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Abstract

Genetic influences on alcohol and drug dependence partially overlap, however specific loci 

underlying this overlap remain unclear. We conducted a genome-wide association study (GWAS) 

of a phenotype representing alcohol or illicit drug dependence (ANYDEP) among 7,291 

European-Americans (EA; 2,927 cases) and 3,132 African-Americans (AA: 1,315 cases) 

participating in the family-based Collaborative Study on the Genetics of Alcoholism. ANYDEP 
was heritable (h2 in EA=0.60, AA=0.37). The AA GWAS identified 3 regions with genome-wide 

significant (GWS; p<5E-08) single nucleotide polymorphisms (SNPs) on chromosomes 3 

(rs34066662, rs58801820) and 13 (rs75168521, rs78886294), and an insertion-deletion on 

chromosome 5 (chr5:141988181). No polymorphisms reached GWS in the EA. One GWS region 

(chromosome 1: rs1890881) emerged from a trans-ancestral meta-analysis (EA+AA) of 

ANYDEP, and was attributable to alcohol dependence in both samples. Four genes (AA: CRKL, 
DZIP3, SBK3; EA: P2RX6) and 4 sets of genes were significantly enriched within biological 

pathways for hemostasis and signal transduction. GWS signals did not replicate in two 

independent samples but there was weak evidence for association between rs1890881 and alcohol 

intake in the UK Biobank. Among 118 AA and 481 EA individuals from the Duke Neurogenetics 

Study, rs75168521 and rs1890881 genotypes were associated with variability in reward-related 

ventral striatum activation. This study identified novel loci for substance dependence and provides 

preliminary evidence that these variants are also associated with individual differences in neural 

reward reactivity. Gene discovery efforts in non-European samples with distinct patterns of 

substance use may lead to the identification of novel ancestry-specific genetic markers of risk.

Keywords

African American; alcohol dependence; drug dependence; European American; genetics; GWAS; 
heritability; neural reward; ventral striatum; fMRI

INTRODUCTION

Reducing the widespread prevalence1–3 and devastating worldwide impact4,5 of alcohol and 

illicit drug dependence is hindered by limited etiologic insight that impedes prevention and 
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treatment advances. In the United States (US), 12.5% of the population meets criteria for a 

lifetime history of alcohol dependence3 while 2.6% meet criteria for DSM-IV drug 

dependence during their lifetime2. Notably, individuals are often comorbid for multiple 

substance use disorders2, and common latent genetic factors6,7 explain a large proportion of 

the moderate to high heritability of dependence on individual substances (h2=50–70%8–10). 

The common genetic architecture of dependence liability is also underscored by evidence 

from genome-wide association studies (GWAS) documenting genetic correlations between 

alcohol-related measures and cannabis and cigarette use11,12. Leveraging the common 

genetic architecture underlying general substance dependence liability to identify markers of 

dependence risk through GWAS would complement existing efforts targeting individual 

substances (e.g., 12–16) to elucidate underlying etiologic risk factors for general and specific 

substance dependence liability.

It is estimated that an overwhelming proportion of participants in existing GWAS are of 

European ancestry.17,18 Data generated from GWAS of individuals of European ancestry are 

less applicable to other ancestral groups and when applied to non-European cohorts may 

result in inaccurate estimations of risk that may further perpetuate racial health and 

healthcare disparities. Studies suggest that even when discovery samples of non-European 

individuals are small, including them in individual discovery analyses and trans-ancestral 

analyses can result in novel insights into the genetic architecture of the disorder and in 

polygenic prediction12,19,20. Differences in prevalence and patterns of substance dependence 

across ancestrally diverse groups in the United States21 underscore the importance of 

conducting GWAS on these phenotypes in these groups. In particular, the study of African-

Americans, one the largest minorities represented in GWAS data in the US, provides an 

opportunity to address this notable disparity in genomic research.

Here, we conduct a GWAS of a phenotype representing alcohol or illicit drug (i.e., cannabis, 

cocaine, sedatives, stimulants and/or opioids) dependence (ANYDEP) among 7,291 

European-Americans (EA; 2,927 cases) and 3,132 African-Americans (AA: 1,315 cases) 

participating in the family-based Collaborative Study on the Genetics of Alcoholism 

(COGA). COGA participants were recruited from extended families, most of which were 

ascertained for alcohol dependence. The ANYDEP phenotype is particularly well suited for 

this ascertained sample as drug dependence more commonly co-occurs with alcohol 

dependence than with dependence on any other substance22,23. We conducted ancestry-

specific analyses in EAs and AAs followed by a trans-ancestral meta-analysis (EA+AA) to 

identify loci associated with ANYDEP, i.e., dependence on any one or a combination of 

alcohol, cannabis, cocaine, sedatives, stimulants and/or opioids. For genome-wide 

significant (GWS) associations, we performed secondary analyses evaluating associations 

with individual alcohol and drug dependence diagnoses, and to examine whether the 

exclusion of those cases who met criteria only for alcohol dependence altered the 

association. Replication was attempted in two small independent samples that contained EA 

and AA individuals and substance dependence phenotypes, the Study of Addiction: Genes 

and Environment (EA: 630 cases, 1,020 controls: AA 387 cases, 415 controls)24 and the 

Yale-Penn AA study (AA: 1,525 cases, 485 controls)25. Further, any GWS associations with 

ANYDEP in the EA sample were tested for association with alcohol intake among 452,264 

individuals from the UK Biobank26 and cannabis use from a meta-analysis conducted on 
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184,765 individuals27. Finally, given the proposed role of reward-related neural response in 

the etiology of addiction28,29, we examined whether GWS loci were correlated with reward-

related ventral striatum reactivity as measured with blood-oxygen-level dependent (BOLD) 

functional magnetic resonance imaging (fMRI) in the independent Duke Neurogenetics 

Study (EA n=481, AA n=118)30,31.

MATERIALS AND METHODS

Sample:

COGA is a large family-based study that recruited alcohol dependent probands from 

treatment facilities across seven sites in the United States32,33. Probands and their extended 

families were invited to participate. Additional individuals and their families were recruited 

from the same communities using a variety of resources (e.g., dental clinics). Institutional 

review boards at all sites approved the study, and all participants provided informed consent. 

All participants were administered a version of the Semi-Structured Assessment for the 

Genetics of Alcoholism interview (SSAGA; those aged <18 years were administered a child 

version, the C-SSAGA)34,35. Phenotypic data were available on 16,809 individuals. A 

substantial portion of the sample (n=12,146) has been genotyped. Because the number of 

individuals of other ethnicities was small, only EA (n=7,983) and AA (n=3,685) individuals 

were included in these analyses. As the study was ascertained for alcohol dependence, 

individuals who reported never drinking alcohol even once in their life were excluded from 

analyses (n=550). The majority of those individuals reported not ever using other drugs, with 

the exception of cannabis (n=63). The final analytic sample (n=7,291 EA and 3,132 AA) 

included those with both genotypic and phenotypic data.

Measures:

ANYDEP was defined as a binary variable where cases met lifetime criteria for DSM-IV 

dependence36 on alcohol, cannabis, cocaine, sedatives, stimulants and/or opioids (for 

prescription drugs, non-prescription use was specified) or any combination thereof. We did 

not include nicotine dependence as it was not assessed in earlier versions of the SSAGA, and 

was therefore missing for those who were only interviewed using older SSAGAs. Controls 

did not meet DSM-IV dependence criteria for alcohol or any drug listed above but were 

required to have consumed at least 1 drink of alcohol. Of the controls, 32.9% met lifetime 

criteria for DSM-IV alcohol or drug abuse (analyses excluding these individuals are 

described in the Discussion). For GWS SNPs, alcohol dependence and each individual 

DSM-IV drug dependence diagnosis was also examined against this uniform set of controls. 

