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Disease can play an important role in structuring species communities

because the effects of disease vary among hosts; some species are driven

towards extinction, while others suffer relatively little impact. Why disease

impacts vary among host species remains poorly understood for most

multi-host pathogens, and factors allowing less-susceptible species to persist

could be useful in conserving highly affected species. White-nose syndrome

(WNS), an emerging fungal disease of bats, has decimated some species

while sympatric and closely related species have experienced little effect.

We analysed data on infection prevalence, fungal loads and environmental

factors to determine how variation in infection among sympatric host species

influenced the severity of WNS population impacts. Intense transmission

resulted in almost uniformly high prevalence in all species. By contrast,

fungal loads varied over 3 orders of magnitude among species, and

explained 98% of the variation among species in disease impacts. Fungal

loads increased with hibernating roosting temperatures, with bats roosting

at warmer temperatures having higher fungal loads and suffering greater

WNS impacts. We also found evidence of a threshold fungal load,

above which the probability of mortality may increase sharply, and this

threshold was similar for multiple species. This study demonstrates how

differences in behavioural traits among species—in this case microclimate

preferences—that may have been previously adaptive can be deleterious

after the introduction of a new pathogen. Management to reduce pathogen

loads rather than exposure may be an effective way of reducing disease

impact and preventing species extinctions.

This article is part of the themed issue ‘Tackling emerging fungal threats

to animal health, food security and ecosystem resilience’.
1. Introduction
Emerging infectious diseases are an important threat to wildlife populations [1].

Increases in human trade and travel over the last 50 years have driven increases

in emerging pathogens, and the introduction of generalist pathogens threaten

both human and wildlife populations [2]. Generalist pathogens are capable of

infecting multiple host species, which has led to devastation of communities

[3,4], species extinctions [5,6] and cascading effects on ecosystems [7,8].

Changes in communities and ecosystems are influenced by variability in popu-

lation impacts of multi-host pathogens, and some species may even decline to

extinction, whereas others suffer little mortality [4,9–12]. Understanding the

mechanisms that drive variation in species impacts can help to reduce mor-

tality, prevent species extinctions and thus minimize ecosystem effects [13,14].

The impact of a disease on a population is the product of the fraction of the

population infected multiplied by the fraction of infected individuals that die or
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fail to reproduce from disease [9,15]. Disease management

can target either or both of these components [16]. For

humans, public health approaches frequently focus on

preventative measures that reduce transmission through

behavioural modification or vaccines, whereas medical

interventions usually reduce disease severity in infected

individuals through drug treatment. Strategies that reduce

transmission are preferred if they are more cost-effective

than reducing symptoms after exposure. However, in some

cases, reducing disease severity by reducing pathogen load

can also substantially reduce transmission, particularly for

chronic diseases. For example, the discovery that treatment

with antiviral drugs greatly reduces infectiousness of HIV

patients has revolutionized control of this disease [17].

Long-term control of diseases in wildlife by reducing

transmission or disease severity carry additional logistical

difficulties in delivering drugs to large enough numbers of

free-ranging animals, and challenges in modifying hosts be-

haviour to reduce transmission. In addition, the relatively

short lifespan of many species makes it necessary to have

high-frequency repeated interventions that are too costly for

all but a few species with a small number of individuals

(e.g. vaccination of black-footed ferrets for canine distemper,

vaccination of all California condors for West Nile virus [18]).

Further, for multi-host pathogens, variation in disease sever-

ity is frequently attributed to innate host-specific factors

(e.g. immune function), which are not yet easily manipulated

for disease management purposes.

However, environmental conditions form the third part of

the ‘disease triangle’, and wildlife disease control may be

possible through manipulations that target key aspects of

host–pathogen interactions. For example, altering environ-

mental conditions can reduce growth and survival of the

pathogen outside the host, and may also increase host

defenses [19]. However, identifying environmental factors

that can be efficiently targeted requires understanding inter-

actions between hosts, the pathogen and the environment

[14]. A detailed understanding of environmental influences

on disease may open up a suite of management options

that do not require the perpetual actions and funding

associated with treatments and vaccination.

