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Abstract

Nearshore waters are governed by complex hydrodynamic interactions within landscapes
that vary globally. Many of these often-energetic flows are intricate, diverse, and fine-scale, making
holistic understanding difficult. Advancements in computational processing, coupled with ever
growing environmental datasets and refining remote sensing technologies, offer new opportunities
to constrain the controls behind these processes. This dissertation investigates complex, important
nearshore hydrodynamics through applications of remote sensing technologies and data analysis.
Focusing on the nearshore ocean off the geomorphologically diverse coastline of Northern
California, we develop and implement novel methodologies to observe, quantify, and analyze fine-
scale processes in each chapter of this dissertation, thereby illuminating coastal hydrodynamics

that have been difficult to monitor.

In chapter 1, we analyze the dispersion of turbid freshwater plumes from the Russian
River, California, a prototypical small mountainous river system. River plumes of this size, although
common and vital in Mediterranean climate regions, have been understudied, leading to significant
gaps in understanding. Using 15 years of daily MODIS satellite imagery and environmental data, we
reveal the interplay of river discharge, waves, winds, and tides in shaping plume behavior. This
analysis serves as a ground truth for previous studies and uncovers previously undiscussed

patterns of small to moderate sized river plume dynamics.

Chapter 2 presents a methodology that enhances nearshore temperature monitoring
capabilities by utilizing calibration data between high-resolution (100m) Landsat thermal infrared
data and coincident moderate resolution (1km) MODIS sea surface temperature (SST) data. Data
calibrated by this methodology is tested against in-situ measurements at various distances from the
Northern California coast and presents use cases for this high-resolution dataset, demonstrating
significant advancement over traditional SST products and offering initial insights into fine-scale

temperature mixing processes.
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In Chapter 3, we investigate wave-driven cross-shore sediment transport using high
resolution (10m) Sentinel-2 remote sensing data, enhanced by machine learning post-processing
utilized to resolve nearshore heterogeneity. By isolating turbid water signals and analyzing them
alongside wave model data, tidal data, and high resolution (2m) bathymetric data, we characterize
sediment transport dynamics across diverse coastal facies. This work constrains how the interplay
between wave climate, bathymetric complexity, and sediment availability influences the extent and

patterns of offshore turbidity transport in both sandy and rocky environments.

Collectively, the studies in this dissertation advance our understanding of nearshore
hydrodynamics by leveraging remote sensing and data analysis constrain to their controls. The
methodologies and findings presented here contribute to improved coastal monitoring,

management, and research, with potential applications in similar coastal regions globally.
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Introduction

The ocean is vast and occupies most of our planet. However, the small nearshore zone is
where most human interactions with marine waters occur. This zone where land meets ocean is
resource-rich, highly productive, and serves as an economic hub across numerous sectors. Despite
its importance, much remains unknown about the dynamics of nearshore waters that govern these
regions. The nearshore, though relatively small, is characterized by great energy, driven by complex
hydrodynamic interactions with landscapes that vary globally. These forceful and intricate
dynamics make nearshore monitoring challenging, especially in regions where strong currents and
land interactions create hazardous conditions, and the wide diversity of environments complicates

holistic understanding.

These powerful mixing processes inherently leave marked imprints on the environment.
When water moves, its integration into new areas is gradual, not immediate. Waters transitioning
between zones of different temperatures create warm or cold tendrils along their paths. Rivers
outflowing into the ocean bring nutrients, chemicals, and sediments from terrestrial sources,
discoloring coastal waters. Waves, as they drag along varying seabed and crash onto shores,
mobilize deposited sands, creating yellow-brown plumes. These "fingerprints" make these essential
processes observable. Satellites capture these imprints as numerical data with optical sensors that
orbit the planet. Remote sensing of these small yet influential features, especially when
contextualized with large, continuous monitoring datasets, offers a promising methodology to
constrain their controls across diverse coastlines. This is particularly true alongside ever-
progressing spatial and temporal resolution of satellite data necessary to capture fine-scale,
variable features. Northern California, with its great hydrodynamic diversity and wealth of

environmental data, serves as an ideal observatory to better understand these processes. In this



dissertation, | develop methodologies using these powerful datasets to resolve complex, fine-scale

features in the nearshore.

In Chapter 1, I examine the dispersion of buoyant turbid freshwater plumes from the
Russian River, California, as a representative system in Mediterranean climates. These plumes are
smaller than those typically studied in river plume literature, making them more susceptible to
varying environmental conditions and, therefore, less predictable. Despite their stature, these
smaller plumes are more common and impactful in Mediterranean climate regions globally. I use 15
years of daily MODIS satellite image data alongside coincident environmental data to capture the
complexity of these plumes and resolve the controls of their hydrodynamics. Using novel
methodology in river plume remote sensing, I analyze the statistical relationship between water-
leaving radiance, which serves as a proxy for surface suspended sediment concentration, and
environmental data to characterize the dynamic controls on river outflow turbidity. This work
serves as both a ground truth for recent computational models of smaller plumes and a
presentation of previously undiscussed behavior, presenting insights into the interactions between
river outflow, wave energy, ocean water level, wind conditions, and rotational forces in influencing

plume dispersion trajectories.

In Chapter 2, I present a methodology to enhance the capability of nearshore monitoring
through thermal infrared (TIR) satellite imagery. Many crucial nearshore mixing processes lack
turbid visual signatures, making observation impractical with visible sensors, and are too small for
traditional sea surface temperature (SST) satellites, leaving gaps in understanding nearshore
temperature and chemical mixing processes. I develop a methodology to calibrate high-resolution
(100m) Landsat TIR data, which is typically used for land observation, with traditional ocean-
observing moderate resolution (1km) MODIS SST data, enabling observation of these features. In
this methodology, I form a generalized calibration equation and validate these data with in-situ

temperature measurements at different distances offshore and test its performance on data outside
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of the sample set to assess its general applicability. Validations show that this methodology
significantly increases the accuracy of Landsat's thermal measurements from nearshore waters,
surpassing MODIS SST accuracy and creating a dataset better suited for nearshore observation. The
chapter highlights the potential of this enhanced dataset in revealing initial insights into fine-scale

nearshore temperature mixing.

Finally, in Chapter 3, I explore the dynamics of nearshore surface turbidity by examining
wave-driven cross-shore sediment transport outside the influence of freshwater. Wave orbitals
create friction along the seabed, and their breaking imparts energy on the shoreline, mobilizing
sediments and mixing waters in the cross-shore direction. Monitoring these highly energetic
processes in-situ, especially in rocky environments, is challenging, resulting in significant
knowledge gaps. Remote sensing offers a promising solution but isolating turbid water pixels from
nearshore heterogeneity (e.g., foam and land) proves difficult. In this chapter, I employ novel
machine learning segmentation methodologies to resolve nearshore heterogeneity in high-
resolution satellite imagery, isolating red water-leaving radiances as proxies for sediment-laden
turbidity. Coincident data from spatially distributed wave models and tide gauges allow for an
examination of the impact of waves on turbidity across the entire region, with further investigation
of their control on cross-shore turbidity at 31 specific sites. By comparing these results with
bathymetric data of each site, I differentiate between characteristics of wave-driven sediment
transport in sandy and rocky environments. The findings reveal that rip currents regularly
transport sediments hundreds of meters to kilometers offshore. In rocky shores, rough
bathymetries enhance sediment transport, but sufficient wave energy is necessary to initiate a
turbid signature. In sandy environments, sediments are easily mobilized, but in the absence of
rough bathymetry, wave energy is crucial for offshore sediment transport. Areas with both complex
bathymetry and ample sediment supply facilitate the furthest offshore turbid signals. Transport

extent is enhanced in low water level conditions. This chapter's novel application of machine



learning segmentation to isolate relevant water reflectance, combined with the analysis of wave-
driven sediment transport across diverse coastal environments, provides new insights into the

complex, important dynamics of nearshore turbidity.



CHAPTER 1

Long-term observations of the turbid outflow plume from the Russian River, California.

Abstract

Understanding the mechanisms that spread freshwater away from small river systems and form
turbid, low-salinity coastal plumes is crucial for assessing water quality in coastal waters. We
present an analysis of 15 years (January 2004 to December 2018) of daily MODIS Aqua satellite
data and in-situ instrument data on the turbid freshwater plume that forms off the Russian River
(California, USA), a prototypical Mediterranean-climate, small mountainous river system (SMRS).
We present per-pixel statistical metrics and regression analyses to identify and quantify the
controls on the extent and configuration of the plume exerted by river discharge, waves, winds, and
tides. While freshwater outflow exhibits a persistent signal in nearshore waters, a large-scale plume
only extends offshore into coastal waters during high river flow, when plume turbidity can be
detected more than 10km offshore from the river mouth. Our results show times when wave
radiation stress exceeds outflow inertia, confining the plume within the surf zone and leading to an
absence of detectable plume turbidity in coastal waters. Although tidal currents significantly
influence the plume near the inlet, wind forcing is the primary control on plume shape and extent in
coastal waters, deflecting the turbid outflow more than 30km upcoast or downcoast of the river
mouth with respective wind directions. Coriolis forcing is also significant and observed most clearly
during periods of high river discharge and low wind forcing. In addition to introducing novel
remote sensing methodology for SMRS plume analyses, these findings highlight the complex
interplay of forcing related to tides, river discharge, winds, and waves in shaping the behavior of
SMRS plumes. New insights include the impact of tides on larger discharges, the role of Coriolis
forcing in SMRS plumes, and the effect of cross-shore winds on plume compression. Further, by

considering the Russian River as a model for SMRS, this study can be used to ground-truth existing



numerical models of small river plumes and to contribute to understanding critical for managing

coastal water quality and nearshore ecosystems.

Keywords: MODIS, Coastal Oceanography, Hydrology, River Plumes, Turbidity, Sediment

1. Introduction

In coastal regions with dry summers and wet winters, outflow from small mountain river
systems (SMRS) significantly influences the biogeochemical and geomorphic balances in coastal
waters (Wheatcroft et al., 2010). These river systems (e.g. Russian, Gualala, Garcia, Navarro, Big,
Noyo, Ten Mile, and Mattole Rivers in Northern California, USA) are characterized by small river
basins (<2 x 10* km?) and high relief (>1000m). Outflow fluctuates between near-zero summer
discharges (order 1 m3s-1) and winter discharges several orders of magnitude higher (order 1000
m3s1), transporting seasonal concentrations of sediments to the coastal ocean, exacerbated by

interannual drought and flood cycles (Wheatcroft et al,, 2010).

In Mediterranean-climate regions like Northern California, sediments from these outflows
supply over 80% of the sediment to littoral cells (Griggs and Hein, 1980; Runyan and Griggs, 2003).
Coarse sediments in these outflows deposit quickly nearshore, contributing to the cycle of shoreline
morphodynamics (Warrick, 2020). Finer sediments remain suspended in a surface freshwater layer
(or plume) that can travel hundreds of kilometers alongshore (Warrick et al, 2007). These
suspended particles increase water turbidity, affecting both light attenuation through the water

column and acting as a tracer for sorbed riverine pollutants.

Despite the significant role of SMRS outflow, most research has focused on larger river
systems and small constructed engineered outflows (see discussions in Basdurak et al., 2020). This
research gap is important because SMRS differ significantly from these systems in terms of

discharge and plume dynamics. SMRS have lower average discharges than larger rivers, making



their plume trajectories more dependent on variable environmental forcings rather than the
classical, constant buoyancy-rotation balance (Horner-Devine et al,, 2015). At the same time, SMRS
outflows are more stratified and less dependent on jet dynamics compared to engineered outflows
(Basdurak et al., 2020). SMRS discharges also vary significantly, reflecting values that fall between

those of larger river systems and engineered outflows.

Recent studies have begun addressing plumes from SMRS, primarily using computational
models, with few utilizing remote sensing or in-situ observations. Remote sensing and
observational research are crucial for validating the results of computational models, (see section
1.1). Remote sensing studies typically use the light reflectivity of coastal waters as a proxy for the
concentration of suspended particles in river plumes. These studies can be broadly categorized
based on the spatial and temporal resolution of remotely sensed data. High spatial resolution
studies make use of imagery from Unmanned Aerial Vehicles (UAVs) and fine-resolution satellites
like Landsat 5-9 and Sentinel-2. However, these studies are often limited in temporal scope due to
the logistical challenges of UAV sampling and the infrequent repeat overpasses of high-resolution
satellites. In contrast, low spatial resolution sensors (e.g.,, SeaWIFS, MODIS) benefit from more
frequent data but lack fine-scale spatial resolution and prior works tend to focus on statistical
metrics like mean and standard deviation rather than more nuanced statistical tests such as
correlation and regression, thus overlooking the variability common in small plumes. Moreover,
much of this work predates recent findings on the significant impacts of waves (Rodriguez et al.,
2018, Kastner et al., 2019) and tides (Basdurak et al., 2020) on smaller plumes. Computational
studies often focus on a specific mechanism, thus precluding a more holistic view of plume

dispersion mechanics.

This study aims to enrich understanding of SMRS plume dispersion by observing turbid

outflow from the Russian River in northern California (USA), with a prototypical, seasonally



variable hydrograph. We validate and enrich numerical models across river plume literature by
using updated techniques to compare nearly two decades of remote sensing data from MODIS with
coincident data on waves, tides, and river discharge. Our geospatial results not only align with
existing models across various plume sizes but also reveal previously unexplored controls on
plume shape and the fate of freshwater outflow. We show that the seasonality of discharge in the
Russian River SMRS results in plumes that exhibit behaviors consistent with “small” plumes during
low flows (plume controlled by wave and wind conditions) and “large” plumes during high flows

(plume controlled by buoyancy and Coriolis effects).

Our primary objectives are (i) to identify and quantify the spatial configuration of small
river plumes subject to wind, wave and tidal forcing, (ii) to develop and deploy new methodologies
in river plume remote sensing (iii) to validate and enrich prior simulation models of plumes, and

(iv) to contrast controls on “large” Coriolis-influenced plumes to controls on “small” river plumes.

1.1 River Plumes

River plumes are bodies of freshwater that flow from a river into another body of water,
such as lakes or the ocean. When entering marine waters, these plumes often form a relatively thin
layer of freshwater that is stratified at the surface due to its higher buoyancy compared to denser,
saline ocean water (Horner-Devine et al,, 2015). Large and small plumes are often delineated by the
degree to which the trajectory of their dispersion is dependent on rotational Coriolis forces
(Horner-Devine et al., 2015; Basdurak et al., 2020). This relationship is explored by Garvine, 1995,

where large and small plumes are classified by a non-dimensional Kelvin number K:

_ YL
(c/1)

eq.1

Where y is plume thickness, L is the alongshore length of the plume, c is the internal wave

phase speed, and fis the coriolis parameter. “Large” plumes occur where Coriolis is dominant



(K>>1) and “small” plumes occur where Coriolis effects are dominated by inertia and buoyancy
effects (K<<1). Typical large-plume patterns and outflow trajectories are well documented
(Horner-Devine et al., 2015). As the low-density outflow leaves the outlet, it enters the near-field
plume region where transport is driven by outflow momentum. Eventually, the plume lifts from the
seabed at the critical Froude number (Armi and Farmer, 1986) marking the mid-field region, where
dispersion of the buoyant plume layer is shaped by an interplay between buoyancy (Hetland, 2010),
wind (Rennie et al,1999; Lentz and Largier, 2006; Horner-Devine et al., 2009), Coriolis (Horner-
Devine et al.,, 2015), and discharge (Fong and Geyer, 2002; Horner-Devine et al,, 2009). The
influence of Coriolis results in an anti-cyclonically rotating “bulge”, which scales in size with
discharge rate and duration (Horner-Devine et al.,, 2009). Beyond the bulge is the far-field where
transport is no longer controlled by discharge and the buoyant plume layer travels alongshore as a
shore-attached coastal buoyancy current. Both the mid- and far-field regions of the plume can be
impacted by winds and currents. Upwelling increases the extent of the bulge and induces thinning
in the plume; downwelling winds cause opposite effects (Fong and Geyer, 2001; Lentz and Largier,
2006; Horner-Devine et al.,, 2009). While sufficiently strong winds can overcome Coriolis effects in
large plumes (Pullen and Allen, 2000; Horner-Devine et al., 2009), this is more common in small
plumes (K<<1) that are less susceptible to Coriolis effects (Basdurak et al., 2020; Basdurak and

Largier, 2022).

Some recent publications highlight the role of wave forcing (Wong et al., 2013; Rodriguez et
al,, 2018; Kastner et al., 2019). Depending on the balance between estuary outflow, tidal influences,
and breaking wave momentum, river water can be partially or fully trapped in the surf zone.
Rodriguez et al., (2018) model the balance of momentum (p) between breaking waves and river
discharge with the following equation:

sk, a2
——— = eq. 2
PoBLsz Q2 p q



where Qs river discharge, S2,is wave radiation stress, SLg, is the water depth at the breaking
point, p, is the background density of ocean water, and A is the cross-sectional area at the river or
estuary mouth. As p increases, more freshwater is trapped in the surf zone. Given a high enough
value of p, river outflow becomes completely trapped and is transported alongshore in the surf

zone until later dispersed offshore by rip currents (Clarke and Largier, 2007).

When outflow momentum dominates and river water escapes the surf zone, dispersion
pathways can still be influenced by waves and tides. Basdurak et al.,, 2020 shows that small plumes
are deflected up and down coast from the estuary mouth by alongshore tidal currents. Other works
model the role of wave breaking in turbulent mixing that can slow near-field advection and far-field

dispersion (Gerbi et al., 2013; Thomson et al, 2014).

1.2 Site Description

This study focuses on outflow from the Russian River (California, USA) a prototypical small
mountainous river system (SMRS) in northern California (Fig. 1) that is representative of outflows
from mountainous coasts worldwide. The mouth of the river is about 90 km north of San Francisco,
and the 180-km long river drains a 3850 km2 watershed subject to intense rainfall events in winter
(i.e., atmospheric river events). Winds are seasonal, with persistent strong northerly winds driving
coastal upwelling in spring and summer (April to June), southerly wind events during winter
storms (December to February), and weaker winds in the fall (August to October) as described by

Garcia-Reyes and Largier (2012).

At the mouth of the Russian River is a bar-built estuary that is intermittently closed off
from the ocean by a wave-built sand barrier (Behrens et al., 2013). Adjacent to the mouth of the
estuary, the shores are rocky, and waters are designated as a Marine Protected Area. During high

precipitation events, river discharge exceeds 1000 m3/s, but during low discharge conditions (~4

10



m3/s) water enters and exits the estuary mouth tidally. Comparable conditions exist in many other

northern California estuaries.
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Fig. 1. (A) Map of California, USA, study site highlighted by red box (B) Map of study site and data
sources (@ = Russian River Inlet & CDIP MOP wave energy location, A= USGS River Gauge
#11467000, 4 = BOON wind observatory, @ = NOAA Tide Gauge Station #9415020). Roman
numerals mark (i) Point Reyes, (ii) Bodega Bay and Tomales Bay, and (iii) Bodega Head. (C-E)
Examples of turbid river plumes from MODIS true color images: (C) 28 February 2019, (D) 28
February 2017 and (E) 28 February 2008.
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2. Methods

This study uses daily satellite data and concurrent data on river flow and environmental
conditions. Data on river discharge (Q), wind (W), ocean water level (WL), river turbidity (T), and
wave height (Hs) are available from 2004 to 2019. Environmental data are binned in intervals
preceding each satellite overpass: W, T, Q, and Hs are averaged over the preceding 24 hours while

WL is averaged hourly.

2.1 Environmental Data
Winds: Wind direction and magnitude at Bodega Head were observed with a 4-blade helicoid
propeller and wind vane from May 2001 to May 2014, and with a 2-axis ultrasonic anemometer

after May 2014 (BOON; https://boon.ucdavis.edu/). Daily wind direction was classified in

quadrants relative to the shoreline orientation of 315°: winds blowing from directions between 90°
and 180° are classed as “upcoast”, between 0° and 90° as “off-coast”, between 270° and 360° as
“downcoast”, and between 180° and 270° as “on-coast”. The daily alongshore wind component is
calculated from daily wind speed and direction at an orientation of 315° (i.e., downcoast winds
have positive magnitudes) and the cross-shore wind component is calculated for an orientation of
225° (i.e., on-coast winds have positive magnitudes). Wind data were averaged for the 24 hours
prior to the satellite overpass (zero lag), or for 27-3 hours prior (3-hr lag), or for 30-6 hours prior
(6-hr lag). Correlations with greater lag have previously been found to yield stronger relations

between plume behavior and wind stress (Geyer et al., 2000; Warrick et al.,, 2007).

Tides: Water level data were used to index tidal phase at the time of each satellite image. Data
referenced to MLLW were obtained from the tide gage at Point Reyes (National Oceanic and
Atmospheric Administration gage #9415020), which is known to represent tides at the Russian

River mouth with negligible phase and amplitude differences (].L. Largier and D.S. Behrens
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unpublished data). Water level data are hourly averaged and matched with the time of image

capture time rounded to the nearest hour.

River Discharge and Turbidity: Russian River discharge and turbidity data were collected at
Hacienda Bridge (United States Geological Survey gauge #11467000), approximately 18.5km
upstream of the mouth. Quarter-hourly discharge values are available from October 1987 onward,
and turbidity data are available since June 2008. Turbidity is measured in FNU units with a

monochrome near-infrared LED light (780-900nm) at a detection angle of 90° * 2.5,

Waves: Daily average significant wave height H; at the 10m isobath adjacent to the Russian River
mouth (Fig. 1) are available from the Coastal Data Information Program (CDIP;
https://cdip.ucsd.edu/). These values are generated using a linear, spectral refraction wave model
driven by observations at offshore wave buoys (O’Reilly et al., 2016). Radiation stress ( S2) is

calculated by assuming that phase velocity equals the group velocity in shallow nearshore waters:

Sk . =E=pygHs eq. 3

where E is the mean-depth wave energy density per unit horizontal area and g is gravitational

acceleration.

Daily average S2, and Q were used to calculate a daily value of p (Eqn 2). The value of L is
approximated by depth d. This depth is estimated using the theoretical equation from Miche (1944)
where the depth-limited breaking of a solitary wave occurs at a critical value of Hs/d = 0.781
(Kastner et al., 2019). The cross sectional-area (A) is assumed to be 100 mz?, consistent with the

average dimensions of the inlet channel at the Russian River mouth (Behrens et al., 2013).
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Mouth State: Daily observations of the state of the Russian River mouth are available from 2004 to
2019, allowing classification as open or closed (Behrens, 2013; Largier et al., 2020; Winter, 2020).

These data were extracted from a daily photograph record.

2.2 Satellite Data

Ocean color data were collated for every MODIS Aqua image captured for the study region
(38.95°-37.99°N, 123.75° - 122.85° S) between January 2004 and December 2018, aligning with
daily Russian River inlet-state data. Daily MODIS L1A files were downloaded from NASA’s Ocean

Color website (http://oceancolor.gsfc.nasa.gov/) and subsequently processed to L1B and L2

surface reflectance data (Rrs) using the SeaDas (SeaWIFS Data Analysis System, version 8.1.0, Baith

et al, 2001).

Atmospheric correction was performed using the NIR-SWIR (Near Infrared Radiation-
Shortwave Infrared Radiation) algorithm by Wang et al., (2009). Traditional atmospheric correction
methods rely solely on NIR bands (748 and 869 nm), but these are not suitable for turbid water
conditions. Hence, the Wang et al., (2009) method switches from NIR to SWIR (1240 and 2130nm)
correction for pixels detected as turbid by an index (Wang et al., 2009; Saldias et al., 2012). We used
a pixel size of 500m rather than 250m to resolve heterogeneity in imagery pixels that arise from

issues such as sun glint (Aurin et al., 2013).

