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”...language is a gift as dangerous to humanity as the horse was to the Trojans:

it offers itself to our use free of charge,

but once we accept it,

it colonizes us.”

—Slavoj Žižek

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . xii

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . xiii
0.1 Education . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
0.2 Technical Skills . . . . . . . . . . . . . . . . . . . . . . . xiii
0.3 Research Projects . . . . . . . . . . . . . . . . . . . . . . xiii

0.3.1 Cognitive and Information Sciences . . . . . . . . xiii
0.3.2 Interdisciplinary . . . . . . . . . . . . . . . . . . . xiii

0.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . xiv
0.5 Conference Presentations . . . . . . . . . . . . . . . . . . xiv
0.6 Honors, Awards, and Training . . . . . . . . . . . . . . . xv
0.7 Certifications . . . . . . . . . . . . . . . . . . . . . . . . xvi
0.8 Teaching Work Experience . . . . . . . . . . . . . . . . . xvi
0.9 Languages . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.10 Service and Leadership . . . . . . . . . . . . . . . . . . . 1

Chapter 1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Hierarchical Temporal Structure . . . . . . . . . . . . . . 3
1.2 Information Transfer . . . . . . . . . . . . . . . . . . . . 5
1.3 Speech, Music, and Cortical Activity . . . . . . . . . . . 7
1.4 Acoustic Information Retrieval . . . . . . . . . . . . . . . 10
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2 Relating Multiscale Linguistic Units with Acoustic Features of
Natural Conversations from the Buckeye Corpus . . . . . . . . 14
2.1 Emergent Structure of Language & Speech . . . . . . . . 15
2.2 Measuring Interlocutor Coordination . . . . . . . . . . . 17
2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Data Acquisition . . . . . . . . . . . . . . . . . . 19
2.3.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . 21

vi



2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 3 Effects of Speaking Rate and Naturalness on Hierarchical Tem-
poral Structure of Speech . . . . . . . . . . . . . . . . . . . . . 31
3.1 Producing Hierarchical Temporal Structure . . . . . . . . 32
3.2 Coupled Dynamics . . . . . . . . . . . . . . . . . . . . . 34
3.3 Analyses of Speaking Rate and Naturalness . . . . . . . . 35
3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Data Acquisition . . . . . . . . . . . . . . . . . . 37
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 4 The Search for Auditory Stimuli Structure in EEG Responses 45
4.1 Processing Temporal Structure . . . . . . . . . . . . . . . 46
4.2 Allan Factor Paradigm . . . . . . . . . . . . . . . . . . . 48
4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Data Collection . . . . . . . . . . . . . . . . . . . 50
4.3.2 ICA . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.3 Allan Factor . . . . . . . . . . . . . . . . . . . . . 51
4.3.4 Classification . . . . . . . . . . . . . . . . . . . . 52

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Complexity Matching . . . . . . . . . . . . . . . . . . . . 55
4.6 Limitations of Timeseries Approaches . . . . . . . . . . . 59

4.6.1 Detrended Fluctuation Analysis . . . . . . . . . . 59
4.6.2 Multiscale Entropy . . . . . . . . . . . . . . . . . 61
4.6.3 Allan Factor and Limitations . . . . . . . . . . . . 62

4.7 Repeated Measures . . . . . . . . . . . . . . . . . . . . . 63
4.8 Localization . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 5 Image-Based EEG Classification of Brain Responses to Song
Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.2 Comparisons . . . . . . . . . . . . . . . . . . . . . 76
5.3.3 Input Representations . . . . . . . . . . . . . . . 79
5.3.4 Transfer Learning . . . . . . . . . . . . . . . . . . 80
5.3.5 Validation & Generalization . . . . . . . . . . . . 80

vii



5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Chapter 6 EEG2MEL: Reconstructing Sound From Brain Responses to
Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.2 Model Training . . . . . . . . . . . . . . . . . . . 91

6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . 93
6.3.1 Representations . . . . . . . . . . . . . . . . . . . 93
6.3.2 Spectra to Music . . . . . . . . . . . . . . . . . . 97

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Chapter 7 The Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.1 The Limitations . . . . . . . . . . . . . . . . . . . . . . . 102
7.2 Anticipating . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.3 The AI Inclusion . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

viii



LIST OF FIGURES

Figure 2.1: Syllables were feature extracted based on a 1-8 sonority scale
tagged onto phones. Syllable boundaries as shown above were
created when the sonority value increased. Durations were cal-
culated by subtracting the onset time of the current unit from
the adjacent identified unit as pointed by the yellow arrows. . . 19

Figure 2.2: Breath groups were feature extracted based on continuous strings
of words without interruptions. Any word before a non-speech
label was omitted from the breath group and its onset used as a
duration stop reference because of transcription errors in times-
tamping non-speech labels that came with the data set. Yellow
arrows reflect that rule by avoiding the crossed-out units as a
starting point for duration reference. . . . . . . . . . . . . . . . 20

Figure 2.3: This graph contains example AF functions of 4 participants.
Across the 11 timescales measured, their AF score scales to have
typical slopes for speech categories as tested in [Kello et al., 2017]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.4: Change in R2 for every A(T )i used as a response variable, where
i is a level in the AF function. . . . . . . . . . . . . . . . . . . . 23

Figure 2.5: Change in R2 for every A(T )i used as a response variable using
each linguistic feature rate as a predictor. Markers of each line
demonstrate p < 0.05 F-Test significant models. . . . . . . . . 24

Figure 2.6: Change in R2 for every A(T )i used as a response variable using
each linguistic feature CoV as a predictor. Markers of each line
demonstrate p < 0.05 F-Test significant models. . . . . . . . . . 25

Figure 2.7: Model R2 values of coefficient of variance (CoV) and rate pre-
dictors of fast and slow timescale slopes. Asterisks indicate
p < 0.05 F-Test significant models. . . . . . . . . . . . . . . . . 26

Figure 3.1: Left: AF functions of the original Obama speech, and fast
and slow versions. Right: AF functions of the fast and slow
teleprompter conditions. . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.2: Mean AF functions for TED talks and their two different syn-
thesized versions, Google text-to-speech and sine wave speech.
The AF function for Obama’s speech is shown for comparison. . 39

Figure 3.3: Linear and quadratic coefficients for fast versus slow speech,
and natural versus synthesized speech. The two different manip-
ulations had the same effect on linear coefficients, but opposite
effects on quadratic coefficients. . . . . . . . . . . . . . . . . . . 41

ix



Figure 4.1: AMICA components of individual participants were put through
K-means clustering and broken down into 9 clusters contain-
ing components across participants. First panel (left) shows
a heatmap of spectral clustering and the second panel (right)
breaks down components by dipole fitting locations. The first
cluster at the top left of both panels contains components that
were located outside the cortex and treated as artifacts, as well
as components that were over 15% variance in the group. . . . . 51

Figure 4.2: An example of peak amplitude event selection into a time series
is shown for the electronic dance music stimulus (top) and a
corresponding EEG response (bottom) of a 100 second length.
For both top and bottom panels, the first section shows the
signal waveform, followed by its Hilbert envelope, and lastly
the time series in which the AF statistic is applied to. . . . . . 53

Figure 4.3: AF functions for the down-sampled auditory stimuli are pre-
sented above with ‘hermit’ referring to the Hermit thrush bird
song and ‘symph’ referring to classical music symphonies. . . . 55

Figure 4.4: Aggregated Allan Factor functions of ICA components are av-
eraged by condition across clusters. . . . . . . . . . . . . . . . . 56

Figure 5.1: 1) the raw and 2) the PSD input representations of participant
1 at the 100th second of song 1. 2) one second PSD at 125 hz
produced up to 63 Hz frequency components. . . . . . . . . . . 73

Figure 5.2: Left, the confusion matrix for the original model. Right, results
from the original model sorted by ascending BPM. . . . . . . . 81

Figure 6.1: Visualization of music reconstruction in our study. Brain re-
sponses from music listening are processed by deep regressors
and retrieved music is played back to new participants. . . . . . 87

Figure 6.2: On the left are the two types of input representations we test,
and on the right the two types of target representations for a
total of 4 model combinations as labeled by each arrow. All
representations come from Participant 1 at the 100th second. . 89

Figure 6.3: Distributions of SSI and PSNR scores across target represen-
tations, along with their mean score. . . . . . . . . . . . . . . . 93

Figure 6.4: Distributions of SSI and PSNR scores across target represen-
tations, along with their mean score. . . . . . . . . . . . . . . . 95

Figure 6.5: Five second examples of model spectra predictions (left) and
their reconstructions from spectra to sound wave (right). Ex-
amples come from the 10th second across randomly selected
participants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

x



LIST OF TABLES

Table 4.1: The average AF slopes from ICA components organized condi-
tions and condition order and their standard errors are presented.
Slopes come from a linear fit on the longest timescales where the
biggest differences exist. . . . . . . . . . . . . . . . . . . . . . . 55

Table 5.1: Details of the proposed architecture. Input: The raw portrait of
EEG signal. Output: The class labels associated to music genre. 75

Table 5.2: Grand performance summary of all our models. Top panel shows
results for our models trained on raw input and classification of
the song or its enjoyment. Bottom panel shows results for models
trained on the different feature sets tested. . . . . . . . . . . . . 77

Table 5.3: Summary of studies that try to classify EEG responses to an ID
label of complex auditory stimuli. . . . . . . . . . . . . . . . . . 79

Table 6.1: Architecture used in our deep regressors. This specific model
was trained on the NMED-H dataset with a spectral input and
mel-spectra music target. . . . . . . . . . . . . . . . . . . . . . 90

Table 6.2: Summary of reconstruction models’ output classification across
the four representation combinations. Each representation is
shown with its data shape for 1 sec in parentheses. . . . . . . . 92

xi



ACKNOWLEDGEMENTS

Thanks to all my friends, whom have shared drinks, laughs, stories, deep con-

versations, and tears. I want to also thank 17th street, Little Oven’s, and all the

usual local businesses that have upheld a space for building community.

xii



0.1 Education

Ph.D., Cognitive Information Science, University of California, Merced, Merced,

CA, 2016 - 2022

B.S., Cognitive Science, University of California, Merced, Merced, CA, 2012 -

2016

0.2 Technical Skills

Python – [Keras-TensorFlow, Sci-Kit Learn, Pandas, MNE]

Matlab – [EEG Lab, Linear Mixed Effects Modeling]

R-Studio – [Linear Mixed Effects Modeling]

0.3 Research Projects

0.3.1 Cognitive and Information Sciences

• Complexity matching between auditory stimulus and EEG brain response

• Computer Vision Architectures for Processing EEG Responses to Music Lis-

tening

• Linear Mixed Effects Modeling with the Buckeye Corpus, relating linguistic

units and acoustic information

0.3.2 Interdisciplinary

• Deep learning researcher in ’automated classification of giant unilamellar vesicle

image scans’ project

xiii

https://github.com/AGRamirezz/EEG_Complexity_Matching
https://github.com/AGRamirezz/Buckeye_Allan_Factor
https://github.com/AGRamirezz/Buckeye_Allan_Factor


• Collaborator in ICGE research group, product concept development integrating

edge computing devices with research models predicting precise air quality in

impoverished regions

• Project lead in IAS NRT research group, testing human orienteering perfor-

mance on hyperbolic and euclidean network space via experimental game set-

ting

0.4 Publications

[1] Schneider, S.,Ramirez-Aristizabal, A. G., Gavilan, C., Kello, C. T. (2019).

Complexity Matching and Lexical Matching in Monolingual and Bilingual

Conversations.Bilingualism: Language and Cognition.

[2] Dale, R., Galati, A., Alviar, C., Contreras Kallens, P.,Ramirez-Aristizabal,

A. G.,Tabatabaeian, M., Vinson, D. W. (2018). Interacting Timescales in

Perspective Taking. Frontiers in Psychology, 9, 1278.

[3] Ramirez-Aristizabal, A. G., Médé, B., Kello, C. T. (2018). Complex-
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Chapter 1

Summary

Complex acoustic signals such as speech and music are central to how people

coordinate and communicate temporally. These signals can be described by the way

their variability of acoustic energy is built across scales of time. Their structures

have been shown to be reflected as people interact with others, themselves, and

their environment. The studies in the following chapters show evidence to this

end through development of acoustic and linguistic statistical methods, behavioral

measurements of speech coordination & production, a behavioral to neural exper-

imental paradigm on measuring temporal structure, and finally new deep learn-

ing approaches aiding in answering unresolved questions of the prior experimental

paradigm. Theoretical predictions on information transfer have guided expectations

across several experimental paradigms relating to this topic, which have brought

about a line of successful behavioral studies. But when presented with measurements

that face techno-methodological difficulties, such as teasing apart the structure of

speech or music in cortical activity, these predictions lead empiricists with a fork in

the road. On one path we are faced with the challenge of explicitly looking for the

hierarchical temporal structure that defines these signals in human behavior, but

at the cost of over parameterizing the experimental controls in data collection. On

the other hand, we can simply develop deep learning models that boldly assume the

existence of these temporal structures in human behaviors through their training

procedures but validates what could easily be an erroneous assumption through the

strength of its predictive power. Finally, the chapters here will synthesize results

2
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from both experimental and computational modeling approaches, outlining how the

epistemic feedback loop of theoretical predictions, data collection, and the creation

of new testable hypothesis from a Complex Systems & Dynamics framework of cog-

nition has shaped our understanding of acoustic temporal structure as it moves

through our mouths, bodies, and brains.

1.1 Hierarchical Temporal Structure

When we ask questions about the structure of a system, we seek to understand

how a specific system is composed. Furthermore, we can ask whether its composi-

tion defines functionality of the system i.e., whether we can attribute the behavior

of a system to its compositional specifications. For example, we can think back

to a traditional grade school system model such as the atom and ask ourselves

these same questions to better understand it. Depending on when you took your

first chemistry or physics class and the pedagogical limitations of your academic

institutions in primary education, you most likely had a variation of the Niels

Bohr planetary model, or the Erwin Schrodinger quantum model assessed on your

exams. Both models make an argument for the topography of electrons either

following fixed orbits or a probabilistic state of trajectory as they travel around

the nucleus. In these cases, the differences in how their structures are composed

have shown a difference in their capability to explain the behavior of electrons,

with the quantum model having a stronger generalization across different types of

newly discovered atoms over the years [Kragh, 2012]. With this, it buys scientists

a method to now put testable hypotheses across many different scenarios of atomic

variability and it allows for predictions of behaviors to be made when measuring

the interaction in more complex procedures.

Moving beyond the common reductionist example of atoms and the passé moti-

vation of understanding the natural world through its most irreducible component

structure, we go towards an understanding of systems that is motivated by the

measurement of emergent properties across the interactions of system component

structures. For example, we can think of the defining features of water such as its
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polarity or high heat capacity, and how that property of a water system is not con-

tained in hydrogen or oxygen on its own. Rather, this is a property that emerges

from the specific interactions of atoms and molecules. Therefore, studying only hy-

drogen or oxygen does not tell you much about the systems that it builds at larger

scales, and the search for the most irreducible component structure becomes irrel-

evant to understanding the totality of the natural world. This approach can also

be explained as understanding the complexity of a system i.e., the different levels

of a system that are responsible for the emergent behaviors from its structural

components. Common examples of complex systems and their emergent behaviors

consist of ant colonies, the immune system, the world wide web, economies, the

brain, and the mind. Ants much like neurons, are simple low-level components of

their systems. On their own they demonstrate a limited behavioral capacity, but

their coordinated interactions demonstrate behaviors not expected to arise from

observing the individual components [Hofstadter, 1979].

When measuring the behaviors of complex systems, we can also measure how

their behaviors at different scales of time interact to produce complex behavior.

This can be seen anywhere from the biorhythmic variability in heartbeats across

time that can be indicative of homeostasis, or perturbations at different scales

indicating the shift into a heart attack, much like how we can study small tremors

across time being indicative of an upcoming earthquake in geological readings

[Kiyono et al., 2005, Lise and Paczuski, 2001]. Empirically this can be measured

by observing the energy of the system at different frequencies of measurement.

How the structures of these measured signals are clustered across scales of time

has been referred to as Hierarchical Temporal Structure (HTS). The term (HTS)

was coined in [Falk and Kello, 2017] to measure temporal variations of acoustic

energy of infant directed speech and adult directed speech at multiple time scales.

Furthermore, here HTS will be a foundational concept to understand how complex

signals like speech and music can be understood to interact with other complex

systems.
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1.2 Information Transfer

Prior paradigms of complexity science have tried to reconcile how informa-

tion interacts across scales with reductionist epistemology by framing it simply

as memory or history of the underlying process [Moss et al., 2004]. This works

well in simple models that only account for closed systems and their effect on the

outside, as one takes the role of the perturbed and the one who generates those

perturbations [Lindenberg and West, 1990]. For example, we can think of a swim-

mer here as being the model system of interest and the ripples they leave in the

water as being simply the history or memory of their actions. What is lost here

is the understanding that the water is also affecting how the swimmer interacts.

A modern perspective in complexity science would describe those ripples not only

as a perturbation, but rather the actualization of how the swimmer can traverse

through that space as they push through, and the water pushes back. Here this

interaction between the swimmer and the water is what is framed as information

transfer [KISH et al., 2001]; the back-and-forth communication of kinetic energy

between both systems that defines the emergent act of swimming.

[West et al., 2008] formally synthesize the above-mentioned theoretical frame-

work through the concept of maximal information transfer between complex net-

works. They review dynamic systems and phase space modeling equations through

numerical analyses, while including numerical simulations of artificial networks

modeling the production of 1/f noise in natural systems such as in neuronal ac-

tivity. The production of 1/f noise is of interest in complexity science as inverse

power-law distributions have been experimentally verified as being produced across

a variety of systems of interest such as in linguistics [Zipf, 1949], household income

[Reed, 2003], scientific citations [Silagadze, 1999], and in connections across the

internet [Watts, 1999, Barabási, 2003]. Specifically, self-organized networks have

been argued to produce 1/f as a signature of ideal long-range correlation within a

system that could connect low-level components such as molecules all the way to

higher-level systems such as mindfulness [Anderson, 2000]. With this, the concep-

tual pillars of complexity, emergence, and information transfer are connected for

the purpose of understanding how complex systems communicate and the extent
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to which the information is preserved across levels of interactions. Further dissem-

ination of the 1/f phenomena will be explained throughout the following chapters

as the methods of how this can be seen in music and speech is demonstrated.

Here information transfer is studied through the measurement of the HTS in

people’s produced signals and how their structures are preserved under three sce-

narios. The first scenario of interest is when people interact with each other.

Chapter 2 examines this by looking at empirical studies of coordination between

people and specifically focuses on speech and language. The extent to which the

nested clustering of linguistic units can be reflected in the HTS of speech is ex-

amined, because speech is the physical signal that brains can resonate to. Second,

is when people interact with themselves, and this is explained in Chapter 3 from

a motor-control aspect. People can modulate their behaviors according to control

parameters they impose. This puts into question whether the HTS of a signal

normally produced by someone can still preserve its structure across magnitudes

of imposed control parameters and whether these adapted changes to produced

HTS affect resonance to other complex networks. Lastly, Chapter 4 dives into the

study of how HTS is preserved from a perception aspect. People are exposed to dif-

ferent types of stimuli, and they affect our own biorhythms [Redfern et al., 1994].

The data provided specifically looks at the extent to which cortical activity can

reflect the structures of listened speech and music stimuli. The theoretical frame-

work of maximal information transfer posed by [West et al., 2008], outlines how

discrepancies between the endogenous dynamics of complex systems can limit the

bandwidth of information transfer. Here this paradigm in information transfer is

extended by looking at the methodological and experimental paradigms that can

study this through speech and music. The goal is to understand whether these

methods could ultimately validate predictions of maximal information transfer of

acoustic stimuli to cortical activity. Technological and methodological limitations

to this end have challenged the assumptions made under theoretical frameworks in

complexity science. To continue to explore the question of how temporal structures

are reflected in movement and neural behavior, a reframing of the hypothesis at

hand is performed as seen in Chapters 5 & 6 through the use of Deep Learning
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paradigms.

1.3 Speech, Music, and Cortical Activity

As previously mentioned, the term HTS was coined by [Falk and Kello, 2017]

to measure temporal variations of acoustic energy of infant directed speech and

adult directed speech at multiple time scales. These time scales referred to the

embedded hierarchical organization of linguistic units such as phonemes, syllables,

phrases, and utterances. Moreover, the importance of the embedded organiza-

tion in language has been comparatively studied in music as well as in terms

of syntactic organization. Hierarchy simply referring to how underlying struc-

tures embed measured temporal activity, creating a scaling function of temporal

structure as its hierarchy. A shared relation between language and speech or-

ganization has led to studies finding meaningful similarities in neural processing

[Farbood et al., 2015]. Specifically, syntactic processing in the brain shares acti-

vation pathways when parsing the embedded temporal variation of both linguistic

and musical units [Patel, 2003]. Such studies have connected the HTS of speech

and music signals to human behavior, posing the question of the extent to which

one can expect these structures to be preserved. Exactly how that may happen, or

if it happens at all, has remained elusive to experimental validation when talking

about these signal structures being reflected in collected brain responses to a com-

plex acoustic stimulus. Despite this, plenty of theoretically oriented predictions

and modeling work aim to outline these cognitive processes by focusing on the 1/f

nature of neuronal activity [Buiatti et al., 2007].

Empirical studies have replicated and found that measurements of electroen-

cephalograms (EEG) from cortical activity have, what is termed here as an HTS of

1/f distributions, which have been thought of as being an ideal homeostatic state

[Allegrini et al., 2009]. Despite how several studies have tried to frame this phe-

nomenon, brains producing 1/f noise simply means that the power per frequency

interval is inversely proportional to the frequency of the EEG signal. The power in

this type of noise is equal at each octave while having power drop off as frequency
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scales up. This puts 1/f noise in the middle of white noise and brown noise, where

the former is activity without changes in power and no correlation while Brown-

ian motion has changes in power but no correlation between them. This is what

makes 1/f interesting due to its long-range correlation, one which despite its per-

vasive finding in biological systems has not yet had a formal physical explanation

behind its generation [Eliazar and Klafter, 2010]. Furthermore, Brownian motion

can simply be obtained by taking the integral of white noise with the reverse be-

ing true by taking the derivative of white noise, but such a simple transformation

cannot be said for 1/f . Hence why perspectives on self-organized criticality refer

to 1/f as a proposed signal of homeostasis in systems due to its minimal stability

being configured despite having many degrees of freedom without the need for the

modeling of an outside driving force. An example of this phenomena in natural

systems is that of the delicate stability of snow fields that can self-organize into

beautiful landscapes, but with some perturbation quickly transition into a deadly

avalanche. This transition of critical states is also measured in neuronal activity

through their own electrical avalanches [Beggs and Plenz, 2003]. Therefore, 1/f

noise is less so than what one would commonly think of as noise or uncorrelated

information but rather a signature of a complex system being sensitive enough to

interact with the natural world at multiple scales.

