summary statistics with correlation ΣZ between the z-scores across

traits, using ΣZ computed from the Northern Finland Birth Cohort (NFBC) low-density

lipoprotein (LDL) and high-density lipoprotein (HDL) traits for simulations in two traits,

and from LDL, HDL, and triglycerides (TG) for simulations in three traits. We find that the
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(a) (b)

Figure 2.1: Rejection regions for MI GWAS and CONFIT. We ran MI GWAS and CONFIT on simulated

GWAS summary statistics in two traits with simulation settings λ2 ∼ N(0, 25) for (A) uncorrelated and

(B) correlated studies. In each plot, the variants are color coded black if significant by both MI GWAS

and CONFIT (i.e. MI GWAS p-value ≤ 2.5 × 10−8 and CONFIT p-value ≤ 5 × 10−8), red if found

significant by CONFIT but not MI GWAS, blue if found significant by MI GWAS and not CONFIT, and

grey if not found significant by either method.

ΣZ estimated from the covariance between individual level phenotypes matches closely with

ΣZ estimated from summary statistics (results not shown). We then run CONFIT with the

correction for overlapping individuals described in Section 2.2.7.

Again, we see that CONFIT achieves slightly less power than MI GWAS when the effect

is present in one trait, and increased power when the effect is present in more than one

trait (Table 2.3 and 2.4). The rejection region for CONFIT is now shifted relative to the

rejection region for CONFIT without the overlapping individuals assumption, as shown in

Figure 2.1b.
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Table 2.3: Power simulation in two traits. Here, the probability of each alternate configuration is set

as 0.5%. We draw the true non-centrality parameter (NCP) λs for each variant in each trait from a

normal distribution for each variant, λs ∼ N(0, 25), either with or without correlation of effect size

between traits. For GWAS in t1, we only count simulated SNPs which truly have an effect in t1. We

find significant variants using a p-value significance threshold of 5E−08. For multiple independent (MI)

GWAS, we apply the Bonferroni correction to this threshold to account for multiple testing of traits.

Uncorrelated studies Correlated studies

λs ∼ N(0, 25) 1 active trait 2 traits 1 trait 2 traits

GWAS in t1 0.290 - 0.291 -

MI GWAS 0.278 0.474 0.283 0.481

CONFIT 0.272 0.513 0.276 0.540

Table 2.4: Power simulation in three traits with 0.5% true probability of drawing each alternate

configuration. We draw the true NCP λs from a normal distribution for each variant, λs ∼ N(0, 25),

either with or without correlation of effect size between traits. For GWAS in t1, we only count simulated

SNPs which truly have an effect in t1. The power of univariate GWAS in t1 is in italics. Bolded values

indicate multi-trait method with highest power for each simulation.

Uncorrelated studies Correlated studies

λs ∼ N(0, 25) 1 active trait 2 traits 3 traits 1 active trait 2 traits 3 traits

GWAS in t1 0.283 - - 0.286 - -

MI GWAS 0.274 0.469 0.607 0.267 0.457 0.602

CONFIT 0.272 0.504 0.681 0.285 0.518 0.697

2.3.4 CONFIT finds unique loci for metabolic traits in the North

Finland Birth Cohort

Next, we applied CONFIT to a real data set, on metabolic traits from the North Finland

Birth Cohort (NFBC) dataset (Kang et al., 2010; Sabatti et al., 2008). This dataset contains

331,476 variants and 5,326 individuals, with data collected in ten traits from each individual.

These traits include a variety of metabolic traits. We selected the five traits with at least

one SNP with a GWAS p-values less than 10−4 in two or more traits and ran CONFIT on

their summary statistics. These traits were measurements for glucose (GLU), high-density

lipoprotein (HDL), insulin level (INS), low-density lipoprotein (LDL), and triglycerides (TG).
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Table 2.5: Power simulation in three traits with differing effect size distributions between traits. In the

first trait t1, we draw true effect size λs1 ∼ N(0, 4) or λs ∼ N(0, 100), and in the other two traits, we

draw λs ∼ N(0, 25). The true probability for each alternate configuration is 0.5%. For GWAS in t1, we

only count simulated SNPs which truly have an effect in t1. The power of univariate GWAS in t1 is in

italics. Bolded values indicate multi-trait method with highest power for each simulation.

λs1 ∼ N(0, 4) 1 active trait 2 traits 3 traits

GWAS in t1 0.013 - -

MI GWAS 0.182 0.3404 0.474

CONFIT 0.198 0.384 0.552

λs1 ∼ N(0, 100) 1 active trait 2 traits 3 traits

GWAS in t1 0.581 - -

MI GWAS 0.366 0.605 0.768

CONFIT 0.347 0.627 0.832

Table 2.6: P-values of peak CONFIT SNPs in analysis of five metabolic traits in North Finland Birth

Cohort (NFBC) data. Table contains loci found significant by CONFIT or multiple independent (MI)

GWAS. The traits used in the analysis are glucose (GLU), high-density lipoprotein (HDL),insulin (INS),

low-density lipoprotein (LDL), and triglyceride (TG) levels.

Univariate GWAS

Chr Position rsID GLU HDL INS LDL TG CONFIT

CONFIT only

8 19875201 rs10096633 4.5E-01 3.0E-06 4.1E-01 9.3E-01 1.9E-08 8.0E-10

16 66570972 rs255049 8.4E-01 1.7E-08 7.3E-01 1.7E-01 1.9E-01 2.0E-08

MI GWAS only

19 11056030 rs11668477 8.3E-01 1.8E-02 1.4E-02 3.5E-09 1.7E-02 6.4E-08

Found by both CONFIT and MI GWAS

1 109620053 rs646776 8.8E-01 1.2E-01 1.0E-01 3.0E-15 7.6E-01 < 2.0E-10

2 21047434 rs6728178 1.6E-01 6.7E-07 8.9E-01 4.8E-08 1.8E-07 < 2.0E-10

2 27584444 rs1260326 2.4E-01 2.6E-01 3.2E-01 2.1E-01 1.9E-10 2.0E-10

2 169471394 rs560887 6.9E-13 8.8E-01 9.9E-01 3.8E-01 6.2E-01 < 2.0E-10

7 44177862 rs2971671 4.4E-09 9.0E-01 2.4E-01 5.9E-01 5.4E-01 8.6E-09

11 92308474 rs3847554 2.4E-10 3.5E-01 1.3E-02 6.2E-01 5.9E-01 8.0E-10

15 56470658 rs1532085 2.3E-01 7.2E-12 5.1E-01 5.6E-01 8.8E-02 < 2.0E-10

16 55550825 rs3764261 4.4E-01 1.0E-32 7.5E-01 2.8E-01 1.2E-01 < 2.0E-10

Note that for MI GWAS with five traits, the significance threshold is 1×10−8 for the minimum

GWAS p-value out of the five traits.

We used pyLMM (https://github.com/nickFurlotte/pylmm) to obtain GWAS summary

statistics on the full NFBC cohort for each trait under a linear mixed model (LMM) as in
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(Kang et al., 2010). Our GWAS results are consistent with those reported by a previous

GWAS in the NFBC data also using LMMs (Kang et al., 2010). We report the univariate

GWAS p-value in each trait as well as the CONFIT p-value in Table 2.6. For MI GWAS in

five traits, the significance threshold is 1× 10−8.

CONFIT finds two unique loci in the NFBC data compared to MI GWAS. One of these

loci (Chr 16, peak SNP rs255049) is significant for HDL under a univariate GWAS threshold,

and the other loci (Chr 8, peak SNP rs10096633) has been associated with triglycerides in

a larger study from 2010 (Kamatani et al., 2010). CONFIT missed one loci found by MI

GWAS only which is GWAS significant for TG only, also shown.

