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Article

Characterized by persistent inattention and/or hyperactiv-
ity-impulsivity that interfere with development and func-
tioning, attention-deficit/hyperactivity disorder (ADHD) is 
highly prevalent in the United States (Centers for Disease 
Control and Prevention [CDC], 2019). The first reported 
concerns of ADHD are often school-related (Loe & 
Feldman, 2007), so academic functioning is a key impair-
ment for individuals with ADHD. For children diagnosed 
with ADHD, strong cross-sectional and longitudinal evi-
dence reveals impaired academic outcomes (e.g., Di 
Lonardo Burr et al., 2022; Hinshaw, 2002; Lawrence et al., 
2021).

Less is known about whether children with ADHD show 
persisting academic difficulties over time, and how these 
difficulties might fluctuate across development. 
Longitudinal studies to date reveal increasing academic dif-
ficulties across adolescence (Di Lonardo Burr et al., 2022; 
Lawrence et al., 2021) and heterogeneous academic trajec-
tories (DuPaul et al., 2017). Several questions remain unad-
dressed: How might academic skills potentially develop 

from childhood to adulthood? From childhood, can we pre-
dict future lags in academic skills to inform prevention 
efforts? Might gender play a role in long-term academic 
development for children with ADHD?

Such understanding is important given the utility of adult 
academic skills for higher-education pursuits and daily life 
functioning (e.g., math skills in adults have been linked to 
financial decision-making/management, wealth, filing 
income taxes, reading graphs/charts, following recipes, and 
using measuring devices; Agarwal & Mazumder, 2013; 
Johnson & Blalock, 1987; Siegel, 1974). Moreover, given 
the loss of external supports for individuals with ADHD 
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Abstract
Youth with attention-deficit/hyperactivity disorder (ADHD) often exhibit impairments in mathematics, but long-term math 
development into adulthood, particularly in females, is underexplored. We characterized trajectories of math achievement 
in girls with ADHD and an age- and ethnicity-matched comparison sample from childhood through early adulthood across 
four waves and examined childhood cognitive predictors (global executive functioning, working memory, processing speed) 
of trajectories. The ethnically and socioeconomically diverse sample comprised 140 girls with carefully diagnosed ADHD 
and 88 neurotypicals, ages 6 to 12 years at baseline. Using latent growth curve models, we examined predictors of 16-year 
math achievement trajectories. In both the ADHD and neurotypical groups, scores declined over time; rates of change 
did not differ significantly. Yet in the ADHD sample, math difficulties (defined as scores at least 1 SD below the national 
average) increased notably over time, with many such difficulties emerging after childhood. By adulthood, nearly half of 
women with ADHD exhibited clear math difficulties. Worse baseline global executive functioning predicted slower math 
growth over time. Girls with ADHD may benefit from math supports before concerns emerge or worsen after childhood. 
Additional research on preventive interventions for math difficulties, including investigation of executive functioning, is 
warranted.
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during the transition from childhood to adulthood (e.g., 
Treuer et al., 2016), academic trajectories may be informa-
tive to families hoping to plan for future outcomes. 
Childhood prediction of later trajectories is also important 
to investigate given the importance of earlier rather than 
later intervention for learning challenges (Fletcher et  al., 
2018).

Math Achievement in Girls and Women With 
ADHD

Herein, we examine math achievement trajectories from 
childhood to adulthood and their childhood predictors in an 
all-female sample. We focus on females for three important 
reasons. First, research on girls and women with neurode-
velopmental disorders such as ADHD lags behind research 
on males (Hinshaw et  al., 2022). Second, women with 
ADHD face barriers to academic development not only 
from neurodevelopmental disability but also from gender. 
Although girls perform well in math in school when equal 
opportunities are available (e.g., Else-Quest et  al., 2010), 
stereotypes, societal perceptions, and lack of societal gen-
der parity in mentorship/careers/school opportunities may 
impede long-term math performance and pursuit of contin-
ued higher math education (e.g., Else-Quest et  al., 2010; 
Good et  al., 2008). Thus, girls with ADHD deserve extra 
focus on their long-term math development. Third, prior 
research suggests that academic achievement plays an 
important role in their long-term well-being. Adolescent 
academic performance is a mediator in the pathway between 
childhood cognitive impairment and comorbid adult psy-
chopathology in girls with ADHD (Owens & Hinshaw, 
2016) and in the pathway between childhood ADHD and 
young-adult unplanned pregnancy (Owens & Hinshaw, 
2020). Academic achievement is also a partial mediator of 
the relation between childhood ADHD symptoms and 
young-adult intimate partner victimization (Guendelman 
et  al., 2016). Strengthening academic achievement could 
help protect against such outcomes.

Consistent with findings in males, in childhood, girls 
with ADHD score lower on standardized achievement tests 
than neurotypical girls (Hinshaw, 2002). We focus longitu-
dinally on mathematics specifically because, in addition to 
the barriers to long-term math development faced by women 
(described above), initial evidence suggests a unique pat-
tern of longitudinal impairment in this domain for girls with 
ADHD: Namely, a decline in math achievement standard 
scores from childhood to adolescence among girls with 
ADHD despite improvement in math in a matched compari-
son group and despite no group differences in reading pro-
gression over time (Hinshaw et  al., 2006). Yet it remains 
unclear how math skills continue to develop in girls with 
ADHD and whether this lag in math performance continues 
through adulthood.

Cognitive Predictors of Math Developmental 
Trajectories

Given the potential benefits of early intervention for learn-
ing challenges, research on potentially malleable child fac-
tors that predict girls’ later math trajectories is a priority. 
Research on math and ADHD suggests that cognitive func-
tions are likely candidates. Indeed, in the literature on 
ADHD, executive functioning (EF) has received wide-
spread attention, given that many individuals with ADHD 
display clear deficits in this area (e.g., Willcutt et al., 2005). 
Although the nature of EF is still debated, we define EF as 
a multidimensional construct composed of diverse yet inter-
related cognitive control mechanisms that support goal-
directed behaviors (e.g., planning, response inhibition, 
sustaining attention, working memory [WM]; e.g., 
Diamond, 2013; Friedman & Robbins, 2022; Pennington & 
Ozonoff, 1996). Based on prior evidence, we highlight one 
subcomponent of EF (WM, the ability to hold information 
in mind long enough to complete operations), plus a mea-
sure of global EF (involved in higher-order goal-oriented 
behaviors, such as planning and strategizing).

