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Abstract 

Nearshore waters are governed by complex hydrodynamic interactions within landscapes 

that vary globally. Many of these often-energetic flows are intricate, diverse, and fine-scale, making 

holistic understanding difficult. Advancements in computational processing, coupled with ever 

growing environmental datasets and refining remote sensing technologies, offer new opportunities 

to constrain the controls behind these processes. This dissertation investigates complex, important 

nearshore hydrodynamics through applications of remote sensing technologies and data analysis. 

Focusing on the nearshore ocean off the geomorphologically diverse coastline of Northern 

California, we develop and implement novel methodologies to observe, quantify, and analyze fine-

scale processes in each chapter of this dissertation, thereby illuminating coastal hydrodynamics 

that have been difficult to monitor.  

 In chapter 1, we analyze the dispersion of turbid freshwater plumes from the Russian 

River, California, a prototypical small mountainous river system. River plumes of this size, although 

common and vital in Mediterranean climate regions, have been understudied, leading to significant 

gaps in understanding. Using 15 years of daily MODIS satellite imagery and environmental data, we 

reveal the interplay of river discharge, waves, winds, and tides in shaping plume behavior. This 

analysis serves as a ground truth for previous studies and uncovers previously undiscussed 

patterns of small to moderate sized river plume dynamics.  

Chapter 2 presents a methodology that enhances nearshore temperature monitoring 

capabilities by utilizing calibration data between high-resolution (100m) Landsat thermal infrared 

data and coincident moderate resolution (1km) MODIS sea surface temperature (SST) data. Data 

calibrated by this methodology is tested against in-situ measurements at various distances from the 

Northern California coast and presents use cases for this high-resolution dataset, demonstrating 

significant advancement over traditional SST products and offering initial insights into fine-scale 

temperature mixing processes.  
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In Chapter 3, we investigate wave-driven cross-shore sediment transport using high 

resolution (10m) Sentinel-2 remote sensing data, enhanced by machine learning post-processing 

utilized to resolve nearshore heterogeneity. By isolating turbid water signals and analyzing them 

alongside wave model data, tidal data, and high resolution (2m) bathymetric data, we characterize 

sediment transport dynamics across diverse coastal facies. This work constrains how the interplay 

between wave climate, bathymetric complexity, and sediment availability influences the extent and 

patterns of offshore turbidity transport in both sandy and rocky environments. 

 Collectively, the studies in this dissertation advance our understanding of nearshore 

hydrodynamics by leveraging remote sensing and data analysis constrain to their controls. The 

methodologies and findings presented here contribute to improved coastal monitoring, 

management, and research, with potential applications in similar coastal regions globally. 
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Introduction 

 

The ocean is vast and occupies most of our planet. However, the small nearshore zone is 

where most human interactions with marine waters occur. This zone where land meets ocean is 

resource-rich, highly productive, and serves as an economic hub across numerous sectors. Despite 

its importance, much remains unknown about the dynamics of nearshore waters that govern these 

regions. The nearshore, though relatively small, is characterized by great energy, driven by complex 

hydrodynamic interactions with landscapes that vary globally. These forceful and intricate 

dynamics make nearshore monitoring challenging, especially in regions where strong currents and 

land interactions create hazardous conditions, and the wide diversity of environments complicates 

holistic understanding.  

These powerful mixing processes inherently leave marked imprints on the environment. 

When water moves, its integration into new areas is gradual, not immediate. Waters transitioning 

between zones of different temperatures create warm or cold tendrils along their paths. Rivers 

outflowing into the ocean bring nutrients, chemicals, and sediments from terrestrial sources, 

discoloring coastal waters. Waves, as they drag along varying seabed and crash onto shores, 

mobilize deposited sands, creating yellow-brown plumes. These "fingerprints" make these essential 

processes observable. Satellites capture these imprints as numerical data with optical sensors that 

orbit the planet. Remote sensing of these small yet influential features, especially when 

contextualized with large, continuous monitoring datasets, offers a promising methodology to 

constrain their controls across diverse coastlines. This is particularly true alongside ever-

progressing spatial and temporal resolution of satellite data necessary to capture fine-scale, 

variable features. Northern California, with its great hydrodynamic diversity and wealth of 

environmental data, serves as an ideal observatory to better understand these processes. In this 
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dissertation, I develop methodologies using these powerful datasets to resolve complex, fine-scale 

features in the nearshore. 

In Chapter 1, I examine the dispersion of buoyant turbid freshwater plumes from the 

Russian River, California, as a representative system in Mediterranean climates. These plumes are 

smaller than those typically studied in river plume literature, making them more susceptible to 

varying environmental conditions and, therefore, less predictable. Despite their stature, these 

smaller plumes are more common and impactful in Mediterranean climate regions globally. I use 15 

years of daily MODIS satellite image data alongside coincident environmental data to capture the 

complexity of these plumes and resolve the controls of their hydrodynamics. Using novel 

methodology in river plume remote sensing, I analyze the statistical relationship between water-

leaving radiance, which serves as a proxy for surface suspended sediment concentration, and 

environmental data to characterize the dynamic controls on river outflow turbidity. This work 

serves as both a ground truth for recent computational models of smaller plumes and a 

presentation of previously undiscussed behavior, presenting insights into the interactions between 

river outflow, wave energy, ocean water level, wind conditions, and rotational forces in influencing 

plume dispersion trajectories. 

In Chapter 2, I present a methodology to enhance the capability of nearshore monitoring 

through thermal infrared (TIR) satellite imagery. Many crucial nearshore mixing processes lack 

turbid visual signatures, making observation impractical with visible sensors, and are too small for 

traditional sea surface temperature (SST) satellites, leaving gaps in understanding nearshore 

temperature and chemical mixing processes. I develop a methodology to calibrate high-resolution 

(100m) Landsat TIR data, which is typically used for land observation, with traditional ocean-

observing moderate resolution (1km) MODIS SST data, enabling observation of these features. In 

this methodology, I form a generalized calibration equation and validate these data with in-situ 

temperature measurements at different distances offshore and test its performance on data outside 
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of the sample set to assess its general applicability. Validations show that this methodology 

significantly increases the accuracy of Landsat's thermal measurements from nearshore waters, 

surpassing MODIS SST accuracy and creating a dataset better suited for nearshore observation. The 

chapter highlights the potential of this enhanced dataset in revealing initial insights into fine-scale 

nearshore temperature mixing. 

Finally, in Chapter 3, I explore the dynamics of nearshore surface turbidity by examining 

wave-driven cross-shore sediment transport outside the influence of freshwater. Wave orbitals 

create friction along the seabed, and their breaking imparts energy on the shoreline, mobilizing 

sediments and mixing waters in the cross-shore direction. Monitoring these highly energetic 

processes in-situ, especially in rocky environments, is challenging, resulting in significant 

knowledge gaps. Remote sensing offers a promising solution but isolating turbid water pixels from 

nearshore heterogeneity (e.g., foam and land) proves difficult. In this chapter, I employ novel 

machine learning segmentation methodologies to resolve nearshore heterogeneity in high-

resolution satellite imagery, isolating red water-leaving radiances as proxies for sediment-laden 

turbidity. Coincident data from spatially distributed wave models and tide gauges allow for an 

examination of the impact of waves on turbidity across the entire region, with further investigation 

of their control on cross-shore turbidity at 31 specific sites. By comparing these results with 

bathymetric data of each site, I differentiate between characteristics of wave-driven sediment 

transport in sandy and rocky environments. The findings reveal that rip currents regularly 

transport sediments hundreds of meters to kilometers offshore. In rocky shores, rough 

bathymetries enhance sediment transport, but sufficient wave energy is necessary to initiate a 

turbid signature. In sandy environments, sediments are easily mobilized, but in the absence of 

rough bathymetry, wave energy is crucial for offshore sediment transport. Areas with both complex 

bathymetry and ample sediment supply facilitate the furthest offshore turbid signals. Transport 

extent is enhanced in low water level conditions. This chapter's novel application of machine 
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learning segmentation to isolate relevant water reflectance, combined with the analysis of wave-

driven sediment transport across diverse coastal environments, provides new insights into the 

complex, important dynamics of nearshore turbidity. 
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CHAPTER 1 

Long-term observations of the turbid outflow plume from the Russian River, California. 

Abstract 

Understanding the mechanisms that spread freshwater away from small river systems and form 

turbid, low-salinity coastal plumes is crucial for assessing water quality in coastal waters. We 

present an analysis of 15 years (January 2004 to December 2018) of daily MODIS Aqua satellite 

data and in-situ instrument data on the turbid freshwater plume that forms off the Russian River 

(California, USA), a prototypical Mediterranean-climate, small mountainous river system (SMRS). 

We present per-pixel statistical metrics and regression analyses to identify and quantify the 

controls on the extent and configuration of the plume exerted by river discharge, waves, winds, and 

tides. While freshwater outflow exhibits a persistent signal in nearshore waters, a large-scale plume 

only extends offshore into coastal waters during high river flow, when plume turbidity can be 

detected more than 10km offshore from the river mouth. Our results show times when wave 

radiation stress exceeds outflow inertia, confining the plume within the surf zone and leading to an 

absence of detectable plume turbidity in coastal waters. Although tidal currents significantly 

influence the plume near the inlet, wind forcing is the primary control on plume shape and extent in 

coastal waters, deflecting the turbid outflow more than 30km upcoast or downcoast of the river 

mouth with respective wind directions. Coriolis forcing is also significant and observed most clearly 

during periods of high river discharge and low wind forcing. In addition to introducing novel 

remote sensing methodology for SMRS plume analyses, these findings highlight the complex 

interplay of forcing related to tides, river discharge, winds, and waves in shaping the behavior of 

SMRS plumes. New insights include the impact of tides on larger discharges, the role of Coriolis 

forcing in SMRS plumes, and the effect of cross-shore winds on plume compression. Further, by 

considering the Russian River as a model for SMRS, this study can be used to ground-truth existing 
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numerical models of small river plumes and to contribute to understanding critical for managing 

coastal water quality and nearshore ecosystems. 

Keywords: MODIS, Coastal Oceanography, Hydrology, River Plumes, Turbidity, Sediment 

1. Introduction 

      In coastal regions with dry summers and wet winters, outflow from small mountain river 

systems (SMRS) significantly influences the biogeochemical and geomorphic balances in coastal 

waters (Wheatcroft et al., 2010). These river systems (e.g. Russian, Gualala, Garcia, Navarro, Big, 

Noyo, Ten Mile, and Mattole Rivers in Northern California, USA) are characterized by small river 

basins (<2 x 104 km2) and high relief (>1000m). Outflow fluctuates between near-zero summer 

discharges (order 1 m3s-1) and winter discharges several orders of magnitude higher (order 1000 

m3s-1), transporting seasonal concentrations of sediments to the coastal ocean, exacerbated by 

interannual drought and flood cycles (Wheatcroft et al., 2010).  

In Mediterranean-climate regions like Northern California, sediments from these outflows 

supply over 80% of the sediment to littoral cells (Griggs and Hein, 1980; Runyan and Griggs, 2003). 

Coarse sediments in these outflows deposit quickly nearshore, contributing to the cycle of shoreline 

morphodynamics (Warrick, 2020). Finer sediments remain suspended in a surface freshwater layer 

(or plume) that can travel hundreds of kilometers alongshore (Warrick et al, 2007). These 

suspended particles increase water turbidity, affecting both light attenuation through the water 

column and acting as a tracer for sorbed riverine pollutants. 

Despite the significant role of SMRS outflow, most research has focused on larger river 

systems and small constructed engineered outflows (see discussions in Basdurak et al., 2020). This 

research gap is important because SMRS differ significantly from these systems in terms of 

discharge and plume dynamics. SMRS have lower average discharges than larger rivers, making 
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their plume trajectories more dependent on variable environmental forcings rather than the 

classical, constant buoyancy-rotation balance (Horner-Devine et al., 2015). At the same time, SMRS 

outflows are more stratified and less dependent on jet dynamics compared to engineered outflows 

(Basdurak et al., 2020). SMRS discharges also vary significantly, reflecting values that fall between 

those of larger river systems and engineered outflows. 

Recent studies have begun addressing plumes from SMRS, primarily using computational 

models, with few utilizing remote sensing or in-situ observations. Remote sensing and 

observational research are crucial for validating the results of computational models, (see section 

1.1). Remote sensing studies typically use the light reflectivity of coastal waters as a proxy for the 

concentration of suspended particles in river plumes. These studies can be broadly categorized 

based on the spatial and temporal resolution of remotely sensed data. High spatial resolution 

studies make use of imagery from Unmanned Aerial Vehicles (UAVs) and fine-resolution satellites 

like Landsat 5-9 and Sentinel-2. However, these studies are often limited in temporal scope due to 

the logistical challenges of UAV sampling and the infrequent repeat overpasses of high-resolution 

satellites. In contrast, low spatial resolution sensors (e.g., SeaWIFS, MODIS) benefit from more 

frequent data but lack fine-scale spatial resolution and prior works tend to focus on statistical 

metrics like mean and standard deviation rather than more nuanced statistical tests such as 

correlation and regression, thus overlooking the variability common in small plumes. Moreover, 

much of this work predates recent findings on the significant impacts of waves (Rodriguez et al., 

2018, Kastner et al., 2019) and tides (Basdurak et al., 2020) on smaller plumes. Computational 

studies often focus on a specific mechanism, thus precluding a more holistic view of plume 

dispersion mechanics.  

This study aims to enrich understanding of SMRS plume dispersion by observing turbid 

outflow from the Russian River in northern California (USA), with a prototypical, seasonally 
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variable hydrograph. We validate and enrich numerical models across river plume literature by 

using updated techniques to compare nearly two decades of remote sensing data from MODIS with 

coincident data on waves, tides, and river discharge. Our geospatial results not only align with 

existing models across various plume sizes but also reveal previously unexplored controls on 

plume shape and the fate of freshwater outflow. We show that the seasonality of discharge in the 

Russian River SMRS results in plumes that exhibit behaviors consistent with “small” plumes during 

low flows (plume controlled by wave and wind conditions) and “large” plumes during high flows 

(plume controlled by buoyancy and Coriolis effects). 

Our primary objectives are (i) to identify and quantify the spatial configuration of small 

river plumes subject to wind, wave and tidal forcing, (ii) to develop and deploy new methodologies 

in river plume remote sensing (iii) to validate and enrich prior simulation models of plumes, and 

(iv) to contrast controls on “large” Coriolis-influenced plumes to controls on “small” river plumes. 

1.1 River Plumes 

River plumes are bodies of freshwater that flow from a river into another body of water, 

such as lakes or the ocean. When entering marine waters, these plumes often form a relatively thin 

layer of freshwater that is stratified at the surface due to its higher buoyancy compared to denser, 

saline ocean water (Horner-Devine et al., 2015). Large and small plumes are often delineated by the 

degree to which the trajectory of their dispersion is dependent on rotational Coriolis forces 

(Horner-Devine et al., 2015; Basdurak et al., 2020). This relationship is explored by Garvine, 1995, 

where large and small plumes are classified by a non-dimensional Kelvin number K: 

K=
𝛾𝐿

(𝑐/𝑓)
                                   eq. 1    

 Where 𝛾 is plume thickness, L is the alongshore length of the plume, c is the internal wave 

phase speed, and f is the coriolis parameter. “Large” plumes occur where Coriolis is dominant 
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(K>>1) and “small” plumes occur where Coriolis effects are dominated by inertia and buoyancy 

effects (K<<1). Typical large-plume patterns and outflow trajectories are well documented 

(Horner-Devine et al., 2015). As the low-density outflow leaves the outlet, it enters the near-field 

plume region where transport is driven by outflow momentum. Eventually, the plume lifts from the 

seabed at the critical Froude number (Armi and Farmer, 1986) marking the mid-field region, where 

dispersion of the buoyant plume layer is shaped by an interplay between buoyancy (Hetland, 2010), 

wind (Rennie et al.,1999; Lentz and Largier, 2006; Horner-Devine et al., 2009), Coriolis (Horner-

Devine et al., 2015), and discharge (Fong and Geyer, 2002; Horner-Devine et al., 2009). The 

influence of Coriolis results in an anti-cyclonically rotating “bulge”, which scales in size with 

discharge rate and duration (Horner-Devine et al., 2009). Beyond the bulge is the far-field where 

transport is no longer controlled by discharge and the buoyant plume layer travels alongshore as a 

shore-attached coastal buoyancy current. Both the mid- and far-field regions of the plume can be 

impacted by winds and currents. Upwelling increases the extent of the bulge and induces thinning 

in the plume; downwelling winds cause opposite effects (Fong and Geyer, 2001; Lentz and Largier, 

2006; Horner-Devine et al., 2009). While sufficiently strong winds can overcome Coriolis effects in 

large plumes (Pullen and Allen, 2000; Horner-Devine et al., 2009), this is more common in small 

plumes (K<<1) that are less susceptible to Coriolis effects (Basdurak et al., 2020; Basdurak and 

Largier, 2022). 

 Some recent publications highlight the role of wave forcing (Wong et al., 2013; Rodriguez et 

al., 2018; Kastner et al., 2019). Depending on the balance between estuary outflow, tidal influences, 

and breaking wave momentum, river water can be partially or fully trapped in the surf zone. 

Rodriguez et al., (2018) model the balance of momentum (𝑝) between breaking waves and river 

discharge with the following equation: 

                                                                                
𝑆𝑥𝑥

𝑏

⍴0𝛽𝐿𝑠𝑧

𝐴2

𝑄2 = 𝑝                                                           eq. 2 
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where Q is river discharge, 𝑆𝑥𝑥
𝑏 is wave radiation stress, 𝛽𝐿𝑠𝑧  is the water depth at the breaking 

point, ⍴0 is the background density of ocean water, and A is the cross-sectional area at the river or 

estuary mouth. As 𝑝 increases, more freshwater is trapped in the surf zone. Given a high enough 

value of 𝑝, river outflow becomes completely trapped and is transported alongshore in the surf 

zone until later dispersed offshore by rip currents (Clarke and Largier, 2007). 

When outflow momentum dominates and river water escapes the surf zone, dispersion 

pathways can still be influenced by waves and tides. Basdurak et al., 2020 shows that small plumes 

are deflected up and down coast from the estuary mouth by alongshore tidal currents. Other works 

model the role of wave breaking in turbulent mixing that can slow near-field advection and far-field 

dispersion (Gerbi et al., 2013; Thomson et al, 2014). 

1.2 Site Description 

This study focuses on outflow from the Russian River (California, USA) a prototypical small 

mountainous river system (SMRS) in northern California (Fig. 1) that is representative of outflows 

from mountainous coasts worldwide. The mouth of the river is about 90 km north of San Francisco, 

and the 180-km long river drains a 3850 km2 watershed subject to intense rainfall events in winter 

(i.e., atmospheric river events). Winds are seasonal, with persistent strong northerly winds driving 

coastal upwelling in spring and summer (April to June), southerly wind events during winter 

storms (December to February), and weaker winds in the fall (August to October) as described by 

Garcia-Reyes and Largier (2012). 

 At the mouth of the Russian River is a bar-built estuary that is intermittently closed off 

from the ocean by a wave-built sand barrier (Behrens et al., 2013). Adjacent to the mouth of the 

estuary, the shores are rocky, and waters are designated as a Marine Protected Area. During high 

precipitation events, river discharge exceeds 1000 m3/s, but during low discharge conditions (~4 
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m3/s) water enters and exits the estuary mouth tidally. Comparable conditions exist in many other 

northern California estuaries. 

 

Fig. 1. (A) Map of California, USA, study site highlighted by red box (B) Map of study site and data 
sources (● = Russian River Inlet & CDIP MOP wave energy location, ▲= USGS River Gauge 

#11467000, ➕= BOON wind observatory, ■ = NOAA Tide Gauge Station #9415020). Roman 
numerals mark (i) Point Reyes, (ii) Bodega Bay and Tomales Bay, and (iii) Bodega Head. (C-E) 
Examples of turbid river plumes from MODIS true color images: (C) 28 February 2019, (D) 28 
February 2017 and (E) 28 February 2008. 
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2. Methods 

This study uses daily satellite data and concurrent data on river flow and environmental 

conditions. Data on river discharge (Q), wind (W), ocean water level (WL), river turbidity (T), and 

wave height (Hs) are available from 2004 to 2019. Environmental data are binned in intervals 

preceding each satellite overpass: W, T, Q, and Hs are averaged over the preceding 24 hours while 

WL is averaged hourly. 

2.1 Environmental Data 

Winds: Wind direction and magnitude at Bodega Head were observed with a 4-blade helicoid 

propeller and wind vane from May 2001 to May 2014, and with a 2-axis ultrasonic anemometer 

after May 2014 (BOON; https://boon.ucdavis.edu/). Daily wind direction was classified in 

quadrants relative to the shoreline orientation of 315°: winds blowing from directions between 90o 

and 180° are classed as “upcoast”, between 0o and 90° as “off-coast”, between 270o and 360° as 

“downcoast”, and between 180o and 270° as “on-coast”. The daily alongshore wind component is 

calculated from daily wind speed and direction at an orientation of 315° (i.e., downcoast winds 

have positive magnitudes) and the cross-shore wind component is calculated for an orientation of 

225° (i.e., on-coast winds have positive magnitudes). Wind data were averaged for the 24 hours 

prior to the satellite overpass (zero lag), or for 27-3 hours prior (3-hr lag), or for 30-6 hours prior 

(6-hr lag). Correlations with greater lag have previously been found to yield stronger relations 

between plume behavior and wind stress (Geyer et al., 2000; Warrick et al., 2007). 

Tides: Water level data were used to index tidal phase at the time of each satellite image. Data 

referenced to MLLW were obtained from the tide gage at Point Reyes (National Oceanic and 

Atmospheric Administration gage #9415020), which is known to represent tides at the Russian 

River mouth with negligible phase and amplitude differences (J.L. Largier and D.S. Behrens 

https://boon.ucdavis.edu/
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unpublished data). Water level data are hourly averaged and matched with the time of image 

capture time rounded to the nearest hour.  

River Discharge and Turbidity: Russian River discharge and turbidity data were collected at 

Hacienda Bridge (United States Geological Survey gauge #11467000), approximately 18.5km 

upstream of the mouth. Quarter-hourly discharge values are available from October 1987 onward, 

and turbidity data are available since June 2008. Turbidity is measured in FNU units with a 

monochrome near-infrared LED light (780-900nm) at a detection angle of 90° ± 2.5o.  

Waves: Daily average significant wave height 𝐻𝑠 at the 10m isobath adjacent to the Russian River 

mouth (Fig. 1) are available from the Coastal Data Information Program (CDIP; 

https://cdip.ucsd.edu/). These values are generated using a linear, spectral refraction wave model 

driven by observations at offshore wave buoys (O’Reilly et al., 2016). Radiation stress ( 𝑆𝑥
𝑏) is 

calculated by assuming that phase velocity equals the group velocity in shallow nearshore waters: 

 𝑆𝑥𝑥
𝑏  = E = ρ0 g Hs

2                                                          eq. 3  

where E is the mean-depth wave energy density per unit horizontal area and g is gravitational 

acceleration.  

Daily average 𝑆𝑥𝑥
𝑏  and Q were used to calculate a daily value of p (Eqn 2). The value of βLsz is 

approximated by depth d. This depth is estimated using the theoretical equation from Miche (1944) 

where the depth-limited breaking of a solitary wave occurs at a critical value of Hs/d = 0.781 

(Kastner et al., 2019). The cross sectional-area (A) is assumed to be 100 m2, consistent with the 

average dimensions of the inlet channel at the Russian River mouth (Behrens et al., 2013). 
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Mouth State: Daily observations of the state of the Russian River mouth are available from 2004 to 

2019, allowing classification as open or closed (Behrens, 2013; Largier et al., 2020; Winter, 2020). 

These data were extracted from a daily photograph record. 

2.2 Satellite Data 

Ocean color data were collated for every MODIS Aqua image captured for the study region 

(38.95°- 37.99°N, 123.75° - 122.85° S) between January 2004 and December 2018, aligning with 

daily Russian River inlet-state data. Daily MODIS L1A files were downloaded from NASA’s Ocean 

Color website (http://oceancolor.gsfc.nasa.gov/) and subsequently processed to L1B and L2 

surface reflectance data (Rrs) using the SeaDas (SeaWIFS Data Analysis System, version 8.1.0, Baith 

et al., 2001). 

Atmospheric correction was performed using the NIR-SWIR (Near Infrared Radiation-

Shortwave Infrared Radiation) algorithm by Wang et al., (2009). Traditional atmospheric correction 

methods rely solely on NIR bands (748 and 869 nm), but these are not suitable for turbid water 

conditions. Hence, the Wang et al., (2009) method switches from NIR to SWIR (1240 and 2130nm) 

correction for pixels detected as turbid by an index (Wang et al., 2009; Saldías et al., 2012). We used 

a pixel size of 500m rather than 250m to resolve heterogeneity in imagery pixels that arise from 

issues such as sun glint (Aurin et al., 2013).  

 Surface reflectance from the 645nm band (Rrs645) is an accepted proxy for surface turbidity 

due to suspended sediments, based on correlations in prior studies (e.g., Lahet and Stramski, 2010; 

Saldías et al., 2016). We validate this relation for our study site by finding the Spearman non-linear 

correlation coefficient between Rrs645 and hourly average turbidity measured at the Hacienda 

Bridge gage, 18.5 km from the river mouth. We do this independently for each pixel for an image 

time series from June 2008 to January 2019. Spearman Rho values are 0.8 at the mouth, 

demonstrating that reflectance is an effective turbidity metric, and above 0.7 for locations up to 

http://oceancolor.gsfc.nasa.gov/
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4.5km offshore of the mouth (Fig. 2), despite the spatial offset and potential for changes in turbidity 

between the river gauge and pixels in coastal waters. 

 

Fig. 2. Map of pixel-wise Spearman’s rho correlation coefficients between hourly-average measured 
turbidity from USGS gauge #11467000 and coincident Rrs645 at each pixel position.  
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2.3 Plume Detection  

To isolate river plume effects on ocean turbidity apart from other processes (e.g., 

phytoplankton blooms, wave-driven resuspension, rip currents, white capping), we examine the 

distribution of turbidity values in coastal waters on dates when the river inlet was observed as 

closed. We determined a threshold value of 0.59 x 10-3 Sr-1 for non-plume turbidity by calculating 

the 97th percentile value of Rrs645 values for all pixels 1.5km offshore across 1371 images captured 

when the Russian River inlet was closed (Fig. 3). This threshold assumes that in the absence of 

sediment-laden freshwater, the ambient Rrs645 reflectance of oceanic waters is much less than 

reflectance values associated with the plume. Therefore, the maximum non-freshened values would 

represent the highest condition before Rrs645 is elevated by freshwater sediment influence. The 3% 

of values exceeding this threshold are likely due to occasional wave-driven events that cause 

resuspension and circulation, exporting nearshore turbidity offshore (Speiser et al, in preparation). 