2.3.5 CONFIT outperforms a multivariate linear regression model

when applied to multiple traits

Next, we compared the performance of CONFIT against another multi-trait analysis

method. Previously, Furlotte et al. applied multivate regression with a linear mixed model

(implemented in their software mvLMM) to the NFBC data set using four traits: C-reactive

protein (CRP), HDL, LDL, and TG (Furlotte and Eskin, 2015). When running mvLMM

to CRP, HDL, LDL, and TG simultaneously, Furlotte et al. found only one significant loci,

which contains SNPs rs1811472, rs2794520, rs2592887, and rs12093699.

We applied CONFIT to the NFBC data set in these same four traits, again using GWAS

summary statistics generated by pyLMM. CONFIT in fact finds this loci, as well as nine

other loci (Table 2.7) which were all reported in the univariate LMM analysis performed by

(Kang et al., 2010). CONFIT discovers the same loci in these four traits as in the analysis
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on GLU, HDL, INS, LDL and TG, with the exception of a GLU-specific locus. It also finds

a loci (Chr 19, rs11668477) that it missed in the five trait analysis. Although CONFIT can

discover SNPs with effects present in only a subset of traits in the analysis, the specific traits

chosen will affect its performance.

Table 2.7: P-values of peak CONFIT SNPs in analysis of four metabolic traits in North FInland Birth

Cohort data set. Table contains peak CONFIT SNPs for loci found significant by CONFIT or MI GWAS.

Italics indicates the only loci found significant by (Furlotte and Eskin, 2015) in their joint analysis of all

four traits.

Univariate GWAS

Chr Position rsID CRP HDL LDL TG CONFIT

CONFIT only

8 19875201 rs10096633 3.9E-01 3.0E-06 9.3E-01 1.9E-08 4.0E-09

16 66570972 rs255049 7.8E-01 1.7E-08 1.7E-01 1.9E-01 4.2E-08

Found by both CONFIT and MI GWAS

1 109620053 rs646776 1.4E-01 1.2E-01 3.0E-15 7.6E-01 < 2.0E-10

1 157908973 rs1811472 1.2E-15 4.8E-02 6.1E-01 8.7E-01 < 2.0E-10

2 21047434 rs6728178 5.3E-02 6.7E-07 4.8E-08 1.8E-07 < 2.0E-10

2 27584444 rs1260326 5.1E-02 2.6E-01 2.1E-01 1.9E-10 2.4E-09

12 119873345 rs2650000 2.2E-12 2.8E-01 6.8E-01 6.0E-01 < 2.0E-10

15 56470658 rs1532085 7.1E-01 7.2E-12 5.6E-01 8.8E-02 < 2.0E-10

16 55550825 rs3764261 3.2E-01 1.0E-32 2.8E-01 1.2E-01 < 2.0E-10

19 11056030 rs11668477 8.7E-01 1.8E-02 3.5E-09 1.7E-02 3.4E-08

2.3.6 CONFIT finds unique loci in the UK Biobank dataset

We also applied CONFIT to UK Biobank summary statistics publicly released by Neale lab.

We selected four traits related to the metabolic traits we used in the NFBC data. These

are: self-reported high cholesterol (phenotype code 20002 1473), use of cholesterol lowering

medication (phenotype code 6177 1), use of insulin medication (phenotype code 6177 3), and

diagnosis of elevated blood glucose level (phenotype code R73, ICD10 R73). CONFIT finds 6
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unique loci (2.8), MI GWAS finds 44 unique loci (shown in Supplementary materials of (Gai

and Eskin, 2018)), and 304 loci are found by both methods (not shown). The loci found

by CONFIT are all close to GWAS significance in both the self-reported high cholesterol

and use of cholesterol medication phenotypes, whereas the loci it fails to discover are mostly

borderline GWAS significant in a single trait (Table S1).

Table 2.8: P-values of peak SNPs in analysis of four metabolic traits in UK Biobank data set. Table

contains peak SNPs found significant by CONFIT (CONFIT p-value ≤ 5E-08) only. SNPs found

significant by MI GWAS only are shown in the Supplementary materials of (Gai and Eskin, 2018).

Univariate GWAS

Chr Position rsID
High

cholesterol
Cholesterol
medication

Insulin
medication

Elevated
blood

glucose
CONFIT

CONFIT only

3 135925191 rs1154988 5.2E-08 9.8E-07 7.2E-01 2.3E-01 5.6E-09

7 73020301 rs799157 3.2E-08 3.1E-05 5.4E-01 7.3E-01 3.9E-08

7 150690176 rs3918226 3.0E-08 3.0E-07 3.9E-01 1.9E-01 1.0E-09

10 94772638 rs10748588 2.3E-07 1.5E-06 8.7E-01 3.1E-01 3.0E-08

11 126225876 rs112771035 5.9E-07 4.2E-06 3.6E-02 8.0E-01 4.8E-08

20 17844492 rs2618567 1.6E-08 6.0E-07 3.9E-01 2.4E-01 1.0E-09

2.4 Discussion

Here we present CONFIT, a method for detecting associated variants from independent

GWAS in multiple traits using summary statistics. We demonstrate our method in simulated

data on two and three traits, and on real data up to four traits, though this framework may

be applied to larger numbers of traits. CONFIT controls the false positive rate and increases

power relative to multiple independent (MI) GWAS when the variant is active in multiple

traits in the analysis. When the variant is only active in one trait, CONFIT is less powerful

than MI GWAS, which is the standard method for analyzing independent traits, so CONFIT
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does not discover exactly the same SNPs as GWAS. We discover unique loci when applying

CONFIT to summary statistics from the NFBC and UK Biobank data sets.

A related problem exists in the field of eQTL studies, which often collect gene expression

data from individuals in multiple tissues. In this case, the phenotypes are a given gene’s

expression levels in each tissue, and the problem is to find variants associated with the gene’s

expression in at least one tissue. Several approaches have successfully increased power in

these multi-tissue eQTL data sets. Examples include MetaTissue (Sul et al., 2013), RECOV

(Duong et al., 2017), and eQTL-bma (Flutre et al., 2013). MetaTissue uses random effects

meta-analysis to combine data from different tissues. RECOV explicitly models correlation

between studies using a covariance matrix. eQTL-bma uses configurations to allow

heterogeneity and performs Bayesian model averaging using each potential configuration

as a model. We note the similarity of our test statistic to that of eQTL-bma, which was

developed by Flutre et al. specifically for multi-tissue eQTL context (Flutre et al., 2013). A

variant is an eQTL if it is associated with the expression of any gene in any tissue, which

is quite likely when there is a large number of tissues. For this reason, methods developed

for multi-tissue eQTL studies differ from those for traditional GWAS in that eQTL studies

typically do not assume a sparse model. In contrast, the majority of variants are believed

to have no effect on the majority of disease traits. Hence it is not obvious whether multi-

phenotype analysis methods for eQTL studies are also applicable to GWAS. Our results

suggest they may be applicable.

The CONFIT framework is general and there are many options for setting the priors

on each configuration. Here we used a relatively simple method to estimate the priors by

counting the number of SNPs with GWAS summary statistics that match each configuration.

28



One alternative is to formulate this as an optimization problem and select priors that

explicitly maximize power, with some form of regularization to avoid overfitting. Another

possibility is to use external information about the variants to set the prior. This has been

done previously in eQTL data, where variants in regulatory regions receive a stronger prior

for association (Duong et al., 2016).