Several multi-host fungal pathogens are particularly

emblematic of the interplay between host, pathogen and the

environment [20–22]. Many fungal pathogens survive out-

side the host for long periods, or they infect hosts with

variable body temperatures and are, therefore, strongly

affected by environmental conditions [19,20]. For example,

for chytridomycosis, a fungal disease of amphibians, the

highest mortality occurs in cool, high-elevation areas [23].

While few fungal pathogens threaten endothermic immuno-

competent species, ectothermic or heterothermic species

(such as hibernating mammals, that substantially change

core temperatures with seasons) may be more vulnerable to

fungal disease. Management of fungal disease has recently

been highlighted as a substantial challenge for human,

agricultural and wildlife health [20].

White-nose syndrome (WNS), caused by the fungal

pathogen Pseudogymnoascus destructans [24,25], is a recently

emerged fungal disease that has caused widespread mor-

tality in many communities of hibernating bats and is

predicted to drive several species extinct [12,26]. WNS was

first detected in Schoharie County, New York in 2006, and

has since spread across eastern North America (figure 1).
The first detection of P. destructans in North America

occurred in a commercial tourist cave, and may have been

facilitated by human movement [27–29]. Pseudogymnoascus
destructans is endemic to Eurasia [30–32], where disease

severity and population impacts appear to be much lower

[33], and several species of Chinese bats have much lower

loads than North American species [34]. By the end of the

winter of 2015–2016, four bat species distributions within

the USA were almost entirely encompassed by the spread

of WNS (figure 1). In addition, in March 2016, WNS was

detected in Washington state, approximately 1700 km from

the nearest known infected site. This spreading event

substantially expanded the distribution of the disease

(figure 1), and doubled the number of bat species at risk.

Mortality from WNS differs substantially among species,

despite them co-occurring at the same sites. Some species

declined more than 90% in the first year following WNS

detection, whereas population growth rates in other species

only decreased 8% [12,35]. Why species suffer such disparate

impacts from WNS is a key question that may unlock clues

about how to better manage this widespread disease.

Here, we examine how differences in exposure (defined as

detection of P. destructans on bat skin), fungal loads (the

abundance of P. destructans on bat skin) and environmental

factors determine disease impacts in the six species of bats

most impacted by WNS. Previous work has shown that in

areas where the disease has been present for multiple years,

bats first become infected when they return to hibernacula

in the autumn, and both transmission and fungal growth

on bats occurs primarily during winter once bats lower

their body temperature and begin to hibernate [36]. The rela-

tively high infection prevalence (greater than 50%) observed

in many populations of all six species [36] suggests that vari-

ation among species in mortality after infection may be

especially important in determining population impacts.

Although the exact mechanism by which infection with

P. destructans leads to death is unknown, tissue damage from

fungal invasion is thought to set off a cascade of physiological

disruptions [37,38], which eventually lead to death approxi-

mately 70–120 days after infection [24]. Increases in the

extent of tissue invasion with fungal loads are likely to

increase pathology and lead to an accelerating probability of

death, as has been observed for another fungal pathogen

that infects the skin, chytridiomycosis [22]. Pseudogymnoascus
destructans growth increases with temperature across the

range of hibernation temperatures commonly used by bats

(approx. 1–128 C) [39–41]. Thus, we hypothesize that species

that roost at warmer temperatures will have higher fungal

loads and suffer higher mortality and impact from WNS. To

test these predictions and hypotheses, we compared patterns

of infection prevalence and intensity with differences in

species impacts, and then examined links between micro-

climate temperatures used by bats and fungal loads. Finally,

we examined patterns of changes in fungal loads over time

to determine whether bats reach a threshold level of fungal

infection above which mortality may increase sharply.
2. Material and methods
(a) Field sampling and analysis
We sampled bats at 21 hibernacula in New York, Vermont,