Nonetheless, even these high values rarely exceed 1.0 x 10-3 Sr-1, which is an order of magnitude 

lower than typical plume turbidity values (Fig. 4). Similar thresholding methodologies have been 

applied in other river plume remote sensing studies, although without the advantage of an estuary 

closure (for example, Saldías et al., 2012; Mendes et al., 2014; Saldías et al., 2016) 
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Fig. 3. Frequency histogram of the average Rrs645 at all pixels 1.5 km offshore from all MODIS 
images on days when the Russian River mouth was closed. The red line marks the 97th percentile 
value, 0.59 x 10-3 Sr-1. 

2.4 Regression Analysis 

To evaluate the influence of different environmental drivers on plume behavior we 

calculated Spearman’s Rho non-linear regression correlation coefficients between coincident 

environmental data (i.e., W, Hs, WL, Q, and T) and turbidity proxy values Rrs645 at each pixel position 

across the study region. We used statistical tests (pixel correlations) instead of pixel mean or 

median to differentiate between different processes that occur simultaneously. Further, by 

evaluating per-pixel regression we can identify spatial patterns in processes controlling plume 

presence. Spearman’s rho ordinal rank correlation was chosen over linear regression as pixel 

values are altered simultaneously by other drivers and Spearman does not require linear 

relationships. For instance, the turbidity of a pixel may be strongly influenced by river discharge, 

but transport to that specific position may be diminished or enhanced by processes such as wind-

driven transport, altering the pixel Rrs645 value. Further, Spearman’s rho correlation coefficients are 
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less impacted by outliers, which are caused by non-observed variables, thus highlighting 

relationships with the tested variable. 

To assess the strength of correlation we adopt the classes outlined by Schober et al.,(2018) 

– Table 1. To demarcate spatial extent of the correlation, contours are drawn to encompass the 

mouth of the Russian River. If a contour does not surround the river inlet, it is not highlighted. The 

value ranges for these classes are determined to the second decimal (i.e., 0.394 falls in the “weak 

correlation class”, while 0.395 is rounded to 0.40 and falls in the “moderate correlation” class). This 

approach precludes attention on features due to other river outflows or wave-driven rip-current 

features. 

Absolute value of Rho 
Interpretation 

0.00-0.10 Negligible Correlation 

0.10-0.39 Weak Correlation 

0.40-0.69 Moderate Correlation 

0.70-0.89 Strong Correlation 

0.90-1.00 Very Strong Correlation 

Table 1: Correlation strength classes from Schober et al., 2018.  
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3. Results 

 3.1 Nearshore Trapping of Plume 

As found by Rodriguez et al.,(2018), wave radiation stress can stall or fully trap the outflow 

jet, precluding the formation of a plume beyond the nearshore (surf zone and rip-current zone), 

which is the focus of this paper. Thus, instead of using a minimum daily average discharge as a 

qualifier for images used in plume analyses (e.g. Saldías et al., 2012; Mendes et al., 2014; 

Fernandez-Novoa et al., 2015; Saldías et al., 2016), we use a qualifying threshold based on daily 

average p value. For all images when the Russian River inlet was open (n=3419), we calculated the 

daily average p and divided the dataset into deciles. For each decile, we created an average image. 

Only the lowest four p-value deciles exhibit reflectance values 1 km offshore that exceed the plume 

turbidity threshold. The 1km location was chosen to mitigate any influence of subpixel constituents 

such as land, sea stacks, boulders, and white water and foam lines generated by breaking waves. We 

thus use p = 41 as the upper bound for images used in our evaluation of the offshore turbid plume 

(a total of 1357 images). This is the lower bound of the 4th decile (not the average p value 109), i.e., 

only the three lowest deciles are used in the analysis. The distributions of available pixels across 

these images are mapped in Fig. 4., with an average of n=498 values at each pixel position, a 

minimum of n=27 and a maximum of n=650.  
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Fig. 4. Mapped statistics of dataset images when plume breaks through surf zone (A) Count of 
available values at each pixel position. (B) Pixel-wise average of Rrs645, ranging from 0.0 to .016 Sr-1. 
The black line is the contour where average Rrs645 equals plume turbidity threshold value of 0.59 x 
10-3 Sr-1. 

3.2 Average Plume Pattern 

The shape of the turbid plume exiting the Russian River can vary significantly (Fig. 1). 

However, there is a clear zone of elevated turbidity in the 1357-image average field that extends 

about 10 km upcoast, downcoast and offshore of the mouth (Fig. 4), encompassing the near-field 

and mid-field of most plume patterns. The far-field evidently varies across wind conditions with no 

clear pattern in the average. Further, other sources and processes are evident beyond 10 km, 

including outflow from the Gualala River (38.7o N), Tomales/Bodega Bay freshwater sources (38.2o 

N) and nearshore zones along wave-exposed beaches on the north shore of Bodega Head (38.3o N) 

and Point Reyes (38.1oN). The average alongshore (upcoast plus downcoast) extent of turbidity 

above the plume threshold increases with discharge rate, from 14 km for lowest discharge quintile 

to 54 km, 65 km, and 77 km for second through fourth quintiles, respectively. For the fifth discharge 

quintile, elevated turbidity from the Russian River merges with multiple sources in the region (cf., 

plume coalescence outlined by Warrick and Farnsworth 2017). Average offshore extent is small for 

low discharge (3 km) but pushes significantly further offshore for higher discharge (8 km, 10 km, 
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and 14 km for the second through fourth quintiles, respectively). The plume area encompassed by 

the turbidity threshold contour increases from 20 km2 for low discharges to 180, 298, and 698 km2 

for second, third, and fourth quintiles, respectively. 

 

3.3 River Discharge Effects 

 As river outflow increases, a larger area of turbid water is observed in coastal waters off the 

Russian River mouth. This plume-affected zone is demarcated by high Spearman correlation values 

at pixels where Rrs645 turbidity increases with increases in river discharge Q. The spatial 

distribution of correlations mapped in Fig. 5 shows moderate correlations (greater than 0.4) in a 

zone extending 11 km offshore of the mouth and 30 km alongshore (darker colors enclosed by 

moderate correlation contour), both upcoast and downcoast of the mouth – but notably detached 

from the shoreline south of the mouth. The highest correlation (rho = 0.71) is about 4km offshore of 

the Russian River mouth (Fig. 5) – lower correlations are found in persistently turbid nearshore 

waters. This core zone is strongly and predictably impacted by changes in river discharge, but there 

is an extensive zone of weaker correlations that is continuous through the study area from Point 

Reyes to Point Arena. The weak-correlation contour is found about 25 km offshore, indicating that 

discharge-related elevated turbidity extends over the entire shelf during times of high flow in the 

Russian River, although including multiple sources with correlated outflow following rain events. 



22 
 

Fig. 5. Pixel-wise correlation coefficients between Rrs645 and coincident daily average discharge (Q) 
values for all dates with visible plumes (average Q is 156.52 𝑚3/s). The weak correlation (rho) 
threshold (rho = 0.10) and moderate correlation threshold (rho = 0.40) are shown; only a few 
pixels exceed the strong correlation threshold (rho = 0.70). The inset graph shows Rrs645 values (y 
axis) versus daily discharge values (x axis) for the pixel position with the highest correlation (rho = 
0.71). 

 

Anticipating different plume behavior during high-discharge events and low-discharge 

events, pixel-wise turbidity-discharge correlations were calculated separately for each daily-

average-discharge quartile (Fig. 6, panel c.). With highest river flow, the zone of moderate 

correlations is found primarily on the upcoast (north) side of the river mouth, pushing 18 km 

offshore, and separated from the coast. At the center of this zone, the maximum correlation is 0.83. 

While weak correlations extend over the whole shelf region, elevated correlations are observed in 

Bodega Bay where turbid outflows include Tomales Bay and Estero Americano (Fig. 1) and at the 

bottom of the frame where turbid waters flow north from the Gulf of Farallones (Largier et al., 
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1993; Kaplan and Largier, 2006). For plumes when discharge is in the second highest quartile (Fig. 

6, panel c.), correlations are weaker but elevated values are again skewed to the upcoast side. The 

weak-correlation contour no longer extends over the shelf, and it is centered on the Russian River 

mouth, extending about 30 km upcoast and about 10 km downcoast separated from the coast. 

While a coherent zone of correlation is evident for the second lowest quartile (Fig. 6, panel b.) and 

weak correlations extend about 30 km alongshore and 15 km offshore, the correlation zone is 

notably weak for the lowest quartile discharge (Fig. 6, panel a.). While turbid plumes are observed 

on these low-discharge days, the shape and size of the plume is more variable, altered by tidal state 

(section 3.5) and wind forcing (section 3.4) 

 

Fig. 6. (A) Pixel-wise correlation coefficients between Rrs645 and coincident daily average discharge 
(Q) values calculated separately for discharge quartiles from low to high (panels A.i-A.iv). (B) Wind 
roses corresponding to each quartile. The “RR” line indicates shoreline orientation at the mouth of 
the Russian River. Wind direction is in meteorological convention (i.e., direction from which the 
wind blows). (C) Histogram showing the discharge for each quartile; colors of bars correspond to 
respective discharge quartiles 0-25th percentile (16 to 42m3/s); 25th-50th percentile (42 to 84m3/s); 
50th-75th (84-203m3/s); 75th to 100th percentile (203 to 2366m3/s)  
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Wind forcing shows a correlation with discharge rate (Fig. 6), with more southerly winds 

during higher discharges and more northerly winds during lower discharges. To preclude the 

influence of wind on plume behavior, we also calculate pixel-wise correlation between Q and Rrs645 

for calm days (wind speeds in the lowest quartile, which is less than 6.5 m/s). In the absence of 

strong wind effects (Fig. 7), correlations are higher (compare with Fig. 5), exhibiting a zone of 

strong correlation reaching 6 km offshore and 5 km upcoast. The maximum correlation coefficient 

is rho = 0.81. The moderate-correlation contour also exhibits marked asymmetry, extending ~20 

km upcoast and ~5 km downcoast. 

 

 

Fig. 7. (A) Pixel-wise correlation coefficients between Rrs645 and coincident daily average discharge 
(Q) values for days with weak winds. (B) Wind rose representing data from the subset, with wind 
direction in meteorological convention. (C) Histogram depicting discharge rates for this subset. 
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3.4 Wind Effects 

To explore wind effects on plume behavior we calculate discharge-turbidity relationships 

for different daily average wind direction (Fig. 8), and we calculate correlations between turbidity 

and wind speed in each of four quadrants (upcoast, downcoast, onshore, offshore) irrespective of 

discharge but with p < 41 as before (Fig. 9). 

When the wind blows from the southeast (upcoast quadrant), turbidities increase markedly 

on the north side of the river mouth during high discharge, with a coherent band of strong 

correlation extending about 12 km upcoast from the mouth and separate from the shore. However, 

the broader zone of moderate correlation is attached to the shore and extends over 30 km upcoast 

(Fig. 8).  When daily average discharge is shifted 3 hours earlier (i.e., discharge averaged from 27 

hours to 3 hours before the satellite image), or 6 hours earlier, maximum correlations are similar, 

but the zone of moderate correlation extends further upcoast, increasing from 33 to 39 km 

consistent with an upcoast propagation rate of 0.28 m/s. Under these upcoast winds, significant 

discharge-turbidity correlations are also seen emerging from Bodega Bay sources and extending 

north from the Gulf of Farallones where outflow from San Francisco Bay enters the ocean – these 

turbidity signals also reach further north with increased lag between discharge and turbidity. In 

contrast, when the wind blows from the northwest (downcoast quadrant), turbidities increase 

markedly on the south side of the river mouth, although no pixels exhibit strong correlation. The 30 

km zone of moderate correlation extends to Bodega Bay, but remains detached from the shore, 

consistent with active upwelling driven by NW wind stress and persistent nearshore turbidity along 

the north shore of Bodega Head. It is interesting to see this zone extending into Bodega Bay, most 

likely due to merging with turbidity from sources in Bodega Bay and Tomales Bay (cf., Fig. 1). The 

absence of discharge-correlated turbidity north of the mouth during NW winds shows that the 

upcoast configuration of the plume requires high discharge (Fig. 6) and/or weak winds (Fig. 7) – 

conditions under which Coriolis forcing is expected to be important. 
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Onshore and offshore winds also influence the shape of the plume (Fig. 8). During onshore winds 

(on-coast), only pixels near the mouth exhibit moderate or strong correlations, illustrating 

compression of the plume on the shore and limited alongshore plume propagation. Further, in 

contrast to the no-wind case (Fig. 7) there is no upcoast tendency. With increasing lag between 

discharge and turbidity, the moderate-correlation plume zone is further reduced in offshore extent, 

decreasing from 12 to 9 and 8.5 km, respectively. At the same time, the shelf-wide weak 

correlations are compressed from 32 to 14 and 12 km, respectively. In contrast, offshore winds (off-

coast) result in a continuous band of high discharge-turbidity correlations along the coast, although 

there is notable small-scale spatial heterogeneity with adjacent pixels exhibiting different values. 

Fig. 8. Pixel-wise correlation coefficients between Rrs645 and coincident daily average Q values 
calculated separately for different wind directions (columns) and time lags (rows). The number of 
images in each subset (n) is listed beneath each image, along with information on average discharge 
(Q in m3/s), average wind direction (Dir), and average wind speed in the subset (W in m/s). 
Columns, left to right: Daily average upcoast winds, downcoast winds, onshore winds, and offshore 
winds; Rows, top to bottom: no lag, 3 hours lag, 6 hours lag. 
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The second analysis of wind influences on the plume addresses the correlation between 

turbidity at a given pixel and wind speed – calculated separately for four wind vector directions: 

upcoast, downcoast, onshore, and offshore. While discharge is not a factor, all data are from days 

when discharge is significant (i.e., the plume is not trapped in the surf zone, p < 41). Again, we 

calculate correlations for wind averaged over the day preceding the satellite overpass, and for daily 

average wind shifted 3 hrs and 6 hrs earlier. In all cases, the correlation with wind (Fig. 9) is 

notably weaker than correlation with discharge (Figs. 5, 6, 7, 8), but the weak correlations describe 

coherent patterns in plume response to wind forcing.  

On days with stronger upcoast winds, turbidity is higher in a zone extending upcoast from 

the mouth of the Russian River (Fig. 9, left panels). Evidently, this response to wind forcing takes 

time as the 3-hr and 6-hr lagged results show higher correlations and a better-defined plume zone. 

For zero lag, there is no response south of the mouth, but this is not the case for 3-hr and 6-hr lags, 

with significant correlations on the north side of Bodega Head, within Bodega Bay and around Point 

Reyes (likely explained by other turbid waters being advected northward during these upcoast, 

downwelling favorable winds). In contrast, turbidity increases south of the mouth on days with 

stronger downcoast winds, forming a 42-km-long continuous zone from the mouth of the river to 

Point Reyes (Fig. 9 second column), becoming more marked with 6-hr lag due to stronger negative 

correlations offshore. Correlations are low nearshore, specifically along the north coast of Point 

Reyes, which is persistently turbid due to wave-driven resuspension. During these NW winds, a 

marked zone of negative correlation is evident north of the mouth, indicating that turbid plume 

waters are less likely to be there with stronger downcoast winds, i.e., the upcoast plume pattern 

found on calm days and during upcoast winds is weakened or prevented by downcoast winds that 

are strong enough. Negative correlations west of Point Reyes similarly indicate that NW winds 

preclude upcoast propagation of turbid waters from the Gulf of Farallones. These results are all for 
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periods when there is significant discharge from the Russian River (average Q ~ 130 m3/s), which 

is not typical of the summer upwelling season. 

Onshore winds also have a direct effect on turbidity, with higher turbidity observed near 

the river mouth with stronger onshore winds (Fig. 9 third column). This zone is centered on the 

mouth and strongest at the mouth. Correlations weaken with lag, indicating that the response to 

onshore winds is quicker than the response to alongshore winds. There is little correlation of 

turbidity with offshore winds at zero lag (Fig. 9 right panels). However, there is a marked nearshore 

zone extending north from the river mouth for images lagged 6 hours, representing increased 

turbidity in the upcoast plume zone with increased offshore winds, which may represent a surface 

Ekman response. There is a similar zone of increased turbidity in the Gulf of Farallones, south of 

Point Reyes (i.e., just north of the mouth of San Francisco Bay). 
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Fig. 9. Pixelwise correlation coefficients between Rrs645 and coincident daily average wind speed 
calculated separately for different wind quadrants (columns) and time lags (rows). The number of 
images in each subset (n) is listed beneath each image, along with information on average discharge 
(Q, m3/s) and average windspeed (m/s) in alongshore and cross-shore orientations. Columns, left 
to right: daily average upcoast winds, downcoast winds, onshore winds, and offshore winds; Rows, 
top to down: no lag, 3 hours lag, 6 hours lag. 

3.5 Tidal Effects 

  To explore tidal effects on the turbid plume of the Russian River, we calculate correlations 

between tidally varying water level (WL) and the turbidity index Rrs645 for each pixel (Fig. 10), as 

before, only using data when p < 41. Positive correlations indicate increased turbidity at higher 

tides and negative correlations indicate increased turbidity at lower tides. Correlations are weak, 

but small-scale zones are evident adjacent to the Russian River mouth.  
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   Coherent zones of tide-correlated turbidity are most apparent for moderate discharge. For 

both the second and third discharge quartiles, there is a tendency for higher turbidity at high tide 

along the shore north of the mouth. However, to the south of the mouth, there is a tendency for 

higher turbidity at low tide (or lower turbidity at high tide), most apparent in high-discharge 

quartile plots. Also, for the second quartile, there is a small, elongated zone immediately off the 

mouth, corresponding to high turbidity at low tide. 

 

Fig. 10. Pixelwise correlation coefficients between Rrs645 and coincident water level (WL), 
calculated separately for four discharge quartiles. Maps are organized by increasing discharge (Q) 
quartiles from left to right: 0-25th percentile (16 to 42m3/s); 25th-50th percentile (42 to 84m3/s); 
50th-75th (84 to 203m3/s); 75th - 100th percentile (203 to 2366m3/s) 

 

4. Discussion 

 Runoff of freshwater from the land forms distinct low-salinity, turbid plumes in the coastal 

ocean, with shape and extent varying in response to river flow rate and ocean conditions. Prior 

work has identified at least four types of river plume, including classical large plumes controlled by 

a balance between buoyancy and Coriolis (Garvine, 1987; Horner-Devine, 2014), wind deflected 

plumes (Hickey et al., 2005; Lentz and Largier, 2002; Basdurak and Largier, 2022), tidally advected 
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plumes (Basdurak et al., 2020), and plumes entrained into the surf zone by wave action (Kim et al., 

2004; Clarke et al., 2007; Rodriguez et al., 2018; Kastner et al., 2019). Here we address a river 

where all these plume paradigms are observed, with different plume behavior occurring at different 

times. Outflow from the Russian River creates a turbid plume that is visible in satellite imagery (Fig. 

1), both during high discharge and low discharge. Analysis of how turbidity at specific coastal ocean 

locations varies with changes in discharge, wind, waves, and tides reveals coherent patterns that 

reflect the influence of all four factors. While satellite data only enables us to track turbidity 

(concentration of fine suspended sediment), it is used here as a tracer for salinity patterns and 

patterns in the concentration of runoff-borne material .  

Satellite data are only from the surface of the plume, lacking information on stratification 

and sub-surface structure. However, our results corroborate models and experiments, which help 

us explain the observed plume surface patterns. This study is novel in the degree of replication 

(~1500 whole-plume observations over 15 years), which allows us to consider multiple interacting 

drivers rather than reducing our analysis to a single dynamic. This immense data set shows the 

complexity and variability in plume types (different dominant forcing) – and variability even within 

plume types due to secondary forcing terms. Results show coherent patterns that vary with 

changes in river discharge, wind speed and direction, tidal phase, and wave height. 

4.1 River Discharge 

The strongest control on plume size and shape is exerted by the river outflow rate 

(discharge Q), shown by pixelwise correlation with turbidity (Figs. 5-8). Not only does high 

discharge result in a large volume of water, but it also represents a high buoyancy flux that explains 

spreading of the plume beyond the near field (where inertia dominates). The larger spatial scales 

(offshore extent, plume area) result in stronger Coriolis forcing and the observed tendency for high-

discharge plumes to turn to the right, i.e., upcoast (Fig. 6). Thus, the Russian River plume behaves 
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like other “large” river plumes in the classical dichotomy articulated by Garvine (1995) and others 

(Horner-Devine et al., 2015). However, while the Coriolis-induced turning region is observed, 

discharge off the Russian River and other SMRS is highly variable and high-discharge conditions 

last for only a few days so that one does not expect a coastal buoyancy current to form as observed 

for systems with more persistent outflow, e.g., Chesapeake Bay (Rennie et al., 1999), Mississippi 

River (Castillo and Miller, 2008). In contrast to the coasts characterized by singular, large outflows, 

the northern California coast is characterized by multiple SMRS that experience simultaneous high 

discharge events. When plumes coalesce (Warrick and Farnsworth 2017) a coastal buoyancy 

current may form, as observed off Oregon by Mazzini et al., (2014). For weaker discharges, Coriolis 

is not a primary forcing term, and the “small” plume configuration is shaped primarily by wind and 

tide as seen in models (Basdurak et al.,2020; Basdurak & Largier, 2022).  

 

4.2 Wind Speed and Direction 

The coastal ocean off northern California is subject to northerly upwelling-favorable winds 

for much of the year (Garcia-Reyes and Largier, 2012), but winds are more variable in winter when 

runoff events occur. The plume pattern is markedly different between days with upcoast 

(downwelling favorable) and downcoast (upwelling favorable) winds (Figs. 8 and 9). In all wind 

states the correlation between turbidity and discharge remains moderately strong near the mouth 

of the river (Fig. 8), but extends only upcoast during southerly/upcoast winds, and downcoast 

during northerly/downcoast winds. This indicates that wind forcing overcomes the buoyancy-

Coriolis balance that makes the plume turn right and extend upcoast in the absence of wind (Fig. 7). 

This response of the plume to wind is also seen in the pixelwise correlation between turbidity and 

wind speed, calculated for different wind states (Fig. 9). While turbidity-wind correlations are 

notably weaker than turbidity-discharge correlations, during upcoast winds there is a coherent 
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zone north of the mouth where higher turbidities are observed during stronger winds (most 

apparent with lag between turbidity and wind), i.e., it is not just the wind direction but also the 

strength of the wind that influences plume behavior. Likewise, a coherent zone is observed south of 

the mouth during downcoast winds.  

One would expect turbidity-wind correlations to be weaker than turbidity-discharge 

correlations as wind does not alter the amount of runoff or turbidity and only influences the flow 

patterns in the receiving coastal waters. As discussed by Basdurak and Largier (2022), wind has 

multiple effects on river plumes including the direct effect of wind stress and the effect of wind-

driven currents. Alongshore currents in this region are well correlated with alongshore wind 

forcing (Winant et al., 1987; Largier et al., 1993) and these currents can push and drag plume 

waters by upstream frontal convergence and underlying interfacial stress, respectively. The 

increase in correlation with lag is consistent with the lag in correlations between alongshore 

current and wind. At the same time, surface wind stress can force the plume directly, and most 

effectively when plume stratification is strong enough to contain added momentum in the shallow 

surface plume layer. Basdurak and Largier (2022) show that surface stress may move the whole 

plume, when mixing extends throughout the plume layer, or it may strain the plume and thus thin it 

and spread it downwind, when mixing decreases with depth (suppressed by stratification in the 

plume). These surface data provide no direct insight to sub-surface structure, but it is notable in 

Fig. 9 that the zone of coherent turbidity-wind correlation is confined nearshore with downwelling 

winds (onshore Ekman transport) and spread offshore with upwelling winds (offshore Ekman 

transport). 

We find that cross-shore winds are also important, consistent with model results from 

Basdurak and Largier (2022). Indeed, turbidity-discharge correlations are strongest close to the 

river mouth during onshore winds (Fig. 8), indicating that high-turbidity waters are retained near 
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the mouth during onshore winds, countering the offshore forcing due to outflow inertia and 

buoyancy-driven spreading. As onshore winds are not expected to drive strong onshore currents, 

this effect is likely due to direct wind forcing, i.e., surface wind stress. While there is a coastwide 

narrowing in the band of turbidity-discharge correlations with onshore winds, the zone of 

moderate/strong correlation extends only ~10 km alongshore (both upcoast and downcoast), 

indicating that onshore winds tend to prevent upcoast propagation of the plume. A similar near-

mouth zone is observed for turbidity-wind correlation, showing that turbidities are higher with 

stronger onshore winds (although not nearshore downcoast of the mouth). It is interesting to note 

that the turbidity response to onshore wind does not exhibit a lag, which is consistent with direct 

forcing by wind stress and shorter time scales that do not involve Coriolis forcing. This plume 

compression by onshore winds has received little prior attention and only in models (Osadchiev et 

al., 2013; Basdurak and Largier, 2022) – we are unaware of any prior observations showing this 

effect.  

4.3 Waves 

As shown by Rodriguez et al., (2018) and Kastner et al., (2019), waves can stall the outflow 

jet and trap runoff and thus turbidity in surf zone and rip-current influenced nearshore waters. 

Here, we show that wave forcing can also be important for larger rivers, such as the Russian River – 

either during low discharge or during periods of large waves and high radiation stress. Through 

analysis of turbidity-discharge correlations, we quantify a threshold for the wave-outflow 

parameter p formulated by Rodriguez et al., (2018): for p values in the upper six deciles, we do not 

see plume-level Rrs645 turbidity at pixels located 1 km offshore of the mouth of the Russian River, so 

we choose p = 41 as the threshold for plumes escaping wave-dominated nearshore waters. This is 

comparable with a p-value of 20 obtained by Rodriguez et al., (2018) from numerical simulations 

representing conditions at the mouth of Tijuana River (Hs = 1m; Q = 10m/s3). During strong wave 
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forcing, turbid outflow can be trapped nearshore for river discharge as high as ~40 m3/s, showing 

that wave forcing is likely to be important for all SMRS on wave-exposed coasts. This study is the 

first empirical validation of this wave-outflow momentum balance for a SMRS. 

While river waters may be exported from the surf zone through rip currents after being 

initially trapped (Clarke et al., 2007), the inertia of the outflow has been lost and even the buoyancy 

head has been dissipated by mixing in the nearshore. Consequently, these turbid, low-salinity 

waters are more likely to be dispersed passively and without stratification. And without immediate 

mechanisms to transport these waters offshore, they are likely to remain in contact with the shore 

far from the mouth of the river (e.g., Kim et al.,2004). 