Surface reflectance from the 645nm band (Rrse4s) is an accepted proxy for surface turbidity
due to suspended sediments, based on correlations in prior studies (e.g., Lahet and Stramski, 2010;
Saldias et al.,, 2016). We validate this relation for our study site by finding the Spearman non-linear
correlation coefficient between Rrsessand hourly average turbidity measured at the Hacienda
Bridge gage, 18.5 km from the river mouth. We do this independently for each pixel for an image
time series from June 2008 to January 2019. Spearman Rho values are 0.8 at the mouth,

demonstrating that reflectance is an effective turbidity metric, and above 0.7 for locations up to
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4.5km offshore of the mouth (Fig. 2), despite the spatial offset and potential for changes in turbidity

between the river gauge and pixels in coastal waters.
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Fig. 2. Map of pixel-wise Spearman’s rho correlation coefficients between hourly-average measured
turbidity from USGS gauge #11467000 and coincident Rrsess at each pixel position.
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2.3 Plume Detection

To isolate river plume effects on ocean turbidity apart from other processes (e.g.,
phytoplankton blooms, wave-driven resuspension, rip currents, white capping), we examine the
distribution of turbidity values in coastal waters on dates when the river inlet was observed as
closed. We determined a threshold value of 0.59 x 10-3 Sr-! for non-plume turbidity by calculating
the 97t percentile value of Rrsess values for all pixels 1.5km offshore across 1371 images captured
when the Russian River inlet was closed (Fig. 3). This threshold assumes that in the absence of
sediment-laden freshwater, the ambient Rrsess reflectance of oceanic waters is much less than
reflectance values associated with the plume. Therefore, the maximum non-freshened values would
represent the highest condition before Rrse4s is elevated by freshwater sediment influence. The 3%
of values exceeding this threshold are likely due to occasional wave-driven events that cause
resuspension and circulation, exporting nearshore turbidity offshore (Speiser et al, in preparation).
Nonetheless, even these high values rarely exceed 1.0 x 10-3 Sr-1, which is an order of magnitude
lower than typical plume turbidity values (Fig. 4). Similar thresholding methodologies have been
applied in other river plume remote sensing studies, although without the advantage of an estuary

closure (for example, Saldias et al., 2012; Mendes et al., 2014; Saldias et al., 2016)
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Fig. 3. Frequency histogram of the average Rrsess at all pixels 1.5 km offshore from all MODIS
images on days when the Russian River mouth was closed. The red line marks the 97t percentile
value, 0.59 x 10-3 Sr1.

2.4 Regression Analysis

To evaluate the influence of different environmental drivers on plume behavior we
calculated Spearman’s Rho non-linear regression correlation coefficients between coincident
environmental data (i.e, W, Hs, WL, Q, and T) and turbidity proxy values Rrse4s at each pixel position
across the study region. We used statistical tests (pixel correlations) instead of pixel mean or
median to differentiate between different processes that occur simultaneously. Further, by
evaluating per-pixel regression we can identify spatial patterns in processes controlling plume
presence. Spearman’s rho ordinal rank correlation was chosen over linear regression as pixel
values are altered simultaneously by other drivers and Spearman does not require linear
relationships. For instance, the turbidity of a pixel may be strongly influenced by river discharge,
but transport to that specific position may be diminished or enhanced by processes such as wind-
driven transport, altering the pixel Rrsess value. Further, Spearman’s rho correlation coefficients are
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less impacted by outliers, which are caused by non-observed variables, thus highlighting

relationships with the tested variable.

To assess the strength of correlation we adopt the classes outlined by Schober et al.,(2018)
- Table 1. To demarcate spatial extent of the correlation, contours are drawn to encompass the
mouth of the Russian River. If a contour does not surround the river inlet, it is not highlighted. The
value ranges for these classes are determined to the second decimal (i.e., 0.394 falls in the “weak
correlation class”, while 0.395 is rounded to 0.40 and falls in the “moderate correlation” class). This
approach precludes attention on features due to other river outflows or wave-driven rip-current

features.

Absolute value of Rho
Interpretation

0.00-0.10 | Negligible Correlation

0.10-0.39 | Weak Correlation

0.40-0.69 | Moderate Correlation

0.70-0.89 | Strong Correlation

0.90-1.00 | Very Strong Correlation

Table 1: Correlation strength classes from Schober et al., 2018.
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3. Results

3.1 Nearshore Trapping of Plume

As found by Rodriguez et al.,,(2018), wave radiation stress can stall or fully trap the outflow
jet, precluding the formation of a plume beyond the nearshore (surf zone and rip-current zone),
which is the focus of this paper. Thus, instead of using a minimum daily average discharge as a
qualifier for images used in plume analyses (e.g. Saldias et al., 2012; Mendes et al., 2014;
Fernandez-Novoa et al., 2015; Saldias et al.,, 2016), we use a qualifying threshold based on daily
average p value. For all images when the Russian River inlet was open (n=3419), we calculated the
daily average p and divided the dataset into deciles. For each decile, we created an average image.
Only the lowest four p-value deciles exhibit reflectance values 1 km offshore that exceed the plume
turbidity threshold. The 1km location was chosen to mitigate any influence of subpixel constituents
such as land, sea stacks, boulders, and white water and foam lines generated by breaking waves. We
thus use p = 41 as the upper bound for images used in our evaluation of the offshore turbid plume
(a total of 1357 images). This is the lower bound of the 4t decile (not the average p value 109), i.e,,
only the three lowest deciles are used in the analysis. The distributions of available pixels across
these images are mapped in Fig. 4., with an average of n=498 values at each pixel position, a

minimum of n=27 and a maximum of n=650.
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Fig. 4. Mapped statistics of dataset images when plume breaks through surf zone (A) Count of
available values at each pixel position. (B) Pixel-wise average of Rrsess ranging from 0.0 to .016 Sr-1.
The black line is the contour where average Rrsess equals plume turbidity threshold value of 0.59 x
10-3 Sr-1.
3.2 Average Plume Pattern

The shape of the turbid plume exiting the Russian River can vary significantly (Fig. 1).
However, there is a clear zone of elevated turbidity in the 1357-image average field that extends
about 10 km upcoast, downcoast and offshore of the mouth (Fig. 4), encompassing the near-field
and mid-field of most plume patterns. The far-field evidently varies across wind conditions with no
clear pattern in the average. Further, other sources and processes are evident beyond 10 km,
including outflow from the Gualala River (38.7¢° N), Tomales/Bodega Bay freshwater sources (38.2°¢
N) and nearshore zones along wave-exposed beaches on the north shore of Bodega Head (38.3° N)
and Point Reyes (38.1°N). The average alongshore (upcoast plus downcoast) extent of turbidity
above the plume threshold increases with discharge rate, from 14 km for lowest discharge quintile
to 54 km, 65 km, and 77 km for second through fourth quintiles, respectively. For the fifth discharge
quintile, elevated turbidity from the Russian River merges with multiple sources in the region (cf,,

plume coalescence outlined by Warrick and Farnsworth 2017). Average offshore extent is small for

low discharge (3 km) but pushes significantly further offshore for higher discharge (8 km, 10 km,
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and 14 km for the second through fourth quintiles, respectively). The plume area encompassed by
the turbidity threshold contour increases from 20 km?2 for low discharges to 180, 298, and 698 km?2

for second, third, and fourth quintiles, respectively.

3.3 River Discharge Effects

As river outflow increases, a larger area of turbid water is observed in coastal waters off the
Russian River mouth. This plume-affected zone is demarcated by high Spearman correlation values
at pixels where Rrsegqs turbidity increases with increases in river discharge Q. The spatial
distribution of correlations mapped in Fig. 5 shows moderate correlations (greater than 0.4) in a
zone extending 11 km offshore of the mouth and 30 km alongshore (darker colors enclosed by
moderate correlation contour), both upcoast and downcoast of the mouth - but notably detached
from the shoreline south of the mouth. The highest correlation (rho = 0.71) is about 4km offshore of
the Russian River mouth (Fig. 5) - lower correlations are found in persistently turbid nearshore
waters. This core zone is strongly and predictably impacted by changes in river discharge, but there
is an extensive zone of weaker correlations that is continuous through the study area from Point
Reyes to Point Arena. The weak-correlation contour is found about 25 km offshore, indicating that
discharge-related elevated turbidity extends over the entire shelf during times of high flow in the

Russian River, although including multiple sources with correlated outflow following rain events.
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Fig. 5. Pixel-wise correlation coefficients between Rrsess and coincident daily average discharge (Q)
values for all dates with visible plumes (average Q is 156.52 m?3/s). The weak correlation (rho)
threshold (rho = 0.10) and moderate correlation threshold (rho = 0.40) are shown; only a few
pixels exceed the strong correlation threshold (rho = 0.70). The inset graph shows Rrsess values (y
axis) versus daily discharge values (x axis) for the pixel position with the highest correlation (rho =

0.71).

Anticipating different plume behavior during high-discharge events and low-discharge
events, pixel-wise turbidity-discharge correlations were calculated separately for each daily-
average-discharge quartile (Fig. 6, panel c.). With highest river flow, the zone of moderate
correlations is found primarily on the upcoast (north) side of the river mouth, pushing 18 km
offshore, and separated from the coast. At the center of this zone, the maximum correlation is 0.83.
While weak correlations extend over the whole shelf region, elevated correlations are observed in
Bodega Bay where turbid outflows include Tomales Bay and Estero Americano (Fig. 1) and at the

bottom of the frame where turbid waters flow north from the Gulf of Farallones (Largier et al.,
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1993; Kaplan and Largier, 2006). For plumes when discharge is in the second highest quartile (Fig.

6, panel c.), correlations are weaker but elevated values are again skewed to the upcoast side. The

weak-correlation contour no longer extends over the shelf, and it is centered on the Russian River

mouth, extending about 30 km upcoast and about 10 km downcoast separated from the coast.

While a coherent zone of correlation is evident for the second lowest quartile (Fig. 6, panel b.) and

weak correlations extend about 30 km alongshore and 15 km offshore, the correlation zone is

notably weak for the lowest quartile discharge (Fig. 6, panel a.). While turbid plumes are observed

on these low-discharge days, the shape and size of the plume is more variable, altered by tidal state

(section 3.5) and wind forcing (section 3.4)
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Fig. 6. (A) Pixel-wise correlation coefficients between Rrsess and coincident daily average discharge
(Q) values calculated separately for discharge quartiles from low to high (panels A.i-A.iv). (B) Wind
roses corresponding to each quartile. The “RR” line indicates shoreline orientation at the mouth of
the Russian River. Wind direction is in meteorological convention (i.e., direction from which the
wind blows). (C) Histogram showing the discharge for each quartile; colors of bars correspond to
respective discharge quartiles 0-25t percentile (16 to 42m3/s); 25t-50t percentile (42 to 84m3/s);
50t-75t% (84-203m3/s); 75t to 100t percentile (203 to 2366m3/s)
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Wind forcing shows a correlation with discharge rate (Fig. 6), with more southerly winds
during higher discharges and more northerly winds during lower discharges. To preclude the
influence of wind on plume behavior, we also calculate pixel-wise correlation between Q and Rrseas
for calm days (wind speeds in the lowest quartile, which is less than 6.5 m/s). In the absence of
strong wind effects (Fig. 7), correlations are higher (compare with Fig. 5), exhibiting a zone of
strong correlation reaching 6 km offshore and 5 km upcoast. The maximum correlation coefficient
is rho = 0.81. The moderate-correlation contour also exhibits marked asymmetry, extending ~20

km upcoast and ~5 km downcoast.
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Fig. 7. (A) Pixel-wise correlation coefficients between Rrsess and coincident daily average discharge
(Q) values for days with weak winds. (B) Wind rose representing data from the subset, with wind
direction in meteorological convention. (C) Histogram depicting discharge rates for this subset.
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3.4 Wind Effects

To explore wind effects on plume behavior we calculate discharge-turbidity relationships
for different daily average wind direction (Fig. 8), and we calculate correlations between turbidity
and wind speed in each of four quadrants (upcoast, downcoast, onshore, offshore) irrespective of

discharge but with p <41 as before (Fig. 9).

When the wind blows from the southeast (upcoast quadrant), turbidities increase markedly
on the north side of the river mouth during high discharge, with a coherent band of strong
correlation extending about 12 km upcoast from the mouth and separate from the shore. However,
the broader zone of moderate correlation is attached to the shore and extends over 30 km upcoast
(Fig. 8). When daily average discharge is shifted 3 hours earlier (i.e., discharge averaged from 27
hours to 3 hours before the satellite image), or 6 hours earlier, maximum correlations are similar,
but the zone of moderate correlation extends further upcoast, increasing from 33 to 39 km
consistent with an upcoast propagation rate of 0.28 m/s. Under these upcoast winds, significant
discharge-turbidity correlations are also seen emerging from Bodega Bay sources and extending
north from the Gulf of Farallones where outflow from San Francisco Bay enters the ocean - these
turbidity signals also reach further north with increased lag between discharge and turbidity. In
contrast, when the wind blows from the northwest (downcoast quadrant), turbidities increase
markedly on the south side of the river mouth, although no pixels exhibit strong correlation. The 30
km zone of moderate correlation extends to Bodega Bay, but remains detached from the shore,
consistent with active upwelling driven by NW wind stress and persistent nearshore turbidity along
the north shore of Bodega Head. It is interesting to see this zone extending into Bodega Bay, most
likely due to merging with turbidity from sources in Bodega Bay and Tomales Bay (cf., Fig. 1). The
absence of discharge-correlated turbidity north of the mouth during NW winds shows that the
upcoast configuration of the plume requires high discharge (Fig. 6) and/or weak winds (Fig. 7) -
conditions under which Coriolis forcing is expected to be important.
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Onshore and offshore winds also influence the shape of the plume (Fig. 8). During onshore winds
(on-coast), only pixels near the mouth exhibit moderate or strong correlations, illustrating
compression of the plume on the shore and limited alongshore plume propagation. Further, in
contrast to the no-wind case (Fig. 7) there is no upcoast tendency. With increasing lag between
discharge and turbidity, the moderate-correlation plume zone is further reduced in offshore extent,
decreasing from 12 to 9 and 8.5 km, respectively. At the same time, the shelf-wide weak
correlations are compressed from 32 to 14 and 12 km, respectively. In contrast, offshore winds (oft-

coast) result in a continuous band of high discharge-turbidity correlations along the coast, although

there is notable small-scale spatial heterogeneity with adjacent pixels exhibiting different values.
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Fig. 8. Pixel-wise correlation coefficients between Rrsess and coincident daily average Q values
calculated separately for different wind directions (columns) and time lags (rows). The number of
images in each subset (n) is listed beneath each image, along with information on average discharge
(Q in m3/s), average wind direction (Dir), and average wind speed in the subset (W in m/s).
Columns, left to right: Daily average upcoast winds, downcoast winds, onshore winds, and offshore
winds; Rows, top to bottom: no lag, 3 hours lag, 6 hours lag.
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The second analysis of wind influences on the plume addresses the correlation between
turbidity at a given pixel and wind speed - calculated separately for four wind vector directions:
upcoast, downcoast, onshore, and offshore. While discharge is not a factor, all data are from days
when discharge is significant (i.e., the plume is not trapped in the surf zone, p < 41). Again, we
calculate correlations for wind averaged over the day preceding the satellite overpass, and for daily
average wind shifted 3 hrs and 6 hrs earlier. In all cases, the correlation with wind (Fig. 9) is
notably weaker than correlation with discharge (Figs. 5, 6, 7, 8), but the weak correlations describe

coherent patterns in plume response to wind forcing.

On days with stronger upcoast winds, turbidity is higher in a zone extending upcoast from
the mouth of the Russian River (Fig. 9, left panels). Evidently, this response to wind forcing takes
time as the 3-hr and 6-hr lagged results show higher correlations and a better-defined plume zone.
For zero lag, there is no response south of the mouth, but this is not the case for 3-hr and 6-hr lags,
with significant correlations on the north side of Bodega Head, within Bodega Bay and around Point
Reyes (likely explained by other turbid waters being advected northward during these upcoast,
downwelling favorable winds). In contrast, turbidity increases south of the mouth on days with
stronger downcoast winds, forming a 42-km-long continuous zone from the mouth of the river to
Point Reyes (Fig. 9 second column), becoming more marked with 6-hr lag due to stronger negative
correlations offshore. Correlations are low nearshore, specifically along the north coast of Point
Reyes, which is persistently turbid due to wave-driven resuspension. During these NW winds, a
marked zone of negative correlation is evident north of the mouth, indicating that turbid plume
waters are less likely to be there with stronger downcoast winds, i.e., the upcoast plume pattern
found on calm days and during upcoast winds is weakened or prevented by downcoast winds that
are strong enough. Negative correlations west of Point Reyes similarly indicate that NW winds

preclude upcoast propagation of turbid waters from the Gulf of Farallones. These results are all for
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periods when there is significant discharge from the Russian River (average Q ~ 130 m3/s), which

is not typical of the summer upwelling season.

Onshore winds also have a direct effect on turbidity, with higher turbidity observed near
the river mouth with stronger onshore winds (Fig. 9 third column). This zone is centered on the
mouth and strongest at the mouth. Correlations weaken with lag, indicating that the response to
onshore winds is quicker than the response to alongshore winds. There is little correlation of
turbidity with offshore winds at zero lag (Fig. 9 right panels). However, there is a marked nearshore
zone extending north from the river mouth for images lagged 6 hours, representing increased
turbidity in the upcoast plume zone with increased offshore winds, which may represent a surface
Ekman response. There is a similar zone of increased turbidity in the Gulf of Farallones, south of

Point Reyes (i.e., just north of the mouth of San Francisco Bay).
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Fig. 9. Pixelwise correlation coefficients between Rrsess and coincident daily average wind speed
calculated separately for different wind quadrants (columns) and time lags (rows). The number of
images in each subset (n) is listed beneath each image, along with information on average discharge
(Q m3/s) and average windspeed (m/s) in alongshore and cross-shore orientations. Columns, left
to right: daily average upcoast winds, downcoast winds, onshore winds, and offshore winds; Rows,
top to down: no lag, 3 hours lag, 6 hours lag.

3.5 Tidal Effects

To explore tidal effects on the turbid plume of the Russian River, we calculate correlations
between tidally varying water level (WL) and the turbidity index Rrse4s for each pixel (Fig. 10), as
before, only using data when p < 41. Positive correlations indicate increased turbidity at higher
tides and negative correlations indicate increased turbidity at lower tides. Correlations are weak,

but small-scale zones are evident adjacent to the Russian River mouth.

29



Coherent zones of tide-correlated turbidity are most apparent for moderate discharge. For
both the second and third discharge quartiles, there is a tendency for higher turbidity at high tide
along the shore north of the mouth. However, to the south of the mouth, there is a tendency for
higher turbidity at low tide (or lower turbidity at high tide), most apparent in high-discharge
quartile plots. Also, for the second quartile, there is a small, elongated zone immediately off the

mouth, corresponding to high turbidity at low tide.

0-25 25%. 50t 75t - 100
123.2'W 123 W 1232w 123w 123'w 123.2'wW 123'W
hom
386N _\ ()
- =
c Ly~ v T
I ;’.*15, - : s
T
ﬁ # o b '...\h;,\ E'-'-%". » = O
ERT s 2 .i# Ly d y
R - A ' g oA
g - i) S ¥ e
L, S T J B A - ;
R - B i
3 B | el P | B
b r .b " o -3 i -:_ M _)
i, ETEN ST et Ak S

<-30 -25-20 -15-10 -05 O .05 .10 .15 .20 .25 >3

Fig. 10. Pixelwise correlation coefficients between Rrssss and coincident water level (WL),
calculated separately for four discharge quartiles. Maps are organized by increasing discharge (Q)
quartiles from left to right: 0-25% percentile (16 to 42m3/s); 25%-50t percentile (42 to 84m3/s);
50t-75% (84 to 203m3/s); 75% - 100t percentile (203 to 2366m3/s)

4. Discussion

Runoff of freshwater from the land forms distinct low-salinity, turbid plumes in the coastal
ocean, with shape and extent varying in response to river flow rate and ocean conditions. Prior
work has identified at least four types of river plume, including classical large plumes controlled by
a balance between buoyancy and Coriolis (Garvine, 1987; Horner-Devine, 2014), wind deflected

plumes (Hickey et al., 2005; Lentz and Largier, 2002; Basdurak and Largier, 2022), tidally advected
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plumes (Basdurak et al., 2020), and plumes entrained into the surf zone by wave action (Kim et al.,
2004; Clarke et al., 2007; Rodriguez et al., 2018; Kastner et al.,, 2019). Here we address a river
where all these plume paradigms are observed, with different plume behavior occurring at different
times. Outflow from the Russian River creates a turbid plume that is visible in satellite imagery (Fig.
1), both during high discharge and low discharge. Analysis of how turbidity at specific coastal ocean
locations varies with changes in discharge, wind, waves, and tides reveals coherent patterns that
reflect the influence of all four factors. While satellite data only enables us to track turbidity
(concentration of fine suspended sediment), it is used here as a tracer for salinity patterns and

patterns in the concentration of runoff-borne material .

Satellite data are only from the surface of the plume, lacking information on stratification
and sub-surface structure. However, our results corroborate models and experiments, which help
us explain the observed plume surface patterns. This study is novel in the degree of replication
(~1500 whole-plume observations over 15 years), which allows us to consider multiple interacting
drivers rather than reducing our analysis to a single dynamic. This immense data set shows the
complexity and variability in plume types (different dominant forcing) - and variability even within
plume types due to secondary forcing terms. Results show coherent patterns that vary with

changes in river discharge, wind speed and direction, tidal phase, and wave height.

4.1 River Discharge

The strongest control on plume size and shape is exerted by the river outflow rate
(discharge Q), shown by pixelwise correlation with turbidity (Figs. 5-8). Not only does high
discharge result in a large volume of water, but it also represents a high buoyancy flux that explains
spreading of the plume beyond the near field (where inertia dominates). The larger spatial scales
(offshore extent, plume area) result in stronger Coriolis forcing and the observed tendency for high-

discharge plumes to turn to the right, i.e., upcoast (Fig. 6). Thus, the Russian River plume behaves
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like other “large” river plumes in the classical dichotomy articulated by Garvine (1995) and others
(Horner-Devine et al., 2015). However, while the Coriolis-induced turning region is observed,
discharge off the Russian River and other SMRS is highly variable and high-discharge conditions
last for only a few days so that one does not expect a coastal buoyancy current to form as observed
for systems with more persistent outflow, e.g., Chesapeake Bay (Rennie et al.,, 1999), Mississippi
River (Castillo and Miller, 2008). In contrast to the coasts characterized by singular, large outflows,
the northern California coast is characterized by multiple SMRS that experience simultaneous high
discharge events. When plumes coalesce (Warrick and Farnsworth 2017) a coastal buoyancy
current may form, as observed off Oregon by Mazzini et al., (2014). For weaker discharges, Coriolis
is not a primary forcing term, and the “small” plume configuration is shaped primarily by wind and

tide as seen in models (Basdurak et al,2020; Basdurak & Largier, 2022).

4.2 Wind Speed and Direction

The coastal ocean off northern California is subject to northerly upwelling-favorable winds
for much of the year (Garcia-Reyes and Largier, 2012), but winds are more variable in winter when
runoff events occur. The plume pattern is markedly different between days with upcoast
(downwelling favorable) and downcoast (upwelling favorable) winds (Figs. 8 and 9). In all wind
states the correlation between turbidity and discharge remains moderately strong near the mouth
of the river (Fig. 8), but extends only upcoast during southerly/upcoast winds, and downcoast
during northerly /downcoast winds. This indicates that wind forcing overcomes the buoyancy-
Coriolis balance that makes the plume turn right and extend upcoast in the absence of wind (Fig. 7).
This response of the plume to wind is also seen in the pixelwise correlation between turbidity and
wind speed, calculated for different wind states (Fig. 9). While turbidity-wind correlations are

notably weaker than turbidity-discharge correlations, during upcoast winds there is a coherent
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zone north of the mouth where higher turbidities are observed during stronger winds (most
apparent with lag between turbidity and wind), i.e,, it is not just the wind direction but also the
strength of the wind that influences plume behavior. Likewise, a coherent zone is observed south of

the mouth during downcoast winds.

One would expect turbidity-wind correlations to be weaker than turbidity-discharge
correlations as wind does not alter the amount of runoff or turbidity and only influences the flow
patterns in the receiving coastal waters. As discussed by Basdurak and Largier (2022), wind has
multiple effects on river plumes including the direct effect of wind stress and the effect of wind-
driven currents. Alongshore currents in this region are well correlated with alongshore wind
forcing (Winant et al., 1987; Largier et al., 1993) and these currents can push and drag plume
waters by upstream frontal convergence and underlying interfacial stress, respectively. The
increase in correlation with lag is consistent with the lag in correlations between alongshore
current and wind. At the same time, surface wind stress can force the plume directly, and most
effectively when plume stratification is strong enough to contain added momentum in the shallow
surface plume layer. Basdurak and Largier (2022) show that surface stress may move the whole
plume, when mixing extends throughout the plume layer, or it may strain the plume and thus thin it
and spread it downwind, when mixing decreases with depth (suppressed by stratification in the
plume). These surface data provide no direct insight to sub-surface structure, but it is notable in
Fig. 9 that the zone of coherent turbidity-wind correlation is confined nearshore with downwelling
winds (onshore Ekman transport) and spread offshore with upwelling winds (offshore Ekman

transport).