Linked with prefrontal brain regions and their intricate 
interconnections elsewhere (e.g., Friedman & Robbins, 
2022; Pennington & Ozonoff, 1996), EFs play different 
roles in the learning of math facts, concepts, and procedures 
over time (Cragg & Gilmore, 2014). Previous longitudinal 
research on links between childhood EFs and adolescent 
outcomes in girls with ADHD reveals that, out of several 
childhood EFs (global EF, WM, response inhibition, sus-
tained attention), only WM and global EF predicted late-
adolescent math performance (Miller et al., 2012). Yet it is 
unknown whether these childhood EFs predict math skills 
into adulthood. In fact, as math complexity increases across 
adolescence and adulthood, these EFs may be increasingly 
needed to perform tasks such as planning steps to approach 
math problems and to hold complex information in mind 
while performing steps.

Finally, processing speed (PS) is another cognitive capac-
ity linked with both ADHD (e.g., Condo et al., 2022; Cook 
et  al., 2018) and academic achievement (e.g., Caemmerer 
et al., 2018). Defined as the capacity to perform mental oper-
ations quickly (e.g., Bull & Johnston, 1997; Cook et  al., 
2018), PS is associated with white-matter tracts in temporal, 
parietal, and frontal lobes (Turken et al., 2008). It supports 
math calculation in typical development (e.g., Bull & 
Johnston, 1997; Caemmerer et al., 2018), even on untimed 
tasks (Child et al., 2019; Willcutt et al., 2013). Both PS defi-
cits and academic difficulties are linked specifically with the 
inattentive symptom domain (e.g., Condo et al., 2022). Still, 
long-term prospective relations between PS and math 
achievement in ADHD are unknown. As academic demands 
increase over time, math learning processes might be increas-
ingly affected by slow PS, such as note taking, keeping up 
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with classroom lectures, and completing assignments in a 
timely manner. Thus, childhood PS difficulties might also 
predict increasing math difficulties over time.

Present Study

The goals of the present study are as follows: (a) Characterize 
the development of math achievement in girls with child-
hood diagnosed ADHD versus neurotypical comparison 
girls from childhood to early adulthood. Because of higher 
rates of academic difficulties, we predict that girls with 
ADHD will show slower growth over time in math perfor-
mance compared to girls with typical development. (b) 
Identify childhood cognitive predictors of math trajectories, 
including WM, global EF, and PS. Given the evidence 
reviewed above, we predict that difficulties in all three 
domains will predict slower growth in math performance 
over time.

Method

Participants and Procedure

The Berkeley Girls with ADHD Longitudinal Study began 
in the late 1990s to redress a lack of research on girls and 
women with ADHD (Hinshaw, 2002). A sample of 140 girls 
with ADHD and an age and race/ethnicity matched com-
parison sample (88 girls) enrolled in the study via research-
oriented summer camps (age range = 6–12). Recruited 
from a variety of medical/mental-health/community 
sources, girls lived in homes in which English was the pri-
mary language and did not have intellectual disabilities, 
psychotic symptoms, clear neurological damage/injury, or 
medical issues precluding summer camp involvement (see 
below under Measures for inclusion criteria for the ADHD 
and comparison groups). Selected to reflect regional demo-
graphics, the sample included 53% White, 27% Black, 11% 
Latina, and 9% Asian-American girls. Socio-economic sta-
tus (SES) was highly variable, ranging from receipt of pub-
lic assistance to professional status. For further detail on 
participant demographic and background characteristics, 
see Supplement and Table S1 as well as Hinshaw (2002).

The summer programs involved extensive, multisource 
and multi-informant data collection, including measures of 
parenting and socioenvironmental constructs, objective 
tests of neurocognitive ability, and observational data. For 
girls receiving stimulant medications, testing was con-
ducted during unmedicated periods. Prospective follow-up 
data collection occurred every 5 to 6 years. At Wave 2, ages 
ranged from 11 to 18 years; at Wave 3, 18 to 23 years; and 
at Wave 4, 23 to 29 years. Retention was strong (92%–95%) 
at each wave. Girls participating in follow-up were similar 
to those who did not (e.g., no significant racial/ethnic differ-
ences, differences in mother’s report of child ADHD 

symptoms, or differences in child academic achievement), 
but the retained sample at Wave 4 was higher in SES, lower 
in teacher reported ADHD symptoms, and higher full-scale 
intelligence quotient (IQ) than those who were lost to fol-
low-up (see Owens & Hinshaw, 2016).

Measures

Measures were from Wave 1, except math scores, which 
were collected at all four waves. See Supplement/Table S1 
for means and standard deviations of baseline study vari-
ables in each group.

ADHD Diagnosis.  Initial study screening included parent and 
teacher ratings on the Swanson, Nolan, and Pelham Rating 
Scale, 4th edition (SNAP-IV, Swanson, 1992). Afterwards, 
trained clinicians confirmed ADHD symptoms using the 
Diagnostic Interview Schedule for Children, 4th edition 
(DISC-IV) parent interview, which has test–retest reliability 
for ADHD diagnosis (measured in a clinical sample) of 
kappa = 0.79, as well as sufficient evidence of the validity 
of previous DISC versions from which the DISC-IV was 
adapted, including an inter-interviewer agreement (between 
lay interviewers and clinician interviewers in a community 
sample) of kappa = 0.60 (see Schwab-Stone et al., 1996 and 
Shaffer et al., 2000, for additional detail). Final study eligi-
bility for the ADHD sample involved meeting ADHD crite-
ria on both parent/teacher-reported ratings and the DISC-IV. 
The comparison group did not meet criteria for ADHD (see 
Hinshaw, 2002).