4.4 Tides 

Through an analysis of turbidity-water level correlations (Fig. 10), we show tidal variability 

in plume behavior addition to strong control by discharge and additional significant control by 

wind forcing. Basdurak et al., (2020) model the influence of tide on outflow from an idealized SMRS 

in California and show the alongshore advection of the plume by reversing tidal currents (best 

described by comparison to the wagging tail of a dog). As noted by Basdurak and Largier (2022), 

these tidal influences are readily dominated by wind forcing, but in all but the strongest winds the 

plume continues to exhibit some tidal variability. Consistent with Basdurak et al., (2020) we 

observed increasing turbidity north of the river mouth during rising tides (Fig. 10), explained by 

the northward advection of turbid outflow by alongshore tidal currents. The effect is not observed 

for weak discharge when turbidity is low and the plume can easily be deflected by winds. The effect 

is strongest for moderately high discharge (up to ~200 m3/s), when turbidity is higher and there is 

a tendency for upcoast transport, which can be enhanced by upcoast tidal currents. For highest 

discharges, correlations are low as the plume is persistent along this coast, without turbidity 

gradients that can be advected by tidal currents. 
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South of the river mouth (downcoast), turbidity increases over the falling tide (Fig. 10), 

consistent with southward advection of turbid waters by the alongshore tidal current. Even if the 

tidal component is smaller than wind-driven component, it introduces tidal variability in the 

current which will explain tidal variability in turbidity at a point, given the alongshore gradient in 

turbidity. Again, the effect is not observed for weakest discharges, but here it is strongest for the 

upper two discharge quartiles and higher correlations are observed than upcoast of the mouth.  

In addition to this alongshore tidal advection, tides modulate the outflow from the Russian 

River estuary (Behrens et al., 2013). This effect may explain the offshore elongated shape of the 

negative correlation observed for the second discharge quartile (Fig. 10), which is included in the 

negative correlation zone for third and fourth quartiles. Tidal fluctuations in outflow are more 

marked for weak/moderate river discharge when river flow can be retained in the estuary during 

rising tides and maximum outflow of turbid waters occurs during falling tides, explaining offshore 

advection and tidally increased turbidity in this zone. Downcoast of the mouth the tidal efflux effect 

and the alongshore tidal advection effect both account for a negative correlation, whereas the 

effects have opposite sign upcoast of the mouth, which may explain the marked negative zone 

immediately south of the mouth of the river. This may also explain the absence of a positive signal 

about the inlet in the lowest discharge quartile in Fig. 10, as a rising tide could reduce outflow from 

small discharges. 

4.5 Other Nearby Sources of Turbidity 

There are multiple sources of turbidity in the coastal waters off northern California, 

including land runoff, bay outflow, wave-driven resuspension, and tidal resuspension. Tidal 

resuspension is not apparent in open waters outside of tidal bays like San Francisco Bay, but wave-

driven resuspension of fine sediment is evident in nearshore waters along the coast of northern 

California, which is the focus of a companion study (Speiser et al, in prep.) – this is evident as high 
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mean turbidity along the wave-exposed north shores of Bodega Head and Point Reyes (Fig. 4). Here 

our interest is in the effect of river plumes, which we explore through the Russian River case study. 

Patterns of turbidity-discharge correlation show a clear maximum close to the river mouth, 

weakening with distance away from the mouth due to decreasing turbidity and the importance of 

other processes and sources. Some alternative turbidity sources are evident in our study because 

discharge from nearby rivers (e.g., Gualala River) is correlated with that in the Russian River, thus 

accounting for the high turbidity-correlation values off the mouth of the Gualala River (38.77o N, 

Figs. 5, 7 and 8). The Gualala plume is visible on 28 February 2019 (Fig. 1b) and in a map of mean 

turbidity (Fig. 4). 

High levels of turbidity in Bodega Bay and Tomales Bay, evident in the image from 28 

February 2019 (Fig. 1C), are also associated with land runoff through smaller rivers including 

Estero Americano and Estero San Antonio that enter Bodega Bay and Walker Creek and Lagunitas 

Creek that enter Tomales Bay. Again, high discharge events occur simultaneously in these small 

rivers and the Russian River following rain events, thus accounting for high turbidity-discharge 

correlations in Bodega Bay (Fig. 5, 6, 7), which can merge with high correlations associated with the 

Russian River (Fig. 8) – and potentially misinterpreted as being due to the Russian River. 

A third regional source of turbidity is outflow from San Francisco Bay, entering the ocean 

through its mouth south of Point Reyes (37.8oN). Although turbidity is lower than in river plumes 

(Fig. 1C), there is a coherent pattern of turbidity associated with northward transport past Point 

Reyes (Kaplan and Largier, 2006; Largier, 2020) that is evident during high-discharge events when 

the Bay outflow turns right under the influence of Coriolis forcing (Fig. 6) and that accounts for 

notably high turbidity-discharge correlations during southerly winds (Fig. 8) and markedly higher 

turbidities during stronger southerly winds (Fig. 9). These low-salinity events are recorded at 

Bodega Head (Ricart et al., 2024). 
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4.6 Implications of Plume Patterns 

Satellite data on surface reflectance allows analysis of surface turbidity patterns that we 

have quantified and subsequently explained in terms of plume behavior. The analysis of turbidity is 

immediately valuable in providing insight to sub-surface light levels important for photosynthesis 

and insight to the fate of fine terrigenous sediment and sorbed materials that can include organics, 

metals, and pollutants. Further, the spatial extent (> 30 km) and temporal persistence (> 1 day) of 

the observed turbidity patterns indicate slow settling velocities so that the decrease in 

concentration away from the mouth of the river is likely controlled by mixing and dilution. In that 

case these patterns of turbidity are also a reasonable first estimate of patterns of dissolved material 

including salinity, nutrients, and carbon. The zone of impact (area where river-borne material is 

concentrated) varies with changes in discharge, winds, waves, and tides – but clear correlations 

emerge that can explain patterns of exposure to diverse river-borne constituents. There is growing 

interest in the exposure of shoreline environments (e.g., recreational beaches) and nearshore 

environments (e.g., kelp forests) to runoff, which may transport pathogens, e.g., toxoplasma gondii 

(Shapiro et al., 2015) and fecal coliform (Kim et al., 2004) and other pollutants (Rogowski et al., 

2015). There is also growing interest in the role of river plumes in explaining kelp refugia amidst a 

catastrophic loss of kelp forests off northern California (Rogers-Bennett et al, 2019; Cavanaugh et 

al., 2023; Ricart et al, in review), in their potential role in ameliorating or exacerbating nearshore 

ocean acidification due to their high carbon content (Stets et al., 2017), and in their potential for 

explaining localized stratification and hypoxia. Shoreline attachment is shown to be strongest on 

the upcoast side of the Russian River mouth and this is generally expected. Stronger upwelling 

winds are anticipated with climate change (Garcia-Reyes et al., 2022) and that would reduce this 

effect, but at the same time more intense flow events are anticipated with more frequent 

atmospheric river events (Albano et al., 2020) and that would intensify the shoreline impacts 

upcoast of the mouth. 
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5. Conclusion 

The long record of daily MODIS Aqua imagery of coastal waters off the Russian River offers 

a comprehensive overview of plume behavior, specifically identifying features characteristic of 

plumes formed off the mouth of Mediterranean-climate, small-mountainous-river-systems (SMRS). 

This expansive dataset, contextualized by coincident environmental monitoring data, corroborates 

several plume models and offers new insights into the interaction between buoyancy-Coriolis 

forcing with wind forcing, wave forcing, and tidal forcing. 

Results from our study highlight the significant control of river outflow rate on plume size 

and shape and the contrast between small and large plumes. High discharge rates result in “large” 

plumes with significant Coriolis influence beyond the near field whereas low discharge rates result 

in “small” plumes subject to forcing by winds and tides. The spatial extent of the plume varies 

significantly, with the average alongshore extent of turbid plumes increasing from 14 km for the 

lowest discharge quintile to 77 km in the highest quintile. Similarly, the offshore extent increases 

from 3 km to 14 km across the same quintiles, and plume area increases from 20 km² to 698 km². In 

the highest quintile, outflow from the Russian River plumes coalesces with other regional outflows, 

obscuring the degree of individual contribution to coastal turbidity that extends throughout the 

study site. 

Maps of the correlation of turbidity with observed environmental indices clarify the roles of 

wave, tide, and wind forcing. Wave forcing, quantified through the wave-outflow momentum 

balance parameter p, shows that plume-level turbidity is not observed more than 1 km offshore 

when p > 41, as wave radiation stress dominates river outflow momentum. For plumes with enough 

discharge momentum to overcome wave forcing, near-field dispersion is modulated by tidal forces, 

causing upcoast and downcoast deflection during rising and falling tides, respectively. The far-field 

plume is strongly controlled by wind direction, with discharge-correlated turbidity extending more 
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than 30 km upcoast (and minimal downcoast signal) during southerly winds. During northerly 

winds, discharge-correlated turbidity extends 30 km downcoast with no upcoast signal. This 

demonstrates the dominance of wind over Coriolis forcing, except during weak winds or very high 

discharge. Onshore winds compress river sediment turbidity towards the shore.  

Our analysis was limited to observing single-feature correlations and used multi-feature 

data subsetting to examine combined effects, rather than employing computationally expensive 

multivariate statistics. These limitations highlight the need for further studies using advancing 

computational techniques and higher-resolution datasets. Advanced techniques, particularly in 

machine learning and computer vision processing of high-resolution imagery, will help capture the 

fine, dynamic details needed to understand the controls on smaller outflows from SMRS. We are 

motivated by ever-growing high-resolution imagery datasets and developing capabilities in 

machine learning to continue research in these essential nearshore freshwater outflow processes. 

Nevertheless, these observations are invaluable in revealing the complexity of space-time patterns 

in land runoff and in ground-truthing recent numerical models. Our analysis of an immense number 

of plume visualizations under diverse discharge, wind, wave, and tide conditions provides novel 

insights that can guide future model and field experiments.  
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CHAPTER 2 

Remote Sensing of Nearshore Sea Surface Temperature Using Landsat Brightness Temperature 

Calibrated by MODIS Data 

Abstract 

Understanding and monitoring nearshore environments is essential, given that these fine-

scaled ecosystems are integral to human well-being. While satellites offer an opportunity to gain 

synchronous and spatially extensive data of these understudied areas, calibrated satellite sea 

surface temperature (SST) measurements, which are essential for monitoring water quality, have 

only been available at coarse resolutions of 1 km or larger. In this study, we develop a novel 

methodology to create a simple linear equation to calibrate fine-scale Landsat thermal infrared 

radiation brightness temperatures, initially calibrated for land-sensing, to derive SST at a resolution 

of 100m. The constants of this equation are derived from correlations of coincident MODIS SST and 

Landsat data, which we filter to find optimal pairs. Our methodology allows us to filter calibrated 

Landsat data to find the most accurate, optimal data. Validation against in-situ measurements from 

buoys at varying distances from the shore in Northern California shows that our calibrated SST data 

greatly enhances accuracy compared to the original Landsat temperature data and demonstrates 

superior accuracy compared to coincident MODIS SST data. Root mean square error from the 

ordinary least squares equation within these validations for our minimally filtered dataset (n=557 

images) ranges from 0.76 to 1.20 °C with correlation coefficients r=0.73 to 0.92, and from our optimal 

dataset (n=229 images) between 0.62 to 0.98 °C with correlations from r=0.83 to 0.92. Potential error 

sources, such as seasonality, are examined. We discuss the utility of our methodology for enhancing 

coastal monitoring efforts and capturing previously unseen spatial complexity. Testing the 

calibration methodology on Landsat images before and after the temporal bounds of accurate 

MODIS SST measurements shows successful calibration with lower errors than the off-the-shelf, 
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land-calibrated Landsat product, extending the applicability of our approach. This data calibration 

methodology is beneficial for calibrating cross-mission Landsat satellite data to derive SST within 

the nearshore region of our study site and has potential applicability to similar Mediterranean 

climate regions globally, contributing to improved coastal monitoring, management, and research. 

1. Introduction 

The ocean is vast and most human interactions are in nearshore waters, which also host the 

most productive ecosystems (Pauly & Christensen, 1995). There are relatively few data from the 

waters within a few kilometers of the land, which is a major oversight given the importance of these 

waters for ecosystems and humans (Muller-Karger et al., 2018), and it is often assumed that waters 

are quite uniform and like those further offshore over the continental shelf. While satellites offer an 

opportunity to gain synchronous and spatially extensive data of these understudied areas, there are 

no publicly available platforms that provide reliable surface properties at a spatial scale sufficient 

to resolve primary nearshore flow features and dynamics. Specifically, sea surface temperature 

(SST) is only available at a scale of 1 km or larger and these data are notorious for poor reliability 

within a pixel of the shoreline due to contamination (Feng and Hu, 2017). Through calibration of 

high-resolution Landsat brightness temperature data with concurrent low-resolution MODIS SST 

data, we develop a new method and data set that can effectively resolve the fine scale of SST in 

nearshore waters with high fidelity. 

Nearshore water circulation differs markedly from offshore regions due to the proximity 

and shape of the shoreline and shoals. Phenomena include rip currents (MacMahan et al., 2006; 

Largier, 2022), large and small river outflow plumes (Basdurak et al., 2020; Horner-Devine et al., 

2015; Speiser and Largier, in review), tidal jets (Chadwick and Largier, 1996; Wolanski and Elliott, 

2015), internal wave shoaling (Lamb, 2014), the coastal boundary layer (Nickols et al., 2012), and 

small-scale wind effects (Lentz and Fewings, 2012). These flow features account for complex 
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patterns in water properties, including temperature and salinity as well as biogeochemical (oxygen, 

pH, pCO2, N03) and biological (phytoplankton, meroplankton, and pathogenic microbes) 

parameters. At times, these patterns are made visible by a concurrent turbidity or water-color 

signal, which can be detected by high-resolution optical satellite imagery (Speiser and Largier, in 

review). However, few reliable methods exist for obtaining satellite-based data on sea-surface 

temperature at sufficient spatial resolution, despite the ubiquity of thermal patterns in nearshore 

waters. While there is an increasing number of studies based on numerical experiments and in-situ 

field sensors (Gough et al., 2020), their scope is generally limited by scale and the full complexity of 

multi-scale nearshore circulation processes remains opaque (Largier, 2020). 

The Landsat series of satellites operated by the United States Geological Survey (USGS) 

contain onboard thermal infrared radiation (TIR) sensors with a spatial resolution (60-120m) fine 

enough to resolve the primary nearshore circulation features with sub-kilometer scale. However, 

these satellites lack atmospheric self-correction capabilities owing to a limited number of TIR range 

bands, which precludes the conversion of TIR brightness values to sea surface temperature value 

without external, empirical calibration. 

Prior studies have used several methods to extract SST information from Landsat TIR data. 

Some studies have used off-the-shelf, Landsat Level 2 brightness temperature data, calibrated by 

the USGS for land surfaces (Albanai et al., 2022). Other software packages like ACOLITE 

(Vanhellemont, 2020) derive surface temperatures from converting atmospherically corrected 

surface radiance using Planck's Law (see section 2.4) enhanced by radiative transfer models; 

however, these methods rely on accessing abundant coincidental data, which often complicates 

atmospheric correction. Other studies have been very local, calibrating brightness data with in-

situ/buoy measurements (Wloczyk et al., 2006; Jang and Park, 2019). While prior studies have 

explored correlation of Landsat data with coincident satellite data from geostationary satellites 

(Kuroda and Toya, 2020) or polar orbiting satellites like MODIS and AHVRR (Thomas et al., 2002; 
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Fisher and Mustard, 2004; Snyder et al., 2017, Fu et al., 2020), these studies have been limited to 

less than 50 images, which is insufficient for capturing nearshore variability, and does not 

aggregate statistics to form generalized calibration constants which makes the methodology 

dependent on other satellite missions as well as their continuation for future calibrations. This 

becomes complicated as satellites eventually age past their expected mission lifetimes and 

subsequently experience issues with data degradation. Relevantly, MODIS is now past its expected 

mission lifetime and has been shown to have unreliable data quality for SST products past 2023 

(Twedt et al., 2023). Further this methodology requires manual inspection and selection of data to 

avoid any sources of heterogeneity within images which is arduous and limits dataset size. 

In this paper, we calibrate an extensive dataset of several hundred Landsat 7-9 images using 

coincidental MODIS SST (MSST) data captured prior to 2023 for coastal waters off northern 

California. Our initial approach is to create a unique calibration equation for each image, and our 

final product is a single equation obtained from averaging the single-image calibrations, that can be 

applied to images outside of the sample set without having to do individual image calibrations. We 

test this sample calibrated Landsat SST data as well as Landsat SST data before and after MODIS 

operational dates against in-situ temperature measurements from 5 locations, showing the 

superior utility of the aggregate calibration equation for use in SST remote sensing, which also 

outperforms the use of off-the-shelf USGS land surface temperature measurements. The resultant 

high-resolution SST data will greatly advance the study of nearshore flow features, hydrodynamic 

processes, and habitat patterns. 
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2. Methods 

This study investigates the efficacy of Landsat surface brightness temperatures calibrated 

with MODIS Terra Sea Surface Temperature data to produce high spatial resolution SST 

measurements. We test these calibrations performed between individual images and use 

aggregated calibration equations to create a generalized local calibration equation, made from 

constants derived from statistics gathered from those calibrations. These estimated SST data are 

validated using in-situ monitoring data taken throughout the study region, captured at the same 

time as satellite overpass. 

2.1 Study Site 

Data used for this study are captured within Landsat Worldwide Reference System (WRS) 

location path 45, row 33, spanning latitudinal coordinates from 37.90 to 39.95 (Fig. 1). This area 

extends from the inlet of the San Francisco Bay northward to Cape Mendocino, covering a 

geomorphologically and hydrodynamically diverse coastline that contributes to oceanic 

temperature mixing through phenomena such as runoff from ephemeral streams and small 

mountain river systems, tidal jets, and flow separation at headlands. The meteorology of this region 

is a typical "Mediterranean" climate, with seasonal precipitation occurring in winter months. 

Winter storms lead to seasonal freshwater runoff pulses and associated river plumes (e.g., off the 

Russian River, Gualala River, Big River, Noyo River, Albion River, and Navarro River (Fig. 1). During 

high river flow, freshwater buoyant plumes from these rivers extend tens of kilometers alongshore 

(Speiser and Largier, in review). In the dry season, these estuaries can be closed off from the ocean 

by sand berms (Behrens et al.,2013), cutting off surface exchange with the ocean. 

Wind patterns in the region are also seasonal. From April to June, consistent northerly 

winds induce upwelling, followed by weaker winds from July to September, and more variable 

winds in the storm season from December to February (Garcia-Reyes and Largier, 2012). Spring 

upwelling causes nearshore cooling from offshore advection of warmer surface water. The most 
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marked cooling from upwelling occurs in the region southward of Pt. Arena and northward of the 

Russian River estuary (Largier et al.,1993; Halle and Largier, 2011). 

 

Fig. 1.: Map of study region in WRS path 45 row 33. (Left) Map of in-situ validation sites, from north 
to south: NOAA N46014 (buoy), BOON Intake (seawater intake),  BML Mooring (buoy), NOAA 
N46013 (buoy), and BOON Tomales Bay (buoy). (Right) Map of geographical points of interest, 
from north to south: Mendocino, Manchester Beach, Pt. Arena, Gualala River Estuary, Russian River 
Estuary, Salmon Creek Beach, Bodega Bay, Tomales Bay, Pt. Reyes National Seashore. 

 

 

2.2 Satellite Data 

All Landsat 5-9 Level 2 (L2) (March 1984 to May 2023) thermal infrared radiation Landsat 

Brightness Temperature Bt data within the World Reference System (WRS) scene location at Path 

45 Row 33 were collected from Google Earth Engine (Gorelick et al., 2017). For Landsat’s L2 

product, the USGS calibrates Landsat surface radiance to Bt, calibrated for land surface 

temperatures, by applying Planck’s equation: 
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  𝐵𝑡 =  
𝐾2

𝑙𝑛 (
𝐾1
𝐿𝑠

+1)
       eq 1. 

where Bt= Brightness Temperature, K1 = (L7: 666.0900 ; L8: 774.8853; L9: 799.0284), 

K2=(L7:1282.7100; L8: 1321.0789; L9: 1329.2405), and Ls= surface radiance. These temperature 

data, in degrees Kelvin, are stored as values scaled by a factor of .00341802 and offset by a value of 

149 to convert data to integers for more efficient storage. Clouds and cloud shadow detection 

within these images were performed using the CFMASK algorithm (Foga et al., 2017). This 

algorithm employs decision trees, validated by scene-wide statistics, to accurately label pixels 

affected by clouds and their shadows. These cloud-affected regions are further delineated based on 

cloud height and the solar angle, enhancing the precision of cloud and shadow detection. Land 

features were then masked from each image using the high-resolution NOAA Continually Updated 

Shoreline Product (NOAA CUSP: https://shoreline.noaa.gov/data/datasheets/cusp.html). This 

geospatial land dataset is derived from repositories of LiDAR data and individual shoreline 

datasets, estimates continental shorelines on a scale from 1:1000 to 1:24000. 

Landsat 7 (L7), operational since 1999, features Band 6 (10.40-12.50 μm), which is 

specifically dedicated to collecting TIR readings with a resolution of 60m. However, L7 encountered 

a known issue with its Scan Line Corrector (SLC) in 2003, leading to data gaps in its imagery. 

Despite this, its high-resolution thermal data remains invaluable. L7 has a 16-day revisit cycle and 

typically overpasses a given location at 10:30 am, contributing to the temporal coverage of the 

study. 

Both Landsat 8 (L8) and Landsat 9 (L9) are equipped with two TIR sensors of the same 

range, but temperature is typically derived with the Band 10 sensor (10.60-11.19 μm) due to its 

reduced sensitivity to stray light in contrast to the other TIR sensor from curvature of its lens 

(Montanaro et al., 2014; Snyder et al., 2017).  L8, launched in 2013, and Landsat 9, launched in 2021 

https://shoreline.noaa.gov/data/datasheets/cusp.html
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and follow a similar 16-day overpass cycle as L7, capturing data in the same mid-morning time 

window  

To align the resolution disparities among the Landsat satellites, L7 images were resampled 

from their native 60m resolution to 100m using bilinear interpolation, matching the resolution of 

L8 and L9 images. Out of 705 images obtained across these missions, 659 images were used, the 

rest being omitted for having pixel count (n) <100 pixels or when coincident MSST images had an 

n=0 pixel count. Statistics on pixel availability are displayed in Fig. 2, showing that on average the 

most available pixels are captured in April and September, while the least are captured in July and 

August, perhaps due to coastal fog that is prominent during summer months in the Northern 

California region (Johnstone and Dawson, 2010; Torregrosa et al.,2014).  

 

Fig. 2: (Top): Box and whisker plot pixel counts (y-axis) by month (x-axis) per-image in the dataset. 
Box margins are lower 25th percentile of data (lower) and 75th percentile of data (upper). Line in 
box is monthly median. Whiskers show minimum and maximum values. 
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Although Landsat 5 (operational from 1984 to 2013) captures TIR data in a similar spectral 

range and overpass window to L7 and has data during the timeframe available for this study, it has 

spatial resolution of 120m, which is coarser than the 100m that we resample images to for this 

study. Additionally, L5 experienced a gradual shift in its solar zenith angle over time due to changes 

in orbital altitude (Zhang et al., 2016). This led to its exclusion from initial data calibrations. 

Nonetheless, because of its spectral range, L5 data is used in this study as a blind dataset to test the 

generalizability of calibration constants derived from our methods for dates prior to the launch of 

MODIS Terra. 

We accessed atmospherically corrected and cloud-masked MODIS Terra SST (MSST) datasets 

from the NASA Ocean Color website (http://oceancolor.gsfc.nasa.gov/). These datasets, computed 

at a 1km resolution, are known for their efficacy and accuracy in measuring SST (Minnett, 2010). 

We specifically chose MODIS Terra over MODIS Aqua as its overpass (typically between 10:30-

11:30 AM local time) overlaps that of L5, L7, L8, and L9. This ensures minimal temporal 

discrepancy, ranging from near-instantaneous to a maximum of about two hours, between the 

image captures of the two satellites. MODIS imagery past 2023 is unreliable due to orbital drift from 

superseding its expected operational lift time and running out of fuel for orbit adjustment (Twedt et 

al., 2023). As a result, we only calibrate images from the MODIS mission start date until January 1st, 

2023. 

2.3 Brightness Temperature to Sea Surface Temperature Calibration 

In the first step of our method, we calibrate Landsat (L7, L8, & L9) Bt to SST using MSST data 

from the same date. For each Landsat-MODIS image pair, we calculate Pearson’s correlation 

coefficient r to assess the linear correlation between the SST value of each MODIS pixel and the 

median value of all spatial coinciding Landsat Bt pixels within that MODIS pixel’s area. We then 

exclude any MSST/Bt pairs that deviate by more than one standard deviation and recalculate the 

http://oceancolor.gsfc.nasa.gov/
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correlation. This process is iterated until the correlation coefficient stabilizes or decreases. 

Following this, we apply the derived best fit square linear equation to convert Landsat Bt data into 

SST images. To calculate the best fit linear equation, ordinary least squares (OLS) regression was 

used.      

This first step builds on Thomas et al.,(2002) and Snyder et al.,(2017), differing by using the 

median Landsat pixel value within each MODIS pixel area, rather than pairing the nearest Landsat 

pixel to the nearest MODIS pixel, aiming to reduce pixel heterogeneity and improve accuracy. This 

calibration step is referred to as “per-image calibration” in this study. 

 

Fig. 3: Example of calibration methodology of Landsat Bt  to SST using Coincidental MODIS Terra 
SST data from images captured on November 8, 2001. a.) Initial correlation between MODIS SST 
pixels and respective pixel-area median Landsat Bt pixel values from the 01/07/2015. b.) Final 
correlation after iterative outlier removal as outlined in section 2.3. c.) MODIS Terra SST Image 
from 01/07/2015. d.) Estimated Landsat SST obtained by calibrating Landsat Bt values with the 
best fit linear equation from plot b. 
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As noted in Snyder et al., 2017, this process assumes that atmospheric conditions are 

uniform across the Landsat scene and that atmospheric and oceanic conditions do not significantly 

vary between MODIS and Landsat image captures. Further, as each Landsat scene is captured in 

scans rather than instantaneously, this method assumes atmospheric and oceanic conditions do not 

significantly change during image collection, however scans last only a few seconds. 

 

Using this process, we can categorize images as acceptable or not, by examining Bt-MSST 

correlation strengths. For this study, we considered the image dataset in two groupings, one overall 

“all data” group and an idealized (R0) group. For the “all” dataset, we use data in which the final r 

value between MSST and Bt is above 0.7, therefore disregarding data that had too many image 

artefacts to successfully calibrate to SST from Bt. For R0 data, we group calibrated Landsat images 

where the initial r value between MSST and Bt is above 0.7, prior to iterative outlier removal. This 

differs from past uses of “per-image” calibration; we did not manually select images by visual 

inspection and instead conditionally removed or maintained within the dataset due to correlative 

strength, cutting down significantly on time spent on data curation and utilizing images that may 

have been overlooked. 