The count-based prior used here has the disadvantage of not scaling well as the number

of traits grows, since as the number of possible configurations grows exponentially, the

probability of observing any particular configuration decreases sharply. From a methods

viewpoint, count-based methods for setting the prior on each configuration become less

and less useful with larger numbers of traits, as the probability of observing any particular

configuration amongst the GWAS statistics decreases with the number of traits. From a

computational viewpoint, the runtime of CONFIT grows exponentially. For these reasons,

we do not recommend running CONFIT on more than 10 traits. If the user has a large set of

candidate traits, they may narrow down which traits to include in the analysis by choosing

sets of traits with overlapping GWAS significant SNPs. One may use the Jacquard index to

measure overlap between traits while also accounting for the fact where one trait may simply

have more significant SNPs than other traits.

It is common for GWAS datasets to share individuals between studies. For example, a

study may collect both LDL and triglyceride levels from each individual, or controls may be

shared across multiple case-control studies. CONFIT handles the cases where the studies use

the same cohort by approximating the correlation between traits due to sharing of individuals

as proportional to correlation between traits or association statistics. This assumes the

effect and residuals are approximately independent, and that any individual SNP or LD
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block has small effect on the phenotype. In this paper, we assume heritability of 50% when

estimating this correlation, but a more sophisticated approach would be to use trait-specific

heritability estimates. There are also many other methods to address the issue of overlapping

individuals. For example, MetaTissue uses linear mixed models (LMMs) to model effects

in multiple studies with shared individuals (Sul et al., 2013). Although their method was

designed for multi-tissue eQTL studies, a similar LMM approach could be applied to combine

GWAS. This approach has the advantage of estimating the proportion of the phenotype that

can be attributed to sharing of individuals, and applies even if there is only partial overlap

between studies. However, it requires individual level data and is relatively computationally

expensive.

Several methods for analyzing multiple traits require individual level genotype and

phenotype data, such as multivariate regression. Several methods, such as GEMMA-

mvLMM, mvLMM, and GAMMA, extend this to use linear mixed models, which allow for

correction of population structure and other covariates (Zhou and Stephens, 2014; Furlotte

and Eskin, 2015; Joo et al., 2016). As with traditional meta-analysis, multivariate regression

is not suitable for combining data on arbitary traits and may achieve suboptimal power for

detecting variants that only affect one of the traits tested, or in the case where the variant

only affects one trait, which indirectly affects another (Stephens, 2013). Such methods are

typically applied to sets of traits that are already believed to share an underlying genetic

basis (Furlotte and Eskin, 2015). Thus there is a need for flexible approaches to association

testing when the traits only partially share a genetic basis and the study cohorts are not

independent between traits.
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Chapter 3

Evaluating models for variant effects

across multiple traits using using

summary statistics

3.1 Introduction

Polygenic scores (PGS) are commonly used for the study of genetic architecture, e.g. (Purcell

et al., 2009; Jones et al., 2018; Del-Aguila et al., 2018) and have also emerged as a promising

tool for disease risk assessment, e.g. (Shieh et al., 2016; Logue et al., 2018). PGS combine

genetic information from many variants, typically single-nucleotide polymorphisms (SNPs),

allowing them to provide meaningful estimates of genetic liability even when any single

variant has a small contribution to the disease or trait of interest.

The effect sizes used to compute PGS are typically estimated using genome-wide

association studies (GWAS), which fit a linear model for each SNP in the study on the
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trait. However, small effects are difficult to estimate accurately using traditional GWAS,

sometimes requiring hundreds of thousands or millions of samples, in phenotypes that may

be difficult to collect.

One approach to improve GWAS estimates is to combine information from multiple

related traits. Many pairs of traits exhibit genetic correlation, i.e. their effect sizes are

correlated, and exhibit significant genetic correlation even in the absence of any significantly

associated loci (Bulik-Sullivan et al., 2015a; Shi et al., 2017). Several existing methods

leverage this genetic correlation in multiple traits to estimate variant effects from summary

statistics (Hu et al., 2017; Maier et al., 2018; Turley et al., 2018; Qi and Chatterjee, 2017). In

particular, the method Multi-Trait Analysis of GWAS (MTAG) (Turley et al., 2018) requires

only summary statistics and has already been applied in a variety of settings (Lam et al.,

2017; Grove et al., 2019).

MTAG assumes the genetic correlation across traits is identical across the genome, and

that all SNPs have an effect in all traits. In cases where the assumption is violated, e.g. if

a variant only has an effect in a subset of the traits, MTAG may produce biased estimates

of effect size (Turley et al., 2018). It has been shown that the genetic correlation between

traits can vary from region to region (Shi et al., 2017) and the distribution of SNP effect

sizes varies with minor allele frequency (MAF) and degree of linkage disequilibrium (LD)

(Evans et al., 2018; Pazokitoroudi et al., 2020). Based on these observations, we decided

to evaluate models for effect sizes across traits which allow for sparsity or different patterns

of correlation across the genome, such as Gaussian mixture models (GMMs) and models

stratified by MAF and degree of LD.

Here we compare several such models against GWAS, which is on a single trait at a
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time, and MTAG, which assumes identical covariance across the genome. We evaluate these

methods by using them to compute PGS on anthropometric and mental health traits from the

UK Biobank (UKB) (Bycroft et al., 2018). We find that GWAS estimates sometimes produce

more accurate PGS than the multi-trait methods even when the genetic correlation between

traits is strong, though MTAG and the MAF and LD stratified model often outperformed

multiple variance component models. We hope our findings will help inform the use cases

for multi-trait approaches to PGS and future work on estimating variant effects.

3.2 Methods

3.2.1 Association testing and polygenic model for a single trait

We describe how to perform a genome-wide association study (GWAS) at a SNP j on a

single trait t, using data from N individuals. Suppose we have a vector of standardized

genotypes x at SNP j at each individual, and a vector of standardized phenotypes yt for

each individual in trait t. Then we may estimate the scalar effect βj of SNP j on trait t

using linear regression:

β̂jt =
1

N
x>y ∼ N

(
βjt,

1

N
σ2
ej

)
(3.1)

where σ2
ej

is the variance of contributions to the phenotype from factors besides SNP j. The

variance σ2
ej

may be estimated as σ̂2
ej

= 1
N

(y − β̂jtxj)>(yt − β̂jtxj).

GWAS assumes a linear model where only one SNP has non-zero effect, so the effects of

any SNPs in LD with SNP j are also captured in βj and subsequently in β̂jt. For this reason,

βjt is used here to refer to the marginal effect of SNP j. To compute GWAS estimates for
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this paper, we used the software PLINK (version 1.9) (Purcell et al., 2007).

Next, we describe the additive polygenic model used to compute a polygenic score (PGS).

In this model, an individual’s phenotype is simply the weighted sum of their standardized

genotypes at a set of SNPs, say a set of M SNPs. Recall that each βjt has been estimated

on standardized phenotypes. Then the (standardized) phenotype for individual i in trait t

is given by

yit =
M∑
j=1

βjtxij + ei (3.2)

where ei ∼ N(0, σ2
e) is environmental effects. It is also assumed that

∑M
j=1 βj ∼ N(0, σ2

g),

with narrow heritability h2 =
σ2
g

σ2
g+σ

2
e

corresponding to the fraction of phenotypic variance

explained by additive SNP affects.

To estimate the PGS for an individual i from a set of M SNPs, we compute

ŷit =
M∑
j=1

β̂jtxij. (3.3)

There are several options for choosing the set of SNPs to use in the PGS. For example,

one may use all genotyped SNPs, SNPs that are GWAS-significant, or some LD-pruned

subset of SNPs. If using non-independent SNPs as predictors for the PGS, we must apply a

correction for LD so that the summation is over the non-marginal SNP effects. Otherwise,

SNP effects will effectively be counted multiple times in the summation. Several methods

exist for performing this correction when computing the PGS, such as LDpred (Vilhjálmsson

et al., 2015) which was used for PGS calculation by Turley et al. (2018).
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3.2.2 Multivariate normal model for effects across multiple traits

Suppose that we have GWAS summary statistics from K traits at SNP j. This consists of

GWAS estimated effect sizes β̂j = (β̂j1, . . . , β̂jK), as well as the sample variance of these

estimates.