SES.  We scaled maternal education from 1 to 6 (1 = less 
than 8th grade, 2 = some high school, 3 = high school or 
GED completed, 4 = some college, 5 = BA/BS completed, 
6 = advanced or professional degree) (M = 4.79, SD = 
0.95) and family income from 1 to 9 (1 = less than $10,000, 
2 = $10–20,000, 3 = $20–30,000, 4 = $30–40,000, 5 = 
$40–50,000, 6 = $50–60,000, 7 = $60–70,000, 8 = $70–
75,000, 9 = more than $75,000) (M = 6.43, SD = 2.57). As 
in prior research from this study (e.g., Owens & Hinshaw, 
2016), SES comprised the standardized average of maternal 
education and income.

IQ.  Administered by highly trained graduate students, the 
well-validated Wechsler Intelligence Scale for Children, 
Third Edition (WISC-III, Wechsler, 1991) measured IQ. 
Full-scale IQ reliability coefficients range from .94 to .97 
across different age groups.

PS.  From the well-validated WISC-III, we used the PS Fac-
tor, which comprises the Symbol Search subtest (visually 
detecting target symbols from a set as quickly and accu-
rately as possible), which has a test-retest reliability of 0.76, 
and the Coding subtest (using a key to write a series of 
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symbols corresponding to a series of boxes quickly and 
accurately), which has a test–retest reliability of 0.79 (note 
that split-half internal consistency metrics are not appropri-
ate for speeded tests such as those that comprise the PS Fac-
tor, so the WISC-III manual instead reports test–retest 
reliability for these subtests, Wechsler, 1991). These tasks 
leverage visual processing, thinking, and motor speed dur-
ing relatively simple nonverbal problems.

WM.  We used the WISC-III Backward Digit Span score 
from the Digit Span Subtest (which has a split-half subtest 
reliability of 0.85, Wechsler, 1991), which involves listen-
ing to series of numbers and repeating them backwards. It 
requires leveraging WM to hold the information in mind 
and manipulate the information for the intended result.

Global EF.  The Rey–Osterrieth Complex Figure Test (Rey, 
1941) involves copying a complex figure. The copy trial—in 
which participants draw the figure on a blank page while see-
ing the figure—was used in the present analyses; it captures 
several skills such as visual-motor integration, organization/
planning, WM, and cognitive control, so we consider it a 
measure of global EF. Multiple studies provide evidence that 
this task indexes EF. Early examinations distinguished 
patients with frontal lobe lesions from those without (Lezak, 
1995), and scores are correlated with other measures of EF 
(e.g., Sami et al., 2004; Watanabe et al., 2005). Several scor-
ing procedures exist; measurement varies vastly by scoring 
procedure, as some scoring procedures possibly detect visuo-
spatial skills instead of EF (e.g., Weber et al., 2013). We used 
the error proportion scoring system (EPS: total errors/total 
number of moves), which taps global EF, highlighting plan-
ning skills (see Sami et al., 2004 for details and validity). The 
EPS is an adapted version of the developmental scoring sys-
tem error score (Bernstein & Waber, 1996) enhanced to (a) 
avoid the floor effects found with the developmental scoring 
system, (b) capture more detail from disorganized drawings, 
and (c) highlight planning skills by creating a proportion 
score (rather than just reporting the number of errors). The 
EPS scores are significantly correlated with other EF mea-
sures, most strongly with a measure of nonverbal planning 
skills, and are more sensitive to EF impairment in children 
with ADHD than the developmental scoring system (Sami 
et al., 2004). To avoid confounding, we include visuo-spatial 
abilities (measured by the WISC Performance IQ Scale; PIQ) 
as an additional covariate in analyses including this measure. 
Higher EPS scores indicate more errors—i.e., worse global 
EF skills. Intraclass correlations of EPS between pairs of 
three primary scorers ranged from 0.87 to 0.97.

Academic Achievement.  From the validated Wechsler Indi-
vidual Achievement Test, either first or second edition 
(WIAT; Wechsler, 1992, 2001), the Math Reasoning subtest 
measures the skill of math problem-solving. Compared to 

basic math operations, math problem-solving recruits a 
wider variety of cognitive capacities (e.g., Swanson, 2011) 
and features daily applications of math (e.g., money or tell-
ing time). This subtest does not impose a strict time limit. 
The Word Reading subtest (used as a covariate in Aim 2 
supplementary models) measures word recognition, decod-
ing, and phonological awareness.

At Waves 1 and 2, we used the first edition of the WIAT. 
Wave 3 included a mix of the first edition and second edi-
tion (WIAT-II), because the second edition was released 
during this time period; Wave 4 included only the WIAT-II. 
The correlation between WIAT I and II Math Reasoning 
subtests is 0.82 (Wechsler, 2001); the WIAT I mean stan-
dard score (108.87) is 3.85 points above the WIAT II mean 
standard score (105.02). After consultation with a psycho-
metrician working with the test developer, we adjusted all 
WIAT scores (first edition) by subtracting 3.85 from each 
WIAT mean score so that the two versions could be compa-
rable. Test–retest reliability for the WIAT (first edition) 
Math Reasoning, averaged across grades, was 0.89 
(Wechsler, 1992). The test–retest reliability of the Math 
Reasoning subtest of WIAT-II, averaged across the different 
validity-sample age groups, was 0.94 (Wechsler, 2001).

In trajectory analyses, raw scores are typically optimal to 
illustrate growth over time in a domain. Yet because raw 
scores were not comparable between test editions, we 
instead used standard scores (i.e., status relative to popula-
tion-based sample). Although doing so limits answering 
certain questions about skill growth, standard scores 
enabled us to answer questions about change over time in 
the status of math skills relative to national norms.

Education Level.  Included in some secondary analyses (see 
below), participant education level at Wave 4 was coded on a 
six-point scale (range = 1–6): not completing high school; 
high-school diploma; associate’s degree (Community Col-
lege, for example); trade certificate program (beautician, 
building trades, etc.); BA or BS, secondary degree at MA or 
MS level; or completed secondary degree at PhD, MD, law 
degree, or similar (M = 2.43, SD = 1.46, Min = 0, Max = 5).