Given the predictions made by the maximal information transfer framework,

because the brain demonstrates 1/f complexity, then it should also be the most

sensitive to signals produced by another 1/f-network [West et al., 2008]. Stimuli

such as music have been originally discovered to have 1/f scaling in its amplitude

[Voss and Clarke, 1975], and this attribute of self-similarity has been validated by

[Hsü and Hsü, 1991] in their comparisons of natural systems to the fractal geome-

try of music amplitude. Researchers have looked at how music can elicit emotional

responses, such as the ‘chilling of the spine’ effect [Hachinski and Hachinski, 1994].

Complexity science researchers have boldly posed that the complexity in emotions

triggered by music could come from the 1/f resonance experienced during music lis-

tening [Lewis, 2005]. Such a proposition has not yet been verified through empirical

methods due to the difficulty of processing noisy cortical responses. Nevertheless,
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such predictions have also been put forth when it comes to language. The well-

studied Zipf’s law presents a case for this where one can find that written words

follow an inverse frequency pattern relative to its rank [Zipf, 1945]. For example,

function words such as ‘and’ will have a high frequency in the document distribu-

tion while a highly informational word such as ‘supercalifragilisticexpialidocious’

might only show up in rare instances. Apart from linguistic units, studies have

also found ways to measure the HTS of speech, in the same way that music has

[Schneider et al., 2020]. Not so surprising, the amplitude of speech also shows 1/f

scaling [Jennings et al., 2004]. Furthermore, conversations between interlocutors

show greater coordination when the HTS of their speech signals match, adding fur-

ther evidence to the proposed resonance from acoustic stimuli to human behavior,

which could include cortical activity [Abney et al., 2014].

Lastly, the HTS of speech and music have also shown to match with activ-

ity from natural systems. For example, a study adopted methods using acoustic

amplitude to measure its scaling across timescales to find commonalities between

jazz music having the same HTS as conversations, as well as the HTS from clas-

sical music matching the HTS from thunderstorms. Furthermore, signals such

as whale calls and earthquakes also present variations of and from 1/f HTS

[Kello et al., 2017]. If these structures are present in such a variety of systems,

then how should we understand how the human brain may resonate with these

signals? Here an explanation to this question will start to develop by focusing on

a specific purpose for this resonance to occur, and that is for the sake of communi-

cation and the extent to which that informational content in communicative signals

is preserved between us, within us, and with our environment. The primary infor-

mational content discussed will be around the temporal energy of human behaviors

and not strictly based on the semantic content of symbolic units. Methodological

paradigms have been successful in validating theoretical predictions when it comes

to how HTS is preserved between us and within us but have fallen flat when try-

ing to connect it further from environmental stimuli to cortical activity. Cortical

activity can also be thought of as a special case, because unlike other interactions,

the brain has been framed as a producer of ‘ideal’ 1/f . In brief, this notion of
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‘ideal’ simply refers to the fractal exponent in 1/f as being within a range that is

characteristic of sub-critical systems [Allegrini et al., 2009]. Why this is ideal, is

because it is indicative of the delicate stability which, if perturbed enough, could

quickly transition into states that are not characteristic of homeostatic activity

[Bak et al., 1987]. This proposed ‘ideal’ range of brain dynamics is therefore the

target level of tuning that the brain has for any stimuli, and any stimuli beyond

that range would resonate less and less with the brain. Furthermore, this concept of

‘ideal’ frames an argument for the connection between maximal information trans-

fer and the ubiquity of 1/f dynamics in natural systems. What this ultimately

proposes is that information exchange between complex networks is maximized

when they both have a long-range sensitivity to perturbations across timescales,

which means that they both produce ‘ideal’ 1/f noise. In the following chapters,

this concept will be developed to understand to what extent this may be happening

and what it would mean for speech and music to either fully resonate in the brain

or whether only some of the signal can pass through.

1.4 Acoustic Information Retrieval

Neural entrainment studies have demonstrated a specific case for the extent to

which acoustic stimuli can modulate neuronal activity [Power et al., 2012]. The

traditional experimental paradigm for these studies takes repeated EEG measure-

ments from participants as they are presented to short simple rhythmic tones

[Jones, 2010]. Results from these studies have shown that neural oscillations, which

have their own endogenous dynamics, adjust their phase in relation to that of the

stimulus [Nozaradan et al., 2011]. These findings have been extended into includ-

ing complex rhythmic stimuli and finding stronger coupling between the stimulus

and neuronal oscillations at specific frequencies [Tierney and Kraus, 2015]. Music

and speech processing theoretical frameworks have been developed around these

findings following the dichotomy of Bayesian frameworks and that of Complex Sys-

tems & Dynamics perspectives [Keller and Mrsic-Flogel, 2018, Dubois, 2003]. Of

relevance to the argument being proposed in this dissertation, the Complex Sys-
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tems & Dynamics perspectives have explained the phenomenon of pseudo-rhythmic

complex acoustic stimuli and entrainment in neural oscillations not simply as one

controlling the affect of the other, but rather as the stimulus being used as a ref-

erent for coordination between the brain’s own endogenous dynamics adjusting

its anticipation of incoming information [Rimmele et al., 2018]. Furthermore, em-

pirical validation has been presented to connect hierarchical temporal correlation

of speech and neural processing i.e., temporal activity of speech stimulus can be

tracked at specific frequencies of neuronal activity [Ding et al., 2016].

Apart from neural entrainment empirical paradigms, some other studies fo-

cusing on the localization of neural processing to acoustic stimuli have shown

a hierarchical relationship to the temporal dependencies of acoustic stimuli i.e.,

lower frequency information has longer correlated activation pathways than higher

frequency [Farbood et al., 2015]. Some other studies have also argued for method-

ological techniques finding covariance of complexity measures from acoustic stimuli

to EEG signals but further validation of their results and generalizability has been

of a limited scope with stimuli used [Teixeira Borges et al., 2019a]. Therefore, a

direct approach at finding the HTS of speech and music in cortical activity has

been limited, but acoustic information retrieval studies have added another piece

of evidence for this endeavor by demonstrating the ability to reconstruct acoustic

stimuli using brain responses as input [Coffey et al., 2019]. Why this is of rele-

vance, is because it is expected that the brain’s 1/f dynamics resonate and reflect

stimuli information across multiple scales of time, which means that an informa-

tion retrieval approach will assume that brain responses contain information to

their corresponding stimuli in order to attempt to recover that information.

Early experimental paradigms in acoustic information retrieval have depended

on short stimuli and averaged responses from repeated stimuli presentations

[Skoe and Kraus, 2010]. Such endeavors have allowed the field at large to see what

is possible by allowing to play back about a second of acoustic stimuli reconstructed

from brain responses. These early approaches were important proof-of-concepts,

but a desire to optimize the methodological procedures arose leading to bigger

modeling approaches. Earlier modeling approaches decided to use machine learning
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approaches to classify the acoustic stimuli and reconstruct simple features of the

stimuli, but depended on extensive feature extraction [Moinnereau et al., 2018].

More recent approaches, as will be discussed in other chapters, have tried to use

deep learning to allow for the processing of naturalistic data collection

[Ramirez-Aristizabal et al., 2022]. The predictive power of deep learning paradigms

has been successful enough to put to question what these networks are actually

learning. Why this could be put into question is because neural networks could

learn nothing related to a meaningful relationship between the input and tar-

get, but its predictive power could generalize to make good enough predictions to

produce desired outputs. Despite this, there has been several deep learning stud-

ies showing successful acoustic stimuli classification from EEG, and their results

across different datasets give confidence that these results could be more than a

trivial generalization [Stober et al., 2014, Yu et al., 2018, Sonawane et al., 2021].

Furthermore, some recent deep learning approaches have been able to recon-

struct the acoustic stimuli without depending on unnaturalistic data presentations

[Ofner and Stober, 2018]. Results from classification models alone are of interest

but such models only need to discriminate inputs into target labels, which could

mean that the networks learn that input is simply different than the other. Recon-

struction studies on the other hand, achieve a more difficult task and in needing

to predict acoustic information, give better evidence that EEG inputs have infor-

mation relating to the original stimulus.

1.5 Conclusion

People produce speech and music signals containing a HTS indicative of 1/f

dynamics, which have been signatures of complex systems and its long-range tem-

poral correlations demonstrating the capacity of these systems to interact with

the natural world at multiple scales of time. These properties point to how com-

plex systems interact with other complex systems, produce communicative signals,

and how the information in those signals is preserved within those systems across

multiple scales. Theoretical predictions have posed that the structure of these sig-
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nals should resonate with corresponding systems, but so far it has been difficult

to provide concrete empirical evidence of that happening with speech and music

stimuli on cortical activity. Therefore, the question of to what extent the structure

of these signals is preserved in cortical signals is of importance because the same

methodologies that have worked in empirically validating in other modalities have

not worked to the same extent for cortical activity. Whether this is indicative of

theoretical predictions not working in the domain of cortical dynamics or simply a

techno-methodological limitation is still up for debate. The development of deep

learning approaches in acoustic information retrieval has allowed to tackle this

question under a different hypothesis testing framework. These models allow for

researchers to assume that acoustic information relating to its temporal structure

is hidden in brain responses, and can test it through the success of model training

procedures. Despite the lack of evidence to frame the problem as EEG being a

noisy version of the stimulus, this bold assumption allows for the creation of new

testable hypotheses guided by the strength of predictive power of deep neural net-

works. The integration of deep learning modeling to this end will be argued as a

paradigm shift meant to resolve the limitations of current experimental paradigms

when exploring how temporal structure of speech and music are reflected in human

behaviors.



Chapter 2

Relating Multiscale Linguistic

Units with Acoustic Features of

Natural Conversations from the

Buckeye Corpus

Studying the statistical structure of language in speech has traditionally been

dependent on the usage of symbolic linguistic units. A few publications have moved

forward and implemented the Allan Factor method to measure the statistical struc-

ture of speech data without needing to depend on linguistic transcriptions. The

method has previously been used to study the fractal dynamics of neural spike trains

as well as to measure speech when people interact with each other. This method

takes the normalized variance of acoustic events from the speech signal at various

timescales. A scaling function is then produced per signal, which considers the hi-

erarchical structure of its temporal variation. Here the statistics from hand coded

linguistic units of speech are analyzed to see how it relates to the multiscale statis-

tics derived from the Allan Factor method. The Buckeye corpus is used here as it

provides recorded and transcribed data from interlocutors having spontaneous and

natural conversations. Furthermore, this dataset presents a challenging benchmark

for understanding how the nested clustering relationship long studied in language

14
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can be measured through speech signals, which is the physical signal interacting with

a listener’s neuronal activity.

2.1 Emergent Structure of Language & Speech

The tradition of analyzing language structures through their symbolic linguis-

tic units has been facilitated through the availability of written documents and

annotated corpora of human interactions and thought [Biber et al., 1998]. Tech-

nological advances have also allowed for the development of readily available com-

putational techniques to record and analyze sound patterns such as from human

speech. Nevertheless, with advancements in consumer technologies in social media,

it has further allowed for the proliferation of available text data to analyze. So

much so, that it has become a space for the development of state-of-the-art deep

learning natural language processing models with billions of parameters. A notable

example is GPT-3, which is a natural language processing generative model used

to automatically write movie scripts, news articles, and prose; the caveat with this

is that the training of such a model is estimated to have the same carbon foot-

print as driving a car to the moon and back [Patterson et al., 2021]. At the core

of many contemporary natural language processing models in machine and deep

learning implementations, is the fundamental mapping of statistical frequencies of

linguistic units in documents to specific semantic categories or statistical distri-

butions used for content generation [Wei et al., 2022]. This phenomenon can be

traced back to the interdisciplinary approach of cognitive linguistics which would

ask about language as representation, pragmatics of discourse, and informational

statistics in nature [Rosenberg et al., 1974]. Specifically, the perspective at the

intersection of frequency and linguistic structure sought to understand how the

production of linguistic information led itself to the emergence of adaptations in

complex structure [Hopper and Bybee, 2001]. This perspective understood that

there was a correspondence between the content of human social interactions, per-

ceptual mechanisms such as working memory, and the statistical distribution of

words [Baddeley, 1998]. Despite the continual high frequency of citations in the
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literature, pioneering findings from George K. Zipf remain relevant as the ubiquity

of inverse power laws in nature continue to be found and connected to hypotheses

about the emergent structure of complex systems [Zipf, 1945].

The study of natural discourse traditionally used linguistic units to understand

how language production systems would build hierarchical structures in grammar.

Furthermore, a connection between syntax and prosody in grammatical structures

would take shape as findings would connect behavioral factors of speech produc-

tion to shape the statistical frequency of specific units such as words and phrases

in underlying produced utterances [Hopper and Bybee, 2001]. For example, when

looking at the frequency of co-occurrence between words such as in the sentence

‘Do you want to go?’, high frequency of use of those elements have presented a

case for fusion into new sentences ‘wanna go?’ [Baddeley, 1998, Boyland, 1996,

Bybee and Scheibman, 1999]. This adds a peculiar case for the loss of constituent

boundaries in sentences such as the dissipation of a main clause and subordinate

clause in sentences using ‘wanna’, highlighting an adaptation between syntactic

elements in construction due to prosodic changes. Word use frequency also demon-

strates cases of phonological reductions, such as in the case of binomials written as

‘bread and butter’ but pronounced with ‘and’ having a shorter durations and vowel

reduction [Krug, 1998, Fenk-Oczlon, 1989]. These examples briefly demonstrate

the interplay between behavioral constraints (e.g., high frequency of lexical use) in

language production shaping both the prosodic dynamics in natural discourse as

well as syntactic construction of specific sentences. Not only does this connect the

written symbolic units of language with the actual soundwaves produced in speech,

but it further highlights the boundaries between representational levels in language

i.e., the sentence ‘Do yall’ wanna go there?’ representing ‘Do you all want to go

there?’ which further represents clearer syntactic boundaries between subject and

object [Bybee and Scheibman, 1999]. Lastly, an example moving beyond the scale

of word usage and into a more relevant scale of production within a conversation

can be seen with lenition. The production of words within one conversation has

its own phonological variability, and in some cases, lexical words that are repeated

often show a shift into weakened articulation of its consonants. This allows for the



17

consonants in someone’s produced speech to be more sonorant and have shorter

durations. With this, the above-mentioned examples outline how structure, both

symbolically through linguistic units and in speech amplitudes can emerge through

the shifts in variance caused by frequency.

2.2 Measuring Interlocutor Coordination

Methodological and theoretical advancements in Cognitive Linguistics have

allowed for thinking of discourse from a systems perspective. This is seen in

[Pickering and Garrod, 2004] with their Interactive Alignment Model outlining a

theory for explaining the dynamics of convergent behavior between interlocutors.

The model explains how a hierarchy of linguistic levels (phonetic, lexical, seman-

tic, and situational) are involved between interlocutors as they share linguistic

representations across scales of measurement. Alignment here describes that effi-

cient communication underlies shared linguistic representations which allows for a

temporal coordination predicting a coordination that scales within a shared lan-

guage. Included in methodological advancements has been the shift towards not

relying heavily on linguistic units due to the laborious job of annotation. Fur-

thermore, the job of annotation also requires linguistic expertise when studying

natural discourse because you would need more levels beyond just words including

phonemes, syllables, phrases, and so on. With embodied perspectives in cognition

pointing to the importance of studying extra-linguistic information, time series

analysis has allowed for both scaling up experiments and presenting comparable

analyses to other behavioral measurements. Under this methodological paradigm,

[Paxton and Dale, 2013] found that argumentative conversations disrupted behav-

ioral matching while friendly conversations showed evidence for body movements

to converge. A follow up study using the same data used the Allan Factor of acous-

tic onset intervals to show that speech also converges at multiple scales of time

when interlocutors are not in argumentative conversations [Abney et al., 2014].

Allan Factor as a method has had comparative success to Detrended Fluctua-

tion Analysis (DFA) in experimental paradigms by allowing a clearer view into the
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non-linear relationship across scales of time. The use of AF has not been limited to

just speech, but was also used to analyze animal vocalizations, music genres, and

thunderstorms [Kello et al., 2017]. Each of these unique acoustic signal categories

have their own hierarchical temporal structure (HTS), and while being perceptu-

ally distinct between categories some of them are alike in their statistical structure.

For example, thunderstorms were found to have the same HTS as classical music

while the HTS of conversations were the same as jazz music. Much like the linguis-

tic hierarchy in speech, music also contains its own hierarchy e.g., notes, motifs,

phrases and so on [Patel, 2003]. That hierarchy is thought to be reflected through

the measured HTS from the AF method as well. This assumption seems to work

well when comparing acoustic signals that have a verified symbolic hierarchy of

their informational content. That is why it is surprising when thunderstorms pro-

duce HTS statistically the same as classical music, because it is not a signal defined

by the production of nested informational units like in music or speech language.

With that, researchers have asked the question as to what HTS may be relating

across signals and some studies have pointed to the HTS as reflecting prosody

[Schneider et al., 2020]. Furthermore, predictions from the Interactive Alignment

Model are put into question as convergence in HTS is shown when speakers com-

municate in differing languages (English and Spanish). Although both languages

may have similar grammars, they each follow their own syntactic rules and phono-

logical constraints, which means that there may be more to coordination between

interlocutors than a shared linguistic representation.

The relation between speech amplitudes and linguistic units in HTS is first

investigated in an infant directed speech study. The HTS of speech directed at

infants is compared to adult directed speech as well as song. The results find that

both song and speech have their own HTS characteristic but that in each category

the slope of the HTS is higher when it is infant directed. A higher slope in these

functions is attributed to the prosodic exaggeration that mothers produce when

speaking to their infants as opposed to an adult [Falk and Kello, 2017]. To further

provide evidence for the connection of HTS as prosody and reflecting linguistic

hierarchy information, they created models using linguistic transcriptions as pre-
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dictors to the linear slope of AF functions. Their approach to test the relationship

between linguistic information and the AF functions is adopted here. The model

from the infant directed study included the coefficient of variation (CoV) of du-

rations at 3 linguistic levels (syllable, word, and phrasal constituent continuation)

as well as speaking rate measured by syllables per second and the standard devia-

tion of phrasal pre-final lengthening. Their data came from 15 speakers averaging

6 min in length and only including utterance final contents. Results from that

approach defined a model with R2 = 0.936 and a p < 0.001 significant F-Test.

Here the approach is extended by using the Buckeye Corpus which contains more

participants and longer recordings.

2.3 Methods

2.3.1 Data Acquisition

Figure 2.1: Syllables were feature extracted based on a 1-8 sonority scale tagged
onto phones. Syllable boundaries as shown above were created when the sonority
value increased. Durations were calculated by subtracting the onset time of the
current unit from the adjacent identified unit as pointed by the yellow arrows.

The data used comes from the Buckeye Corpus of spontaneous speech, which

contains 40 interviews with speakers native to central Ohio. The corpus aimed
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to contain a size of 300,000 words available in acoustic recordings, transcriptions,

and linguistic unit coding of the transcriptions. The demographic of participants

is balanced by age of speaker (under 40, over 40), gender of speaker, and gender of

interviewer [Pitt et al., 2005]. Specifically, the corpus provides timestamped pho-

netic and word level transcriptions, which are the primary data used for linguistic

units. In total, we tested four linguistic features (phones, syllables, words, breath

groups), two of which (syllables and breath groups) were feature extracted from

the provided phonetic and word level transcriptions. Feature extraction had to

Figure 2.2: Breath groups were feature extracted based on continuous strings of
words without interruptions. Any word before a non-speech label was omitted
from the breath group and its onset used as a duration stop reference because of
transcription errors in timestamping non-speech labels that came with the data
set. Yellow arrows reflect that rule by avoiding the crossed-out units as a starting
point for duration reference.

consider inconsistencies and errors in transcription timestamps. The features were

defined as general proxies for syllables and breath groups as opposed to being exact

definitions of those linguistic units as shown in Figure 1 & 2. The strength of this

approach is that it allows for simple and consistent reproducibility. Syllable extrac-

tion was based on an eight-point sonority ranking of transcribed phonemes (stops,

affricates, fricatives, nasals, liquids, glides, syllabified nasals, vowels). The syllable

search algorithm simply compares the sonority values of its neighbors and identifies

a syllable nucleus if the neighbors of the phonemes have descending sonority values.
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Then the syllable boundary is marked by a rising sonority value of a neighboring

phoneme (Figure 1). Breath group extraction was based on the word transcrip-

tion data, and a sequence of uninterrupted words became what is termed here

as a breath group. Examples of interruptions in the recordings include laughter,

non-speech vocalization, silence, environmental noise, and switch to interviewer

for which the data set included its own list of non-speech labels used to identify

those events (Figure 2). Both word and phoneme transcriptions were found to

have some erroneous and inconsistent timestamp labeling with data adjacent to

interviewer switches. To avoid measuring erroneous timestamps, linguistic units

occurring before any non-speech label where omitted. Finally, both the audio data

and linguistic data were analyzed in four-minute chunks to lineup with the length

needed for the acoustic analysis.

2.3.2 Statistics

The audio data was analyzed using the Allan Factor (AF) method used in

[Falk and Kello, 2017] in which various categories of acoustic signals were com-

pared based on their Hierarchical Temporal Structure. The specific details of the

method can be found there but briefly put: the amplitude envelope of a signal is

taken to create peak-amplitude events to measure their variability at windows of

different sizes creating a descriptive scaling function. Events are chosen from max-

imal peaks at a 5 ms sliding window if they are above a set amplitude threshold.

The function created consists of variability at 11 different window sizes producing

an AF score per window size totaling to an 11-point function. In equation 1 T is

timescale and Ni (T) is the event count per window i where variance is the average

squared difference of windowed events normalized by two times the average event

count per window size. Figure 3 shows an example of what those AF functions

look like with the Buckeye Corpus data used. A flattening along the slopes of

these functions indicates a loss in variability at those timescales while a rising
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slope indicates an increase in variability.

The linguistic data from the Buckeye Corpus needed to be analyzed in a way

that is comparable to how the AF method handles acoustic signals. First, to have

measures at multiple scales of time we were able to have 4 levels of linguistic units

(phonemes, syllables, words, breath groups). With these four features we tested

the coefficient of variation (CoV) of their duration for which the AF method is

a type of CoV measure. We also measured rate as number of linguistic units

over length in seconds along with other information included in the corpus such

as demographic data and individual participant variation. These measures were

treated as predictors for generalized linear models predicting the linear slope of

the AF functions as well as the individual 11 A(T) scores in the function.