Also suppose that the true marginal SNP effects across traits βj = (βj1, . . . , βjK)> are

drawn from a multivariate normal (MVN), such that

βj ∼ N(0,Ω) (3.4)

where 0 is a vector of all zeros of appropriate dimension and Ω is the genetic covariance

matrix, such that entry ωij is proportional to the genetic correlation between traits i and j.

Note that βj is a vector of marginal SNP effects, that is, it includes the effects of other SNPs

in LD with the SNP of interest.

Suppose we then have K studies, one for each trait. Given the true effects for SNP j,

the GWAS linear estimator will come from the following distribution:

β̂j |βj ∼ N(βj ,Σj) (3.5)

Where β̂j is the vector of estimated effects across studies for SNP j, and Σj is the

covariance matrix corresponding to the estimation error, i.e. the variance-covariance matrix

for estimation errors for SNP j. For each pair of traits (t, s), the entry Σj,t,s is proportional

to the environmental correlation across studies for this pair of trait, which may be non-zero

if there is sample overlap across studies.
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In practice, Ω and Σj are not known. We estimate Ω using the methods of moments, as

described in Turley et al. (2018):

Ω̂ =
1

M

M∑
j=1

(
β̂jβ̂j

′ − Σ̂j

)
(3.6)

where β̂j is the vector of GWAS estimates for SNP j.

We also estimate the entries of Σj as in Turley et al. (2018). Suppose Nt,j and Ns,j

are the study sizes at SNP j corresponding to trait t and trait s. Then we estimate the

corresponding entries in Σj as:

Σ̂j,t,t = σ̂2
et/Nt,jΣ̂j,t,s = σ̂etσ̂es/

√
Nt,jNs,j (3.7)

where σ2
et and σetσes are variance and covariance due to sample overlap between the two

studies. These values can be estimated from the LD score regression intercepts Bulik-Sullivan

et al. (2015a).

3.2.3 MTAG estimator for effect size

Here we describe the multi-trait linear estimator derived by Turley et al. for estimating

effects from GWAS summary statistics, assuming all effects across the genome share the

same variance-covariance matrix Ω (Turley et al., 2018).

Suppose we have GWAS summary statistics for a trait of interest (the “primary” trait)

and additional related traits (the “auxillary” traits), as well as covariance matrices Ω and

Σ. For purposes of the derivation, we assume that the true values of Ω and Σ are known.
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Denote the GWAS effect sizes from K traits as β̂j1, β̂j2, ..., β̂jK . (Turley et al., 2018) derive

an estimator bMTAG for the effect in the primary trait β1:

bMTAG =

(
ω1

ω11

)> (
Ω− 1

ω11
ω1ω

>
1 + Σj

)−1
β̂ββ(

ω1

ω11

)> (
Ω− 1

ω11
ω1ω>1 + Σj

)−1 (
ω1

ω11

) (3.8)

Note that MTAG estimates the effects of all traits in the analysis jointly, but for

consistency with other methods we test, we use the primary/auxiliary trait notation.

3.2.4 Two component mixture models for effects across traits

Component models allow us to relax the assumption that SNP effects are drawn from the

same distribution across the genome. In this section, we describe four models where the

SNP effects across traits are drawn from a Gaussian mixture model with two components.

Let βj = (βj1, . . . , βjK)> denote the true marginal effects of SNP j in traits 1, . . . , K.

Let π0 and π1 be the mixing weights of each component, such that π0 = 1 − π1, and let γj

be a latent variable for which component SNP j was drawn from. Say the trait of interest t1

is the first entry in β, which we will refer to the primary trait, and other traits as auxiliary

traits. The generative model for the true marginal effects at a SNP j is as follows.

γj ∼ Bernoulli(π) (3.9)

βj|γj = 0 ∼ N (0,Ω0) (3.10)

βj|γj = 1 ∼ N (0,Ω1) (3.11)
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where Ω0 is a K by K matrix chosen from one of the options described below, and Ω1 is a

non-sparse covariance matrix.

We set Ω1 to correspond to the classic polygenic model with full genetic correlation,

estimated using Eq. 3.6, while Ω0 contains a subset of entries of Ω1. We test four options

for Ω0 each corresponding to a different possible GMM, described below.

Denote the entries of Ω1 as:

Ω1 =



τ 21 ρ12τ1τ2 · · · ρ1kτ1τk

ρ12τ1τ2 τ 22 · · · ρ2kτ2τk

...
...

. . .
...

ρ1kτ1τk ρ2kτ2τk · · · τ 2k


We test the following four choices of Ω0, each reflecting different assumptions about the

relationships between traits in the analysis.

– If we assume the primary trait has an effect and the other traits do not (we will refer

to the corresponding model as GMMa):

Ω0a =



τ 21 0 · · · 0

0 ε · · · 0

...
...

. . .
...

0 0 · · · ε


where ε is an arbitrarily small value.
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– If we assume the primary trait is sometimes sparse, but correlation amongst the

auxillary traits is the same for all SNPs (GMMb):

Ω0b =



ε 0 · · · 0

0 τ 22 · · · ρ2kτ2τk

...
...

. . .
...

0 ρ2kτ2τk · · · τ 2k


where again ε is an arbitrarily small value.

– If we assume there is no sparsity in effect sizes, but the primary trait is sometimes

uncorrelated with the auxillary traits (GMMc):

Ω0c =



τ 21 0 · · · 0

0 τ 22 · · · ρ2kτ2τk

...
...

. . .
...

0 ρ2kτ2τk · · · τ 2k



– If we assume there is no sparsity in effect sizes, but effect sizes are sometimes completely
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independent in all traits (GMMd):

Ω0d =



τ 21 0 · · · 0

0 τ 22 · · · 0

...
...

. . .
...

0 0 · · · τ 2k



Given Ω0,Ω1, the mixing parameters π0, π1 are estimated by expectation-maximization

(EM). In the E step, we compute membership assignment for each SNP based on our current

estimates for the mixture weights. Use the notation N(β̂ββj|0,A) to denote the density at β̂ββj

(the observed GWAS estimates for SNP j) of a centered multivariate normal distribution

with covariance matrix A. Then the E step is:

p(γj = 0|β̂j ,Ω0,Σj)←
N(β̂j|0,Ω0 + Σj)π0∑1
c=0N(β̂j |0,Ωc + Σj)πc

(3.12)

for j = 1, . . . ,M .

In the M step, we total the fraction of SNPs assigned to each component to get the

mixture weights. The M step becomes

π0 ←
∑M

j=1 p(γj = 0|β̂j ,Ω0,Σj)

M
(3.13)

for j = 1, . . . ,M .

We alternate between the E and M steps until convergence. These EM updates assume
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that each SNP is an independent sample from the mixture distribution, so they should be

computed over an LD-pruned subset of all available SNPs. In practice, we use estimates of

Ω0 and Ω1 for the EM process.

3.2.5 Stratifying SNPs by LD score and MAF

The four GMMs in the previous section base both covariance components on the GWAS

estimated effect sizes and covariance intercepts across all available SNPs. As an alternative

approach, we also tested a model where each component corresponds to a different subset of

SNPs, stratified by minor allele frequency (MAF) and LD score. Rare SNPs tend to have a

different effect size distribution than common SNPs, and SNP marginal effects include the

effects of any SNPs in strong LD.

We tested a model with SNPs stratified into four bins. In this model, we split SNPs into

top 50% or bottom 50% by LD score, and further split into MAF < 0.1 or MAF ≥ 0.1.