Data-Analytic Plan

Longitudinal achievement data were collected across the 
four waves, with each wave encompassing a 5- to 7-year 
age span (e.g., the Wave 2 age range is 11–18 years old). 
Trajectory analyses with each wave representing a single 
point in time would lack specificity (e.g., Wave 2 could rep-
resent preadolescence or late adolescence), particularly 
given the substantial changes in cognitive functioning that 
occur across adolescence (e.g., Gordon & Hinshaw, 2020). 
Following the recommendations of Bollen and Curran 
(2006) for developmental restructuring of longitudinal data 
for structural equation modeling (SEM), and consistent 
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with prior research in our sample (Porter et al., 2021), we 
restructured the data set by developmental periods (child-
hood: Mage = 8.7, range = 6.6–10.6; early adolescence: 
Mage = 12.2, range = 10.6–14.0; late adolescence: Mage = 
16.5, range = 13.8–19.3; emerging adulthood Mage = 21.4, 
range = 19.0–25.0; mid/late 20s: Mage = 26.3, range = 
24.0–30.0) to reflect developmental period rather than wave 
of assessment. Missing data were created by this process, so 
we used these developmental age clusters only in SEM 
analyses, as SEM handles missing data via full information 
maximum likelihood FIML estimation (see below).

Aim 1: Does Childhood ADHD Status Predict Growth in Math 
Achievement?.  We used latent growth curve models 
(LGCMs) to characterize growth in math achievement. 
Analyses were conducted in Mplus version 8.2 (Muthén & 
Muthén, 2017). First, we conducted an unconditional 
growth curve model to determine what shape of growth best 
fits the data without the inclusion of predictors. Next, child-
hood ADHD diagnostic status was included as a predictor 
of the latent intercept and latent slope, along with covariates 
(SES, full-scale IQ, see below under “Covariates” for ratio-
nale), to examine whether the rate of change in math scores 
of girls with ADHD significantly differed from that of the 
neurotypical comparisons.

Missing data were handed via FIML estimation. The 
FIML allows participants to remain in analyses as long as 
they provide data on math achievement on at least one mea-
surement occasion; it has been shown to provide unbiased 
parameter estimates (Bollen & Curran, 2006; Enders & 
Bandalos, 2001). It is highly compatible with developmen-
tal period-based data restructuring (Bollen & Curran, 2006).

To contextualize findings on change in math over time 
clinically, we also report the proportion of women in each 
group with math difficulties at each wave, the proportion of 
girls without childhood math difficulties who developed 
math difficulties by adulthood, and the proportion of girls 
with childhood math difficulties whose math difficulties 
remitted by adulthood. There seems to be agreement among 
experts that achievement scores above the 25th percentile, 
which is classified by the WIAT as the “Average” range, 
would not be clinically meaningful difficulties (Fletcher 
et  al., 2018). Still, there is disagreement among experts 
about what constitutes a meaningful learning difficulty 
below the “Average” range. Thus, we calculated math dif-
ficulties via several criteria. Evidence suggests that achieve-
ment test score cutoffs below the 16th percentile (standard 
score = 85) best identify learning difficulty-associated 
functional impairment (Brueggemann et al., 2008), so our 
criteria included math scores (a) at least 1 SD below the 
national mean (standard score <85), (b) at least 1.5 SD 
below the national mean (standard score <78), and (c) at 
least 2 SD below the national mean (standard score <70). 
This “low achievement” model of identifying learning 

difficulties offers stronger predictive ability/reliability/
validity/sensitivity than other models (i.e., IQ-achievement 
discrepancy) (e.g., Brueggemann et al., 2008).

Aim 2: Are Childhood Cognitive Capacities Related to Growth in 
Math Achievement?

Preliminary Regression Models.  We first investigated 
whether each predictor was related to long-term math per-
formance by conducting initial regressions between child-
hood (Wave 1) predictors and adult (Wave 4) math scores. 
To reduce risk of Type 1 error, we applied the Benjamini–
Hochberg alpha corrections (Benjamini & Hochberg, 1995) 
with a false discovery rate of 0.05. Given significant regres-
sions, we included predictors in the LGCM models.

We then addressed two secondary exploratory questions 
for significant predictors of Wave 4 math. (1) Are these pre-
dictive relations similar in girls with and without ADHD? 
Here, we reconducted regression analyses with childhood 
diagnosis as a potential moderator. (2) Are these predictors 
related to math specifically or academic skills more broadly? 
Here, we reconstructed regression analyses with Wave 1 
WIAT reading as an additional covariate. The same alpha 
corrections and covariates were applied as in our primary 
analyses.

LGCM.  Given significant relations with math in regres-
sion models, we used separate LGCMs to examine predic-
tors of math growth parameters. Missing data were handled 
via FIML.

Covariates.  For all analyses in Aim 1 (does ADHD pre-
dict math growth?) and Aim 2 (do cognitive skills predict 
math growth?), SES was included as a covariate given 
well-documented evidence of its association with aca-
demic scores (e.g., Sirin, 2005). For all models in Aim 2 
only, diagnostic group could be a confound (e.g., those with 
more EF deficits are more likely to have ADHD). Thus, we 
included ADHD status as an additional covariate, consistent 
with several previous studies of cognitive ability from our 
sample (e.g., Miller et al., 2012).

For Aim 1, it is debatable whether IQ should be included 
in the model given the possible risk of overcontrol (see 
Miller & Chapman, 2001). However, including it as a 
covariate helps tease apart the role of ADHD from low IQ 
in math growth, given that both are associated with aca-
demic achievement (e.g., Calub et al., 2019). Deliberating 
between options, we include IQ as a covariate in our pri-
mary analysis to be stringent, and also report supplemental 
analyses reconstructing the model without covarying IQ 
(see Supplement).