The next step of the calibration methodology is creating a simple, linear general equation to 

apply to uncalibrated Landsat Bt images. This is done to resolve heterogeneity that may arise in the 

unsupervised “per-image” calibration leading to inadequate temperature calibration, due to outlier 

pixels not removed from the dataset. Further, it can be used to calibrate images outside of the 

sample dataset, as per-image calibration is computationally expensive and limited to times when 

MODIS data are available. This equation is aggregated from statistics of the MSST-Bt normalized 

images from the per-image step to apply across all images. To do so, we use the median slope (m) 

and intercept (b) of all R0 linear calibration equations to get: 
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                     𝑆𝑆𝑇 =  𝑚 ∗ 𝐵𝑡 + 𝑏          eq.2                           

where SST is the estimated sea surface temperature and 𝐵𝑡 is the brightness temperature at a given 

pixel position. This is the first time such a calibration method utilizing per-image calibration 

statistics has been employed that the study is aware of. This calibration method is referred to as 

“generalized calibration” within this study.  

This generalized equation is applied to all L2 Landsat Bt images in the data set, as well as 

tested as a method to estimate Landsat derived SST on images outside of the dataset without 

coincident MODIS data (prior or past operational extent). For the latter application, we test data 

preceding the launch of MODIS Terra using L5 data and data using Landsat 8 and 9 data after 

January 1st, 2023. We resampled L5 resolution to 100m using bilinear interpolation prior to 

calibration to match the resolution of the study’s Landsat 7-9 dataset. Calibrated Landsat 5 data 

were then compared with coincidental seawater temperature measurements at nearest pixel 

positions, see section 2.3 (Table 1.)  
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Name 

Coordinate 

Depth (D) 

Distance 

Offshore 
(Dist) 

 

Type Extent  Pixel  Count r RMSEOLS RMSE1:1 

N46014: 

39.225 N, 

123.980 W 

D: 2.0m 

Dist: 
15.6km 

Buoy 04/1981 

- 

05/2023 

39.23078 

N, 

123.97424 
W 

All: 300 

R0:147 

Bt: 323 

MSST:29

4 

All: 0.83 

R0: 0.91 

Bt: 0.75 

MSST: 0.70 

All: .89 

R0: 0.62 

Bt: 1.04 

MSST:1.13 

All: 1.15 

R0: 1.06 

Bt: 1.86 

MSST: 

1.55 

N46013: 

38.235 N, 
123.317 W 

D: 2.0m 

Dist: 23.0 

km 

Buoy 04/1981 
- 

05/2023 

38.23544 
N, 

123.31667 

W 

All: 385 

R0:175 

Bt:376 

MSST:37

6 

All: 0.79 

R0: 0.87 

Bt: 0.65 

MSST: .69 

All: 1.04 

R0: 0.73 

Bt: 1.30 

MSST:1.22 

All: 1.25 

R0: 1.17 

Bt:2.00 

MSST: 

1.53 

BML 

Mooring: 

38.312 N, 

123.083W 

D: 1.0m 

Dist: 1.0km 

Buoy 09/2012 

- 
05/2023  

38.31180 

N, 

123.08312 

W 

All: 67 

R0:40 

Bt: 134 

MSST:40 

All: 0.92 

R0: 0.92 

Bt:0.87 

MSST: .87 

All: 0.76 

R0: 0.65 

Bt: 0.93 

MSST:0.92 

All: 0.95 

R0: 1.00 

Bt: 1.63 

MSST: 
1.31 

TB Mooring: 

38.188 N, 

122.928 W 

D: 1.0m 

Dist: 

0.34km 

Buoy 05/2013 

- 
10/2021 

38.18783 

N, 
122.92771 

W 

All: 204 

R0:95 

Bt: 220 

MSST:N
A 

All: 0.85 

R0: 0.92 

Bt: 0.81 

MSST = NA 

All: 1.25 

R0: 0.98 

Bt: 1.41 

MSST = NA 

All: 1.56 

R0: 1.42 

Bt: 2.53 

MSST = 
NA 
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BML intake: 

38.316 N, 

123.070 W 

D: NA 

Dist: 0km 

Intake 04/1988 

- 

05/2023 

38.31539 

N, 

123.07324 
W 

All: 425 

R0:188 

Bt: 451 

MSST:50 

All: 0.73 

R0: 0.83 

Bt: 0.62 

MSST: 0.80 

All: 1.20 

R0: 0.89 

Bt: 1.40 

MSST:1.17 

All: 1.56 

R0: 1.58 

Bt: 2.08 

MSST:1.9

5 

 

Table 1. Table of buoy descriptions and respective results of comparisons between in-situ 
measurements and SST within MODIS (MSST), all calibrated Landsat data (All) and selected optimal 
calibrated Landsat data (R0) including the correlation (r) value between estimations and 
measurements, Root Mean Square Error of values against the Ordinary Least Square best fit line 
(RMSEOLS), and Root Mean Square Error of values against the one-to-one line (RMSE1:1). “NA” Is 
used as a placeholder for when category is inapplicable or data is unavailable. 

 

 

2.4 Data Validation 

 Landsat SST derived  from both per-image and generalized equation calibration steps are 

tested against in-situ seawater temperature (Tinsitu) measurements from the NOAA National Data 

Buoy Center (NDBC) at buoys N46013 and N46013 (https://www.ndbc.noaa.gov/ ) and at buoys 

TB Mooring and BML Mooring as well as a seawater intake, BML Intake, operated by the University 

of California Davis, Bodega Marine Lab, Bodega Ocean Observing Node (BOON; 

https://boon.ucdavis.edu/) (Table 1). These buoys, which are mapped in Fig 1., are at varying 

distances offshore in order to capture variation within different marine bathymetries and 

environments (i.e. offshore, nearshore, at-shore, estuary). These distances are described in Table 1 

measured to the nearest shoreline. 

  These in-situ data are calculated as hourly averages and compared against time series SST 

data from the 100m Landsat pixel position that the buoys are within. Seawater intake 

https://boon.ucdavis.edu/
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measurements at the BML Intake are compared against timeseries pixels nearest to the seawater 

intakes. From all in-situ datasets, temperature data collected closest to MODIS capture time for each 

date is considered in these validations. As all of these in-situ measurements are taken at depth (see 

Table 1), rather than at the surface, it is assumed that there will be discrepancy between the 

temperature of the sea water surface temperature and at in-situ sensor (Donlon et al., 2002). 

Further, it is assumed that sensors at further depth in the water column will have a more significant 

discrepancy with surface temperatures.   

In lieu of those assumptions, to test the relative accuracy of our calibrations, we compare 

Tinsitu with SST from the pixel position (table 1) closest to the buoy using Pearson’s r correlation and 

with root mean square error (RMSE) from a y=x linear line (RMSE1:1) and from the ordinary least 

squares (OLS) linear best fit line (RMSEOLS) variables. We also compare in-situ measurements with 

surface temperature estimates from MSST and BT  from coinciding dates to benchmark the relative 

performance of our methodology. We only use MSST images from the same dates in which Landsat 

imagery is available in order to make a direct comparison. Landsat BT  data are not filtered by date. 

 We also tested the data quality across a given image by comparing the difference of Tinsitu 

between buoy pairs with the difference in SST at the respective nearest pixel locations on the same 

dates  (Fig. 9). These comparisons were then plotted to see how closely they adhered to a 1:1 

relationship, with the logic that differences between Tinsitu (ΔTinsitu) should be similar to those of SST 

(ΔSST) if data quality across an image is reliable. We tested the coherence of these pairings 

individually and as a combined dataset. Any data pairings with less than 10 points were omitted. 

This test assumes that temperature discrepancies between buoy locations should be mirrored by 

the discrepancies at the nearest SST pixel locations, resulting in a low RMSE1:1 or a best-fit OLS 

equation slope (m) close to one and intercept (b) close to zero. 

 



62 
 

3 Results 

3.1 Sea Surface Temperature Calibration 

Of the 659 images calibrated for SST from L7 to L9, 557 images are considered as viable for 

the larger “all data” dataset. On average, these images went through 9.23 iterations of outlier 

removal. There was no observable relationship between the number of data omission iterations 

and final Pearson’s r value.  Of those images, 229 images were also in the “ideal” R0 data set. Overall, 

initial and final correlation values between coincident Bt and MSST values were generally strongest 

from April to September, i.e., during the spring and summer upwelling season in northern California 

(Fig. 4). Variation in OLS best fit linear equation constants between Landsat Bt and coincident MSST 

were also generally lower in these seasons (Fig. 5). Similarly, slope and intercept values from these 

OLS best fit line equations were respectively lowest and closest to zero (closer to a 1:1 relation) 

during this season. 
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Fig. 4. Monthly box and whisker plots from calibration of all data. Box margins are lower 25th 
percentile of data (lower) and 75th percentile of data (upper). Orange line in box is monthly median. 
Whiskers show minimum and maximum values. X-axis is month in numerical format. Y axis is: (a.) 
Pearson’s r correlation values from the first iteration of per pixel comparisons between Landsat B t 

and MSST (b.) Pearson’s r correlation values from the final iteration of per pixel comparisons after 
iterative outlier removal between Landsat Bt and MSST (c.) Intercept values from the OLS best fit 
linear equations from final iteration comparisons between Landsat Bt and MSST  (d.) Intercept values 
from the OLS best fit linear equations from final iteration comparisons between Landsat Bt and MSST 

 

 The distribution of m and b values from the individual MSST-Bt calibrations within the R0 

dataset are plotted in histograms in Fig. 5. From these calibrations, the median of slope values is 

m=0.00297 and the median of intercept values is b=105.879. These values are used in constants for 

Eq. 2., yielding the equation: 
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        𝑆𝑆𝑇 =  .00297𝐵𝑡 −  105.88°C               eq.3  

This equation (Eq.3) is used to calibrate Bt to temperature within the generalized calibration step. 

90% of slope and intercept values fall within 10% of each respective constant value. 

 

Fig. 5: (A) Histogram of intercept (b) values from per-image calibrations of R0 data. (B) Histogram 
of slope (m) values from per-image calibrations of R0 data. Red lines indicate distribution medians 
(b= -105.88; m= .00297) 
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3.2 Data Validation 

 To explore the effectiveness of calibrations from the per-image calibration step, SST from 

that step was compared with at each in-situ measurement location. The relative accuracy of SST ,  

from the per-image calibration step, compared to Tinsitu from coincidental sample measurements 

varies by site (Fig. 6). Within the “all” data group, performance seems to be strongest at the BML 

Mooring, where correlation is highest (r=0.79), error relative to the one to one line is lowest 

(RMSE1:1 = 1.49°C), and error relative to the OLS line (RMSEOLS=1.16°C)  is nearly the lowest, 

seconded at N46014 (RMSEOLS=1.14°C) by a difference of RMSEOLS =.02°C. Correlation in this group 

is lowest at N46013 (r=0.63), and both metric errors are highest at  TB Mooring, where RMSEOLS 

=1.77°C, and RMSE1:1 = 3.00°C. The performance of “all” data SST derived from the step is nearly 

comparable to Bt and MSST estimates, with overall slightly lower correlation and higher error 

metrics except at BML Intake. 

Performance of SST from the per-image step within the ideal R0 group is notably stronger. 

Here, correlation is highest at both N46014 and TB Mooring (r=0.89), and error metrics are lowest 

at N46014 (RMSEOLS = 0.71°C ;  RMSE1:1 =1.04°C) Conversely, correlation with Tinsitu is lowest at 

BML Mooring (r=0.82), and RMSEOLS (1.12°C) and RMSE1:1 (1.36°C) are highest at TB Mooring (Fig. 

6). These chosen idealized SST images are more relatively accurate against in-situ samples than 

temperatures from Bt and MSST across all sites, with RMSEOLS and RMSE1:1 being at least 0.4°C lower 

than either Bt or MSST at most sites with the exception at the BML Mooring, where error are only 

0.03°C and 0.02°C lower, respectively.  
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Fig. 6: SST values derived from Landsat data from the per-image calibration step plotted against 
water temperature measured by in-situ sensors: (a) N46014, (b) N46013, (c) BML Intake (d) TB 
Mooring, and (e) BML Mooring.     
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 Validations of SST values derived from the final generalized calibration step by comparison 

with coincident Tinsitu are shown in Fig 7 and Table 1, along with validation of coincidental values 

from Bt and MSST. The performance of SST from both groupings from this step exceed those of the 

previous SST estimates. Within the “all” dataset, SST is most accurate with Tinsitu values at BML 

Mooring, where correlation is strongest (r = 0.92) and error metrics are lowest (RMSEOLS=0.76°C ; 

RMSE1:1 =0.95°C). Correlation is weakest at N46013 (r=0.73) and error is highest at TB Mooring 

(RMSEOLS=1.25°C; RMSE1:1 =1.56°C). Performance across all metrics from this dataset outperform 

those from MSST and Bt at each site except by RMSEOLS and r at BML intake. 

As expected, performance is significantly stronger within the R0 group.  Correlation is 

strongest and at nearly the same value at sites BML Mooring, TB Mooring, and N46014 

(respectively r=0.92, 0.92, 0.91). Error from the OLS line is lowest at N46014 (RMSEOLS = 0.62°C), 

only nearly succeeding data the BML Mooring (RMSEOLS = 0.65°C). Error relative to the one-to-one 

line is lowest at BML Mooring (RMSE1:1=1.00). Correlation is weakest at BML intake (r=0.83), and 

error metrics are lowest at TB Mooring (RMSEOLS = 0.98°C) and BML Intake (RMSE1:1 = 1.58°C). 

Performance across each metric is significantly stronger than that from MSST or Bt at each site (Fig 7 

& Table 1). 

 



68 
 

Fig. 7: SST values derived from Landsat data using aggregate calibration plotted against water 
temperature measured by in-situ sensors: (a) N46014, (b) N46013, (c) BML Intake (d) TB Mooring, 
and (e) BML Mooring.     
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Fig. 8 shows the differences between derived estimated SST data from the generalized 

calibration step and in-situ measured data at each buoy location and all buoy locations aggregated 

by month for both datasets.  

 

In both datasets, across all buoys and months, SST is higher than Tinsitu. Within the “all” 

dataset, across all sites, this difference is greatest within the summer months from June to August 

where median differences are ~1.5°C on average and smallest in December and January. TB 

Mooring (Fig. 8d) on a monthly basis has the highest deviation in SST-Tinsitu, with the smallest being 

at N46013 (Fig. 8 b). 
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Fig. 8: Monthly box and whisker plots of difference between estimated SST and in-situ 
measurements across all data. Box margins are lower 25th percentile of difference (lower bound) 
and 75th percentile of difference (upper bound). Orange line in the box is the monthly median. 
Whiskers show minimum and maximum difference values. X-axis: month in numerical format. Y 
axis: difference between estimated SST and in-situ measurements at: (a) N46014, (b) N46013, (c) 
BML Intake, (d) TB Mooring, (e) BML Mooring, and (f) all buoy locations combined. 
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Results of in-image accuracy, examining coincident ΔTinsitu and respective ΔSST at given 

sampling sites, are shown in fig 9. As an overall comparison, differences between buoy pairs and 

respective pixel pairs across the “all” dataset had a correlation of r=0.84, errors of RMSE1:1=1.23°C, 

and RMSE1:1=1.31°C, and had an OLS m=0.88 and OLS b=0.36. These metrics are slightly stronger 

when isolated to the R0 dataset, where r=0.88, RMSEOLS=1.13°C, and RMSE1:1=1.24°C. In both data 

groups, the site pair with the highest correlation between ΔTinsitu and ΔSST is between TB Mooring 

and N46013 (rall=0.94; rR0 =0.91). The lowest error metrics are found between BML Intake-BML 

Mooring, however, most differences between the two sites are near zero, likely due to the close 

proximity of the two sites. In the “all” dataset, the spatially distributed site with the lowest error is 

BML Intake-N46014 (RMSEOLS=1.96; RMSE1:1=1.24°C), and in R0 dataset, N46013-N46014 

(RMSEOLS=0.91 RMSE1:1=0.99°C). 
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Fig. 9: Plot and table of buoy respective closest pixel pair deviations. Plotted data points are colored 
by data pairings as indicated in the table. Table metrics include data count (n), the equation of the 
ordinary least squares (OLS) best fit linear equation line, the Pearson correlation between buoy and 
pixel differences (R), the root mean square error of points from the ordinary least squares line 
(RMSEOLS), and the root mean square error of points from the one-to-one line (RMSE1:1). In cells, 
metrics following “All” and “R0” are derived from those respective datasets. 
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4. Discussion 

4.1 Image Calibration 

In our study, we develop and assess a methodology for aggregating and refining correlation 

data between ideal, coincidental Landsat and MODIS data to scale Landsat Bt data for enhanced SST 

remote sensing, particularly within nearshore environments where fine scale processes require 

such capabilities. Analyses comparing SST estimated by our study’s methodology, standard MODIS 

SST data, and standard USGS Level 2 Landsat Bt data against coincident in-situ buoy and seawater 

intake data emphasize the effectiveness of our approach. This methodology not only enhances the 

overall estimation of SST in our region but also allows for the semi-objective selection of ideal 

imagery. 

Per-image calibration, when applied as a standalone process to our minimally filtered 

dataset, showed mixed reliability. The correlation and RMSEOLS between Tinsitu and SST from all per-

image calibrated datasets (Figure 6) were comparable, if not slightly lower by a margin of 

hundredths, compared to land-calibrated BT data. However, the RMSE1:1 error from this dataset was 

generally lower than the BT data, except at TB Mooring, where RMSE1:1 was higher by 0.47 °C. 

Conversely, RMSE1:1 at BML Mooring, which is only 1 km offshore, and BML Intake, located at the 

shoreline, was lower than BT by -0.14 °C and -0.4 °C, respectively. Considering that past studies 

have employed similar calibrations to estimate Tinsitu from SST, these results suggest that 

unsupervised per-image calibration may only conditionally yield lower error than using BT data. 

However, accuracy should be applied with spatially diverse sampling, particularly in nearshore 

environments. Similarly, using minimally supervised per-image calibration is only conditionally 

advantageous over MSST as a temperature gauge. However, it is useful in areas where data is 

unavailable from MODIS, such as at TB Mooring, or in very close shore environments like BML 

Intake, where SST from all per-image calibrated data is lower than MSST by -0.27 °C. While MSST has 
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lower RMSE1:1 than this dataset at the nearshore BML Mooring by -0.18 °C, it has lower data 

availability by n=21 dates. 

However, with the selection of ideal images within the R0 grouping, per-image calibration 

demonstrates higher accuracy, with increased correlation and reduced error compared to both 

USGS Level 2 BT data and MODIS SST (Figure 6). The correlation and RMSEOLS of SST compared to 

Tinsitu are comparable to, or greater than, those of MSST and BT, and RMSE1:1 is less than BT at each 

sampling location. Notably, at closest to shore, TB Mooring and BML Intake, errors are lower than 

BT by -1.17 °C and -0.86 °C, and lower than MSST by -0.73 °C at BML Intake (with MSST data 

unavailable at TB Mooring). 

The per-image calibration step not only proved efficient for selecting ideal images to form 

the R0 dataset—a task traditionally performed manually and often arduous—but also facilitated the 

creation of a second calibration step. SST from the generalized equation calibration step had 

superior accuracy with Tinsitu across all metrics at each site in the “all” data set, and to an even 

greater success within the R0 dataset, across areas offshore and nearshore compared to BT and MSST 

data. Again, RMSE1:1 error at TB Mooring was especially lower, with a reduction of error by -1.11 °C. 

Overall, the generalized equation set had a more even performance of all data, contextualized by the 

R0 dataset, in the second step as opposed to the first step of calibration. For instance, across the two 

SST datasets in the per-image step, R0 had an average correlation of r=0.154 higher than the “all” 

dataset, reduction in RMSEOLS of -0.31°C, and reduction in RMSE1:1 of -0.46°C. In the generalized 

equation step, R0 had an average correlation of r=0.07 higher than the “all” dataset, reduction in 

RMSEOLS of -0.25°C, and reduction in RMSE1:1 of -0.048°C. This indicates that selective image 

calibration may not be necessary once the generalized equation is formed, as results across most 

metrics do not become significantly more accurate. This greatly increases the scope of the dataset, 

which is necessary for fine nearshore environments that exhibit high variability (Speiser and 
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Largier, in submission). Further, this suggests that future data calibration could be conducted 

independently of MODIS data using these constants, extending to Landsat BT data before the launch 

of the MODIS Terra satellite and after its reliable data quality window, as data selection using 

coincident MODIS becomes unnecessary. For example, as demonstrated in Fig. 10, we have applied 

the generalized equation calibration to Landsat 5 data spanning from 1984 to 2000, which predates 

the MODIS Terra launch, and to Landsat 8 and 9 data beyond 2023. Validations from in-situ buoy 

data in these plots show that these data, not used within the formation of the general calibration 

constants, are comparable in correlation, RMSE1:1, and RMSEOLS with validations from the 2000-

2023 dataset. Results within this figure show that hindcast Landsat 5 data is better fit with in-situ 

measurements than forecast data; however, the forecast dataset has a significantly smaller sample 

size, which may not be adequate for analysis of overall methodological success. Given the 

applicability of this methodology with data uninvolved in the creation of the calibration constants, 

one may assume that the application of this calibration equation may be applicable at sites similar 

to that of WRS tile path 45 row 33. 
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Fig. 9: Plots of general eq calibrated data applied to Landsat 5 BT data (x-axis) compared to in-situ 
measurements using the sensors noted in titles. Green data points are “forecast” data of L8 & L9 
data captured after 2023. Red data points are “hindcast” data of L5 data captured prior to 2000. 
Blue trend line is the OLS best fit linear equation from both hindcast and forecast data. 

Superior performance of a generalized empirical equation composited from information of 

ideal image pairs is expected, as any calibration equations that were ill-adjusted from unresolved 

artifacts are likely dampened when aggregated amongst other calibrations. This can perhaps be 

best seen in Fig. 4c and Fig. 4d, where although there may be large deviations within slope and 
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intercepts of calibration equations, particularly within the winter months, which are seasons with 

higher cloud cover within the region, the mean of those distributions still lies relatively closer to 

those of the summer months which had lower deviation ranges. However, it should also be noted 

that there is less data within these latter summer months, as shown in Fig. 2. 

This ability to retrospectively apply the generalized calibration constants to historical 

satellite data not only validates the robustness and utility of the derived calibration constants but 

also broadens the potential for enhancing the temporal scope of more accurate SST analyses. Such 

advancements can contribute to long-term climatological and environmental studies by providing 

more accurate SST measurements over extended periods, thereby offering valuable insights into 

historical ocean temperature patterns and trends. 

Overall, there exists strong variation in accuracy between Tinsitu and SST per site (Fig. 7) and 

by season (Fig. 8). However, this added context informs these results. The overall lowest 

correlation and highest error occurred at BML Intake. However, the intake is at a fixed depth that 

does not adjust with tidal level, so at maximum depth, temperature likely varies significantly from 

skin temperature (Donlon et al., 2002; Minnett et al., 2020). Further, the second-highest error exists 

at the TB Mooring in Tomales Bay, which is a low-inflow estuary. Beyond shallow bathymetry in the 

outer Bay, this site may experience heightened stratification due to decreased mixing from tides 

(Largier et al., 1997). Stratification may also be the reason for higher overall dataset error in 

summertime (Figure 8; Largier et al., 1993). Lack of variation in performance between the two 

highest-performing sites, the farthest offshore site, N46013, and the closest nearshore marine 

mooring, BML Mooring, which both have the highest correlations and lowest errors of any site, 

highlights the performance of our methodology in enhancing SST in both nearshore and offshore 

environments. 
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Tests of in-image accuracy in Fig. 9 were weaker than one might expect. However, it should 

be taken into consideration that in each site pair, sensor instrument methodology differs, making it 

likely that ΔTinsitu, measured at different depths by different instruments, behaves differently than 

ΔSST, which is all measured at the surface. Further, the only pair with the two same instruments 

and the largest sample size was N46013-N46014, which was the pair with the lowest error (besides 

TB Mooring-N46013, which had a significantly smaller sample size). Even then, the sites are far 

away from one another, so sensor-at-depth temperatures may vary with tide, and stratification 

effects at the two sites may act differently (Palacios et al., 2004) 

This ability to retrospectively apply the generalized calibration constants to historical 

satellite data not only validates the robustness and utility of the derived calibration constants but 

also broadens the potential or enhancing the temporal scope of more accurate SST analyses. Such 

advancements can contribute to long-term climatological and environmental studies by providing 

more accurate SST measurements over extended periods, thereby offering valuable insights into 

historical ocean temperature patterns and trends. 

4.2 Observation and Use Cases 

High-resolution SST data allows the observation of small-scale, nearshore processes that 

are too fine for detection with moderate resolution data products like GOES or MODIS. This 

enhancement enables the study of phenomena such as rip currents and their impact on 

temperature patterns in the nearshore. Moreover, it facilitates the observation of various non-

turbid dynamics, irrespective of their size, which are typically not observable in visual-optical/color 

satellite radiances. Examples include clear river plumes, tidal outflows from bays and estuaries, and 

fine-scale eddies. 

Fig. 10d showcases these features, where cold plumes align with the shapes and locations of 

small, turbid rip currents visible in high resolution true color imagery along the Pt. Reyes Seashore. 
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The calibrated high-resolution SST in this figure also illuminates the shapes and extents of non-

turbid mixing processes, manifesting as small, clear river plumes (Fig 10b) and tidal bay outflows 

(Fig 10c) 

While these processes can be initially identified through gradients in uncalibrated 

brightness values, calibration allows estimates of the temperatures of these features. Additionally, 

it provides a clearer understanding of the magnitude of temperature differences between these 

mixing features and the surrounding marine waters, which could not be verified with uncalibrated 

brightness temperature values. 

 

Fig. 10: Mapped temperature from 04/25/2019 vs true color values at zoomed in sites. Color scale 
adjusted to highlight all temperature features.  a) entire calibrated SST image. b) zoomed in 
calibrated SST (left) and true color imagery (right) directly west of the Russian River estuary c) 
zoomed in calibrated SST (left) and true color imagery (right) North of the Pt. Reyes National 
Seashore and south of Bodega Bay. d) zoomed in calibrated SST (left) and true color imagery (right) 
of the north headland of Point Reyes national seashore 
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The capability to sample SST with high spatial resolution and moderate frequency enhances 

the ability to monitor regions where regular in-situ data collection is challenging, such as the 

immediate, and often rocky, nearshore areas. This facilitates novel observational studies and 

research projects, some of which might not have been feasible previously possible as unbeknownst 

to this study. 