As COGA was primarily ascertained for alcohol dependence, we created a variable for 

secondary analysis, drug_noalc, where individuals with alcohol dependence were excluded 

from the ANYDEP cases (and remained excluded from controls). Numbers of individuals 

for each phenotype are in Table 1.

Phenotype analysis:

The prevalence of alcohol and drug dependence were compared across ancestral groups 

using chi-square tests. The number of DSM-IV criteria endorsed by individuals in AA and 

EA families were compared (total number and for each drug) using an ordinary least squares 
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regression that accounted for sex. Birth cohorts (1890–1929, 1930–1949, 1950–1969, 

≥1970) were included in all COGA analyses as covariates to account for secular trends 

(see37) across this wide range of birth years. Over and above birth cohort, age was not a 

significant predictor of ANYDEP (p > 0.3). A confirmatory factor analysis of substance 

dependence diagnoses was fitted to the data separately for EAs and AAs, to determine 

phenotypic patterns of comorbidity using MPLUSv838. The comparative fit index (CFI), 

standardized root mean square residual (SRMR), and the root mean square error of 

approximation (RMSEA) were used to assess model fit. Heritability for ANYDEP and 

drug_noalc was estimated using SOLAR39 in the EA and AA families separately, using 

familial relatedness (but not GWAS data) alone.

Genotyping, Quality Review, Ancestry and Imputation

Multiple genome-wide arrays were used to genotype the COGA sample23,40–42 (see 

Supplemental Text). A subset of 47,000 common (minor allele frequency (MAF) > 0.1 in the 

combined sample), independent (defined as R2 < 0.5) and high quality (missing rate < 2% 

and Hardy-Weinberg Equilibrium (HWE) p-values > 0.001) SNPs that were genotyped 

across all arrays were used to assess duplicate samples, confirm the reported pedigree 

structure and compute ancestral principal components (see Supplemental Text for details). 

After assignment of individuals in a family to a specific population, family-wise ancestry 

was designated according to the majority of individual family members (see Lai et al, 

accompanying paper). Only AA and EA families were included in subsequent analyses, due 

to low numbers of other groups. Only variants with non A/T or C/G alleles, missing rates < 

5%, MAF > 3%, and HWE p values > 0.0001 were used for imputation. Genotypes were 

imputed to 1000 Genomes using the cosmopolitan reference panel (Phase 3, version 5, 

NCBI GRCh37; Supplemental Text) using SHAPEIT243 and Minimac344. Imputed SNPs 

with R2 < 0.30 were excluded, and genotype probabilities were converted to best-guess 

genotypes if ≥ 0.90. Because some individuals within a family were genotyped on different 

arrays, families were again evaluated for Mendelian inconsistencies using Pedcheck45, and 

imputed SNPs were cleaned as described above. All genotyped and imputed SNPs with 

missing rates <25%, MAF ≥1% and HWE p >1 × 10−6 were included in analyses.

Genome wide association studies and meta-analysis:

Association analysis was performed separately in AA and EA families using a generalized 

estimating equation (GEE) framework to account for family relatedness by considering each 

family as a cluster. The GEE employs a logistic regression model (i.e., binomial distribution) 

to account for relatedness in the R package GWAF46. Gender, birth cohort, GWAS array 

indicator, and the first four principal components (as in23) were included as covariates in the 

model. A trans-ancestral (EA+AA) GWAS was performed by meta-analyzing summary 

statistics from the EA and AA GWAS using inverse-variance weighting in METAL47, with 

genomic control.

Annotation of results and gene-based analyses:

Overall plotting (e.g., regional association) and annotation of individual loci was conducted 

in FUMA48. For gene and gene-set based analysis, MAGMA, as implemented in FUMA, 

was used. FUMA was utilized to conduct gene-set analyses that examined whether genes 
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were enriched in curated classification systems, by molecular function, biological process or 

other criteria. Gene sets were defined for 4,728 curated gene sets (including canonical 

pathways) and 6,166 GO terms. Differential expression of prioritized genes was conducted 

using the GENE2FUNC option in FUMA, which examines whether genes of interest from 

the GWAS are overrepresented in differentially expressed gene sets in 53 specific tissue 

types from The Genotype-Tissue Expression (GTEx) database49. Although this database is 

comprised of primarily EA individuals, it is one of few publicly available databases 

available, and therefore was utilized for the AA results as well. To further prioritize possible 

causal genes, we used S-PrediXcan50 to impute genetically-regulated gene expression in 

twelve brain tissues and whole blood. The prediction models were trained on reference 

transcription data from GTEx (brain) and the Depression Genes and Network (DGN) (whole 

blood) (all available from the PredictDB Data Repository, http://predictdb.org, downloaded 

on 6/6/2018). Analyses were restricted to the EA data, as the prediction models used by the 

tools were built using only individuals of European ancestry. We used GTEx v7 to extract 

gene expression values. Finally, individual genome-wide significant (GWS) SNPs and genes 

were examined against SNP and gene-based summary statistics for 3,798 GWAS of 2,824 

traits, available through http://atlas.ctglab.nl/ (accessed on 10/1/2018).

Replication:

Data from two dbGaP samples with individuals of EA and AA ancestry that were 

ascertained for alcohol and substance dependence were utilized for replication of GWS 

SNPs. These included the Study of Addiction: Genes and Environment (phs000092.v1.p1, 

SAGE: non-overlapping individuals numbered EA: 630 cases and 1,020 controls; AA: 387 

cases and 415 controls)24 and the Yale-Penn AA sample (phs000425.v1.p1) with 1,525 cases 

and 485 controls25. Any overlapping participants as well as the first and second degree of 

relatives (π ≥ 0.2) of COGA members in SAGE or Yale-Penn were excluded from the 

replication samples. Cases and controls were defined as described above. Covariates 

included sex and the first 3 principal components. For SAGE, birth cohorts as defined in 

COGA were included as covariates while for Yale-Penn AA, age was used (as recommended 

in prior publications of this sample51,52). Effect sizes across COGA and replication samples 

were meta-analyzed in METAL 47. For SNPs associated with ANYDEP in the EA families, 

we also examined summary statistics for association with alcohol intake frequency in 

452,264 individuals from the UK Biobank (http://geneatlas.roslin.ed.ac.uk/, accessed 

11/26/2018)26 and with cannabis use from the current largest GWAS of the phenotype 

[n=184,76527].

Neuroimaging analysis of GWS loci:

We examined whether GWS SNPs identified in our COGA GWAS of ANYDEP (i.e., 

rs34066662, rs75168521, rs1890881; the indel was not available) were associated with 

reward-related brain function in the Duke Neurogenetics Study (DNS), an independent 

neuroimaging sample containing non-Hispanic AA (n=118) and EA (n=481) undergraduate 

students aged 18–22 years31 (see Supplemental Text). A number guessing paradigm was 

used to elicit ventral striatum (VS) reactivity associated with positive and negative feedback 

linked to monetary gains and losses while bold-oxygen-level dependence (BOLD) functional 

magnetic resonance imaging (fMRI) data were acquired53. Statistical Parametric Mapping 
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version 8 (SPM8) software was used to extract parameter estimates for the contrast of 

Positive Feedback > Negative Feedback from maximal voxels within left and right VS 

regions of interest (ROIs). Imaging acquisition protocol, task, ROIs, and preprocessing 

details are described in the Supplemental Text. Extracted parameter estimates from VS 

activity in each hemisphere were regressed on genotype (coded as 0 vs 1 or more copies of 

the minor allele) of GWS loci while co-varying for sex, and 3 (AA) or 2 (EA) ancestral 

principal components using Full Information Maximum Likelihood in MPlus v7.338. 