For Aim 2, core debate exists about whether IQ should 
be included as a covariate in studies of cognitive skills in 
neurodevelopmental disorders. Indeed, there is a clear risk 
of statistical “overcontrol,” given substantial shared 
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variance between IQ and different cognitive skills (Dennis 
et al., 2009). Yet because various cognitive abilities and IQ 
are interrelated, low intelligence may confound findings on 
cognitive skill predictors. Weighing the options, we covar-
ied childhood ADHD status (see above for rationale) but not 
IQ (given overlap between ADHD and IQ, see Miller & 
Chapman, 2001) in primary analyses. Yet to be as stringent 
as possible, we additionally include PIQ as a covariate in 
models with global EF, given the risk of confounding visuo-
spatial skills with the global EF measure. We also report 
supplementary LGCM analyses covarying IQ (but not 
ADHD status; see Table S2 and Supplement). In sum, we 
report analyses both with and without covarying IQ for both 
aims.

Another potential covariate that requires careful consid-
eration—because of potential overcontrol—is participant 
education level (i.e., do those with better cognitive abilities 
or those without ADHD pursue more higher education, by 
which their math skills increase over time?). However, this 
poses a chicken-and-egg question: Do trajectories of math 
predict higher-education pursuits, or vice versa? To prevent 
overcontrol, we do not include education level in primary 
analyses. When significant predictors of slope emerge in 
primary analyses, we reconstruct them, adding education 
level as an additional covariate to explore its potential role.

Finally, we examined correlations between global EF, 
WM, and PS. In the case that our regressions (each 

predictor considered in a separate model) reveal more than 
one significant cognitive predictor of math outcome, and if 
those predictors are correlated, we conducted secondary 
analyses to explore independent versus shared contributions 
of each cognitive predictor by examining correlated mea-
sures in the same model.

Results

Aim 1

Math Standard Scores Over Time.  To illustrate change in 
math levels over time graphically, we calculated average 
standard scores at each age cluster (see Figure 1). Partici-
pants both with and without ADHD declined in average 
math scores over time, and the ADHD sample mean score 
was at the 18th percentile of national norms by adulthood 
(standard score = 86).

Childhood ADHD Diagnosis and Math Difficulty Proportions 
Over Time.  Table 1 shows the percentage of girls meeting 
math difficulty criteria at each wave. At Wave 1, 1% to 15% 
of girls with ADHD exhibited childhood math difficulties, 
which increased to 22% to 48% at Wave 4. In the compari-
son sample, 0% to 7% of girls had childhood math difficul-
ties at Wave 1, which increased to 4% to 15% at Wave 4. 
Also, of the girls with ADHD without math difficulties at 

Figure 1.  Average WIAT Math Achievement Standard Score by Age Cluster.
Note. Error bars represent the standard deviations.
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Wave 1 who were retained through Wave 4, 22% to 39% 
revealed math difficulties by Wave 4 (39/99 girls with the 1 
SD criterion; 37/110 with 1.5 SD criterion; 25/116 with 2 
SD criterion). Of the comparison girls without math diffi-
culties at Wave 1 retained through Wave 4, 4% to 14% 
revealed math difficulties by Wave 4 (1SDN = 11/81, 
1.5SDN = 8/85, 2SDN = 3/85). Next, of the girls with 
ADHD with math difficulties at Wave 1 who were retained 
through Wave 4, only 1 girl no longer had math difficulties 
at Wave 4 (1SDN = 1/18, 1.5SDN = 1/7, 2SDN = 0/1). Of 
the four comparison girls with math difficulties at Wave 1 
who were retained through Wave 4, two no longer had math 
difficulties at Wave 4 (1SDN = 2/4, 1.5SDN = 0/0, 2SDN = 
0/0).

Growth in Math Achievement.  Before using LGCM and 
FIML, we examined whether data met the missing at ran-
dom assumption for FIML (i.e., someone having missing 
data in the variable being addressed by FIML is not associ-
ated with the value of the missing variable). First, we 
examined the amount of missing math data at each wave: 
Wave 1, 3 participants (1%); Wave 2, 24 participants 
(11%); Wave 3, 16 participants (7%); and Wave 4, 23 par-
ticipants (10%). To verify this assumption, as in previous 
longitudinal SEM research from this data set (Porter et al., 
2021), we leveraged data from proximal waves to estimate 
differences in the dependent variable between participants 
with and without missing data at a particular wave (e.g., to 
examine math scores in participants with Wave 2 missing 
math data, we used Wave 1 and Wave 3 math data). We 
found no significant differences in proximal math scores 

between participants with and without missing data at a 
given wave, suggesting data met the missing at random 
assumption. Missing data created by the developmental 
period restructuring approach were based on age and unre-
lated to math values, so by design met the missing at ran-
dom assumption.

We next conducted unconditional growth models (i.e., 
examining the shape of the growth in math scores, without 
including any predictors) and considered four shapes of 
growth: linear, quadratic, cubic, and unspecified (via a 
latent basis curve model by which no shape of growth was 
imposed; see Table 2 for comparisons of these models). 
Table 2 shows that linear growth models fit better than qua-
dratic and latent basis curve models. We set the loadings 
from the latent slope of the repeated math measures to 0, 1, 
2, 3, and 4, representing the different points in time, and 
fixed the loadings from the latent intercept of the repeated 
measures to 1 to have a common reference point from which 
to measure growth. Table 3 shows the parameter estimates 
of this unconditional linear model, revealing significant 
intercept and slope variances, meaning that participants var-
ied in both their initial math achievement scores and in their 
growth from childhood through early adulthood. The inter-
cept-slope covariance was not significant, which indicates a 
lack of relation between initial math scores and rates of 
change in math scores (in other words, those with higher 
childhood math scores were not more likely to have more 
growth in math scores over time).

Childhood ADHD Status and Growth in Math Achieve-
ment.  Next, we conducted LGCM with ADHD as predictor 

Table 1.  Percentage of Girls with Math Difficulties by Group and Wave.