For instance, an application of this methodology where previous investigation is unknown 

to this study is the investigation of SST patterns and disparities between the close nearshore areas 

and further offshore. Fig. 11 showcases the potential of high-resolution SST towards such a subject, 

presenting plots of SST calculated with the per-image calibration methodology against distance 

offshore. These plots are based on a single cross-shore transect in Manchester Bay, observed in 

June across three different years using per-image temperature calibration. Interestingly, even 

though the observations were made at the same location and during the same season, the 

temperature gradients along this transect showed varying trends – warming, cooling, or displaying 

a parabolic shape with increasing distance from the shore. 
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Fig. 11: Cross-shore temperature profiles from a transect at Manchester Beach, CA extending 6.5km 
offshore from a per-image calibrated images. Top: Plots of temperature (y-axis) vs distance (x-axis) 
Bottom: Mapped temperature values from dates respective to plots in the same column. 

 

Utilizing high-resolution SST data that we can derive at various estimated accuracies and 

timescales as far back as 1984, we can discern detailed temporal patterns oceanography and 

potentially climatology across large regions by analyzing SST metrics at each pixel location. Fig. 12 

illustrates this by presenting the mean SST at each pixel position of all calibrated L5 to L9 data. 
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Fig. 12:  Average temperature at each pixel position in Landsat data from 1983-2024 in degrees 
Celsius calibrated using general calibration equation constants. 

 

From the results in Fig. 12, high-resolution data reveals areas with the warmest and coldest 

average SST derived from our methodology. From this one can make observations such a large cool 

region near Point Arena which aligns with a region of significant upwelling (Largier et al., 1993; 

Garcia-Reyes and Largier, 2012). This upwelling area is now mapped with an unparalleled 

resolution. Another cooler area, potentially linked to upwelling, is observed near Fort Bragg. 

Regions like the coast between Bodega Bay and north of Tomales Bay, and in front of the Russian 

River, and in front of Pt Reyes seashore, which is impacted by tidal outflow from Tomales Bay 

(Roughan et al., 2005), Bodega Bay (Morgan et al., 2021), and SF Bay (Wing et al., 1995) are 

discernibly warmer, emphasizing the influence of bays and estuaries with marine water mixing and 

temperature. The temperature gradients along broad, north-facing beaches such as Ten Mile, 
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Manchester, Salmon Creek, and Point Reyes Seashore, all with warmer nearshore gradients, might 

indicate the role of fine-scale, nearshore processes in SST mixing or the effects of shallow 

bathymetry on local marine temperatures. 

5. Conclusions 

In our research, we develop, validate, and apply a two-step methodology for deriving water 

surface temperature from Landsat land brightness temperatures in WRS tile path 45 row 33 using 

associated MODIS Terra SST data. By deriving calibration constants from relationships between 

coincident MODIS Terra and Landsat data, we can calibrate data prior to, during, and after the 

operational extent of reliable MODIS Terra SST data. For validation, we tested our calibrated data 

against in-situ temperature measurements collected from sensors at various distances offshore 

within the study area and compared these validations against those with values from uncalibrated 

USGS Landsat Land brightness temperatures and coincident MODIS SST. We find success in these 

calibrations, with superior accuracy against in-situ measurements than the off-the-shelf USGS 

product and even coincident MODIS SST data. For a minimally filtered dataset (n=557 images), the 

RMSE against the OLS line ranges between 0.76 to 1.20 °C, the RMSE against the 1:1 line ranges 

between 0.95 to 1.56 °C, and correlation coefficients range from r=0.73 to 0.92. These metrics are 

further enhanced when looking at comparisons within our R0 dataset (n=229), which consists of 

optimal images whose selection was enabled by our methodology. This dataset has an RMSE against 

the OLS line ranging between 0.62 to 0.98 °C, an RMSE against the 1:1 line ranging between 1.00 to 

1.58 °C, and correlation coefficients ranging from r=0.83 to 0.92. Further, we find that error within 

images against in-situ data is temporal and regional, likely borne of local and seasonal effects such 

as stratification. 
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The first step of our method enhances existing techniques for calibrating single image 

Landsat brightness temperature to SST using coincident MODIS data and extends its application 

across hundreds of images rather than isolated dates. This "per-image" calibration approach, while 

showing variable performance across the dataset, was shown to be particularly beneficial for 

selecting and calibrating images with inherently higher correlations to MODIS data. This method 

allowed for significant improvements in SST estimation accuracy, achieving reductions in RMSEOLS 

and RMSE1:1 and an increase in correlation at most in-situ measurement locations. 

Moreover, the implementation of the second methodological step, a generalized equation 

calibration methodology based on constants derived from median statistics of the best-fit 

correlation equations from data derived from and selected with the first methodology, has 

uniformly enhanced data correlation across the dataset with buoy readings both nearshore and 

offshore. This methodology's strength lies in its ability to resolve inaccuracies potentially 

introduced by artifacts such as undetected clouds and shadows, which can adversely affect per-

image calibrations. The resulting data quality, closely aligned with in-situ measurements, 

underscores the value of a generalized approach in achieving more consistent and accurate SST 

estimations. The use of optimal calibration constants for the study site that surpass the 

performance of standard Bt data presents a promising avenue for future SST measurement 

calibrations within the region. This strategy enables future calibrations to be conducted 

independently of MODIS data, potentially simplifying the calibration process, and extending its 

applicability to historical Bt data collected before the MODIS Terra satellite launch. 

The goal of this paper is to provide an easily applied and replicable methodology for 

optimizing SST data for nearshore observation. Future work should focus on testing these 

calibration constants against similar regions to assess the broader applicability of this methodology 

for comparable climatic conditions. This would help validate the robustness of the approach and 

extend its utility to other coastal areas with similar oceanographic characteristics, such as 
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upwelling regions along western continental boundaries. Additionally, further investigation into the 

impacts of stratification on the calibration methodology could help refine and enhance future 

efforts in deriving high-resolution SST data from satellite imagery. Understanding how vertical 

temperature gradients in the water column affect the relationship between satellite-derived SST 

and in-situ measurements at different depths would enable more accurate calibrations and 

improved error characterization. Using these calibrated datasets, potential use cases across various 

spatial and temporal scales are showcased, demonstrating promise for approaching questions 

previously unable to be effectively pursued, or enhancing the detail of prior knowledge obtained 

with coarser, moderate-resolution SST data. High-resolution SST data prove invaluable in observing 

lesser-known nearshore processes, which have significant implications for coastal water quality 

management. These showcased use cases can individually be expanded upon to address many 

specific, important, and understudied questions in future efforts.  
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CHAPTER 3 

Characterizing Wave-Driven Nearshore Transport of Surface Turbidity Across Diverse Coastal 

Geomorphology using High Resolution Remote Sensing and Environmental Data 

 

Abstract 

Rip currents play a critical role in cross-shore mixing, sediment transport, and coastal 

morphology. However, their dynamics in rocky shore environments remain understudied due to 

the predominant focus on sandy beaches. While remote sensing offers promise for studying these 

environments, the fine-scale resolution required to observe rip currents using satellites presents 

unique challenges due to the heterogeneous nature of nearshore waters.  In this study, we utilized 

data from a deep learning-based, satellite image processing and coastline detection python package, 

CoastSeg, to resolve nearshore heterogeneity in hundreds of high-resolution Sentinel-2 (10m) 

images. This enabled the accurate extraction of red water-leaving radiances (Rhow665) as a proxy 

for turbidity in the nearshore waters off Northern California, spanning from San Francisco Bay to 

the Gualala River. We contextualized these Rhow665 data using coincidental wave model data from 

CDIP MOP, tide data, and high-resolution (2m) bathymetric data. Analysis included creating 

pixelwise time series correlation maps and calculating the average cross-shore decay of turbidity at 

31 sites with distinct geomorphologies. We specifically examined decay equation coefficients C0 

(initial shoreline turbidity concentration) and b⁻¹ (inverse decay rate) across different wave 

climates and their correlations with site-specific bathymetries. Our findings indicate that smooth 

bathymetries, typical of sandy beaches, exhibit high C0 values, reflecting high shoreline sediment 

erodibility and mobility. However, these areas generally showed limited b⁻¹ due to the lack of 

bathymetric complexity necessary to sustain large rip currents, especially in low wave energy 

conditions. Conversely, rocky shores with high bathymetric roughness supported stronger b⁻¹ 

values in low wave climates, and particularly so in low water levels, but lacked sufficient C0 to 

generate significant turbidity signals under these conditions. Notably, sites with rocky shores near 
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sediment-rich estuaries, sandy embayments, headlands, and kelp forests exhibited the highest C0 

and b⁻¹ values, resulting in the most extensive offshore turbidity transport. In addition to providing 

novel quantitative insights into wave-driven transport in rocky shore environments, this research 

contributes a quantitative framework for assessing how geomorphology and wave dynamics 

influence turbidity transport, offering valuable guidance for coastal management and conservation 

efforts. 

1. Introduction 

Rip currents play crucial roles in cross-shore mixing (Smith & Largier, 1995), sediment 

transport (Aagaard et al., 1997), and coastal geomorphology (Wright & Short, 1984; Castelle & 

Masselink, 2023). These currents are typically induced by the interaction of hydrodynamic 

processes with morphological features, such as flow separation on headlands and channelized flow 

through rocky bathymetry (MacMahan et al., 2006; Castelle et al., 2016; Largier, 2022). The shear 

stress generated by rip currents mobilizes sediment, altering beach slope, seabed morphology, and 

nearshore chemical and temperature gradients (Smith & Largier, 1995). Suspended sediments in 

these flows impact nearshore chemistry, biology, and geomorphology, as well as light attenuation 

and primary productivity (Lawson et al., 2007). 

Rip currents are typically induced by the interaction of hydraulic flow with morphological 

features, such as flow separation on headlands and sea stacks or channelized flow through gaps in 

longshore sandbars and rocky bathymetry (MacMahan et al., 2006; Castelle et al., 2016; Largier, 

2022; MacMahan et al., 2023). In some cases, rip currents can also result from instabilities in 

longshore flow (Noyes et al., 2004). The unique characteristics of each shoreline, including wave 

climate, beach slope, and geomorphology, contribute to the high diversity of rip currents (Largier, 

2022). This diversity ranges from dissipative sandy beaches to reflective rocky shores, with 

headlands of varying shapes and sizes that influence cross-shore sediment transport (George et al., 
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2015; Castelle et al., 2016; George et al., 2019). Rip current characteristics also vary with factors 

such as sediment granulometry and availability (Jaffe et al., 1984). Fig 1 illustrates some of this 

variability, displaying rip currents at three different sites with varying geomorphic facies and 

sediment availability. 

 

Fig 1: Examples of rip currents from 3 locations in our study site. Column A: Extent overlooking the 
Russian River between Wrights Beach and Timber Gulch. Column B: Extent overlooking Pt Reyes 
National Seashore between Pt Reyes and Point Reyes Beach IV. Column C: Extent overlooking Salt 
Point State Park; Rows I-III, examples with offshore turbid signal from waves within respectively 
further offshore extent. 
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Despite their diversity, most rip current studies have focused on recreational beaches with 

an emphasis on swimmer safety (Brander & Scott, 2016), resulting in a knowledge gap regarding 

their behavior in rocky shore environments (Largier, 2022). These complex, rocky settings present 

unique challenges for in-situ monitoring due to hazardous conditions and limited accessibility 

(Gallop et al., 2018). However, understanding rip current dynamics in these environments is crucial 

for predicting sediment transport, coastal erosion, and the overall functioning of nearshore 

ecosystems (Loureiro et al., 2012). 

Satellite remote sensing offers a promising methodology for monitoring rip currents, as it 

overcomes the safety challenges associated with these fast offshore flows, particularly in rocky 

shore environments. However, limited research has been conducted on quantitatively observing rip 

currents using satellite remote sensing. Until recently, the surface extent of these features was 

small relative to the resolution of available satellite data (Holman & Haller, 2013). Moreover, the 

nearshore environment is highly heterogeneous presenting unique challenges in image processing. 

These factors present significant challenges for accurately detecting and quantifying rip currents 

using remote sensing techniques. 

This project aims to develop remote sensing methodologies for processing and analyzing 

imagery to quantitatively observe rip currents using high-resolution Sentinel-2 imagery, 

coincidental monitoring and modeled data, and local high-resolution bathymetric data. By 

gathering statistics on wave driven transport in different geomorphological and hydrodynamic 

contexts, we seek to better understand the controls that constrain sediment mobilization and 

transport in rip currents, both ubiquitously and dichotomously, examining how controls vary with 

differing geomorphologies (i.e. rocky and sandy shores, complex vs uniform coastline shape). The 

use of Sentinel-2 imagery, with its high spatial and temporal resolution, provides an opportunity to 

study rip currents at a regional scale and in diverse coastal settings. Combining this satellite data 
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with coincidental/local environmental data and statistical analysis enables comprehensive 

understanding of rip current dynamics and their variability across environments. 

2. Methods 

2.1 Study Site 

Overall Site: 

The region of study, located in Northern California just north of San Francisco Bay, lies 

between 37.5° to 38.5° N and -123.45° to -122.55°W within the Sentinel-2 tile 10SDH. This area 

geomorphically diverse, making it ideal for maximum variability.  The shoreline throughout the 

region includes various sand-fronted facies such of varying length, width, area, and shoreface angle. 

Between these areas lie ephemeral sandy berms that appear at low tidal levels, pocket beaches, and 

seacliff and sea stack-fronted shores. The region also features kelp forests with varying canopy 

coverage by year (Bell et al., 2015; Bell et al., 2020) The presence of kelp forests can influence 

nearshore hydrodynamics and sediment transport, as they can attenuate wave energy and alter 

current patterns (Gaylord et al., 2012). 

The region experiences a Mediterranean climate, with intense winter rainfall events (i.e., 

atmospheric rivers) and relatively dry conditions throughout the rest of the year (Wheatcroft et al., 

2010; Dettinger et al., 2011). Winds exhibit seasonal patterns, with strong northerly winds driving 

coastal upwelling in spring and summer (April to June), southerly wind events during winter 

storms (December to February), and weaker winds in the fall (August to October) (Garcia-Reyes 

and Largier, 2012). This seasonal storm pattern also controls the influence of turbidity from 

buoyant freshwater outflow, primarily from the Russian River (Speiser and Largier, in review) and 

smaller rivers like the Gualala River, Salmon Creek, and ephemeral rivers and runoff. Outside of 

storm season, these locations are often closed off from the ocean by sandy berms (Behrens et al., 
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2013). Littoral cells in the region are largely supplied by these rivers, with over 80% of the 

sediment coming from major river outflows (Griggs and Hein, 1980; Runyan and Griggs, 2003). 

Finer sediments can travel tens of kilometers alongshore (Speiser and Largier, in review), while 

coarser sediments deposit closer to shore and are transported within and between littoral cells via 

longshore transport (Patsch and Griggs, 2007). 

Shoreline morphology in the region is also seasonal, with low-sloped, dissipative beaches 

and fine-grained sands during the summer, and high-sloped, reflective beaches during the winter, 

influencing cross-shore flow (Wright and Short, 1984). Sand berm morphology is inherently tied to 

this process, providing sediments to sandy shores during the summer and being refed by sediments 

from the shoreline during the winter, impacting rip current dynamics (Masselink and Short, 1993; 

Castelle et al., 2016). Changing morphology alters wave setup for rip currents (MacMahan et al., 

2006). Many of these sandy beaches are also fronted by nearshore sea stacks, which inherently 

impact wave hydraulics. 

Rocky shores, sea stacks, and complex seacliff morphologies in the region create headlands 

of diverse sizes and complex, stable bathymetries (Largier, 2022). These headlands and sea stacks 

of different sizes act as boundaries for littoral cells with varying sediment residency times and 

contribute to the diversity of hydrodynamics, causing flow separation and setup for rip currents 

(George et al., 2015; George et al., 2019). The complex bathymetry and headland structures can also 

influence the formation and persistence of rip currents, as well as the exchange of water and 

sediment between the surf zone and the inner shelf (Castelle et al., 2016). 
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Individual Sites:  

Thirty-one sites of interest were chosen throughout the study region where the Sentinel-2 

tile is in full on all dates. These regions were grouped by landmarks and obvious headlands. 

Regional groups and site descriptions are as follows: 

North Fort Ross: This region starts north of Ross Reef (site 4), characterized by rocky shore 

platforms and small embayments fed by ephemeral runoff. The largest embayment is Timber Cove 

(site 2), a ~1000m wide cove sheltered by ~400m headlands. Sites: North Fort Ross (1), Timber 

Cove (2), Central Fort Ross (3), Ross Reef (4). 

South Fort Ross: A thin (~25m wide) shoreline with dispersed boulders and short sea stacks 

breaking the surface at low tide, with gulches, Timber Gulch (site 1) and Jewell Gulch (site 3). Kelp 

forest is observable through true color imagery and in historical kelp data from the California 

Department of Fish and Wildlife (CDFW) aerial imagery surveys, particularly in Sites 5 and 6 . Berm 

discontinues in a series of boulders in the middle of site 3 and ends in a headland in site 4, ~150m 

upcoast of the sites downcoast extent. Sites: Timber Gulch (5), Timber/Jewell Gulch (6), Jewell 

Gulch (7), Meyer Gulch (8). 

Russian River Area: Notable for the Russian River Estuary (site 12), which is south-bound by Goat 

Rock. Estuary is fronted by a 2km long sandy beach berm with several sea stacks in the nearshore. 

North of the estuary, are with several pocket beaches/sandy embayments separated by small 

headlands and seacliffs with sea stacks. The embayment with the largest berm is within Russian 

Gulch (Site 10). Sites: (9) North of Russian Gulch , (10) Russian Gulch, (11) Jenner Headlands, (12) 

Russian River Estuary. 

Wrights Beach Area:  South of the Russian River Estuary, separated by Goat Rock, north of Site 13. 

Sites are primarily seasonally sandy embayments separated by headlands, with many sea stacks in 
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the nearshore, and a few seacliff-fronted shores in site 14. The widest beach berm (~250m wide) is 

in site 16, Wrights Beach, which ends southward at a small headland. Sites: (13) South of 

Russian/Goat Rock, (14) Shell Beach, (15) North Wrights Beach, (16) Wrights Beach 

Salmon Creek Beach Area: Includes sites distributed around the Salmon Creek Estuary, with 

Portuguese Beach (site 17) to the north. Sites 19 and 20 have a shared berm backed by dunes and 

have no sea stacks in the nearshore. Site 18, is where the berm ends north of the estuary, and is 

seacliff backed with sea stacks. Portuguese beach is separated by seacliff and has sea stacks. Sites 

19 and 20 face northwest. Sites: Portuguese Beach (17), North Salmon Creek Beach (18), Central 

Salmon Creek Beach (19), South Salmon Creek Beach (20). 

Bodega Marine Lab: Located on west-facing seacliffs on the Bodega Bay headland, oriented nearly 

90° from Salmon Creek Beach, fronted by platforms. Notable is “Horseshoe Cove” a 150m wide, 

300m deep with sandy shore in site 21 and small sandy embayments in the southern portion of in 

site 22, which shares a headland with the Bodega Bay inlet. Sites: (21) Bodega Marine Lab, (22) 

Bodega Head. 

Bodega Bay: Situated between Bodega Bay and Tomales Bay and influenced by tidal outflows, 

which are occasionally turbid. Estero Americano (site 23) is fronted by a berm, with another berm 

southward separated by seacliffs.  Site 24 is 1.5km north of estero San Antonio. Both sites have 

nearshore sea stacks and boulders. Sites: Estero Americano (23), Estero Americano/San Antonio 

(24). 

Tomales Point: These sites are on the seaward extent of the Tomales Bay spit and include bluffs, 

cliff-backed with tidal beaches, and some sheltered persistent pocket beaches and platform 

beaches. Nearshore sea stacks are in each site. 500m south of site 27 is a 2km nearly continuous 

berm), McClures Beach, that faces northwest. Sites: (25) Tomales point (26) Elk Reserve (27) North 

of McClures Beach 
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Point Reyes National Seashore: Stretching along a 19km long, 100m wide berm with no sea 

stacks, these sites transition from berms backed by dunes to cliffs. The farthest north site (site 29) 

is in front of Abbott’s lagoon, a permanently closed lagoon, with the widest berm. ~4km downcoast 

of site 31, the berm ends at the Pt Reyes headland. Sites: Pt Reyes Beach I (28), Pt Reyes Beach II 

(29), Pt Reyes Beach III (30), Pt Reyes Beach IV (31). 
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Fig 2: Maps of Study Region: A.) Entire region of study. Green line is extent of data considered, 
10km offshore. Red dots are CDIP MOP wave energy modeling points at 10m isobath. Yellow square 
is NOAA Tide Gauge #9415020. Purple square is extent of map: B) Map of study sites as outlined in 
Methods 2.2. Site rectangles are colored by same regional group. 

 

2.2 Environmental Data 

In this study, we statistically contextualize reflectance from high-resolution satellite 

imagery with coincidental local monitoring, modeling data, and bathymetric data. Hourly wave 

height (Hs), direction (Da), and Period (Ta) data were gathered from the Coastal Data Information 

Program (CDIP; https://cdip.ucsd.edu/), generated using a linear, spectral refraction wave model 

driven by offshore wave buoy observations (O'Reilly et al., 2016). This wave data is measured at the 

10m isobath and estimated every 100m alongshore (Fig 2), providing a detailed spatial 

representation of wave conditions in the nearshore zone (Adams et al., 2011; Orzech et al., 2010; 

Vos et al., 2019). 

Ocean water level data referenced to MLLW were obtained from the Point Reyes tide gauge 

(NOAA #9415020) (Fig 2). Data from this gauge is known to represent tides at the Russian River 

mouth with negligible phase and amplitude differences (J.L. Largier and D.S. Behrens unpublished 

data). For regions closer to Fort Ross than Pt Reyes, water level was offset by .96 feet, low tide by -

30 minutes, and high tide by -51 minutes, as recommended by NOAA. This data is captured in 15-

minute bins, providing a high temporal resolution for analyzing tidal influences on nearshore 

processes (Largier et al., 1993). 

Bathymetric data, acquired by the Seafloor Mapping Lab of California State University 

Monterey Bay in 2010 using multibeam sonar and backscatter imagery, are provided at a 2m 

resolution. This high-resolution bathymetric data allows for detailed analyses of seafloor 

morphology and its influence on nearshore hydrodynamics. 
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Kelp forest canopy data from the California Department of Fish and Wildlife (CDFW) aerial 

imagery surveys (2010, 2013-2016) were also explored for discussion of the role of kelps in 

sediment supply and transport. This dataset was chosen due to its high-resolution capture, which 

enables the observation of kelp forests coverage in close nearshore. However, it should be noted 

that this dataset ends at 2016 and has an incomplete extent in the years not used. 

2.3 Satellite Data 

Unprocessed Sentinel-2 (S2) Level 1C satellite data were accessed through the SentinelHub 

API (https://www.sentinel-hub.com) to capture small-scale signatures of rip currents. The S2 

constellation collects imagery in 13 spectral bands at 10, 20, and 60m resolutions, with a combined 

revisit time of 5 days (Drusch et al., 2012; European Space Agency, 2015). Data from 06/2015 to 

05/2023 were collected for the study area, from S2 tile 10SDH, accounting for 758 total images. S2 

are sun synchronous and overpass areas at 10:30AM local solar time, so coincidental temporal data 

(CDIP MOP and NOAA Tide data) was captured within the 9:00AM to 10:00AM local solar time and 

averaged as an hourly bin. Tile 10SDH is in the edge of Sentinel-2 swath, so occasionally data from 

the site is incomplete, accounting for missing data in half the extent as seen with missing pixels in 

Fig 4, (European Space Agency, 2015). 

ACOLITE (https://odnature.naturalsciences.be/remsem/software-and-data/acolite) was 

used for atmospheric correction to water leaving reflectance and initial masking of image artifacts 

such as clouds, glints, sea stacks, boulders, boats, and shadows from topography and clouds. 

ACOLITE atmospherically corrects to water leaving radiances in two steps, first using Rayleigh 

correction to correct for scattering, then using short wave infrared radiation data to correct for 

aerosols over water (Vanhellemont & Ruddick, 2015; Vanhellemont, 2019).  

Red (665 nm) and near-infrared (NIR, 842 nm) wavelengths from Sentinel-2 (S2) satellites 

are well-established proxies for sediment turbidity in water quality monitoring (Lahet & Stramski, 

https://www.sentinel-hub.com/
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2010; Saldías et al., 2016). These wavelengths are sensitive to suspended sediments due to strong 

scattering by particles and low absorption by water molecules (Nechad et al., 2010). To validate 

their use in our study region, we compared atmospherically corrected water-leaving radiance (Lw) 

in NIR (Rhow842) and red (Rhow665) bands with coincidental turbidity measurements from the 

Hacienda Bridge gauge (USGS #11467000) in the Russian River, using the average of all values 

between the river mouth and the gauge (Fig 3). Rhow665 showed a logarithmic correlation 

(Spearman's rho=0.88) with turbidity, consistent with the saturation effect at high sediment 

concentrations observed in previous studies (Nechad et al., 2010; Dogliotti et al., 2015). Rhow842 

exhibited a linear correlation (Pearson's r=0.87). Given its stronger correlation and sensitivity at 

high radiances, Rhow665 was used as a proxy for suspended sediment concentration. 

Discharge data from the Hacienda Bridge gauge were used to filter out dates when coastal 

turbidity might be influenced by freshwater outflow, following the methodology of Speiser and 

Largier (in review). This approach isolated dates when wave momentum was sufficient to trap 

turbid outflow within the surf zone, preventing its transport to the coastal shelf. 299 out of 403 

non-cloudy image dates surpassing this threshold were used in the analysis (Fig 4). 
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Fig 4: Count of available pixels at each position, surpassing river momentum dominance threshold, 
after cloud clipping and whitewater removal. 