Confidence intervals on estimates were derived via bootstrapping (n=10,000). To adjust for 

multiple comparisons, we used a Bonferroni-corrected p-value threshold (p<0.00625), to 

account for our hypothesized 8 tests [i.e., rs34066662 and rs75168521 in both brain 

hemispheres among AAs (4 tests); rs1890881 in both brain hemispheres among AAs and 

EAs (4 tests)]. As rates of drug dependence, but not alcohol problems (see31), are low in the 

DNS sample, structural equation models linking genotype to substance dependence with 

reward-related response as a mediator were not fitted to these data.

RESULTS

Phenotypic analyses:

Alcohol dependence was the largest contributor to ANYDEP, followed by cannabis and 

cocaine dependence (Table 1). Alcohol and drug dependence were correlated with each 

other in both EAs and AAs (Supplemental Table S1). However, correlations between 

dependence on alcohol and individual drugs were higher (r = 0.55 – 0.82) in EA relative to 

AA (r = 0.33 – 0.77), especially for cannabis dependence (see Supplemental Table S1). A 

single factor solution fit the lifetime dependence diagnoses data adequately in both EAs and 

AAs (EA: Comparative Fit Index=0.989, Standardized Root Mean-square Residual=0.046, 

Root Mean Square Error of Approximation=0.042; AA: Comparative Fit Index=0.978, 

Standardized Root Mean-square Residual=0.09, Root Mean Square Error of Approximation: 

0.047) and factor loadings were greater than 0.75, with the exception of cannabis 

dependence in AA (loading=0.35).

Other phenotypic differences across ancestral groups in this sample were apparent. For 

instance, while alcohol dependence was the most common contributing diagnosis in EAs 

(81%, vs. 67% in AAs), cannabis (EA: 42%; AA: 52%) and cocaine dependence (EA: 27%; 

AA: 44%) were more common in AAs. Across ancestral groups, ANYDEP cases endorsed a 

similar number of criteria across all substances (i.e., 7 criteria x 6 substances; mean = 10.8, 

SD = 7.3; beta=0.11, SE=0.24, p=0.66). Among ANYDEP cases, EAs endorsed 

significantly more alcohol dependence criteria than AAs (EA: mean 4.44, SD 2.09; AA; 

mean 3.89 SD 2.21; beta=0.45, SE=0.06, p < 0.0001). Conversely, AAs endorsed a greater 

number of cannabis (AA: mean 2.76, SD 2.29; EA: mean 2.24, SD 2.27; beta=0.41, 

SE=0.07, p < 0.0001) and cocaine dependence (AA mean 2.82 SD 3.10; EA: mean 1.65, SD: 

2.59, beta=1.22, SE=0.09, p < 0.0001) criteria than EAs, and these differences were 

significant even after accounting for sex and birth cohorts. The heritability of ANYDEP and 

drug_noalc were 0.60 (standard error (SE) = 0.043) and 0.59 (SE=0.085) respectively, in the 

EA families. Although the heritability of ANYDEP was lower in the AA families (0.37; 

SE=0.065), the heritability of drug_noalc was slightly higher (0.63; SE=0.106).
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GWAS findings:

No GWS loci emerged in the EA GWAS (Figure 1a; Supplemental Figure S1A). The lowest 

p-value (p = 8.6E-08; Table 2) was obtained for rs74611272, an intergenic SNP on 

chromosome 7. In contrast, three GWS regions were identified in the AA GWAS: on 

chromosome 3 (rs34066662: p = 1.77E-08 & rs58801820: p = 1.89E-08; Figure 1b; 

Supplemental Figure S1B), chromosome 13 (rs75168521: p = 3.31E-08 & rs78886294: p = 

4.38E-08) and an insertion–deletion (indel) on chromosome 5 (5:141988181, mapped to 

rs527904740, p = 4.48E-08). As shown in Table 2, the effects of these variants were 

ancestry-specific. In addition, one locus on chromosome 1 was GWS in the trans-ancestral 

(EA+AA) meta-analysis (Figure 1c, Supplemental Figure S1C), with the most significant 

SNP, rs1890881 (p = 3.77E-08; EA p = 8.95E-05; AA p = 1.94E-05) in an intron of 

RABGAP1L (RAB GTPase Activating Protein 1 Like).

Specificity of GWAS SNPs to alcohol or drug dependence:

In the AA GWAS, all drugs contributed to the chromosome 3 GWS signal, albeit at nominal 

levels of significance, while all drugs except opioids and sedatives contributed to the 

chromosome 5 and 13 signals (Table 3). Alcohol dependence was also associated with these 

loci (Table 3); however, when a smaller subset of individuals who met criteria for drug but 

not alcohol dependence was studied (i.e., drug_noalc), the loci on chromosome 3, 5 and 13 

remained nominally associated (all p<5.04×10–4; Table 4), suggesting that these signals 

were only partially attributable to shared genetic liability between alcohol and illicit drug 

dependence. In contrast, the trans-ancestral signal on chromosome 1 was due primarily to 

association with cocaine and alcohol dependence in both the EA and AA subsamples (Table 

3). When individuals with alcohol dependence only were excluded from the study 

(drug_noalc), there was no association (p=0.42) in the EAs and the association in AAs 

decreased in significance to p=0.04.

Biological annotation:

Regional association plots for the chromosome 3 and chromosome 13 GWS loci from the 

AA GWAS are presented in Figure 2. The two SNPs on chromosome 3, rs34066662 and 

rs58801820, are in complete linkage disequilibrium (LD; HapMap AFR sample: r2>0.996; 

D’=1). There was evidence that one or both of these SNPs were eQTLs for Nephrocystin 3 

(NPHP3) in the sigmoid colon (GTEx v6: p = 4E-06) and the adrenal gland (GTEx v7: p = 

7E-06; reference expression data primarily drawn from Europeans, see chromatin 

interactions in Appendix Supplemental Figure S3A).

The regional association plot for the GWS indel on chromosome 5 (chr5:141988181, 

mapped to rs527904740) is presented in Supplemental Figure S2A. The next most 

significantly associated variant, rs74911483 (chr5:141990602, p=6.13E-8), is shown in 

Supplemental Figure S2B, and was in high LD with this variant (AFR: r2=0.87, D’=0.9454). 

Both variants were in the intron of the Fibroblast Growth Factor 1 (FGF1) gene. While 

FUMA could not be utilized for indel annotation, individual searches for the proxy SNP, 

rs74911483 in RegulomeDB55 (score of 5), Combined Annotation Dependent Depletion56 

(maximum CADD score of 5), and GTEx57 (no eQTLs) did not provide persuasive support 
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for regulatory effects of this variant. However, chromatin interactions were noted with 

neighboring genes (Supplemental Figure S3).

The strongest signal on chromosome 13 was from rs75168521, a non-coding intergenic SNP 

downstream of SLITRK5 (SLIT and NTRK like family member 5); there was no evidence 

that rs75168521 is an eQTL for SLITRK5 or any other gene. rs75168521 is a perfect LD 

proxy for rs78886294 which was also genome-wide significant. Both SNPs were also in 

high D’, but low r2 (D’=1; r2=0.33) with numerous SNPs in the 3’ region of MIR4500HG 
with the closest SNP being 108 bp from rs75168521. The SNP rs75168521 made chromatin 

contact with MIR4500HG in bladder, liver and the left ventricle (although the gene is only 

appreciably expressed in the liver). Several additional distal points of contact were also 

identified (Supplemental Figure S4). Conditional analyses of the lead variants on 

chromosomes 3, 5 and 13 indicated that the remaining genome-wide significant SNPs did 

not represent additional independent loci on each chromosome (Supplemental Figure S5A – 

S5C). However, additional SNPs in the region did show p-values indicative of potential 

independent signals that might be clarified with increase in sample size.