1 SD below the mean 1.5 SD below the mean 2 SD below the mean

Wave ADHD Comparison ADHD Comparison ADHD Comparison

Wave 1 15% (21/137) 7% (6/88) 6% (8/137) 0% (0/88) 1% (1/137) 0% (0/88)
Wave 2 30% (37/123) 2% (2/81) 15% (19/123) 1% (1/88) 7% (9/123) 0% (0/81)
Wave 3 34% (44/128) 7% (6/84) 19% (24/128) 4% (3/84) 10% (13/128) 2% (2/84)
Wave 4 48% (57/120) 15% (13/85) 36% (43/120) 9% (8/85) 22% (26/120) 4% (3/85)

Table 2.  Unconditional Latent Growth Curve Models of WIAT Math Achievement.

Variable Linear growth model Quadratic growth model Cubic growth model Latent basis curve model

χ2 p-value .02 Inadmissible solutions .01
RMSEA .07 .08
CFI .98 .98
TLI .98 .97
SRMR .07 .11

Note. For RMSEA and SRMR, lower values indicate better fit. For CFI and TLI, higher values indicate better fit. No fit information is available for the 
quadratic and cubic growth models as they resulted in inadmissible solutions. For information on inadmissible solutions, see Boomsma, 1985.
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of latent intercept and latent slope of math trajectories, 
covarying SES and full-scale IQ. Model fit was acceptable, 
χ2(16) = 33.04, p = .02; Root Mean Square Error of 
Approximation (RMSEA) = .06; Comparative Fit Index 
(CFI) = .98; Tucker–Lewis Index (TLI) = .98; Standard-
ized Root Mean Square Residual (SRMR) = .06. Table 3 
shows the parameter estimates of this conditional model 
(i.e., the model with predictors/covariates): Childhood 
ADHD was coded as 1 = ADHD and 0 = comparison, so 
the negative intercept coefficient of β = −0.17, p = .004 
indicates that the expected math standard score at the first 
age cluster was lower for girls with ADHD than for com-
parisons. No variables significantly predicted the latent 
slope. Although participants with ADHD started with sig-
nificantly lower math scores than comparisons, the nonsig-
nificant slope coefficient β = −0.16, p = .26 shows that 
they did not show significantly slower math score growth 
than comparison girls. As in the unconditional model, the 
intercept-slope covariance was not significant (i.e., there 
was no significant relation between initial math scores and 
rates of change in math scores).

Aim 2

Initial Regressions Between Predictors and Math at Wave 
4.  Regression results between Wave 1 predictors and Wave 
4 math, covarying ADHD status and SES, and with Ben-
jamini–Hochberg alpha corrections, revealed that global EF 
errors (with an additional covariate of PIQ, β = −0.14 t = 
−2.19, p = .03, ΔR2 Adj. = 0.02), PS (β = 0.34, t = 5.49, 

p < .001, ΔR2 Adj. = 0.10), and WM (β = 0.32, t = 4.78, 
p < .001, ΔR2 Adj. = 0.06) significantly predicted Wave 4 
math. Thus, we included all three predictors in the LGCMs 
(see Supplement for exploratory analyses).

Predictors of Math LGCMs.  Table 4 shows conditional 
growth curve model results with PS, WM, and global EF as 
predictors of the latent intercept and latent slope of math 
scores, covarying ADHD and SES (and PIQ in the global 
EF model). The PS model fit well, χ2(19) = 27.553, p = 
.092; RMSEA = .045; CFI = .987; TLI = .983; SRMR = 
.060. The other two models fit adequately: both WM: χ2(19) 
= 39.896, p = .003; RMSEA = .075; CFI = .964; TLI = 
.953; SRMR = .050; and global EF: χ2(18) = 35.595, p = 
.03; RMSEA = .053; CFI = .981; TLI = .974; SRMR = 
.049. Both PS (β = .367, p < .001) and WM (β = .303, p 
< .001) predicted initial math. Adjusting for ADHD and 
SES, which predicted the latent intercept in all models, a 1 
SD increase in PS was associated with a .37 SD increase in 
initial (childhood) math. The same increase in WM was 
associated with a .30 SD increase in initial math. However, 
neither PS (β = .222, p = .090) nor WM (β = .105, p = 
.446) predicted rate of change in math.

Global EF was not significantly related to initial math 
when adjusting for covariates (β = 0.003, p = .965), but it 
predicted growth in math achievement over time (β = 
−0.342, p = .027). Because global EF was coded such that 
higher scores represent more errors, the negative coeffi-
cient indicates that poorer global EF predicts less increase 
in math over time. The visuo-spatial covariate, PIQ, 

Table 3.  LGCMs for Aim 1: Unconditional Growth Model and Model With Childhood ADHD Status Predicting Math Achievement.

Unconditional growth model Conditional growth model

Variable B (SE B) β (SE β) B (SE B) β (SE β)

Means  
  Intercept 99.220* (1.029) 7.345* (0.471) 30.483* (6.225) 2.303* (0.558)
  Slope −1.750* (0.268) −0.757* (0.181) −1.854 (2.438) −0.906 (1.207)
Variances  
  Intercept 182.460* (22.898) 1 45.202* (12.629) 0.258* (0.063)
  Slope 5.338* (1.905) 1 4.046* (1.877) 0.967* (0.047)
Intercept-slope covariance 1.732 (4.837) 0.055 (0.162) 3.072 (3.982) 0.227 (0.358)
Intercept on  
  ADHD −4.646* (1.601) −0.171* (0.060)
  SES 1.021 (0.723) 0.077 (0.054)
  FSIQ 0.687* (0.055) 0.752* (0.049)
Slope on  
  ADHD −0.688 (0.610) −0.164 (0.145)
  SES 0.039 (0.276) 0.019 (0.134)
  FSIQ 0.004 (0.021) 0.030 (0.151)

Note. The unconditional growth model examines the parameters of the growth model of math scores without including any predictors, whereas the 
conditional growth model includes ADHD status and covariates as predictors of math intercept/slope.
*p < .05.
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predicted initial math but did not change over time in math 
(see Table 4).

Secondary Tests

For secondary tests, including Aim 1 without IQ as a covari-
ate, Aim 2 exploratory regression models (see Method), 
Aim 2 models with IQ as a covariate, models with educa-
tion level as a covariate, and exploration of correlations 
between Aim 2 predictors, see Supplement Materials.