Figure 2.3: This graph contains example AF functions of 4 participants. Across
the 11 timescales measured, their AF score scales to have typical slopes for speech
categories as tested in [Kello et al., 2017]
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2.4 Results

The results are based on models in which the extracted linguistic units be-

come predictors for the AF functions. The audio recordings of the interviews

were paired up with their transcriptions and then divided into four-minute sec-

tions; meaning that an AF function, rate, and CoV was measured across sections

of the participant recording. It is important to note that the linear slope of AF

functions is used here as seen in [Falk and Kello, 2017]. Furthermore, terms from

quadratic fits of the AF functions were found to not give the best results as re-

sponse variables. This means that the linear slope allows for models with much

higher variance accounted for with the predictors used here and it makes the mod-

eling assumptions a simpler case. Using the averaged per participant dataset we

Figure 2.4: Change in R2 for every A(T )i used as a response variable, where i is a
level in the AF function.

tested (m ∼ phonerate + syllablerate + wordrate + breathgrouprate) the rates of the

four linguistic features to predict the linear slopes of AF functions. This model

had an R2 = 0.56 with a p < 0.001 from the model F-Test, providing evidence

for the rate of linguistics units corresponding to the AF of their acoustic record-
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ings. Using the same data set, models were also trained per linguistic feature on

each AF function level (A(T )i ∼ phonerate, A(T )i ∼ syllablerate, A(T )i ∼ wordrate,

A(T )i ∼ breathgrouprate). Figure 5 shows how models for each linguistic feature’s

Figure 2.5: Change in R2 for every A(T )i used as a response variable using each
linguistic feature rate as a predictor. Markers of each line demonstrate p < 0.05
F-Test significant models.

rate respond differently across fast to slower timescales. The middle timescales

for all features do not show up as significant. Most of the significant models

appear at the longest timescales. It is also evident that the phone and syllable

features are almost identical across all timescales. The largest linguistic feature

demonstrated higher R2 values in the longer timescales compared to the shorter

linguistic features. Meanwhile, phone, syllable, and word had a single significant

R2 model value at the shortest timescale for which phone and syllable were higher

than word. Using the same type of analysis, Figure 6 demonstrates how models

for each linguistic feature’s CoV respond across each timescale. In this case, only

one model had a significant F-Test effect, and it came from the breath group level.

Most models in Figure 6 have R2 values close to zero and the only F-test significant

model had an R2 = 0.1451. At that same timescale in Figure 5, the R2 was lower
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than in Figure 6. Finally, models trained using the CoV as predictors showed R2

Figure 2.6: Change in R2 for every A(T )i used as a response variable using each
linguistic feature CoV as a predictor. Markers of each line demonstrate p < 0.05
F-Test significant models.

values close to zero. This is true when using both the per four-minute and aver-

aged per participant dataset. When breaking it up to a model per timescale, as

seen in Figure 6, it can be seen that there might be something going on at least

with the breath group level. Prior studies using the AF method have found it

useful to break up the linear slope of AF functions into fast and slow segments.

Such a breakup can highlight whether there are relationships more correspondent

to either fast or slow timescales. Here the linear slope of AF scores 1-6 was used

to define the fast timescales and scores 6-11 for the slow timescales. Using the

averaged per participant dataset, models were run comparing CoV and rate pre-

dictors of phone, word, and breath-group units e.g., (m ∼ phoneCoV + wordCoV +

breathgroupCoV). To avoid issues of collinearity, we decided to exclude the syllable

unit because of its almost identical effect in comparison to phones as seen in Figure

5. The results, as shown in Figure 7, demonstrate that although CoV cannot have

a significant model for the slow timescales, that it does show up as significant with
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an R2 of 0.1981 for the fast timescales. On the other hand, rate models show a

slight increase going from fast R2 of 0.4094 and a slow R2 of 0.47.

Figure 2.7: Model R2 values of coefficient of variance (CoV) and rate predictors
of fast and slow timescale slopes. Asterisks indicate p < 0.05 F-Test significant
models.

2.5 Discussion

Using the Buckeye Corpus, this study was able to provide evidence for the HTS

of speech recordings corresponding to the hierarchical structure of its own linguistic

units. This extends results previously reported by [Falk and Kello, 2017] in which

a limited sample was used. The corpus allowed us to be able to test one more

linguistic feature than the previous study. The accessibility of phonemes helped

to show that the relationship of phonemes and syllables to the AF functions were

statistically the same. Therefore, we stick to highlighting the features with the

least number of redundancies (phonemes, words, breath groups).

Across all linguistic levels, speaking rate gave the strongest relationship with

the AF functions. In Figure 4 we can see that breath group has higher R2 val-
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ues in the three longest timescales. This makes sense because it demonstrates

that longer linguistic features have more influence in the slower timescales when it

comes to describing HTS. Similarly, both phonemes and syllables had a higher R2

value than word and breath group in the fastest timescale. A previous study had

looked at the effects of speaking rate and HTS as measured by the AF method.

The study had compared how the HTS of speeches were different when the par-

ticipant was manipulated to slow or speed up their speaking rate in comparison

to when those changes are done algorithmically. Results from that study showed

that participants were able to manipulate their HTS in fast and slow speaking

rate conditions so that they differ in the middle to longer timescales. On the

other hand, algorithmic manipulations allowed for a change in HTS at all levels

for both conditions. Through the Buckeye Corpus we can see that for all the lin-

guistic features, most of the significant relationship in the models are in the longer

timescales [Schneider et al., 2020]. Figure 5 outlines how the middle to smaller

timescales tend to have insignificant results. Despite their differences, the nested

relationships of linguistic units in the corpus and the temporal variation of acous-

tic energy in the recordings share a similar outcome for pointing to speaking rate

relating to the longer timescales in speech.

Relationships between individual timescales are not limited to speaking rate.

In a prior study, the AF method was used to measure the extent of speech conver-

gence between bilingual interlocutors. That study showed that the HTS of speech

could be compared despite differences in languages or lexicon within a language.

The between participants’ results encouraged them to investigate variability within

a participant and they correlated a person’s own HTS across trials. It was found

that a person is highly correlated with themselves, despite their HTS being flex-

ible enough to converge with another speaker’s, even when going from speaking

English to Spanish. This demonstrated that people have their own unique HTS,

which in speech has been shown to be akin to someone’s own prosodic style. The

convergence that occurs has also been shown to occur primarily in the longest

timescales [Schneider et al., 2020]. Here it is argued that such a phenomenon is

reflected by the data as seen in Figure 4 5. Participant identifier as a predictor for



28

AF functions was shown to have a significant relationship. Furthermore, when it

was broken down and made into models for each level, we can see that the strongest

models happen in the faster timescales and the strength drops off as the timescales

become larger. This demonstrates that a person’s unique prosodic style in their

speech is primarily reflected by the fast temporal variations in their speech. Both

when a participant tries to manipulate their own speech to be faster and slower or

when their speech is changed through interlocutor interaction, the changes hap-

pen in the longer timescales and what remains constant is in the faster timescales.

That is to say that it might be easier to control the prosodic variability of one’s

sentences as opposed to the variability of finer details such as the articulation of

speech that occurs in about 30 ms.

Finally, a corpus wide model using CoV of linguistic units as predictors failed to

show a significant relationship with the AF functions. The results from this may be

a consequence in differences of approach and data used from [Schneider et al., 2020].

First, the corpus used here contained long recordings of natural spontaneous

speech in comparison to shorter recordings of scripted stories. The corpus con-

tained many natural pauses, interruptions, laughter, stuttering, and unverified

words/vocalizations that act as noise in these natural settings. Furthermore, here

the data was not limited to only utterance final and used an approach that would

capture as much of the recorded speech while avoiding timestamp inconsistencies.

As discussed previously, a dichotomy of effects between fast and slow timescales

tends to be commonplace when using the AF method. Results in Figure 6 also gave

some insight in detailing that CoV of linguistic unit durations as predictors may

not be completely null. Figure 7 demonstrates that CoV of linguistic units show a

significant model with a smaller amount of variance explained when predicting the

linear slope of only the fast timescales. The model for the slow timescales shows

a smaller amount of variance explained and no significant effect. On the other

hand, Figure 7 shows that rate predictors in fast and slow models have a much

larger amount of variance explained, with a slight increase in the slow timescales.

Furthermore, correlations between rate and CoV for each linguistic unit also show

that they are not related. CoV is also limited by the need to omit breath groups
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that occurred adjacent to interviewer switches, as the annotation contained some

erroneous timestamps. This led to omitting several shorter breath groups, which

already is indicative of limits in the variance measured at that level.

The AF method produces scaling functions which not only reflect the HTS of

acoustic energy but also of the nested relationship of linguistic units. The exact cor-

respondence of AF timescales and linguistic unit levels is not completely clear, but

the analyses here were able to replicate and extend results from previous studies.

Because of that, we can at least know that shorter linguistic units (phone, sylla-

ble, and word) have more influence in the shortest timescales and that the largest

linguistic unit (breath-group) has more influence in the three longest timescales.

It may also be possible that speaking rate as used in [Schneider et al., 2020] and

for every linguistic unit in our study is a more salient predictor for the variability

in natural speech. From the prior speaking rate study, we know that speaking rate

puts limitations to the variability in speaking prosody. To further study its effect,

we would need to have data at the scale of the Buckeye Corpus that would also

control for speaking rate. Participant demographic information (speaker gender,

speaker age, interviewer gender) did not show a relationship with AF functions and

points to the method as capturing universally produced patterns that are solely

unique from person to person.

2.6 Conclusion

Lastly, it was evident that annotation of linguistic units complicated analyses

focusing on encompassing multiscale relationships. Feature extraction was needed

and at every level of human transcription and annotation that was needed, room

for human error opened. This study argues for the utility of methodology in

measuring the scaling complexity of speech amplitudes as it regularizes the analyses

to reduce opportunities of human error or re-interpretation of specific linguistic

units and what they may represent in the discourse. The traditional linguistic

unit annotation vs time-series decomposition methods have their own trade-offs

and when asking questions about natural discourse that are also comparable to
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other behavioral measures, the time-series decomposition type of analyses seem to

have an advantage while also showing a connection the original representational

units in the language. The studies using the Allan Factor method therefore have

an advantage as they can not only easily scale the measurement of naturalistic

speech but also of any other correlated behaviors, which allows for a complexity

science perspective on cognition to be extended and embodied. The following

chapter will highlight the success of this methodology at capturing the HTS of

modulated productions. Given that so far, we have seen the strength in utility

for capturing both linguistic and extra-linguistic relationships when information

between people is occurring in naturalistic settings, the next challenge will be to see

how perceptual changes may offer insight to understanding how HTS is preserved

in behavioral measures such as in cortical activity.



Chapter 3

Effects of Speaking Rate and

Naturalness on Hierarchical

Temporal Structure of Speech

Recordings of speech exhibit nested clustering of peak amplitude events that re-

flects the hierarchical temporal structure of language. Previous studies have found

variations in nested clustering to correspond with variations of speech production

seen in prosody and social interaction. In the present study, two specific dimen-

sions of variation are tested in produced speech hypothesized to have differing ef-

fects on hierarchical temporal structure: Speaking rate and naturalness. Rate was

manipulated both algorithmically and experimentally, and naturalness was manipu-

lated using synthesized speech, with sinewave speech as a comparison. Allan Factor

analysis was used to quantify nested clustering of peak amplitude events in speech

recordings as a function of timescale. For fast speech, nested clustering was found

to shift into shorter timescales, whereas for synthesized speech, nested clustering

was found to decrease in the longer timescales. Results lead to a discussion on

how the hierarchical temporal structure of speech signals are preserved when mod-

ulations in the control parameters of their production vary and its implications to

theoretical predictions of how neural and perceptual processes might respond to such

changes.

31
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3.1 Producing Hierarchical Temporal Structure

On an everyday basis, people are responsible for producing a variety of informa-

tional signals including speech and music. Researchers have measured such signals

and found that they commonly follow power laws [Kello et al., 2017]. It has been

argued that these power laws underlying neural, behavioral, and social processes

could be usefully theorized in terms of complex networks [West et al., 2008], be-

cause power laws are a natural consequence of their non-stationary, non-ergodic

statistics. Ergodicity refers to stochastic processes where any random sample of

measurement represents the average of the overall dynamics and stationarity refers

to an unwavering shift of mean and variance of a system’s dynamics over time. A

fundamental question about complex networks, as well as cognitive and social sys-

tems, is how they respond to inputs from their environments. For example, the

dynamics of complex perceptual networks are responsive to their sensory inputs,

and language networks are responsive to inputs from verbal interactions. The

former is an example of unidirectional influence because sensory systems do not

directly affect the sensory world, only indirectly via the perception-action loop

[Haykin, 2012]. The latter is an example of bidirectional influence because partic-

ipants in language interactions directly affect each other as the variability of the

amplitude in their behaviors adjust to coordinate with the other person they are

interacting with.

This view of cognitive and social systems as complex networks leads to pre-

dictions based on theories of how complex networks respond to external inputs.

Specifically, [West et al., 2008] formulated the principle of complexity matching,

which states that complex networks are most responsive to perturbations that

match their own temporal complexity. This is in reference to information transfer

between networks, where the process is maximized if the information being pro-

duced by either system have corresponding bandwidths. Diverging bandwidths

of information transfer here would mean that there is a smaller degree of overlap

between information channels, meaning less information passing through. Com-

plexity is measured in terms of exponents that define power laws in network activity

which accounts for activity at multiple levels of the system at hand. In terms of
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the measurement of specific power laws the matching corresponds to similarity

in the exponents characterizing the networks in question, and their environmen-

tal inputs. The original work defined network activity in terms of 1/f noise and

fractal time series of events, the latter being analyzed in terms of waiting times

(inter-event-intervals) τ , where P (τ) ∼ 1/τµ, and 1 < µ < 2 [West et al., 2008].

In the previous chapter, we saw that behavioral scientists have tested for complex-

ity matching in human coordination and speech. Their experimental paradigms

were in part motivated by the premise that human complex networks are highly

adaptive [Baronchelli et al., 2013]. One testable hypothesis is that human complex

networks may adapt by “bending” the statistics of their dynamics towards those

of their inputs, to better match the environment and other complex networks.

Matching is hypothesized to increase the response sensitivity of complex brain and

behavioral networks. When inputs are power law distributed, matching manifests

as a convergence in power law exponents of brain and behavioral networks towards

the exponents of their inputs. Such flexibility in power law exponents would not

be expected for less adaptive complex systems. With this we can begin to think

of what differentiates power laws across natural systems, such as in seismic ampli-

tudes, and whether adaptability can be considered in the same way for the varying

natural systems [Marković and Gros, 2014].

Among the first experiments to explicitly test for complexity matching in

human behavior, researchers examined the dynamics of finger tapping, and pen-

dula being swung together [Stephen et al., 2008, Marmelat and Delignières, 2012].

The tapping experiment used a fractal metronome that participants tried to fol-

low as closely as possible. Fluctuations in inter-tap intervals exhibited 1/f noise,

and power law exponents matched those of their fractal metronomes, i.e. unidirec-

tional influence of the metronome on tapping. By contrast, the pendula experiment

showed that power law 1/f exponents of angular fluctuations converged with each

other, instead of a fixed stimulus like a metronome. The swinging of one pendu-

lum by one participant was affected by the swinging of the other pendulum by

the other participant, and vice versa, via perceptual and physical coupling, i.e.

bidirectional influence. Together, these two studies provide evidence that human
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complexity matching can occur in response to stimuli in the environment, and also

in response to human interactions. Both systems need to be coupled at their levels

of interaction for a corresponding adaptive process to occur.

3.2 Coupled Dynamics

One of the most natural kinds of human interaction is speech, which has also

been found to exhibit complexity matching effects [Abney et al., 2014]. Further-

more, coupling between systems is extended to the concept of shared common

ground which moves beyond the previously mentioned physical coupling and per-

ceptual coupling to a social framework of agreement. The authors in this example

recorded pairs of individuals having conversations about friendly topics that were

to not spur controversy, versus polarizing topics with conversational partners on

opposite ends. They converted the speech waveform for each speaker into a se-

ries of acoustic onset events, and found inter-onset-intervals (IOIs) to be power

law distributed like critical events of complex networks. Complexity matching

was found not in IOI exponents, but in the power law clustering of events that

reflects the hierarchical temporal structure of language. Specifically, Allan Fac-

tor (AF) functions for event series were closer together for conversational partners

compared with baseline, but only for friendly topics for which speakers shared com-

mon ground. Polarizing conversations showed no detectable complexity matching,

suggesting that the coupling of human complex networks is multifaceted across

physical, psychological, and social factors.

[Abney et al., 2014] used the AF function to measure hierarchical temporal

structure in speech waveforms recorded from conversations, over time scales of

30ms-30s. Variations in this range of time scales are perceptible to the human audi-

tory system, and complexity matching suggests that auditory brain networks adapt

the statistics of their dynamics to those of their acoustic inputs [Ding et al., 2016].

Given the relationship between complexity matching and psychological processes

reported by Abney and colleagues, we hypothesize that hierarchical temporal struc-

ture in speech, as measured by AF functions, should be reflected in auditory ex-
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perience by way of complexity matching in auditory networks. In support of this

hypothesis, Kello and colleagues [Kello et al., 2017] found that the shapes of AF

functions reflect at least three perceivable variations in complex acoustic signals:

social interaction, prosodic variation, and musical composition. Greater nested

clustering in peak amplitude events (as opposed to acoustic onset events) can be

perceived as acoustic interactions among people, prosodic emphasis in speech, or

metrical structure in music. These results are consistent with the working hypoth-

esis at hand, but they are quite general and do not inform how specific variations in

AF functions relate to specific variations in perceivable features of speech, music,

and other complex acoustic signals. This is in reference to modulations of produced

signals by people due to control parameters of their motor systems. Directional-

ity of information transfer, as discussed previously, reframes whether complexity

matching can be thought of as the passive act of resonance (bi-directional) and

active adjustment (unidirectional), and here it is further discussed in terms of pas-

sive reflection (unidirectional) i.e., the hierarchical temporal structure of a stimulus

signal being preserved and reflected in a perceptual system. Focusing on stimuli

signals, it is of importance here to understand the extent to which someone can

modulate their hierarchical temporal structure and if that can change predictions

on complexity matching effects on perceptual systems.

3.3 Analyses of Speaking Rate and Naturalness

In the present study, we test two types of perceptual variations in speech that

we predict to have differing effects on hierarchical temporal structure: Speech rate

and naturalness. Previous studies have demonstrated consistent effects of speech

rate on prosodic variation, the latter being shown to affect hierarchical tempo-

ral structure. For instance, [Jun, 2003] found that more syllables are packed into

fewer accentual phrases at faster versus slower speaking rates, thereby reducing

variability by reducing the number of accentual phrases. [Dellwo et al., 2003] var-

ied speech rates in English, French, and German, and found reduced variability in

consonant durations for faster versus slower speaking rates. A modeling study in
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Mandarin indicated that the effect of speaking rate affects variability across sev-

eral hierarchical levels of prosodic organization [Chen et al., 2014], consistent with

a study of speaking rate in Mandarin [Tseng and Lee, 2004]. In summary, previous

studies indicate that faster speech should reduce prosodic variability across hier-

archical levels, and thereby reduce hierarchical temporal structure across a wide

range of timescales. Speech naturalness is also predicted to affect hierarchical tem-

poral structure, but in a different way compared with speaking rate. In particular,

human generated speech is predicted to have more hierarchical temporal structure

compared with text-to-speech synthesis, particularly in the longer timescales. Vari-

ability in prosodic intonation and timing is difficult for traditional text-to-speech

synthesizers because they do not model the meanings of sentences or discourse

contexts [Ze et al., 2013]. As a result, synthesized speech is often perceived as

having flat affect compared with human-generated speech. Relatively flat affect

should correspond with reduced hierarchical temporal structure in time scales on

the order of a second and longer, as previously shown by [Falk and Kello, 2017].

They measured AF functions in recordings of German-speaking mothers reading a

story or singing a song, either to their infants or to other adults. The exaggerated

prosody of infant-directed speech resulted in generally steeper AF functions, but

the authors did not report a more fine-grained analysis. With respect to natu-

ralness, [Kello et al., 2017] showed that AF functions for synthesized speech were

flatter than those for natural speech, but again, the authors did not quantify the

effect, nor did they compare it with speaking rate.

Here AF analyses of fast versus slow speech is reported, as well as natural

versus synthesized speech. The analyses are designed to measure more stringent

hypotheses about perceivably different effects of these manipulations on hierar-

chical temporal structure. Specifically, faster speech is predicted to result in less

variability across all perceptible timescales, which should correspond with shal-

lower, flatter AF functions. By contrast, synthesized speech is predicted to result

in less variability in the longer timescales only, which should lead to shallower but

more curved AF functions due to selective effects on longer timescales. The effect

of speech rate is tested using both algorithmic and experimental manipulations,
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whereas the effect of naturalness is tested using two different algorithmic manip-

ulations. For the latter, results are compared with synthesized versus sinewave

speech [Remez et al., 1981]. With sinewave speech being a synthetic control that

retains most of the hierarchical temporal structure in the original signal.

3.4 Methods

3.4.1 Data Acquisition

Figure 3.1: Left: AF functions of the original Obama speech, and fast and slow
versions. Right: AF functions of the fast and slow teleprompter conditions.

Analyses of speaking rate were based on Barack Obama’s address at George

Mason University on the 21st Century Economy (1/08/09, 17:08 mins). The

élastique algorithm (https://products.zplane.de/) was used to manipulate speak-

ing rate without affecting the vocal pitch. The “fast” condition was 2x faster than

the original recording, and the “slow” condition was 2x slower. In addition to these

algorithmic manipulations, an experiment was conducted in which ten University

of California Merced students read two excerpts from the speech off a teleprompter.

Half of the participants read the first excerpt at a slow pace and the second at a

fast pace, and vice versa for the other half. On average, the fast paced and slow

paced excerpts took 4.5 and 10.1 min to complete, respectively. Participants were

instructed to read the speech from the teleprompter as smoothly as possible, and

their readings were recorded for subsequent acoustic analyses.
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Analyses of naturalness were based on ten recordings of TED talks (mean

length = 6.41 min, SD = 1.14 min) reported by [Kello et al., 2017]. The TED

intro and outro theme was trimmed from the recordings, along with any applause

at the beginnings or ends of the talks. A synthesized version of each talk was

created by submitting the transcript to Google speech synthesis, and recording

the output. The synthesized versions (mean length = 6.62 min, SD = 1.16 min)

were recorded using Garage Band version 10.1.0. Garage Band was also used to set

the lengths of the synthesized recordings roughly equal to the original recordings

(within ± 30s). Lastly, sinewave speech recordings (mean length = 6.46 min, SD

1.16 min) were created from the ten trimmed TED talks by using the Matlab

sinewave speech code provided by [Ellis, 2004], with default parameters provided

by Haskins Laboratories. The software tracks speech formants and assigns a single

sinewave to each one. The sinewave amplitudes and frequencies are modulated

to track the formants over time. The result is a combination of whistling sounds

that preserve most of temporal structure in speech. Sinewave speech is typically

perceived as speech-like, but the words spoken are difficult to discern unless the

listener is given information about what is being said.