Massachusetts, Virginia and Illinois. For five species, we sampled
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Figure 1. The distribution of white-nose syndrome (hatched) as of March 2016, and distribution maps for six hibernating bat species (colours) in the USA and
Canada. Inset: Counts of hibernating bats at sites from 1979 to 2011, with per cent declines in the first year of WNS detection indicated in the upper left of
the graph.
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bats twice per hibernation season (November/December and

March/early April) in sites where P. destructans had been

detected at least 1 year previously. For Northern long-eared

myotis (Myotis septentrionalis), we included late hibernation

load data for two sites in the first year of WNS detection because

exclusion of the invasion year data would result in small sample

sizes for this species due to near extirpation in the first year of

WNS. We previously used these infection data to examine seaso-

nal changes in prevalence and fungal loads within species [36]

(data available from [42]). Here, we examine links between infec-

tion patterns and differences in mortality among species [12].

One to six bat species were present in each hibernaculum,

including the little brown myotis (Myotis lucifugus), Northern

long-eared myotis, Eastern small-footed myotis (Myotis leibii),
Indiana myotis (Myotis sodalis), tri-colored bat (Perimyotis subfla-
vus) and the big brown bat (Eptesicus fuscus) (electronic

supplementary material, table S1). At 67% of sites, three of six

species co-occurred together, and individuals of different species

frequently roosted within 1 m of each other.
We used epidermal swab sampling to determine prevalence

and fungal loads of P. destructans [36]. Swabs were stored in RNA-

laterw for preservation until extraction. We tested samples for P.
destructans DNA using real-time polymerase chain reaction

(PCR) [43] and quantified fungal loads based on the cycle

threshold (Ct) value to estimate a fungal load on each bat, with a

cut-off of 40 cycles. Quantification of serial dilutions of the DNA

from 10 ng to 1000 fg resulted in Ct scores ranging from 17.33 to

30.74 and a quantification relationship of Ct ¼ 23.348 � log10

(P. destructans (ng)) þ 22.049, r2 ¼ 0.986. We use the term

‘infection’ to refer to the presence and quantity of P. destructans
DNA on bat skin, detected using quantitative PCR on epidermal

swab samples [20–22,44]. Previous work suggests there is a

strong correlation between the abundance of P. destructans on bat

skin from a swab and tissue invasion as detected by histology [45].

We recorded roost temperature of approximately half

of sampled bats (812) using an infrared laser thermometer

(Fluke 62 MAX þ infrared thermometer) at time of sampling.

Measurements were taken of the rock surface directly adjacent
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to the roosting bat, while standing within 2 m of the surface. We

calibrated on-site roost temperatures with approximately 100

measurements from individual Onset HOBO loggers (model:

u23-001; up to 4 per site, twice per year) that recorded a temper-

ature measurement from a single location. Temperature

measurements using the infrared laser thermometer were

unbiased across a range of temperatures from 18C to 158C and

within 0.758C of the HOBO logger temperature.
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(b) Statistical analyses
To estimate prevalence and fungal loads for each species, we

used generalized linear mixed models (glmm) with site as a

random effect and species interacting with date of sampling as

fixed effects (function glmer in package lme4 [46] in R v. 3.02

[47]). We calculated a predicted prevalence and log10 load for

each species on 1 December and 1 March from the glmm

model described above to standardize early and late hibernation

time points because prevalence and loads increase over winter

and bats were sampled at different times [36].

We quantified WNS impact using the change in median

population growth rate, Dl, pre-WNS and after the first year of

WNS detection, based on previous analyses of 121 colonies of

six species of hibernating bats common in the northeastern

USA collected over a 30-year period [12]. This dataset provides

a large set of sites where count data have been rigorously col-

lected pre- and post-WNS arrival for all six species, enabling

us to estimate the change in population growth rate due to dis-

ease. These declines are consistent with estimates from other

datasets [26,48] including estimates of declines based on

summer activity [49,50]. To make comparisons among datasets,

we estimated species prevalence and loads, and accounted for

site differences by including site as a random effect. We exam-

ined the effect of P. destructans prevalence and loads on

WNS impacts using phylogenetic regression [51] in MATLAB

(v. R2013). Species that are closely related often suffer very dis-

similar impacts (i.e. little brown and Eastern small-footed bats)