Discussion

We sought to characterize 16-year math developmental tra-
jectories in girls with and without childhood ADHD and 
identify childhood cognitive predictors of trajectories. Girls 
with ADHD started in childhood and ended in adulthood 
with significantly lower math scores than the comparison 
sample (see Gordon & Hinshaw, 2020 for cross-sectional 
comparison in adulthood). Both girls with and without 
ADHD declined in average standard scores from childhood 
to adulthood, and contrary to our hypothesis, the group dif-
ference in rates of change was not statistically significant. 
Change in math over time was also not related to initial 
math skill levels.

Although the change in math scores over time in the 
comparison sample was clinically nominal, the low math 

scores of the ADHD sample in childhood, plus their decline 
across development, yielded average scores by adulthood in 
the 18th percentile of national norms, compared to the 37th 
percentile in childhood. We consider this finding clinically 
meaningful for several reasons. First, considering the pro-
portion of math difficulties in the ADHD sample (and 
depending on the learning difficulty criteria used), math dif-
ficulty rates increased from 1% to 15% in childhood to 22% 
to 48% in adulthood. There was a lesser increase in the 
comparison sample (from 0% to 7% in childhood to 4% to 
15% in adulthood). Second, from another angle, a notable 
portion of girls with ADHD without math difficulties in 
childhood revealed difficulties later in development (i.e., of 
the girls without childhood math difficulties, 22% to 39% of 
girls with ADHD gained math difficulties by adulthood, 
compared to 4% to 14% of comparison girls). Moreover, 
childhood math difficulties were persistent across 16 years. 
When considering the 22 girls with childhood math difficul-
ties in the full sample, only 3 girls no longer exhibited math 
difficulties in adulthood.

The math difficulties experienced by these women may 
well affect their daily life functioning. Indeed, the WIAT 
math problem-solving test involves daily life applications 
such as money, time, measurement, and interpreting graphs 
and charts. Some evidence exists linking math test scores to 
daily life financial functioning and other daily life skills 
linked to math (e.g., measurement, interpretation of graphs, 

Table 4.  LGCMs With Childhood Predictors and Math Achievement (Aim 2).

Processing speed (PS) Working memory (WM)
Global executive functioning  

(Global EF)

Variable B (SE B) β (SE β) B (SE B) β (SE β) B (SE B) β (SE β)

Means  
  Intercept 72.905* (6.375) 5.408* (0.663) 96.037* (3.143) 7.308* (0.589) 48.056* (7.158) 3.615* (0.669)
  Slope −4.583* (1.955) −2.125* (0.972) −1.987* (0.960) −0.889 (0.475) 0.936 (2.535) 0.445 (1.200)
Variances  
  Intercept 106.816* (17.450) 0.588* (0.068) 111.457* (18.028) 0.645* (0.070) 65.737* (15.621) 0.372* (0.071)
  Slope 4.315* (1.894) 0.928* (0.066) 4.840* (1.916) 0.969* (0.043) 3.845 (2.045) 0.868* (0.100)
Intercept-slope covariance −0.790 (4.576) −0.037 (0.206) 0.735 (4.617) 0.032 (0.204) 2.662 (4.574) 0.167 (0.336)
Intercept on  
  ADHD −10.374* (1.856) −0.376* (0.065) −10.761* (1.944) −0.406* (0.070) −7.741* (1.783) −0.284* (0.065)
  SES 2.399* (0.886) 0.177* (0.065) 2.297* (0.946) 0.171* (0.070) 2.054* (0.803) 0.154* (0.060)
  PIQ 0.544* (0.061) 0.602* (0.062)
  PS 0.316* (0.058) 0.367* (0.064)  
  WM 2.203* (0.554) 0.303* (0.073)  
  Global EF 0.202 (4.641) 0.003 (0.065)
Slope on  
  ADHD −0.464 (0.563) −0.105 (0.126) −0.526 (0.583) −0.117 (0.128) −0.458 (0.614) −0.106 (0.142)
  SES −0.001 (0.271) 0.000 (0.125) 0.052 (0.285) 0.023 (0.125) 0.012 (0.279) 0.005 (0.132)
  PIQ −0.014 (0.021) −0.098 (0.151)
  PS 0.031 (0.018) 0.222 (0.131)  
  WM 0.130 (0.168) 0.105 (0.138)  
  Global EF −3.836* (1.629) −0.342* (0.155)

Note. Focal parameters are in bold.
*p < .05.



10	 Journal of Learning Disabilities 00(0)

Agarwal & Mazumder, 2013; Johnson & Blalock, 1987). 
Moreover, academic skills are linked to several domains of 
later well-being in girls with ADHD (e.g., Guendelman 
et al., 2016; Owens & Hinshaw, 2016, 2020).

Why did both groups decline in math standard scores 
over time? Considering our comparison sample, given that 
their average math score started a few points above the pop-
ulation average at Wave 1 and became closer to average 
across time, their decline might simply reflect regression to 
the mean. Alternatively, societal barriers to advancement in 
mathematics faced by women might have reduced opportu-
nities for the women in our study to have practiced math, 
resulting in standard score declines (i.e., slower growth) 
relative to the population (mix-gendered) average in both 
the ADHD and comparison groups.

It is surprising that contrary to our expectations, ADHD 
did not predict math slope, particularly given that global EF 
predicted math slope and given that EF difficulties are com-
monly associated with ADHD. We note that not all children 
with ADHD exhibit EF deficits, and indeed, there is hetero-
geneity in EF presentations in children with ADHD (e.g., 
Willcutt et al., 2005). Thus, it could well be that because our 
ADHD predictor was categorical, and because our EF pre-
dictor was continuous, those with higher EF in our ADHD 
sample may have diluted the relation between ADHD and 
math growth. In contrast, girls with very low EF might have 
been highlighted in the model with the continuous measure 
of EF. Considering another possible explanation, because 
ADHD is associated with lower math scores at all time 
points including baseline, features associated with ADHD 
(beyond just EF) may contribute to math deficits consis-
tently over time, whereas the specific relation between 
global EF and math might strengthen across development. 
This supposition is consistent with our finding that global 
EF predicted math slope and adult math scores but not ini-
tial childhood math scores (see below for more detail on the 
relation between EF and math growth over time).