We obtained estimates of covariance due to sample overlap for each bin using LDSC (Bulik-

Sullivan et al., 2015b,a). We estimated a genetic correlation matrix for each bin as in Eq.

3.6, except now only using the subset SNPs in a bin rather than using all SNPs. Then we

obtained the MTAG effect estimates (Eq. 3.8) for each SNP using the genetic covariance

and sample overlap estimated for that particular SNP’s bin.

3.2.6 SNP filtering and computing polygenic scores

In selecting which SNPs to include in our analysis, we applied the SNP filter used by Turley

et al. (2018) for SNP discovery and effect size estimates. In addition to standard QC, this
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filter removes SNPs with MAF < 1% or much lower sample size than other SNPs for that

trait, and SNPs that are outliers with respect to effect size, including an inversion region in

Chromosome 8 strongly associated with neuroticism. This filter was applied before running

GWAS, and thus before estimating genetic correlation and covariance due to sample overlap

from the GWAS effects.

In the PGS formula in Eq. 3.2, it was assumed the SNPs to compute the PGS are

independent. However in practice, there is widespread correlation between SNPs in the

genome, i.e. linkage disequilibrium (LD). To account for LD, one may either select a

subset of approximately independent SNPs using LD pruning and thresholding by GWAS

p-value, or adjust the marginal SNP effects for LD before computing PGS. We used LDpred

(version 1.06) to adjust estimates of marginal SNP effects for LD before computing the PGS

(Vilhjálmsson et al., 2015), as in Turley et al. (2018). LDpred takes in an LD reference

panel, an LD radius, and assumed fraction of casual SNPs. We ran LDpred with a random

sample of 5,000 individuals who were excluded from the PGS cohort as the LD reference

panel. The LD radius was set to 150 and the fraction of causal SNPs was assumed to be

1 (the infinitesimal model setting). We applied LDpred to effect estimates from GWAS,

MTAG, and our five additional models to compute PGS using each method.
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3.3 Results

3.3.1 Overview

We applied GWAS, MTAG, and our five additional multi-trait models (four GMMs using

the genetic correlation matrix estimated from all SNPs, and one based on stratifying SNPs

by MAF and LD) to estimate SNP effect sizes and compared the predictive power of the

resulting PGS from each method.

For the following experiments, we only used unrelated white British individuals in the

UK Biobank. We randomly subsampled 200k individuals from the UK Biobank to use as a

GWAS cohort and 10k individuals to use as a PGS cohort so that individuals used to obtain

effect size estimates were not used to measure predictive power. Note that we did not take

missing phenotypes into account when sampling, so the final GWAS sizes are proportionate

to the original sample sizes. We use LDpred (Vilhjálmsson et al., 2015) to estimate PGS

from effect sizes, as in Turley et al. (2018). We then computed the Pearson correlation

between the PGS from each method and the true phenotypes of the PGS cohort.

3.3.2 PGS on anthropometric and psychiatric traits from the

UKB

We applied these methods to four sets of anthropometric traits in the UK Biobank chosen to

represent different scenarios for multiple traits. All traits used in these experiments had on

the order of 200k individuals with non-missing phenotype values in the GWAS cohort, except

for manual pulse and systolic blood pressure, which had on the order of 20k individuals.
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GWAS sample sizes are shown in Table. 3.1. We used age, sex, and the first 20 genetic

prinicipal components (PCs) as the covariates when computing the GWAS estimates.

The sets were (1) arm fat percentage in left arm, trunk fat percentage and waist

circumference; (2) automated pulse measurement and pulse rate (during blood-pressure

measurement); (3) automated pulse measurement and standing height, (4) automated pulse

measurement, standing height, and seated height. We will refer to the “pulse rate (during

blood-pressure measurement)” trait as manual pulse for convenience. These sets were chosen

to represent these scenarios respectively: (1) strong genetic correlation between all traits and

large sample size for all traits, (2), strong genetic correlation where one trait has a much

smaller sample size than the other, (3) weak genetic correlation between two traits both

with large sample size, and (4) a combination of strong and weak genetic correlations with

varying sample sizes. Each trait in each set was used as the primary trait in turn. The

genetic correlations between traits are shown in Table. 3.2.

We then computed the Pearson correlation between the PGS from each method and the

true phenotypes of the PGS cohort. We report incremental R2, which is the proportion

increase in R2 between the PGS estimated GWAS or one of the multi-trait methods,

compared to prediction using linear model with covariates only (Figs. 3.1a-3.1d).

We found that GMMs A-D typically performed similarly to each other, with GMMb (a

model where effects in the primary trait may be sparse) outperforming other GMM methods

on a few sets.

MTAG and the stratified model’s performance varied across settings. MTAG consistently

outperformed the GMMs and stratified model, and that its performance relative to GWAS

was strongest for predicting manual pulse using automated pulse (Fig. 3.1b), though it did
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underperform GWAS for both traits in the pulse and height set. We suspect that MTAG

is mainly useful in situations where GWAS in the trait of interest is underpowered, but

otherwise performs comparably to GWAS, or worse if the traits are weakly correlated.

Trait N

armfat percent 196,512

height 199,577

height seated 199,570

pulse automated 189,901

pulse manual 18,803

sysbp 18,803

trunkfat percent 196,465

waistc 199,658

DEP 180,263

NEU 162,838

Table 3.1: Sample size for GWAS on anthropometric and psychiatric traits in UKB. We subsampled

200k individuals to form a GWAS cohort, then performed a GWAS for each trait using the non-missing

individuals for that trait. The GWAS cohort was excluded when estimating polygenic risk scores.
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(a) Three traits with strong genetic correlation and

similarly large sample sizes.
(b) Two traits with strong genetic cor-

relation, where pulse manual has smaller

sample size.

(c) Two traits with weak genetic correla-

tion.

(d) Three traits where only two traits have strong genetic

correlation with each other.

Figure 3.1: Predictive power of mixture models, GWAS, and MTAG on anthropometric traits. Polygenic

scores (PGS) were computed using a stratified model, one of four GMMs, GWAS, or MTAG effect size

estimates. For the multi-trait methods, each figure is labeled with the primary trait, with the other

traits in the same set used as auxiliary traits. The sets of traits used were (a) arm fat percent, trunk

fat percent, and waist circumference; (b) automated pulse and manual pulse; (c) automated pulse and

standing height, (d) automated pulse, standing height, and seated height. Incremental R2 is proportion

increase in R2 between the PGS and observed phenotypes, compared to PGS estimated using linear

model with covariates only.

In addition to the four sets of anthropometric traits, we also analyzed a set of two

psychiatric traits from the UKB, depression and neuroticism. As before, we split the samples

into a GWAS cohort and PGS cohort and conducted GWAS, using the same procedure as for

the anthropometric traits. We found that GWAS performed comparably to the the GMMs

on DEP and outperformed other methods on NEU (Figure 3.2).
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DEP NEU

DEP 1(0) 0.82(0.03)

NEU 0.82(0.03) 1(0)

Table 3.3: Genetic correlation for neuroticism and depression, estimated using LDSC software package

on the same individuals and filtered SNPs used for GWAS.

Figure 3.2: Predictive power of mixture models, GWAS, and MTAG on a set of two psychiatric traits,

depression and neuroticism. Polygenic scores (PGS) were computed using effect estimates from one of

four GMMs, a stratified model, GWAS, or MTAG.