Foam from breaking waves, wave caps (Gordon & Wang, 1994), and foam lines (Killeen et 

al., 2023), while sometimes incidentally masked in atmospheric correction (likely due to cloud 

masking), vary in position and presence geographically from image to image due to changing tides 

and wave climatology. These white features have very high albedo and can significantly skew 

statistical metrics if included in a dataset in which reflectance is being observed as a proxy for 

suspended sediment (Shi & Wang, 2009). To mask out these features, we developed a methodology 

using the package CoastSeg (Buscombe, 2023; Fitzpatrick et al., 2024), which includes 

segmentation models with a class representing "whitewater" within images. The workflow 

consisted of the following steps: 1) running the model on each true color satellite image, 2) 

removing land using a static land mask, 3) applying a 5-pixel radius disk kernel to each pixel 
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classified as white water (falling within the softmax threshold) to find probable white water pixels, 

4) applying gap filling, 5) applying a morphological closing operation using another 5-pixel radius 

disk kernel, 6) manually inspecting the results to confirm the effectiveness of the methodology in 

isolating shore-parallel foam from breaking waves, and 7) extracting all Rhow842 pixels from each 

atmospherically corrected NIR image and determining the median value of those pixels to be the 

maximum pixel value for non-foam radiance (Rhow833= .0111 LW). For any image, any zone where 

Rhow833 > .0111LW is masked. Manual inspection of images confirmed the effectiveness of this 

methodology, and a total of 17,675,010 pixels were removed from the already masked Acolite 

images. Because land features are more reflective than foam features in NIR, any remnant artefacts, 

such as sea stacks, not captured from the 20m feature masking from ACOLITE were also removed 

from the dataset (Fig 5). 
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Fig 5:  True color Images from dataset overlooking Bodega Bay (A: 12/08/2020, C: 09/24/2020) 
and their respective Rhow665 data after pixel masking for land and white water (B:12/08/2020, D: 
09/24/2020). (A &B) are from a date with higher wave energy with a lot of white water and (C & D) 
are a low energy date. Black data in Rhow665 are masked pixels. 

 

To differentiate between water made turbid by sediments from wave resuspension and 

"clear" water, we examined the distribution of pixel values from all cloudless images (manually 

inspected) within a 5km² region offshore, outside the visible influence of turbidity from breaking 

waves (Fig 6). The 97th percentile Rhow665 value, .0088 LW, of these pixels was considered the 

maximum value for non-turbid water (Cthreshold), with the logic that higher values must be under the 
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influence of a turbid transport process. This threshold is consistent with similar approaches used in 

previous studies to differentiate between turbid and clear water (e.g., Saldías et al., 2012; Mendes et 

al., 2014; Saldías et al., 2016). While this threshold may not perfectly capture all instances of turbid 

water, it provides a reasonable and conservative estimate for the purposes of this study. 

 

Fig 6: Bounding box (yellow) for extent of pixels extracted to calculate clear water threshold and 
histogram of pixel values (y-axis is pixel count (1e6) and x axis is Rhow665 value (LW)). Background 
image is Sentinel-2 image from the study site from 12/08/2020. 
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2.4 Statistical Analyses 

Maps of reflectance statistics at pixel positions were created to observe trends in nearshore 

turbidity and their correlation with environmental controls. To compare pixels with coincidentally 

measured wave variables, we found the closest CDIP MOP wave modeling point for each pixel 

position within images using the haversine equation for distance on a sphere (Sinnott, 1984). 

Reflectance values at each pixel were then matched with model variables for coincidental times, 

allowing for direct comparison between satellite-derived turbidity and wave conditions. 

We generated maps showing the count and median of Rhow665 values at each location to 

assess average turbidity distribution and variance. To examine changes in turbidity under varying 

wave energy, we recalculated median Rhow665 statistics for satellite images subset by Hs data at the 

nearest buoy, using different wave energy percentiles (below 50th, above 50th, 75th, and 95th). 

This approach provided insights into the role of wave forcing on sediment resuspension and 

transport. Contours were drawn with a base at Cthreshold to mark the offshore extent of wave-

impacted turbidity. Contours with surface areas below 1.6km2 were excluded from the dataset. This 

approach assumes that pixels beyond the threshold were outside the influence of rip currents. 

We adapted the methodology of Speiser and Largier (in review) to estimate wave and tidal 

control on turbidity at each pixel. Maps of correlation at each pixel between Rhow665 and and wave 

parameters (Hs, Da, Ta) modeled at coincidental times at the nearest buoy location were created 

using Spearman's rho rank correlation (ρ) to account for non-linear relationships and outliers 

arising from incidental processes (Mukaka, 2012; Schober et al., 2018; Speiser and Largier, in 

review). These correlations were mapped at the resolution of pixel data (10m), and contours were 

created to describe the regional influence of waves and tides on turbidity, following Speiser and 

Largier (in review). Correlation strength classes are shown are consistent with Speiser and Largier, 

shown in Table 1. Contours smaller than 1.6km2 in extent were removed from the dataset. The 
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value ranges for these classes are determined to the second decimal (i.e., 0.394 falls in the "weak 

correlation class", while 0.395 is rounded to 0.40 and falls in the "moderate correlation" class). 

 

Absolute value of Rho 
Interpretation 

0.00-0.10 Negligible Correlation 

0.10-0.39 Weak Correlation 

0.40-0.69 Moderate Correlation 

0.70-0.89 Strong Correlation 

0.90-1.00 Very Strong Correlation 

 

Table 1: Correlation strength classes from Schober et al., 2018. Table is from Speiser and Largier, in 
review. 

To model rip current activity at 31 sites (Fig 1), pixels were binned by cross-shore shore-

normal angle transects (3km cross shore by 1km alongshore rectangles). Location of backbeach and 

shore-normal angle were determined from CDIP data points. For each image capture date, median 

Rhow665 values every 10m along the midline of the shore-normal transect were plotted against 

distance offshore (d), and the best fit was calculated using an exponential decay equation: 

 

                                                                                        C(x) = C0 ⋅ e (-b x)                                                          eq 1. 
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where in this case, C(x) is Rhow665 at offshore distance x, C0 is the initial value at x = 0km, and b is the 

decay coefficient. This exponential decay equation is regularly used to describe distance and and 

other water quality measures throughout a variety of hydrologic contexts. Examples of Rhow665 

images with respective best turbidity concentration decay equations are shown in Fig 6. Only 

equations with high-quality fits with R² ≥ .9 were included (3710 out of 5369 total equations) 

ensuring robust data, but it is acknowledged that this may also exclude some legitimate data points. 

Decay constants C0 and b were averaged across all dates and in dates grouped by quartiles of wave 

and tidal conditions and were compared between sites. Quartile ranges calculated as global values 

across all sites so that wave and tidal feature subset bounds are consistent for each site. Wave 

variables were gathered from the modeling points closest to the site's midline. The equation C0.e-b.d 

= Cthreshold was used to estimate the estimate offshore extent of wave-driven turbidity (d). 
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Fig 7: Rhow665 data a small extent of Bodega Bay and the site bounds for the Central Salmon Creek 
Beach site, site 19 (green rectangle) on three separate dates (A: October 21, 2020; B: February 
17,2020; C: December 3, 2020). Plot points are respective average Rhow665 (y axis) versus 
distance offshore along the site extent midline (x axis), binned every 10m. In each plot is the 
equation of the best fit decay line (in purple) as well as goodness of fit (R2). 

 

Bathymetry data were binned using the same methodology to characterize each site's 

bathymetry. Depth was averaged every 2m along the midline, and roughness (standard deviation) 

was calculated alongshore and cross-shore as an approximation of rugosity. When applicable, data 

were detrended using SciPy (Virtanen et al., 2020). Metrics were averaged in distance bins from the 

shoreline (0.5km 1.0km, 1.5km, 2.0km, 2.5km, and 3.0km) to capture bathymetric changes with 
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distance:  a.) alongshore roughness (εa), calculated as the standard deviation of depth values 

parallel to the shoreline within each distance range b.) cross-shore roughness (εc), computed as the 

standard deviation of depth values perpendicular to the shoreline within each distance range, c.) 

detrended alongshore roughness (εda), derived by removing the linear trend from the depth profile 

parallel to the shoreline and calculating the standard deviation of the residuals d.) detrended cross-

shore roughness (εdc), obtained by detrending the depth profile perpendicular to the shoreline and 

computing the standard deviation of the residuals, e.) mean depth (h ̅ ), the average depth within 

each distance range f.) depth change (Δh), calculated as the difference between the maximum and 

minimum depths within each distance range, g.). All depths and metrics relating to depth are 

absolute values. 

These bathymetric variables were compared with the sites’ average decay coefficients (C0, 

b) and turbidity extent (d), as well as averages from wave and tidal parameter subsets, particularly 

examining Q1 and Q4 extremes. Distance bins at 1.0km received extra scrutiny to evaluate 

nearshore bathymetric control on wave energetics. Spearman rank correlation was used to 

compare metrics, and the results were visualized using heatmaps to identify patterns between 

bathymetric characteristics (sandy vs. rocky) and turbidity decay in different hydrodynamic 

conditions. 
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3. Results 

3.1 Region-wide Analyses 

This section reviews the spatial patterns of turbidity across the study region and examines 

their relationship with model wave variables. For geographic site names and boundaries, refer to 

Fig 2. 

Fig 7 shows the median of rhow665 values across the observed dataset, along with the turbid 

contour where pixels surpass the Cthreshold. In the Pt Reyes National Seashore region (Fig 7A), the 

turbid contour parallels the coastline but varies in cross-shore extent, reaching up to 0.4km 

offshore north of the southward Pt Reyes Headland and decreasing to 0.15km seaward nearly 

11km upcoast. The contour abruptly ends at the south face of Pt Reyes. At Tomales Point, the 

contour is less consistent and fragmented, extending between 0.1-0.4 km seaward.  Fig 7B shows 

the contour extending further offshore, especially near Bodega Bay esteros (0.73 km), Mussel Point 

(0.8 km), the Jenner Estuary (2.7 km), and in front of Timber and Jewell Gulch in the South of Fort 

Ross region. The contour is interrupted at Bodega Head, south of Wrights Beach, and at the 

midpoint between Fort Ross and the Russian River estuary, as well as just north of Timber Gulch. 

Further north (Fig 7C), median turbidity surpasses Cthreshold only in small, headland-protected coves, 

with the largest contour extending 0.3 km offshore in north-facing coves. The most prominent 

feature in Fig C is a 2 km-long contour extending 0.8 km offshore from the Gualala Estuary, with a 

consistent parallel contour extending 0.5 km offshore along the remaining coastline, becoming 

fragmented at a headland.  
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Fig 7.: Median of examined Rhow665 values at each pixel location over the region of study. Contour’s 
base is at the established clear water threshold value. Red squares on overall map correspond with 
zoomed in maps with respective letterings. Zoomed in maps are of the same extent.  

 

Fig 8 compares the median turbid contour with the median turbid contours of all pixels 

when subset to dates below and above the 50th percentile of Hs at the nearest buoy locations. In the 

southern region (Fig 8A), the below-average Hs contour extends furthest offshore within bays and 

south of Drake's Estero, forming a narrow band of 0.05 km alongshore in front of Point Reyes 

Seashore and small pockets along Tomales Point. In above-average wave conditions, the turbid 
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contour becomes more extensive throughout Fig8A, forming a shore-parallel feature extending 0.5 

km offshore, uniform across the Pt Reyes Seashore except for the south-facing Pt Reyes.  

In the central region (Fig 8B), the below-average Hs contour extends up to 0.8 km offshore 

in front of the Russian River estuary, bounded by its northern and southern headlands. Other 

notable below-average Hs contours lie within between the esteros in Bodega Bay, .1km offshore 

around Salmon Creek and Wrights Beach (and bound by their headlands), and a 3.5 km-long band 

south of Fort Ross, reaching 0.4 km offshore at Timber Gulch. The above-average Hs contour 

extends throughout the region up to the northern Fort Ross area, with maximum offshore distances 

of 2.1 km south of Doran Beach, 2.2 km at Jenner Headlands, and 1.6 km between Timber and Jewell 

Gulch. The difference in offshore extent between median and above-average conditions is generally 

uniform, ranging from 0.5 to 0.8 km, with a maximum of 1.5 km south of Doran Beach. 

In the northern region (Fig 8C), the largest below-average Hs contour lies in front of the 

Gualala Estuary and a cove immediately southward, extending 0.3 km offshore, with smaller 

contour features appearing in northwest-facing coves 7km upcoast of the estuary. The above-

average Hs contour is continuous until 3.5 km south of the Gualala Estuary, where separate features 

occupy embayment. The above-average contour nearly parallels the median condition turbidity 

contour, mostly ranging between 0.5-0.8km in further offshore. 
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Fig 8: Map showing the position of the contour with its base at the established clear water 
threshold value mapped when pixels are in their median condition or the median condition to when 
they are subset between by date where the nearest modeled wave height is above or below its 50th 
percentile. Red squares on overall map correspond with zoomed in maps with respective letterings. 
Zoomed in maps are of the same extent 
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Fig 9 illustrates the per-pixel correlation between rhow665 and coincident Hs at the nearest 

wave energy modeling location. A continuous weak correlation contour spans the entire study 

region, generally following the coastline and ranging from 5.0 to 8.0 km offshore. Similarly, A 

mostly continuous moderate strength contour is present in the nearshore throughout the entire 

study region. In Fig 9A, this moderate contour starts at Pt Reyes Headland, forming a uniform 0.6 

km wide band across the Point Reyes National Seashore, and unevenly extending ~1 km offshore 

along Tomales Point. In Fig 9B, the moderate contour nearly spans the entire site, terminating north 

of Fort Ross, with maximum seaward extents off Doran Beach (2.9km), the Russian River Estuary 

(2.6km), and Timber Gulch (1.8km). Fig 9C shows a moderate contour extending 21.7 km 

northward from the start of the extent, reaching 0.7 km offshore. A second contour forms 7.5km 

south of the Gualala Estuary and extends through the rest of the study region, reaching ~1.5km 

offshore in most areas north of the estuary. 

 Dispersed "strong" correlation contours are also present. In Fig 9A, few small 0.1km 

diameter contours are scattered across Tomales Point, with none in front of the Point Reyes 

National Seashore. In Fig 10B, these contours are clustered between the Bodega Bay esteros, in 

front of Bodega Marine Lab, in rocky regions between Salmon Creek Beach and the Russian River 

Estuary, 0.8 km offshore of the Russian River Estuary, in rocky headlands north of the river, 0.1 km 

offshore of Timber Gulch, and in front of Ross Reef and Timber Cove. South of the Gualala River 

Estuary, these features are primarily found in small coves, with the largest in the cove directly 

south of the estuary. Starting 5 km north of the Gualala Estuary, relatively larger strong correlation 

features are closely distributed, extending throughout the rest of the study region, and reaching 

~0.25 km offshore. 
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Fig 9: Pixel-wise correlation coefficients between Rhow665 and coincident hourly Hs modeled at the 
nearest wave energy modeling buoy location. Contours are based at correlation strength class 
range minimums, described in Table 1.  

The relationship between Rhow665 and wave angle Da, as well as Hs and Ta normalized to 

wave angle Da, were also mapped at each site. However, these results are not reported due to the 

complexity of the analysis. The relationship between wave angle and seasonal southward currents 

associated with the largest waves made the isolation of Da as a standalone wave component 

difficult. Further, the intricate coastline of rocky coastal regions, made it challenging to accurately 
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measure shore angle on a pixel-by-pixel basis, particularly for offshore positions. We also 

investigated the standard deviation of Rhow665 values at each pixel location. The mapped results 

nearly mirrored those of the median results (high variation at all locations with high median, vice 

versa) and were not found to add or detract from findings in the study. These results can be found 

in Appendix I. Similarly, the relationship between Rhow665 and coincident wave period, Ta, were 

also mapped but did not produce any findings that added or detracted from the findings of this 

study. In these maps, correlations were highest in small regions immediately offshore of estuaries, 

and lowest in regions that did not correspond to wave models (such as waters within Tomales Bay). 

These results can be found in Appendix II. 

3.2 Sitewise Analyses 

When turbidity at different site bins was fit to average best fit equation decay equations as a 

function of distance in 10m across-shore bins, the C0 and b coefficients of those equations varied at 

each site, as seen in the table and plots in Fig 10. South Fort Ross, Jewell Gulch had the highest 

average C0 (0.093 Lw), while North Fort Ross, Timber Cove had the lowest average C0 (0.0126 Lw). 

Ross Reef had the highest average b⁻¹ (.903), and Salmon North Salmon Creek Beach had the lowest 

average decay b⁻¹ (0.158). Decay coefficients within different regional site groups varied within 

groupings. For instance, sites in the Fort Ross group varied widely across average decay b but not 

with average C0, sites along the Pt Reyes National Seashore varied in average C0 increasing with 

northward position, and regions like the Russian River Area and South Fort Ross varied widely in 

both. Other regional groups such as Wright Beach and Tomales Point had smaller distributions of 

decay coefficients. 

When solving for offshore distance of Cthreshold, d (Fig 10C), Timber Gulch, South Fort Ross 

(d=1.635km), and Russian River Estuary (d=1.520 km) had the highest offshore distances. North 

Salmon Creek Beach (d=.379 km), Reyes Beach IV, and North Fort Ross (d=0.450km) had the lowest 
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average offshore distances of turbidity. South Fort Ross had the highest variability in average 

distance of offshore sediment transport among the regional groupings, with Δdmax - Δdmin = 

0.958km. Tomales Point and Pt Reyes National Seashore, the two southward regions, had low 

inner-site variability, with Δdmax - Δdmin = 0.109km and 0.117km, respectively. 

 

Fig 10:  A: Average decay equations at each site of equations where r2>.9. Numbers adhere to site 
number, color is by regional group. Dotted red line is at clear water threshold marking distance d; 
B: Plot of average b⁻¹ (y axis) C0 (x axis) of each site’s respective average decay equation. Numbers 
adhere to site number, color is by regional group. C) Table of average C0, b⁻¹, standard deviation (σ) 
of both coefficients (C0 and b), count of decay equations where r2>.9, and distance of clear water 
threshold on average decay equation.  

 

The C0 and b coefficients were examined when dates were subset to wave quartiles (Q), as 

shown in the plots in Fig 11 and the table in Appendix III. The impact of HS and WL on C0 and b was 

investigated by calculating the average decay equation for each site within the following ranges: 
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- Hs: 0.44m to 1.11m (HsQ1), 1.11m to 1.48m (HsQ2), 1.48m to 1.96m (HsQ3), 1.96m to 5.03m 

(Hs Q4) 

- WL: -0.23m to 0.84m (WLQ1), 0.84m to 1.19m (WLQ2), 1.19m to 1.48m (WLQ3), 1.48m to 

2.08m (WLQ4) 

All sites in the North Fort Ross region had the lowest C₀ values within the first quartile for all 

parameters. Ross Reef had the lowest C₀ for Hs (Q1Hs, C₀ = 0.0068 Lw), and North Fort Ross had 

the lowest C₀ for WL (Q1WL, C₀ = 0.0095 Lw). No regional group consistently had the highest C₀ 

across all sites, but Jewell Gulch had the highest C₀ for all both parameters (Q1Hs, C₀ = 0.0096 Lw; 

Q1WL, C₀ = 0.1296 Lw) (Appendix III). 

Between Hs Q1 and Q4, Ross Reef and North of Russian Gulch (albeit a low image count of n=2 

in HsQ4) saw the highest percent increase in C₀ (246.73% and 244.69%), while Timber 

Gulch/Jewell Gulch and Jewell Gulch had the largest decreases (-51.04% and -40.64%). Timber 

Cove had the smallest change (-0.64%). For b⁻¹, South Salmon Creek Beach (note low image count 

of n=1 in HsQ4) and North Wrights Beach had the highest increases (895.94% and 418.52%, 

respectively), while Elk Reserve was the only site with a decrease (-13.09%), and Bodega Head had 

the smallest change (4.02% decrease). On average, b increased by 153.83% and C₀ by 65.26% 

across sites between Hs Q1 and Q4. 

 Between WL Q1 and Q4, North of Russian Gulch and Ross Reef saw the highest C₀ increases 

(123.15% and 76.29%), while Pt Reyes Beach II and Timber Gulch had the largest decreases (-

52.42% and -55.64%). Central Salmon Creek Beach and Tomales Point, Tip had the smallest 

changes (1.28% and -1.98%). For b⁻¹, Timber Gulch and Central Salmon Creek Beach had the 

highest increases (210.48% and 82.64%), while Timber Cove and North Fort Ross had the largest 

decreases (-26.49% and -31.50%). Jewell Gulch, South Salmon Creek Beach, and North of Russian 

Gulch saw minimal changes (2.39%, 2.25%, and -3.38% increase). On average, b increased by 

47.71% and C₀ by 14.63% across sites between WL Q1 and Q4. 
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Fig 11: A & B: Average decay coefficients b⁻¹ (y axis) vs C0 when equations are subset to different 
quartiles of Hs (A) and WL (B) (x axis). Quartiles are marked by roman numerals above points in 
plot. Numbers adhere to site number, color is by regional group. C) Table of percent change C0 and 
b⁻¹ between quartiles 1 & 4 for each respective parameter.  

The position of the Cthreshold was examined when applied to the decay equations derived 

within the quartiles of Hs and WL (see Fig 12 and Appendix IV). For Hs Q1, the shortest offshore 

distances were at North Fort Ross and Pt Reyes Beach IV (0.13 km), while Jenner Headlands had the 

longest (0.98 km). In WL Q1, North Salmon Creek Beach had the smallest distance (0.27 km), while 

Estero Americano had the largest (1.31 km). 

In Hs Q4, Pt Reyes Beach IV had the shortest distance (0.54 km), while North Wrights Beach, 

North of Russian Gulch, and Jewell Gulch had the longest (2.54 km, 4.14 km, and 5.59 km, 

respectively). In WL Q4, North Fort Ross had the shortest distance (0.42 km), and Russian River 

Estuary the longest (2.17 km). Estero Americano had no data in WL Q4, as all data points surpassed 

the turbid threshold, adjusting the entire equation above the asymptote of Cthreshold. 
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The impact of subsetting sites by wave parameters on d  varied at each site. Between WL Q1 

and Q4, the largest increase in offshore distance was at Central Salmon Creek Beach (195.01%), 

while Estero Americano saw a decrease (-8%). For Hs, North Wrights Beach had the largest 

increase (903.09%), and Elk Reserve the smallest (52.43%). Notably, the changes in C0, b, and 

turbidity transport distance offshore were often non-linear between the first and fourth quartiles 

across many sites (Fig 13). 

 

Fig 12: A & B: Average distance of offshore turbidity d (y axis) when equations are subset to 
different quartiles of Hs (A) and WL (B) (x-axis). Quartiles are marked by roman numerals above 
points in plot. Numbers adhere to site number, color is by regional group. C) Table of percent 
change in d between quartiles 1 & 4 for each respective parameter.  

 

 Fig 13 compares the averaged 2-dimensional bathymetric characteristics of each site, 

binned to 1 km offshore (see Appendix V for 0.5 km and 3.0 km binnings). The North Fort Ross 
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group exhibits the highest cross-shore (εc) and alongshore roughness (εa), followed by South Fort 

Ross, Timber Gulch/Jewell Gulch, and Bodega Marine Lab sites. Pt Reyes National Seashore has the 

lowest roughness, with South Fort Ross, Timber Gulch showing even lower values, though data 

availability is limited in the 1 km bin (n = 317 pixels, compared to n = 172,576 pixels for Pt Reyes 

Beach IV). When considering the full 3 km bin, South Fort Ross, Timber Gulch ranks among the 

highest in roughness. After detrending, regional distinctions are more apparent, with North Fort 

Ross remaining the roughest, and South Fort Ross, Timber Gulch/Jewell Gulch having the second-

highest roughness. Pt Reyes National Seashore sites display less uniform rugosity despite uniform 

shoreline geometry. North Fort Ross and Pt Reyes National Seashore have the highest depth change 

(Δh) and mean depth (h̅), with North Fort Ross, North Fort Ross and Pt Reyes National Seashore, Pt 

Reyes Beach IV having the highest values within their respective groups. 

 

Fig 13:  Various maps comparing the value of bathymetric statistics at each site binned below 1km 
offshore. A: Cross-shore roughness (y axis) vs alongshore roughness (x axis); B: Detrended cross-
shore roughness (y axis) vs detrended alongshore roughness (x axis); C: Change in depth between 
shoreline and 1km point (y axis) vs average depth (x axis), both in absolute value. Blue line is 1:1 
line between both variables. 
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The Spearman rank correlations between bathymetric variables and turbidity decay 

coefficients (C0, b⁻¹, and d) from mean decay equations in different subsets of oceanographic 

parameter quartiles (Hs¸ WL) reveal intricate relationships that vary with distance from the 

shoreline and wave conditions, particularly in highest and lowest conditions (Q1 and Q4), as 

illustrated in heat maps in Fig 14a, 14b, and 14c. 

 

Fig 14a. Heatmap showing the nonlinear correlation between bathymetry (x axis) and decay 
coefficient C0 when decay equations are averaged within subsets of wave parameter (Hs & WL) 
quartiles 1 (Q1) and 4 (Q4) when bathymetric variables are subset to offshore distance bins (D Bin) 
0.5km, 1.0km, and 2.0km. 

For C0, the strongest correlations in the 1 km distance bins are observed with detrended 

cross-shore roughness (εdc), which are consistently negative, especially in Q1 quartiles across 

oceanographic wave parameters. For example, εdc shows strong negative correlations with C0 for 

Hs: Q1 at 1 km (ρ = -0.63) and WL: Q1 at 1 km (ρ = -0.66). These results suggest that smoother, 
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shallower bathymetry promotes higher C0, particularly under low wave energy and water levels. In 

the offshore bin (3 km), Δh shows moderate negative correlations with C0 in Q4 conditions. In the 3 

km, Δh shows moderate negative correlations with C0 for each Q4 oceanographic parameter. 

However, these correlations are weaker in the 1km and under lower wave energy and tidal 

conditions. Mean depth h ̅ has stronger negative effects on C0 in the 3km bins and under higher tidal 

levels. Collectively, these results indicate that smoother, shallower bathymetry promotes higher C0, 

particularly under low wave energetics. However, bathymetry seems to have weaker control in 

higher wave energies and higher water level. 

 

Fig 14b. Heatmap showing the nonlinear correlation between bathymetry (x axis) and decay 
coefficient b⁻¹ when decay equations are averaged within subsets of wave parameter (Hs & WL) 
quartiles 1 (Q1) and 4 (Q4) when bathymetric variables are subset to offshore distance bins (D Bin) 
0.5km, 1.0km, and 2.0km. 
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b⁻¹ is most strongly influenced by roughness variables, especially in the nearshore bins 

under Q1 wave variable conditions, particularly under low water levels (Fig 14b). For example, εa 

shows strong negative correlations with b⁻¹ for Hs: Q1 at 1 km (ρ = -0.71) and WL: Q1 at 1 km (ρ = -

0.83). This suggests that rougher bathymetry results in a less steep cross-shore decay of turbidity. 

However, the significance of roughness weakens significantly at larger bins beyond the nearshore, 

particularly in higher quartiles. Conversely, Δh has a negative correlation with b⁻¹ particularly in 

high wave energy and water level conditions. Correlations between h  ̅and b⁻¹ are more strongly 

positive in the nearshore bins under low water levels and Hs conditions but become negligible to 

negative in other conditions. 