We find that cross-shore winds are also important, consistent with model results from
Basdurak and Largier (2022). Indeed, turbidity-discharge correlations are strongest close to the

river mouth during onshore winds (Fig. 8), indicating that high-turbidity waters are retained near
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the mouth during onshore winds, countering the offshore forcing due to outflow inertia and
buoyancy-driven spreading. As onshore winds are not expected to drive strong onshore currents,
this effect is likely due to direct wind forcing, i.e., surface wind stress. While there is a coastwide
narrowing in the band of turbidity-discharge correlations with onshore winds, the zone of
moderate/strong correlation extends only ~10 km alongshore (both upcoast and downcoast),
indicating that onshore winds tend to prevent upcoast propagation of the plume. A similar near-
mouth zone is observed for turbidity-wind correlation, showing that turbidities are higher with
stronger onshore winds (although not nearshore downcoast of the mouth). It is interesting to note
that the turbidity response to onshore wind does not exhibit a lag, which is consistent with direct
forcing by wind stress and shorter time scales that do not involve Coriolis forcing. This plume
compression by onshore winds has received little prior attention and only in models (Osadchiev et
al, 2013; Basdurak and Largier, 2022) — we are unaware of any prior observations showing this

effect.

4.3 Waves

As shown by Rodriguez et al., (2018) and Kastner et al., (2019), waves can stall the outflow
jet and trap runoff and thus turbidity in surf zone and rip-current influenced nearshore waters.
Here, we show that wave forcing can also be important for larger rivers, such as the Russian River -
either during low discharge or during periods of large waves and high radiation stress. Through
analysis of turbidity-discharge correlations, we quantify a threshold for the wave-outflow
parameter p formulated by Rodriguez et al., (2018): for p values in the upper six deciles, we do not
see plume-level Rrsess turbidity at pixels located 1 km offshore of the mouth of the Russian River, so
we choose p = 41 as the threshold for plumes escaping wave-dominated nearshore waters. This is
comparable with a p-value of 20 obtained by Rodriguez et al., (2018) from numerical simulations

representing conditions at the mouth of Tijuana River (Hs = 1m; Q = 10m/s3). During strong wave
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forcing, turbid outflow can be trapped nearshore for river discharge as high as ~40 m3/s, showing
that wave forcing is likely to be important for all SMRS on wave-exposed coasts. This study is the

first empirical validation of this wave-outflow momentum balance for a SMRS.

While river waters may be exported from the surf zone through rip currents after being
initially trapped (Clarke et al., 2007), the inertia of the outflow has been lost and even the buoyancy
head has been dissipated by mixing in the nearshore. Consequently, these turbid, low-salinity
waters are more likely to be dispersed passively and without stratification. And without immediate
mechanisms to transport these waters offshore, they are likely to remain in contact with the shore

far from the mouth of the river (e.g., Kim et al.,2004).

4.4 Tides

Through an analysis of turbidity-water level correlations (Fig. 10), we show tidal variability
in plume behavior addition to strong control by discharge and additional significant control by
wind forcing. Basdurak et al., (2020) model the influence of tide on outflow from an idealized SMRS
in California and show the alongshore advection of the plume by reversing tidal currents (best
described by comparison to the wagging tail of a dog). As noted by Basdurak and Largier (2022),
these tidal influences are readily dominated by wind forcing, but in all but the strongest winds the
plume continues to exhibit some tidal variability. Consistent with Basdurak et al., (2020) we
observed increasing turbidity north of the river mouth during rising tides (Fig. 10), explained by
the northward advection of turbid outflow by alongshore tidal currents. The effect is not observed
for weak discharge when turbidity is low and the plume can easily be deflected by winds. The effect
is strongest for moderately high discharge (up to ~200 m3/s), when turbidity is higher and there is
a tendency for upcoast transport, which can be enhanced by upcoast tidal currents. For highest
discharges, correlations are low as the plume is persistent along this coast, without turbidity

gradients that can be advected by tidal currents.
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South of the river mouth (downcoast), turbidity increases over the falling tide (Fig. 10),
consistent with southward advection of turbid waters by the alongshore tidal current. Even if the
tidal component is smaller than wind-driven component, it introduces tidal variability in the
current which will explain tidal variability in turbidity at a point, given the alongshore gradient in
turbidity. Again, the effect is not observed for weakest discharges, but here it is strongest for the

upper two discharge quartiles and higher correlations are observed than upcoast of the mouth.

In addition to this alongshore tidal advection, tides modulate the outflow from the Russian
River estuary (Behrens et al.,, 2013). This effect may explain the offshore elongated shape of the
negative correlation observed for the second discharge quartile (Fig. 10), which is included in the
negative correlation zone for third and fourth quartiles. Tidal fluctuations in outflow are more
marked for weak/moderate river discharge when river flow can be retained in the estuary during
rising tides and maximum outflow of turbid waters occurs during falling tides, explaining offshore
advection and tidally increased turbidity in this zone. Downcoast of the mouth the tidal efflux effect
and the alongshore tidal advection effect both account for a negative correlation, whereas the
effects have opposite sign upcoast of the mouth, which may explain the marked negative zone
immediately south of the mouth of the river. This may also explain the absence of a positive signal
about the inlet in the lowest discharge quartile in Fig. 10, as a rising tide could reduce outflow from

small discharges.

4.5 Other Nearby Sources of Turbidity

There are multiple sources of turbidity in the coastal waters off northern California,
including land runoff, bay outflow, wave-driven resuspension, and tidal resuspension. Tidal
resuspension is not apparent in open waters outside of tidal bays like San Francisco Bay, but wave-
driven resuspension of fine sediment is evident in nearshore waters along the coast of northern

California, which is the focus of a companion study (Speiser et al, in prep.) - this is evident as high
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mean turbidity along the wave-exposed north shores of Bodega Head and Point Reyes (Fig. 4). Here
our interest is in the effect of river plumes, which we explore through the Russian River case study.
Patterns of turbidity-discharge correlation show a clear maximum close to the river mouth,
weakening with distance away from the mouth due to decreasing turbidity and the importance of
other processes and sources. Some alternative turbidity sources are evident in our study because
discharge from nearby rivers (e.g.,, Gualala River) is correlated with that in the Russian River, thus
accounting for the high turbidity-correlation values off the mouth of the Gualala River (38.77¢ N,
Figs. 5, 7 and 8). The Gualala plume is visible on 28 February 2019 (Fig. 1b) and in a map of mean

turbidity (Fig. 4).

High levels of turbidity in Bodega Bay and Tomales Bay, evident in the image from 28
February 2019 (Fig. 1C), are also associated with land runoff through smaller rivers including
Estero Americano and Estero San Antonio that enter Bodega Bay and Walker Creek and Lagunitas
Creek that enter Tomales Bay. Again, high discharge events occur simultaneously in these small
rivers and the Russian River following rain events, thus accounting for high turbidity-discharge
correlations in Bodega Bay (Fig. 5, 6, 7), which can merge with high correlations associated with the

Russian River (Fig. 8) - and potentially misinterpreted as being due to the Russian River.

A third regional source of turbidity is outflow from San Francisco Bay, entering the ocean
through its mouth south of Point Reyes (37.8°N). Although turbidity is lower than in river plumes
(Fig. 1C), there is a coherent pattern of turbidity associated with northward transport past Point
Reyes (Kaplan and Largier, 2006; Largier, 2020) that is evident during high-discharge events when
the Bay outflow turns right under the influence of Coriolis forcing (Fig. 6) and that accounts for
notably high turbidity-discharge correlations during southerly winds (Fig. 8) and markedly higher
turbidities during stronger southerly winds (Fig. 9). These low-salinity events are recorded at

Bodega Head (Ricart et al., 2024).
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4.6 Implications of Plume Patterns

Satellite data on surface reflectance allows analysis of surface turbidity patterns that we
have quantified and subsequently explained in terms of plume behavior. The analysis of turbidity is
immediately valuable in providing insight to sub-surface light levels important for photosynthesis
and insight to the fate of fine terrigenous sediment and sorbed materials that can include organics,
metals, and pollutants. Further, the spatial extent (> 30 km) and temporal persistence (> 1 day) of
the observed turbidity patterns indicate slow settling velocities so that the decrease in
concentration away from the mouth of the river is likely controlled by mixing and dilution. In that
case these patterns of turbidity are also a reasonable first estimate of patterns of dissolved material
including salinity, nutrients, and carbon. The zone of impact (area where river-borne material is
concentrated) varies with changes in discharge, winds, waves, and tides - but clear correlations
emerge that can explain patterns of exposure to diverse river-borne constituents. There is growing
interest in the exposure of shoreline environments (e.g.,, recreational beaches) and nearshore
environments (e.g., kelp forests) to runoff, which may transport pathogens, e.g,, toxoplasma gondii
(Shapiro et al,, 2015) and fecal coliform (Kim et al, 2004) and other pollutants (Rogowski et al.,
2015). There is also growing interest in the role of river plumes in explaining kelp refugia amidst a
catastrophic loss of kelp forests off northern California (Rogers-Bennett et al, 2019; Cavanaugh et
al,, 2023; Ricart et al, in review), in their potential role in ameliorating or exacerbating nearshore
ocean acidification due to their high carbon content (Stets et al,, 2017), and in their potential for
explaining localized stratification and hypoxia. Shoreline attachment is shown to be strongest on
the upcoast side of the Russian River mouth and this is generally expected. Stronger upwelling
winds are anticipated with climate change (Garcia-Reyes et al., 2022) and that would reduce this
effect, but at the same time more intense flow events are anticipated with more frequent
atmospheric river events (Albano et al,, 2020) and that would intensify the shoreline impacts

upcoast of the mouth.
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5. Conclusion

The long record of daily MODIS Aqua imagery of coastal waters off the Russian River offers
a comprehensive overview of plume behavior, specifically identifying features characteristic of
plumes formed off the mouth of Mediterranean-climate, small-mountainous-river-systems (SMRS).
This expansive dataset, contextualized by coincident environmental monitoring data, corroborates
several plume models and offers new insights into the interaction between buoyancy-Coriolis

forcing with wind forcing, wave forcing, and tidal forcing.

Results from our study highlight the significant control of river outflow rate on plume size
and shape and the contrast between small and large plumes. High discharge rates result in “large”
plumes with significant Coriolis influence beyond the near field whereas low discharge rates result
in “small” plumes subject to forcing by winds and tides. The spatial extent of the plume varies
significantly, with the average alongshore extent of turbid plumes increasing from 14 km for the
lowest discharge quintile to 77 km in the highest quintile. Similarly, the offshore extent increases
from 3 km to 14 km across the same quintiles, and plume area increases from 20 km? to 698 km?. In
the highest quintile, outflow from the Russian River plumes coalesces with other regional outflows,
obscuring the degree of individual contribution to coastal turbidity that extends throughout the

study site.

Maps of the correlation of turbidity with observed environmental indices clarify the roles of
wave, tide, and wind forcing. Wave forcing, quantified through the wave-outflow momentum
balance parameter p, shows that plume-level turbidity is not observed more than 1 km offshore
when p > 41, as wave radiation stress dominates river outflow momentum. For plumes with enough
discharge momentum to overcome wave forcing, near-field dispersion is modulated by tidal forces,
causing upcoast and downcoast deflection during rising and falling tides, respectively. The far-field

plume is strongly controlled by wind direction, with discharge-correlated turbidity extending more
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than 30 km upcoast (and minimal downcoast signal) during southerly winds. During northerly
winds, discharge-correlated turbidity extends 30 km downcoast with no upcoast signal. This
demonstrates the dominance of wind over Coriolis forcing, except during weak winds or very high

discharge. Onshore winds compress river sediment turbidity towards the shore.

Our analysis was limited to observing single-feature correlations and used multi-feature
data subsetting to examine combined effects, rather than employing computationally expensive
multivariate statistics. These limitations highlight the need for further studies using advancing
computational techniques and higher-resolution datasets. Advanced techniques, particularly in
machine learning and computer vision processing of high-resolution imagery, will help capture the
fine, dynamic details needed to understand the controls on smaller outflows from SMRS. We are
motivated by ever-growing high-resolution imagery datasets and developing capabilities in
machine learning to continue research in these essential nearshore freshwater outflow processes.
Nevertheless, these observations are invaluable in revealing the complexity of space-time patterns
in land runoff and in ground-truthing recent numerical models. Our analysis of an immense number
of plume visualizations under diverse discharge, wind, wave, and tide conditions provides novel

insights that can guide future model and field experiments.
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CHAPTER 2

Remote Sensing of Nearshore Sea Surface Temperature Using Landsat Brightness Temperature

Calibrated by MODIS Data

Abstract

Understanding and monitoring nearshore environments is essential, given that these fine-
scaled ecosystems are integral to human well-being. While satellites offer an opportunity to gain
synchronous and spatially extensive data of these understudied areas, calibrated satellite sea
surface temperature (SST) measurements, which are essential for monitoring water quality, have
only been available at coarse resolutions of 1 km or larger. In this study, we develop a novel
methodology to create a simple linear equation to calibrate fine-scale Landsat thermal infrared
radiation brightness temperatures, initially calibrated for land-sensing, to derive SST at a resolution
of 100m. The constants of this equation are derived from correlations of coincident MODIS SST and
Landsat data, which we filter to find optimal pairs. Our methodology allows us to filter calibrated
Landsat data to find the most accurate, optimal data. Validation against in-situ measurements from
buoys at varying distances from the shore in Northern California shows that our calibrated SST data
greatly enhances accuracy compared to the original Landsat temperature data and demonstrates
superior accuracy compared to coincident MODIS SST data. Root mean square error from the
ordinary least squares equation within these validations for our minimally filtered dataset (n=557
images) ranges from 0.76 to 1.20 °C with correlation coefficients r=0.73 to 0.92, and from our optimal
dataset (n=229 images) between 0.62 to 0.98 °C with correlations from r=0.83 to 0.92. Potential error
sources, such as seasonality, are examined. We discuss the utility of our methodology for enhancing
coastal monitoring efforts and capturing previously unseen spatial complexity. Testing the
calibration methodology on Landsat images before and after the temporal bounds of accurate

MODIS SST measurements shows successful calibration with lower errors than the off-the-shelf,
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land-calibrated Landsat product, extending the applicability of our approach. This data calibration
methodology is beneficial for calibrating cross-mission Landsat satellite data to derive SST within
the nearshore region of our study site and has potential applicability to similar Mediterranean

climate regions globally, contributing to improved coastal monitoring, management, and research.

1. Introduction

The ocean is vast and most human interactions are in nearshore waters, which also host the
most productive ecosystems (Pauly & Christensen, 1995). There are relatively few data from the
waters within a few kilometers of the land, which is a major oversight given the importance of these
waters for ecosystems and humans (Muller-Karger et al., 2018), and it is often assumed that waters
are quite uniform and like those further offshore over the continental shelf. While satellites offer an
opportunity to gain synchronous and spatially extensive data of these understudied areas, there are
no publicly available platforms that provide reliable surface properties at a spatial scale sufficient
to resolve primary nearshore flow features and dynamics. Specifically, sea surface temperature
(SST) is only available at a scale of 1 km or larger and these data are notorious for poor reliability
within a pixel of the shoreline due to contamination (Feng and Hu, 2017). Through calibration of
high-resolution Landsat brightness temperature data with concurrent low-resolution MODIS SST
data, we develop a new method and data set that can effectively resolve the fine scale of SST in

nearshore waters with high fidelity.

Nearshore water circulation differs markedly from offshore regions due to the proximity
and shape of the shoreline and shoals. Phenomena include rip currents (MacMahan et al., 2006;
Largier, 2022), large and small river outflow plumes (Basdurak et al., 2020; Horner-Devine et al.,
2015; Speiser and Largier, in review), tidal jets (Chadwick and Largier, 1996; Wolanski and Elliott,
2015), internal wave shoaling (Lamb, 2014), the coastal boundary layer (Nickols et al., 2012), and

small-scale wind effects (Lentz and Fewings, 2012). These flow features account for complex
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patterns in water properties, including temperature and salinity as well as biogeochemical (oxygen,
pH, pCO,, N0O3) and biological (phytoplankton, meroplankton, and pathogenic microbes)
parameters. At times, these patterns are made visible by a concurrent turbidity or water-color
signal, which can be detected by high-resolution optical satellite imagery (Speiser and Largier, in
review). However, few reliable methods exist for obtaining satellite-based data on sea-surface
temperature at sufficient spatial resolution, despite the ubiquity of thermal patterns in nearshore
waters. While there is an increasing number of studies based on numerical experiments and in-situ
field sensors (Gough et al.,, 2020), their scope is generally limited by scale and the full complexity of

multi-scale nearshore circulation processes remains opaque (Largier, 2020).

The Landsat series of satellites operated by the United States Geological Survey (USGS)
contain onboard thermal infrared radiation (TIR) sensors with a spatial resolution (60-120m) fine
enough to resolve the primary nearshore circulation features with sub-kilometer scale. However,
these satellites lack atmospheric self-correction capabilities owing to a limited number of TIR range
bands, which precludes the conversion of TIR brightness values to sea surface temperature value

without external, empirical calibration.

Prior studies have used several methods to extract SST information from Landsat TIR data.
Some studies have used off-the-shelf, Landsat Level 2 brightness temperature data, calibrated by
the USGS for land surfaces (Albanai et al., 2022). Other software packages like ACOLITE
(Vanhellemont, 2020) derive surface temperatures from converting atmospherically corrected
surface radiance using Planck's Law (see section 2.4) enhanced by radiative transfer models;
however, these methods rely on accessing abundant coincidental data, which often complicates
atmospheric correction. Other studies have been very local, calibrating brightness data with in-
situ/buoy measurements (Wloczyk et al., 2006; Jang and Park, 2019). While prior studies have
explored correlation of Landsat data with coincident satellite data from geostationary satellites

(Kuroda and Toya, 2020) or polar orbiting satellites like MODIS and AHVRR (Thomas et al.,, 2002;
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Fisher and Mustard, 2004; Snyder et al., 2017, Fu et al,, 2020), these studies have been limited to
less than 50 images, which is insufficient for capturing nearshore variability, and does not
aggregate statistics to form generalized calibration constants which makes the methodology
dependent on other satellite missions as well as their continuation for future calibrations. This
becomes complicated as satellites eventually age past their expected mission lifetimes and
subsequently experience issues with data degradation. Relevantly, MODIS is now past its expected
mission lifetime and has been shown to have unreliable data quality for SST products past 2023
(Twedt et al., 2023). Further this methodology requires manual inspection and selection of data to

avoid any sources of heterogeneity within images which is arduous and limits dataset size.

In this paper, we calibrate an extensive dataset of several hundred Landsat 7-9 images using
coincidental MODIS SST (Mssr) data captured prior to 2023 for coastal waters off northern
California. Our initial approach is to create a unique calibration equation for each image, and our
final product is a single equation obtained from averaging the single-image calibrations, that can be
applied to images outside of the sample set without having to do individual image calibrations. We
test this sample calibrated Landsat SST data as well as Landsat SST data before and after MODIS
operational dates against in-situ temperature measurements from 5 locations, showing the
superior utility of the aggregate calibration equation for use in SST remote sensing, which also
outperforms the use of off-the-shelf USGS land surface temperature measurements. The resultant
high-resolution SST data will greatly advance the study of nearshore flow features, hydrodynamic

processes, and habitat patterns.
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2. Methods

This study investigates the efficacy of Landsat surface brightness temperatures calibrated
with MODIS Terra Sea Surface Temperature data to produce high spatial resolution SST
measurements. We test these calibrations performed between individual images and use
aggregated calibration equations to create a generalized local calibration equation, made from
constants derived from statistics gathered from those calibrations. These estimated SST data are
validated using in-situ monitoring data taken throughout the study region, captured at the same

time as satellite overpass.

2.1 Study Site
Data used for this study are captured within Landsat Worldwide Reference System (WRS)

location path 45, row 33, spanning latitudinal coordinates from 37.90 to 39.95 (Fig. 1). This area
extends from the inlet of the San Francisco Bay northward to Cape Mendocino, covering a
geomorphologically and hydrodynamically diverse coastline that contributes to oceanic
temperature mixing through phenomena such as runoff from ephemeral streams and small
mountain river systems, tidal jets, and flow separation at headlands. The meteorology of this region
is a typical "Mediterranean"” climate, with seasonal precipitation occurring in winter months.
Winter storms lead to seasonal freshwater runoff pulses and associated river plumes (e.g., off the
Russian River, Gualala River, Big River, Noyo River, Albion River, and Navarro River (Fig. 1). During
high river flow, freshwater buoyant plumes from these rivers extend tens of kilometers alongshore
(Speiser and Largier, in review). In the dry season, these estuaries can be closed off from the ocean

by sand berms (Behrens et al.,2013), cutting off surface exchange with the ocean.

Wind patterns in the region are also seasonal. From April to June, consistent northerly
winds induce upwelling, followed by weaker winds from July to September, and more variable
winds in the storm season from December to February (Garcia-Reyes and Largier, 2012). Spring

upwelling causes nearshore cooling from offshore advection of warmer surface water. The most
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marked cooling from upwelling occurs in the region southward of Pt. Arena and northward of the

Russian River estuary (Largier et al,1993; Halle and Largier, 2011).
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Fig. 1.: Map of study region in WRS path 45 row 33. (Left) Map of in-situ validation sites, from north
to south: NOAA N46014 (buoy), BOON Intake (seawater intake), BML Mooring (buoy), NOAA
N46013 (buoy), and BOON Tomales Bay (buoy). (Right) Map of geographical points of interest,
from north to south: Mendocino, Manchester Beach, Pt. Arena, Gualala River Estuary, Russian River
Estuary, Salmon Creek Beach, Bodega Bay, Tomales Bay, Pt. Reyes National Seashore.

2.2 Satellite Data
All Landsat 5-9 Level 2 (L2) (March 1984 to May 2023) thermal infrared radiation Landsat

Brightness Temperature B data within the World Reference System (WRS) scene location at Path
45 Row 33 were collected from Google Earth Engine (Gorelick et al., 2017). For Landsat’s L2
product, the USGS calibrates Landsat surface radiance to B, calibrated for land surface

temperatures, by applying Planck’s equation:
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B, = —2 eq 1.

In (’%ﬂ)

where B= Brightness Temperature, K1 = (L7: 666.0900 ; L8: 774.8853; L.9: 799.0284),
K2=(L7:1282.7100; L8: 1321.0789; L9: 1329.2405), and Ls= surface radiance. These temperature
data, in degrees Kelvin, are stored as values scaled by a factor of .00341802 and offset by a value of
149 to convert data to integers for more efficient storage. Clouds and cloud shadow detection
within these images were performed using the CFMASK algorithm (Foga et al.,, 2017). This
algorithm employs decision trees, validated by scene-wide statistics, to accurately label pixels
affected by clouds and their shadows. These cloud-affected regions are further delineated based on
cloud height and the solar angle, enhancing the precision of cloud and shadow detection. Land
features were then masked from each image using the high-resolution NOAA Continually Updated

Shoreline Product (NOAA CUSP: https://shoreline.noaa.gov/data/datasheets/cusp.html). This

geospatial land dataset is derived from repositories of LiDAR data and individual shoreline

datasets, estimates continental shorelines on a scale from 1:1000 to 1:24000.

Landsat 7 (L7), operational since 1999, features Band 6 (10.40-12.50 pm), which is
specifically dedicated to collecting TIR readings with a resolution of 60m. However, L7 encountered
a known issue with its Scan Line Corrector (SLC) in 2003, leading to data gaps in its imagery.
Despite this, its high-resolution thermal data remains invaluable. L7 has a 16-day revisit cycle and
typically overpasses a given location at 10:30 am, contributing to the temporal coverage of the

study.

Both Landsat 8 (L8) and Landsat 9 (L9) are equipped with two TIR sensors of the same
range, but temperature is typically derived with the Band 10 sensor (10.60-11.19 um) due to its
reduced sensitivity to stray light in contrast to the other TIR sensor from curvature of its lens

(Montanaro et al., 2014; Snyder et al., 2017). L8, launched in 2013, and Landsat 9, launched in 2021
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and follow a similar 16-day overpass cycle as L7, capturing data in the same mid-morning time

window

To align the resolution disparities among the Landsat satellites, L7 images were resampled
from their native 60m resolution to 100m using bilinear interpolation, matching the resolution of
L8 and L9 images. Out of 705 images obtained across these missions, 659 images were used, the
rest being omitted for having pixel count (n) <100 pixels or when coincident Mssr images had an
n=0 pixel count. Statistics on pixel availability are displayed in Fig. 2, showing that on average the
most available pixels are captured in April and September, while the least are captured in July and
August, perhaps due to coastal fog that is prominent during summer months in the Northern

California region (Johnstone and Dawson, 2010; Torregrosa et al.,2014).
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Fig. 2: (Top): Box and whisker plot pixel counts (y-axis) by month (x-axis) per-image in the dataset.
Box margins are lower 25% percentile of data (lower) and 75t percentile of data (upper). Line in
box is monthly median. Whiskers show minimum and maximum values.
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Although Landsat 5 (operational from 1984 to 2013) captures TIR data in a similar spectral
range and overpass window to L7 and has data during the timeframe available for this study, it has
spatial resolution of 120m, which is coarser than the 100m that we resample images to for this
study. Additionally, L5 experienced a gradual shift in its solar zenith angle over time due to changes
in orbital altitude (Zhang et al., 2016). This led to its exclusion from initial data calibrations.
Nonetheless, because of its spectral range, L5 data is used in this study as a blind dataset to test the
generalizability of calibration constants derived from our methods for dates prior to the launch of

MODIS Terra.