3.5 Results

Audio recordings were analyzed using the same method as reported in

[Kello et al., 2017]. Details can be found there, but briefly: Each recording was

divided into four-minute segments, and analyses were averaged across segments to

yield a single AF function per recording. The Hilbert envelope was calculated for

each segment and peaks above threshold were analyzed as time series of acoustic

events. An AF function was computed for each segment where T is the timescale,

Ni(T ) is the event count in each window i, and A(T ) is AF variance. AF variance

captures the degree of event clustering at a given timescale, and for timeseries with

nested clustering, A(T ) increases with T . Self similar clustering across timescales
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yields a power law, A(T ) ∼ Tα, where 0 < α < 2. The AF function was computed

for 11 values of T in between 15 ms and 15s, logarithmically spaced to compute the

orthonormal basis. AF functions for speaking rate analyses are shown in Figure

Figure 3.2: Mean AF functions for TED talks and their two different synthe-
sized versions, Google text-to-speech and sine wave speech. The AF function for
Obama’s speech is shown for comparison.

3.1. The left panel shows the effect of algorithmic speaking rate manipulations

on the original Obama recording, and the right panel shows mean AF functions

for the slow and fast teleprompter conditions, with the original Obama record-

ing as a reference. AF variance for the Obama recording steadily increased as a

function of timescale, consistent with analyses of TED talk recordings reported by

[Kello et al., 2017]. [Falk and Kello, 2017] found evidence to suggest that this AF

shape is common to speech because it reflects the nesting of linguistic units like

syllables in words, words in phrases, and phrases in sentences. Figure 3.1 shows

that an algorithmic increase in speaking rate causes clustering to generally shift

left into the shorter timescales, whereas an algorithmic decrease causes a rightward

shift into the longer timescales. Figure 3.1 also shows that the teleprompter had a

similar effect, except that there was a drop in AF variance at the longest timescales

for slow speaking rates. We hypothesize that this drop comes from the artificially
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even pace of speaking caused by the slow, even pace of the teleprompter. This

evenness creates isochrony and isochrony reduces clustering and hence AF vari-

ance. We leave it for future research to test this hypothesis explicitly.

AF functions for naturalness analyses are shown in Figure 3.2. The mean AF

function for the original TED talk recordings has the same basic shape as that for

the original Obama recording. This similarity is consistent with [Kello et al., 2017]

who found that monologues have common, distinctive AF functions compared

with dialogues and singing TED talks and the Obama speech are both types of

monologues. AF functions for synthesized versions of TED talks were very similar

to the original recordings in the shorter timescales, but they diverged in the longer

timescales. Specifically, synthesized AF functions were flat compared with original

recordings, which indicates a lack of nested clustering in timescales corresponding

with prosody and intonation. By contrast, AF functions for sinewave speech had

the same overall shape as the TED talk recordings from which they were created,

with a slight leftward shift of clustering as if the sinewave speech rate was faster

than the original recording.

The perceptual distinction between natural and synthesized speech is very clear,

as is the distinction between slow versus fast speaking rates. Moreover, these two

dimensions of variation are perceptually distinct from each other. The effects of

speaking rate and naturalness were also different from each other, as verbally de-

scribed above, but it is necessary to quantify this difference to better understand

it and relate it to complexity matching. To do so, we fitted a second-order poly-

nomial to each individual AF function, which allowed us to capture their convex

shapes in terms of linear and quadratic coefficients.

Coefficients are plotted in Figure 3.3 for fast and slow speaking rates, as well

as natural and synthesized speech. The graph shows that speaking rate had the

same effect on linear coefficients but opposite effects on quadratic coefficients. Fast

speech was comparable to synthesized speech in that linear coefficients were closer

to zero compared with slow speech and natural speech, respectively. This similar

result was due to the overall flattening effect of these conditions. However, fast

speech was less convex than slow speech, whereas synthesized speech was more
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convex than natural speech. This difference was due to the selective effect of

synthesis on longer timescales, versus the overall effect of speaking rate across all

measured timescales. Finally, sinewave synthesis had a small effect on coefficients

akin to the effect of fast speech. It would be interesting to test whether sinewave

is perceived as being faster than normal speech, even though the same signal

variations unfold over the same time periods.

Figure 3.3: Linear and quadratic coefficients for fast versus slow speech, and natu-
ral versus synthesized speech. The two different manipulations had the same effect
on linear coefficients, but opposite effects on quadratic coefficients.

3.6 Discussion

In the present study, we investigated the effect of manipulating speaking rate

and naturalness on hierarchical temporal structure in speech. Using AF analysis,

we showed that nested clustering in peak amplitude events is affected differently

by these two manipulations. Changes in speaking rate shifts the entire measured

hierarchy into shorter or longer timescales, whereas changes in naturalness flatten

or steepen the longer timescales of the hierarchy, i.e. on the order of seconds and

longer. Other studies have shown that acoustic events in speech appear to be cru-

cial events [Abney et al., 2014], including a recent study by [Pease et al., 2018] in

the special issue edited by [Grigolini, 2017]. Taken together, these studies suggest

that neural and perceptual processes may be highly responsive to speech inputs
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by means of complexity matching. Specifically, power laws in neural and percep-

tual dynamics may take the general shape of power laws in speech dynamics by

means of complexity matching, while having distinct trajectories because of myr-

iad differences in neural versus acoustic “substrate”, so to speak. The present

results are consistent with this application of complexity matching, in that the dif-

ferent perceptual experiences associated with speaking rate and naturalness have

corresponding differences in hierarchical temporal structure. These perceptual dif-

ferences may have their roots in complexity matching of auditory networks within

coming speech signals.

The application of complexity matching to speech perception leads to questions

about how power laws in auditory networks are affected when temporal structures

in speech signals do not follow a single power law. [Kello et al., 2017] showed that

many categories of speech and music deviate from power law AF functions. In fact,

the only categories that closely followed a power law in nested event clustering

were classical music and thunderstorms. Monologues like those analyzed herein

were consistently found to have a distinct flattening in the longer timescales, and

the shape of this deviation varies as a function of speaking rate and naturalness.

What do such deviations imply for complexity matching?

One possibility is that neural and perceptual dynamics become less responsive

to speech dynamics when they deviate from a power law, because brains are at-

tuned to power laws in sensory inputs. As previously mentioned, the principal

of maximal information transfer underlies complexity matching effects, and the

proposed hypothesis would mean that deviations in production also create a di-

vergence in the informational bandwidth between interacting systems. Another

possibility is that neural dynamics bend along with the dynamics of speech being

listened to. The latter would correspond to a neural correlate of perceiving and

following the sounds of speech. In this case, a unidirectional relationship is out-

lined like in the finger tapping experiments where the metronome would be the

speech signals and cortical activity would make an effort to adjust its endogenous

deviations despite it being off center to perfect 1/f dynamics. The same question

can also be asked of music, with the same possible hypotheses [Ding et al., 2017].
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Indeed, the effect of prosody on temporal hierarchies in speech has been argued to

have an analog in music [Hausen et al., 2013, Palmer and Hutchins, 2006]. This

analog leads to the idea that music perception, as hypothesized for speech per-

ception, may be partly supported by a form of complexity matching that enables

temporal hierarchies in neural dynamics to conform to those of speech and music.

Lastly, here another possibility is put forth when considering the brain’s need to

maintain homeostasis through the delicate balance of being at a sub-critical state

[Bak et al., 1987]. With this, the hierarchical temporal structure of cortical activ-

ity as a whole would be limited in how much it could bend towards a perceived

signal. A more sensible expectation would be that specific neuronal pathways and

perceptual systems have varying degrees of corresponding change in affect. There-

fore, this phenomenon could be better framed as an act of reflection of hierarchical

temporal structure because neuronal activity will not be able to completely bend

towards environmental factors but rather reflect in part some facets of the origi-

nally perceived signal.

3.7 Conclusion

Through the experiments presented in this study, examples of how hierarchical

temporal structure changes via modulations in their production were outlined.

Changes varied from a nonlinear shift of nested clustering in AF functions to a

simple flattening or swelling on longer timescales. Despite some of these changes

being likened to that structure of other natural systems, such modulations did

not completely erase what makes these AF functions in speech unique. Given

that the stimuli were able to maintain some of its identity in AF functions, such

a persistence can also be expected from the brain’s own endogenous dynamics.

Complexity matching effects are seen under different coupling relationships, but

here results from modulation to hierarchical temporal structure allows for fine

tuning predictions from how we might see the structure of stimuli in measured brain

responses. The following chapter will dive into this through the AF methodology

and what limits such a methodology may have. A practical hypothesis is presented
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here so far, which frames complexity matching effects in empirical studies as an act

of reflection of hierarchical temporal structure in cortical activity. The intersection

of the complexities between endogenous neuronal dynamics and epistemological

limits of the current empirical methodology further cements the endeavor as the

attempt to find reflections of hierarchical temporal structure in the vast waves of

cortical activity.



Chapter 4

The Search for Auditory Stimuli

Structure in EEG Responses

Coordination of cognitive systems have been seen to follow complexity matching

principles in their information exchange. Experimental approaches have sought

methods to quantify the statistical complexity of signals in these systems to infer

the extent of matching across scales of time that may occur during interaction. One

type of coordination demonstrates a system that plays the role of the perturber and

another one as the perturbed. In the present study, auditory stimuli are framed as

perturbations to auditory processing in the brain, and whether these perturbations

can be captured in EEG signals through complexity matching is tested. The Allan

Factor method is adapted into a novel experimental paradigm to try to capture

hierarchical temporal structure of EEG recordings from natural auditory stimuli

that allow for longer, natural stimuli lengths without the limits of repeated stimuli

exposure. Current results of this methodology affirm the potential for capturing

hierarchical temporal structure reflected in EEG responses, but complexity matching

stays elusive through limitations of localization, feature extraction, and noise in the

signal. This chapter ends in a discussion on methodological tradeoffs and outlining

which approaches can be most conducive to advancing and confirming theoretical

predictions.

45
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4.1 Processing Temporal Structure

Music and language are both constructed from smaller to larger units that hier-

archically organize content e.g., determiner & noun to build a noun phrase in lan-

guage and varying note pitches that build a larger harmonic phrase. This hierarchi-

cal construct has been predicted to be parsed by similar neural pathways whether

the incoming information is categorized as music, or language [Patel, 2003]. The

shared processing pathways in the cortex are indicative of the importance of hierar-

chical temporal structure of stimuli and perceptual systems, as evidence from these

types of experiments seem to suggest a domain general approach [Tao et al., 2021].

The previous chapters have given various data and examples of how hierarchical

temporal structure is shared between natural systems and framed it as a structural

feature important to understanding how people can interact and be coupled to the

natural world. A domain general account of perceptual systems and the intersec-

tion of complexity in coupled interactions defines a generalized adaptiveness. In

the previous chapters, this type of adaptiveness has been useful in explaining how

information is maintained despite modulations to its production and how coordina-

tion between systems can emerge. First, let us look at auditory perception research

starting from simple stimuli responses to complex multilevel responses, to build

up to how hierarchical response processing may inform methodological procedures

and experimental paradigms trying to verify complexity matching predictions in

neuronal activity.

Neural entrainment research has demonstrated that neural oscillations are sen-

sitive to temporal features, as seen when participants synchronize to perceived

metrical onsets of an isochronous auditory stimuli [Tal et al., 2017]. Experiments

controlling for stimuli frequency have shown that faster metrical rhythms show a

corresponding array of entrained neural responses that are also oscillating at faster

frequencies as well as slower responses for slower rhythms [Musacchia et al., 2014].

In addition, pitch variance in auditory stimuli can be used to induce a stronger me-

ter percept. Stronger identification has been shown for stimuli that have shorter

semitone distances, which further tests the multidimensional aspect of complex

auditory stimuli [Jones et al., 2006]. These results are simply a small sample of
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published experimental results demonstrating that you can model auditory percep-

tion as the coupling of self-sustained oscillators. Such a modeling is argued here to

have been advantageous not just in extending core physical theoretical predictions

of coupled oscillators but also in allowing for a practical simplification of experi-

mental design. In fact, many of collected auditory processing data have been shown

to be compatible with the neural entrainment framework [Rimmele et al., 2018].

The limits to this approach can be described as a type of spot checking of multi-

dimensional perceptual features in auditory processing because of its reliance on

analyzing one level of interaction at a time.

To mend such limitations, researchers have designed experiments via a cortical

tracking framework. In this case, a theoretical assumption of neural processing

being anticipatory is put forth to release restrictions of one-to-one synchrony at

specific scales of measurement. This also shows importance to the complexities of

the overarching endogenous dynamics of the cortex being not simply noise to be

filtered out but rather information to be better captured. With respect to com-

plex stimuli analyzed hierarchically, the use of natural speech stimuli presented at

isochronous intervals has been used to demonstrate hierarchical cortical tracking

of linguistic units [Ding et al., 2016]. Neural responses show tracking occurring at

the sentence level (1 Hz), phrase level (2 Hz), and syllable level (4 Hz). Similarly,

evidence for a hierarchical system in auditory processing is posited by demon-

strating tracking at lower frequencies of phonemic units in natural speech 155 s

[Di Liberto et al., 2015]. Longer stimuli are also used in the attempt to analyze

hierarchical processing of music and speech with lengths closer to their natural

lengths ∼4:15 mins [Farbood et al., 2015]. They present conditions with scram-

bled structure at three different timescales of the music separately to trained mu-

sicians. Using fMRI, larger musical timescales were found to be processed longer

when approaching higher order brain topography in the auditory cortex. It is ev-

ident that such an approach was helpful in opening up experimental controls to

allow for more naturalistic stimuli, but still, many of these experiments found it

difficult to move away from stimuli presentations at regular intervals.

Natural discourse and everyday events in auditory perception are not so cut
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and dry. Anything from talking to a friend whose spontaneous laughter, coughs,

or limited attention can disrupt a story they are telling you, to making infer-

ences from heterochronus streams of events at a social gathering aka., ‘cocktail

party effect’, deviate from the isochrony of stimuli in traditional laboratory ex-

periments [Golumbic et al., 2013, Rimmele et al., 2015]. Even in music, with its

often-characterized rhythmicity as a stimulus, presents cases for aperiodic meters

still building up temporal expectations such as in dancing [Polak, 2020]. This is

all to highlight that the temporal processing of auditory events goes beyond the

entrainment to periodic stimuli and that experimental methods interested in cap-

turing that interaction should be primarily focused on its naturalness, and the

hierarchical nature of auditory processing.

4.2 Allan Factor Paradigm

The main reason for tracking experiments to present speech in isochronous

rates, is because unlike music, speech stimuli is defined as being pseudo-rhythmic

[Nolan and Jeon, 2014, Ten Oever and Martin, 2021]. Moreover, results and dis-

cussion from chapter 2 have already demonstrated how much messier data from

natural discourse can be. In the recordings of the Buckeye corpus, annotations

captured many non-speech productions such as coughs, laughter, stuttering, and

miscellaneous noises. This is all on top of the natural pseudo-rhythmic nature

of speech. Nevertheless, the Allan Factor analysis of peak-amplitude events from

acoustic recordings was robust enough to still capture its hierarchical temporal

structure, replicating the identifiable scaling nature of conversations from previ-

ous studies [Falk and Kello, 2017, Kello et al., 2017]. Modeling work of linguis-

tic units from the annotated Buckeye corpus also replicated a previous study

showing a relationship between the temporal hierarchy in language and speech

[Falk and Kello, 2017]. This highlights the relevance of such a method to capture

meaningful scaling of variance in a complex and noisy signal such as speech. This

is the case because the method in part includes some feature extraction steps, since

the actual variance comes from events captured. In studies involving movement
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and speech, researchers have found it useful to extract events from vocalization on-

sets to better compare the lower frequency of movement events captured through

a frame differencing method [Abney et al., 2021]. In studies only analyzing speech

[Schneider et al., 2020, Ramirez-Aristizabal et al., 2018], it was useful to look at

peak-amplitude events which are selected by a max value and threshold parame-

ters. In brief, the threshold parameter was used to set irrelevant events to values

of zero and all peaks above it to 1. The threshold parameter defined an amplitude

relative the sample rate and length of the recording so that recordings would be

comparable, and variance not affected by trivial factors such as a longer recording

or a recording with higher sampling rate. Then maximal peaks were identified

using a ± 5 ms sliding window. Both parameters allowed for the regularization of

features across various recordings while also filtering out irrelevant noise or activity

with less salience in the signal.

If the Allan Factor method can handle noise in natural speech, along with en-

vironmental noise in animal vocalizations and thunderstorms [Kello et al., 2017],

then it gives confidence to try it with the noise associated from brain responses

recorded from electroencephalogram (EEG) systems. Therefore, the goal of this

study is to test the Allan Factor method to capture hierarchical temporal struc-

ture (HTS) in EEG responses and investigate the extent that complexity matching

principles can be applied. Stimuli are taken from the [Kello et al., 2017] study to

test an array of distinct types of sounds and unique HTS categories. Each type of

stimuli is only presented once at full length of recording. Time series distributions

are parsed from peak amplitude events in the EEG recording. Independent com-

ponent analysis is used to localize data in topographic points of interest within

frequency ranges of 1 - 50 Hz. Components located in the shared regions of acti-

vation (auditory cortex) will be the primary focus for testing HTS preservation in

brain responses.



50

4.3 Methods

4.3.1 Data Collection

The approach taken here sought to collect cortical responses through EEG to an

array of 6 auditory stimuli e.g., electronic music, bird song, ted talk, sine transform

of ted talk, classical music, and the same classical song repeated. The lengths of the

original stimuli ranged from 4:20 – 4:42 mins and the EEG recording lengths where

up to 4:20 mins. The audio was down sampled to the sampling rate of the EEG

system (32 channel ANT Waveguard electrode cap) at 2056 Hz. There was a total

of 11 participants and the presentation of the stimuli was randomized between

subjects. Headphones were used and the volume was adjusted to comfortable

levels for the participants. During the presentation of stimuli, participants were

told to stare at a black screen and to minimize unnecessary movements including

eye blinks. Collected data was further processed to remove muscle artifacts and

unwanted noise. The removal of 60 Hz sinusoids was implemented to clean up

noise from electrical appliances. A 0.1 Hz high pass filter was used to remove drift

from data. Bad channels were rejected using a probability function predicting the

probability a channel recorded meaningful data.

4.3.2 ICA

Adaptive Mixture Independent Component Analysis (AMICA) was used to

localize EEG components that topographically cluster in the auditory cortex and

other points of interest. Independent Component Analysis (ICA) weights were

retrieved from modified recordings which were down sampled from 2048 Hz to

1024 Hz and band passed at 1-50 Hz. Then those weights were transferred to the

original EEG recordings which were then down sampled to 1024 Hz. The EEGLab

plugin AMICA was used with 3 models using posterior probabilities for each model

to keep the best components among the different models. K-means clustering was

used taking into account spectral, and topographic information of the components

across participants as seen in Figure 4.1. An n of 9 was used, which placed 9

distinct means and classified components with similar means into a cluster. The
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n parameter was also a practical choice, because it allowed for the creation of a

cluster near the auditory cortex with at least one component per participant and

condition. The Allan Factor of the auditory cortex clustered ICA components were

taken to test HTS, as well as any other components of relevance.

Figure 4.1: AMICA components of individual participants were put through K-
means clustering and broken down into 9 clusters containing components across
participants. First panel (left) shows a heatmap of spectral clustering and the
second panel (right) breaks down components by dipole fitting locations. The
first cluster at the top left of both panels contains components that were located
outside the cortex and treated as artifacts, as well as components that were over
15% variance in the group.

4.3.3 Allan Factor

Auditory stimuli and EEG components were analyzed using Allan Factor. First,

signals were divided into four-minute segments, and the Hilbert envelope was cal-

culated for each segment. Analyses were averaged across segments to yield a single

AF function per signal. Peak amplitude events were then selected using two pa-
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rameters. The first parameter identified maximal peaks within a ± 5 ms window,

then all peaks were preserved if their amplitudes were over the H parameter, a

breakdown of this process is seen in Figure 4.2. Selected events created a time

series in which the AF statistic was implemented on as follows: where T is the

timescale, Ni(T ) is the event count in each window i, and A(T ) is AF variance. AF

variance captures the degree of event clustering at a given timescale, and for a time

series with nested clustering, A(T ) increases with T . Self-similar clustering across

timescales yields a power law, A(T ) ∼ Tα, where 0 < α < 2. The AF function was

computed for 11 values of T in between 15ms and 15s, logarithmically spaced to

compute the orthonormal basis.

4.3.4 Classification

Machine learning through Matlab’s Classification Learning application was

used to test a parametric training approach to finding differences in variances

across scales of time. A matrix of the input data was formatted using the AF

scores of each ICA component from every participant and from the four clusters.

The target response for classification was the six stimuli categories and the pre-

dictors were the eleven AF values which account for the eleven timescales in the

analysis. Different combinations of predictors were tested as well by adding the

cluster labels and another case which tested the response variable of the four clus-

ters for classification. Training for classification used all the Support Vector Ma-

chine (SVM) options which include linear, quadratic, cubic, fine gaussian, medium

gaussian, and coarse gaussian SVMs. The data was split and tested using a 5-fold

cross validation method. This approach for using AF values for label classification

is akin to the approach by [Kello et al., 2017].
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Figure 4.2: An example of peak amplitude event selection into a time series is
shown for the electronic dance music stimulus (top) and a corresponding EEG
response (bottom) of a 100 second length. For both top and bottom panels, the
first section shows the signal waveform, followed by its Hilbert envelope, and lastly
the time series in which the AF statistic is applied to.

4.4 Results

The first set of results presented demonstrate clear distinctions in AF function

shapes for the stimuli (Figure 4.3). An exception is observed in the similarity

of event clustering at the longer timescales for the Ted talk and its sine wave

transform. The characteristics of the stimuli AF functions demonstrate scaling

expected from their categories as seen in the [Kello et al., 2017] study.