 

Fig 14c. Heatmap showing the nonlinear correlation between bathymetry (x axis) and the offshore 
distance of the clear water threshold when decay equations are averaged within subsets wave 
parameter (Hs & WL) quartiles 1 (Q1) and 4 (Q4) when bathymetric variables are subset to 
offshore distance bins (D Bin) 0.5km, 1.0km, and 2.0km. 
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Similarly, the strongest correlations between bathymetric variables and d are found in the 

nearshore bins and under less energetic wave and lower water level conditions (Fig 14c.). 

Alongshore roughness and cross-shore roughness exhibit strong negative correlations with d, 

particularly for Hs: Q1 at 1 km (ρ = -0.80) and WL: Q1 at 1 km (ρ = -0.84). These correlations 

weaken in higher wave energy scenarios, larger offshore bathymetry bins, and high-water levels. 

Positive correlations are observed between Δh and d in high wave energy and water level scenarios, 

suggesting that greater depth changes combined with stronger wave energies positively influence 

the offshore extent of turbidity. Overall, these correlations imply that in lower wave conditions, 

interaction areas with high roughness have limited offshore extent of turbidity. However, under 

high wave energy scenarios, roughness has negligible effects on the offshore reach of turbidity. 
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Fig 15:  Heatmap showing the nonlinear correlation between bathymetry at sites (y axis) and 
percent change in decay coefficients (x axis) at each site. Cells are colored by strength of 
correlation. 

 In Fig 15, we examine correlations between bathymetric metrics binned at 1 km distances 

at each site and the percentage increase in C0 and b⁻¹ between lower and higher quartiles. Positive 

correlations are observed between roughness variables and C0, with the highest being εdc and 

HsΔC0% (ρ = .60). Conversely, negative correlations are observed between roughness and increases 

in b⁻¹, with the lowest being HsΔb⁻¹% (ρ = -.42). Depth variables show generally positive 

correlations with b⁻¹ and negative correlations with C0, though correlations between Δh and C0 are 

negligible, except for HsΔC0% (ρ = -.43). 

All the above correlations were also calculated with site-wise, coincident Ta data. The 

correlations relating to Ta were similar to those of Hs (albeit slightly weaker) and were not found to 

change the conclusions of this work. These results can be found within Appendix VI. 
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4. Discussion: 

4.1 General Discussion 

Past studies and visual inspection of individual satellite images show that turbidity laden 

with sediments can extend far offshore, starting at the shoreline. These turbid features can envelop 

kelp forests and drive organic material transport and the majority of sediment transport (Seymour, 

2013) to deeper waters over the shelf. Through satellite images, such as those seen in Fig 1, 

observations of turbid patterns show distinct, coherent flow forms of offshore turbidity from rip 

currents on scales ranging from the surf zone (micro rip currents) to just past the breaker line 

(meso currents) to those extending up to kilometers offshore (macro rip currents) (Largier, 2022). 

Waves control this turbidity through initial mobilization of deposited sediments from shorelines 

and the seabed, driving erosion, and by controlling the hydrodynamics that further transport these 

mobilized sediments. These two steps, sediment mobilization and transport, are also controlled by 

their environment. Areas with larger caches of fine sediment, such as well-supplied regions near 

estuaries, confined areas like embayments, sandy shorelines, and regions with generally large 

sediment deposits such as kelp forests (Gaylord et al., 2012) have easily mobilized sediments 

(Green et al., 2004). Areas with complex coastlines and bathymetries have high kinetic energy as 

separation and turbulence and persistent channelization with solid features are common, 

enhancing energetics and transport (McMahan et al., 2023). However, these regions are often 

sediment-starved and further away from sediment sources, limiting the extent of turbid signals. 

Thus, areas with the most sediment availability and the greatest bathymetric and geomorphic 

complexity are likely to have the largest rip currents. 

Furthermore, geometry of turbid features are also likely impacted by geomorphic 

complexity (Largier, 2022). Uniform regions with low bathymetric complexity, such as long sandy 

beaches, will often have uniformly spaced rip currents in the shape of radial plumes. Regions that 
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are complex will have uneven rip current distributions with non-radial, unique shapes. These 

dynamics can be observed qualitatively through images. For instance, in Fig 1, columns A and C 

show examples of rip currents from bathymetrically complex, rocky regions. In column A, images 

come from a region near the Russian River, which is well-supplied with sediments, whereas in 

column C, which is a region in Salt Point, sources of sediments are far away. In both columns, rip 

shapes are complex, and their distribution is uneven. However, in Fig 1A.II, even in moderate wave 

conditions, meso rip currents extend over a kilometer offshore in two particularly well-sediment-

supplied regions (near the Russian River Estuary and over a site with persistent kelp cover), but 

throughout all the Figs in column C, turbidity does not extend significantly past headlands and 

emanate from and are constrained within small headlands. In Fig 1, column B, we see three images 

along the uniform, sandy shores of the Pt Reyes seashore. In moderate wave conditions (Fig 1B.II), 

radially shaped meso rips are evenly distributed along the shoreline and have a moderate distance 

offshore. In high wave energy conditions, these shapes remain radial and evenly distributed; 

however, they do not extend nearly as far offshore as the well-fed rips from the rocky region in 

Column A on the same date. 

In our study, using novel methodology in image post-processing and analysis combined 

with coincidental data and high-resolution bathymetric data, we quantitatively ground-truth the 

above statements and assumptions, illustrating the controls and interplay of geomorphology and 

wave energy in driving turbidity in the nearshore. The results in this study are two-part: the first 

consists of various maps of pixelwise statistics in which region-wide characteristics of surface 

turbidity and their geospatial correlation with wave energetics are presented, allowing us to 

stipulate where the surface is most variable and at its maximum, as well as its tie with correlation. 

The second part focuses on sitewise observation of the one-dimensional characteristics of turbidity 

cross-shore in the form of a turbidity decay equation, observed in their average condition at each 

site as conditionally subset in varying wave and tidal conditions. By further observation of these 
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latter results, we can zero in on the conditions that result in the spatial distributions set in the first 

part, where turbidity transported with rip currents and correlation with wave energy vary 

geospatially, differing by geomorphic coastal environment. 

4.2 Shoreline Supply/Erodibility: C0  

The turbidity decay coefficient, C0, represents the initial maximum turbidity concentration 

before decay occurs as a function of offshore distance. Thus, it serves as an indicator of the 

erodibility of the local shoreline and the ease with which sediment is mobilized at the site's distance 

offshore (x) = 0m, or the closest shore-oriented position. Our results indicate that greater C0 values 

are observed in sites with shallower bathymetries, particularly at lower water levels, where the 

increased contact between wave energy and the seafloor leads to proportionally higher shear stress 

throughout a shorter water column and sediment mobilization. This can be observed within the Pt 

Reyes National Seashore sites (28-31), where each site has respectively lower absolute first-

kilometer average depth, h ̅, and C0 values (Site 28: C0 = .072 Lw, h ̅ = 12.43m; Site 29: C0 = .029 Lw, 

h ̅ = 14.53m; Site 30: C0 = .037 Lw, h ̅ = 15.94m; Site 31: C0 = .025 Lw, h ̅ = 16.07m).  

A strong negative correlation between C0 and bathymetric roughness further supports the 

interpretation of C0 as a metric of erodibility and mobility. Detrended cross-shore roughness, εdc, 

exhibits a strong negative correlation with C0, with values as high ρ = -0.63 for Hs: Q1 at 1 km, and ρ 

= -0.66 for WL: Q1 at 1 km (Fig 14c). Areas with higher bathymetric roughness or rugosity, are 

often associated with features such as sea stacks, boulders, rocks, hummocks, and are often less rich 

in easily mobilized fine sediments (Green et al., 2004), leading to lower concentrations in initial 

sediment mobilization. Further, rougher areas maintain their roughness as rocks are less erodible, 

maintaining complex structure and not smoothing out like sand. This pattern is evident when 

comparing sites with varying rugosities but similar depths,  such as Timber Cove in North Fort Ross 

(site 2: h  ̅= 16.71, εdc = 1.80, C0 = 0.013 Lw) and the well-fed site just north of the Russian River 
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Estuary (site 11: h ̅ = 16.76, εdc = 1.17, C0 = 0.018 Lw), or between the rocky shores of Bodega 

Marine Lab and the sea cliff fronted shores of Ross Reef in North Fort Ross (site 4: h ̅ = 15.72, εdc = 

3.33, C0 = 0.013 Lw) and the beach-fronted shores of Wrights Beach (site 16: h  ̅= 15.14, εdc = 0.63, 

C0 = 0.038 Lw). 

This explains why greater roughness is positively correlated with higher C0 in decay 

equations averaged within higher wave quartiles (ρ = .60) as shown in Fig 15. Rougher sites, which 

generally lack readily suspensible sediments, require higher wave heights to induce significant C0 

concentrations, whereas lower wave heights are required to mobilize sediments in highly erodible 

or well-fed areas. Further, it is likely that bottom roughness dissipates near-bed fluid motion 

heights (Ruiz de Algeria-Arzaburu et al., 2013; Gallop et al., 2020; MacMahan et al., 2023), 

preventing mobilization, leading to lower mobilization particularly in low wave heights.  Roughness 

also negatively influenced C0 in low wave energy and low water level conditions, perhaps indicating 

that a higher ratio of water column contact with rougher bathymetries may trap sediments or 

dampen initial inducement of sediment suspension. This effect can also be interpreted in results in 

Fig 15, where εdc is positively correlated with increases in C0 in decay equations subset to dates 

with lower quartile water levels (ρ = .48). At a site with high roughness, higher water levels lead to 

less bathymetric influenced reducing dampening caused by rugosity. 

Our findings show that regions with shallow, smoother bathymetry are likely the most 

erodible and have reduced bottom shear, yielding the highest initial concentration of turbidity (C0) 

from wave breaking. These results are consistent with well-fed coastlines observed throughout our 

study.  

4.3 Wave-induced transport: b 

The rate of decay of turbidity, represented by b⁻¹, serves as a measure of wave energetics 

and the ability of a site to transport sediments offshore, distinct from initial concentration amount 
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C0. Higher b⁻¹ values correspond to less steep or rapid decay of C0, indicating that suspended 

sediments diminish less quickly with offshore distance and that turbidity extends further offshore. 

This parameter is influenced by both sediment characteristics, such as settling rate (Dietrich, 1982), 

and the hydrodynamics factors such as turbulence and horizontal shore-normal flow. 

The rationalization of b⁻¹ as a representation of transport energetics is supported by a 

strong positive correlation between b⁻¹ and εdc (Fig 14b), values as high as ρ = -0.72 for Hs: Q1 at 

0.5 km, and ρ = 0.83 for WL: Q1 at 0.5 km. Sites with high bathymetric roughness are found along 

complex coastlines, where structure yields gradients in wave setup and radiation stress that in turn 

promote rip currents (Castelle et al., 2016; Largier, 2022; MacMahan et al., 2023). Flow interaction 

with sea stacks, boulders, reefs, and headlands causes boundary and bathymetric rips, and complex 

coastlines and embayments promote bay rips. These factors enhance the transport extent of 

mobilized suspended sediments with higher energy flows and promote suspension residency from 

vertical flow. This also explains why depth change has the greatest negative correlations with b⁻¹, 

as limited contact with the bottom would decrease such interactions. Further, this bathymetric 

impact on flow energetics would also explain why the correlation between site roughness and 

decay b⁻¹ is greatest in equations in low water levels, where there is maximum proportional contact 

of the entire water column with the bed and interaction with bathymetry causing separation. 

Further, higher b⁻¹ in low water level conditions is consistent with studies that show decreasing 

water level may increase flow through constriction in channelized sandy intertidal bars (Austin et 

al., 2010; Scott et al., 2014), and rough bathymetries/reef morphologies. (MacMahan et al., 2023). 

Roughness being highly correlated with positive b⁻¹ in low water level conditions is 

consistent with sandy bathymetries, such as sites 11 and 12 directly in front of the Russian River, 

19 and 20, 28-31, and 23, experiencing greater increases in b⁻¹ with increasing water level, whereas 

rockier shores, such as those in Tomales Point, between the two esteros in Bodega Bay (site 24), 
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rockier regions in Wright Beach Area, and sites 7, 8, 9, and 10, experience low to negative changes 

in b⁻¹ with increases in wave height. This follows with correlations in Fig 15, where increases in 

changes in b⁻¹ in equations subset by water level are negatively correlated with site roughness (ρ = 

-0.35) and positively correlated with site depth (ρ = 0.35). Further, it explains the negative 

correlation between site roughness and percent change in b⁻¹ in decay equations within higher 

wave quartiles (ρ = -0.42), as rockier sites do not need as significant wave heights to induce greater 

b⁻¹ as their wave energetics are already enhanced at the site as opposed to sandy sites that have 

less bathymetric influences on transport. 

Therefore, the highest b⁻¹ values are found along rough coastlines, which are rocky and 

complex- such structures yield gradients in wave setup and radiation stress that promote rip 

currents and flow separation, enhancing offshore sediment transport. Because of their structure, 

rocky systems are less controlled by Hs to induce transport than non-complex sandy shores. b⁻¹ is 

enhanced by low water level conditions, particularly in rougher, rockier bathymetry. 

4.4 Wave Induced Transport of Turbidity: C0 & b 

The interplay between C0 and b⁻¹ is crucial for understanding the extent of offshore 

turbidity, d. Following the above discussions, areas with a high initial supply of sediments (C0) but a 

low b⁻¹  are likely to exhibit short turbid rips, or high suspended sediment at the shoreline with 

little offshore transport. In contrast, areas with either high or low C0 and high b⁻¹ values indicate 

large rip currents or significant transport of sediments offshore of differing turbidity. This resolves 

why, on average, b increased more significantly in higher quartile Hs decay equations than C0, as b 

is a direct measure of energetics, while Hs is a control of C0, but not necessarily the same mechanic, 

as turbidity supply varies by site. This also resolves why there is a strong linear correlation (r = .75) 

between offshore distance of Cthreshold when plugged into average decay equations, d at each site 

with average b value but negligible linear correlation between d and C0 at each site (r = .05). 
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The positive correlation between roughness and an increase in C0 in decay equations 

averaged within higher wave quartiles (ρ = 0.60), as shown in Fig 16, suggests that rougher sites 

require higher wave heights to induce higher C0 concentrations, as they do not have readily 

suspensible sediments at low wave energy scenarios. In contrast, lower wave heights are likely 

sufficient to mobilize sediments in highly erodible areas, making them less dependent on wave 

energy for sediment mobilization. The negative correlation between site roughness and percent 

change in b⁻¹ in decay equations within higher wave quartiles suggests that rougher sites may not 

require as significant wave heights to increase b⁻¹, as wave energetics are already enhanced at 

these sites. 

Higher wave energy induces the most significant increases in both C0 and b⁻¹. However, in 

the absence of high wave heights, sites need to be both well-fed with sediments (to maximize C0) 

and have complex bathymetry (to maximize b⁻¹) to achieve extensive offshore turbidity. 

Conversely, rough sites that are poorly supplied with sediments require higher wave heights to 

increase C0, while smooth sites need greater wave heights to promote higher b⁻¹ values.  

 

4.5 Controls on transport extent and region wide turbidity 

From these results, it is evident that to maximize the distance offshore, a balance must be 

met between low depth, sufficient sediment supply, and adequate bathymetric and shoreline 

complexity to induce larger rip currents. Comparisons between the North Fort Ross and Point 

Reyes National Seashore groups further highlight the influence of roughness on sediment transport. 

Despite having similar Δh values, sites in these groups exhibit different decay patterns. For 

example, Pt Reyes Beach IV (site 31, Δh = 22.22m, εdc = 0.28) had an offshore transport distance of d 

= 0.45, while Ross Reef (site 4, Δh = -22.18m, εdc = 3.10) had d = 0.99. Additionally, the offshore 

distance is the same at PT Reyes Beach II (site 29, Δh = 16.98, εdc = 0.10) and Timber Cove (site 2, 
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Δh = 17.77, εdc = 1.80), despite differences in Δh and εdc values. Similarly, Pt Reyes Beach III (site 30, 

Δh = -18.72m, εdc = 0.12) had d = 0.497, while Central Fort Ross (site 3, Δh = -18.60m, εdc = 3.14) had 

d = 0.84. Further, the Bodega Marine Lab site (site 21, Δh = -18.53m, εdc = 0.81) had both an offshore 

distance (d = 0.762) and roughness between those of Pt Reyes Beach III and Central Fort Ross, 

further supporting the role of roughness in modulating sediment transport. 

The South Fort Ross group further illustrates the interplay between roughness and depth in 

determining sediment transport. Among Mid Jewell/Timber (εdc = 1.31, Δh = -9.37), Jewell Gulch 

(εdc = 0.34, Δh = -9.99), and Meyer Gulch (εdc = 0.18, Δh = -14.44), the steeper, deeper, and less 

rough sites exhibited further offshore transport of turbidity (d = 0.858km, d = 0.811km, and d = 

0.677km, respectively). Timber Gulch had a significantly higher offshore distance and the greatest 

average distance of all sites (d = 1.653) and is likely very shallow given that data is effectively 

unavailable within 1 km of the shore. 

Furthermore, all variables should be taken in balance, where d, as a function of turbidity, 

can be limited by low C0, despite high b values. For instance, while the North Fort Ross sites exhibit 

the highest roughness across shore, they also exhibit the largest Δh, and have low d values. Thus, 

while transport energetics in rough regions may not be limited, a small supply of sediment will 

cause a small offshore extent as there is less suspended sediment to transport. In contrast, the sites 

with the largest transport have high roughness, low to moderate depths, and are also 

characteristically highly supplied by sediments. This is also well observed in the areas closest to the 

front of the Russian River estuary (sites 11 & 12), where offshore the average extents of turbid rip 

currents are great (d = 1.34km; d = 1.52km). Further, at the site with the highest offshore turbidity, 

site 5, we observe in both geospatial data of kelps, albeit prior to the temporal extent of the study, 

as well as through observation in high-resolution satellite imagery of the area, that the South Fort 

Ross area is abundant in kelps, so sediments are likely trapped and well supplied in this region. 
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High-resolution, recent data on regional Kelp Forest Coverage would greatly benefit these 

conclusions. 

Our findings suggest that regions with shallow, smoother bathymetry are likely the most 

erodible and yield the highest initial concentration from wave breaking. These areas are consistent 

with well-fed sandy coastlines throughout our study. We find that rocky regions have the most 

turbulent and energetic environments and promote the most substantial vertical (upward) and 

offshore flows (b⁻¹). However, these two terms are separate, and for rocky regions to maximize the 

offshore extent of turbidity (d), regions need to be sufficiently well-fed by sediments (sufficient C0). 

 Maps of turbid extent and correlation with wave energetics further elucidate these findings. 

Areas rich in sediment availability, such as regions well supplied with sand, like in front of the 

Russian River Estuary and Gualala Estuary, on average have higher turbidity extending further off 

the coast (Fig 7). These sediment-rich regions, as well as towards the headland boundaries of 

littoral cells where sediments are well confined, such as towards the south end of Point Reyes and 

near the Mussel Point Headland in Salmon Creek Beach, are those that also have the highest 

increase in offshore extent of turbidity in higher Hs percentiles (Fig 8). 

However, while those sites are on average the most turbid, the ones that are most highly 

correlated with wave height are those with rocky bathymetries in Fig 9, with plentiful sea stacks, 

such as those in the South Fort Ross Region, the sea cliffs northward of the Gualala and Russian 

River Estuary, and the rocky, sheltered embayments between the two estuaries. This can also be 

seen when zooming in on correlation results of the Russian River Estuary in Fig 9B., where near the 

shore nearest to the estuary does not display high correlation values, but contours do form around 

the sea stacks 1km adjacent to the estuary.  
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These maps express the independence and the interplay between the controls of rip 

currents and offshore flow. Sandy regions such as Salmon Creek Beach have large caches of 

sediment which are easily suspended. However, their lack of bathymetric complexity, particularly 

away from their headlands, limits their correlation with wave energy, limiting the offshore 

transport of turbidity. Rocky regions are well correlated with wave energy, however, they are 

lacking sufficient erodibility for offshore flow to be fully observed as turbulent, as their coarser 

sediments settle quickly and are at a low initial turbidity (Green et al., 2004). The sites that produce 

the greatest offshore signals are those that are well-fed and bathymetrically complex. 

 

5. Conclusion: 

This study investigates the complex interplay between coastal geomorphology and wave 

dynamics in driving nearshore turbidity, with particular focus comparing the transport 

characteristics across diverse coast types between rocky and sandy shores. Using both novel 

methodologies in image-post processing to deal with nearshore heterogeneity, as well novel 

methods that integrate these processed data with high resolution bathymetry and coincidental, 

distributed modeled wave energy data, we have quantified the spatial patterns of wave-driven 

turbidity sitewide through maps and have isolated the factors that constrain its offshore extent 

across diverse coastal environments (rocky and sandy shores) and oceanographic climates by 

observing the distribution of  cross-shore turbidity as a function of distance as a decay equation, 

isolating decay coefficients as important signals of sediment mobilization (C0) and length scale 

decay (b⁻¹). 

Our research builds on the understanding that suspended sediment turbidity can extend far 

offshore under the influence of rip currents generated by wave action. While previous studies have 
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primarily focused on doing so in sandy shores and qualitatively in rocky shores, our methodology 

provides a quantitative framework for assessing the relative contributions of shoreline sediment 

supply and erodibility, C0, wave induced transport, b⁻¹, wave height, Hs, and bathymetric 

complexity to offshore turbidity. 

Shores with low cross-shore detrended bathymetric roughness and/or sandy, erodible 

shores, particularly near estuaries and embayments, exhibit high initial turbidity concentrations 

(C0). These well-fed sandy regions demonstrate that sediments are readily suspended under lower 

wave energy, leading to significant shoreline turbidity. However, sandy shores lacking bathymetric 

complexity cannot sustain significant offshore transport, especially along uniform shorelines, 

without significant wave energy. 

In contrast, rocky shores and complex shorelines exhibit distinct behavior. Complex 

bathymetry and high roughness promote stronger offshore transport (high b⁻¹) even in low wave 

height conditions due to flow separation and persistent channelization. This transport is enhanced 

during low tides. However, these rough sites often lack available sediments and or have rough 

bottom bathymetry dampening shear stress, resulting in low C0 values in ambient wave conditions. 

Consequently, they rely on higher wave energy to drive the turbid signals of their flow. Despite this, 

the inherent roughness of complex shorelines leads to ambiently high b⁻¹ values, particularly in low 

water level. Sites with the greatest offshore turbidity extent have a combination of high roughness, 

low to moderate depths, and abundant sediment supply, as observed near the Russian River and 

Gualala River estuaries. 

Maps of turbid extent and correlation with wave energetics further elucidate these findings. 

Regions well-supplied with sediment and high bathymetric and coastline complexity, such as those 

near estuaries fronted by sea stacks, near headlands, and rocky kelp forests, exhibit higher average 
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turbidity extending further offshore, with the greatest increase in offshore extent under higher 

waves. Sites most highly correlated with wave height (wave transport) are those with rocky 

bathymetries, plentiful nearshore sea stacks, and complex shorelines. The interplay between 

sediment availability and bathymetric complexity is evident in the Russian River Estuary, where 

areas nearest the estuary lack high correlation values despite ample sediment, while strong 

correlations form around adjacent sea stacks and boundaries. 

This study highlights the importance of considering both sediment availability and 

geomorphic complexity when examining nearshore turbidity dynamics. Areas with the most 

substantial offshore turbidity signals are both well-supplied with sediments and have complex 

bathymetries. Our findings provide a quantitative basis for understanding factors controlling 

turbidity transport in diverse coastal settings, with implications for sediment budgets, coastal 

ecosystems, and management strategies, particularly in areas where understanding of water 

column geochemistry in rocky shores is essential such as in vulnerable kelp forests. 