We accessed atmospherically corrected and cloud-masked MODIS Terra SST (Msst) datasets

from the NASA Ocean Color website (http://oceancolor.gsfc.nasa.gov/). These datasets, computed

at a 1km resolution, are known for their efficacy and accuracy in measuring SST (Minnett, 2010).
We specifically chose MODIS Terra over MODIS Aqua as its overpass (typically between 10:30-
11:30 AM local time) overlaps that of L5, L7, L8, and L9. This ensures minimal temporal
discrepancy, ranging from near-instantaneous to a maximum of about two hours, between the
image captures of the two satellites. MODIS imagery past 2023 is unreliable due to orbital drift from
superseding its expected operational lift time and running out of fuel for orbit adjustment (Twedt et
al,, 2023). As a result, we only calibrate images from the MODIS mission start date until January 1st,

2023.

2.3 Brightness Temperature to Sea Surface Temperature Calibration

In the first step of our method, we calibrate Landsat (L7, L8, & L9) B to SST using Mgst data
from the same date. For each Landsat-MODIS image pair, we calculate Pearson’s correlation
coefficient r to assess the linear correlation between the SST value of each MODIS pixel and the
median value of all spatial coinciding Landsat B; pixels within that MODIS pixel’s area. We then

exclude any Mssr/B: pairs that deviate by more than one standard deviation and recalculate the
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correlation. This process is iterated until the correlation coefficient stabilizes or decreases.
Following this, we apply the derived best fit square linear equation to convert Landsat Bt data into
SST images. To calculate the best fit linear equation, ordinary least squares (OLS) regression was

used.

This first step builds on Thomas et al,,(2002) and Snyder et al,,(2017), differing by using the
median Landsat pixel value within each MODIS pixel area, rather than pairing the nearest Landsat
pixel to the nearest MODIS pixel, aiming to reduce pixel heterogeneity and improve accuracy. This

calibration step is referred to as “per-image calibration” in this study.
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Fig. 3: Example of calibration methodology of Landsat B: to SST using Coincidental MODIS Terra
SST data from images captured on November 8, 2001. a.) Initial correlation between MODIS SST
pixels and respective pixel-area median Landsat B pixel values from the 01/07/2015. b.) Final
correlation after iterative outlier removal as outlined in section 2.3. c.) MODIS Terra SST Image
from 01/07/2015. d.) Estimated Landsat SST obtained by calibrating Landsat Bt values with the
best fit linear equation from plot b.

56



As noted in Snyder et al., 2017, this process assumes that atmospheric conditions are
uniform across the Landsat scene and that atmospheric and oceanic conditions do not significantly
vary between MODIS and Landsat image captures. Further, as each Landsat scene is captured in
scans rather than instantaneously, this method assumes atmospheric and oceanic conditions do not

significantly change during image collection, however scans last only a few seconds.

Using this process, we can categorize images as acceptable or not, by examining Bt-Msgsr
correlation strengths. For this study, we considered the image dataset in two groupings, one overall
“all data” group and an idealized (Ro) group. For the “all” dataset, we use data in which the final r
value between Mgsrand B; is above 0.7, therefore disregarding data that had too many image
artefacts to successfully calibrate to SST from B.. For Ry data, we group calibrated Landsat images
where the initial r value between Mssrand Bt is above 0.7, prior to iterative outlier removal. This
differs from past uses of “per-image” calibration; we did not manually select images by visual
inspection and instead conditionally removed or maintained within the dataset due to correlative
strength, cutting down significantly on time spent on data curation and utilizing images that may

have been overlooked.

The next step of the calibration methodology is creating a simple, linear general equation to
apply to uncalibrated Landsat Biimages. This is done to resolve heterogeneity that may arise in the
unsupervised “per-image” calibration leading to inadequate temperature calibration, due to outlier
pixels not removed from the dataset. Further, it can be used to calibrate images outside of the
sample dataset, as per-image calibration is computationally expensive and limited to times when
MODIS data are available. This equation is aggregated from statistics of the Mgsr-B: normalized
images from the per-image step to apply across all images. To do so, we use the median slope (m)

and intercept (b) of all Ry linear calibration equations to get:

57



SST = m*By+b eq.2

where SST is the estimated sea surface temperature and B, is the brightness temperature at a given
pixel position. This is the first time such a calibration method utilizing per-image calibration
statistics has been employed that the study is aware of. This calibration method is referred to as

“generalized calibration” within this study.

This generalized equation is applied to all L2 Landsat B;images in the data set, as well as
tested as a method to estimate Landsat derived SST on images outside of the dataset without
coincident MODIS data (prior or past operational extent). For the latter application, we test data
preceding the launch of MODIS Terra using L5 data and data using Landsat 8 and 9 data after
January 1st, 2023. We resampled L5 resolution to 100m using bilinear interpolation prior to
calibration to match the resolution of the study’s Landsat 7-9 dataset. Calibrated Landsat 5 data
were then compared with coincidental seawater temperature measurements at nearest pixel

positions, see section 2.3 (Table 1.)

58



Name Type | Extent Pixel Count |r RMSEois | RMSEq1
Coordinate
Depth (D)
Distance
Offshore
(Dist)
N46014: Buoy | 04/1981 | 39.23078 All: 300 | All: 0.83 All: .89 All: 1.15
- N,
39.225N, 05/2023 | 123.97424 Ro:147 | Rp: 0.91 Ro: 0.62 Ro: 1.06
123.980 W
W Bi: 323 | B: 0.75 B:: 1.04 B:: 1.86
D: 2.0m
M55T129 Mss'r: 070 Mss’r!l.lg MSSTZ
Dist: 4 1.55
15.6km
N46013: Buoy | 04/1981 | 38.23544 All: 385 | All: 0.79 All: 1.04 All: 1.25
- N,
38.235N, 05/2023 | 123.31667 Ro:175 | Ro: 0.87 Ro: 0.73 Ro: 1.17
123.317 W
w B:376 B 0.65 B:: 1.30 B::2.00
D: 2.0m
M55T137 MSST: .69 MSSTI]..ZZ MSST:
Dist: 23.0 6 1.53
km
BML Buoy | 09/2012 | 38.31180 All: 67 | All: 0.92 All: 0.76 All: 0.95
Mooring: - N,
woring: Rp40 | Re:0.92 | Re:0.65 | Ro: 1.00
05/2023
38.312N, 123.08312 | . . _
123.083W W B:: 134 | B:0.87 B:: 0.93 B: 1.63
DZ 10m MSST:40 MSST: 87 MSST:0-92 MSST:
1.31
Dist: 1.0km
TB Mooring: | Buoy | 05/2013 | 38.18783 All: 204 | All: 0.85 All: 1.25 All: 1.56
- N,
38.188 N, 10/2021 | 122.92771 Ro:95 Ro: 0.92 Ro: 0.98 Ro: 1.42
122928 W
W B:: 220 | B: 0.81 B: 141 By 2.53
D: 1.0m
Msst:N Msst = NA Msst = NA | Mgst =
Dist: A NA
0.34km
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BML intake: | Intake | 04/1988 | 38.31539 All: 425 | All: 0.73 All: 1.20 All: 1.56
- N’

38.316 N, 05/2023 | 123.07324 Ro:188 | Rp: 0.83 Ro: 0.89 Ro: 1.58
123.070 W

w Bi: 451 | Bi: 0.62 Bu: 1.40 B 2.08
D: NA

MSSTZSO MSST: 0.80 MSST:1-17 M55T11.9

Dist: Okm 5

Table 1. Table of buoy descriptions and respective results of comparisons between in-situ
measurements and SST within MODIS (Mssr), all calibrated Landsat data (All) and selected optimal
calibrated Landsat data (Ro) including the correlation (r) value between estimations and
measurements, Root Mean Square Error of values against the Ordinary Least Square best fit line
(RMSEois), and Root Mean Square Error of values against the one-to-one line (RMSE1.1). “NA” Is
used as a placeholder for when category is inapplicable or data is unavailable.

2.4 Data Validation

Landsat SST derived from both per-image and generalized equation calibration steps are
tested against in-situ seawater temperature (Tinsirs) measurements from the NOAA National Data
Buoy Center (NDBC) at buoys N46013 and N46013 (https://www.ndbc.noaa.gov/ ) and at buoys
TB Mooring and BML Mooring as well as a seawater intake, BML Intake, operated by the University
of California Davis, Bodega Marine Lab, Bodega Ocean Observing Node (BOON;

https://boon.ucdavis.edu/) (Table 1). These buoys, which are mapped in Fig 1., are at varying

distances offshore in order to capture variation within different marine bathymetries and
environments (i.e. offshore, nearshore, at-shore, estuary). These distances are described in Table 1

measured to the nearest shoreline.

These in-situ data are calculated as hourly averages and compared against time series SST

data from the 100m Landsat pixel position that the buoys are within. Seawater intake
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measurements at the BML Intake are compared against timeseries pixels nearest to the seawater
intakes. From all in-situ datasets, temperature data collected closest to MODIS capture time for each
date is considered in these validations. As all of these in-situ measurements are taken at depth (see
Table 1), rather than at the surface, it is assumed that there will be discrepancy between the
temperature of the sea water surface temperature and at in-situ sensor (Donlon et al., 2002).
Further, it is assumed that sensors at further depth in the water column will have a more significant

discrepancy with surface temperatures.

In lieu of those assumptions, to test the relative accuracy of our calibrations, we compare
Tinsita With SST from the pixel position (table 1) closest to the buoy using Pearson’s r correlation and
with root mean square error (RMSE) from a y=x linear line (RMSE1.1) and from the ordinary least
squares (OLS) linear best fit line (RMSEq.s) variables. We also compare in-situ measurements with
surface temperature estimates from Mgssrand Br from coinciding dates to benchmark the relative
performance of our methodology. We only use Mssrimages from the same dates in which Landsat

imagery is available in order to make a direct comparison. Landsat Bt data are not filtered by date.

We also tested the data quality across a given image by comparing the difference of Tinsitu
between buoy pairs with the difference in SST at the respective nearest pixel locations on the same
dates (Fig. 9). These comparisons were then plotted to see how closely they adhered to a 1:1
relationship, with the logic that differences between Tinsitu (ATinsits) Should be similar to those of SST
(ASST) if data quality across an image is reliable. We tested the coherence of these pairings
individually and as a combined dataset. Any data pairings with less than 10 points were omitted.
This test assumes that temperature discrepancies between buoy locations should be mirrored by
the discrepancies at the nearest SST pixel locations, resulting in alow RMSE1:1 or a best-fit OLS

equation slope (m) close to one and intercept (b) close to zero.
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3 Results

3.1 Sea Surface Temperature Calibration

Of the 659 images calibrated for SST from L7 to L9, 557 images are considered as viable for
the larger “all data” dataset. On average, these images went through 9.23 iterations of outlier
removal. There was no observable relationship between the number of data omission iterations
and final Pearson’s r value. Of those images, 229 images were also in the “ideal” Rodata set. Overall,
initial and final correlation values between coincident B; and Mssr values were generally strongest
from April to September, i.e., during the spring and summer upwelling season in northern California
(Fig. 4). Variation in OLS best fit linear equation constants between Landsat B: and coincident Mgsr
were also generally lower in these seasons (Fig. 5). Similarly, slope and intercept values from these
OLS best fit line equations were respectively lowest and closest to zero (closer to a 1:1 relation)

during this season.
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a.) Initial R Value by Month b.) Final R Value by Month
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Fig. 4. Monthly box and whisker plots from calibration of all data. Box margins are lower 25t
percentile of data (lower) and 75t percentile of data (upper). Orange line in box is monthly median.
Whiskers show minimum and maximum values. X-axis is month in numerical format. Y axis is: (a.)
Pearson’s r correlation values from the first iteration of per pixel comparisons between Landsat B
and Msgsr (b.) Pearson’s r correlation values from the final iteration of per pixel comparisons after
iterative outlier removal between Landsat Brand Mgsr (c.) Intercept values from the OLS best fit
linear equations from final iteration comparisons between Landsat Brand Mssr_ (d.) Intercept values
from the OLS best fit linear equations from final iteration comparisons between Landsat Brand Mssr

The distribution of m and b values from the individual Mssr-B: calibrations within the Ry
dataset are plotted in histograms in Fig. 5. From these calibrations, the median of slope values is
m=0.00297 and the median of intercept values is b=105.879. These values are used in constants for

Eq. 2, yielding the equation:
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SST = .00297B, — 105.88°C eq.3

This equation (Eq.3) is used to calibrate B to temperature within the generalized calibration step.

90% of slope and intercept values fall within 10% of each respective constant value.
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Fig. 5: (A) Histogram of intercept (b) values from per-image calibrations of Ro data. (B) Histogram
of slope (m) values from per-image calibrations of Ry data. Red lines indicate distribution medians
(b=-105.88; m=.00297)
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3.2 Data Validation

To explore the effectiveness of calibrations from the per-image calibration step, SST from
that step was compared with at each in-situ measurement location. The relative accuracy of SST,
from the per-image calibration step, compared to Tinsiy from coincidental sample measurements
varies by site (Fig. 6). Within the “all” data group, performance seems to be strongest at the BML
Mooring, where correlation is highest (r=0.79), error relative to the one to one line is lowest
(RMSE1.1 = 1.49°C), and error relative to the OLS line (RMSEo1s=1.16°C) is nearly the lowest,
seconded at N46014 (RMSEq1s=1.14°C) by a difference of RMSEq.s =.02°C. Correlation in this group
is lowest at N46013 (r=0.63), and both metric errors are highest at TB Mooring, where RMSEq;s
=1.77°C, and RMSE1,; = 3.00°C. The performance of “all” data SST derived from the step is nearly
comparable to B: and Mssr estimates, with overall slightly lower correlation and higher error

metrics except at BML Intake.

Performance of SST from the per-image step within the ideal Ry group is notably stronger.
Here, correlation is highest at both N46014 and TB Mooring (r=0.89), and error metrics are lowest
at N46014 (RMSEois = 0.71°C; RMSE1.; =1.04°C) Conversely, correlation with Tinsir, is lowest at
BML Mooring (r=0.82), and RMSEs (1.12°C) and RMSE;.; (1.36°C) are highest at TB Mooring (Fig.
6). These chosen idealized SST images are more relatively accurate against in-situ samples than
temperatures from B, and Mgsr across all sites, with RMSEq.s and RMSE1.; being at least 0.4°C lower
than either B: or Mssr at most sites with the exception at the BML Mooring, where error are only

0.03°C and 0.02°C lower, respectively.
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SST values derived from Landsat data from the per-image calibration step plotted against
water temperature measured by in-situ sensors: (a) N46014, (b) N46013, (c) BML Intake (d) TB

Mooring, and (e) BML Mooring.

Fig. 6
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Validations of SST values derived from the final generalized calibration step by comparison
with coincident Tixsiw are shown in Fig 7 and Table 1, along with validation of coincidental values
from B and Mgsr. The performance of SST from both groupings from this step exceed those of the
previous SST estimates. Within the “all” dataset, SST is most accurate with Tinsir, values at BML
Mooring, where correlation is strongest (r = 0.92) and error metrics are lowest (RMSE15=0.76°C ;
RMSE;:.1 =0.95°C). Correlation is weakest at N46013 (r=0.73) and error is highest at TB Mooring
(RMSEo1s=1.25°C; RMSE;.; =1.56°C). Performance across all metrics from this dataset outperform

those from Mssr and Bt at each site except by RMSEo.s and r at BML intake.

As expected, performance is significantly stronger within the Ry group. Correlation is
strongest and at nearly the same value at sites BML Mooring, TB Mooring, and N46014
(respectively r=0.92, 0.92, 0.91). Error from the OLS line is lowest at N46014 (RMSEq.s= 0.62°C),
only nearly succeeding data the BML Mooring (RMSEq.s = 0.65°C). Error relative to the one-to-one
line is lowest at BML Mooring (RMSE1.1=1.00). Correlation is weakest at BML intake (r=0.83), and
error metrics are lowest at TB Mooring (RMSEo.s = 0.98°C) and BML Intake (RMSE.; = 1.58°C).
Performance across each metric is significantly stronger than that from Mgsr or Bt at each site (Fig 7

& Table 1).
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SST values derived from Landsat data using aggregate calibration plotted against water
temperature measured by in-situ sensors: (a) N46014, (b) N46013, (c) BML Intake (d) TB Mooring,

and (e) BML Mooring.

Fig. 7



Fig. 8 shows the differences between derived estimated SST data from the generalized
calibration step and in-situ measured data at each buoy location and all buoy locations aggregated

by month for both datasets.

In both datasets, across all buoys and months, SST is higher than Tixsir.. Within the “all”
dataset, across all sites, this difference is greatest within the summer months from June to August
where median differences are ~1.5°C on average and smallest in December and January. TB
Mooring (Fig. 8d) on a monthly basis has the highest deviation in SST-Tinsi, with the smallest being

at N46013 (Fig. 8 b).
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Fig. 8: Monthly box and whisker plots of difference between estimated SST and in-situ
measurements across all data. Box margins are lower 25t percentile of difference (lower bound)
and 75t percentile of difference (upper bound). Orange line in the box is the monthly median.
Whiskers show minimum and maximum difference values. X-axis: month in numerical format. Y
axis: difference between estimated SST and in-situ measurements at: (a) N46014, (b) N46013, (c)
BML Intake, (d) TB Mooring, (¢) BML Mooring, and (f) all buoy locations combined.
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Results of in-image accuracy, examining coincident AT,y and respective ASST at given
sampling sites, are shown in fig 9. As an overall comparison, differences between buoy pairs and
respective pixel pairs across the “all” dataset had a correlation of r=0.84, errors of RMSE1.1=1.23°C,
and RMSE1:1=1.31°C, and had an OLS m=0.88 and OLS b=0.36. These metrics are slightly stronger
when isolated to the Ry dataset, where r=0.88, RMSE(5=1.13°C, and RMSE.1=1.24°C. In both data
groups, the site pair with the highest correlation between ATiysirw and ASST is between TB Mooring
and N46013 (ra=0.94; rro=0.91). The lowest error metrics are found between BML Intake-BML
Mooring, however, most differences between the two sites are near zero, likely due to the close
proximity of the two sites. In the “all” dataset, the spatially distributed site with the lowest error is
BML Intake-N46014 (RMSEo.s=1.96; RMSE1.1=1.24°C), and in R, dataset, N46013-N46014

(RMSEOL5=0.91 RMSE1;1=0.99°C).
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Piwel Termperature Difference [(*C)

Budy Temgperature Difference ("C)

Buoy Pair n OLS Equation R RMSE, RMSE, .,

e M46013 —N46014 All:130 All: w=0.75x +.06 All-0.72 All-1.02 All: 1.09
Ry: 70 Ry: y=0.77x -.04 R, 0.81 Ry: 0.91 R,: 0.99

BML Intake — BML Mooring All: 35 All: yv=-0.08x4+0.27 | All:-0.11 All- 0.35 All: 0.65

Ry: 19 Ry y=-0.07x+0.31 |FRy:-0.11 |Rs 039 |R, 075

& BML Intake — TB Mooring All: 80 All:y=0.76%-0.21 All-0.77 All-1.41 All: 1.54
Ry 38 Ry::y=0.70x-0.52 | R,:0.76 Ro:1.24 | Ry 143

» BML Intake — N45013 All: 125 All: y=0.55x% +0.51 All: 0.48 All: 0.96 All: 1.14
Ro: 64 Re:y=0.53x+0.70 | R,:0.48 Ro:057 | Ry:123

» BML Intake — N45014 All: 85 All: yv=0.48x + 0.43 All:0.52 All: 1.27 All: 1.67
Ry: 48 Re: - w=0.53x+ 057 | R;:0.68 Re- 1.04 Ry 1.57

® TB Mooring— N46013 All: 55 All: y=0.96x +0.37 All-0.94 All: 0.90 All- 0.95
Ry 24 Ro:y=1.01x4+0.23 Ry 0.91 Rg: 0.95 Ry- 0.98

& 1B Mocring— N45014 All: 36 All: y=1.16x +0.18 All: 0.86 All: 1.57 All: 1.69
Ry- 19 R - y=0.95x +0.78 Ry 0.86 Ry- 1.39 Ry- 1.23

s TB Mooring— BML Mooring All: 21 All: w=0.98 x+0.33 All- 0.65 All: 1.66 All: 1.69
Ry: 13 Ro: - y=0.B6x+0.62 | R, 0.84 Ry: 1.03 Ry 1.12

All Pairs All: 567 All: v=0.88x+0.36 All: 0.84 All:1.23 All: 1.31

Ry: 296 Ry y=0.BBx+0.41 | R, 0.88 Ry: 1.13 Ry 1.24

Fig. 9: Plot and table of buoy respective closest pixel pair deviations. Plotted data points are colored
by data pairings as indicated in the table. Table metrics include data count (n), the equation of the
ordinary least squares (OLS) best fit linear equation line, the Pearson correlation between buoy and
pixel differences (R), the root mean square error of points from the ordinary least squares line
(RMSEois), and the root mean square error of points from the one-to-one line (RMSE;.1). In cells,
metrics following “All” and “R,” are derived from those respective datasets.
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4. Discussion

4.1 Image Calibration

In our study, we develop and assess a methodology for aggregating and refining correlation
data between ideal, coincidental Landsat and MODIS data to scale Landsat B; data for enhanced SST
remote sensing, particularly within nearshore environments where fine scale processes require
such capabilities. Analyses comparing SST estimated by our study’s methodology, standard MODIS
SST data, and standard USGS Level 2 Landsat B: data against coincident in-situ buoy and seawater
intake data emphasize the effectiveness of our approach. This methodology not only enhances the
overall estimation of SST in our region but also allows for the semi-objective selection of ideal

imagery.

Per-image calibration, when applied as a standalone process to our minimally filtered
dataset, showed mixed reliability. The correlation and RMSEo.s between Tisicw and SST from all per-
image calibrated datasets (Figure 6) were comparable, if not slightly lower by a margin of
hundredths, compared to land-calibrated Br data. However, the RMSE1.; error from this dataset was
generally lower than the Br data, except at TB Mooring, where RMSE1.; was higher by 0.47 °C.
Conversely, RMSE;.; at BML Mooring, which is only 1 km offshore, and BML Intake, located at the
shoreline, was lower than Br by -0.14 °C and -0.4 °C, respectively. Considering that past studies
have employed similar calibrations to estimate Tinsita from SST, these results suggest that
unsupervised per-image calibration may only conditionally yield lower error than using B data.
However, accuracy should be applied with spatially diverse sampling, particularly in nearshore
environments. Similarly, using minimally supervised per-image calibration is only conditionally
advantageous over Msst as a temperature gauge. However, it is useful in areas where data is
unavailable from MODIS, such as at TB Mooring, or in very close shore environments like BML

Intake, where SST from all per-image calibrated data is lower than Mssr by -0.27 °C. While Mssrhas
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lower RMSE1.; than this dataset at the nearshore BML Mooring by -0.18 °C, it has lower data

availability by n=21 dates.

However, with the selection of ideal images within the Ry grouping, per-image calibration
demonstrates higher accuracy, with increased correlation and reduced error compared to both
USGS Level 2 BT data and MODIS SST (Figure 6). The correlation and RMSE.s of SST compared to
Tinsits are comparable to, or greater than, those of Mssr and By, and RMSE1;; is less than Br at each
sampling location. Notably, at closest to shore, TB Mooring and BML Intake, errors are lower than
Brby -1.17 °C and -0.86 °C, and lower than Mgsr by -0.73 °C at BML Intake (with Mgssr data

unavailable at TB Mooring).