3.3.3 PGS improvement from multitrait prediction varies with

study sizes

To test whether multi-trait methods did have more of an impact on PGS prediction when

the trait of interest is underpowered, we repeated our earlier experiments on the highly

correlated arm fat, trunk fat, and body weight traits, but now downsampling the traits

to yield varying study sizes. Consistent with our earlier results, we find that MTAG and

the stratified model outperform GWAS when the primary trait has a small study and the

auxiliary traits are large, but underperform GWAS when the primary trait has a large study

(Fig. 3.3). Interestingly, MTAG and the stratified model also underperformed GWAS when

using weight as the primary trait when all three studies are small.
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Figure 3.3: Effect of study size on incremental R2 between PGS and observed phenotypes, which

measures the increase in R2 when using genetics compared to a prediction based on covariates only.

The same three traits were used as a set for three experiments where each trait’s GWAS effect size

estimates were re-estimated from cohorts of varying size before being passed to the multi-trait methods

as input. Traits used were arm fat percent (left), trunk fat percent (middle), and waist circumference

(right). (a) All traits with GWAS of 20k samples. (b) Arm fat percent with 20k samples, and the others

with 200k samples each. (c) Arm fat percent with 50k samples, and others with 200k samples each.
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3.4 Discussion

In this paper, we tested the utility of multi-trait methods for improving risk score prediction

on a variety of traits from the UK Biobank. We found that PGS computed using GWAS

estimates outperformed multi-trait methods in several of our experiments, and performed

comparably when not.

The Gaussian mixture models we tested, which allowed various combinations of sparsity

and independence between traits, tended to perform similarly to each other, but their relative

performance to other methods varied dramatically. For example, they achieved higher PGS

accuracy than MTAG when computing PGS for an automated pulse measurement using

the weakly correlated height as an auxiliary trait, but lower accuracy than MTAG and the

stratified model for predicting manual pulse from a small sample using automated pulse

measurement (which had a much larger study size) as an auxiliary trait.

The stratified model tended to perform similarly or slightly worse than MTAG. Both

tended to perform strongly when the traits had high genetic correlation, and the trait of

interest was underpowered. The stratified model may have performed better had we included

SNPs with MAF ¡ 1%, since rarer SNPs may have a genetic architecture that differs more

drastically from the genome-wide average than relatively common SNPs. For this paper, we

applied the same SNP QC filters as in Turley et al. (2018) to choose SNPs to use in the

PGS, though their filter excludes rare SNPs with the rationale that such SNPs are likely

to have a different distribution of effects than the rest of the genome, a key assumption of

the MTAG model but not the stratified model. The stratified model may also suffer from

increased estimation error for the genetic covariance and non-genetic covariance matrices,
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due to the decreased number of SNPs per bin used to estimate these model parameters.

This is far from a comprehensive evaluation of multi-trait methods for computing PGS,

particularly since each experiment was conducted only once per set of traits. One could

measure PGS on many bootstrapped samples of individuals, in order to obtain confidence

intervals on the PGS R2 obtained by different methods. Another area for future work would

be to quantify the change in PGS accuracy of multi-trait methods as a function of study size

and genetic correlation. Future studies could also evaluate similar models for modeling effects

on one trait in different populations, potentially using GWAS estimates from well-represented

groups to boost accuracy when computing PGS for a population that is underrepresented in

the GWAS literature.
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Chapter 4

Neural network guided detection of

thyroid eye disease from external

photos

4.1 Introduction

Thyroid eye disease (TED) is a progressive autoimmune disease (Bahn, 2010) with prevalence

estimated to be 0.5 percent of the general population (Wiersinga and Bartalena, 2002).

Advanced cases are characterized by facial disfigurement, chronic orbital pain, intractable

diplopia, and vision loss (Bahn, 2010; Sabini et al., 2017). As textbooks typically depict

only the severe manifestations, uninitiated clinicians often overlook TED’s subtle features,

and misdiagnosis of TED patients early in their disease course is common. These patients

may wait months to years for an accurate diagnosis (Mellington et al., 2017; Estcourt et al.,

2009), and lose valuable time (Menconi et al., 2014) when interventions such as behavior

52



modification and pharmacologic therapy (Bartalena et al., 2017; Smith et al., 2017; Winn

and Kersten, 2021) might still be able to alter the disease course. Tools that accurately

identify TED and direct patients to specialist care are would be of great value in expediting

care for early and milder cases of TED.

Deep learning methods have been used to develop similar tools in other areas(Shen et al.,

2017), such as malignant breast cancer histopathology (Spanhol et al., 2016; Hameed et al.,

2020), tuberculosis identification in chest radiography (Lakhani and Sundaram, 2017), and

melanoma (Haenssle et al., 2018; Brinker et al., 2019) and other skin lesions (Esteva et al.,

2017; Liu et al., 2020) in external photographs. These methods have also been applied to

ophthalmic imaging, in the detection of glaucoma (Li et al., 2018; Phene et al., 2019), diabetic

retinopathy (Gulshan et al., 2016; Ting et al., 2017; Raman et al., 2019; Oh et al., 2021),

and age-related macular degeneration (Lee et al., 2017; Grassmann et al., 2018; Peng et al.,

2019) from fundus and optical coherence tomography (OCT) images. Given that patients

with TED display external features characteristic of the disease, deep learning methods are

particularly well-positioned to detect this orbital condition.

In this study, we develop a deep-learning based classifier to detect TED from external

photographs and evaluate its effectiveness. This technology could be applied in the future

to identify patients that would benefit from early treatment and follow up.
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4.2 Methods

4.2.1 Data acquisition and labeling from clinical records

Photographic and clinical data were collected from patients evaluated by an experienced

orbital specialist at the Stein Eye Institute (SEI) UCLA, a tertiary care, university-based

orbital and ophthalmic plastic surgery practice. The associated Structured Query Language

(SQL) database (McCann Medical Matrix, St. Louis, MO) was queried in order to identify

two cohorts of patients: (1) patients with a confirmed clinical and radiologic diagnosis of

TED and (2) a control cohort of patients with no evidence of TED. The second group was

drawn from a cohort of patients presenting with epiphora or other lacrimal system problems,

and those with facial rhytides and/or other cosmetic concerns. Records from January 1998

to October 2018 were screened.

The medical record of each patient identified from the query was reviewed to confirm the

presence or absence of TED and assign ground truth labels. Patients with non-TED orbital

conditions were excluded from both groups. Patients were also excluded if their identity or

diagnosis could not be confirmed by review of the medical record.

Photographs from the date of each patient’s initial consultation were collected and

screened. Photos were excluded if they did not depict at least both eyes, eyelids, canthi

and brows, the forehead, both temples, the glabella and the nasal dorsum. Photos were

additionally excluded if poorly focused, if both eyes were not open, or any medical devices

were visible in the frame. For patients in the TED cohort, photographs captured after orbital

decompression or other TED-related oculofacial reconstructive surgery were excluded.

An additional test set was prepared from photographs and clinical data of TED patients
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evaluated in a distinct clinic, the Doheny Eye Institute (DEI) UCLA. An alternative image

repository (Axis Image Management, Sonomed Escalon, Lake Success, NY) and electronic

medical record (Epic Systems, Madison, WI) were used to collect and label this dataset. In

this set, images from both the first and second patient visits were included. Photos were

screened using the inclusion and exclusion criteria as above. Additional data regarding TED

grade and stage at the time of the initial visit was collected for these patients.

4.2.2 Image preprocessing

For each patient in the SEI dataset, a single front facing photograph with the patient’s gaze

in primary position was used. Where the patient demonstrated strabismus, photographs

were selected in which at least one eye was in primary position. For each patient in the DEI

dataset, a single front facing photograph was selected in a similar fashion for the first and

second visit.

Each image was preprocessed by cropping to a region centered around the eyes, from

above the eyebrows to below the lower eyelids, including part of the nasal dorsum and both

temples. Eye detection was based on automated detection of face landmarks using the 5-

landmark model from dlib (King, 2009) or a Haar cascade (Viola and Jones, 2001). The

images were then scaled to 280 x 460 pixels, padding the cropped image with black pixels to

achieve the desired aspect ratio if necessary. This preprocessing was intended to minimize

potential confounding factors and speed up training by excluding irrelevant areas of the

image.