The next set of analyses took ICA decompositions of individuals and organized

them into 9 clusters through K-means to locate regions of interests within the cor-
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tex. The initial focus was on doing AF on ICA components that fell into a cluster

close to the auditory cortex, but the shapes of AF functions looked similar to 1/f

scaling. Then this was tested to see if the pattern persisted across clusters. Clus-

ters that had at least one component for each participant per condition were taken

into account for this analysis. Four clusters met that criterion and they belonged

to the frontal cortex, occipital, sensory-motor (right hemisphere), and auditory

cortex (left hemisphere) regions (Figure 4.1). All clusters were shown to follow the

same 1/f pattern despite their differences on topography. The clusters were aver-

aged together and plotted by condition (Figure 4.4). Despite AF functions having

1/f scaling throughout, the longest timescales showed a notable difference. Linear

fit slopes of the AF functions of all components were taken to test for differences.

Figure 4.4 shows the mean linear slopes of ICA components when organized by con-

dition and by order of condition presented. A two-way repeated measures Analysis

of Variance (ANOVA) of linear slopes shows a p-value of 0.0633 and the one for

condition order has a p-value of 0.0969. A Tukey’s Honest Significant Difference

Test is performed on both conditions’ and condition orders’ linear slopes with the

only significant difference occurring in between the Symphony 1 and Symphony 2

(the second time participants heard the symphony stimuli) condition slopes with

a p-value of 0.0471.

Classification learning of AF values demonstrated results that support the

above presented statistics. The first case had only AF values as predictors and

the stimuli categories as response variables. In all SVMs the classification did

not go above the chance classification rate of 16.67%. When the cluster labels

and participant labels were added as predictors it would lower classification per-

formance. The shorter timescales and the longer timescales were also tested by

breaking up the classification testing in two. The shorter timescales used only the

first three AF values as the predictors and yielded lower performance than chance,

with the best performing SVM yielding 15.7%. The longer timescales used the

last three AF values and had performance higher than chance at 22.3% with a fine

gaussian SVM. The second classification case involved the cluster labels as target

variables and the AF values as predictors. The best SVM classification came from
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Figure 4.3: AF functions for the down-sampled auditory stimuli are presented
above with ‘hermit’ referring to the Hermit thrush bird song and ‘symph’ referring
to classical music symphonies.

the quadratic SVM with a performance of 28.4% above chance (chance 25%) from

the four cluster categories. The frontal lobe cluster showed to be the most unique

in its classification performance with the highest rate of true positives at 68%.

EDM Hermit Sine Symph1 Symph2 Ted

Song Means 1.0457 0.9587 0.9858 1.1355 0.9237 0.9799

Song SEs 0.0504 0.0565 0.0543 0.0575 0.0462 0.0495

1 2 3 4 5 6

Order Means 0.9664 0.999 1.0815 1.0815 1.0154 0.8928

Table 4.1: The average AF slopes from ICA components organized conditions and
condition order and their standard errors are presented. Slopes come from a linear
fit on the longest timescales where the biggest differences exist.

4.5 Complexity Matching

A direct complexity matching effect such as in speech studies [Abney et al., 2014,

Schneider et al., 2020], was not seen using the current methodology. The AF func-
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Figure 4.4: Aggregated Allan Factor functions of ICA components are averaged
by condition across clusters.

tions of brain responses collected in this experiment at the individual EEG chan-

nel level and ICA compositions from different topographic cluster locations all

yielded AF functions akin to 1/f event clustering. This finding replicates studies

of spontaneous brain activity of healthy brains which is explained as a sign of self-

organized criticality [Freeman and Holmes, 2005]. Complexity matching principles

were tested by [Allegrini et al., 2010] as 1/f brain dynamics are shown to have op-

timal µ = 2 scaling. They propose that the brain should be most sensitive to 1/f

signals as seen in classical music and other phenomena in nature. Our results put

this into question, because HTS of brain responses were found to be 1/f despite

the original stimuli not necessarily being 1/f and with the only statistically signif-

icant difference between AF functions coming from repetitions of classical music

presentation. This result held for all clusters including the ICA components near

the auditory cortex. Furthermore, a few limitations of the present experiment

should be noted that qualify the conclusions and warrant further investigation.

First, although stimulus order did not come out significant (p = 0.0969), orders

were not balanced across participants. Next, a larger sample size would be helpful
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in clarifying the two-way ANOVA statistic between AF slopes and types of stimuli

used.

So, is it fair to say that complexity matching effects should not be expected

from measuring brain responses using EEG? Perhaps not, as two current studies

have adjusted their own methodologies to make new arguments towards the efficacy

of complexity matching effects of auditory stimuli and recorded brain responses us-

ing their own unique EEG experimental paradigms. The first study collects brain

responses corresponding to a combination of both music stimuli presentations and

behavioral tasks guiding attention to the music stimuli [Carpentier et al., 2020].

This breaks the tradition of having tasks that focus solely on passive cortical ac-

tivity while listening to some acoustic stimuli. The researchers argue that it not

only allows for them to have more salient brain responses but that it also al-

lows to test for emotional and perceptual features during the presentation of the

stimuli. In their study they also deviate from common complexity measures pre-

viously used in complexity matching studies and choose to use Multiscale Entropy

(MSE); the details of this algorithmic implementation will be discussed in the

next section along with other relevant timeseries processing methods. Participants

in their study were presented with an array of 40 classical song snippets varying

from around 40 seconds to a minute while they were tasked to move a computer

mouse into quadrants from either emotional (‘Stimulating, Relaxing’, ‘Pleasant,

Unpleasant’) or perceptual (‘Fast Tempo, Slow Tempo’, ‘High Pitch, Low Pitch’)

valances to match how a participant categorizes the stimuli at any given point

during the presentation. Furthermore, the processing of brain responses relied on

spectral power feature selection like with the ICA components used here but their

localization depended on source localization of predefined regions of interest. Re-

sults from their proposed experimental paradigm showed evidence for complexity

matching effects being salient when participants were attending to perceptual fea-

tures of pitch and tempo on components located near regions associated to music

cognition [Zatorre et al., 2002].

Another study presents strong evidence for complexity matching effects by

focusing on adapting feature selection and EEG processing methods while stay-
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ing with relevant methodology to complexity matching studies instead of adding

behavioral tasks [Teixeira Borges et al., 2019b]. The researchers collected brain

responses from 28 participants, which half of them had formal musical training,

passively listening to piano performances of 12 classical songs for about 2 minutes

per song. The chosen complexity measure is the Detrended Fluctuation Analysis

(DFA), which has been used widely in complexity matching studies with behav-

ioral data [Coey et al., 2016, Almurad et al., 2018]. Unlike in the present study,

they did not depend on extracting components from the data using ICA, partly

because of the higher resolution of their recording system and its 128 recording

channels. Instead, data was taken from each channel and split into 7 frequency

components using Empirical Mode Decomposition (EMD), which instead of using

preset frequency parameters defining the range of each frequency bands, the pro-

cess becomes a signal-dependent time-variant style of filtering. Simply put, EMD

only needs one hyperparameter n and divides the signal into that many frequency

components that act as power spectrum modes. This way of defining components

from brain responses leveraged the larger number of recording channels and adap-

tively multiplied the amount of data by relevant feature references. This was useful

in showing that specific channels and specific frequency components akin to α, β,

and γ ranges had strong correlations between the slope of the DFA functions from

the brain responses to the ones from the corresponding stimulus. In line with the

approach presented in the current study, they performed DFA on the amplitude of

the stimuli as well as pitch and note onsets with pitch DFA functions giving the

strongest correlations. Therefore, such results safely show complexity matching

effects under their specific experimental parameters.

These two studies stand as the sole empirical examples validating complexity

matching effect predictions of complex acoustic stimuli and brain responses, orig-

inally proposed by [West et al., 2008]. Each of these studies find unique method-

ological implementations to achieve these results, but it is argued here that the

generalizability of those results faces some limitations worth discussing. This is

especially true when going back to the main goal of understanding whether the Hi-

erarchical Temporal Structure can be reflected in brain responses, which through
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complexity matching effects can at least be assumed that it happens to some ex-

tent but does not fully answer the question. Furthermore, it is argued here that

methodological limitations are primarily obscuring complexity matching results in

EEG experimental paradigms. The following sections flush out the details of this

claim to better understand how data processing and collecting methods influence

validation of theoretical predictions as well as their generalizability.

4.6 Limitations of Timeseries Approaches

The understanding of a signal’s complexity via the processing of timeseries data

has been the precursor for relating the HTS of coupled behavior i.e., measuring

complexity matching effects. The complexity matching literature has stuck by

several tried and true methods for processing time-series of behavioral and neuronal

data. All methods typically include different ways of extracting salient activity

while averaging out uninteresting regular activity. As with any feature extraction

analyses, there exists trade-offs in what information is filtered out or not. Here I

will discuss the details and limitations of Detrended Fluctuation Analysis (DFA),

Multiscale Entropy (MSE), and Allan Factor (AF) methods which have been used

in behavioral as well as neuronal data which is of focus here.

4.6.1 Detrended Fluctuation Analysis

In relevance to the Cognitive Science literature, the detrended fluctuation anal-

ysis (DFA) was first used by [Stephen et al., 2008] to propose a method for cap-

turing long-range correlations of a time series. The purpose of using this method

was to make a case for strong anticipation, which involved the activity of a signal

at multiple time scales. Simply put, arguments for either weak or strong antici-

pation were a part of theoretical frameworks in Cognitive Science that contrasted

approaches depending on ‘prediction’ and ‘simulation’ of cognitive processes hap-

pening at multiple levels of analysis such as in what is known as Bayesian and

Predictive Processing frameworks, which will be discussed at greater length in

Chapter 7. This is also in contrast to looking at correlations that happen at specific
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frequency rates and creates a scaling function instead. The use of DFA was first

established in a DNA sequencing paper which tried to consolidate a method for un-

derstanding the meaningfulness of long-range correlations in nucleotide sequences

[Peng et al., 1994]. Such a method was an extension of the classic fluctuation anal-

ysis, in which the purpose of DFA was to handle non-stationary activity through a

detrending process. Successful mitigation of non-stationary trends in a time series

is meant to demonstrate the scale invariant relationship of the signal. The process

can be broken down into two steps. First a given timeseries xi is shifted by its

mean (see Equation 2). Then, the integrated series Xt is segmented by windows

of different time scales n in which the integrated values are fit linearly per window

Yt and the mean squared residuals F (n) are calculated as the fluctuations of the

signal (see Equation 3).

The fluctuations F (n) are a measure of variability at specific resolutions n,

that come from the averaged dispersion of residuals extracted from the local lin-

ear fits of the integrated values Xt. Power law scaling is demonstrated through

log-log plotting of F (n) over n in a fluctuation plot and its trend linear as delin-

eated by the α scaling exponent which approximates the Hurst exponent. This is

in reference to the original work demonstrating a heuristic measure of long-range

dependence in signals dominated by stochastic properties, termed the Hurst expo-

nent [Hurst, 1951]. Newer measures such as DFA are applied to varying natural

data in the attempt to estimate Hurst scaling. The DFA method faced criticism

for its ability to create artefactual curvature in the fluctuation plot. Despite its

original intent to handle non-stationary noise, the robustness of the method was

shown to be limited to signals with either purely stationary or weak-nonlinear

trends [Bryce and Sprague, 2012]. Results from the testing of artefactual curva-
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ture in DFA put many studies into question. In the case of complexity matching

or the related strong anticipation studies, the strength of correlations between α

scaling exponents can be problematic for unknown variability coming from arte-

factual curvature. Newer methods have attempted to go beyond and use a multi-

fractal version of the DFA [Almurad et al., 2018]. Such a method was useful in

providing more data of subsystem scaling during behavioral experiments but so

far has not been adapted or proposed as useful for EEG data. This could be be-

cause it would only give more 1/f scaling functions, which would simply multiply

the data into subcomponents of the same trend. The original intent for using a

multi-fractal adaptation of DFA was to give more resolution at faster timescales

[Delignières et al., 2016], but it is hard to tell whether that alone would give any

interesting results.

4.6.2 Multiscale Entropy

Measuring the complexity of neuronal activity from EEG recordings has used

MSE to process their data, generally for the purposes of having signatures for

states of neuronal activity correlated with neurodevelopment syndromes such as

Autism spectrum condition [Mandy and Lai, 2016]. This method can be simplified

as happening in two steps; first a down sampling of the processed signal via coarse-

graining and sample entropy deployed for every coarse-grained scale. The first step

is simple as it creates a list of time-series delineated by the number of scale factor

where at each scale factor τ the samples are averaged by a non-overlapping window

of length t. Then each element of a coarse-grained time series γj(
τ ) is calculated

as follows: where the length of each coarse-grained timeseries is N/τ . Also, the

first scale is not necessarily coarse-grained as it is simply the original time-series.

The total number of scale factors is often a hyper parameter chosen by researchers

that is constrained both by the resolution of interest and overall sampling rate of

the signal at hand. [Carpentier et al., 2020] set that hyper parameter to 100 given
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that the sampling rate of their EEG data was 512 Hz for recording lengths on

average around 1 minute.

Then in the second step, sample entropy is calculated for each coarse-grained

timeseries γj(
τ ) as follows. Given that N is the length of the timeseries, sample

entropy calculates the predictability within a timeseries by finding the conditional

probability that any two sequences of m consecutive data points are like each

other given a similarity criterion r that could remain similar at the next point

m+ 1 [Richman and Moorman, 2000]. The [Carpentier et al., 2020] study set the

pattern length parameter to m = 2, and the similarity criterion parameter to

r=0.5.

4.6.3 Allan Factor and Limitations

In the previous chapters including this one, the details regarding the AF analy-

sis have already been discussed. To avoid redundancies, this section will not repeat

a tutorial but instead will jump right into its own limitations along with the other

timeseries processing approaches. So far, we know that AF has been used both

with onset intervals and peak amplitude events. Unlike the DFA and MSE, the

AF method performs its measurement on an extracted event series rather than on

extracted timeseries. The main difference being that feature extraction for both

MSE and DFA are dependent on averaging processes. In behavioral data, this does

not seem to be much of a problem for DFA, because movements are salient activity

compared to any recording noise. Regarding EEG data, this could be difficult as it

really depends on the quality of pre-processing and specific data cleaning pipelines

implemented by the researchers. Specifically, it begs the question of whether spe-

cific time window sizes have more or less noise included in the samples it averages.

As previously mentioned, there were already several cases in which DFA included

artifactual curves in the longer timescales, which could be attributed to the de-

trending steps not being sufficient for noise at those timescales. Of course, this
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does not mean that the AF method is without fault here simply because it does

adhere to an event series that reduces free parameters and focuses on only captur-

ing relevant amplitude. In fact, it is because of this capability that it limits the

minimum size of signals measured. With music recordings, the rule of thumb has

been that the stimuli must be around 4-5 minutes long minimum to have enough

samples to process at 11 timescales [Kello et al., 2017]. On top of this limitation,

‘relevant’ amplitudes are also tricky to assume with EEG data because any mis-

takes in the preprocessing of the data could leave in artifactual peaks being picked

up without any balancing that an averaging process includes.

Across all three methods, the complexity comes from some sort of variability

measure whether it would be a Coefficient of Variance such as in AF, residual

fluctuations in DFA, or predictability based on differences in neighboring values

such as in MSE. I argue here that the limitations of these three methods does not

come from their variability measures but rather in their feature extraction steps.

The fact that any of these methods can give even limited results is surprising when

it comes to EEG data, given the noisy nature of the signal. What does this leave

us with? Perhaps with the impetus to model the noise itself. In summary of the

limitations, all of the above-mentioned methods open room for mistakes during

their feature extraction steps with either overly correcting a trend such as in DFA,

having too many free parameters which can add too much emphasis at specific

scales of time such as in MSE, and the potential for incorrectly identifying noise

as a relevant event such in AF.

4.7 Repeated Measures

Apart from data processing methods, experimental paradigms in data collection

also play a big part in not just the quality of the data but also what information

the data contains and the extent to which researchers can generalize their findings.

One of the peculiar standard procedures of many Cognitive Neuroscience experi-

ments is the practice of measuring repeated responses to the same stimulus, a prac-

tice fundamental to event related potential (ERP) measurement [Horváth, 2015].
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Such a procedure depends on the averaging of multiple presentations to the same

stimulus, but such an approach does not work well with measuring complexity

matching effects where the stimulus is several minutes long and complex. Despite

this limitation, it is still of interest to understand whether a repetition of a com-

plex acoustic stimuli can evoke a more salient response that could potentially make

the signal easier to process during feature extraction. In the present study, this is

investigated by making one of the song presentations the same classical symphony

song with its order randomly put across participants. In fact, we saw that the

only statistically significant result using complexity matching analyses came from

that difference in the first presentation to the second presentation of the classical

symphony stimulus. What does this mean? Well, this is complicated because a

simple correlation would be difficult to interpret because of the similarity of 1/f

from both the classical music stimulus and spontaneous cortical activity. But what

it does demonstrate, is that at the very least a repetition of the same stimulus does

change the slope of neuronal scaling at the longest timescales. An easy but per-

haps wrong interpretation can be that participants attune better to 1/f stimuli

and that a change in affect through repeated presentation is evidence given the

significant change in slope. That would easily tie back to theoretical predictions

from maximal information transfer theory. Of course, what is missing are baselines

and controls for this to be the case in the present study, since only the classical

song was repeated. Ideally such an interpretation could be given evidence if every

song was also repeated and only the classical music was had a significant difference

in slopes. But this result does help in interpret results from other studies, if not

at least put forth worthwhile testable hypothesis.

If we think back to the results from both studies using the MSE and DFA to

measure the complexity of brain responses, one peculiarity arises in the quality of

the stimuli used. The first obvious one is that they both present to participants

an array of only classical music. Further investigation towards their stimuli used

reveals that both studies songs repeating the same composer although the actual

songs are different pieces. Furthermore, songs from [Teixeira Borges et al., 2019a]

include songs not just from the same composer but they also include consecutive
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movements from the same symphony. Movements within the same symphony nor-

mally share many musical similarities, such as the same orchestral arrangements,

musical motifs, and articulatory phrasing meant to connect with the consecutive

movements within one symphony. Although not strictly repeated measures, these

similarities are worth pointing out for future studies to test whether actual re-

peated measures impact the salience of brain responses to the stimuli and whether

complexity matching effects can be untangled from any potential entrainment, fa-

miliarity, or attention factors that comes with the repeated presentation of stimuli.

Lastly, during the steps of extracting components from brain responses we also see

a multiplication of the data as there can be more components than the original

number of recording channels. In the present study this was not the case as only

four of the identified clusters were closely looked at which gave less data than

the total number of recorded channels. In the DFA study the was augmented by

having [128 Channels × 7 frequencies] for a total of 896 components while the

MSE study used source localization of 68 regions of interest, increasing their data

slightly by four. EEG methodology gives an interesting way for thinking about

repeated measures because each recording channel on its own can be thought of as

an observation of the same event. This is further augmented through methods that

multiply the number of observations by components. Ultimately suggesting that

repeated measures of this nature boost statistical power of frequentist statistics.

4.8 Localization

Given that the brain is involved in many different processes beyond the pro-

cessing of acoustic information, it is fair to say that the 1/f scaling measured by

EEG responses are a summation of subprocesses that include activity irrelevant

to the stimuli. To maintain homeostasis the brain has its own default endogenous

dynamics, and an approach focusing on signal localization could help in extracting

brain responses with a higher correspondence to the stimulus presented. Although

making assumptions about the locality of where correspondence to a stimulus can

raise difficult arguments about the theoretical framing of what is or is not relevant
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activity in cortical dynamics, we can at least treat localization as just another step

aiding with noise reduction. We know that brain dynamics are not simply modular,

and that correlated activity varies spatially throughout complicated topographies

of activity that do not always follow simple parallel heuristics. The ICA decompo-

sition and clustering analyses performed in the current study make a very simplistic

effort at trying to define regions of interest without trying to depend on predefined

assumptions of locality. One of the clusters conveniently located components in

what could roughly be characterized as a region where auditory processing occurs.

Despite that, it seemed that the results were more or less the same when compared

to components in other brain regions. The [Carpentier et al., 2020] study similarly

leveraged localization but instead of using ICA components they extracted source

signals of 68 predetermined regions of interest while using a 64-channel recording

system. Such an approach was good at producing a standardized multiplicity of

components to analyze but it depends on topographic assumptions of salient ac-

tivity. In contrast, the approach presented in the current study used a more hands

off approach by letting the data organize saliency itself based on orthogonal spec-

tral relationships and a data driven approach to defining regions of interest, which

through our clustering analysis gave out only 9 (of which we focused on 4) compared

to 68. On the other hand, the [Teixeira Borges et al., 2019b] study analyzed data

at the electrode channel level without extracting components based on topographic

location, but this could be because their system had 128 recording channels. Fur-

thermore, each channel was broken into 7 frequency mode components which can

loosely adhere to the same spatio-temporal categorization performed as with ICA

and source localization procedures. In all these cases, the extraction of brain re-

sponses into some spatio-temporal dimension aided in trying to capture relevant

correspondence to the stimulus, thus putting forth a standard of needing to have

higher resolution because there exists cortical activity that could potentially reflect

more of the stimulus. A simple framing of this problem is like finding a needle in a

haystack, where there might be one component that perfectly reflects the HTS of

the auditory stimulus. But perhaps it makes more sense that the problem is more

difficult, and it is more like trying to find a needle in a needlestack.
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All three studies found stronger results in specific locations that could be tied

back one way or another to auditory, music, or attention cognition literature. MSE

results found that certain regions of interest were correlated with behavioral ratings

of emotional and perceptual features of the stimuli that were backed up by music

cognition studies. Results were stronger in brain responses adhering to the percep-

tual behavioral task that participants were tasked during music listening. Here, I

put forth criticism worth consideration because the MSEs collected, despite them

going through standard muscle and ocular artifact cleaning, are representative not

just of the passive brain response to the auditory stimuli but it also includes the

motor activity of the behavioral task itself. It is evident that such a task helps

provide stronger responses but their argument of such behavioral tasks providing

stronger responses because the participant is attending more closely to the stim-

ulus seems to not be clear, given that stronger responses could be an artefact of

the motor dynamics produced by the task rather than guiding in stronger per-

ceptual adherence to the stimulus. Complexity matching effects of MSEs were

also stronger in parietal and temporal lobe regions whereas in the studies using

DFA and AF they both showed stronger results in the frontal lobe region. In fact,

the present study was only able to show some evidence of complexity matching

effects occurring using a machine learning approach. The AF scores of ICA com-

ponents were used as predictors for the stimuli category labels in a classification

task. Results were above chance performance in models trained only using the

longest timescales, while showing that data coming from the frontal lobe had the

highest rate of true positives.