The per-image calibration step not only proved efficient for selecting ideal images to form
the R dataset—a task traditionally performed manually and often arduous—but also facilitated the
creation of a second calibration step. SST from the generalized equation calibration step had
superior accuracy with Tinsir across all metrics at each site in the “all” data set, and to an even
greater success within the R, dataset, across areas offshore and nearshore compared to Br and Mssr
data. Again, RMSE.; error at TB Mooring was especially lower, with a reduction of error by -1.11 °C.
Overall, the generalized equation set had a more even performance of all data, contextualized by the
R, dataset, in the second step as opposed to the first step of calibration. For instance, across the two
SST datasets in the per-image step, Ro had an average correlation of r=0.154 higher than the “all”
dataset, reduction in RMSE;s of -0.31°C, and reduction in RMSE;.; of -0.46°C. In the generalized
equation step, Ry had an average correlation of r=0.07 higher than the “all” dataset, reduction in
RMSEq.s of -0.25°C, and reduction in RMSE;.; of -0.048°C. This indicates that selective image
calibration may not be necessary once the generalized equation is formed, as results across most
metrics do not become significantly more accurate. This greatly increases the scope of the dataset,

which is necessary for fine nearshore environments that exhibit high variability (Speiser and
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Largier, in submission). Further, this suggests that future data calibration could be conducted
independently of MODIS data using these constants, extending to Landsat Br data before the launch
of the MODIS Terra satellite and after its reliable data quality window, as data selection using
coincident MODIS becomes unnecessary. For example, as demonstrated in Fig. 10, we have applied
the generalized equation calibration to Landsat 5 data spanning from 1984 to 2000, which predates
the MODIS Terra launch, and to Landsat 8 and 9 data beyond 2023. Validations from in-situ buoy
data in these plots show that these data, not used within the formation of the general calibration
constants, are comparable in correlation, RMSE1.;, and RMSEo.s with validations from the 2000-
2023 dataset. Results within this figure show that hindcast Landsat 5 data is better fit with in-situ
measurements than forecast data; however, the forecast dataset has a significantly smaller sample
size, which may not be adequate for analysis of overall methodological success. Given the
applicability of this methodology with data uninvolved in the creation of the calibration constants,
one may assume that the application of this calibration equation may be applicable at sites similar

to that of WRS tile path 45 row 33.
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Fig. 9: Plots of general eq calibrated data applied to Landsat 5 BT data (x-axis) compared to in-situ
measurements using the sensors noted in titles. Green data points are “forecast” data of L8 & L9
data captured after 2023. Red data points are “hindcast” data of L5 data captured prior to 2000.
Blue trend line is the OLS best fit linear equation from both hindcast and forecast data.

Superior performance of a generalized empirical equation composited from information of
ideal image pairs is expected, as any calibration equations that were ill-adjusted from unresolved

artifacts are likely dampened when aggregated amongst other calibrations. This can perhaps be

best seen in Fig. 4c and Fig. 4d, where although there may be large deviations within slope and
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intercepts of calibration equations, particularly within the winter months, which are seasons with
higher cloud cover within the region, the mean of those distributions still lies relatively closer to
those of the summer months which had lower deviation ranges. However, it should also be noted

that there is less data within these latter summer months, as shown in Fig. 2.

This ability to retrospectively apply the generalized calibration constants to historical
satellite data not only validates the robustness and utility of the derived calibration constants but
also broadens the potential for enhancing the temporal scope of more accurate SST analyses. Such
advancements can contribute to long-term climatological and environmental studies by providing
more accurate SST measurements over extended periods, thereby offering valuable insights into

historical ocean temperature patterns and trends.

Overall, there exists strong variation in accuracy between Tinsir, and SST per site (Fig. 7) and
by season (Fig. 8). However, this added context informs these results. The overall lowest
correlation and highest error occurred at BML Intake. However, the intake is at a fixed depth that
does not adjust with tidal level, so at maximum depth, temperature likely varies significantly from
skin temperature (Donlon et al., 2002; Minnett et al., 2020). Further, the second-highest error exists
at the TB Mooring in Tomales Bay, which is a low-inflow estuary. Beyond shallow bathymetry in the
outer Bay, this site may experience heightened stratification due to decreased mixing from tides
(Largier et al.,, 1997). Stratification may also be the reason for higher overall dataset error in
summertime (Figure 8; Largier et al., 1993). Lack of variation in performance between the two
highest-performing sites, the farthest offshore site, N46013, and the closest nearshore marine
mooring, BML Mooring, which both have the highest correlations and lowest errors of any site,
highlights the performance of our methodology in enhancing SST in both nearshore and offshore

environments.
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Tests of in-image accuracy in Fig. 9 were weaker than one might expect. However, it should
be taken into consideration that in each site pair, sensor instrument methodology differs, making it
likely that ATisir,, measured at different depths by different instruments, behaves differently than
ASST, which is all measured at the surface. Further, the only pair with the two same instruments
and the largest sample size was N46013-N46014, which was the pair with the lowest error (besides
TB Mooring-N46013, which had a significantly smaller sample size). Even then, the sites are far
away from one another, so sensor-at-depth temperatures may vary with tide, and stratification

effects at the two sites may act differently (Palacios et al., 2004)

This ability to retrospectively apply the generalized calibration constants to historical
satellite data not only validates the robustness and utility of the derived calibration constants but
also broadens the potential or enhancing the temporal scope of more accurate SST analyses. Such
advancements can contribute to long-term climatological and environmental studies by providing
more accurate SST measurements over extended periods, thereby offering valuable insights into

historical ocean temperature patterns and trends.

4.2 Observation and Use Cases

High-resolution SST data allows the observation of small-scale, nearshore processes that
are too fine for detection with moderate resolution data products like GOES or MODIS. This
enhancement enables the study of phenomena such as rip currents and their impact on
temperature patterns in the nearshore. Moreover, it facilitates the observation of various non-
turbid dynamics, irrespective of their size, which are typically not observable in visual-optical/color
satellite radiances. Examples include clear river plumes, tidal outflows from bays and estuaries, and

fine-scale eddies.

Fig. 10d showcases these features, where cold plumes align with the shapes and locations of

small, turbid rip currents visible in high resolution true color imagery along the Pt. Reyes Seashore.
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The calibrated high-resolution SST in this figure also illuminates the shapes and extents of non-

turbid mixing processes, manifesting as small, clear river plumes (Fig 10b) and tidal bay outflows

(Fig 10¢)

While these processes can be initially identified through gradients in uncalibrated
brightness values, calibration allows estimates of the temperatures of these features. Additionally,
it provides a clearer understanding of the magnitude of temperature differences between these
mixing features and the surrounding marine waters, which could not be verified with uncalibrated

brightness temperature values.

Fig. 10: Mapped temperature from 04/25/2019 vs true color values at zoomed in sites. Color scale
adjusted to highlight all temperature features. a) entire calibrated SST image. b) zoomed in
calibrated SST (left) and true color imagery (right) directly west of the Russian River estuary c)
zoomed in calibrated SST (left) and true color imagery (right) North of the Pt. Reyes National
Seashore and south of Bodega Bay. d) zoomed in calibrated SST (left) and true color imagery (right)
of the north headland of Point Reyes national seashore
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The capability to sample SST with high spatial resolution and moderate frequency enhances
the ability to monitor regions where regular in-situ data collection is challenging, such as the
immediate, and often rocky, nearshore areas. This facilitates novel observational studies and
research projects, some of which might not have been feasible previously possible as unbeknownst

to this study.

For instance, an application of this methodology where previous investigation is unknown
to this study is the investigation of SST patterns and disparities between the close nearshore areas
and further offshore. Fig. 11 showcases the potential of high-resolution SST towards such a subject,
presenting plots of SST calculated with the per-image calibration methodology against distance
offshore. These plots are based on a single cross-shore transect in Manchester Bay, observed in
June across three different years using per-image temperature calibration. Interestingly, even
though the observations were made at the same location and during the same season, the
temperature gradients along this transect showed varying trends - warming, cooling, or displaying

a parabolic shape with increasing distance from the shore.
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Fig. 11: Cross-shore temperature profiles from a transect at Manchester Beach, CA extending 6.5km
offshore from a per-image calibrated images. Top: Plots of temperature (y-axis) vs distance (x-axis)
Bottom: Mapped temperature values from dates respective to plots in the same column.

Utilizing high-resolution SST data that we can derive at various estimated accuracies and

timescales as far back as 1984, we can discern detailed temporal patterns oceanography and

potentially climatology across large regions by analyzing SST metrics at each pixel location. Fig. 12

illustrates this by presenting the mean SST at each pixel position of all calibrated L5 to L9 data.
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Fig. 12: Average temperature at each pixel position in Landsat data from 1983-2024 in degrees
Celsius calibrated using general calibration equation constants.

From the results in Fig. 12, high-resolution data reveals areas with the warmest and coldest
average SST derived from our methodology. From this one can make observations such a large cool
region near Point Arena which aligns with a region of significant upwelling (Largier et al., 1993;
Garcia-Reyes and Largier, 2012). This upwelling area is now mapped with an unparalleled
resolution. Another cooler area, potentially linked to upwelling, is observed near Fort Bragg.
Regions like the coast between Bodega Bay and north of Tomales Bay, and in front of the Russian
River, and in front of Pt Reyes seashore, which is impacted by tidal outflow from Tomales Bay
(Roughan et al,, 2005), Bodega Bay (Morgan et al, 2021), and SF Bay (Wing et al,, 1995) are
discernibly warmer, emphasizing the influence of bays and estuaries with marine water mixing and

temperature. The temperature gradients along broad, north-facing beaches such as Ten Mile,
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Manchester, Salmon Creek, and Point Reyes Seashore, all with warmer nearshore gradients, might
indicate the role of fine-scale, nearshore processes in SST mixing or the effects of shallow

bathymetry on local marine temperatures.

5. Conclusions

In our research, we develop, validate, and apply a two-step methodology for deriving water
surface temperature from Landsat land brightness temperatures in WRS tile path 45 row 33 using
associated MODIS Terra SST data. By deriving calibration constants from relationships between
coincident MODIS Terra and Landsat data, we can calibrate data prior to, during, and after the
operational extent of reliable MODIS Terra SST data. For validation, we tested our calibrated data
against in-situ temperature measurements collected from sensors at various distances offshore
within the study area and compared these validations against those with values from uncalibrated
USGS Landsat Land brightness temperatures and coincident MODIS SST. We find success in these
calibrations, with superior accuracy against in-situ measurements than the off-the-shelf USGS
product and even coincident MODIS SST data. For a minimally filtered dataset (n=557 images), the
RMSE against the OLS line ranges between 0.76 to 1.20 °C, the RMSE against the 1:1 line ranges
between 0.95 to 1.56 °C, and correlation coefficients range from r=0.73 to 0.92. These metrics are
further enhanced when looking at comparisons within our Ry dataset (n=229), which consists of
optimal images whose selection was enabled by our methodology. This dataset has an RMSE against
the OLS line ranging between 0.62 to 0.98 °C, an RMSE against the 1:1 line ranging between 1.00 to
1.58 °C, and correlation coefficients ranging from r=0.83 to 0.92. Further, we find that error within
images against in-situ data is temporal and regional, likely borne of local and seasonal effects such

as stratification.
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The first step of our method enhances existing techniques for calibrating single image
Landsat brightness temperature to SST using coincident MODIS data and extends its application
across hundreds of images rather than isolated dates. This "per-image" calibration approach, while
showing variable performance across the dataset, was shown to be particularly beneficial for
selecting and calibrating images with inherently higher correlations to MODIS data. This method
allowed for significant improvements in SST estimation accuracy, achieving reductions in RMSE g

and RMSE1.; and an increase in correlation at most in-situ measurement locations.

Moreover, the implementation of the second methodological step, a generalized equation
calibration methodology based on constants derived from median statistics of the best-fit
correlation equations from data derived from and selected with the first methodology, has
uniformly enhanced data correlation across the dataset with buoy readings both nearshore and
offshore. This methodology's strength lies in its ability to resolve inaccuracies potentially
introduced by artifacts such as undetected clouds and shadows, which can adversely affect per-
image calibrations. The resulting data quality, closely aligned with in-situ measurements,
underscores the value of a generalized approach in achieving more consistent and accurate SST
estimations. The use of optimal calibration constants for the study site that surpass the
performance of standard B data presents a promising avenue for future SST measurement
calibrations within the region. This strategy enables future calibrations to be conducted
independently of MODIS data, potentially simplifying the calibration process, and extending its

applicability to historical B data collected before the MODIS Terra satellite launch.

The goal of this paper is to provide an easily applied and replicable methodology for
optimizing SST data for nearshore observation. Future work should focus on testing these
calibration constants against similar regions to assess the broader applicability of this methodology
for comparable climatic conditions. This would help validate the robustness of the approach and

extend its utility to other coastal areas with similar oceanographic characteristics, such as
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upwelling regions along western continental boundaries. Additionally, further investigation into the
impacts of stratification on the calibration methodology could help refine and enhance future
efforts in deriving high-resolution SST data from satellite imagery. Understanding how vertical
temperature gradients in the water column affect the relationship between satellite-derived SST
and in-situ measurements at different depths would enable more accurate calibrations and
improved error characterization. Using these calibrated datasets, potential use cases across various
spatial and temporal scales are showcased, demonstrating promise for approaching questions
previously unable to be effectively pursued, or enhancing the detail of prior knowledge obtained
with coarser, moderate-resolution SST data. High-resolution SST data prove invaluable in observing
lesser-known nearshore processes, which have significant implications for coastal water quality
management. These showcased use cases can individually be expanded upon to address many

specific, important, and understudied questions in future efforts.
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CHAPTER 3

Characterizing Wave-Driven Nearshore Transport of Surface Turbidity Across Diverse Coastal
Geomorphology using High Resolution Remote Sensing and Environmental Data

Abstract

Rip currents play a critical role in cross-shore mixing, sediment transport, and coastal
morphology. However, their dynamics in rocky shore environments remain understudied due to
the predominant focus on sandy beaches. While remote sensing offers promise for studying these
environments, the fine-scale resolution required to observe rip currents using satellites presents
unique challenges due to the heterogeneous nature of nearshore waters. In this study, we utilized
data from a deep learning-based, satellite image processing and coastline detection python package,
CoastSeg, to resolve nearshore heterogeneity in hundreds of high-resolution Sentinel-2 (10m)
images. This enabled the accurate extraction of red water-leaving radiances (Rhowses) as a proxy
for turbidity in the nearshore waters off Northern California, spanning from San Francisco Bay to
the Gualala River. We contextualized these Rhowses data using coincidental wave model data from
CDIP MOP, tide data, and high-resolution (2m) bathymetric data. Analysis included creating
pixelwise time series correlation maps and calculating the average cross-shore decay of turbidity at
31 sites with distinct geomorphologies. We specifically examined decay equation coefficients Cy
(initial shoreline turbidity concentration) and b™* (inverse decay rate) across different wave
climates and their correlations with site-specific bathymetries. Our findings indicate that smooth
bathymetries, typical of sandy beaches, exhibit high Co values, reflecting high shoreline sediment
erodibility and mobility. However, these areas generally showed limited b~ due to the lack of
bathymetric complexity necessary to sustain large rip currents, especially in low wave energy
conditions. Conversely, rocky shores with high bathymetric roughness supported stronger b™*
values in low wave climates, and particularly so in low water levels, but lacked sufficient Co to
generate significant turbidity signals under these conditions. Notably, sites with rocky shores near
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sediment-rich estuaries, sandy embayments, headlands, and kelp forests exhibited the highest C,
and b~?values, resulting in the most extensive offshore turbidity transport. In addition to providing
novel quantitative insights into wave-driven transport in rocky shore environments, this research
contributes a quantitative framework for assessing how geomorphology and wave dynamics
influence turbidity transport, offering valuable guidance for coastal management and conservation

efforts.

1. Introduction

Rip currents play crucial roles in cross-shore mixing (Smith & Largier, 1995), sediment
transport (Aagaard et al.,, 1997), and coastal geomorphology (Wright & Short, 1984; Castelle &
Masselink, 2023). These currents are typically induced by the interaction of hydrodynamic
processes with morphological features, such as flow separation on headlands and channelized flow
through rocky bathymetry (MacMahan et al., 2006; Castelle et al.,, 2016; Largier, 2022). The shear
stress generated by rip currents mobilizes sediment, altering beach slope, seabed morphology, and
nearshore chemical and temperature gradients (Smith & Largier, 1995). Suspended sediments in
these flows impact nearshore chemistry, biology, and geomorphology, as well as light attenuation

and primary productivity (Lawson et al., 2007).

Rip currents are typically induced by the interaction of hydraulic flow with morphological
features, such as flow separation on headlands and sea stacks or channelized flow through gaps in
longshore sandbars and rocky bathymetry (MacMahan et al.,, 2006; Castelle et al., 2016; Largier,
2022; MacMahan et al., 2023). In some cases, rip currents can also result from instabilities in
longshore flow (Noyes et al., 2004). The unique characteristics of each shoreline, including wave
climate, beach slope, and geomorphology, contribute to the high diversity of rip currents (Largier,
2022). This diversity ranges from dissipative sandy beaches to reflective rocky shores, with

headlands of varying shapes and sizes that influence cross-shore sediment transport (George et al.,

94



2015; Castelle et al., 2016; George et al., 2019). Rip current characteristics also vary with factors
such as sediment granulometry and availability (Jaffe et al., 1984). Fig 1 illustrates some of this

variability, displaying rip currents at three different sites with varying geomorphic facies and

sediment availability.

0 3 6 12 km A

Fig 1: Examples of rip currents from 3 locations in our study site. Column A: Extent overlooking the
Russian River between Wrights Beach and Timber Gulch. Column B: Extent overlooking Pt Reyes
National Seashore between Pt Reyes and Point Reyes Beach IV. Column C: Extent overlooking Salt

Point State Park; Rows I-III, examples with offshore turbid signal from waves within respectively
further offshore extent.
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Despite their diversity, most rip current studies have focused on recreational beaches with
an emphasis on swimmer safety (Brander & Scott, 2016), resulting in a knowledge gap regarding
their behavior in rocky shore environments (Largier, 2022). These complex, rocky settings present
unique challenges for in-situ monitoring due to hazardous conditions and limited accessibility
(Gallop et al.,, 2018). However, understanding rip current dynamics in these environments is crucial
for predicting sediment transport, coastal erosion, and the overall functioning of nearshore

ecosystems (Loureiro et al,, 2012).

Satellite remote sensing offers a promising methodology for monitoring rip currents, as it
overcomes the safety challenges associated with these fast offshore flows, particularly in rocky
shore environments. However, limited research has been conducted on quantitatively observing rip
currents using satellite remote sensing. Until recently, the surface extent of these features was
small relative to the resolution of available satellite data (Holman & Haller, 2013). Moreover, the
nearshore environment is highly heterogeneous presenting unique challenges in image processing.
These factors present significant challenges for accurately detecting and quantifying rip currents

using remote sensing techniques.

This project aims to develop remote sensing methodologies for processing and analyzing
imagery to quantitatively observe rip currents using high-resolution Sentinel-2 imagery,
coincidental monitoring and modeled data, and local high-resolution bathymetric data. By
gathering statistics on wave driven transport in different geomorphological and hydrodynamic
contexts, we seek to better understand the controls that constrain sediment mobilization and
transport in rip currents, both ubiquitously and dichotomously, examining how controls vary with
differing geomorphologies (i.e. rocky and sandy shores, complex vs uniform coastline shape). The
use of Sentinel-2 imagery, with its high spatial and temporal resolution, provides an opportunity to

study rip currents at a regional scale and in diverse coastal settings. Combining this satellite data
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with coincidental/local environmental data and statistical analysis enables comprehensive

understanding of rip current dynamics and their variability across environments.

2. Methods

2.1 Study Site
Overall Site:

The region of study, located in Northern California just north of San Francisco Bay, lies
between 37.5° to 38.5° N and -123.45° to -122.55°W within the Sentinel-2 tile 10SDH. This area
geomorphically diverse, making it ideal for maximum variability. The shoreline throughout the
region includes various sand-fronted facies such of varying length, width, area, and shoreface angle.
Between these areas lie ephemeral sandy berms that appear at low tidal levels, pocket beaches, and
seacliff and sea stack-fronted shores. The region also features kelp forests with varying canopy
coverage by year (Bell et al,, 2015; Bell et al., 2020) The presence of kelp forests can influence
nearshore hydrodynamics and sediment transport, as they can attenuate wave energy and alter

current patterns (Gaylord et al,, 2012).

The region experiences a Mediterranean climate, with intense winter rainfall events (i.e.,
atmospheric rivers) and relatively dry conditions throughout the rest of the year (Wheatcroft et al.,
2010; Dettinger et al., 2011). Winds exhibit seasonal patterns, with strong northerly winds driving
coastal upwelling in spring and summer (April to June), southerly wind events during winter
storms (December to February), and weaker winds in the fall (August to October) (Garcia-Reyes
and Largier, 2012). This seasonal storm pattern also controls the influence of turbidity from
buoyant freshwater outflow, primarily from the Russian River (Speiser and Largier, in review) and
smaller rivers like the Gualala River, Salmon Creek, and ephemeral rivers and runoff. Outside of

storm season, these locations are often closed off from the ocean by sandy berms (Behrens et al.,
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2013). Littoral cells in the region are largely supplied by these rivers, with over 80% of the
sediment coming from major river outflows (Griggs and Hein, 1980; Runyan and Griggs, 2003).
Finer sediments can travel tens of kilometers alongshore (Speiser and Largier, in review), while
coarser sediments deposit closer to shore and are transported within and between littoral cells via

longshore transport (Patsch and Griggs, 2007).

Shoreline morphology in the region is also seasonal, with low-sloped, dissipative beaches
and fine-grained sands during the summer, and high-sloped, reflective beaches during the winter,
influencing cross-shore flow (Wright and Short, 1984). Sand berm morphology is inherently tied to
this process, providing sediments to sandy shores during the summer and being refed by sediments
from the shoreline during the winter, impacting rip current dynamics (Masselink and Short, 1993;
Castelle et al., 2016). Changing morphology alters wave setup for rip currents (MacMahan et al,,
2006). Many of these sandy beaches are also fronted by nearshore sea stacks, which inherently

impact wave hydraulics.

Rocky shores, sea stacks, and complex seacliff morphologies in the region create headlands
of diverse sizes and complex, stable bathymetries (Largier, 2022). These headlands and sea stacks
of different sizes act as boundaries for littoral cells with varying sediment residency times and
contribute to the diversity of hydrodynamics, causing flow separation and setup for rip currents
(George et al,, 2015; George et al., 2019). The complex bathymetry and headland structures can also
influence the formation and persistence of rip currents, as well as the exchange of water and

sediment between the surf zone and the inner shelf (Castelle et al., 2016).
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Individual Sites:

Thirty-one sites of interest were chosen throughout the study region where the Sentinel-2
tile is in full on all dates. These regions were grouped by landmarks and obvious headlands.

Regional groups and site descriptions are as follows:

North Fort Ross: This region starts north of Ross Reef (site 4), characterized by rocky shore
platforms and small embayments fed by ephemeral runoff. The largest embayment is Timber Cove
(site 2), a ~1000m wide cove sheltered by ~400m headlands. Sites: North Fort Ross (1), Timber

Cove (2), Central Fort Ross (3), Ross Reef (4).

South Fort Ross: A thin (~25m wide) shoreline with dispersed boulders and short sea stacks
breaking the surface at low tide, with gulches, Timber Gulch (site 1) and Jewell Gulch (site 3). Kelp
forest is observable through true color imagery and in historical kelp data from the California
Department of Fish and Wildlife (CDFW) aerial imagery surveys, particularly in Sites 5 and 6 . Berm
discontinues in a series of boulders in the middle of site 3 and ends in a headland in site 4, ~150m
upcoast of the sites downcoast extent. Sites: Timber Gulch (5), Timber/Jewell Gulch (6), Jewell

Gulch (7), Meyer Gulch (8).

Russian River Area: Notable for the Russian River Estuary (site 12), which is south-bound by Goat
Rock. Estuary is fronted by a 2km long sandy beach berm with several sea stacks in the nearshore.
North of the estuary, are with several pocket beaches/sandy embayments separated by small
headlands and seacliffs with sea stacks. The embayment with the largest berm is within Russian
Gulch (Site 10). Sites: (9) North of Russian Gulch, (10) Russian Gulch, (11) Jenner Headlands, (12)

Russian River Estuary.

Wrights Beach Area: South of the Russian River Estuary, separated by Goat Rock, north of Site 13.

Sites are primarily seasonally sandy embayments separated by headlands, with many sea stacks in
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the nearshore, and a few seacliff-fronted shores in site 14. The widest beach berm (~250m wide) is
in site 16, Wrights Beach, which ends southward at a small headland. Sites: (13) South of

Russian/Goat Rock, (14) Shell Beach, (15) North Wrights Beach, (16) Wrights Beach

Salmon Creek Beach Area: Includes sites distributed around the Salmon Creek Estuary, with
Portuguese Beach (site 17) to the north. Sites 19 and 20 have a shared berm backed by dunes and
have no sea stacks in the nearshore. Site 18, is where the berm ends north of the estuary, and is
seacliff backed with sea stacks. Portuguese beach is separated by seacliff and has sea stacks. Sites
19 and 20 face northwest. Sites: Portuguese Beach (17), North Salmon Creek Beach (18), Central

Salmon Creek Beach (19), South Salmon Creek Beach (20).

Bodega Marine Lab: Located on west-facing seacliffs on the Bodega Bay headland, oriented nearly
90° from Salmon Creek Beach, fronted by platforms. Notable is “Horseshoe Cove” a 150m wide,
300m deep with sandy shore in site 21 and small sandy embayments in the southern portion of in

site 22, which shares a headland with the Bodega Bay inlet. Sites: (21) Bodega Marine Lab, (22)

Bodega Head.

Bodega Bay: Situated between Bodega Bay and Tomales Bay and influenced by tidal outflows,
which are occasionally turbid. Estero Americano (site 23) is fronted by a berm, with another berm
southward separated by seacliffs. Site 24 is 1.5km north of estero San Antonio. Both sites have
nearshore sea stacks and boulders. Sites: Estero Americano (23), Estero Americano/San Antonio

(24).