55



4.2.3 Deep learning ensemble model training and evaluation

The model in this paper is an ensemble model, creating by performing a cross-validation

where five neural networks with the same parameters were trained on different subsets of

the SEI data, then using the predictions from the five component models to generate a

final prediction. The ensemble creation process, model training, and ensemble output are

illustrated in Figure 4.1.

The SEI dataset images were randomly split into 85% training and validation, and 15%

test images. The 85% training and validation set was then used to form datasets for the cross-

validation, where folds were created by further splitting this into 70% training and 15% as

validation data with a different non-overlapping validation set for each fold. A neural network

was trained separately on each fold by using the training dataset to update the weights of the

network, and the validation dataset to monitor the training progress of the model to prevent

overfitting (Caruana et al., 2000). The test dataset was held out and used to evaluate final

model performance. The DEI images were also held-out for training, in order to assess model

generalizability to data from a different clinic and to assess model performance on patients

classified by disease stage and grade. This is illustrated in Figure 4.1a.

Each deep learning model in the ensemble was a residual neural network (He et al., 2015)

with 18 layers (ResNet18), implemented in the python programming language using PyTorch.

The neural networks were pretrained on ImageNet, a dataset of 1.4 million general images for

the task of object recognition, then finetuned on the SEI training and validation datasets for

the task of classifying images as TED or non-TED. This pretraining and finetuning strategy

is commonly used for image classification tasks, and allows neural networks to be trained for
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specific tasks where limited labeled data is available. The objective function was weighted

cross-entropy loss with weights (1, 1.8) on the control and TED classes respectively, to reflect

the imbalanced class sizes used during training. The optimizer was an Adam optimizer

(Kingma and Ba, 2015) with an initial learning rate of 5× 10−4, paired with a scheduler to

reduce learning rate on plateau, with a reduction factor of 0.25 and patience of 5 epochs.

Each component network was trained with a batch size of 16 images. Training was halted if

there was no improvement to the validation loss after 15 epochs, and the model reverted to

its state with the best validation loss for testing.

Data augmentation was applied to the training data to ensure the models ignored

irrelevant features in the image, such as lighting or precisely how much of the face is present

in the image. This was done by selecting a random subset of transforms that include flipping

the image horizontally, rotating by up to 10 degrees, distorting to simulate small changes in

perspective, jittering brightness, jittering color, and taking a random 224 x 448 crop from

the 280 x 460 preprocessed image. For each epoch and for each training image, a different set

of these transforms was applied. Finally, the mean and standard deviation of each channel

in the image were normalized in accordance with the normalization settings used for the

initial training on Imagenet. When evaluating the model on the validation or test datasets,

each preprocessed image was center cropped to 224 x 448 pixels and normalized as above,

but other transforms were not applied. This is illustrated in Figure 4.1b.

Each component neural network outputs prediction probabilities for the non-TED and

TED classes, which correspond to that model’s confidence in the prediction for each sample.

To generate the final output for each test sample, the ensemble model then takes the output

with the highest prediction probability for TED out of the five model outputs as its output.
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To obtain a binary prediction of TED or non-TED for an image, the class probability for

the TED class is thresholded. Hence the ensemble model will classify an image as TED if

at least one of the component models classified the image as TED. This is illustrated in

Figure 4.1c. For the accuracy metrics, a threshold of 0.5 was used.

All experiments were performed on a PC equipped with a Nvidia Titan RTX graphics

card with 32GB GPU memory.
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(a)

(b)

(c)

Figure 4.1: Schematics illustrating the (a) cross-validation process used to create the ensemble of neural

nets, (b) training process for each neural net, and (c) ensemble prediction. The validation set (different

for each fold) is used to decide when to stop training. In the evaluation setting, the images are not

augmented before being passed to the model. Example photographs in schematic from Route246 (2010)

and Trobe (2011).
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4.3 Results

4.3.1 Model performance on SEI dataset

An ensemble of neural networks model was used to classify TED from external photos after

being trained on a dataset of 1,252 control images and 692 case images from SEI. It was

evaluated on a held-out test set of 344 images from SEI. The model achieved an overall

accuracy of 89.2% on the test dataset and recall (proportion of true cases which were

correctly predicted, equivalent to true positive rate or sensitivity) of 93.4% (Table 4.1).

Confusion matrices showing breakdown by class are shown in Figure 4.2. The receiver-

operating characteristic (ROC) curve and precision-recall curve are shown in Figure 4.3.

It is possible to use our model to achieve higher recall at the expense of lower precision

(proportion of predicted cases which are true cases) by lowering the threshold at which

a patient is classified as TED. For example, when the test precision is 50% (i.e. if the

classification threshold were set such that only half of predicted TED patients actually had

TED), the model achieves 99.2% recall on the test data, as shown in Figure 4.3b.

By design, the ensemble model achieves higher recall than any individual model in the

ensemble, since it will predict an image as TED if any model in the ensemble predicts

it as TED. The performance of the neural networks within the ensemble are also given in

Table 4.2. The performance was similar across models on the SEI data, with a mean accuracy

of 90.4±0.01% and recall of 86.1±0.08%, though the precision ranged from 81.1% to 88.5%.
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Table 4.1: TED classification model metrics. Model was trained on patient photos taken as part of

clinical care at Stein Eye Institute (SEI). Model was evaluated on a held-out test set from SEI after

training was complete. The model was also evaluated on two additional sets of images from a separate

clinical location at Doheny Eye Institute (DEI), taken at either a patient’s first or second visit to DEI.

The DEI dataset contained only TED patients.

Dataset ntotal nTED Accuracy Specificity Recall Precision F1 score

SEI test 344 122 0.892 0.869 0.934 0.797 0.860

DEI first visit 123 123 - - 0.919 - -

DEI second visit 99 99 - - 0.919 - -

Table 4.2: Performance of individual models within ensemble. Table

shows performance of the component models in the ensemble on the SEI

test set, trained on different folds from a cross-validation.

Fold Accuracy Specificity Recall Precision F1 Score

1 0.898 0.905 0.861 0.885 0.837

2 0.898 0.946 0.850 0.811 0.892

3 0.907 0.941 0.866 0.844 0.888

4 0.901 0.937 0.857 0.836 0.879

5 0.916 0.973 0.872 0.811 0.943

Mean 0.904 0.941 0.861 0.838 0.888

St. dev. 0.007 0.024 0.008 0.030 0.038
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(a) (b)

Figure 4.2: Confusion matrices for TED classification model on SEI test data. (a) Counts for each class

and predicted class. (b) Counts normalized by class size.

(a) (b)

Figure 4.3: ROC and precision-recall curve for TED classification model on SEI test data. (a) Receiver-

operating characteristic curve (ROC), plotting recall (true positive rate) against specificity (true negative

rate). (b) Precision-recall curve, plotting precision (proportion of predicted cases which are true cases)

against recall.
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4.3.2 Model performance on DEI dataset, stratified by TED stage

and severity

To assess whether the model would generalize to images from sites not used in the training

dataset, the model was also evaluated on photos of TED patients from DEI taken at the

patient’s first or second visit. The DEI dataset included patient information regarding disease

stage for the first visit, noted by the attending orbital surgeon at time of photograph capture.

Non-TED images were not collected for this dataset, so only recall is reported.