4.9 Conclusion

Complexity matching effects between complex acoustic stimuli and brain re-

sponses were shown in studies using MSE and DFA as their methods to measure

complexity. Experimental and data processing parameters of those approaches

raise questions as to how generalizable such results can be. This is evident when

considering the that their stimuli were played for shorter durations than in the
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present study while only including similar classical music examples. Complexity

matching effects in prior behavioral studies are able to show the alignment of HTS

between coupled signals across scales of time. When measuring cortical activity,

the extent to which one can expect to find this reflection of HTS of one signal

on another is limited due to the limits of spatial resolution, as many responses

become summations of the default spontaneous 1/f scaling that normally exists.

This is why results of the three discussed studies find stronger results when looking

at specific time scales, or at the averaged variability from the compared scaling

functions. It does not make sense for an acoustic stimulus to shape the entirety of

cortical scaling and it is difficult to find a highly corresponding signal that could

reflect the subtleties of the HTS from the stimulus. The present study does shed

some light on extending this methodology to using machine learning, as it provides

results above chance performance despite the limits of the experiment at hand. A

general machine learning approach would deviate from the specific framing in data

collection and processing as it no longer asks the question of whether we can find

that needle in the needlestack. It then asks whether the brain response has enough

information correlated to the stimulus that it can then tie it to acoustic features.

This chapter ends by highlighting the importance of this switch in hypothesis test-

ing from complexity matching to information retrieval, as such methods could free

up experimental and data processing parameters to include naturalistic data.



Chapter 5

Image-Based EEG Classification

of Brain Responses to Song

Recordings

Classifying EEG responses to naturalistic acoustic stimuli is of theoretical and

practical importance, but standard approaches are limited by processing individual

channels separately on very short sound segments (a few seconds or less). Recent

developments have shown classification for music stimuli (∼ 2 mins) by extracting

spectral components from EEG and using convolutional neural networks (CNNs).

This chapter proposes an efficient method to map raw EEG signals to individ-

ual songs listened for end-to-end classification. EEG channels are treated as a

dimension of a [Channel × Sample] image tile, and images are classified using

CNNs. The experimental results here ( 88.7%) compete with state-of-the-art meth-

ods (85.0%), yet our classification task is more challenging by processing longer

stimuli that were similar to each other in perceptual quality, and were unfamiliar to

participants. A transfer learning scheme using a pre-trained ResNet-50 is adopted,

confirming the effectiveness of transfer learning despite image domains being un-

related from each other. The strength of efficient image-based modeling of EEG

responses to music puts forth an example for the strength of information retrieval.

This is considered as an alternative method to complexity matching paradigms as it

boasts high classification performance of mapping to features of the stimuli, adding

69
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evidence to what type of information is contained in brain responses.

5.1 Introduction

The prior chapters demonstrated evidence for understanding Hierarchical Tem-

poral Structure (HTS) via behavioral coordination and brain response studies using

speech and music as the signals of interest in the analysis. Complexity Matching

effects allowed for understanding how coupled systems affect the HTS of signals

in behavioral experiments but limitations in methodology have found it harder

to show the same strength in results with brain responses. Core theoretical pre-

dictions in Maximal Information Transfer have been keen on connecting how the

structure of systems in the surrounding environment can be tied to neuronal ac-

tivity during perceptual tasks. Like many other natural systems, the brain also

demonstrates a characteristic 1/f scaling in its temporal structure. Early compu-

tational simulations and experimental measurements discuss how the brain’s 1/f

nature should mean that it is most sensitive to attune or resonate with stimulus

also showing 1/f dynamics. The 1/f nature of the brain in these early perspectives

came from coarse measurements capturing a summation of subprocesses that dur-

ing that time had limited techno-methodological capabilities, unable to have fine

grain localization of stimuli correspondence in cortical activity. The advancements

in technological capabilities have influenced experimental parameterization and

the data processing allowing for more naturalistic acoustic stimuli. Complexity

Matching effects were still limited as results came from only from classical music

stimuli, while also not being able to dissect how the overall HTS across all scales

are being affected. Different types of acoustic stimuli show deviations from 1/f

HTS and whether that information can be related to a brain response has not yet

been verified. The previous chapter presented a case for the strengths in a machine

learning approach, as it can pick up on statistical subtleties from the input being

mapped to a desired target feature through an iterative learning process. Although

a parametric modeling approach via machine/deep learning changes how the ques-

tion is asked about finding a correspondence from speech and music HTS, the goal
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is to see whether strength in performance and generalizability can continue the

discourse of this topic further.

Information retrieval is the wide tent term referring to the modeling task of

mapping a noisy input signal to a desired feature you are fishing for. Brain

responses here are then treated as noisy versions of the corresponding acous-

tic stimulus, and the modeling task simply tries to retrieve information con-

tained in that brain response. Different sub-disciplines overlap in these approaches

to different ends but with relevant experimental paradigms which are reviewed

here to develop an efficient methodology. For example, Brain Computer Inter-

face (BCI) research seeks to interpret information retained in brain responses

that relates to perceived stimuli for the purpose to extend and coordinate cog-

nition via wearable technologies. Traditional BCI approaches have leveraged cor-

related behaviors measured through brain responses, such as modeling the re-

lationship between ocular directionality or mouse tracking and cortical activity

[Petrushin et al., 2018, Stawicki et al., 2017]. When feeding these data to deep

learning networks, classification of specific actions across varying contextual scenes

becomes strong e.g., leveraging pupil dilation with cortical activity to classify click

actions when navigating the internet [Slanzi et al., 2017].

Consequentially, this leads to interest in researching methods that could inter-

pret the passive responses to complex, naturalistic stimuli which open the possi-

bility of including populations with limited motor capabilities. Users of these BCI

technologies will not always be in a position to depend on correlated motor move-

ments so passive cortical activity is of interest. An example of this in the image-

stimuli domain has shown the ability to both classify and reconstruct image cat-

egories that participants were passively exhibited. [Spampinato et al., 2017] used

10 image classes from ImageNet [Krizhevsky et al., 2012] and randomly presented

examples of 0.5 second presentation length. The electroencephalogram (EEG) re-

sponses to these stimuli were then fed to a recurrent neural network (RNN). In

the case of classification, the trained RNN models were able to take EEG data

as input to classify whether a participant was seeing a category of images such as

‘dogs’, ‘cars’, ‘fruits’ and so on.
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Methods focused on only processing cortical activity have fallen under the neu-

ral decoding umbrella, with a similar goal of relating external behaviors to the in-

ternal cortical activity. One of the primary endeavors in neural decoding research is

to model temporal correlations of stimuli to their corresponding brain response via

regression or classification-based decoders [Glaser et al., 2020]. Common practices

with neural spike trains and EEG recordings have included using RNN frameworks

to capture temporal transitions over time. EEG recordings show high temporal

resolution but a low spatial resolution tradeoff [Livezey and Glaser, 2021]. Here

we focus on the comparison of EEG studies related to processing temporal rela-

tionships using deep learning methods.

Some approaches use Convolutional Neural Networks (CNNs) along with tradi-

tional feature extraction techniques. This usually involves taking a specified EEG

channel and passing it a wavelet transform to turn it into a 2D spectral input rep-

resentation [Golshan et al., 2020, Wang et al., 2019]. Then the 2D spectral input

is sent to the CNN for further processing. For instance, [Supratak et al., 2017]

utilized the single-channel recordings along with 1D CNN layers as an input for

a Long short-term memory (LSTM) model. [Qin et al., 2018] proposed EEGNet,

which leverages from the depthwise and separable convolution technique. This

allows for the model to use the EEG channel ordering to approximate filter-bank

common spatial pattern (FBCSP) and bilinear discriminate component analysis.

This is successful because EEG channel ordering follow topographic relationships

of how they are recorded on the scalp, thus giving a reference point for how to

properly organize EEG channels to create a relevant portrait [Lawhern et al., 2018,

Livezey and Glaser, 2021].

Recent studies explored neural decoding concepts and applied them to acoustic

EEG responses of complex stimuli. Stober et al. [13] presented participants with

100ms long sinusoid rhythms based on tribal cadences and achieved ∼24.4% clas-

sification performance on a total of 24 classes. Stronger performance was shown

(∼83.2%) in a 3 class RNN model using spoken vowels (∼0.5 sec) with featured

extracted EEG inputs [14]. Another study used longer stimuli (∼10 sec) of 8 vary-

ing types of vocalizations and was able to achieve ∼61% performance without any
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feature extraction on EEG passed to DenseNet. Yu et al. [15] improved the perfor-

mance to ∼81% by incorporating canonical correlation analysis between DenseNet

and pre-trained VGG model that extracted audio features of the experimental

stimuli. Most recently, Sonawane et al. [16] improved on these approaches and

showed that longer and complex stimuli (∼ 2 mins of music) could be used to evoke

EEG responses used as spectral 2D CNN inputs to classify song ID (∼85.0%).

In this paper, we investigate raw EEG input as a potentially efficient and read-

ily available input representation. We created a raw EEG image representation

defined by [Channels, Samples] dimensions. This approach presents state-of-the-

art performance using a fraction of trainable parameters with indie/electronic song

stimuli (4 mins each) that were unfamiliar to participants. Input representations

are analyzed through Multidimensional Scaling (MDS) on channel order and com-

pared with Power Spectral Density (PSD) feature extraction. Lastly, classification

results are extended with a supporting dataset using pop Hindi songs as stimuli.

Figure 5.1: 1) the raw and 2) the PSD input representations of participant 1 at
the 100th second of song 1. 2) one second PSD at 125 hz produced up to 63 Hz
frequency components.

5.2 Methods

The first 4 minutes of all recordings were used and then split into 5-second

chunks. To create training and test sets from the same distribution, we balance
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the train and test data across time by assigning every other chunk to go either

train or test at a 75/25 ratio. From there, the chunks were cut up into 1-second

examples and the model presentation order was randomly shuffled. Input tensors

were of [Batch Size × Samples× Channels × Depth] dimensions. Given a 1 sec

input length the input representations were now square images at depth of 1 giving

input tensor dimension values of [Batch Size × 125 × 125 × 1].

Given the training dataset S = ∪n
i=1{xi, yi} drawn i.i.d. from distribution D,

we seek to learn a model that generalizes well. In particular, consider a family of

models parameterized by w ∈ W ⊆ Rd . We define the training set loss as follows:

where xi ∈ R125×125×1 which is a depth of 1 portrait of the EEG recordings. Then,

the input is fed to the CNN network and after a softmax layer the objective function

to be minimized is as follows:

where G(.) is the neural network followed by a softmax layer. A summary of

the proposed architecture is illustrated in Table 5.1.

Since the input is like a grayscale image, we can apply 2D convolutional layers

to extract features. The kernel size is fixed to 4 × 4 with a stride of 2. The

convolutional layers have 32, 64, 128 filters, respectively. Since the final task is

recognition, the network requires the most abstract representation. Therefore, we

applied a Global Average Pooling (GAP) [Ebrahimpour et al., 2020] on top of the

last convolutional layer. Since most of the parameters in a neural network comes

in the fully connected layers (FC), GAP layer significantly reduces the parameters.

The activation function on all convolution and fully connected layers (except the

output layer) is fixed as linear Rectifier units and the network is initialized with

the He [Ebrahimpour et al., 2020] initialization technique.
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Layer Type Filter Size Input Output

Conv2D 4× 4 125× 125× 1 63× 63× 32

BatchNorm2D - - -

Conv2D 4× 4 63× 63× 32 32× 32× 64

BatchNorm2D - - -

Conv2D 4× 4 32× 32× 64 16× 16× 128

BatchNorm2D - - -

GAP 16× 16 16× 16× 128 1× 1× 128

FC1 - 128 100

BatchNorm1D - - -

FC2 - 100 10

Table 5.1: Details of the proposed architecture. Input: The raw portrait of EEG
signal. Output: The class labels associated to music genre.

Finally, transfer learning methods have proven useful for improving the speed of

training and asymptotic performance of deep learning models. Since the input is a

2D image of the EEG with spatial structure, we hypothesized that transfer learning

is feasible, even when transfer stimuli come from naturalistic images as opposed to

EEG images. Therefore, we adopted the ResNet50 pre-trained on ImageNet to our

task [Krizhevsky et al., 2012]. Because the input to ResNet50 is a color image, the

raw EEG image was stacked three times to simulate what would be RGB channels.

5.3 Experimental Results

5.3.1 Datasets

We evaluated our method on two publicly available datasets: Naturalistic Mu-

sic EEG Dataset – Tempo (NMED-T) and Naturalistic Music EEG Dataset –

Hindi (NMED-H). In both datasets participants are recorded in a passive listening

experiment [Dmochowski et al., , Losorelli et al., 2017]. The NMED-T dataset is

comprised of 20 participants who listened to 10 songs to their full length (4:30-5:00

mins) in a randomized order. The dataset also included behavioral rating ques-
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tions (scaled 1-9) on both how familiar the participant was with each song and how

enjoyable they found each song after listening. Familiarity ratings across partici-

pants were very low on average. The experimenters also selected the songs to have

unique tempos from one another. Uniqueness was defined by having a different

Beats Per Minute (BPM) and varying low-frequency spectral peaks. Furthermore,

all songs contained vocals with one song not in English.

The NMED-T dataset included both the cleaned and unprocessed signals,

for which we opted to use the cleaned signals as to not include muscle

artifacts. Specifics of their preprocessing steps can be found in their report

[Losorelli et al., 2017]. Independent Component Analysis (ICA) was used to

remove muscular artifacts and ocular components were computed to reject bad

channels. The recordings were done using the Electrical Geodesics Inc. (EGI)

GES300 system with an EGI Net Amps 300 amplifier and Net Station 4.5.7 ac-

quisition software at a 1 kHz sampling rate [Tucker, 1993]. On the other hand,

the NMED-H dataset included similar preprocessing except that it used Reliable

Components Analysis (RCA) for channel selection. The main difference lies in

the participant schema and stimuli, for which there were 12 different participants

per condition and each stimulus was a full-length Hindi pop song. There was

only a total of four different songs, and participants listened to the songs twice

but in our model training, we only used data from the first listen. Lastly, guid-

ance for cross-dataset compatibility has been published to better connect results

[Dmochowski et al., ].

5.3.2 Comparisons

Results are generalized to random unheard examples across time and within

participants. This follows the training approach of the visually evoked EEG re-

sponse classification models [Spampinato et al., 2017]. Other EEG classification

studies also do not do across participant generalization because of the high cost of

acquiring a large number of new participants when one participant can give you

sufficient recordings [Moinnereau et al., 2018, Sonawane et al., 2021].

The NMED-T dataset has a total of 10 class labels, and the NMED-H dataset
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has 4 classes. We also added yet another classification task for enjoyment ratings.

The NMED-T dataset has enjoyment ratings scaled from 1-9. The enjoyment rat-

ings were applied as targets for the classification of rating. However, enjoyment

ratings were unequally distributed. Thus, we decided to group ratings into three

broad groups: low, medium, and high enjoyment classes for a 3-class classification

model. Standard sentiment classification studies also only use either binary or 3-

class models [Bird et al., 2019], and the label reassignment here seeks to make the

task relevant while also compromising with the dataset size limitation. Further-

more, several validation metrics are included to more strictly interpret the effects

of reassigning labels, as well as to better understand the strengths and weaknesses

of classification.

Models Accuracy% Precision% F1% Kappa%

NMED-T 88.69 88.85 88.67 87.43

NMED-H 97.09 97.36 97.05 96.13

ResNet-50 93.05 93.08 93.05 92.28

Enjoyment 90.12 90.15 90.10 83.87

Random 80.23 80.68 80.22 78.04

MDS 83.13 83.60 83.08 81.26

PSD 83.18 84.05 83.20 81.31

PSD-2 80.75 81.81 80.60 78.61

Res-PSD 94.12 94.13 94.12 93.46

Table 5.2: Grand performance summary of all our models. Top panel shows results
for our models trained on raw input and classification of the song or its enjoyment.
Bottom panel shows results for models trained on the different feature sets tested.

Table 5.2 presents the testing results of the different classification models across

several performance metrics. Cohen’s Kappa illustrates the strictest metric for all

models. In this case, Cohen’s Kappa metric is measuring the agreeability between

the target labels of the songs (the name of the songs) and the predicted labels

from the classification. The usefulness of this metric is that it considers as a ratio

both the difference in true and predicted target labels over the random chance

of agreeability [Cohen, 1960]. This is especially useful for the enjoyment rating



78

model. It seems to pick up on the 3-tier class reassignment used here because it

has the biggest difference ( 7%) in Cohen’s Kappa to other metrics, compared to

only 2% for the other models. Top panel of Table 5.2 shows that all the models

here outperform any prior EEG classification attempts.

Recent attempts at classifying auditory EEG responses have achieved

similar performance ( 84%) all while relying on feature extraction or simple and

short acoustic stimuli [Moinnereau et al., 2018, Sonawane et al., 2021]. Study

[Sonawane et al., 2021] provides a strong example for treating EEG responses as

images in classification tasks. They show that when the EEG recordings are treated

as 1D time-series in CNN layers, performance stays at chance. This is something

we were able to verify with our initial attempts at classification using the NMED-T

dataset. Their strongest model (84.96%) is a consequence of extracting frequency

components with a PSD analysis. In our simple 2D CNN model we show that

we can achieve 88.69% accuracy without normalizing the data or using spectral

analysis. Table 5.3 illustrates a comparative summary across relevant studies con-

sidering their best performance and details of the datasets used to achieve that

performance. The most comparable study is by [Sonawane et al., 2021] and we fo-

cus here on how our approach expands on it. Table 5.3 shows that the main model

here is trained on EEG responses with the longest stimuli by a large margin on

the order of minutes. Other studies have also attempted to not include feature ex-

traction steps but the stimuli length in their experiments are significantly smaller

than in this study (in the order of seconds) [Stober et al., 2014, Yu et al., 2018].

In comparison to [Sonawane et al., 2021], the EEG responses in NMED-T were to

unfamiliar stimuli, which in a prior study it has been shown to be the harder case

as classification performance drops when listeners are not familiar to the music

stimuli [Hadjidimitriou and Hadjileontiadis, 2013a]. Our model also achieves this

level of performance (88.69%), but with substantially smaller parameters (179,132

compared to 1,678,156) in [Sonawane et al., 2021].

In any standard image classification task, it matters how the input images are

represented. The use of data augmentation such as rotations, mirroring transforms,

and noise can help regularize model. On the other hand, we also know that if we
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are classifying categories such as ’dogs’, we want the face, legs, and tail to be in

the correct spatial order. The concern with our input representation is whether

the default channel order did not distort our proposed cortical portrait. Bottom

panel of Table 5.2 shows a summary of testing the input representation format.

Studies Accuracy(%) Class Size Stimuli Length Feature Extraction Stimuli Type

Sonawane et al (2021) 84.96 12 2 mins Yes Music

Moinnereau et al (2018) 83.20 3 0.5 secs Yes Spoken Vowels

Yu et al (2018) 61.00 8 10 secs No Vocals

Stober et al (2014) 24.40 24 100 ms No Sinusoid Rhythms

Our Study 88.44 10 4 mins No Music

Table 5.3: Summary of studies that try to classify EEG responses to an ID label
of complex auditory stimuli.

5.3.3 Input Representations

Channel order was tested by training models with randomly shuffled channels

and with channel groupings based on MDS as seen in Table 5.2 with models ’Ran-

dom’ and ’MDS’. In short, the MDS analysis consisted of taking the root mean

square (RMS) of the channel amplitude envelopes in the training data to create

a difference matrix (pairwise Euclidean). The matrix was then projected into a

1-dimensional embedding through MDS manifold learning, which allowed for rank

ordering channels based on their dissimilarity. Table 5.2 shows that MDS or-

dered channel training had 4% less accuracy, while random ordered channels had

a significant loss in performance 13%. With this we can have confidence that our

proposed raw EEG portrait with the default channel ordering is adhering to crucial

spatial relationships for classification. The concept behind testing channel order

is inspired by [Saeed et al., 2021] Channel Reordering Module (CHARM), which

helps make sense of heterogeneity of electrode channels. CHARM is a generalized

model for taking in channel data and extracting components then reprojected into

a meaningful order for a new 2D representation of the data.

Furthermore, we also evaluated the impact of raw input vs. spectral representa-

tion on the NMED-T dataset (visualized in Figure 5.1). The periodogram function

was passed to all our 1 second raw EEG inputs at 125 Hz with Fast-Fourier Trans-
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form (FFT) windows being the same size as the input length as well as passing the

function to 2 seconds EEG inputs [Bartlett, 1950]. This was done because PSD

approximation gives back frequency components up to half the maximum sam-

pling rate of your input, and the 2 second EEG examples give us a representation

with the same shape R125×125 as our raw representation. This gives us confidence

that differences in performance are between input representations and not model

hyperparameters. In Table 5.2 we can see that PSD representation from 1 second

EEG has better performance than the 2 second examples as seen in models ’PSD’

and ’PSD-2’ respectively. The performance here is still 5% less than our main

model trained on raw inputs, showing us that feature extraction is not needed for

classification tasks.

5.3.4 Transfer Learning

Fine-tuning of the ResNet50 is done with raw and PSD representations where

a pretrained ResNet50 model on images commonly found on the internet is used

as a foundation to then train with the EEG data on top. Both models in Table

5.2, ’ResNet-50’ and ’ResPSD’, achieve test performance up to 93%. The high

performance here is surprising because the input representations used here are

significantly different than the original training images, as seen in Figure 5.1. These

results support our main point that EEG data can be effectively processed through

standard computer vision methods to allow for stronger performance and more

efficient models. We can see that with EEG we have two variables that configure

a cortical portrait; channel topography and spectral extraction. More testing is

needed to further understand what configurations are more appropriate across

deep learning tasks, but with our results we show an example of high performing

end-to-end classification.

5.3.5 Validation & Generalization

Many publicly available EEG datasets have a participant size limitation because

of how expensive it is to have long recordings of various people. This primarily
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becomes an issue when trying to balance inputs to targets as well as how to assign

train and test data. We did label reassignment on the sentiment classification task

to handle the prior mentioned issue, and the data was separated into time chunks

for the latter to avoid the train or test sets having too much of the beginning

or end of the songs. This is also why our generalization was done using a hold

out metric instead of cross-validation. In an attempt to be critical of our results,

we also included precision, F1, and Cohen’s Kappa as model metrics. We find

that precision is higher than accuracy for all models, although not by much. We

also see that F1 scores are not much lower than model accuracy, but that kappa

does reflect a strict interpretation of our results. Further validation testing of the

main ’NMED-T’ model is seen from Table 5.2 through the use permutation tests.

The first test looked at predicted performance when randomly permuting the test

labels and the second test randomly permuted the model weights; in both tests,

performance stayed at chance 10%.

Figure 5.2: Left, the confusion matrix for the original model. Right, results from
the original model sorted by ascending BPM.