Tomales Point: These sites are on the seaward extent of the Tomales Bay spit and include bluffs,
cliff-backed with tidal beaches, and some sheltered persistent pocket beaches and platform
beaches. Nearshore sea stacks are in each site. 500m south of site 27 is a 2km nearly continuous
berm), McClures Beach, that faces northwest. Sites: (25) Tomales point (26) Elk Reserve (27) North

of McClures Beach
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Point Reyes National Seashore: Stretching along a 19km long, 100m wide berm with no sea
stacks, these sites transition from berms backed by dunes to cliffs. The farthest north site (site 29)
is in front of Abbott’s lagoon, a permanently closed lagoon, with the widest berm. ~4km downcoast
of site 31, the berm ends at the Pt Reyes headland. Sites: Pt Reyes Beach I (28), Pt Reyes Beach Il

(29), Pt Reyes Beach III (30), Pt Reyes Beach IV (31).
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Fig 2: Maps of Study Region: A.) Entire region of study. Green line is extent of data considered,
10km offshore. Red dots are CDIP MOP wave energy modeling points at 10m isobath. Yellow square
is NOAA Tide Gauge #9415020. Purple square is extent of map: B) Map of study sites as outlined in
Methods 2.2. Site rectangles are colored by same regional group.

2.2 Environmental Data

In this study, we statistically contextualize reflectance from high-resolution satellite
imagery with coincidental local monitoring, modeling data, and bathymetric data. Hourly wave
height (H;), direction (D.), and Period (T.) data were gathered from the Coastal Data Information
Program (CDIP; https://cdip.ucsd.edu/), generated using a linear, spectral refraction wave model
driven by offshore wave buoy observations (O'Reilly et al., 2016). This wave data is measured at the
10m isobath and estimated every 100m alongshore (Fig 2), providing a detailed spatial
representation of wave conditions in the nearshore zone (Adams et al.,, 2011; Orzech et al,, 2010;

Vos etal, 2019).

Ocean water level data referenced to MLLW were obtained from the Point Reyes tide gauge
(NOAA #9415020) (Fig 2). Data from this gauge is known to represent tides at the Russian River
mouth with negligible phase and amplitude differences (J.L. Largier and D.S. Behrens unpublished
data). For regions closer to Fort Ross than Pt Reyes, water level was offset by .96 feet, low tide by -
30 minutes, and high tide by -51 minutes, as recommended by NOAA. This data is captured in 15-
minute bins, providing a high temporal resolution for analyzing tidal influences on nearshore

processes (Largier et al,, 1993).

Bathymetric data, acquired by the Seafloor Mapping Lab of California State University
Monterey Bay in 2010 using multibeam sonar and backscatter imagery, are provided at a 2Zm
resolution. This high-resolution bathymetric data allows for detailed analyses of seafloor

morphology and its influence on nearshore hydrodynamics.
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Kelp forest canopy data from the California Department of Fish and Wildlife (CDFW) aerial
imagery surveys (2010, 2013-2016) were also explored for discussion of the role of kelps in
sediment supply and transport. This dataset was chosen due to its high-resolution capture, which
enables the observation of kelp forests coverage in close nearshore. However, it should be noted

that this dataset ends at 2016 and has an incomplete extent in the years not used.

2.3 Satellite Data

Unprocessed Sentinel-2 (S2) Level 1C satellite data were accessed through the SentinelHub

API (https://www.sentinel-hub.com) to capture small-scale signatures of rip currents. The S2

constellation collects imagery in 13 spectral bands at 10, 20, and 60m resolutions, with a combined
revisit time of 5 days (Drusch et al., 2012; European Space Agency, 2015). Data from 06/2015 to
05/2023 were collected for the study area, from S2 tile 10SDH, accounting for 758 total images. S2
are sun synchronous and overpass areas at 10:30AM local solar time, so coincidental temporal data
(CDIP MOP and NOAA Tide data) was captured within the 9:00AM to 10:00AM local solar time and
averaged as an hourly bin. Tile 10SDH is in the edge of Sentinel-2 swath, so occasionally data from
the site is incomplete, accounting for missing data in half the extent as seen with missing pixels in

Fig 4, (European Space Agency, 2015).

ACOLITE (https://odnature.naturalsciences.be /remsem/software-and-data/acolite) was
used for atmospheric correction to water leaving reflectance and initial masking of image artifacts
such as clouds, glints, sea stacks, boulders, boats, and shadows from topography and clouds.
ACOLITE atmospherically corrects to water leaving radiances in two steps, first using Rayleigh
correction to correct for scattering, then using short wave infrared radiation data to correct for

aerosols over water (Vanhellemont & Ruddick, 2015; Vanhellemont, 2019).

Red (665 nm) and near-infrared (NIR, 842 nm) wavelengths from Sentinel-2 (S2) satellites

are well-established proxies for sediment turbidity in water quality monitoring (Lahet & Stramski,
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2010; Saldias et al., 2016). These wavelengths are sensitive to suspended sediments due to strong
scattering by particles and low absorption by water molecules (Nechad et al., 2010). To validate
their use in our study region, we compared atmospherically corrected water-leaving radiance (Lw)
in NIR (Rhow842) and red (Rhow665) bands with coincidental turbidity measurements from the
Hacienda Bridge gauge (USGS #11467000) in the Russian River, using the average of all values
between the river mouth and the gauge (Fig 3). Rhow665 showed a logarithmic correlation
(Spearman's rho=0.88) with turbidity, consistent with the saturation effect at high sediment
concentrations observed in previous studies (Nechad et al., 2010; Dogliotti et al., 2015). Rhow842
exhibited a linear correlation (Pearson's r=0.87). Given its stronger correlation and sensitivity at

high radiances, Rhow665 was used as a proxy for suspended sediment concentration.

Discharge data from the Hacienda Bridge gauge were used to filter out dates when coastal
turbidity might be influenced by freshwater outflow, following the methodology of Speiser and
Largier (in review). This approach isolated dates when wave momentum was sufficient to trap
turbid outflow within the surf zone, preventing its transport to the coastal shelf. 299 out of 403

non-cloudy image dates surpassing this threshold were used in the analysis (Fig 4).
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Fig 4: Count of available pixels at each position, surpassing river momentum dominance threshold,
after cloud clipping and whitewater removal.

Foam from breaking waves, wave caps (Gordon & Wang, 1994), and foam lines (Killeen et
al,, 2023), while sometimes incidentally masked in atmospheric correction (likely due to cloud
masking), vary in position and presence geographically from image to image due to changing tides
and wave climatology. These white features have very high albedo and can significantly skew
statistical metrics if included in a dataset in which reflectance is being observed as a proxy for
suspended sediment (Shi & Wang, 2009). To mask out these features, we developed a methodology
using the package CoastSeg (Buscombe, 2023; Fitzpatrick et al., 2024), which includes
segmentation models with a class representing "whitewater" within images. The workflow
consisted of the following steps: 1) running the model on each true color satellite image, 2)

removing land using a static land mask, 3) applying a 5-pixel radius disk kernel to each pixel
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classified as white water (falling within the softmax threshold) to find probable white water pixels,
4) applying gap filling, 5) applying a morphological closing operation using another 5-pixel radius
disk kernel, 6) manually inspecting the results to confirm the effectiveness of the methodology in
isolating shore-parallel foam from breaking waves, and 7) extracting all Rhowg,, pixels from each
atmospherically corrected NIR image and determining the median value of those pixels to be the
maximum pixel value for non-foam radiance (Rhow833=.0111 Lw). For any image, any zone where
Rhow833 >.0111Lw is masked. Manual inspection of images confirmed the effectiveness of this
methodology, and a total of 17,675,010 pixels were removed from the already masked Acolite
images. Because land features are more reflective than foam features in NIR, any remnant artefacts,
such as sea stacks, not captured from the 20m feature masking from ACOLITE were also removed

from the dataset (Fig 5).
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Fig 5: True color Images from dataset overlooking Bodega Bay (A: 12/08/2020, C: 09/24/2020)
and their respective Rhowses data after pixel masking for land and white water (B:12/08/2020, D:
09/24/2020). (A &B) are from a date with higher wave energy with a lot of white water and (C & D)
are a low energy date. Black data in Rhowees are masked pixels.

To differentiate between water made turbid by sediments from wave resuspension and
"clear” water, we examined the distribution of pixel values from all cloudless images (manually
inspected) within a 5km? region offshore, outside the visible influence of turbidity from breaking
waves (Fig 6). The 97th percentile Rhowees value, .0088 Ly, of these pixels was considered the

maximum value for non-turbid water (Creshod), with the logic that higher values must be under the
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influence of a turbid transport process. This threshold is consistent with similar approaches used in
previous studies to differentiate between turbid and clear water (e.g., Saldias et al., 2012; Mendes et
al,, 2014; Saldias et al., 2016). While this threshold may not perfectly capture all instances of turbid

water, it provides a reasonable and conservative estimate for the purposes of this study.

Fig 6: Bounding box (yellow) for extent of pixels extracted to calculate clear water threshold and
histogram of pixel values (y-axis is pixel count (1e6) and x axis is Rhowess value (Lw)). Background
image is Sentinel-2 image from the study site from 12/08/2020.

108



2.4 Statistical Analyses

Maps of reflectance statistics at pixel positions were created to observe trends in nearshore
turbidity and their correlation with environmental controls. To compare pixels with coincidentally
measured wave variables, we found the closest CDIP MOP wave modeling point for each pixel
position within images using the haversine equation for distance on a sphere (Sinnott, 1984).
Reflectance values at each pixel were then matched with model variables for coincidental times,

allowing for direct comparison between satellite-derived turbidity and wave conditions.

We generated maps showing the count and median of Rhow665 values at each location to
assess average turbidity distribution and variance. To examine changes in turbidity under varying
wave energy, we recalculated median Rhowsggs statistics for satellite images subset by Hs data at the
nearest buoy, using different wave energy percentiles (below 50th, above 50th, 75th, and 95th).
This approach provided insights into the role of wave forcing on sediment resuspension and
transport. Contours were drawn with a base at Creshold to mark the offshore extent of wave-
impacted turbidity. Contours with surface areas below 1.6km?2 were excluded from the dataset. This

approach assumes that pixels beyond the threshold were outside the influence of rip currents.

We adapted the methodology of Speiser and Largier (in review) to estimate wave and tidal
control on turbidity at each pixel. Maps of correlation at each pixel between Rhowess and and wave
parameters (Hs, D,, Ta) modeled at coincidental times at the nearest buoy location were created
using Spearman's rho rank correlation (p) to account for non-linear relationships and outliers
arising from incidental processes (Mukaka, 2012; Schober et al., 2018; Speiser and Largier, in
review). These correlations were mapped at the resolution of pixel data (10m), and contours were
created to describe the regional influence of waves and tides on turbidity, following Speiser and
Largier (in review). Correlation strength classes are shown are consistent with Speiser and Largier,

shown in Table 1. Contours smaller than 1.6km? in extent were removed from the dataset. The
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value ranges for these classes are determined to the second decimal (i.e., 0.394 falls in the "weak

correlation class", while 0.395 is rounded to 0.40 and falls in the "moderate correlation” class).

Absolute value of Rho
Interpretation

0.00-0.10 | Negligible Correlation

0.10-0.39 | Weak Correlation

0.40-0.69 | Moderate Correlation

0.70-0.89 | Strong Correlation

0.90-1.00 | Very Strong Correlation

Table 1: Correlation strength classes from Schober et al,, 2018. Table is from Speiser and Largier, in
review.

To model rip current activity at 31 sites (Fig 1), pixels were binned by cross-shore shore-
normal angle transects (3km cross shore by 1km alongshore rectangles). Location of backbeach and
shore-normal angle were determined from CDIP data points. For each image capture date, median
Rhowyess values every 10m along the midline of the shore-normal transect were plotted against

distance offshore (d), and the best fit was calculated using an exponential decay equation:

Cxy=Co-elby eq 1.
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where in this case, Cx is Rhowses at offshore distance x, Cp is the initial value at x = Okm, and b is the
decay coefficient. This exponential decay equation is regularly used to describe distance and and
other water quality measures throughout a variety of hydrologic contexts. Examples of Rhowgs
images with respective best turbidity concentration decay equations are shown in Fig 6. Only
equations with high-quality fits with R* >.9 were included (3710 out of 5369 total equations)
ensuring robust data, but it is acknowledged that this may also exclude some legitimate data points.
Decay constants Co and b were averaged across all dates and in dates grouped by quartiles of wave
and tidal conditions and were compared between sites. Quartile ranges calculated as global values
across all sites so that wave and tidal feature subset bounds are consistent for each site. Wave
variables were gathered from the modeling points closest to the site's midline. The equation Co.ebd

= Cwreshold Was used to estimate the estimate offshore extent of wave-driven turbidity (d).
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Fig 7: Rhowses data a small extent of Bodega Bay and the site bounds for the Central Salmon Creek
Beach site, site 19 (green rectangle) on three separate dates (A: October 21, 2020; B: February
17,2020; C: December 3, 2020). Plot points are respective average Rhow665 (y axis) versus
distance offshore along the site extent midline (x axis), binned every 10m. In each plot is the
equation of the best fit decay line (in purple) as well as goodness of fit (R2).

Bathymetry data were binned using the same methodology to characterize each site's
bathymetry. Depth was averaged every 2m along the midline, and roughness (standard deviation)
was calculated alongshore and cross-shore as an approximation of rugosity. When applicable, data
were detrended using SciPy (Virtanen et al., 2020). Metrics were averaged in distance bins from the
shoreline (0.5km 1.0km, 1.5km, 2.0km, 2.5km, and 3.0km) to capture bathymetric changes with
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distance: a.) alongshore roughness (&,), calculated as the standard deviation of depth values
parallel to the shoreline within each distance range b.) cross-shore roughness (&), computed as the
standard deviation of depth values perpendicular to the shoreline within each distance range, c.)
detrended alongshore roughness (£4.), derived by removing the linear trend from the depth profile
parallel to the shoreline and calculating the standard deviation of the residuals d.) detrended cross-
shore roughness (eq4c), obtained by detrending the depth profile perpendicular to the shoreline and
computing the standard deviation of the residuals, e.) mean depth (h™), the average depth within
each distance range f.) depth change (Ah), calculated as the difference between the maximum and
minimum depths within each distance range, g.). All depths and metrics relating to depth are

absolute values.

These bathymetric variables were compared with the sites’ average decay coefficients (Co,
b) and turbidity extent (d), as well as averages from wave and tidal parameter subsets, particularly
examining Q1 and Q4 extremes. Distance bins at 1.0km received extra scrutiny to evaluate
nearshore bathymetric control on wave energetics. Spearman rank correlation was used to
compare metrics, and the results were visualized using heatmaps to identify patterns between
bathymetric characteristics (sandy vs. rocky) and turbidity decay in different hydrodynamic

conditions.
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3. Results

3.1 Region-wide Analyses

This section reviews the spatial patterns of turbidity across the study region and examines
their relationship with model wave variables. For geographic site names and boundaries, refer to

Fig 2.

Fig 7 shows the median of rhowess values across the observed dataset, along with the turbid
contour where pixels surpass the Curesnoid- In the Pt Reyes National Seashore region (Fig 7A), the
turbid contour parallels the coastline but varies in cross-shore extent, reaching up to 0.4km
offshore north of the southward Pt Reyes Headland and decreasing to 0.15km seaward nearly
11km upcoast. The contour abruptly ends at the south face of Pt Reyes. At Tomales Point, the
contour is less consistent and fragmented, extending between 0.1-0.4 km seaward. Fig 7B shows
the contour extending further offshore, especially near Bodega Bay esteros (0.73 km), Mussel Point
(0.8 km), the Jenner Estuary (2.7 km), and in front of Timber and Jewell Gulch in the South of Fort
Ross region. The contour is interrupted at Bodega Head, south of Wrights Beach, and at the
midpoint between Fort Ross and the Russian River estuary, as well as just north of Timber Gulch.
Further north (Fig 7C), median turbidity surpasses Cireshoia Only in small, headland-protected coves,
with the largest contour extending 0.3 km offshore in north-facing coves. The most prominent
feature in Fig Cis a 2 km-long contour extending 0.8 km offshore from the Gualala Estuary, with a
consistent parallel contour extending 0.5 km offshore along the remaining coastline, becoming

fragmented at a headland.
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Fig 7.: Median of examined Rhowees values at each pixel location over the region of study. Contour’s
base is at the established clear water threshold value. Red squares on overall map correspond with
zoomed in maps with respective letterings. Zoomed in maps are of the same extent.

Fig 8 compares the median turbid contour with the median turbid contours of all pixels
when subset to dates below and above the 50th percentile of H; at the nearest buoy locations. In the
southern region (Fig 8A), the below-average H; contour extends furthest offshore within bays and
south of Drake's Estero, forming a narrow band of 0.05 km alongshore in front of Point Reyes

Seashore and small pockets along Tomales Point. In above-average wave conditions, the turbid
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contour becomes more extensive throughout Fig8A, forming a shore-parallel feature extending 0.5

km offshore, uniform across the Pt Reyes Seashore except for the south-facing Pt Reyes.

In the central region (Fig 8B), the below-average Hs contour extends up to 0.8 km offshore
in front of the Russian River estuary, bounded by its northern and southern headlands. Other
notable below-average Hs contours lie within between the esteros in Bodega Bay, .1km offshore
around Salmon Creek and Wrights Beach (and bound by their headlands), and a 3.5 km-long band
south of Fort Ross, reaching 0.4 km offshore at Timber Gulch. The above-average Hs contour
extends throughout the region up to the northern Fort Ross area, with maximum offshore distances
of 2.1 km south of Doran Beach, 2.2 km at Jenner Headlands, and 1.6 km between Timber and Jewell
Gulch. The difference in offshore extent between median and above-average conditions is generally

uniform, ranging from 0.5 to 0.8 km, with a maximum of 1.5 km south of Doran Beach.

In the northern region (Fig 8C), the largest below-average Hs contour lies in front of the
Gualala Estuary and a cove immediately southward, extending 0.3 km offshore, with smaller
contour features appearing in northwest-facing coves 7km upcoast of the estuary. The above-
average Hs contour is continuous until 3.5 km south of the Gualala Estuary, where separate features
occupy embayment. The above-average contour nearly parallels the median condition turbidity

contour, mostly ranging between 0.5-0.8km in further offshore.
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Fig 8: Map showing the position of the contour with its base at the established clear water
threshold value mapped when pixels are in their median condition or the median condition to when
they are subset between by date where the nearest modeled wave height is above or below its 50t
percentile. Red squares on overall map correspond with zoomed in maps with respective letterings.
Zoomed in maps are of the same extent
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Fig 9 illustrates the per-pixel correlation between rhow665 and coincident Hs at the nearest
wave energy modeling location. A continuous weak correlation contour spans the entire study
region, generally following the coastline and ranging from 5.0 to 8.0 km offshore. Similarly, A
mostly continuous moderate strength contour is present in the nearshore throughout the entire
study region. In Fig 94, this moderate contour starts at Pt Reyes Headland, forming a uniform 0.6
km wide band across the Point Reyes National Seashore, and unevenly extending ~1 km offshore
along Tomales Point. In Fig 9B, the moderate contour nearly spans the entire site, terminating north
of Fort Ross, with maximum seaward extents off Doran Beach (2.9km), the Russian River Estuary
(2.6km), and Timber Gulch (1.8km). Fig 9C shows a moderate contour extending 21.7 km
northward from the start of the extent, reaching 0.7 km offshore. A second contour forms 7.5km
south of the Gualala Estuary and extends through the rest of the study region, reaching ~1.5km

offshore in most areas north of the estuary.

Dispersed "strong" correlation contours are also present. In Fig 94, few small 0.1km
diameter contours are scattered across Tomales Point, with none in front of the Point Reyes
National Seashore. In Fig 10B, these contours are clustered between the Bodega Bay esteros, in
front of Bodega Marine Lab, in rocky regions between Salmon Creek Beach and the Russian River
Estuary, 0.8 km offshore of the Russian River Estuary, in rocky headlands north of the river, 0.1 km
offshore of Timber Gulch, and in front of Ross Reef and Timber Cove. South of the Gualala River
Estuary, these features are primarily found in small coves, with the largest in the cove directly
south of the estuary. Starting 5 km north of the Gualala Estuary, relatively larger strong correlation
features are closely distributed, extending throughout the rest of the study region, and reaching

~0.25 km offshore.
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Fig 9: Pixel-wise correlation coefficients between Rhowess and coincident hourly Hs modeled at the
nearest wave energy modeling buoy location. Contours are based at correlation strength class
range minimums, described in Table 1.

The relationship between Rhowsss and wave angle D,, as well as Hg and T, normalized to
wave angle D,, were also mapped at each site. However, these results are not reported due to the
complexity of the analysis. The relationship between wave angle and seasonal southward currents
associated with the largest waves made the isolation of Da as a standalone wave component

difficult. Further, the intricate coastline of rocky coastal regions, made it challenging to accurately
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measure shore angle on a pixel-by-pixel basis, particularly for offshore positions. We also
investigated the standard deviation of Rhowses values at each pixel location. The mapped results
nearly mirrored those of the median results (high variation at all locations with high median, vice
versa) and were not found to add or detract from findings in the study. These results can be found
in Appendix L. Similarly, the relationship between Rhowgss and coincident wave period, T,, were
also mapped but did not produce any findings that added or detracted from the findings of this
study. In these maps, correlations were highest in small regions immediately offshore of estuaries,
and lowest in regions that did not correspond to wave models (such as waters within Tomales Bay).

These results can be found in Appendix II.

3.2 Sitewise Analyses

When turbidity at different site bins was fit to average best fit equation decay equations as a
function of distance in 10m across-shore bins, the Cy and b coefficients of those equations varied at
each site, as seen in the table and plots in Fig 10. South Fort Ross, Jewell Gulch had the highest
average Co (0.093 Lw), while North Fort Ross, Timber Cove had the lowest average Co (0.0126 Lw).
Ross Reef had the highest average b~ (.903), and Salmon North Salmon Creek Beach had the lowest
average decay b~ (0.158). Decay coefficients within different regional site groups varied within
groupings. For instance, sites in the Fort Ross group varied widely across average decay b but not
with average C,, sites along the Pt Reyes National Seashore varied in average C, increasing with
northward position, and regions like the Russian River Area and South Fort Ross varied widely in
both. Other regional groups such as Wright Beach and Tomales Point had smaller distributions of

decay coefficients.

When solving for offshore distance of Cireshold, d (Fig 10C), Timber Gulch, South Fort Ross
(d=1.635km), and Russian River Estuary (d=1.520 km) had the highest offshore distances. North

Salmon Creek Beach (d=.379 km), Reyes Beach 1V, and North Fort Ross (d=0.450km) had the lowest
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average offshore distances of turbidity. South Fort Ross had the highest variability in average
distance of offshore sediment transport among the regional groupings, with Admax - Admin =
0.958km. Tomales Point and Pt Reyes National Seashore, the two southward regions, had low

inner-site variability, with Admax - Admin = 0.109km and 0.117km, respectively.
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Fig 10: A: Average decay equations at each site of equations where r2>.9. Numbers adhere to site
number, color is by regional group. Dotted red line is at clear water threshold marking distance d;
B: Plot of average b~ (y axis) Co (x axis) of each site’s respective average decay equation. Numbers
adhere to site number, color is by regional group. C) Table of average Co, b~%, standard deviation (o)
of both coefficients (Cpand b), count of decay equations where r2>.9, and distance of clear water
threshold on average decay equation.

The Co and b coefficients were examined when dates were subset to wave quartiles (Q), as
shown in the plots in Fig 11 and the table in Appendix III. The impact of Hs and WL on Co and b was

investigated by calculating the average decay equation for each site within the following ranges:
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- Hs044mto 1.11m (HsQ1), 1.11m to 1.48m (HsQ2), 1.48m to 1.96m (HsQ3), 1.96m to 5.03m
(HsQ4)

- WL:-0.23m to 0.84m (W.Q1), 0.84m to 1.19m (W.Q2), 1.19m to 1.48m (W.Q3), 1.48m to

2.08m (W.Q4)

All sites in the North Fort Ross region had the lowest Cy values within the first quartile for all
parameters. Ross Reef had the lowest Cq for Hs (Q1Hs, Cy = 0.0068 Lw), and North Fort Ross had
the lowest Cq for WL (Q1WL, Co = 0.0095 Lw). No regional group consistently had the highest C,
across all sites, but Jewell Gulch had the highest C, for all both parameters (Q1Hs, C, = 0.0096 Lw;

Q1WL, Cy =0.1296 Lw) (Appendix III).