The trans-ancestral (EA+AA) analyses identified rs1890881 as genome-wide significant 

(Figure 3). The SNP is in an intron of RABGAP1L; however, it is also an eQTL for several 

neighboring genes. According to the GTEx (v7) database, rs1890881 is an eQTL for 7 genes 

(48 signals), that included several signals in brain tissue (Supplemental Table S2). 

rs1890881 also made chromatin contact with several of these genes, including SERPINC1 
(Supplemental Figure S6; genes identified using eQTL and chromatin interaction mapping 

are in red) as well as other distal contacts across tissues. There was no support for 

independent loci in the region in either ancestral group (Supplemental Figure S5D and S5E).

Gene-based and gene-set analyses:

Gene-based analyses in the AA data identified 3 genes that surpassed genome-wide 

correction (Psignificance = 2.76E-06, corrected for 18,125 protein coding genes; Supplemental 

Figure S7; Supplemental Table S3). The genes were SH3 Domain Binding Kinase Family 

Member 3 (SBK3; chromosome 19), DAZ Interacting Zinc Finger Protein 3 (DZIP3; 

chromosome 3) and CRK Like Proto-Oncogene, Adaptor Protein (CRKL; chromosome 22). 

DZIP3 and CRKL are ubiquitously expressed with appreciable expression in brain regions, 

while SBK3 is expressed in cardiac tissue (Supplemental Figure S8). Gene-set analyses did 

not identify any GO terms that surpassed multiple testing correction. We also performed 

gene function analyses with 26 genes that mapped to the region of 2 of the GWS loci 

(including, but not limited to SLITRK5, NPHP3 and NPHP3-AS1, LINC00433) on 

chromosomes 3 and 13. Two positional gene sets (MSigDB_c1) on chromosome 3 and one 

on chromosome 13 were significantly enriched for prioritized genes (chr3q22, Padjusted = 

8.3E-10: NPHP3, NPHP3-AS1, BFSP2-AS1, SRPRB, C3orf36; chr3q21, Padjusted = 1.6E-4: 

TMEM108, BFSP2, TF; and chr13q31, Padjusted = 1.4E-09: SLITRK5, PEX12P1, 
KRT18P27). Of these, Transferrin (TF) in particular, showed higher average differential 

expression in brain tissue (Supplemental Figure S9).

Despite no individual SNP being genome-wide significant in the EA GWAS, one gene was 

genome-wide significant (P2RX6, p=7.11E-07; threshold Psignificance = 2.82E-06 for 17,757 
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coding genes; Supplemental Table S4). The Purinergic receptor P2X 6 (P2RX6) is expressed 

in brain tissue, although less robustly than in musculo-skeletal tissue (Supplemental Figure 

S10). In addition, 4 curated gene-set terms were statistically significant (Supplemental Table 

S5 for individual genes in the set). These gene sets were derived from Reactome and 

reflected gene sets involved in signal transduction (sets 1 and 2) and hemostasis (sets 3 and 

4). When the correlation between ANYDEP and imputed, genetically-regulated gene 

expression was tested in the EA sample using S-PrediXcan, no genes met the multiple 

testing corrections; however, P2RX6 was the most significant gene, with p = 3.91e-05 in the 

putamen basal ganglia tissue model.

Replication:

Despite these promising findings, the individual loci did not replicate in any of the 

replication samples (Supplemental Table S6; lowest p =0.06 for chr5:141988181 in Yale-

Penn) and meta-analysis across COGA and the replication samples did not retain their 

genome-wide significance, although findings for the chromosome 3 locus were in the same 

direction in the AA samples, and for chromosome 1 in the EA samples. In the UK Biobank, 

there was weak evidence of association between alcohol intake frequency and rs1890881 

(beta=−0.010, p=0.026). In addition, rs1890881 was marginally associated with cannabis use 

(beta=0.029, p=0.048) in the current largest GWAS of the trait27. There was evidence of 

association between alcohol intake and rs74611272 (beta=0.016, p=0.007;26), the strongest 

signal in the EA GWAS, in the UK Biobank.

Extension of Neuroimaging to Significant Loci:

As shown in Table 5, carriers of the minor (C) allele of rs75168521 (chr 13), which was 

associated with increased likelihood of ANYDEP in COGA, had blunted right (beta=−0.111, 

p=0.004), but not left (beta=−0.065, p=0.143), VS activation in the AA subsample. However, 

rs34066662 genotype (chr 3) was not associated with VS activity in either hemisphere 

among AAs, despite a similar directional pattern (betas>−0.075, ps >0.103). As expected, 

among EA there was no association between rs75168521 or rs34066662 genotype and VS 

activation in either hemisphere (|betas|<0.025, ps >0.247). Carriers of the minor (C) allele of 

rs1890881 (chr 1), which was associated with decreased likelihood of ANYDEP in the trans-

ancestral meta-analysis (effect driven by alcohol dependence), were characterized by blunted 

reactivity of the left VS among AA (beta=−0.134, p=0.001). Nominally significant 

associations that were not robust to Bonferroni correction were observed between rs1890881 

genotype and right VS activation in AA (beta = −0.098, p = 0.013) and left (beta=−0.036, 

p=0.029), but not right (beta=−0.004, p=0.801), VS activation among EA.

DISCUSSION

Alcohol and drug dependence tend to co-aggregate in families58,59. Based on a prior GWAS 

in a smaller subset of 118 COGA families23, we developed an ANYDEP phenotype that 

represented a diagnosis of dependence on alcohol or any illicit drug. GWAS in the COGA 

AA families identified novel loci on chromosomes 3, 5, and 13 while the trans-ancestral EA

+AA analysis identified a locus on chromosome 1. However, these signals failed to replicate 

in independent samples. In addition, across the AA and EA GWAS, a total of 4 genes (AA 
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and EA) and 4 gene sets (EA only) survived correction for multiple testing. These findings 

underscore the feasibility of using an aggregate substance dependence phenotype to identify 

underlying shared heritable influences for locus discovery.

Broadly, two categories of loci were identified. First, in the COGA AA families, loci on 

chromosome 3, 5, and 13 were GWS and appeared to be attributable to contributions from 

each individual illicit drug, as well as alcohol dependence. Exclusion of alcohol dependence 

diagnosis (drug_noalc) resulted in nominal significance in all three regions, despite the 

substantially reduced sample size and power. Thus, these loci may represent genetic liability 

that is common to alcohol and illicit drug dependence that cannot be entirely attributed to 

alcohol dependence. On the other hand, the locus on chromosome 1 which was GWS in the 

COGA EA+AA analysis and was supported by signals in both the EA and AA subsamples, 

showed nearly no evidence for association in the drug_noalc analyses (p=0.04; and only in 

the AA families), suggesting that this signal is primarily due to alcohol dependence. In EAs, 

this genome-wide significant SNP (rs1890881) is in perfect LD with rs61826952 which was 

genome-wide significant in the COGA GWAS of DSM-IV alcohol dependence (COGA EA

+AA p=8.4E-11; see accompanying paper by Lai et al.). The r2 in the AFR reference 

populations is 0.48, potentially indicating an independent signal in the AAs. However, 

conditional analyses did not support an effect of rs61826952, independent of rs1890881, on 

ANYDEP (Supplemental Figures 5D and 5E). Similarly, rs1890881 was not associated with 

alcohol dependence (Lai et al., accompanying paper), independent of rs61826952 (AA 

p=0.118; EA p=0.559).