[26]. Nonetheless, we accounted for phylogeny in our analyses

because the absence of a phylogenetic signal for trees with less

than 20 species can be difficult to assess [51]. The approach

performs generalized least-squares regression using a variance–

covariance matrix expected under an Ornstein–Uhlenbeck

model of evolution based on the phylogenetic relationships

among species [51]. We used a pruned phylogenetic tree of the

six species based on the cytochome b mitochondrial gene [26]

(electronic supplementary material, table S2).

We estimated the average roosting temperature for each of

the six species using a model of site as a random effect interact-

ing with species (the best fitting model), and averaging the

mean predicted temperatures from the regression across all

sites. To examine correlations between fungal loads and roosting

temperature, we calculated average loads for each species using

only data for the individuals for which roosting temperature

data were also collected. We then used phylogenetic regression

as described above to examine the effect of species roosting

temperature on predicted log10 transformed P. destructans loads.

It is worth noting that in both analyses—correlations of WNS

impacts and infection prevalence and fungal loads, and roosting

temperature and fungal loads—measurement error due to instru-

ments or techniques and the variation among individuals in

estimating species’ means decreases the power to detect significant

relationships, but generally does not lead to an increased prob-

ability of a type I statistical error (failing to reject the null

hypothesis). As a result, the relationships described below are

likely to be even stronger than those reported here. In addition,

we performed additional statistical analyses to address this vari-

ation, included weighted regression (using the inverse of the
standard error of the estimates) and major axis regression to account

for the uncertainty in the estimates of the predictor variables.

Finally, we examined how increases in loads differed among

sites and species over winter to determine if fungal loads

might reach an asymptote. We estimated the increase in load

over winter in individual colonies of each species by fitting a

linear model of site interacting with species to the change in

P. destructans loads. We then compared the change in loads over

time for each colony with the early winter loads for that colony.

We also examined changes in skewness of load distributions

between early and late winter loads for each species.
3. Results
We sampled 1314 bats of six species in 21 hibernation sites

across New York, Virginia, Massachusetts, Vermont and Illi-

nois (electronic supplementary material, table S1). In early

winter, infection prevalence varied from 20% to 90% among

species and this was significantly correlated with impacts,

measured as the difference in population growth rate before

and in the first year after detection of WNS (figure 2a) [12].

Fungal loads on bats at the beginning of hibernation varied

by almost 2 orders of magnitude among species and were

even more strongly correlated with impacts (figure 2b). By

late hibernation, however, prevalence of P. destructans had

increased to more than 80% for five of six species and was

no longer significantly correlated with WNS impacts

(figure 2c). By contrast, late hibernation loads of P. destructans
now varied over 3 orders of magnitude among species and

were very strongly correlated with WNS impacts

(figure 2d ), and neither early nor late prevalence were

significant in a model with late hibernation fungal loads

(both p . 0.45).

Species’ fungal loads at the end of hibernation increased

significantly with average roosting temperatures (figure 3)

and early hibernation prevalence, and there was a marginally

significant relationship between hibernation roosting temp-

erature and species impacts (0.07+0.04x þ 0.24, p ¼ 0.051).

Models incorporating both early hibernation prevalence and

temperature had slightly higher support than models with

either predictor alone (DAICC ¼ 0.41). The species with the

highest fungal loads, the Northern long-eared bat, roosted

at temperatures on average, 68C warmer than the Eastern

small-footed bat (M. leibii), which had loads that were

100-fold lower (figure 3). The relationship between roosting

temperature and fungal load was even stronger using weighted

regression using the inverse of roosting temperature standard

error estimates as weights (0.26+0.09x 2 4.14, p ¼ 0.02), and

the results were essentially identical using major axis

regression (0.26+0.1x 2 4.22; p ¼ 0.045).