Future research could incorporate in-situ measurements and hydrodynamic modeling to 

validate and refine satellite-based observations and investigate three-dimensional dynamics of rip 

currents and sediment transport. Temporal considerations, such as seasonality in precipitation, 

sediment supply, wave climatology, and onshore morphology, would further enhance our 

understanding of these complex systems. Lastly, more comprehensive and specific maps of beach 

and coastline geomorphological classifications would aid in this study. Nonetheless, our study 

provides a novel, quantitative approach to characterizing nearshore turbidity across 

geomorphologically diverse coastlines, shedding light on the intricate interplay between sediment 

availability, wave forcing, and coastal geomorphology. 
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Appendix 

 

Appendix I: Map of standard deviation at each pixel location 
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Appendix II: Correlation between rhow665 and nearest coincident Ta data at each pixel position. 
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S P Q1C0 Q1b⁻¹ Q1n Q2C0 Q2b⁻¹ Q2n Q3C0 Q3b⁻¹ Q3n Q4C0 Q4b⁻¹ Q4n 

1 WL 0.01
2 0.392 

14 0.014 0.46
8 

22 0.017 
0.276 

25 0.01
5 

0.26
8 

33 

2 WL 0.01
1 0.484 

16 0.010 0.56
0 

21 0.014 
0.423 

29 0.01
4 

0.35
6 

41 

3 WL 0.01
3 0.545 

16 0.017 0.69
4 

21 0.018 
0.577 

31 0.01
6 

0.62
6 

39 

4 WL 0.00
9 0.904 

13 0.013 0.95
4 

19 0.015 
0.924 

22 0.01
7 

0.86
4 

34 

5 WL 0.08
7 0.227 

18 0.061 0.50
5 

21 0.042 
0.780 

31 0.03
8 

0.70
5 

48 

6 WL 0.05
2 0.222 

25 0.054 0.16
8 

26 0.042 
0.458 

25 0.03
7 

0.46
7 

49 

7 WL 0.12
6 0.224 

24 0.138 0.18
3 

26 0.080 
0.282 

33 0.08
9 

0.22
9 

52 

8 WL 0.05
8 0.211 

27 0.062 0.19
7 

27 0.048 
0.242 

33 0.05
4 

0.21
7 

52 

9 WL 0.01
4 0.346 

15 0.031 0.32
4 

19 0.030 
0.385 

25 0.03
2 

0.33
5 

41 

1
0 

WL 0.03
4 0.237 

23 0.047 0.29
3 

22 0.041 
0.304 

27 0.04
7 

0.27
3 

40 

1
1 

WL 0.01
6 0.510 

16 0.019 0.77
4 

20 0.018 
0.957 

26 0.02
1 

1.02
0 

31 

1
2 

WL 0.01
7 0.549 

25 0.030 0.71
1 

28 0.026 
0.689 

30 0.03
0 

1.08
3 

48 

1
3 

WL 0.03
1 0.377 

27 0.042 0.44
0 

31 0.064 
0.304 

35 0.04
5 

0.42
2 

51 

1
4 

WL 0.02
9 0.482 

45 0.034 0.56
6 

34 0.027 
0.529 

36 0.03
9 

0.62
8 

23 

1
5 

WL 0.02
7 0.256 

53 0.037 0.35
4 

39 0.030 
0.318 

40 0.03
5 

0.36
0 

25 

1
6 

WL 0.04
2 0.257 

43 0.036 0.32
9 

35 0.040 
0.255 

36 0.03
9 

0.37
0 

21 

1
7 

WL 0.02
4 0.254 

47 0.024 0.38
6 

39 0.022 
0.412 

33 0.02
7 

0.37
7 

22 

1
8 

WL 0.02
6 0.138 

43 0.025 0.15
9 

42 0.030 
0.157 

33 0.02
6 

0.20
9 

21 

1
9 

WL 0.04
5 0.120 

52 0.042 0.17
0 

39 0.048 
0.202 

37 0.03
9 

0.25
8 

21 

2
0 

WL 0.04
0 0.166 

44 0.028 0.24
4 

34 0.038 
0.225 

32 0.03
2 

0.34
1 

19 

2
1 

WL 0.01
8 0.486 

22 0.016 0.44
8 

28 0.022 
0.403 

22 0.01
4 

0.64
0 

11 

2
2 

WL 0.02
5 0.417 

35 0.034 0.39
1 

36 0.038 
0.329 

32 0.03
8 

0.51
0 

13 

2
3 

WL 0.04
0 0.199 

20 0.046 0.25
8 

19 0.046 
0.240 

23 0.04
2 

0.38
7 

10 

2
4 

WL 0.04
1 0.519 

36 0.057 0.35
7 

39 0.044 
0.442 

32 0.05
4 

0.40
8 

22 
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2
5 

WL 0.01
5 0.403 

22 0.015 0.32
8 

26 0.016 
0.409 

21 0.02
1 

0.51
5 

12 

2
6 

WL 0.02
2 0.321 

26 0.022 0.38
8 

34 0.023 
0.312 

29 0.02
2 

0.46
0 

18 

2
7 

WL 0.01
4 0.275 

30 0.014 0.37
8 

29 0.020 
0.274 

26 0.02
1 

0.32
0 

17 

2
8 

WL 0.09
6 0.159 

36 0.071 0.19
4 

36 0.074 
0.178 

31 0.04
6 

0.30
7 

23 

2
9 

WL 0.05
0 0.163 

36 0.044 0.23
7 

37 0.051 
0.193 

29 0.03
2 

0.28
2 

23 

3
0 

WL 0.03
5 0.164 

42 0.038 0.21
2 

30 0.039 
0.208 

27 0.03
0 

0.27
7 

25 

3
1 

WL 0.02
1 0.171 

35 0.031 0.20
3 

33 0.025 
0.221 

29 0.02
5 

0.27
7 

22 

1 Hs 0.00
9 0.193 

27 0.015 0.53
5 

27 0.016 
0.448 

26 0.02
9 

0.47
4 

14 

2 Hs 0.00
8 0.302 

13 0.011 0.27
8 

33 0.012 
0.587 

32 0.02
3 

0.52
4 

29 

3 Hs 0.00
9 0.515 

15 0.012 0.49
3 

30 0.016 
0.652 

34 0.02
6 

0.67
2 

28 

4 Hs 0.00
7 0.783 

15 0.011 0.90
0 

29 0.014 
0.923 

25 0.02
3 

0.89
1 

19 

5 Hs 0.06
5 0.269 

47 0.035 0.78
5 

28 0.034 
0.747 

23 0.04
0 

0.93
9 

20 

6 Hs 0.06
1 0.147 

58 0.033 0.60
4 

36 0.034 
0.597 

18 0.03
6 

0.68
7 

13 

7 Hs 0.09
6 0.215 

78 0.101 0.23
1 

37 0.110 
0.340 

13 0.05
9 

0.73
9 

7 

8 Hs 0.05
7 0.188 

88 0.054 0.27
8 

37 0.052 
0.458 

13 0.04
0 

1.86
9 

1 

9 Hs 0.02
0 0.323 

54 0.034 0.34
5 

35 0.043 
0.422 

9 0.07
0 

0.51
8 

2 

1
0 

Hs 0.04
4 0.186 

44 0.037 0.27
2 

33 0.046 
0.339 

23 0.04
4 

0.60
4 

12 

1
1 

Hs 0.01
3 0.776 

41 0.019 0.84
3 

25 0.026 
1.124 

16 0.03
6 

1.03
0 

11 

1
2 

Hs 0.01
7 0.505 

31 0.022 0.81
3 

45 0.029 
0.804 

32 0.04
6 

0.95
7 

23 

1
3 

Hs 0.06
0 0.208 

37 0.040 0.34
2 

39 0.040 
0.440 

31 0.05
2 

0.62
1 

37 

1
4 

Hs 0.01
6 0.425 

19 0.024 0.47
0 

42 0.034 
0.537 

50 0.04
0 

0.81
7 

27 

1
5 

Hs 0.03
0 0.122 

41 0.032 0.24
9 

43 0.032 
0.413 

53 0.03
6 

0.63
2 

20 

1
6 

Hs 0.04
4 0.172 

34 0.040 0.22
3 

39 0.037 
0.365 

48 0.03
8 

0.49
7 

14 

1
7 

Hs 0.02
3 0.176 

28 0.024 0.27
6 

40 0.023 
0.422 

44 0.02
8 

0.46
2 

29 

1
8 

Hs 0.01
8 0.104 

29 0.032 0.10
4 

31 0.026 
0.193 

41 0.03
1 

0.21
2 

38 



154 
 

1
9 

Hs 0.03
4 0.108 

34 0.048 0.13
9 

35 0.044 
0.175 

44 0.04
4 

0.24
8 

36 

2
0 

Hs 0.02
4 0.153 

21 0.037 0.16
6 

23 0.036 
0.183 

30 0.03
5 

0.34
1 

55 

2
1 

Hs 0.01
0 0.386 

9 0.015 0.44
3 

11 0.012 
0.634 

20 0.02
3 

0.44
6 

43 

2
2 

Hs 0.01
7 0.389 

6 0.035 0.21
5 

16 0.026 
0.379 

36 0.03
9 

0.40
5 

58 

2
3 

Hs 0.07
4 0.152 

26 0.034 0.30
1 

25 0.040 
0.359 

14 0.03
6 

0.36
4 

7 

2
4 

Hs 0.04
8 0.311 

33 0.040 0.51
4 

36 0.041 
0.406 

29 0.05
0 

0.54
0 

31 

2
5 

Hs 0.01
6 0.441 

6 0.013 0.31
9 

10 0.012 
0.440 

24 0.02
0 

0.38
4 

41 

2
6 

Hs 0.02
2 0.192 

3 0.018 0.22
7 

21 0.022 
0.327 

32 0.02
4 

0.46
9 

51 

2
7 

Hs 0.01
2 0.313 

17 0.013 0.26
6 

31 0.017 
0.297 

35 0.02
5 

0.44
7 

19 

2
8 

Hs 0.09
4 0.113 

17 0.075 0.17
7 

20 0.086 
0.178 

33 0.06
5 

0.26
3 

56 

2
9 

Hs 0.05
0 0.127 

15 0.042 0.18
8 

21 0.049 
0.173 

29 0.04
8 

0.25
6 

60 

3
0 

Hs 0.03
5 0.100 

17 0.042 0.16
8 

20 0.033 
0.180 

30 0.04
0 

0.27
7 

57 

3
1 

Hs 0.01
3 0.116 

14 0.019 0.20
6 

18 0.024 
0.221 

29 0.02
7 

0.23
7 

58 

1 Ta 0.00
9 0.382 

19 0.011 0.46
0 

20 0.015 
0.406 

31 0.01
7 

0.22
2 

24 

2 Ta 0.01
0 0.471 

20 0.011 0.49
5 

32 0.018 
0.484 

28 0.01
3 

0.37
1 

27 

3 Ta 0.01
2 0.623 

26 0.016 0.61
9 

35 0.025 
0.599 

22 0.02
0 

0.56
1 

24 

4 Ta 0.00
9 1.021 

21 0.015 0.89
9 

20 0.014 
0.913 

26 0.02
3 

0.74
2 

21 

5 Ta 0.03
0 0.567 

20 0.048 0.60
6 

17 0.041 
0.706 

38 0.05
0 

0.58
7 

43 

6 Ta 0.04
4 0.157 

23 0.048 0.24
2 

35 0.033 
0.538 

34 0.04
3 

0.36
1 

33 

7 Ta 0.11
5 0.197 

43 0.085 0.22
8 

41 0.113 
0.231 

23 0.07
4 

0.30
6 

28 

8 Ta 0.05
2 0.214 

57 0.053 0.25
2 

40 0.074 
0.172 

24 0.05
8 

0.24
2 

18 

9 Ta 0.01
8 0.428 

40 0.027 0.41
2 

26 0.033 
0.252 

19 0.03
7 

0.24
7 

15 

1
0 

Ta 0.03
1 0.211 

30 0.036 0.27
4 

22 0.038 
0.382 

28 0.05
9 

0.22
6 

32 

1
1 

Ta 0.01
3 0.758 

22 0.018 0.86
8 

19 0.022 
0.842 

25 0.02
5 

0.87
6 

27 

1
2 

Ta 0.01
3 0.854 

38 0.028 0.68
5 

28 0.030 
0.660 

31 0.04
1 

0.92
6 

34 



155 
 

1
3 

Ta 0.02
6 0.309 

33 0.041 0.38
4 

28 0.045 
0.405 

45 0.05
9 

0.38
5 

38 

1
4 

Ta 0.02
1 0.488 

35 0.029 0.55
3 

47 0.032 
0.530 

32 0.03
9 

0.61
6 

24 

1
5 

Ta 0.02
9 0.232 

49 0.031 0.35
9 

46 0.032 
0.315 

35 0.03
5 

0.42
4 

27 

1
6 

Ta 0.04
4 0.221 

46 0.039 0.28
0 

38 0.038 
0.343 

29 0.03
8 

0.36
0 

22 

1
7 

Ta 0.02
1 0.296 

48 0.024 0.46
0 

37 0.025 
0.391 

30 0.02
8 

0.38
7 

26 

1
8 

Ta 0.03
0 0.110 

42 0.025 0.18
4 

35 0.024 
0.170 

32 0.02
9 

0.15
8 

30 

1
9 

Ta 0.04
3 0.126 

44 0.040 0.17
3 

50 0.048 
0.172 

40 0.04
8 

0.18
5 

15 

2
0 

Ta 0.03
9 0.151 

22 0.037 0.22
4 

44 0.032 
0.192 

33 0.03
0 

0.26
7 

30 

2
1 

Ta 0.01
3 0.660 

17 0.016 0.50
0 

21 0.023 
0.355 

23 0.01
5 

0.40
6 

22 

2
2 

Ta 0.02
0 0.446 

21 0.042 0.34
4 

32 0.043 
0.373 

33 0.03
7 

0.37
4 

30 

2
3 

Ta 0.03
9 0.213 

10 0.043 0.30
1 

10 0.047 
0.252 

19 0.03
6 

0.33
2 

33 

2
4 

Ta 0.02
7 0.442 

23 0.043 0.39
8 

21 0.055 
0.350 

37 0.04
9 

0.49
9 

48 

2
5 

Ta 0.01
2 0.493 

15 0.016 0.35
6 

19 0.015 
0.386 

22 0.02
2 

0.40
9 

25 

2
6 

Ta 0.01
9 0.316 

22 0.025 0.36
0 

18 0.022 
0.348 

29 0.02
4 

0.37
5 

38 

2
7 

Ta 0.01
3 0.279 

35 0.020 0.44
4 

27 0.016 
0.345 

23 0.02
1 

0.36
9 

17 

2
8 

Ta 0.07
6 0.169 

26 0.074 0.26
1 

29 0.062 
0.209 

32 0.07
5 

0.18
9 

39 

2
9 

Ta 0.07
6 0.154 

21 0.047 0.22
6 

29 0.036 
0.255 

29 0.04
9 

0.21
2 

46 

3
0 

Ta 0.03
5 0.188 

24 0.035 0.27
3 

26 0.029 
0.209 

34 0.04
2 

0.20
1 

40 

3
1 

Ta 0.02
2 0.255 

25 0.024 0.25
1 

24 0.023 
0.219 

30 0.02
9 

0.18
1 

40 

 

 

Appendix III: Table of C0 and b equations when split in wave parameter quartiles 
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Site P Q1 D Q1 n Q2 D Q2 n Q3 D Q3 n Q4 D Q4 n 

1 WL 0.32 14 0.55 22 0.42 25 0.42 33 

2 WL 0.41 16 0.50 21 0.54 29 0.56 41 

3 WL 0.53 16 0.86 21 0.85 31 0.87 39 

4 WL 0.54 13 0.99 19 1.16 22 1.21 34 

5 WL 0.67 18 1.42 21 1.96 31 1.70 48 

6 WL 0.52 25 0.45 26 1.24 25 1.10 49 

7 WL 0.76 24 0.68 26 1.12 33 0.84 52 

8 WL 0.58 27 0.60 27 0.80 33 0.75 52 

9 WL 0.46 15 0.82 19 0.96 25 1.03 41 

10 WL 0.54 23 0.91 22 0.86 27 0.95 40 

11 WL 0.85 16 1.09 20 1.56 26 1.67 31 

12 WL 0.84 25 1.46 28 1.42 30 2.17 48 

13 WL 0.78 27 1.14 31 0.94 35 1.24 51 

14 WL 0.91 45 1.25 34 1.25 36 1.86 23 

15 WL 0.51 53 0.94 39 0.94 40 1.06 25 

16 WL 0.63 43 0.83 35 0.82 36 1.14 21 

17 WL 0.47 47 0.76 39 0.90 33 0.98 22 

18 WL 0.27 43 0.35 42 0.41 33 0.61 21 

19 WL 0.32 52 0.48 39 0.64 37 0.94 21 

20 WL 0.42 44 0.56 34 0.62 32 1.15 19 

21 WL 0.73 22 0.72 28 0.77 22 1.03 11 

22 WL 0.73 35 0.92 36 0.88 32 1.41 13 

23 WL 0.50 20 0.81 19 0.76 23 1.19 10 

24 WL 1.31 36 1.09 39 1.19 32 1.20 22 

25 WL 0.50 22 0.46 26 0.57 21 1.20 12 

26 WL 0.52 26 0.71 34 0.56 29 0.80 18 

27 WL 0.30 30 0.56 29 0.48 26 0.63 17 

28 WL 0.50 36 0.61 36 0.55 31 0.80 23 

29 WL 0.41 36 0.60 37 0.51 29 0.66 23 

30 WL 0.37 42 0.54 30 0.53 27 0.66 25 

31 WL 0.28 35 0.49 33 0.46 29 0.62 22 

1 Hs 0.13 27 0.75 27 0.75 26 1.13 14 

2 Hs 0.13 13 0.28 33 0.80 32 1.14 29 

3 Hs 0.35 15 0.48 30 0.86 34 1.26 28 

4 Hs 0.22 15 0.90 29 1.07 25 1.88 19 

5 Hs 0.76 47 1.75 28 1.75 23 2.21 20 

6 Hs 0.40 58 1.37 36 1.36 18 1.75 13 

7 Hs 0.72 78 0.92 37 1.67 13 5.59 7 

8 Hs 0.54 88 0.94 37 1.76 13 2.37 1 

9 Hs 0.65 54 0.98 35 1.51 9 4.13 2 

10 Hs 0.48 44 0.84 33 1.39 23 1.95 12 

11 Hs 0.98 41 1.55 25 1.93 16 2.21 11 
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12 Hs 0.75 31 1.44 45 2.10 32 2.33 23 

13 Hs 0.58 37 0.88 39 1.34 31 2.01 37 

14 Hs 0.62 19 0.86 42 1.38 50 2.25 27 

15 Hs 0.25 41 0.58 43 1.30 53 2.54 20 

16 Hs 0.44 34 0.58 39 1.06 48 1.63 14 

17 Hs 0.30 28 0.52 40 0.89 44 1.45 29 

18 Hs 0.17 29 0.25 31 0.46 41 0.65 38 

19 Hs 0.24 34 0.39 35 0.50 44 0.90 36 

20 Hs 0.31 21 0.41 23 0.45 30 1.04 55 

21 Hs 0.37 9 0.56 11 0.84 20 0.95 43 

22 Hs 0.51 6 0.50 16 0.75 36 1.14 58 

23 Hs 0.50 26 0.87 25 1.21 14 
 

7 

24 Hs 0.82 33 1.31 36 1.18 29 1.67 31 

25 Hs 0.47 6 0.37 10 0.49 24 0.72 41 

26 Hs 0.28 3 0.34 21 0.56 32 0.87 51 

27 Hs 0.34 17 0.32 31 0.50 35 0.96 19 

28 Hs 0.35 17 0.53 20 0.54 33 0.82 56 

29 Hs 0.32 15 0.44 21 0.44 29 0.71 60 

30 Hs 0.22 17 0.41 20 0.39 30 0.71 57 

31 Hs 0.13 14 0.34 18 0.42 29 0.54 58 

1 Ta 0.28 19 0.44 20 0.65 31 0.39 24 

2 Ta 0.43 20 0.45 32 0.82 28 0.56 27 

3 Ta 0.61 26 0.75 35 1.10 22 0.90 24 

4 Ta 0.47 21 0.94 20 1.06 26 1.60 21 

5 Ta 1.09 20 1.42 17 1.76 38 1.61 43 

6 Ta 0.36 23 0.61 35 1.22 34 0.95 33 

7 Ta 0.70 43 0.83 41 0.91 23 1.06 28 

8 Ta 0.59 57 0.82 40 0.63 24 0.90 18 

9 Ta 0.78 40 1.04 26 0.67 19 0.75 15 

10 Ta 0.48 30 0.72 22 1.14 28 0.94 32 

11 Ta 0.92 22 1.29 19 1.62 25 1.54 27 

12 Ta 1.07 38 1.22 28 1.60 31 2.25 34 

13 Ta 0.63 33 0.93 28 1.11 45 1.21 38 

14 Ta 0.81 35 1.16 47 1.24 32 1.60 24 

15 Ta 0.52 49 0.83 46 0.99 35 1.16 27 

16 Ta 0.58 46 0.72 38 1.04 29 0.97 22 

17 Ta 0.52 48 0.86 37 0.91 30 0.93 26 

18 Ta 0.24 42 0.43 35 0.44 32 0.42 30 

19 Ta 0.33 44 0.48 50 0.55 40 0.57 15 

20 Ta 0.37 22 0.57 44 0.50 33 0.69 30 

21 Ta 0.76 17 0.66 21 0.83 23 0.71 22 

22 Ta 0.75 21 0.93 32 0.98 33 0.97 30 

23 Ta 0.56 10 0.84 10 0.81 19 0.99 33 
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24 Ta 0.88 23 1.02 21 1.16 37 1.38 48 

25 Ta 0.51 15 0.49 19 0.63 22 0.72 25 

26 Ta 0.48 22 0.66 18 0.61 29 0.72 38 

27 Ta 0.33 35 0.80 27 0.56 23 0.69 17 

28 Ta 0.48 26 0.77 29 0.60 32 0.60 39 

29 Ta 0.44 21 0.57 29 0.60 29 0.57 46 

30 Ta 0.40 24 0.63 26 0.49 34 0.53 40 

31 Ta 0.42 25 0.48 24 0.46 30 0.42 40 

 

Appendix IV: Table of distance of clear water threshold in average decay equations in dates subset 

by wave parameter quartiles 
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Appendix V:  Plots of bathymetric variables in .5km (top) and 3km (bottom) bins. 
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Appendix V: Sitewise results considering Ta 
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Appendix III: Bathymetric characteristic comparisons of each site binned at .5km and 3km offshore. 

Note: some sites have no available data within the first .5km, and are excluded from respective 
.5km plots. 

 

Site ID D Bin εc εdc εa εda h ̅ Δh 

1 0.5 2.54 2.34 2.56 0.35 -15.00 -13.02 

2 0.5 1.37 1.33 1.36 0.30 -9.94 -4.07 

3 0.5       
4 0.5 1.08 0.91 1.07 0.19 -8.65 -2.52 

5 0.5       
6 0.5 0.87 0.79 0.87 0.53 -10.05 -7.28 

7 0.5 0.47 0.41 0.51 0.15 -6.45 -0.35 

8 0.5 1.14 0.30 1.14 0.26 -9.35 -5.69 

9 0.5 0.84 0.81 0.85 0.14 -11.24 -3.61 

10 0.5 1.16 0.97 1.17 0.54 -12.16 -5.84 

11 0.5 0.90 0.77 0.91 0.47 -10.40 -3.98 

12 0.5 1.16 1.05 1.16 0.15 -9.42 -5.52 

13 0.5   0.05 0.00 -8.93 0.00 

14 0.5       
15 0.5 0.76 0.34 0.76 0.09 -8.27 -4.10 

16 0.5 0.88 0.60 0.88 0.23 -10.75 -5.24 

17 0.5 1.21 0.87 1.20 0.29 -10.65 -3.41 

18 0.5 0.47 0.17 0.47 0.09 -7.35 -3.32 

19 0.5 0.27 0.22 0.27 0.06 -6.39 -2.50 

20 0.5 0.47 0.27 0.47 0.21 -5.64 -3.66 

21 0.5 1.47 0.95 1.47 0.39 -8.47 -6.65 

22 0.5 1.64 1.26 1.66 0.25 -7.65 -0.31 

23 0.5 0.50 0.33 0.49 0.12 -6.22 -1.95 

24 0.5       
25 0.5 0.82 0.67 0.82 0.23 -9.21 -0.12 

26 0.5 0.87 0.75 0.87 0.31 -8.92 -2.51 

27 0.5 0.63 0.42 0.63 0.06 -8.60 -4.48 

28 0.5 0.07 0.07 0.08 0.02 -5.40 -1.06 

29 0.5 0.11 0.05 0.12 0.03 -6.95 -0.77 

30 0.5 0.46 0.24 0.46 0.12 -7.35 -1.90 

31 0.5 0.46 0.45 0.45 0.27 -7.65 -6.87 

1 1 4.66 3.46 4.66 1.34 -23.79 -28.86 

2 1 3.64 1.80 3.64 0.36 -16.71 -17.77 

3 1 4.25 3.14 4.26 2.78 -17.09 -18.60 

4 1 3.33 3.10 3.33 1.74 -15.72 -22.18 
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5 1 0.09 0.03 0.10 0.43 -10.87 -0.87 

6 1 2.36 1.31 2.36 1.62 -14.27 -9.37 

7 1 0.74 0.34 0.74 0.33 -12.06 -9.99 

8 1 0.99 0.18 0.99 0.31 -14.24 -14.44 

9 1 0.69 0.65 0.69 0.85 -17.53 -13.52 

10 1 1.47 1.36 1.47 1.12 -18.13 -14.74 

11 1 1.34 1.17 1.34 0.95 -16.76 -13.59 

12 1 0.77 0.71 0.77 0.59 -11.88 -8.67 

13 1 0.53 0.32 0.53 0.40 -12.08 -5.51 

14 1 0.98 0.81 0.98 0.65 -12.63 -5.88 

15 1 1.11 0.44 1.11 0.40 -12.82 -11.91 

16 1 0.63 0.44 0.63 0.57 -15.14 -11.90 

17 1 1.01 0.37 1.01 0.54 -15.05 -10.55 

18 1 0.65 0.18 0.65 0.25 -11.65 -12.45 

19 1 0.98 0.60 0.98 0.29 -11.36 -13.17 

20 1 0.81 0.64 0.81 0.32 -11.29 -13.74 

21 1 1.39 0.81 1.39 0.27 -14.68 -18.53 

22 1 1.86 1.33 1.87 0.63 -12.76 -11.62 

23 1 0.49 0.36 0.49 0.46 -11.26 -9.96 

24 1 0.43 0.29 0.43 0.12 -9.88 -4.95 

25 1 1.40 1.29 1.40 0.27 -10.79 -3.96 

26 1 1.52 1.01 1.52 0.43 -12.88 -11.00 

27 1 0.86 0.48 0.86 0.18 -14.74 -16.20 

28 1 0.52 0.19 0.52 0.88 -12.43 -18.11 

29 1 0.35 0.10 0.35 0.42 -14.53 -16.98 

30 1 0.32 0.12 0.32 0.33 -15.94 -18.72 

31 1 0.37 0.28 0.37 0.53 -16.07 -22.22 

1 3 2.25 1.37 2.25 4.96 -48.02 -59.95 

2 3 1.53 0.77 1.53 3.68 -42.30 -55.89 

3 3 1.51 1.02 1.51 6.20 -46.45 -51.00 

4 3 1.52 1.17 1.52 4.62 -39.94 -49.72 

5 3 2.62 1.28 2.63 3.13 -26.51 -39.74 

6 3 3.43 1.48 3.43 3.89 -27.40 -43.96 

7 3 0.93 0.37 0.93 1.06 -28.33 -37.40 

8 3 0.90 0.20 0.90 2.13 -28.69 -35.26 

9 3 0.49 0.24 0.49 2.37 -28.28 -26.49 

10 3 0.73 0.44 0.73 2.17 -27.24 -25.44 

11 3 0.74 0.36 0.74 2.30 -25.54 -23.39 

12 3 0.50 0.37 0.50 0.69 -19.58 -22.35 

13 3 0.47 0.12 0.47 0.39 -19.78 -20.01 

14 3 0.55 0.24 0.55 0.70 -21.58 -22.14 

15 3 0.85 0.16 0.85 1.43 -21.37 -25.05 

16 3 0.83 0.20 0.83 1.14 -23.99 -27.99 
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17 3 1.07 0.15 1.07 0.69 -25.87 -32.22 

18 3 0.73 0.30 0.73 1.12 -24.36 -35.99 

19 3 2.11 1.79 2.11 2.40 -24.23 -39.07 

20 3 3.10 1.25 3.11 1.84 -25.94 -45.78 

21 3 1.18 0.67 1.18 1.42 -37.18 -58.17 

22 3 2.01 1.04 2.02 0.67 -31.36 -47.51 

23 3 0.41 0.32 0.41 1.84 -17.78 -13.31 

24 3 0.37 0.16 0.37 0.91 -16.73 -14.28 

25 3 1.80 1.25 1.80 1.52 -29.37 -46.06 

26 3 1.37 1.09 1.37 1.08 -31.08 -44.01 

27 3 0.85 0.53 0.85 1.93 -33.43 -44.45 

28 3 0.52 0.29 0.52 3.69 -33.11 -43.74 

29 3 0.37 0.25 0.37 3.43 -33.84 -42.33 

30 3 0.19 0.08 0.19 3.24 -34.49 -43.37 

31 3 0.27 0.13 0.27 3.34 -34.26 -46.34 
 

Appendix IV: Bathymetric characteristic comparisons of each site binned at .5km and 3km offshore. 

Note: some sites have no available data within the first 0.5km, and are excluded from respective 
.5km plots. 

 

 

 

 

 