For ANYDEP, rs1229984 in ADH1B, the most well-replicated signal for alcohol 

dependence12 was not GWS. Even relative to findings from the companion paper by Lai et 

al., where rs1229984 was GWS in the EA+AA analysis (beta=−0.86, p=1.72E-8), the 

association between rs1229984 and ANYDEP was considerably weaker both in magnitude 

and significance (Supplemental Table S7), despite a considerably larger analytic sample. 

Additional loci identified for alcohol dependence diagnosis, symptom count and individual 

criteria in Lai et al., also did not achieve GWS for ANYDEP, although all signals were 

nominally significant with effects in an identical direction. An important distinction between 

these two companion studies is noteworthy. While Lai et al., excluded individuals with ≥ 2 

alcohol or drug abuse/dependence criteria from their unaffected population, the current study 

allowed these individuals to remain in the unaffected group. Thus, variations across findings 

in the two studies might be due, not only to differing definitions of affecteds, but also the 

definition of unaffecteds. Finally, the current study did not identify the same SNPs as were 

noted in our prior study of ANYDEP and its quantitative equivalent in a much smaller subset 

of these data (N=1,170 – 2,183; Supplemental Table S7), which is not uncommon with the 

substantially increased sample size used here.

In addition to sources of genomic variation (e.g., allele frequencies, LD), distinctions in 

findings across the ancestral groups are possibly attributable to the pattern of comorbidities 

in these groups, which may be genetic and environmental in nature. Notably, a fair 

proportion of AA qualified for a diagnosis of ANYDEP due to cannabis or cocaine 

dependence, whereas the preponderance of EAs primarily endorsed alcohol dependence. In 

addition, cannabis and cocaine dependence diagnoses in AA were relatively more severe 
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(i.e., more criteria were endorsed). Furthermore, drug_noalc (h2=0.63) was more heritable 

than ANYDEP (h2=0.37) and alcohol dependence (h2=0.27) itself in the AA but not the EA 

families. Thus, despite the smaller sample size, the AA subsample may have been better 

powered to identify loci more closely related to drug dependence. These patterns of 

individual and comorbid drug use disorders are also quite consistent with the broader 

epidemiological literature3,21. For instance, AA are more likely to initiate use of cannabis 

prior to alcohol and are more likely to escalate to problem use60,61. Similarly, AA are at 

nearly 3.5 increased odds of transitioning from cocaine use to dependence than their EA 

counterparts, even after adjustment for sociodemographic features and psychiatric 

comorbidity62. However, these population differences may reflect socio-cultural trends or 

represent barriers to access to prevention programs among minority populations, thus 

increasing rates of lifetime drug dependence63. While we might speculate that the three loci 

identified in the AA GWAS are more likely to relate to liability to both alcohol and drug 

dependence, this observation may merely be an artifact of cultural effects on the expression 

of genetic susceptibility.

Alternatively, the AA findings might be false positives. Due to sparser LD in AA relative to 

EA, the application of a uniform threshold of p < 5E-08 for attributing GWS in AAs may 

not be sufficiently stringent64,65. However, gene-based tests were also successful at 

identifying three significant genes. Thus, at least for the gene-based tests, even after 

correction for differences in LD, significant findings in the smaller AA sample were 

identified.

Despite several findings at the level of individual loci, genes and even gene-set terms (for 

EA), none of the biological units identified in this GWAS were related to genes previously 

linked to alcohol or drug related phenotypes. The gene sets, for instance, were broadly 

related to hemostasis and signal transduction. Prior gene set enrichment analyses have 

identified other gene sets related to signal transduction more broadly but not specifically via 

our gene-set terms66,67. However, as shown in Supplemental Figure S11, loci on 

chromosome 1, 3, 13 and 7, as well as the 4 genes that surpassed genome-wide correction 

(CRKL, DZIP3, SBK3, P2RX6) did show associations (p < 0.05) with other psychiatric, 

cognitive and behavioral traits. For instance, based on comparisons with other published and 

unpublished GWAS across multiple phenotypes, CRKL variants have been linked to age at 

smoking cessation (p=0.002) while DZIP3 variants have been related to bipolar disorder 

(p=3.3E-05). Nonetheless, the nature of the effect of these variants on alcohol and illicit 

drug dependence remains unknown.

The relatively small sample size for the replication cohorts, especially when examining AA 

individuals, may have contributed to our limited evidence for replication. However, the 

neuroimaging extension provides evidence for an interesting, albeit preliminary, link 

between GWS loci and ventral striatum (VS) reactivity. For rs75168521, African American 

carriers of the C allele, which was associated with increased likelihood of ANYDEP in the 

COGA GWAS, had blunted response to positive versus negative feedback. Decreased reward 

sensitivity to rewarding, non-drug stimuli has been well documented within addiction, with 

evidence that this may arise following persistent drug exposure68. However, as the DNS 

sample is characterized by relatively low levels of substance use and related problems (other 
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than alcohol31), the association between genotype and blunted VS response to reward may 

plausibly be viewed as a predisposing factor. One might speculate that individuals, 

particularly adolescents, with a blunted response to rewarding stimuli, in general, may 

require larger drug amounts or more potent drugs for reinforcement, and thus, be more 

susceptible to the development of severe addiction69. Such an interpretation is consistent 

with evidence that unaffected offspring of alcohol dependent individuals and adolescents 

who later develop problematic drug use have reduced VS response to anticipatory cues of 

monetary reward70,71 as well as evidence that individuals who are less sensitive to the 

intoxicating effects of alcohol are at greater risk for dependence72.

In direct contrast to the results for rs75168521, rs1890881 (chromosome 1) major T allele 

homozygotes, who were at increased risk for ANYDEP (driven by the association with 

alcohol dependence) in the COGA GWAS, had elevated reward-related VS response 

(identical to Lai et al.). While these findings may, on the surface, appear to be inconsistent 

with one another, literature suggests that both relatively reduced and heightened VS 

response to reward may be associated with substance involvement and dependence liability 

according to unique and shared mechanisms31. For example, evidence that reward-related 

VS activity is positively coupled with problematic drinking73 as well as behavioral and self-

reported impulsivity74, converges with stage-based theories of addiction postulating that 

elevated impulsivity may lead to greater substance use exposure and experimentation that 

may lay the foundation for the development of problematic substance use. On the other 

hand, a parallel literature has also linked relative hypoactivity of the VS to drug-seeking 

behaviors, which has often been theorized to reflect compensation for blunted reactivity to 

reward71,75. Thus, it is plausible that blunted VS reward response associated with 

rs75168521 may confer susceptibility to extreme and generalized forms of drug dependence. 

On the other hand, the finding for rs1890881 might typify individuals at high 

neurobiological susceptibility for substance use engagement, particularly with alcohol which 

is easily accessible and socially accepted. Given the heterogeneity of substance use-related 

phenotypes, it is plausible that different genetic risk markers may impact disease risk 

through distinct mechanisms, and that these seemingly divergent theoretical models (e.g., 

impulsivity vs reward deficiency) may not be mutually exclusive.

Lastly, laterality differences were apparent following multiple testing correction (i.e., 

rs75168521 genotype was associated with blunted right, but not left, VS response while 

rs1890881 genotype was associated with blunted left, but not right VS response in AA). 