The model achieves recall rates of 91.9% on patient photos from the first and second DEI

visit respectively, compared to 93.4% on the SEI dataset (Table 4.1). Stratifying the first

visit data by stage and grade reveals that model recall increases with disease severity. The

model achieves a recall of 86.8% on cases labeled as mild (n = 68), compared to 98.2% on

cases graded from mild-moderate to severe (n = 55) (Table 4.3). The model recall is also

higher for cases in the active or late active inflammatory stage, with recall of 98.3% (n = 60)

compared to cases in the stable stage, with a recall of 85.7% (n = 63). These differences

become more stark when looking at the performance of the individual models within the

ensemble, which have a mean recall of 69.7±6.3% for mild cases versus 92.0±3.0% for mild-

moderate and above; and 86.7 ± 4.9% for active and late-active versus 73.0 ± 4.0% in the

stable stage. The variance in recall across component models on the DEI dataset is higher

than the SEI dataset (standard deviation of 4.2% on 123 cases vs 0.8% on 122 cases) and

particularly high for the mild and mild-moderate cases. Yet despite decreased consistency

in individual model performance on the DEI dataset, the ensemble model achieved similar

recall on the SEI and DEI datasets. This highlights the robustness of this ensemble approach
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Table 4.3: Ensemble model performance stratified by TED inflammatory stage and grade. After

being trained on images from SEI, the model was evaluated on images of TED patients at DEI

from their first visit, where the stage and grade of the disease were noted by attending physician.

The mean and standard deviation of recall for the component models in the ensemble are also

given.

Category npredicted nTED Recall Recall per CV fold

By grade

Mild 59 68 0.868 0.697 ± 0.063

Mild-moderate 11 11 1.000 0.927 ± 0.076

Moderate 32 33 0.970 0.891 ± 0.035

Moderate-severe 6 6 1.000 1.000 ± 0.000

Severe 2 2 1.000 1.000 ± 0.000

Severe (optic neuropathy) 3 3 1.000 1.000 ± 0.000

By stage

Active 43 44 0.977 0.827 ± 0.061

Late active 16 16 1.000 0.975 ± 0.034

Stable 54 63 0.857 0.730 ± 0.040

Total 113 123 0.919 0.797 ± 0.042

compared to any single model within the ensemble.
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4.4 Discussion

The deep learning-based ensemble model presented in this investigation achieved an accuracy

of 89.2% and recall of 93.4% in the binary classification of TED and non-TED external

images when evaluated on a 344 patient heldout test set. A total of 1,252 control and 692

case images taken from retrospective data from a clinical practice were used to train the

ensemble of neural networks used by the model. We also evaluated the model on a set of 123

TED patient images taken from a clinic site not seen during trained, and achieved a recall

rate of 91.9%, with active stage and severe grade associated with higher recall.

Deep learning has been used previously to screen for TED using computed tomography

(CT) images (Wu and Zou, 2018). Such models hold potential to enhance diagnostic accuracy

for patients suspected of having TED. However radiologic imaging has limitations as a

screening tool, mostly related to cost, availability and the obligate exposure to ionizing

radiation. With digital photography, the necessary equipment is readily available in first

contact clinician offices, and the cost of image capture and storage is negligible.

There are limitations of the deep learning TED classifier developed in this study, many

of them due to constraints on the available data. The current framework classifies patients

based on a single front facing, primary position photograph. Photographs captured at

different angles could provide additional information for model training. Additionally,

clinical features in conjunction with image data have been demonstrated to increase deep

learning classifier performance relative to image data alone in other disease contexts

(Haenssle et al., 2018). For TED, motility tests, clinical features, laboratory tests, and

patient descriptions of non-external symptoms such as pain are all informative of disease
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status. Future studies could incorporate this additional information as features in the model.

A prospective approach to data collection would address this by collecting images at multiple

angles and motility test results for all patients visiting a clinic, regardless of case-control

status or disease severity, as well as standardizing the format in which motility results and

symptoms are reported in the patient record for ease of extraction.

Great care is needed when training and evaluating deep learning models for high-stakes

domains such as medical image diagnostics. The presence of confounding features for

classification alongside relevant disease features can bias deep learning models. For example,

in one study, models trained to detect pneumonia from chest radiographs learned to use

ancillary marks on the film itself, rather than the disease’s radiographic features, to make

its decision (Zech et al., 2018). Even when the marks were excluded from training, these

models tended to perform worse on radiographs collected from other hospitals, versus on

radiographs from the same hospital used for training, suggesting less obvious confounders or

imperceptible image quality differences between hospitals (Zech et al., 2018). We evaluated

recall on images from a clinical site not seen during training (DEI) to assess generalizability.

In this analysis, slightly lower recall was noted (93.4% vs 91.1%), with a larger performance

gap when considering individual models within the ensemble. This gap could have been

due in part to differences in patient composition or severity between the two sites, since the

model achieved comparable or higher recall on more severe cases from the second site, and

on patients showing active disease, particularly late-active stage disease.

One limitation of the model when applied to the DEI dataset, is that it did not perform

as well on patients with mild disease. As interest in computational medicine grows in the

orbital and oculoplastic surgery communities, future work could involve collaborations and
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data pooling from multiple institutions and departments. This would improve our ability to

train and evaluate models on large and diverse sets of data. Combined with the addition of

clinical features and other patient data as features, we anticipate future iterations of TED

classifiers can improve for all stages of disease.

In its present iteration, the model is not able to detect diseases other than TED, as this

model was trained on a background of control patients without orbital disease. In future

iterations of this deep learning based classifier, adding photographs of patients with other

systemic, orbital, eyelid and ophthalmic conditions would facilitate development of methods

to assess for many orbit and eye conditions simultaneously.

A key advantage of using deep learning as a screening or diagnostic tool is that it does

not rely on expensive, invasive testing such as radiological or laboratory evaluation. This,

in turn, is a key prerequisite in reducing barriers to accessing healthcare and shortening the

time to specialist evaluation, accurate diagnosis and targeted therapy.
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Chapter 5

Conclusion

My thesis work comprises three projects on computational methods for biology and medicine,

specifically on modeling GWAS data from multiple traits, and on image recognition for

disease. In Chapter 2, I present work on combining heterogeneous studies to increase power

to detect relevant genetic variants from association studies, and in Chapter 3, comparing

models for genetic effect sizes across studies in terms of their predictive power. In Chapter 4,

I present a deep learning-based classifier for identifying patients with thyroid eye disease

without the need for invasive testing or specialized imaging equipment, which could allow

primary care physicians or even the patients themselves to recognize the disease more quickly

and seek treatment.

As said by an emperor Marcus Aurelius around 100 or 200 AD, “time is like violent

stream; as soon as a thing has been seen, it is carried away and another comes in its place,

and this too will be carried away.” The field of biology has been through many changes since

then. Over the last twenty years since their inception, GWAS have not always lived up to

their early hype. However, leaps and bounds were made in terms of improving basic GWAS
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with strategies such as pooling multiple studies (one of the focuses of this thesis), larger

sample sizes, and better correcting for confounders. Many new sequencing and data collection

technologies have also been developed, including ATAC-seq, bisulfite sequencing, CRISPR-

based screens, and single-cell versions of such technologies. Our resources for understanding

human biology continue to grow rapidly beyond genotype data alone.

In the future, we may also see a variety of pretrained image recognition models specific to

medicine, and the availability of public datasets to supplement training of machine learning

models for medicine continues to grow. Some of public datasets already available include

ophthalmologic fundus and iris images (Khan et al., 2021) and dermatological images, e.g.

(Tschandl et al., 2018; Rotemberg et al., 2021). In parallel, a wide range of deep learning

models have been developed for image recognition which can be applied to medical imaging

and other clinical data. Deep learning models developed for non-biological tasks can be

translated to use on biological data, with NLP models being of particular relevance to parse

biological sequence data or medical records. The creation of new technology and increasing

data availability will constantly provide new challenges in biology to address using statistical

and computational methods.
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