Average fungal loads within colonies of bats increased

during winter, but two lines of evidence suggest that loads

on individual bats asymptote, or bats die as they approached

loads of approximately 10–1 ng. First, the distributions of

logged loads shifted from being mostly unskewed (skewness

closer to 0) or positive for most species in early hibernation

to being more negatively skewed during late hibernation,

especially for the three highly impacted species (figure 4; see

electronic supplementary material for simulations of how

differences in fungal growth on individuals influence fungal

load skewness). Loads on Northern long-eared bats at the

beginning of winter were already high (approaching the

highest recorded fungal loads), and were almost significantly
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negatively skewed (bootstrapped confidence intervals, p¼ 0.11).

Late winter loads on this species were even more negatively

skewed, and few individuals had loads below 1024 ng.

Second, the increase in fungal loads for 19 colonies of five

species was negatively correlated with mean fungal loads in

early hibernation (figure 5). Average loads in colonies that

were already high in early hibernation showed little increase

over winter, whereas colonies with low average loads

increased 1 log or 10-fold each month during hibernation.

The best fitting model suggested that the saturation in fungal

growth with increasing early hibernation loads was essentially

identical for little brown and tri-colored bats (electronic sup-

plementary material, table S3), but increases in fungal loads

were lower for Indiana bats.

4. Discussion
The emergence of WNS in North America has altered bat

communities on a continental scale, by decimating some

species while others have been far less affected [12,26]. Our

results suggest that differences in impacts reflect variation

in fungal growth resulting in differential pathogen load

among species. Differences in timing of infection may

initially result in significant differences in exposure and,

therefore, infection prevalence at the beginning of hiber-

nation. However, infection prevalence eventually saturates

near 100% in most species, which eliminates variation in

transmission as a driver of differential population impacts.

Instead, different hibernation microclimate preferences
among species appear to result in differential fungal growth

on bats over the winter, resulting in wide variation in

fungal loads that was tightly correlated with differential

population impacts of WNS among bat species.

The relationships between WNS impacts, fungal loads

and roosting temperatures offer some insight into the poten-

tial mechanisms linking environmental variation and disease

impacts. Warmer roosting temperatures, up to 138C, increase

fungal growth rates, with a 28C–78C increase in temperature

increasing fungal colony size almost fivefold [39]. This pro-

vides a potential explanation for the higher fungal loads on

bat species roosting at warmer temperatures and, in turn,

the higher WNS impacts on these species. Although we

cannot infer causation from these relationships, the data

are inconsistent with temperature-dependent variation in

immune function, which would be predicted to increase

with temperature [19]. This would lead to lower fungal

loads and impacts at warmer temperatures [52–54]. The

causal effect of temperature in increasing WNS impacts

among species is also supported by experimental infections

of a single species, M. lucifugus, at two different temperatures

[55]. Furthermore, the wide variation in species impacts

within the same genera lends further support that behaviour-

al traits (such as roosting temperature) that exhibit greater

individual plasticity [51] may be more important than non-

labile traits that are likely to be shared between closely related

species. Finally, the energetic expenditure of bats is thought

to play an integral role in WNS mortality, because bats suffer-

ing from WNS arouse far more frequently than uninfected
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bats [24,56]. This behaviour can prematurely deplete stored

fat, and bats dying of WNS are frequently emaciated [25].

However, energetic models indicate that bats roosting at

warmer temperatures (across the range of hibernation temp-

eratures) probably expend less energy during winter

because most of the energy expenditure used by bats

during hibernation is used during euthermic arousals

(70–90%), and thermoregulation during these arousal

periods is less energetically costly at warmer temperatures

than at colder temperatures [57]. Nonetheless, relationships

between body temperature and torpor patterns are complex

and further research is needed to address how changes in roost

temperature affect torpor patterns of WNS-affected bats [56].