While prior reports have found evidence of lateralized associations with reward-related 

processing in the VS76,77, the directionality of associations in our study were consistent 

across hemispheres and in some cases reached nominal levels of significance (Table 5). As 

such, it is possible that our lateralized findings resulted from limited power. Overall, our 

neuroimaging findings, while preliminary, showed ancestral specificity consistent with the 

GWAS, and suggest a putative role for the ANYDEP-associated variants in general reward 

responsiveness. However, despite correction for multiple testing, it is also plausible that 

these findings represent a false positive given our small sample, which also prevented us 

from testing potential quadratic effects which might be expected given that both relatively 

reduced and heightened VS response to reward were associated with genetic risk for 

substance use phenotypes.
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Several limitations are worth noting. First, despite interesting findings and the partially high 

risk sample design, our sample size is underpowered to detect the modest effect sizes 

typically associated with substance use disorders12. For instance, in the AA subsample, 80% 

power to detect a common variant (MAF ≥ 35%) is only expected for genotype relative 

risks≥1.2878, which is fairly high for psychiatric disorders. Second, due to the high degree of 

relatedness in our data, ascertainment, and the relatively small number of “cases”, methods 

such as GCTA79 or LD Score regression80 that are typically used to assess SNP-heritability 

were not appropriate. Instead, we report heritability using familial relatedness. Third, we 

elected to derive diagnoses based on the DSM-IV nomenclature for dependence instead of 

DSM-5 definitions for substance use disorders. Even though the DSM-5 definition of 

substance use disorders is more contemporary, it relies on a lower symptom burden (e.g., ≥2 

of 11 vs ≥3 of 7 criteria for DSM-IV dependence), which may dilute identification of genetic 

effects on more severe forms of the disorder. However, when we examined the association 

between GWS variants and a count of DSM-5 criteria across alcohol and illicit drugs, these 

SNPs were associated with that count but not at GWS levels (p>5E-5). Finally, 39% of the 

controls met criteria for substance abuse – we elected to include these individuals to 

maintain the sample size. Consistent with this, results for chromosome 3 (AA p=2E-8) 

remained GWS while those for chromosomes 1 (EA p=3E-4; AA p=6E-5), 5 (AA p=7E-8) 

and 13 (AA p=4E-5) were attenuated in statistical significance but not in magnitude upon 

exclusion of individuals with abuse from the controls. Finally, the lack of replication was 

discouraging, although it is noteworthy that sample sizes for the replication cohorts were 

modest, and they may not have had sufficient power to replicate findings with these effect 

sizes. Nonetheless, upon meta-analysis, these variants did not show consistent genome-wide 

support indicating considerable heterogeneity across-samples, low power, or raising the 

possibility that the current findings are false positives.

In conclusion, we leveraged the high degree of comorbid substance dependence in COGA to 

identify novel loci that may confer risk for both alcohol and drug dependence and parse 

them from those variants that relate more specifically to alcohol dependence liability (Lai et 

al., accompanying paper). Our results provide preliminary evidence for ancestrally-specific 

effects of loci that undergird addiction to alcohol and illicit drugs. Further, we find 

preliminary ancestry-specific evidence that GWS loci associated with dependence liability 

are also associated with reward-related VS response providing a compelling putative neural 

mechanism through which genetic risk might influence dependence liability. Notably, large 

scale GWAS of psychiatric disorders, with the exception of substance use disorders, have 

traditionally focused on populations of European ancestry. While the genetics of substance 

use disorders has been examined in AAs (e.g., 81,82), sample sizes remain fairly modest, 

especially given the potential expectation of a higher burden of multiple testing. To delineate 

the role of genetic influences on substance use disorders in such minority populations, who 

also may further suffer due to restricted access to treatments, targeted data collection is 

needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Manhattan plots for the (PANEL a) European-American (EA), (Panel b) African-American 

(AA), and (PANEL c) trans-ancestral (EA+AA).
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Figure 2: 
Regional association plots for genome-wide significant loci on (a) chromosome 3 and (b) 

chromosome 13 in analyses of AA families
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Figure 3: 
Regional association plots for genome-wide significant loci on chromosome 1 in the trans-

ancestral (EA+AA) analysis shown with (a) LD based on CEU population, and (b) LD 

based on AFR population

Wetherill et al. Page 24

Genes Brain Behav. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wetherill et al. Page 25

Ta
b

le
 1

.

Sa
m

pl
e 

si
ze

 f
or

 p
ri

m
ar

y 
an

al
ys

is
 o

f 
de

pe
nd

en
ce

 o
n 

al
co

ho
l o

r 
an

y 
ill

ic
it 

dr
ug

 (
A

N
Y

D
E

P)
, a

s 
w

el
l a

s 
fo

r 
po

st
-h

oc
 a

na
ly

se
s 

of
 to

p 
lo

ci
 f

or
 a

lc
oh

ol
 a

nd
 

in
di

vi
du

al
 d

ru
g 

ph
en

ot
yp

es
.

E
ur

op
ea

n-
A

m
er

ic
an

 (
E

A
)

A
fr

ic
an

-A
m

er
ic

an
 (

A
A

)

C
as

es
 (

#)
C

on
tr

ol
s 

(#
)

C
as

es
 (

#)
C

on
tr

ol
s 

(#
)

A
N

Y
D

E
P

2,
92

7
4,

36
4

1,
31

5
1,

81
7

  A
lc

oh
ol

2,
35

1
4,

36
4

90
1

1.
81

7

  C
an

na
bi

s
1,

22
8

4,
36

4
66

7
1,

81
7

  C
oc

ai
ne

76
5

4,
36

4
58

1
1,

81
7

  S
ed

at
iv

es
26

7
4,

36
4

31
1,

81
7

  S
ti

m
ul

an
ts

53
0

4,
36

4
53

1,
81

7

  O
pi

oi
ds

33
4

4,
36

4
14

2
1,

81
7

 
 d

ru
g_

no
al

c
56

3
4,

36
4

42
2

1,
81

7

Genes Brain Behav. Author manuscript; available in PMC 2020 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wetherill et al. Page 26

Ta
b

le
 2

:

R
es

ul
ts

 f
or

 m
os

t s
ig

ni
fi

ca
nt

 S
N

Ps
 a

ss
oc

ia
te

d 
w

ith
 A

N
Y

D
E

P.

C
hr

:b
p

E
ff

ec
t 

al
le

le
:

al
te

rn
at

e
al

le
le

E
ff

ec
 t

al
le

le
fr

eq
ue

nc
y

(E
A

:A
A

)

E
A

:
be

ta
, S

E
, p

-v
al

ue
A

A
be

ta
, S

E
, p

-v
al

ue
T

ra
ns

-a
nc

es
tr

al
(E

A
+A

A
)

be
ta

, S
E

, p
-v

al
ue

rs
34

06
66

62
3:

13
26

39
77

6
T

:C
0.

06
:0

.1
9

0.
09

4 
(0

.0
82

),
 0

.2
49

−
0.

39
8 

(0
.0

71
),

 1
.7

7E
-0

8
−

0.
18

1 
(0

.0
56

),
 1

.3
3E

-0
3

rs
58

80
18

20
3:

13
26

40
09

1
T

:G
0.

06
:0

.1
9

0.
09

4 
(0

.0
70

),
 0

.2
49

−
0.

39
3 

(0
.0

82
),

 1
.8

9E
-0

8
−

0.
18

0 
(0

.0
56

),
 1

.2
8E

-0
3

rs
75

16
85

21
13

:8
83

34
19

3
T

:C
0.

91
:0

.8
5

−
0.

03
7 

(0
.0

73
),

 0
.6

15
−

0.
42

8 
(0

.0
78

),
 3

.3
1E

-0
8

−
0.

21
7 

(0
.0

56
),

 1
.1

1E
-0

4

rs
78

88
62

94
13

:8
83

38
39

9
T

:C
0.

91
:0

.8
5

−
0.

03
5 

(0
.0

73
),

 0
.6

26
−

0.
42

6 
(0

.0
78

),
 4

.3
8E

-0
8

−
0.