Between Hs Q1 and Q4, Ross Reef and North of Russian Gulch (albeit a low image count of n=2
in HsQ4) saw the highest percent increase in Cy (246.73% and 244.69%), while Timber
Gulch/Jewell Gulch and Jewell Gulch had the largest decreases (-51.04% and -40.64%). Timber
Cove had the smallest change (-0.64%). For b~%, South Salmon Creek Beach (note low image count
of n=1 in HsQ4) and North Wrights Beach had the highest increases (895.94% and 418.52%,
respectively), while Elk Reserve was the only site with a decrease (-13.09%), and Bodega Head had
the smallest change (4.02% decrease). On average, b increased by 153.83% and C, by 65.26%

across sites between Hs Q1 and Q4.

Between WL Q1 and Q4, North of Russian Gulch and Ross Reef saw the highest Cy increases
(123.15% and 76.29%), while Pt Reyes Beach Il and Timber Gulch had the largest decreases (-
52.42% and -55.64%). Central Salmon Creek Beach and Tomales Point, Tip had the smallest
changes (1.28% and -1.98%). For b7, Timber Gulch and Central Salmon Creek Beach had the
highest increases (210.48% and 82.64%), while Timber Cove and North Fort Ross had the largest
decreases (-26.49% and -31.50%). Jewell Gulch, South Salmon Creek Beach, and North of Russian
Gulch saw minimal changes (2.39%, 2.25%, and -3.38% increase). On average, b increased by

47.71% and C, by 14.63% across sites between WL Q1 and Q4.
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Fig 11: A & B: Average decay coefficients b™* (y axis) vs Co when equations are subset to different
quartiles of Hs (A) and WL (B) (x axis). Quartiles are marked by roman numerals above points in
plot. Numbers adhere to site number, color is by regional group. C) Table of percent change Co and
b~ between quartiles 1 & 4 for each respective parameter.

The position of the Ciresnola Was examined when applied to the decay equations derived
within the quartiles of Hs and WL (see Fig 12 and Appendix IV). For Hs Q1, the shortest offshore
distances were at North Fort Ross and Pt Reyes Beach IV (0.13 km), while Jenner Headlands had the
longest (0.98 km). In WL Q1, North Salmon Creek Beach had the smallest distance (0.27 km), while

Estero Americano had the largest (1.31 km).

In Hs Q4, Pt Reyes Beach IV had the shortest distance (0.54 km), while North Wrights Beach,
North of Russian Gulch, and Jewell Gulch had the longest (2.54 km, 4.14 km, and 5.59 km,
respectively). In WL Q4, North Fort Ross had the shortest distance (0.42 km), and Russian River
Estuary the longest (2.17 km). Estero Americano had no data in WL Q4, as all data points surpassed
the turbid threshold, adjusting the entire equation above the asymptote of Creshold-
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The impact of subsetting sites by wave parameters on d varied at each site. Between WL Q1
and Q4, the largest increase in offshore distance was at Central Salmon Creek Beach (195.01%),
while Estero Americano saw a decrease (-8%). For Hs, North Wrights Beach had the largest
increase (903.09%), and Elk Reserve the smallest (52.43%). Notably, the changes in Co, b, and
turbidity transport distance offshore were often non-linear between the first and fourth quartiles

across many sites (Fig 13).
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Fig 12: A & B: Average distance of offshore turbidity d (y axis) when equations are subset to
different quartiles of Hs (A) and WL (B) (x-axis). Quartiles are marked by roman numerals above
points in plot. Numbers adhere to site number, color is by regional group. C) Table of percent
change in d between quartiles 1 & 4 for each respective parameter.

Fig 13 compares the averaged 2-dimensional bathymetric characteristics of each site,

binned to 1 km offshore (see Appendix V for 0.5 km and 3.0 km binnings). The North Fort Ross
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group exhibits the highest cross-shore (&.) and alongshore roughness (¢.), followed by South Fort
Ross, Timber Gulch/Jewell Gulch, and Bodega Marine Lab sites. Pt Reyes National Seashore has the
lowest roughness, with South Fort Ross, Timber Gulch showing even lower values, though data
availability is limited in the 1 km bin (n = 317 pixels, compared to n = 172,576 pixels for Pt Reyes
Beach IV). When considering the full 3 km bin, South Fort Ross, Timber Gulch ranks among the
highest in roughness. After detrending, regional distinctions are more apparent, with North Fort
Ross remaining the roughest, and South Fort Ross, Timber Gulch/Jewell Gulch having the second-
highest roughness. Pt Reyes National Seashore sites display less uniform rugosity despite uniform
shoreline geometry. North Fort Ross and Pt Reyes National Seashore have the highest depth change
(Ah) and mean depth (h), with North Fort Ross, North Fort Ross and Pt Reyes National Seashore, Pt

Reyes Beach IV having the highest values within their respective groups.
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Fig 13: Various maps comparing the value of bathymetric statistics at each site binned below 1km
offshore. A: Cross-shore roughness (y axis) vs alongshore roughness (x axis); B: Detrended cross-
shore roughness (y axis) vs detrended alongshore roughness (x axis); C: Change in depth between
shoreline and 1km point (y axis) vs average depth (x axis), both in absolute value. Blue line is 1:1
line between both variables.
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The Spearman rank correlations between bathymetric variables and turbidity decay
coefficients (Co, b™%, and d) from mean decay equations in different subsets of oceanographic
parameter quartiles (Hs, WL) reveal intricate relationships that vary with distance from the
shoreline and wave conditions, particularly in highest and lowest conditions (Q1 and Q4), as

illustrated in heat maps in Fig 14a, 14b, and 14c.

Bathymetry vs C; in Wave Parameter Quartiles Q1 & Q4
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Fig 14a. Heatmap showing the nonlinear correlation between bathymetry (x axis) and decay
coefficient Co when decay equations are averaged within subsets of wave parameter (Hs & WL)
quartiles 1 (Q1) and 4 (Q4) when bathymetric variables are subset to offshore distance bins (D Bin)
0.5km, 1.0km, and 2.0km.

For Co, the strongest correlations in the 1 km distance bins are observed with detrended
cross-shore roughness (€q4c), which are consistently negative, especially in Q1 quartiles across

oceanographic wave parameters. For example, 4. shows strong negative correlations with C, for

Hs: Q1 at 1 km (p = -0.63) and WL: Q1 at 1 km (p = -0.66). These results suggest that smoother,
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shallower bathymetry promotes higher C, particularly under low wave energy and water levels. In
the offshore bin (3 km), Ah shows moderate negative correlations with Co in Q4 conditions. In the 3
km, Ah shows moderate negative correlations with C, for each Q4 oceanographic parameter.
However, these correlations are weaker in the 1km and under lower wave energy and tidal
conditions. Mean depth h™ has stronger negative effects on Co in the 3km bins and under higher tidal
levels. Collectively, these results indicate that smoother, shallower bathymetry promotes higher C,
particularly under low wave energetics. However, bathymetry seems to have weaker control in

higher wave energies and higher water level.

Bathymetry vs b in Wave Parameter Quartiles Q1 & Q4
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Fig 14b. Heatmap showing the nonlinear correlation between bathymetry (x axis) and decay
coefficient b~ when decay equations are averaged within subsets of wave parameter (Hs & WL)
quartiles 1 (Q1) and 4 (Q4) when bathymetric variables are subset to offshore distance bins (D Bin)
0.5km, 1.0km, and 2.0km.
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b~'is most strongly influenced by roughness variables, especially in the nearshore bins
under Q1 wave variable conditions, particularly under low water levels (Fig 14b). For example, €a
shows strong negative correlations with b~ for Hs: Q1 at 1 km (p = -0.71) and WL: Q1 at 1 km (p = -
0.83). This suggests that rougher bathymetry results in a less steep cross-shore decay of turbidity.
However, the significance of roughness weakens significantly at larger bins beyond the nearshore,
particularly in higher quartiles. Conversely, Ah has a negative correlation with b~ particularly in
high wave energy and water level conditions. Correlations between h™and b~ are more strongly
positive in the nearshore bins under low water levels and Hs conditions but become negligible to

negative in other conditions.

Bathymetry vs d in Wave Parameter Quartiles Q1 & Q4
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Fig 14c. Heatmap showing the nonlinear correlation between bathymetry (x axis) and the offshore
distance of the clear water threshold when decay equations are averaged within subsets wave
parameter (Hs & WL) quartiles 1 (Q1) and 4 (Q4) when bathymetric variables are subset to
offshore distance bins (D Bin) 0.5km, 1.0km, and 2.0km.
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Similarly, the strongest correlations between bathymetric variables and d are found in the
nearshore bins and under less energetic wave and lower water level conditions (Fig 14c.).
Alongshore roughness and cross-shore roughness exhibit strong negative correlations with d,
particularly for Hs: Q1 at 1 km (p =-0.80) and WL: Q1 at 1 km (p = -0.84). These correlations
weaken in higher wave energy scenarios, larger offshore bathymetry bins, and high-water levels.
Positive correlations are observed between Ah and d in high wave energy and water level scenarios,
suggesting that greater depth changes combined with stronger wave energies positively influence
the offshore extent of turbidity. Overall, these correlations imply that in lower wave conditions,
interaction areas with high roughness have limited offshore extent of turbidity. However, under

high wave energy scenarios, roughness has negligible effects on the offshore reach of turbidity.
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Bathymetry vs % Change in decay across Parameter Quartiles Q1 & Q4
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Fig 15: Heatmap showing the nonlinear correlation between bathymetry at sites (y axis) and
percent change in decay coefficients (x axis) at each site. Cells are colored by strength of
correlation.

In Fig 15, we examine correlations between bathymetric metrics binned at 1 km distances
at each site and the percentage increase in Co and b™* between lower and higher quartiles. Positive
correlations are observed between roughness variables and Coy, with the highest being &4, and
HsAC¢% (p =.60). Conversely, negative correlations are observed between roughness and increases
in b~%, with the lowest being HsAb % (p = -.42). Depth variables show generally positive

correlations with b™* and negative correlations with C, though correlations between Ah and C, are

negligible, except for HsACo% (p = -.43).

All the above correlations were also calculated with site-wise, coincident T. data. The
correlations relating to T, were similar to those of H; (albeit slightly weaker) and were not found to

change the conclusions of this work. These results can be found within Appendix VI.
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4. Discussion:

4.1 General Discussion

Past studies and visual inspection of individual satellite images show that turbidity laden
with sediments can extend far offshore, starting at the shoreline. These turbid features can envelop
kelp forests and drive organic material transport and the majority of sediment transport (Seymour,
2013) to deeper waters over the shelf. Through satellite images, such as those seen in Fig 1,
observations of turbid patterns show distinct, coherent flow forms of offshore turbidity from rip
currents on scales ranging from the surf zone (micro rip currents) to just past the breaker line
(meso currents) to those extending up to kilometers offshore (macro rip currents) (Largier, 2022).
Waves control this turbidity through initial mobilization of deposited sediments from shorelines
and the seabed, driving erosion, and by controlling the hydrodynamics that further transport these
mobilized sediments. These two steps, sediment mobilization and transport, are also controlled by
their environment. Areas with larger caches of fine sediment, such as well-supplied regions near
estuaries, confined areas like embayments, sandy shorelines, and regions with generally large
sediment deposits such as kelp forests (Gaylord et al., 2012) have easily mobilized sediments
(Green et al.,, 2004). Areas with complex coastlines and bathymetries have high kinetic energy as
separation and turbulence and persistent channelization with solid features are common,
enhancing energetics and transport (McMahan et al,, 2023). However, these regions are often
sediment-starved and further away from sediment sources, limiting the extent of turbid signals.
Thus, areas with the most sediment availability and the greatest bathymetric and geomorphic

complexity are likely to have the largest rip currents.

Furthermore, geometry of turbid features are also likely impacted by geomorphic
complexity (Largier, 2022). Uniform regions with low bathymetric complexity, such as long sandy

beaches, will often have uniformly spaced rip currents in the shape of radial plumes. Regions that
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are complex will have uneven rip current distributions with non-radial, unique shapes. These
dynamics can be observed qualitatively through images. For instance, in Fig 1, columns A and C
show examples of rip currents from bathymetrically complex, rocky regions. In column A, images
come from a region near the Russian River, which is well-supplied with sediments, whereas in
column C, which is a region in Salt Point, sources of sediments are far away. In both columns, rip
shapes are complex, and their distribution is uneven. However, in Fig 1A.Il, even in moderate wave
conditions, meso rip currents extend over a kilometer offshore in two particularly well-sediment-
supplied regions (near the Russian River Estuary and over a site with persistent kelp cover), but
throughout all the Figs in column C, turbidity does not extend significantly past headlands and
emanate from and are constrained within small headlands. In Fig 1, column B, we see three images
along the uniform, sandy shores of the Pt Reyes seashore. In moderate wave conditions (Fig 1B.II),
radially shaped meso rips are evenly distributed along the shoreline and have a moderate distance
offshore. In high wave energy conditions, these shapes remain radial and evenly distributed;
however, they do not extend nearly as far offshore as the well-fed rips from the rocky region in

Column A on the same date.

In our study, using novel methodology in image post-processing and analysis combined
with coincidental data and high-resolution bathymetric data, we quantitatively ground-truth the
above statements and assumptions, illustrating the controls and interplay of geomorphology and
wave energy in driving turbidity in the nearshore. The results in this study are two-part: the first
consists of various maps of pixelwise statistics in which region-wide characteristics of surface
turbidity and their geospatial correlation with wave energetics are presented, allowing us to
stipulate where the surface is most variable and at its maximum, as well as its tie with correlation.
The second part focuses on sitewise observation of the one-dimensional characteristics of turbidity
cross-shore in the form of a turbidity decay equation, observed in their average condition at each
site as conditionally subset in varying wave and tidal conditions. By further observation of these
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latter results, we can zero in on the conditions that result in the spatial distributions set in the first
part, where turbidity transported with rip currents and correlation with wave energy vary

geospatially, differing by geomorphic coastal environment.

4.2 Shoreline Supply/Erodibility: Cy

The turbidity decay coefficient, Cy, represents the initial maximum turbidity concentration
before decay occurs as a function of offshore distance. Thus, it serves as an indicator of the
erodibility of the local shoreline and the ease with which sediment is mobilized at the site's distance
offshore (x) = Om, or the closest shore-oriented position. Our results indicate that greater C, values
are observed in sites with shallower bathymetries, particularly at lower water levels, where the
increased contact between wave energy and the seafloor leads to proportionally higher shear stress
throughout a shorter water column and sediment mobilization. This can be observed within the Pt
Reyes National Seashore sites (28-31), where each site has respectively lower absolute first-
kilometer average depth, h, and C, values (Site 28: Co =.072 Lw, h™ = 12.43m; Site 29: C; =.029 Lw,

h™=14.53m; Site 30: Co =.037 Lw, h™ = 15.94m; Site 31: Co =.025 Lw, h" = 16.07m).

A strong negative correlation between Co and bathymetric roughness further supports the
interpretation of Co as a metric of erodibility and mobility. Detrended cross-shore roughness, €qc,
exhibits a strong negative correlation with Co, with values as high p =-0.63 for Hs: Q1 at 1 km, and p
=-0.66 for WL: Q1 at 1 km (Fig 14c). Areas with higher bathymetric roughness or rugosity, are
often associated with features such as sea stacks, boulders, rocks, hummocks, and are often less rich
in easily mobilized fine sediments (Green et al., 2004), leading to lower concentrations in initial
sediment mobilization. Further, rougher areas maintain their roughness as rocks are less erodible,
maintaining complex structure and not smoothing out like sand. This pattern is evident when
comparing sites with varying rugosities but similar depths, such as Timber Cove in North Fort Ross

(site 2: " =16.71, 4. = 1.80, Co = 0.013 Lw) and the well-fed site just north of the Russian River
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Estuary (site 11: h™ = 16.76, €4c = 1.17, Co = 0.018 Lw), or between the rocky shores of Bodega
Marine Lab and the sea cliff fronted shores of Ross Reef'in North Fort Ross (site 4: h™ = 15.72, g4, =
3.33, Cp = 0.013 Lw) and the beach-fronted shores of Wrights Beach (site 16: h™= 15.14, €4. = 0.63,

Co = 0.038 Lw).

This explains why greater roughness is positively correlated with higher Co in decay
equations averaged within higher wave quartiles (p =.60) as shown in Fig 15. Rougher sites, which
generally lack readily suspensible sediments, require higher wave heights to induce significant Co
concentrations, whereas lower wave heights are required to mobilize sediments in highly erodible
or well-fed areas. Further, it is likely that bottom roughness dissipates near-bed fluid motion
heights (Ruiz de Algeria-Arzaburu et al.,, 2013; Gallop et al,, 2020; MacMahan et al., 2023),
preventing mobilization, leading to lower mobilization particularly in low wave heights. Roughness
also negatively influenced C, in low wave energy and low water level conditions, perhaps indicating
that a higher ratio of water column contact with rougher bathymetries may trap sediments or
dampen initial inducement of sediment suspension. This effect can also be interpreted in results in
Fig 15, where g4 is positively correlated with increases in Co in decay equations subset to dates
with lower quartile water levels (p = .48). At a site with high roughness, higher water levels lead to

less bathymetric influenced reducing dampening caused by rugosity.

Our findings show that regions with shallow, smoother bathymetry are likely the most
erodible and have reduced bottom shear, yielding the highest initial concentration of turbidity (Co)
from wave breaking. These results are consistent with well-fed coastlines observed throughout our

study.

4.3 Wave-induced transport: b

The rate of decay of turbidity, represented by b~ serves as a measure of wave energetics

and the ability of a site to transport sediments offshore, distinct from initial concentration amount
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CO. Higher b~?values correspond to less steep or rapid decay of C0, indicating that suspended
sediments diminish less quickly with offshore distance and that turbidity extends further offshore.
This parameter is influenced by both sediment characteristics, such as settling rate (Dietrich, 1982),

and the hydrodynamics factors such as turbulence and horizontal shore-normal flow.

The rationalization of b as a representation of transport energetics is supported by a
strong positive correlation between b~ and dc (Fig 14b), values as high as p = -0.72 for Hs: Q1 at
0.5 km, and p = 0.83 for WL: Q1 at 0.5 km. Sites with high bathymetric roughness are found along
complex coastlines, where structure yields gradients in wave setup and radiation stress that in turn
promote rip currents (Castelle et al,, 2016; Largier, 2022; MacMahan et al,, 2023). Flow interaction
with sea stacks, boulders, reefs, and headlands causes boundary and bathymetric rips, and complex
coastlines and embayments promote bay rips. These factors enhance the transport extent of
mobilized suspended sediments with higher energy flows and promote suspension residency from
vertical flow. This also explains why depth change has the greatest negative correlations with b7,
as limited contact with the bottom would decrease such interactions. Further, this bathymetric
impact on flow energetics would also explain why the correlation between site roughness and
decay b~'is greatest in equations in low water levels, where there is maximum proportional contact
of the entire water column with the bed and interaction with bathymetry causing separation.
Further, higher b™?in low water level conditions is consistent with studies that show decreasing
water level may increase flow through constriction in channelized sandy intertidal bars (Austin et

al,, 2010; Scott et al,, 2014), and rough bathymetries/reef morphologies. (MacMahan et al., 2023).

Roughness being highly correlated with positive b~ in low water level conditions is
consistent with sandy bathymetries, such as sites 11 and 12 directly in front of the Russian River,
19 and 20, 28-31, and 23, experiencing greater increases in b™? with increasing water level, whereas

rockier shores, such as those in Tomales Point, between the two esteros in Bodega Bay (site 24),
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rockier regions in Wright Beach Area, and sites 7, 8, 9, and 10, experience low to negative changes
in b~! with increases in wave height. This follows with correlations in Fig 15, where increases in
changes in b™* in equations subset by water level are negatively correlated with site roughness (p =
-0.35) and positively correlated with site depth (p = 0.35). Further, it explains the negative
correlation between site roughness and percent change in b™*in decay equations within higher
wave quartiles (p = -0.42), as rockier sites do not need as significant wave heights to induce greater
b~ as their wave energetics are already enhanced at the site as opposed to sandy sites that have

less bathymetric influences on transport.

Therefore, the highest b™? values are found along rough coastlines, which are rocky and
complex- such structures yield gradients in wave setup and radiation stress that promote rip
currents and flow separation, enhancing offshore sediment transport. Because of their structure,
rocky systems are less controlled by Hs to induce transport than non-complex sandy shores. b™is

enhanced by low water level conditions, particularly in rougher, rockier bathymetry.

4.4 Wave Induced Transport of Turbidity: Co & b

The interplay between Co and b ! is crucial for understanding the extent of offshore
turbidity, d. Following the above discussions, areas with a high initial supply of sediments (Co) but a
low b~! are likely to exhibit short turbid rips, or high suspended sediment at the shoreline with
little offshore transport. In contrast, areas with either high or low Co and high b~* values indicate
large rip currents or significant transport of sediments offshore of differing turbidity. This resolves
why, on average, b increased more significantly in higher quartile Hs decay equations than Co, as b
is a direct measure of energetics, while Hs is a control of Cy, but not necessarily the same mechanic,
as turbidity supply varies by site. This also resolves why there is a strong linear correlation (r =.75)
between offshore distance of Cireshola When plugged into average decay equations, d at each site

with average b value but negligible linear correlation between d and Cy at each site (r =.05).
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The positive correlation between roughness and an increase in Co in decay equations
averaged within higher wave quartiles (p = 0.60), as shown in Fig 16, suggests that rougher sites
require higher wave heights to induce higher C, concentrations, as they do not have readily
suspensible sediments at low wave energy scenarios. In contrast, lower wave heights are likely
sufficient to mobilize sediments in highly erodible areas, making them less dependent on wave
energy for sediment mobilization. The negative correlation between site roughness and percent
change in b™? in decay equations within higher wave quartiles suggests that rougher sites may not
require as significant wave heights to increase b7, as wave energetics are already enhanced at

these sites.

Higher wave energy induces the most significant increases in both Co and b™%. However, in
the absence of high wave heights, sites need to be both well-fed with sediments (to maximize Co)
and have complex bathymetry (to maximize b~%) to achieve extensive offshore turbidity.
Conversely, rough sites that are poorly supplied with sediments require higher wave heights to

increase Co, while smooth sites need greater wave heights to promote higher b~ values.

4.5 Controls on transport extent and region wide turbidity

From these results, it is evident that to maximize the distance offshore, a balance must be
met between low depth, sufficient sediment supply, and adequate bathymetric and shoreline
complexity to induce larger rip currents. Comparisons between the North Fort Ross and Point
Reyes National Seashore groups further highlight the influence of roughness on sediment transport.
Despite having similar Ah values, sites in these groups exhibit different decay patterns. For
example, Pt Reyes Beach IV (site 31, Ah = 22.22m, g4, = 0.28) had an offshore transport distance of d
= 0.45, while Ross Reef (site 4, Ah = -22.18m, g4, = 3.10) had d = 0.99. Additionally, the offshore

distance is the same at PT Reyes Beach II (site 29, Ah = 16.98, €4. = 0.10) and Timber Cove (site 2,
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Ah =17.77, g4. = 1.80), despite differences in Ah and g4 values. Similarly, Pt Reyes Beach III (site 30,
Ah =-18.72m, g4. = 0.12) had d = 0.497, while Central Fort Ross (site 3, Ah =-18.60m, &4. = 3.14) had
d = 0.84. Further, the Bodega Marine Lab site (site 21, Ah = -18.53m, &4. = 0.81) had both an offshore
distance (d = 0.762) and roughness between those of Pt Reyes Beach IIl and Central Fort Ross,

further supporting the role of roughness in modulating sediment transport.

The South Fort Ross group further illustrates the interplay between roughness and depth in
determining sediment transport. Among Mid Jewell/Timber (e4c = 1.31, Ah =-9.37), Jewell Gulch
(€dc = 0.34, Ah =-9.99), and Meyer Gulch (g4 = 0.18, Ah = -14.44), the steeper, deeper, and less
rough sites exhibited further offshore transport of turbidity (d = 0.858km, d =0.811km, and d =
0.677km, respectively). Timber Gulch had a significantly higher offshore distance and the greatest
average distance of all sites (d = 1.653) and is likely very shallow given that data is effectively

unavailable within 1 km of the shore.

Furthermore, all variables should be taken in balance, where d, as a function of turbidity,
can be limited by low Co, despite high b values. For instance, while the North Fort Ross sites exhibit
the highest roughness across shore, they also exhibit the largest Ah, and have low d values. Thus,
while transport energetics in rough regions may not be limited, a small supply of sediment will
cause a small offshore extent as there is less suspended sediment to transport. In contrast, the sites
with the largest transport have high roughness, low to moderate depths, and are also
characteristically highly supplied by sediments. This is also well observed in the areas closest to the
front of the Russian River estuary (sites 11 & 12), where offshore the average extents of turbid rip
currents are great (d = 1.34km; d = 1.52km). Further, at the site with the highest offshore turbidity,
site 5, we observe in both geospatial data of kelps, albeit prior to the temporal extent of the study,
as well as through observation in high-resolution satellite imagery of the area, that the South Fort

Ross area is abundant in kelps, so sediments are likely trapped and well supplied in this region.
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High-resolution, recent data on regional Kelp Forest Coverage would greatly benefit these

conclusions.