Our results are interpreted here as providing a useful method for end-to-end

classification of EEG responses to music listening, but alternatively we could also

be seeing these results only because the dataset was designed to be distinguishing

tempos. In other words, there is a competing alternative that the models here are

not capturing overall acoustic features and only works because of the differences

in BPM. [Stober et al., 2014] provides a good counterpoint to this because their
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results explicitly test acoustic stimuli with the exact same BPM, and test per-

formance across their models are fairly above chance. We perform an additional

analysis to address this as well, by looking at the correlation of BPM across confu-

sions as seen in Figure 5.2. Specifically, we took the confusion matrix of our best

performing model and organized it by ascending BPM. It can be seen that confusion

was random and not clustered along the diagonal. Here, the average BPM differ-

ence for confusions was 31.5 BPM, whereas the chance difference was 28.95 BPM.

Although the stimuli were originally picked because of their differences in tempo,

some only differ with 5 BPM, and genres fall under the similar ’indie-electronic’

umbrella due to the researchers’ focus on unfamiliar stimuli [Losorelli et al., 2017].

5.4 Conclusion

Traditionally, EEG data has been likened to time-series/sequence

input representations in deep learning due to the analysis conventions in

Cognitive Neuroscience studies [Glaser et al., 2020]. Recent relevant studies

have leveraged CNNs by extracting frequency components of EEG

[Moinnereau et al., 2018, Sonawane et al., 2021]. In this study, novel recognition

results are presented which support the proposed method that EEG responses to

full length music stimuli can achieve state-of the-art performance using the raw

input without any feature extraction. In total, 9 models and 2 datasets are used to

support our method, while the main dataset used (NMED-T) is the most difficult

benchmark of EEG music classification. This is because the music stimuli are the

longest by an order of minutes, the participants were unfamiliar with the stimuli,

and the songs overlapped significantly in terms of genre. Despite these challenges,

our experiments reveal that EEG responses to music can be processed end-to-

end. The strength of this approach contrasts clearly with the previous Complexity

Matching experimental paradigms as it does not need careful feature extraction,

localization, and allows for more challenging stimuli that are more relevant to the

act of music listening. The information retrieved via this method includes the

identity of the music stimuli used given only 1 second of EEG data as well as the
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classifying how much someone enjoyed it. These two features of the music stimuli

may be limited to the discrimination of types of data, but the methodology builds

a foundation for extending this to retrieve information closer to what is the HTS of

the music. The next chapter will present results to that end via a deep regression

modeling task.



Chapter 6

EEG2MEL: Reconstructing

Sound From Brain Responses to

Music

Information retrieval from brain responses to auditory and visual stimuli has

shown success through classification of song names and image classes presented

to participants while recording EEG signals. Information retrieval in the form of

reconstructing auditory stimuli has also shown some success, but here we improve

on previous methods by reconstructing music stimuli well enough to be perceived

and identified independently. Furthermore, deep learning models were trained on

time-aligned music stimuli spectrum for each corresponding one-second window of

EEG recording, which greatly reduce feature extraction steps needed when compared

to prior studies. The NMED-Tempo and NMED-Hindi datasets of participants

passively listening to full length songs were used to train and validate Convolu-

tional Neural Network (CNN) regressors. The efficacy of raw waveform versus

power spectrum inputs and linear versus mel-spectrogram outputs were tested, and

all inputs and outputs were converted into 2D images. Quality of reconstructed

spectrograms was assessed by training classifiers which showed 81% accuracy for

mel-spectrograms and 72% for linear spectrograms (10% chance accuracy). Re-

constructions of auditory music stimuli were discriminated by listeners at an 85%

success rate (50% chance) in a two-alternative match-to-sample task. The strength

84
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of this methodology adds a new type of evidence for how much of the structural

information of an acoustic stimuli is retained in brain responses given that a per-

ceptually recognized reconstruction can be heard.

6.1 Introduction

Reconstructing stimuli from brain responses has been explored across several re-

lated subdisciplines spanning from signal processing methodology, Cognitive Neu-

roscience, and deep learning modeling. These methodologies stray away from the

Complexity Matching approach to understanding Hierarchical Temporal Structure

(HTS) as they often rely on parametric solutions to retrieving information of acous-

tic stimuli from brain responses. The success of these approaches is that they out-

put results more easily interpretable, as both researchers and others can actually

judge for themselves the quality of a reconstruction by listening to it. Therefore,

if a reconstruction is good enough to sound like the original stimuli, then it makes

it easier to propose that brain responses contain enough information, including

HTS, for the original signal to be recovered. A notable example comes from the

culmination of experimental studies showing how to retrieve a Frequency Following

Response (FFR) from averaged brainstem recordings to short (<1 second) presen-

tations of speech and music [Coffey et al., 2019, Skoe and Kraus, 2010]. This type

of recording only needs three electrodes, one centered on the scalp, a reference on

the earlobe, and one grounding on the forehead. With this set up, participants

are presented a sound such as a violin playing with their eyes closed repeatedly for

about 1000 - 3000 times. The strength in this approach comes from the quality

of FFRs to be able to contain the fundamental frequency, harmonics, and onset

aligned amplitude from the auditory stimulus. This allows for researchers to play-

back an FFR and hear a lower resolution version of the original stimulus. Such

a methodology provided an impressive proof-of-concept for speech and music re-

trieval, but it also depends on various experimental conditions. First, careful stim-

uli selection is necessary to retrieve FFRs as it needs to consider stimuli that have

clear amplitude bursts, strong onsets, lower fundamental frequencies (<300 Hz),
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and short durations. Furthermore, the retrieved signal is averaged from hundreds

of repeated presentations used to isolate a specific response such as in brainstem

activity.

Another exemplary approach in the space of signal processing and

Cognitive Neuroscience comes from auditory tracking experiments where

researchers have been successful in retrieving the speech amplitude from the

stimuli [Synigal et al., 2020]. Experiments had participants listening to 180

secs of an audiobook split up into 25 separate trials. What makes this approach

strong is the simplicity behind the modeling procedure where it takes as input

both low frequency and high-gamma power spectrum signals from Electroencephalo-

gram (EEG) channels and puts them through a linear model that decodes the input

and then maps to the stimulus target. Despite the modeling simplicity, the ap-

proach faces a trade off with the data processing needing to be more complicated.

EEG signals need to first be split into two signals that separate activity from low

and high frequencies while also being iteratively integrated across channels into the

model over several time lags from 0-250 ms. Nevertheless, this research moves for-

ward the methodology of neural decoding and acoustic information retrieval from

cortical activity towards a more naturalistic scenario where it does not require

mass averaging of presentations and stimuli presentations are longer.

Deep learning methods of decoding stimuli from brain responses have been suc-

cessfully implemented through various classification models. In the image stimuli

domain, researchers collected passive cortical responses of people watching im-

ages from ImageNet [Spampinato et al., 2017]. They trained the EEG responses

in a Long Short-Term Memory (LSTM) based Recurrent Neural Network (RNN).

Model validation demonstrated that brain responses could be used to correctly

identify an image class at 84% performance that is being perceived (2.5% chance),

i.e., if a participant was watching an image of a panda the model could correctly

identify that the image being perceived was of a panda. In the auditory domain, re-

cent classification studies have developed methods to efficiently use EEG responses

in Convolutional Neural Networks (CNNs) to correctly classify the name of the

song a participant is listening to. This was shown to work strongly (85%) when
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participants listened to music they were familiar with (8.33% chance), and if the

input of the models were formatted as 2D representations of the power spectrum

density across channels [Sonawane et al., 2021]. Using different datasets, another

study replicated the prior study’s results and further evaluated the efficacy of EEG

data being used as images in computer vision models implemented through a cus-

tom version of AlexNet architecture and in transfer learning with a pretrained

ResNet model. The researchers trained models with the power spectrum density

EEG representations and compared it to the raw EEG representations. Training

on the raw input representation was able to show that not only was end-to-end

classification possible, but that it could also achieve State-of-the-Art performance

at 88.6% with 10% chance on unfamiliar music [Ramirez-Aristizabal et al., 2022].

Figure 6.1: Visualization of music reconstruction in our study. Brain responses
from music listening are processed by deep regressors and retrieved music is played
back to new participants.

Studies moving beyond classification approaches and into trying to reconstruct

the stimuli have seen some initial success with the use of generative models and

careful feature extraction. Following the work in [Kavasidis et al., 2017], the re-

searchers transferred weights from their classification models to use as encoders

in a Variational Autoencoder (VAE) and Generative Adversarial Network (GAN).

They successfully recreated the image classes that participants were looking at

with an EEG response as input to the network. For example, if a participant was

looking at images of pandas, then the models would recognize that it is a panda

and output an image of a panda. The novelty of generative models comes from

the ability to not just have outputs that are semantically similar, as their study

claims, but to also generate a distribution of images not directly presented to par-
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ticipants. This was made possible by the transfer learning of weights trained to

classify image classes, which when fine-tuned to new examples created training

procedures of generative models estimating the density of image classes. For the

purposes of direct information retrieval this also becomes a limitation because the

outputs are estimations from image classes rather than a pixel-by-pixel reconstruc-

tion. This means that if a participant was looking at a picture of a panda who

was sitting down and profiled to the left, then the model would not necessarily

pick up on those features but return a sampled panda image from the estimated

image class fitted by the model. In music retrieval, another study had found a

way to leverage the acoustic features of the music stimuli and use it as inputs for a

multi-view approach in a deep Variational Canonical Correlation Analysis (VCCA)

model [Ofner and Stober, 2018]. Despite the lack of quantitative model validation

analyses, this study demonstrated the possibility of using deep learning to be able

to reconstruct music spectra from long EEG responses. In their qualitative analy-

ses, they confirmed that reconstructed spectra were able to retain acoustic features

from the original stimuli such as pitch, timbre, and tempo. Furthermore, it allowed

for an approach that would move beyond stimuli classes and attempt to consider

time-aligned activity in the stimulus presentation to be retrieved from brain re-

sponses. Here, we present results that advance the methodology of music retrieval

and stimuli reconstruction from brain responses by training models that have time

aligned EEG responses to the music spectra target. This is done without needing

to integrate acoustic features from the stimuli as input to the model or depending

on a multi-step feature extraction process from the EEG. We also present a series

of quantitative validation methods to measure the success of music reconstruction,

including feedback from participants listening to the reconstructed music from our

model outputs. Figure 6.1 outlines the scope of information retrieval, starting with

music stimuli presented to participants being encoded in their EEG responses and

mapped to the time-aligned stimuli spectrogram by a deep regressor which outputs

a reconstructed music spectrogram that is inverted into a waveform and presented

to a new person.
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Figure 6.2: On the left are the two types of input representations we test, and on
the right the two types of target representations for a total of 4 model combinations
as labeled by each arrow. All representations come from Participant 1 at the 100th
second.

6.2 Methods

6.2.1 Datasets

Here we train and validate models with the Naturalistic Music Electroen-

cephalogram Dataset – Tempo (NMED-T) and Naturalistic Music Electroencephalo-

gram Dataset – Hindi (NMED-H) [Dmochowski et al., , Losorelli et al., 2017]. Both

datasets collect long recordings of passive brain responses to participants listening

to music. The NMED-T contains recordings from twenty participants listening

to ten different songs that were selected by the researchers because of the lack

of familiarity and differences in tempo. On the other hand, the NMED-H has

recordings from twelve participants listening to four pop songs in Hindi. These

publicly available datasets have been central to various signal processing stud-

ies along with some studies looking into music retrieval from cortical activity

[Ofner and Stober, 2018, Vinay et al., 2021]. To aid with replication we provide
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guiding python notebooks as examples to our methods and analyses for others

to follow. The supplementary materials also provide examples for others to lis-

ten to and visually inspect. Both datasets provide preprocessed versions of the

data which include standard corrections for faulty channels, line-noise filtering,

and muscle artefact corrections [Dmochowski et al., , Losorelli et al., 2017]. Here

we use those preprocessed versions of the data, as our focus is on passive cortical

signals188and not on any correlated motor behaviors that may show up as muscle

artefacts.

Layer Type Filter Size Input Output

Conv2D 4× 4 63× 125× 1 63× 125× 8

BatchNorm2D - - -

Conv2D 4× 4 63× 125× 8 63× 125× 16

BatchNorm2D - - -

Conv2D 4× 4 63× 125× 16 63× 125× 32

BatchNorm2D - - -

Conv2D 4× 4 63× 125× 32 63× 125× 64

BatchNorm2D - - -

Conv2D 4× 4 63× 125× 64 32× 63× 128

BatchNorm2D - - -

MaxPool2D 2× 2 32× 63× 128 17× 32× 128

Flatten - 17× 32× 128 69632

FC1 - 69632 128

BatchNorm1D - - -

FC2 - 128 5632

Reshape - 5632 44× 128

Table 6.1: Architecture used in our deep regressors. This specific model was trained
on the NMED-H dataset with a spectral input and mel-spectra music target.
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6.2.2 Model Training

Our modeling approach contrasts with previous publications showing success

with decoding and reconstructing complex stimuli, where generative models such

as VAEs and GANs reconstructed image classes and where VCCA was able to

reconstruct music stimuli spectra at the expense of needing a multi-view of ex-

tracted features [Ofner and Stober, 2018, Kavasidis et al., 2017]. We choose a

straightforward approach with a sequential CNN based regressor mapping EEG

input directly to the time aligned music spectra. Table 6.1 shows a summary

of how the model architecture is constructed; the models contain five convolu-

tional layers with the last convolutional layer being the first layer that reduces

the dimensionality of the input. A Max Pooling layer with a small pool size is

chosen over a Global Average Pooling layer used previously during EEG classi-

fication [Ramirez-Aristizabal et al., 2022] using the same dataset, because it was

necessary to limit shrinkage since the output layer was the size of the spectral

target. Regularization in the model was implemented through dropout layers and

maintaining the size of intermediate fully connected layer as small as possible.

Dropout layers between convolutional layers were kept with 10% dropout and the

dropout layer between the fully connected layers was kept at 15%. The amount and

strength of dropout layers were tested demonstrating no evident effect with less

layers and weaker layers, stronger values were not helpful between convolutional

layers but did show some improvement between fully connected layers. Activa-

tion and Kernel L2 regularization was tried but opted out due to showing signs

of a vanishing gradient. Number of filters for convolutional layers were kept at

a base 8 while increasing by a power of 2 for every subsequent layer. Increasing

the number of filters showed training loss outpacing validation loss resulting in

overfitted model runs while decreasing the number of filters made training loss

stagnate too early which resulted in underfitting. For all intermediate layers a

Rectified Linear-Unit activation was used with a linear output activation. Non-

monotonic activation functions Swish and Mish were tried due to their success in

improving image processing in deep networks, but they did not present any evident

advantage over ReLu during training. Lastly, we use Adaptive Moment Estima-
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Inputs (1 secs) Targets (1 secs) Accuracy

PSD (63,125) Mel-Spec (44,128) 80.80%

PSD (63,125) Lin-Spec (44,1025) 72.28%

Raw (125,125) Mel-Spec (44,128) 46.07%

Raw (125,125) Lin-Spec (44,1025) 37.53%

Table 6.2: Summary of reconstruction models’ output classification across the four
representation combinations. Each representation is shown with its data shape for
1 sec in parentheses.

tion (Adam) as an optimizer with a 0.0015 learning rate and initialized weights

with a He uniform distribution which have shown advantages in similar training

procedures [Ramirez-Aristizabal et al., 2022, Ebrahimpour et al., 2020].

The first four minutes of all recordings were used and cut up into five second

chunks. To balance the train and test set distributions across time, we assign every

other chunk to either train or test at a 75/25 ratio. Then all chunks were split

into 1 second examples and randomly shuffled for training and validation. Five

second chunks were also useful in securing consecutive 1 second examples to be

reconstructed. These reconstructed five second music spectra were inverted into

waveforms and used as examples in a behavioral experiment to validate the quality

of brain to music reconstruction. Generalization stays within participants and

across unseen chunks of time that are balanced to be sampled from the beginning,

middle, and end of the songs. Other EEG studies also keep generalization within

participants [Moinnereau et al., 2018, Sonawane et al., 2021] and a recent study

has shown that weak correlations across participants in the NMED-T could be why

generalizing to unseen participants is difficult without many recorded participants

in the dataset [Pandey et al., 2022].
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Figure 6.3: Distributions of SSI and PSNR scores across target representations,
along with their mean score.

6.3 Experimental Results

6.3.1 Representations

Using the NMED-T, four reconstruction models were trained and evaluated

depending on their varying input and target representations. Figure 6.2 outlines

the combinations between input and target representations along with their visual

qualities. Each arrow in the figure is a model showing the designated input to target

mapping. Prior classification studies have shown a preference for input representa-

tions either being raw or a Power Spectral Density (PSD), and their ability to boost

performance in CNNs [Sonawane et al., 2021, Ramirez-Aristizabal et al., 2022]. As

a regression task, we also find it important to compare target representations since

linear and mel-spectrogram representations have tradeoffs. The linear spectrum

scales low frequency activity equally to higher frequency, which allows it to be

more easily inverted back into a listenable waveform. On the other hand, the mel-

spectrogram applies a non-linear scaling across frequency ranges that has made it
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easier to map in classification tasks [Gururani et al., 2018, Chillara et al., 2019],

but also adds more noise during the inversion to a listenable waveform. The re-

construction models were all trained until they reached a plateau in their loss with

varying epoch ranges (100-300) needed for the models to converge their train-

ing and validation performance. Given that the mean-squared error (MSE) loss

was only indicative of the convergence of the model during training and not a

metric that informs how image reconstruction compares across models, we de-

cided to classify the output as an objective quantitative measure. Simply put,

the four trained regressors were used to create new datasets from their outputs

given the original NMED-T as input and keeping the same train-test split. Then

those new output datasets were passed through a classifier that would attempt

to classify the name of the song from each spectral image reconstruction. This

type of validation has been used before in the image stimuli domain when try-

ing to objectively test the quality of reconstructed image classes from generative

models [Kavasidis et al., 2017]. The classifiers were CNN based following the ar-

chitecture from a previous study where the EEG was classified into song name

classes [Ramirez-Aristizabal et al., 2022]. Table 6.2 demonstrates a summary of

the results from the classified outputs across modeling approaches. The raw input

representation showed to not give the best results in our deep CNN regressors,

but it did remain well above the chance performance rate of 10%. Meanwhile, the

mel-spectrogram worked better across both the raw and PSD input representa-

tions with performance comparable to studies where only EEG classification was

conducted [Moinnereau et al., 2018, Stober et al., 2014, Yu et al., 2018].

Classifying outputs to their stimuli classes reveals fidelity of semantically rel-

evant reconstructions. This was especially useful in the image stimuli domain when

the models being evaluated focused at the stimuli class level [Kavasidis et al., 2017].

Furthermore, their results of classification stayed well above chance (2.5% chance)

for forty classes with performance 40%. The results from Table 6.2 also stand well

above chance for 10 classes (10% chance). Given that our training method maps

EEG to the target stimuli directly rather than estimating stimuli class densities in

the model’s latent space, common image reconstruction metrics were used to see
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Figure 6.4: Distributions of SSI and PSNR scores across target representations,
along with their mean score.

how different each reconstruction was from the target image. Structural Similarity

Index (SSI) and Peak Signal to Noise Ratio (PSNR) were chosen because of the

ability to compare the reconstruction of perceived image features and how much

noise the reconstructions contain from a lossy compression comparison respectively

[Hore and Ziou, 2010]. Figure 6.3 summarizes the results from both metrics across

the test set of the image reconstructions from the regressor models trained on the

PSD input representation along with their linear and mel-spectrogram targets.

SSI measures, as a normalized ratio, the similarity between images where an SSI

score of 1 points to the images being identical. The mean SSI is higher in the

mel-spectrogram reconstruction than with the linear-spectrogram by 14%. PSNR

on the other hand, measures as a ratio the logged maximum image power over

its mean squared error which gives a relative difference between images and not

a normalized score. We also see in Figure 6.3 that mel-spectrogram has a higher

mean PSNR which further validates how the mel-spectrogram makes the EEG to

music spectra reconstruction closer to the target.

To better understand what musical features the model learned from mapping



96

to the mel-spectrogram, we took SSI and PSNR scores across frequencies. Figure

6.4 demonstrates the results of this analysis; for every example we paired up each

1 second frequency bin from target to model output to calculate both an SSI and

PSNR value. Boxplots were created for all 128 frequency bins, and Figure 6.4

shows that frequencies vary around a 0.4 SSI score. Meanwhile, the PSNR plot

shows notably lower values for the first 5 frequency bins. We show a visual example

of this difference by taking a reconstruction and zooming into the ten lowest and

highest frequency bins. This visual comparison demonstrates how many more pixel

differences the lower frequencies have when compared to the higher frequencies.

This went against our expectations as we believed it would be easier to map to

lower frequencies because of pattern regularity. Further testing is needed as future

studies adopt this methodology, but we speculate that this could be attributed to

these model architectures not explicitly learning temporal dependencies such as in

an RNN.

Figure 6.5: Five second examples of model spectra predictions (left) and their
reconstructions from spectra to sound wave (right). Examples come from the 10th
second across randomly selected participants.
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6.3.2 Spectra to Music

The above-mentioned metrics were useful in evaluating the success of the spec-

tral image reconstructions, but here we are also interested in whether that allows for

the retrieval of perceptually interpretable music reconstruction. This means that

our spectral image reconstructions should be good enough to then be processed

by common out of the box signal processing libraries that invert spectrograms to

soundwaves and be identified by listeners as matching the original stimulus. For a

practical experimental design and for testing the generalization of our methodol-

ogy, we decided to train models and produce reconstructed spectral outputs from

the NMED-H. Instead of a total of ten songs like in the NMED-T, the four songs

from the NMED-H made it easier to test reconstructions across time slices and

recorded participants; the training procedure in the deep CNN regressors stayed

the same. Models trained on this dataset converged sooner and provided a steeper

gradient descent during training which could be attributed to the familiarity of

songs from participants [Hadjidimitriou and Hadjileontiadis, 2013b]. Because the

best performing models using the NMED-T used the PSD and mel-spectrogram

as input-target representations, we focused our training on the NMED-H with

that specific representation pairing. Figure 6.5 provides a visual summary of the

quality of reconstructions from the NMED-H. As a tradeoff for efficient modeling

procedures and feature mapping within the proposed methodology, processing the

outputs to listenable waveforms faces several steps of lossy transformations. The

first comes from the actual deep learning models themselves where the input to tar-

get mapping assumes that the music signal is hidden/scrambled in cortical activity

and attempts to recover that into a spectral representation. Second, those model

outputs must be denormalized and set to a decibel range. Lastly, the spectro-

grams are transformed into waveforms by approximating the Short-Time Fourier

Transform (STFT) magnitude from the mel power spectrum and reconstruction

of the phase is done using Griffin Lim Algorithm (GLA). The mel-spectrogram in

comparison to the linear is more lossy in the last two steps because mel is scaled as

a non-linear function that represents human auditory perception across frequen-

cies. Nevertheless, our modeling procedure finds it easier to map mel targets, so
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we commit to lossy tradeoffs and adjust to produce listenable examples to present

to participants during the behavioral evaluation. During the denormalization step

we use the following transformation:

In Equation 1, melT is the mel-spectrogram we aim to denormalize set as a

matrix transpose and Max dB is set as a constant to 100 while ref dB is set as a

constant within a song but varies across songs. To avoid presenting jarring noise

to participants, ref dB becomes a free parameter set to [46 dB, 46 dB, 52 dB, 43

dB] for songs 1-4 respectively. The parameter value was set simply by randomly

sampling 5 second examples and listening to how they would sound with values

between 40 dB – 60 dB. The evaluation of which value produced the least jarring

example was decided by the researcher; therefore we encourage any other studies

following this methodology to play around with their own constraints relevant to

their own studies. In Figure 6.5 it is demonstrated how well the waveforms come

out despite the lossyness of the inversion process. The reconstructed spectrograms

in Figure 6.5 shows how information across frequencies are recovered and how that

translates to alignment in amplitude from target to reconstructed waveform.