21
2 

(0
.0

56
),

 1
.4

1E
-0

4

rs
52

79
04

74
0

5:
14

19
88

18
1

G
A

A
:G

A
A

A
N

A
:0

.9
5

-
−

0.
69

4 
(0

.1
27

),
 4

.4
8E

-0
8

-

rs
18

90
88

1
1:

17
41

76
92

3
T

:C
0.

93
:0

.8
5

0.
32

7 
(0

.0
83

),
 8

.9
5E

-0
5

0.
35

0 
(0

.0
82

),
 1

.9
4E

-0
5

0.
33

9 
(0

.0
62

),
 3

.7
7E

-0
8

rs
74

61
12

72
7:

51
85

05
33

T
:C

0.
96

:0
.9

9
−

0.
52

0 
(0

.0
97

),
 8

.6
E

-0
8

0.
11

8 
(0

.2
92

),
 0

.6
87

−
0.

46
 (

0.
09

6)
, 1

.6
5E

-0
6

L
eg

en
d:

 C
ov

ar
ia

te
s 

in
cl

ud
ed

 s
ex

, b
ir

th
 c

oh
or

ts
, a

nc
es

tr
al

 p
ri

nc
ip

al
 c

om
po

ne
nt

s,
 a

rr
ay

;

C
hr

 =
 c

hr
om

os
om

e;
 B

p 
=

 b
as

e 
pa

ir
; E

A
 =

 E
ur

op
ea

n 
A

m
er

ic
an

; A
A

 =
 A

fr
ic

an
 A

m
er

ic
an

; S
E

 =
 s

ta
nd

ar
d 

er
ro

r;

Genes Brain Behav. Author manuscript; available in PMC 2020 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wetherill et al. Page 27

Ta
b

le
 3

.

R
es

ul
ts

 f
or

 in
di

vi
du

al
 d

ru
gs

 f
or

 to
p 

va
ri

an
ts

 a
ss

oc
ia

te
d 

w
ith

 A
N

Y
D

E
P.

C
hr

:b
p

A
lc

oh
ol

B
et

a,
 S

E
, p

-
va

lu
e

C
an

na
bi

s
be

ta
, S

E
, p

-
va

lu
e

C
oc

ai
ne

be
ta

, S
E

, p
-

va
lu

e

St
im

ul
an

t
be

ta
, S

E
, p

-
va

lu
e

Se
da

ti
ve

be
ta

, S
E

, p
-

va
lu

e

O
pi

oi
d

be
ta

, S
E

, p
-

va
lu

e

In
 A

fr
ic

an
 A

m
er

ic
an

 (
A

A
) 

G
W

A
S

rs
34

06
66

62
3:

13
26

39
77

6
−

0.
39

6 
(0

.0
8)

, 1
.7

0E
-0

6
−

0.
34

7 
(0

.0
87

),
 8

.0
5E

-0
5

−
0.

30
5 

(0
.0

91
),

 8
.2

4E
-0

4
−

0.
61

2 
(0

.3
13

),
 0

.0
51

−
1.

40
 (

0.
53

4)
, 0

.0
09

−
0.

73
3 

(0
.2

27
),

 0
.0

01
3

rs
58

80
18

20
3:

13
26

40
09

1
−

0.
39

3 
(0

.0
8)

, 1
.7

4E
-0

6
−

0.
34

3 
(0

.0
87

),
 8

.1
9E

-0
5

−
0.

30
3 

(0
.0

91
),

 8
.5

5E
-0

4
−

0.
58

6 
(0

.3
13

),
 0

.0
61

−
1.

36
 (

0.
53

5)
, 0

.0
11

−
0.

73
4 

(0
.2

28
),

 0
.0

01
3

rs
52

79
04

74
0

5:
 1

41
98

81
81

−
0.

73
0 

(0
.1

44
),

 4
.2

4E
-0

7
−

0.
64

5 
(0

.1
54

),
 2

.9
0E

-0
5

−
0.

50
7 

(0
.1

84
),

 5
.8

8E
-0

3
−

0.
85

2 
(0

.4
14

),
 0

.0
4

−
0.

75
9 

(0
.5

58
),

 0
.1

7
−

0.
51

6 
(0

.3
21

),
 0

.1
1

rs
75

16
85

21
13

:8
83

34
19

3
−

0.
40

3 
(0

.0
9)

, 4
.0

8E
-0

6
−

0.
37

0 
(0

.0
91

),
 4

.4
9E

-0
5

−
0.

28
1 

(0
.1

12
),

 0
.0

12
−

0.
59

3 
(0

.2
54

),
 0

.0
19

−
0.

56
2 

(0
.3

13
),

 0
.0

7
−

0.
15

4 
(0

.2
08

),
 0

.4
59

rs
78

88
62

94
13

:8
83

38
39

9
−

0.
40

2 
(0

.0
9)

, 4
.5

7E
-0

6
−

0.
36

8 
(0

.0
90

),
 4

.7
1E

-0
5

−
0.

28
7 

(0
.1

10
),

 0
.0

09
−

0.
58

1 
(0

.2
52

),
0.

02
1

−
0.

54
7 

(0
.3

13
),

 0
.0

8
−

0.
18

0 
(0

.2
04

),
 0

.3
80

rs
18

90
88

1
1:

17
41

76
92

3
0.

43
8 

(0
.0

9)
, 7

.2
2E

-0
6

0.
17

1 
(0

.1
11

),
 0

.1
25

0.
33

0 
(0

.1
05

),
 1

.6
E

-0
3

−
0.

45
0 

(0
.2

45
),

 0
.0

65
0.

16
7 

(0
.3

42
),

 0
.6

26
0.

16
1 

(0
.1

89
),

 0
.3

93

In
 E

ur
op

ea
n 

A
m

er
ic

an
 (

E
A

) 
G

W
A

S

rs
18

90
88

1
1:

17
41

76
92

3
0.

36
6 

(0
.0

9)
, 5

.3
6E

-0
6

0.
24

5 
(0

.1
10

),
 0

.0
26

0.
34

4 
(0

.1
30

),
 0

.0
08

0.
19

7 
(0

.1
40

),
 0

.1
59

0.
22

2 
(0

.1
85

),
0.

23
1

0.
10

0 
(0

.1
69

),
 0

.5
50

rs
74

61
12

72
7:

51
85

05
33

−
0.

48
7 

(0
.1

02
),

 1
.7

9E
-0

6
−

0.
59

7 
(0

.1
22

),
 9

.5
9E

-0
7

−
0.

49
2 

(0
.1

52
),

 1
.2

4E
-0

3
−

0.
41

1 
(0

.1
67

),
 0

.0
14

−
0.

46
3 

(0
.2

58
),

 0
.0

7
−

0.
51

3 
(0

.2
23

),
 0

.0
22

L
eg

en
d:

 C
ov

ar
ia

te
s 

in
cl

ud
ed

 s
ex

, b
ir

th
 c

oh
or

ts
, a

nc
es

tr
al

 p
ri

nc
ip

al
 c

om
po

ne
nt

s,
 a

rr
ay

; f
or

 s
om

e 
SN

Ps
 a

nd
 in

di
vi

du
al

 d
ru

gs
, s

ta
tis

tic
al

 c
on

ve
rg

en
ce

 is
su

es
 a

ro
se

 w
he

n 
in

cl
ud

in
g 

bi
rt

h 
co

ho
rt

s,
 a

nd
 th

us
, a

ge
 

w
as

 s
ub

st
itu

te
d 

fo
r 

bi
rt

h 
co

ho
rt

.