Addressing our second aim: Results of preliminary 
regressions revealed that the childhood cognitive measures 
we examined (global EF, WM, PS) were all significant pre-
dictors of adult math. These predictive relations were not 
different between the ADHD and comparison groups. In our 
growth curve models, although we expected all cognitive 
measures to predict change in math scores over time, only 
the measure of childhood global EF significantly predicted 
math slope (note that inclusion of several covariates 
enhanced the stringency of our analyses). The global EF 
measure highlights the higher-order EF skill of planning/
strategizing (Sami et  al., 2004) and may recruit relevant 
lower-order cognitive abilities that work together to enable 
planning to occur, such as attention, inhibitory control, 
visuo-spatial skills, WM, and PS. Indeed, all of these skills 
may well be useful for successful math performance across 
development.

Yet WM, PS, and visuo-spatial skills (i.e., PIQ) did not 
predict math growth. As well, covariation of visuo-spatial 
skills did not alter the global EF findings. Moreover, previ-
ous research suggests that measures of response inhibition 
and sustained attention do not predict long-term math 
(Miller et al., 2012). We believe these data suggest that a 
key higher-order EF—planning—is a good candidate for 
future research on long-term math growth. In one promising 
direction, there is evidence of malleability of the planning 
skills of adolescents with ADHD from clinical intervention 
such as the Homework, Organization, and Planning Skills 
(HOPS) program (Breaux et  al., 2019; Langberg et  al., 
2012) and the Challenging Horizons Program (CHP) (Evans 
et al., 2016), which have been shown to improve organiza-
tional and academic functioning. Still, more research is 
needed on applications to math. Of note, the relation 
between EF and later math was not moderated by diagnostic 
group, indicating that childhood EF might be a transdiag-
nostic indicator of later long-term math growth.

The EF impairments in girls with ADHD tend to persist 
through adolescence and adulthood even when ADHD 
symptoms have remitted (Gordon & Hinshaw, 2020). Thus, 
it could well be that as math complexity increases across 
development, global EF increases in importance for math 
performance. As well, as girls mature into adulthood, their 
parents and teachers might take less responsibility for help-
ing them plan how to approach schoolwork/homework, 
thereby increasing recruitment of girls’ own EF skills to 
facilitate classroom success. Delineating specific dynamics 
of how global EF might play a role during the process of 
math problem-solving and math learning in individuals 
with ADHD is a key area for future research.

Knowledge of these long-term math trajectories may 
help families/schools plan for the future. Providing aca-
demic supports may be important for girls with ADHD/EF 
difficulties before adolescence/adulthood, as math prob-
lems may emerge or persist. This approach differs from 
standard practices for learning interventions, which reflect 
current rather than anticipated future performance (e.g., 
Greenwood et al., 2011). Early detection of learning diffi-
culties is crucial, given greater success of earlier rather than 
later intervention (Fletcher et al., 2018). For early support 
of math skills specifically, recent recommendations support 
early discernment of the types of math skills difficulties in 
each child, followed by intensive instruction tailored to 
those specific math difficulties. Fuchs et al. (2021) provide 
more information about this approach and present a helpful 
list of relevant intervention steps and instructional design 
tips.

Why did PS and WM fail to predict the development of 
math over time? Given that PS and WM predicted both ini-
tial and adult math but not change in such scores, it may be 
that they are more important for math performance during 
testing than for math learning over time. It could also be 
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that they are similarly important for math across different 
developmental periods. Regardless, given that their rela-
tions with math, monitoring WM and PS in girls with 
ADHD and providing relevant accommodations (e.g., 
breaking down instructions into manageable pieces) for 
girls with WM and PS difficulties could enhance successful 
math performance.

Limitations of our measures might also help explain 
results. Considering PS, we used a measure that is nonlin-
guistic and relatively simple. Yet it may be that more com-
plex measures of PS that recruit language are more strongly 
linked to math difficulties (e.g., Moll et al., 2016). Still, we 
note that our relatively basic PS measure predicted math 
skills 16 years later. As for math measurement, we used two 
different versions of the WIAT at different measurement 
occasions. Despite good concordance between versions and 
despite our adjusting for score differences, slight differ-
ences in test content or standardization may have been a 
possible confound. Finally, our sample is not necessarily 
representative nationally or internationally.

Future research on math trajectories should also include 
boys. It would also benefit from examination of parenting, 
stereotype threat, math anxiety, psychiatric comorbidities, 
and peer/familial/teacher beliefs. Clinical trials are needed 
to examine the influence of stimulant medication and psy-
choeducational interventions. Investigation of other aca-
demic trajectories, including reading skills, is also critical. 
Although math problem-solving has the benefit of reflect-
ing some “real-world” math applications, future research 
should also include other math measures, such as the 
Numerical Operations subtest of the WIAT (which mea-
sures math calculation skills). Measurement of “daily life” 
EF (particularly EFs as they are used during math problem-
solving or learning math) in relation to math trajectories is 
also a priority. In addition, above and beyond neuropsycho-
logical measures of EF, future research should examine 
school impairment (e.g., special education involvement, 
grade retention, grade point average, suspensions) in rela-
tion to math trajectories, because school impairment impor-
tantly captures the daily life burdens associated with ADHD 
(Barkley, 2016).

More globally, although girls perform well in math in 
school when equal opportunities are available (e.g., Else-
Quest et  al., 2010), evidence also suggests that societal 
gender parity in school/career/mentorship opportunities, as 
well as stereotypes and societal perceptions, influence 
girls’ math performance and pursuit of continued higher 
math education (e.g., Else-Quest et al., 2010; Good et al., 
2008). As well, attitudes about ADHD may also influence 
long-term math performance (e.g., Foy, 2018). We raise 
these points to emphasize that the low math scores, on 
average, exhibited by our ADHD sample through early 
adulthood should not give rise to further stereotypes or low 

expectations. Instead, early detection/intervention should 
be prioritized.
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