The increase in WNS impact with roosting tempera-

ture suggests that although preferences for higher roosting

temperatures may have been beneficial for some species

prior to the arrival of WNS, this became maladaptive after

P. destructans was introduced. It is worth noting that there

was considerable variation in roosting temperature within

each species (figure 3) and intense mortality from WNS

may be selecting for individuals that roost in cooler locations.

If preference for roosting temperature is a heritable trait,

WNS mortality could drive the evolution of a change in

behaviour, as well as select for genes associated with surviv-

ing colder winter roosting temperatures. This is one possible

explanation for the stabilization of little brown bat popu-

lations at some sites in the northeastern United States [12].

Future studies are needed to examine whether temperature

and absolute humidity preferences of roosting bats decrease

as WNS mortality occurs.

Our results suggest that there is a maximum fungal load

above which loads do not increase further, and this maximum

value is similar for the two species (little brown and tri-colored

bats) that we had sufficient data to compare. One explanation

for this pattern is that as loads on individual bats increase,

disease-associated pathology and mortality increase sharply

as loads approach 1021 ng. A similar phenomenon has been

suggested for Batrachochytrium dendrobatidis, a fungal pathogen

of amphibians [22]. However, it is also possible that the smaller

increase in fungal loads in colonies of bats that begin winter at
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higher loads is simply due to density-dependent fungal growth

on the surface of bats’ skin. Quantifying fungal loads over time

in an experimental infection study or on marked bats in the

field could determine which mechanism is resulting in the

threshold we observed in fungal loads.

Understanding the drivers of variation in WNS impacts

could be used to more effectively guide management inter-

ventions. Our results suggest that a reduction in pathogen

loads could reduce disease impacts. Previous work has

shown that cooler and drier [12] hibernacula appear to

serve as refugia from disease impacts for some populations

within two species, possibly because they promote lower

fungal loads and thereby increase chances of survival.

Although we focused on temperature here, humidity may

also contribute to differences in declines among species. If

so, manipulating hibernacula entrances to create cooler and

drier sites or restricting access to reduce bats’ use of the

warmer and wetter portions of hibernacula has potential as

a single-intervention, long-term solution for management of

WNS. By contrast, chemical or biological treatments that

reduce loads could be effective in the short term, but if not

self-perpetuating, would require continual reapplication

making long-term management on a broad-scale challenging

[18]. In the past, state managers in New York, Pennsylvania

and Wisconsin have manipulated mine entrances to stabilize

and alter temperatures (G. Turner 2016, unpublished data;

A. Hicks 2007, unpublished data; J. Redell 2015, unpublished

data). While there are risks associated with these interventions

(i.e. temperatures must be within the physiological limits of

bats and unsuitable habit could deter bats), data suggest that

a very high percentage of bats roosting at sites with warmer

temperatures will perish from WNS [12,26,35,48] and small-

scale manipulations could be attempted to test for larger

scale feasibility of this as a management tool. While environ-

mental manipulation may not be feasible for all sites it may

prove useful for a subset of key sites. Some hibernacula contain

large populations (tens of thousands of bats) of multiple

species, such that making just a few sites cooler and drier

could save diverse populations and help maintain genetic

diversity. While WNS has extirpated multiple species from

many sites, it has yet to drive any species completely to
extinction, and thus management actions could still conserve

the multiple species threatened by WNS.

Differences in disease impacts among species are often

assumed to result from inherent differences in disease

susceptibility (e.g. cellular pathways or receptors for patho-

gen binding and replication) [58,59], inherent differences in

severity given infection [60–62] or pathogen exposure

[12,63–65]. As a result, reductions in transmission often

form the basis for the management of wildlife disease

[16,18]. Our finding that species impacts were strongly corre-

lated with environmentally driven variation in pathogen

growth suggests that efforts to reduce disease impacts by

altering environmental factors deserve additional consider-

ation. Disease management via reduction of pathogen loads

is a cornerstone of human medical treatments [66], and

could be more widely used to manage wildlife diseases like

WNS. Our results suggest that environmental manipulation

to reduce pathogen growth is an underappreciated tool that

could help to prevent disease-caused extinctions in wildlife.
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