C
hr

 =
 c

hr
om

os
om

e;
 B

p 
=

 b
as

e 
pa

ir
; S

E
 =

 s
ta

nd
ar

d 
er

ro
r;

 G
W

A
S 

=
 g

en
om

e-
w

id
e 

as
so

ci
at

io
n 

st
ud

y;
 S

N
P 

=
 s

in
gl

e 
nu

cl
eo

tid
e 

po
ly

m
or

ph
is

m

Genes Brain Behav. Author manuscript; available in PMC 2020 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wetherill et al. Page 28

Ta
b

le
 4

:

R
es

ul
ts

 f
or

 a
lc

oh
ol

 d
ep

en
de

nc
e 

an
d 

fo
r 

dr
ug

_n
oa

lc
 (

al
co

ho
l d

ep
en

de
nt

 in
di

vi
du

al
s 

ex
cl

ud
ed

 f
ro

m
 c

as
es

 a
nd

 c
on

tr
ol

s)
 f

or
 to

p 
SN

Ps
.

C
hr

:b
p

E
ff

ec
t 

al
le

le
:

al
te

rn
at

e 
al

le
le

A
lc

oh
ol

 d
ep

en
de

nc
e 

(L
ai

 e
t 

al
* )

dr
ug

_n
oa

lc

A
fr

ic
an

-A
m

er
ic

an
 (

A
A

) 
G

W
A

S

rs
34

06
66

62
3:

13
26

39
77

6
T

:C
−

0.
45

4 
(0

.0
92

),
 8

.9
2E

-0
7

−
0.

39
6 

(0
.1

10
),

 3
.1

4E
-0

4

rs
58

80
18

20
3:

13
26

40
09

1
T

:G
−

0.
45

1 
(0

.0
92

),
 9

.0
0E

-0
7

−
0.

39
3 

(0
.1

09
),

 3
.0

1E
-0

4

rs
52

79
04

74
0

5:
14

19
88

18
1

G
A

A
: G

A
A

A
−

0.
76

7 
(0

.1
82

),
 2

.6
5E

-0
5

−
0.

62
8 

(0
.1

69
),

 2
.0

6E
-0

4

rs
75

16
85

21
13

:8
83

34
19

3
T

:C
−

0.
48

6 
(0

.1
12

),
 1

.5
6E

-0
5

−
0.

37
1 

(0
.1

07
),

 4
.8

8E
-0

4

rs
78

88
62

94
13

:8
83

38
39

9
T

:C
−

0.
48

4 
(0

.1
13

),
 1

.7
7E

-0
5

−
0.

36
8 

(0
.1

06
),

 5
.0

4E
-0

4

rs
18

90
88

1
1:

17
41

76
92

3
T

:C
0.

55
4 

(0
.1

21
),

 4
.6

5E
-0

6
0.

23
5 

(0
.1

16
),

 0
.0

4

E
ur

op
ea

n-
A

m
er

ic
an

 (
E

A
) 

G
W

A
S

rs
18

90
88

1
1:

17
41

76
92

3
T

:C
0.

47
1 

(0
.1

08
),

 1
.2

9E
-0

5
0.

01
2 

(0
.0

14
),

 0
.4

2

rs
74

61
12

72
7:

51
85

05
33

T
:C

−
0.

44
2 

(0
.1

21
),

 2
.6

1E
-0

4
−

0.
07

3 
(0

.0
18

),
 5

.1
0E

-0
5

* R
ef

er
s 

to
 a

cc
om

pa
ny

in
g 

pa
pe

r 
by

 L
ai

 e
t a

l w
hi

ch
 e

xa
m

in
ed

 a
lc

oh
ol

 d
ep

en
de

nt
 c

as
es

 (
D

SM
-I

V
 d

ep
en

de
nt

) 
an

d 
co

nt
ro

ls
 (

dr
an

k 
at

 le
as

t o
ne

 d
ri

nk
 o

f 
al

co
ho

l a
nd

 e
nd

or
se

d 
at

 m
os

t 1
 c

ri
te

ri
on

 f
or

 a
lc

oh
ol

 o
r 

an
y 

dr
ug

 d
ep

en
de

nc
e)

.

C
hr

 =
 c

hr
om

os
om

e;
 B

p 
=

 b
as

e 
pa

ir
; S

N
P 

=
 s

in
gl

e 
nu

cl
eo

tid
e 

po
ly

m
or

ph
is

m

Genes Brain Behav. Author manuscript; available in PMC 2020 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wetherill et al. Page 29

Ta
b

le
 5

.

A
ss

oc
ia

tio
ns

 b
et

w
ee

n 
re

sp
on

se
 o

f 
th

e 
ve

nt
ra

l s
tr

ia
tu

m
 to

 p
os

iti
ve

 >
 n

eg
at

iv
e 

fe
ed

ba
ck

 a
nd

 g
en

ot
yp

e 
in

 th
e 

D
uk

e 
N

eu
ro

ge
ne

tic
 S

am
pl

e

A
fr

ic
an

-A
m

er
ic

an
s 

(A
A

):
 b

et
a 

[9
5%

 C
.I

.]
, p

-v
al

ue
E

ur
op

ea
n-

A
m

er
ic

an
s 

(A
A

):
 b

et
a 

[9
5%

 C
.I

.]
, p

-v
al

ue

SN
P

E
ff

ec
t a

lle
le

R
IG

H
T

 V
S

L
E

F
T

 V
S

R
IG

H
T

 V
S

L
E

F
T

 V
S

rs
34

06
66

62
T

−
0.

07
3 

[−
0.

16
4 

– 
0.

01
9]

, 0
.1

03
−

0.
06

2 
[−

0.
14

3 
– 

0.
01

8]
, 0

.1
32

0.
00

2 
[−

0.
05

3 
– 

0.
05

7]
, 0

.9
32

−
0.

00
8 

[−
0.

05
7 

– 
0.

04
3]

, 0
.7

62

rs
75

16
85

21
C

−
0.

11
1 

[−
0.

19
 -

 −
0.

03
6]

, 0
.0

04
−

0.
06

5 
[−

0.
15

3 
- 

−
0.

24
],

 0
.1

43
0.

02
5 

[−
0.

01
7 

– 
0.

06
8]

, 0
.2

47
0.

01
1 

[−
0.

02
7 

– 
0.

04
8]

, 0
.5

65

rs
18

90
88

1
C

−
0.

09
8 

[−
0.

17
5 

- 
−

0.
02

0]
, 0

.0
13

−
0.

13
4 

[−
0.

21
3 

- 
−

0.
05

7]
, 0

.0
01

−
0.

00
4 

[−
0.

03
9 

– 
0.

03
0]

, 0
.8

01
−

0.
03

6 
[−

0.
06

8 
- 

−
0.

00
4]

, 0
.0

29

SN
P 

=
 s

in
gl

e 
nu

cl
eo

tid
e 

po
ly

m
or

ph
is

m
; c

hr
5:

14
19

88
18

1 
w

as
 n

ot
 a

va
ila

bl
e.

 O
ri

gi
na

l a
rt

ic
le

 r
ep

or
te

d 
th

e 
T

 a
lle

le
 a

s 
th

e 
ef

fe
ct

 a
lle

le
 f

or
 r

s1
89

08
81

.

Genes Brain Behav. Author manuscript; available in PMC 2020 July 01.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Sample:
	Measures:
	Phenotype analysis:
	Genotyping, Quality Review, Ancestry and Imputation
	Genome wide association studies and meta-analysis:
	Annotation of results and gene-based analyses:
	Replication:
	Neuroimaging analysis of GWS loci:

	RESULTS
	Phenotypic analyses:
	GWAS findings:
	Specificity of GWAS SNPs to alcohol or drug dependence:
	Biological annotation:
	Gene-based and gene-set analyses:
	Replication:
	Extension of Neuroimaging to Significant Loci:

	DISCUSSION
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Table 1.
	Table 2:
	Table 3.
	Table 4:
	Table 5.