The produced listenable examples were then presented to participants in a lis-

tening task to evaluate whether their quality was good enough to be identifiable.

The experiment was a two-alternative AB-X task in which a participant had to pick

between sounds A or B that matches the unlabeled sound X. The target sound

X was a 5 second example from one of the four song stimuli in the NMED-H.

Sounds A or B contained a non-corresponding foil and a corresponding 5 second

reconstruction from our deep regressor model that was taken from spectra to a

waveform. Participants were tested on a total of 24 trials plus 4 practice trials

at the start of the experiment. The reconstructed model output produced a total

of forty-eight examples which then half of the examples were used for one version

of the experiment and the other half for a second version. Each version of the

experiment controlled for balancing presentations across time by picking examples

that belonged to the beginning, middle, and end of the songs. Furthermore, the
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experiment also contained the same number of examples per song while controlling

for each trial to have reconstructions coming from different participants from the

NMED-H. Trials were all randomized and foils balanced to minimize the repetition

of reconstructions from a specific song or participant. During the AB-X discrimi-

nation task, participants were given a max of 30 minutes to finish and were allowed

to listen to the sound samples as many times as they liked before making their

choices, while also not taking longer than 1 minute per presentation. This exper-

iment collected responses from a total of 16 participants with 8 participants for

each version of the task. On average, participants had an 85% success rate (50%

chance) with max performance of 95.83% and minimum performance of 66.67%.

The average performance lines up with output classification, adding evidence of not

just robust image reconstruction but also the perceived interpretability of listeners

when inverting the spectrum.

6.4 Conclusion

Here we show that it is possible to reconstruct music presented to participants

using their EEG responses as input to a quality that allows others to correctly

identify it when they listen to the music recovered from a brain response. The

EEG to music stimuli mapping approach allows for reconstructions to preserve

time-dependencies, during concatenated examples, necessary in the perception of

music rather than taking an average of the stimuli class. Furthermore, no heavy

feature extraction from the EEG or stimuli signals are needed in this process

and only requires the EEG input to be transformed into a power spectrum for

high quality reconstructions. With this we have shown that a computer vision

approach has allowed for the processing of EEG responses to long naturalistic

music stimuli as well as the ability to recover information across all frequency

components. This is something that goes beyond the capabilities of complexity

matching paradigms, as these straightforward methods do not just statistically

measure correlated dynamics to the stimuli but actually recover the signal itself.

The question to whether this is a result of the strength of deep learning models, the
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extent to how much information is contained in brain responses, or both can now be

asked in a more encapsulating way via training these reconstruction models. This

is because it releases many experimental constraints and reduces the differences

between researchers applying their own feature extraction steps. Therefore, making

it easier to simply collect more data and learn about how data from different

brains can be understood. In the final chapter, this last point will be reviewed and

synthesized given the data and results discussed so far that, although may have

been antithetical to the original aims and purposes, will argue this as a stronger

epistemic path if not a natural consequence to the underlying questions we seek

to explore.



Chapter 7

The Synthesis

Chapter 1 outlined a thesis for how a Complex Systems & Dynamics approach

in Cognitive Science has made predictions on how the temporal structure of com-

plex systems resonate via principles of Maximal Information Transfer, specifically

in the case of speech and music. Empirical validation of these predictions has

been demonstrated through the measurement of Complexity Matching effects. A

core theoretical prediction included validation through empirical measurements of

Complexity Matching effects of signals such as music and speech to correspond-

ing neuronal activity, encapsulating Maximal Information Transfer of these related

perceptual systems. In reference to the original theoretical grounding, the empirical

results presented in this dissertation help extend and deconstruct these predictions.

Methodological advancements and constraints have shaped how we continue to ask

these questions, putting forth new motivation for the exploration of temporal struc-

ture of acoustic stimuli and brain responses. Like in many domains, Machine/Deep

Learning approaches have found themselves relevant at moving forward the conver-

sation where experimental paradigms have often been stuck. From neural networks

back to neural networks, a self-referential epistemic loop is formed arguing for the

deconstruction of how scientific questions are explored. In this chapter, what this

means for how a Complex Systems & Dynamics camp of Cognitive Science when

it studies speech and music is discussed.

101
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7.1 The Limitations

In part of the original theoretical framework outlined by [West et al., 2008] on

Maximal Information Transfer, it was predicted that signals such as speech and

music should demonstrate Complexity Matching effects empirically. The original

proposition was established through numerical analyses from stochastic neural net-

work models. Both models were grounded in examples in the literature trying to

explain emergent behavior of varying systems. The first model posited the col-

lective behavior of a network of stochastic clocks [Bianco et al., 2008], while the

second referenced the [Mirollo and Strogatz, 1990] stochastic model of neuronal

synchronization based on the integrative theory of alpha oscillations [Başar, 2006]

in the brain as measured by Electroencephalogram (EEG) studies. Why the model

comparison made sense was because it was suggested that alpha rhythm acts as a

nonlinear clock which could facilitate mechanisms of association in the brain as a

gating function.

With this, the prediction suggested that because the stochastic complexity of

those two network models matched, that a cooperation of non-ergodic renewal

events emerged via their coupling. Such a finding was paired with emerging stud-

ies linking the inverse power-laws in natural systems to proposed network mod-

els of the human brain as showing high clustering and inverse power-laws of its

edges [Holme and Kim, 2002]. In fact, the Allan Factor (AF) method borrows

from Complexity Matching’s emphasis of non-ergodic/non-Poisson events instead

of continuous processes, through the implementation of capturing peak-amplitude

events. This made sense in Chapter 2 when seeing the connection between lin-

guistic units, which can be thought of as symbolic events of a production process,

and the temporal structure measured via the AF method. Here the often-used

nomenclature of a measured ‘Hierarchy’ makes sense in reference to symbolic units

that construct linguistic hierarchies as well as musical syntax. For example, we can

start with a simple note that is then grouped with others to create a motif that as

the song goes on is repeated to outline phrasal structure within chord progressions

and so on to build a story that is unwrapped over time. In [Falk and Kello, 2017],

the modeling of the relationship between the speech and linguistic units show a



103

strong correlation, but the data being compared comes from scripted productions

of speech and with more careful feature extraction of linguistic units at certain

timescales. What we see in the data from Chapter 2 is that there is a gap between

that carefully produced discourse between mothers & infants and the spontaneous

conversations contained in the Buckeye corpus. What the physical speech signal

carries is often all encapsulating to every utterance, including non-linguistic ut-

terances, such as coughs or other interruptions, but in turn are still part of the

production between interlocutors. Something that, via this neat modeled symbolic

hierarchy, is difficult to always capture through feature extraction of the speech

signal. These results put forth the question of: What is this ‘hierarchy’ really?

Results from Chapter 3 take this from the general realm of coordination

between people and focuses on the production aspect of these signals. In

[Schneider et al., 2020], they demonstrate that the HTS within participants as

they produce speech across conditions is correlated. This puts an easy-to-understand

case of people matching with themselves, as these long-range correlations within

these signals should perhaps be self-referential if they are produced by the same

system in similar conditions. But then, if we experimentally control for the pro-

duction of these signals, what we see is something different. Through algorithmic

and behavioral manipulation of these signals, the characteristic HTS of the speech

changes. Algorithmic manipulations hint at the diminishing of prosodic embel-

lishment that occurs, which lowers the variability of clustering in AF functions.

Behavioral manipulations on speaking rate simulate restraints people face when

they are impromptu pushed to speed up or slow their speech productions. This

creates a rolling effect on the AF functions, which much like a seesaw, sees the

variability go down on one end of the timescales and raises it to the other. Again,

coming back to this notion of ‘hierarchy’. Certain levels within that hierarchy seem

to be emphasized one way or another, but does this mean that it still remains as

a proper reference for the information within? In other words, can I simply refer

back to a linguistic hierarchy and say that speaking rate is augmenting phrase

structure and downplaying syllables? Bear in mind that the only variable being

tested is speaking rate, and that participants are still reading from the same speech
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excerpts, without any words or syntactic demarcations being manipulated.

If signals produced by interlocutors can show a convergence in their temporal

structure through the coupling of their common ground in conversation, then can

the same be expected of perceptual systems including the cortex? Let’s take the

results from Chapter 2 and juxtapose it to the paradigm of EEG to acoustic stimuli

Complexity Matching, to better understand this question. Given that experimental

controls and parameters allow this, we can have an experiment that couples a

speaker and a listener, similar to the coupling between interlocutors. If the speaker

adjusts the scaling of their speech via speaking rate, then we would expect such

a correspondence to be reflected in the measured brain response. Similarly, if we

present to someone music that has a scaling temporal structure uniquely different

from the ‘ideal’ 1/f and if the perceptual system of the listener is coupled to the

stimuli production, then we can also expect that somewhere in the cortical activity

we will be able to see that correspondence. Evidence for that was not able to come

out in the study presented in Chapter 4. Furthermore, studies who found better

success focused on only using classical music, which is characteristic of the 1/f

scaling, and through their own methods found evidence for Complexity Matching.

Could it be that we should only expect a 1/f to 1/f resonance in related EEG

paradigms? Or is it that, how I outline in Chapter 4, that such results happen to be

the simplest case and further methodological developments need to occur for such

a result to be discovered? I argue here that the latter is a more sensible scenario.

This is given the limiting factors of feature extraction, repeated measures, and

localization.

For these questions to be better answered via Complexity Matching, it seems

that a path towards experimental over parameterization would be needed. We have

already seen that this could lead to a decrease in generalization, and goes away

from naturalistic components. Instead, in Chapter 4 we see that a machine learning

approach is able to rescue many of the marginally significant and null results from

the study. Thus, moving the exploration of these questions in a different direction;

towards acoustic information retrieval from brain responses. Chapters 5 & 6 not

only make a general case for Deep Learning approaches, but it puts forth a new
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way of thinking about the EEG data itself. A Computer Vision approach in Deep

Learning allowed for modeling procedures to be strong in performance, efficient,

and be by far more naturalistic than many relevant approaches. The progression

from Chapter 2-6 in turn reflecting the deconstruction of theoretical predictions

via the limitations and constraints in experimental paradigms. The deconstruction

of one way of producing new testable hypothesis leading to another, in the natural

progression of scientific advancements.

7.2 Anticipating

As it has been discussed, Complexity Matching effects are expected when sys-

tems are appropriately coupled. In the behavioral experiments and EEG experi-

ments, what coupling means is not always simple, despite these studies showing ev-

idence for it. Between interlocutors, there are several factors to consider involving

physical, perceptual, and a coupling of mental states to facilitate the information

exchange. In the EEG paradigms, the focus is on the perceptual coupling as the

coupling between systems is between the participant and the physical implemen-

tation of the experiment, which could include the chair, speaker/headphones, the

recording room, and the EEG system itself. The purpose of the physical implemen-

tation in the EEG recording room becomes crucial to the quality of data collected,

as its organization is meant to facilitate the presentation of the stimuli. This is

something that across research labs contains many discrepancies, but despite the

differences have still been able to replicate results of participants being coupled to

presented stimuli. Here the theoretical framework used to explain these cognitive

processes, poses the perceptual loop of an acoustic stimulus to brain response as

an anticipatory process. In the EEG experimental paradigm this would include

the coupling between the recording and presentation system with the perceptive

mechanisms of the participant. In this scenario we can describe the coupling be-

tween systems (the stimulus presentation system and the participant) as defining

a third larger system representing the entirety of the experiment. The process

here being anticipatory simply means that the stimulus presentation perturbs the
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dynamics of the participant, and the phase transitions of future events can be in

part traced back to the perturbations of the stimulus. In the strict sense, a strong

anticipatory process [Stepp and Turvey, 2010] would mean that the system being

measured (the brain) does not need to create a model of future events and predict

its trajectory, but rather the trajectory of its dynamics is in a negative phase re-

lationship to that of the stimulus, describing the coupling of complex oscillators

(music waveform and neural activity).

To anticipate or ‘to take before’ or ‘to follow a path before’ presents an Occam’s

razor approach to the representation hungry problem of modeling these cognitive

processes. This is not to say that all observed processes can be explained as strong

anticipation, as we know that processes at certain levels of cognition explicitly pre-

dict or simulate future states using historical priors to model their environment.

But rather, the theoretical stance taken here is meant to oppose the notion that

this modeling of future states happens at all levels a la Clark’s Radical Predictive

Processing [Clark, 2015]. Clark’s levels of Predictive Processing much like Dante’s

fourth circle of hell, is stuck in an epistemic greed where everything is considered

a representation and every process a predictive one. Maximal Information Trans-

fer proposes that complexity matching occurs without the need of a ‘predictive’

process or ‘representation’ of the system as it simply demonstrates that the extent

of coupling between systems shapes the alignment or resonance of the produced

temporal structure. The extent of coupling can be described as the overlapping

bandwidth during communication, where anything outside of the shared bandwidth

limits does not resonate. Early information retrieval studies can also frame their

processes in a similar way. For example, the early studies measuring brainstem

responses to speech vowels were able to develop experimental methods that would

repeatedly present speech vowel stimuli, and the measured responses were good

enough to average and reconstruct it into a listenable waveform strongly resem-

bling the original stimuli [Johnson et al., 2005]. Despite the information retrieval

coming from sub-cortical activity, it was easier to understand the physical coupling

of acoustic stimuli and neural response. This is due to the well-studied anatom-

ical relationships between the sound itself, and how that information physically
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resonates in these listening pathways. For example, how the cochlea is shaped

to vibrate at different frequencies we perceive to how electrical impulses on the

brainstem reflect the amplitude dynamics of the incoming acoustic signal. A sim-

ple enough physical coupling from the vibrating air, to vibrating flesh, and up to

the vibration of electrical signals occurs while not needing a framing of ‘prediction’

in the process.

The information transfer in these perceptual processes such as in the brainstem

recordings, also act like a signal processing task where the researcher tracks how

the information is processed and maintained as it passes through auditory path-

ways. From a modeling perspective, this is also happening with artificial neural

networks acting as another artificial ‘perceptual’ pathway that processes the ob-

served activity, and maps that data into an acoustic feature the researcher assumes

is contained in the brain response. Therefore, this notion of anticipatory processes

I have described works well with the proposed deep learning methods presented in

Chapter 5 6. Given that the experimental paradigm works well enough to couple

the acoustic stimulus dynamics to the perceptual pathways leading up to the mea-

sured cortical activity, the information retrieval modeling can simply clean up the

signal back to how it looked like when it was an input. If this assumption of how

acoustic information resonates in cortical activity is true, then treating EEG as

images can work well as it bypasses the issues of feature extraction, localization,

and repeated measures. This is because we can assume that the resonance exists

in one form or another in cortical activity without needing to develop methods to

find the needle in the needlestack. Also, because we do not need to treat this as an

active inferential process where the salience of representations is key to the quality

of the data, we also loosen up constraints in the experimental paradigm, like in the

Multiscale Entropy complexity matching study where they depended on an active

behavioral attention task. Ultimately this proposed model of coupled oscillators

passively reflecting information of temporal structure, opens towards more efficient

data collection and naturalistic stimulus presentations.
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7.3 The AI Inclusion

The inclusion of Machine/Deep Learning analyses and methodologies has been

a phenomenon existing across domains of experimental work from anywhere in

medical imaging, bioengineering, and to psychological experiments [Kim et al., 2020,

Orrù et al., 2020]. No strong argument is made here about any transformative

epistemic influence of simply using Machine Learning analysis as added evidence

in studies. This is something that scientists have been doing for a long time with

classic methods of statistical modeling such as fitting generalized linear models

to their data to see how their experimental operationalization can capture some

relationship that may be generalized to other studies or replicate findings. On the

other hand, the notion of molding your experimental paradigms around Machine

Learning approaches is something that has been showing more momentum in the

last 5 years. Like much of the history of developments in Machine Learning or Arti-

ficial Intelligence research, a fair amount of skepticism can be held to some studies

following the hype, whether it would be for incentives involving the relevancy at

a broader scale of the research or the funding itself. But filtering out studies that

are either one-hit wonders or simply develop to publish catchy headlines, a more

concrete paradigm has been recognized with well argued motivations, named as

‘Data-Driven’. Such a methodology was discussed in a (2018) issue of ‘Trends

in Cognitive Sciences’ by Jack, Crivelli, and Wheatley outlining the benefits of

a Data-Driven paradigm for human psychological experiments [Jack et al., 2018].

The main argument that was presented for Data-Driven experiments was to relax

theory driven constraints. That meant that experiments could now have less a pri-

ori assumptions, capture pan-cultural patterns that often times were overlooked

through a western centric lens, and push for common grounds for comparisons

through the investment of publicly available datasets.

A more recent review on this topic explicitly discusses the Machine Learning as-

pect of Data-Driven methods in psychological experiments [Vélez, 2021]. Some of

the points brought up in that review that are of relevance to this discussion include

the benefits from hosting databases and the democratization of Machine Learning.

The latter point simply refers to the ever-expanding open-source and importable
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libraries in Julia, R, and Python which allow for computational research to be ac-

cessible to a larger pool of researchers. Furthermore, the constraints of owning and

managing hardware responsible for processing large datasets and training heavy

models has been pushed towards a cloud computing based market, which highlights

the convenient service of offloading information-technology work and letting the

researcher simply be a researcher. For example, the models presented in Chapters

5 & 6 were developed primarily using Google Colab, which in some situations has

allowed me to train Deep Learning models with trainable parameter counts in the

millions from my phone using a coffee shop’s Wi-Fi. To the prior point of benefits

from a hosted publicly available database, it seems that such an endeavor is the

most transformative for how researchers collect and analyze data. This not only

argues for moving past small sample sizes in esoteric experimental paradigms,

but it also frees up how a researcher can generate testable hypotheses. For ex-

ample, the ‘Emergence of Communication Lab’ at UCLA led by Dr.Warlaumont

hosts the HomeBank database of naturalistic day long audio recordings of infant

interactions funded by a National Science Foundation (NSF) grant of resource

implementations for data intensive research [VanDam et al., 2016]. With access

to such a database both collaborators and critics alike can further connect with

their research as they have this shared common ground. For these databases to

function in such a manner, the collected data needs to have little parameterization

restricting its dimensionality while also having a pipeline for the merging of target

variables. Simply having raw recordings would put too much of a burden on any

researcher from the outside looking in. Meanwhile, a pipeline for target variables

would aid in the proliferation of models mapped to varying tasks, whether it would

be classification, regression, or distribution fitting such as in generative models.

Such an approach would be of great benefit to Cognitive Neuroscience studies

as it is often the case that parametric modeling of these data lacks generalization

strength across participants due to how expensive it is to collect a larger number of

participants. Data hosting applications such as OpenNeuro have made significant

strides towards this end. Through their data hosting services, researchers can go

to one place to search and download data/code from published studies. With
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this, accessibility is facilitated, but the issue of small datasets still looms, perhaps

to be serviced by future applications that would ideally allow the collaboration

of experimentalists worldwide to develop large datasets of brain responses to the

same sizable impact that databases like HomeBank have. As it has been argued

so far, the Computer Vision methods developed in Chapters 5 & 6 also present an

applicable use case for these ideal large EEG datasets given that the motto of Deep

Learning data usage is ‘more is better’. Efficient data processing in this case would

allow for the collection of long recordings to be used for general purposes and not

just for one specific task, as it has been shown that classification of sentiment,

song name, and the image regression task have performed well. It would also be

sensible to say that such an endeavor would add to the collaborative development of

computational libraries aiding researchers in their data processing. This could one

day bring back Complexity Matching studies with EEG to focus under a facilitated

process that includes better data and stronger tools.

Lastly, the adaptation of these experimental paradigms does not stop with

the development of Data-Driven academic research. Consumer based sectors have

pushed for services dependent on the capitalization of human data through the

proliferation of user interactions that facilitate data mining [Reyes, 2020]. Mar-

keting goals of capturing consumer profiles to highly specialized consumer needs

often referred as ‘one customer one product’ further exemplifies the creation of

demand sold to consumers. In this case, substantial capital gains can be framed

as the centralized ownership of ‘goldmine’ databases, where data science insights

become the golden bullions sold as a premium. Such a market then is respon-

sible for the explosion in human data which is moving to the precision of what

has traditionally been expected from laboratory experiments via the integration

of emerging technologies from Internet of Things [Yan et al., 2020] and the newly

revamped buzzword ‘Metaverse’, which broadly encapsulates human computer in-

teraction via an embodied internet [Sparkes, 2021]. These emerging technologies

benefit from the increasing placement of precise sensors measuring everyday human

behaviors such as heartrate, sentiment, eye-tracking, and posture. At the center of

these Data-Driven user interactions exists the Artificial Intelligence systems that
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they train which in turn train consumer behavior via implementations such as

recommender systems. It is not farfetched to argue that such a scaling of mining

precise human behavior would be able to explore difficult topics such as the antic-

ipatory connection of temporal structure from acoustic stimuli to brain responses.

But it is not the technical capability that may shape epistemic developments, but

rather the material conditions of funding, as investments in public education de-

crease and the privatization of the academic sector increases [Price et al., 2012].

The exploration of the scientific questions discussed so far seem to be headed be-

yond a paywall into a behind-the-scenes environment guided by the privatization

of observed human behavior. But as Scientists, Philosophers, and Academics it

is our imperative to anticipate these conditions and clean up the noise hiding the

long-range correlations of human exploration across time.
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