Our findings suggest that regions with shallow, smoother bathymetry are likely the most
erodible and yield the highest initial concentration from wave breaking. These areas are consistent
with well-fed sandy coastlines throughout our study. We find that rocky regions have the most
turbulent and energetic environments and promote the most substantial vertical (upward) and
offshore flows (b~%). However, these two terms are separate, and for rocky regions to maximize the

offshore extent of turbidity (d), regions need to be sufficiently well-fed by sediments (sufficient Co).

Maps of turbid extent and correlation with wave energetics further elucidate these findings.
Areas rich in sediment availability, such as regions well supplied with sand, like in front of the
Russian River Estuary and Gualala Estuary, on average have higher turbidity extending further off
the coast (Fig 7). These sediment-rich regions, as well as towards the headland boundaries of
littoral cells where sediments are well confined, such as towards the south end of Point Reyes and
near the Mussel Point Headland in Salmon Creek Beach, are those that also have the highest

increase in offshore extent of turbidity in higher Hs percentiles (Fig 8).

However, while those sites are on average the most turbid, the ones that are most highly
correlated with wave height are those with rocky bathymetries in Fig 9, with plentiful sea stacks,
such as those in the South Fort Ross Region, the sea cliffs northward of the Gualala and Russian
River Estuary, and the rocky, sheltered embayments between the two estuaries. This can also be
seen when zooming in on correlation results of the Russian River Estuary in Fig 9B., where near the
shore nearest to the estuary does not display high correlation values, but contours do form around

the sea stacks 1km adjacent to the estuary.
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These maps express the independence and the interplay between the controls of rip
currents and offshore flow. Sandy regions such as Salmon Creek Beach have large caches of
sediment which are easily suspended. However, their lack of bathymetric complexity, particularly
away from their headlands, limits their correlation with wave energy, limiting the offshore
transport of turbidity. Rocky regions are well correlated with wave energy, however, they are
lacking sufficient erodibility for offshore flow to be fully observed as turbulent, as their coarser
sediments settle quickly and are at a low initial turbidity (Green et al., 2004). The sites that produce

the greatest offshore signals are those that are well-fed and bathymetrically complex.

5. Conclusion:

This study investigates the complex interplay between coastal geomorphology and wave
dynamics in driving nearshore turbidity, with particular focus comparing the transport
characteristics across diverse coast types between rocky and sandy shores. Using both novel
methodologies in image-post processing to deal with nearshore heterogeneity, as well novel
methods that integrate these processed data with high resolution bathymetry and coincidental,
distributed modeled wave energy data, we have quantified the spatial patterns of wave-driven
turbidity sitewide through maps and have isolated the factors that constrain its offshore extent
across diverse coastal environments (rocky and sandy shores) and oceanographic climates by
observing the distribution of cross-shore turbidity as a function of distance as a decay equation,
isolating decay coefficients as important signals of sediment mobilization (Co) and length scale

decay (b79).

Our research builds on the understanding that suspended sediment turbidity can extend far

offshore under the influence of rip currents generated by wave action. While previous studies have
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primarily focused on doing so in sandy shores and qualitatively in rocky shores, our methodology
provides a quantitative framework for assessing the relative contributions of shoreline sediment
supply and erodibility, Co, wave induced transport, b2, wave height, Hs, and bathymetric

complexity to offshore turbidity.

Shores with low cross-shore detrended bathymetric roughness and/or sandy, erodible
shores, particularly near estuaries and embayments, exhibit high initial turbidity concentrations
(Co). These well-fed sandy regions demonstrate that sediments are readily suspended under lower
wave energy, leading to significant shoreline turbidity. However, sandy shores lacking bathymetric
complexity cannot sustain significant offshore transport, especially along uniform shorelines,

without significant wave energy.

In contrast, rocky shores and complex shorelines exhibit distinct behavior. Complex
bathymetry and high roughness promote stronger offshore transport (high b™%) even in low wave
height conditions due to flow separation and persistent channelization. This transport is enhanced
during low tides. However, these rough sites often lack available sediments and or have rough
bottom bathymetry dampening shear stress, resulting in low C, values in ambient wave conditions.
Consequently, they rely on higher wave energy to drive the turbid signals of their flow. Despite this,
the inherent roughness of complex shorelines leads to ambiently high b~?values, particularly in low
water level. Sites with the greatest offshore turbidity extent have a combination of high roughness,
low to moderate depths, and abundant sediment supply, as observed near the Russian River and

Gualala River estuaries.

Maps of turbid extent and correlation with wave energetics further elucidate these findings.
Regions well-supplied with sediment and high bathymetric and coastline complexity, such as those

near estuaries fronted by sea stacks, near headlands, and rocky kelp forests, exhibit higher average
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turbidity extending further offshore, with the greatest increase in offshore extent under higher
waves. Sites most highly correlated with wave height (wave transport) are those with rocky
bathymetries, plentiful nearshore sea stacks, and complex shorelines. The interplay between
sediment availability and bathymetric complexity is evident in the Russian River Estuary, where
areas nearest the estuary lack high correlation values despite ample sediment, while strong

correlations form around adjacent sea stacks and boundaries.

This study highlights the importance of considering both sediment availability and
geomorphic complexity when examining nearshore turbidity dynamics. Areas with the most
substantial offshore turbidity signals are both well-supplied with sediments and have complex
bathymetries. Our findings provide a quantitative basis for understanding factors controlling
turbidity transport in diverse coastal settings, with implications for sediment budgets, coastal
ecosystems, and management strategies, particularly in areas where understanding of water

column geochemistry in rocky shores is essential such as in vulnerable kelp forests.

Future research could incorporate in-situ measurements and hydrodynamic modeling to
validate and refine satellite-based observations and investigate three-dimensional dynamics of rip
currents and sediment transport. Temporal considerations, such as seasonality in precipitation,
sediment supply, wave climatology, and onshore morphology, would further enhance our
understanding of these complex systems. Lastly, more comprehensive and specific maps of beach
and coastline geomorphological classifications would aid in this study. Nonetheless, our study
provides a novel, quantitative approach to characterizing nearshore turbidity across
geomorphologically diverse coastlines, shedding light on the intricate interplay between sediment

availability, wave forcing, and coastal geomorphology.
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Appendix I: Map of standard deviation at each pixel location
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Appendix II: Correlation between rhowges and nearest coincident Ta data at each pixel position.
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2| WL 0.01 22 0.015 032 26 0.016 21 0.02 051 12
5 5 0403 8 0.409 1 5

2| WL 0.02 26 0.022 038 34 0.023 29 0.02 046 18
6 2 0321 8 0.312 2 0

2| WL 0.01 30 0.014 037 29 0.020 26 0.02 032 17
7 4 0.275 8 0.274 1 0

2| WL 0.09 36 0.071 019 36 0.074 31 0.04 030 23
8 6 0.159 4 0.178 6 7

2 WL 0.05 36 0.044 0.23 37 0.051 29 0.03 028 23
9 0 0.163 7 0.193 2 2

3 WL 0.03 42 0.038 0.21 30 0.039 27 0.03 027 25
0 5 0.164 2 0.208 0 7

3| WL 0.02 35 0.031 0.20 33 0.025 29 0.02 027 22
1 1 0171 3 0.221 5 7

1 Hs 0.00 27 0.015 053 27 0.016 26 002 047 14
9 0.193 5 0.448 9 4

Hs 0.00 13 0.011 0.27 33 0.012 32 002 052 29
8 0.302 8 0.587 3 4

3| Hs 0.00 15 0.012 049 30 0.016 34 002 067 28
9 0.515 3 0.652 6 2

4| Hs 0.00 15 0.011 090 29 0.014 25 002 089 19
7 0.783 0 0.923 3 1

5 Hs 0.06 47 0.035 0.78 28 0.034 23 0.04 093 20
5 0.269 5 0.747 0 9

6 Hs 0.06 58 0.033 060 36 0.034 18 0.03 068 13
1 0.147 4 0.597 6 7

7| Hs 0.09 78 0.101 023 37 0.110 13 0.05 0.73 7
6 0.215 1 0.340 9 9

8 Hs 0.05 88 0.054 0.27 37 0.052 13 0.04 1.86 1
7 0.188 8 0.458 0 9

9 Hs 0.02 54 0.034 034 35 0.043 9 007 051 2
0 0.323 5 0.422 0 8

1 Hs 0.04 44 0.037 0.27 33 0.046 23 0.04 060 12
0 4 0.186 2 0.339 4 4

1 Hs 0.01 41 0.019 084 25 0.026 16 0.03 1.03 11
1 3 0.776 3 1.124 6 0

1 Hs 0.01 31 0.022 081 45 0.029 32 0.04 095 23
2 7 0.505 3 0.804 6 7

1 Hs 0.06 37 0.040 034 39 0.040 31 0.05 062 37
3 0 0.208 2 0.440 2 1

1 Hs 0.01 19 0.024 047 42 0.034 50 0.04 081 27
4 6 0425 0 0.537 0 7

1 Hs 0.03 41 0.032 024 43 0.032 53 0.03 063 20
5 0 0122 9 0.413 6 2

1 Hs 0.04 34 0.040 0.22 39 0.037 48 0.03 049 14
6 4 0172 3 0.365 8 7

1 Hs 0.02 28 0.024 0.27 40 0.023 44 0.02 046 29
7 3 0.176 6 0.422 8 2

1 Hs 0.01 29 0.032 0.10 31 0.026 41 003 021 38
8 8 0.104 4 0.193 1 2
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1| Hs 0.03 34 0.048 0.13 35 0.044 44  0.04 0.24 36

9 4 0.108 9 0.175 4 8

2 | Hs 0.02 21 0.037 016 23 0.036 30 0.03 0.34 55

0 4 0.153 6 0.183 5 1

2 | Hs 0.01 9 0.015 044 11 0.012 20 0.02 044 43

1 0 0.386 3 0.634 3 6

2 | Hs 0.01 6 0.035 0.21 16 0.026 36 0.03 0.40 58

2 7 0.389 5 0.379 9 5

2 | Hs 0.07 26 0.034 030 25 0.040 14 0.03 0.36 7

3 4 0.152 1 0.359 6 4

2 | Hs 0.04 33 0.040 0.51 36 0.041 29 0.05 0.54 31

4 8 0.311 4 0.406 0 0

2 | Hs 0.01 6 0.013 0.31 10 0.012 24  0.02 0.38 41

5 6 0441 9 0.440 0 4

2 | Hs 0.02 3 0.018 0.22 21 0.022 32 0.02 046 51

6 2 0192 7 0.327 4 9

2 | Hs 0.01 17 0.013 0.26 31 0.017 35 0.02 044 19

7 2 0313 6 0.297 5 7

2 | Hs 0.09 17 0.075 0.17 20 0.086 33 0.06 0.26 56

8 4  0.113 7 0.178 5 3

2 | Hs 0.05 15 0.042 0.18 21 0.049 29 0.04 0.25 60

9 0 0.127 8 0.173 8 6

3 | Hs 0.03 17 0.042 0.16 20 0.033 30 0.04 0.27 57

0 5 0.100 8 0.180 0 7

3 | Hs 0.01 14 0.019 0.20 18 0.024 29 0.02 0.23 58

1 3 0.116 6 0.221 7 7

1| Ta 0.00 19 0.011 046 20 0.015 31 0.01 0.22 24
9 0.382 0 0.406 7 2

2 | Ta 0.01 20 0.011 049 32 0.018 28 0.01 0.37 27
0 0471 5 0.484 3 1

3| Ta 0.01 26 0.016 0.61 35 0.025 22 0.02 0.56 24
2 0.623 9 0.599 0 1

4 | Ta 0.00 21 0.015 089 20 0.014 26 0.02 0.74 21
9 1.021 9 0.913 3 2

5 Ta 0.03 20 0.048 0.60 17 0.041 38 0.05 0.58 43
0 0.567 6 0.706 0 7

6| Ta 0.04 23 0.048 0.24 35 0.033 34 0.04 0.36 33
4 0.157 2 0.538 3 1

7 | Ta 0.11 43 0.085 0.22 41 0.113 23 0.07 0.30 28
5 0.197 8 0.231 4 6

8 Ta 0.05 57 0.053 0.25 40 0.074 24 0.05 0.24 18
2 0214 2 0.172 8 2

9| Ta 0.01 40 0.027 041 26 0.033 19 0.03 0.24 15
8 0.428 2 0.252 7 7

1| Ta 0.03 30 0.036 0.27 22 0.038 28 0.05 0.22 32

0 1 0.211 4 0.382 9 6

1| Ta 0.01 22 0.018 086 19 0.022 25 0.02 0.87 27

1 3 0.758 8 0.542 5 6

1| Ta 0.01 38 0.028 068 28 0.030 31 0.04 0.92 34

2 3 0.854 5 0.660 1 6
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Appendix III: Table of Cy and b equations when split in wave parameter quartiles
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Site P Q] D Q1 n Qz D Qz n Q3 D Q3 n Q4D Q4 n
1 WL 032 14 055 22 042 25 042 33
2| WL 041 16 050 21 054 29 056 41
3 WL 053 16 086 21 085 31 087 39
4 WL 054 13 099 19 116 22 121 34
5 WL 067 18 142 21 196 31 170 48
6 WL 052 25 045 26 124 25 110 49
7 WL 076 24 068 26 112 33 084 52
8 WL 058 27 060 27 080 33 0.75 52
9 WL 046 15 082 19 096 25 1.03 41
10 WL 054 23 091 22 086 27 095 40
11 WL 085 16 109 20 156 26 167 31
12 ' WL 084 25 146 28 142 30 217 48
13 ' WL 0.78 27 114 31 094 35 124 51
14 WL 091 45 125 34 125 36 186 23
15| WL 051 53 094 39 094 40 106 25
16 | WL 063 43 083 35 082 36 114 21
17 WL 047 47 076 39 090 33 098 22
18 WL 0.27 43 035 42 041 33 061 21
19 WL 032 52 048 39 064 37 094 21
20 WL 042 44 056 34 062 32 115 19
21 | WL 073 22 072 28 0.77 22 103 11
22 WL 073 35 092 36 088 32 141 13
23 WL 050 20 081 19 076 23 119 10
24 WL 131 36 109 39 119 32 120 22
25 WL 050 22 046 26 057 21 120 12
26 WL 052 26 071 34 056 29 080 18
27 WL 030 30 056 29 048 26 063 17
28 WL 050 36 061 36 055 31 080 23
29 WL 041 36 060 37 051 29 066 23
30 WL 037 42 054 30 053 27 066 25
31| WL 028 35 049 33 046 29 062 22

1 Hs 013 27 075 27 075 26 113 14

2|/ Hs 013 13 028 33 080 32 114 29

3 ' Hs 035 15 048 30 086 34 126 28

4|/Hs 022 15 090 29 107 25 188 19

5/Hs 076 47 175 28 175 23 221 20

6 Hs 040 58 137 36 136 18 175 13

7 Hs 072 78 092 37 167 13 559 7

8 Hs 054 88 094 37 176 13 237 1

9 Hs 065 54 098 35 151 9 413 2
10| Hs 048 44 084 33 139 23 195 12
11| Hs 098 41 155 25 193 16 221 11
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12 ' Hs 075 31 144 45 210 32 233 23
13 ' Hs 058 37 088 39 134 31 201 37
14 Hs 062 19 086 42 138 50 225 27
15 Hs 025 41 058 43 130 53 254 20
16 Hs 044 34 058 39 106 48 163 14
17 'Hs 030 28 052 40 089 44 145 29
18 'Hs 0.17 29 025 31 046 41 065 38
19 ' Hs 024 34 039 35 050 44 090 36
20 Hs 031 21 041 23 045 30 1.04 55
21 | Hs 0.37 9 056 11 084 20 095 43
22 Hs 0.51 6 050 16 0.75 36 1.14 58
23 Hs 050 26 087 25 121 14 7
24 Hs 082 33 131 36 118 29 167 31
25 Hs 047 6 037 10 049 24 072 41
26 | Hs 0.28 3 034 21 056 32 087 51
27 Hs 034 17 032 31 050 35 096 19
28 Hs 035 17 053 20 054 33 082 56
29 Hs 032 15 044 21 044 29 071 60
30 Hs 022 17 041 20 039 30 0.71 57
31 ' Hs 013 14 034 18 042 29 054 58

1 Ta 028 19 044 20 065 31 039 24

2 Ta 043 20 045 32 082 28 056 27

3 Ta 061 26 075 35 110 22 090 24

4/ Ta 047 21 094 20 106 26 160 21

5 Ta 109 20 142 17 176 38 161 43

6 Ta 036 23 061 35 122 34 095 33

7/ Ta 070 43 083 41 091 23 1.06 28

8 Ta 059 57 082 40 063 24 090 18

9 Ta 078 40 1.04 26 067 19 075 15
10| Ta 048 30 0.72 22 114 28 094 32
11 ' Ta 092 22 129 19 162 25 154 27
12| Ta 107 38 122 28 160 31 225 34
13| Ta 063 33 093 28 111 45 121 38
14 'Ta 081 35 116 47 124 32 160 24
15 ' Ta 052 49 083 46 099 35 116 27
16 /' Ta 058 46 072 38 1.04 29 097 22
17 /' Ta 052 48 086 37 091 30 093 26
18 ' Ta 024 42 043 35 044 32 042 30
19 ' Ta 033 44 048 50 055 40 0.57 15
20 Ta 037 22 057 44 050 33 0.69 30
21 Ta 076 17 066 21 083 23 071 22
22 Ta 075 21 093 32 098 33 097 30
23 Ta 056 10 084 10 081 19 099 33
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24 Ta 088 23 102 21 116 37 138 48
25 Ta 051 15 049 19 063 22 0.72 25
26  Ta 048 22 066 18 061 29 072 38
27 Ta 033 35 080 27 056 23 0.69 17
28 Ta 048 26 077 29 060 32 060 39
29 Ta 044 21 057 29 060 29 057 46
30 Ta 040 24 063 26 049 34 053 40
31 Ta 042 25 048 24 046 30 042 40

Appendix IV: Table of distance of clear water threshold in average decay equations in dates subset
by wave parameter quartiles
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Appendix V: Plots of bathymetric variables in .5km (top) and 3km (bottom) bins.
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Appendix III: Bathymetric characteristic comparisons of each site binned at .5km and 3km offshore.
Note: some sites have no available data within the first .5km, and are excluded from respective
.5km plots.

SiteID | D Bin £c €dc £a £4da h Ah
1 05 254 2.34 2.56 0.35 -15.00 -13.02
2 05 137 1.33 1.36 0.30 -9.94 -4.07
3 0.5
4 0.5 1.08 0.91 1.07 0.19 -8.65 -2.52
5 0.5
6 0.5 0.87 0.79 0.87 0.53 -10.05 -7.28
7 0.5 047 0.41 0.51 0.15 -6.45 -0.35
8 05 1.14 0.30 1.14 0.26 -9.35 -5.69
9 05 0.84 0.81 0.85 0.14 -11.24 -3.61
10 05 116 0.97 1.17 0.54 -12.16 -5.84
11 05 090 0.77 0.91 047 -10.40 -3.98
12 05 1.16 1.05 1.16 0.15 -9.42 -5.52
13 0.5 0.05 0.00 -8.93 0.00
14 0.5
15 0.5 0.76 0.34 0.76 0.09 -8.27 -4.10
16 0.5 0.88 0.60 0.88 0.23 -10.75 -5.24
17 05 1.21 0.87 1.20 0.29 -10.65 -3.41
18 0.5 047 0.17 0.47 0.09 -7.35 -3.32
19 0.5 0.27 0.22 0.27 0.06 -6.39 -2.50
20 0.5 047 0.27 0.47 0.21 -5.64 -3.66
21 0.5 1.47 0.95 1.47 0.39 -8.47 -6.65
22 0.5 1.64 1.26 1.66 0.25 -7.65 -0.31
23 0.5 0.50 0.33 0.49 0.12 -6.22 -1.95
24 0.5
25 0.5 0.82 0.67 0.82 0.23 -9.21 -0.12
26 0.5 0.87 0.75 0.87 0.31 -8.92 -2.51
27 0.5 0.63 0.42 0.63 0.06 -8.60 -4.48
28 0.5 0.07 0.07 0.08 0.02 -5.40 -1.06
29 0.5 011 0.05 0.12 0.03 -6.95 -0.77
30 0.5 046 0.24 0.46 0.12 -7.35 -1.90
31 0.5 046 0.45 0.45 0.27 -7.65 -6.87
1 1 466 3.46 4.66 1.34 -23.79 -28.86
2 1 364 1.80 3.64 036 -16.71 -17.77
3 1 425 3.14 4.26 2.78 -17.09 -18.60
4 1 333 3.10 3.33 1.74 -15.72 -22.18
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5 1 0.09 0.03 0.10 043 -10.87 -0.87
6 1 236 1.31 2.36 1.62 -14.27 -9.37
7 1 074 0.34 0.74 0.33 -12.06 -9.99
8 1 099 0.18 0.99 031 -1424 -1444
9 1 069 0.65 0.69 085 -17.53 -13.52
10 1 147 1.36 1.47 112 -1813 -14.74
11 1 134 1.17 1.34 095 -16.76  -13.59
12 1 077 0.71 0.77 059 -11.88 -8.67
13 1 053 0.32 0.53 040 -12.08 -5.51
14 1 098 0.81 0.98 0.65 -12.63 -5.88
15 1 111 0.44 1.11 040 -1282 -1191
16 1 063 0.44 0.63 0.57 -1514 -11.90
17 1 1.01 0.37 1.01 0.54 -15.05 -10.55
18 1 0.65 0.18 0.65 0.25 -11.65 -12.45
19 1 098 0.60 0.98 029 -11.36 -13.17
20 1 081 0.64 0.81 032 -11.29 -13.74
21 1 139 0.81 1.39 0.27 -1468 -18.53
22 1 1.86 1.33 1.87 0.63 -12.76 -11.62
23 1 049 0.36 0.49 046 -11.26 -9.96
24 1 043 0.29 0.43 0.12 -9.88 -4.95
25 1 140 1.29 1.40 0.27 -10.79 -3.96
26 1 152 1.01 1.52 043 -1288 -11.00
27 1 086 0.48 0.86 0.18 -14.74 -16.20
28 1 052 0.19 0.52 088 -1243 -18.11
29 1 035 0.10 0.35 042 -1453 -16.98
30 1 032 0.12 0.32 033 -1594 -18.72
31 1 037 0.28 0.37 0.53 -16.07 -22.22
1 3 225 1.37 2.25 496 -48.02 -59.95
2 3 153 0.77 1.53 3.68 -4230 -55.89
3 3 151 1.02 1.51 6.20 -46.45 -51.00
4 3 152 1.17 1.52 462 -3994 -49.72
5 3 262 1.28 2.63 3.13 -2651 -39.74
6 3 343 1.48 343 389 -2740 -43.96
7 3 093 0.37 0.93 1.06 -2833 -37.40
8 3 090 0.20 0.90 213 -28.69 -35.26
9 3 049 0.24 0.49 237 -28.28 -2649
10 3 073 0.44 0.73 217  -27.24  -2544
11 3 074 0.36 0.74 230 -25.54  -23.39
12 3 050 0.37 0.50 0.69 -19.58 -22.35
13 3 047 0.12 0.47 0.39 -19.78 -20.01
14 3 055 0.24 0.55 0.70 -21.58 -22.14
15 3 085 0.16 0.85 143 -21.37 -25.05
16 3 083 0.20 0.83 1.14 -2399 -27.99
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17 3 1.07 0.15 1.07 0.69 -2587 -32.22
18 3 073 0.30 0.73 112 -2436  -35.99
19 3 211 1.79 2.11 240 -24.23  -39.07
20 3 310 1.25 3.11 1.84 -2594  -45.78
21 3 118 0.67 1.18 142 -3718 -58.17
22 3 201 1.04 2.02 0.67 -31.36 -47.51
23 3 041 0.32 0.41 1.84 -17.78 -13.31
24 3 037 0.16 0.37 091 -16.73 -14.28
25 3 180 1.25 1.80 1.52 -2937 -46.06
26 3 137 1.09 1.37 1.08 -31.08 -44.01
27 3 085 0.53 0.85 193 -3343  -4445
28 3 052 0.29 0.52 3.69 -33.11 -43.74
29 3 037 0.25 0.37 343 -3384 -42.33
30 3 019 0.08 0.19 3.24 -3449  -43.37
31 3 027 0.13 0.27 334 -3426 -46.34

Appendix IV: Bathymetric characteristic comparisons of each site binned at .5km and 3km offshore.
Note: some sites have no available data within the first 0.5km, and are excluded from respective
.5km plots.
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