
Adaptive Tearing and Cracking of Thin Sheets

Tobias Pfaff Rahul Narain Juan Miguel de Joya James F. O’Brien

University of California, Berkeley

Images copyright Tobias Pfaff, Rahul Narain, Juan Miguel de Joya, James F. O’Brien.

Figure 1: Our method produces realistic tearing and cracking phenomena for thin sheets made from a wide variety of materials such as
cork, foil, plastic, metal, or vinyl. These results are achieved using simulation on adaptive meshes that resolve fracture behavior at very high
resolution.

Abstract

This paper presents a method for adaptive fracture propagation in
thin sheets. A high-quality triangle mesh is dynamically restruc-
tured to adaptively maintain detail wherever it is required by the
simulation. These requirements include refining where cracks are
likely to either start or advance. Refinement ensures that the stress
distribution around the crack tip is well resolved, which is vital for
creating highly detailed, realistic crack paths. The dynamic meshing
framework allows subsequent coarsening once areas are no longer
likely to produce cracking. This coarsening allows efficient simula-
tion by reducing the total number of active nodes and by preventing
the formation of thin slivers around the crack path. A local repro-
jection scheme and a substepping fracture process help to ensure
stability and prevent a loss of plasticity during remeshing. By in-
cluding bending and stretching plasticity models, the method is able
to simulate a large range of materials with very different fracture
behaviors.
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1 Introduction

While the simulation of fracture dynamics has a long history in com-
puter graphics, reproducing the variety and detail of fracture patterns
observed in real-world materials remains a difficult problem. Many
of the objects exhibiting interesting breaking behavior can be well
approximated using thin-shell models represented as triangle meshes.
Triangle meshes are computationally less expensive than equivalent
tetrahedralized volumes, and they allow for simpler, more flexible
algorithms for adaptive remeshing. In this work, we therefore focus
on techniques for high-fidelity simulation of cracks and tears in thin
sheets with adaptive triangle meshes.

The distinctive crack patterns observed in many materials arise due
to small-scale interactions between elastic strain, plastic yielding,
and material failure. Stress gradients can be very large near the
crack tip where the stress field often approaches singularity. Using
adaptive meshing, the resolution around potential fracture regions
can be increased to accurately resolve these interactions and pro-
duce realistic behavior. Subsequent coarsening, done once stresses
have been reduced, avoids continually increasing computational cost
and keeps overall simulation times reasonable. Adaptive mesh re-
finement also permits nearly arbitrary crack paths by removing the
ill-shaped triangles generated when existing elements are split along
the crack’s path.

The use of aggressive adaptive remeshing in conjunction with frac-
ture simulation introduces some challenges. Most of them are related
to non-physical stresses and diffusion that may be created during
remeshing and that can lead to spurious crack initiation, unrealistic
crack boundaries, and loss of shape. Below, we summarize our
solutions to these issues which makes the powerful combination of
adaptivity and fracture simulation usable in practice.

Remeshing Many interesting fracture patterns occur in materials
with high stiffness, such as glass or iron. In these materials, even
small distortions commonly introduced by vertex repositioning dur-
ing remeshing can cause high stresses. If the simulation does not
include fracture, then these distortions only lead to minor popping
artifacts as small transient disturbances are smoothed away by the
material’s natural dynamics. However, when fracture is enabled
they lead to spurious breaking. The problem is exacerbated when
refinement and coarsening happen aggressively around the crack tip.
In §5, we present a reprojection scheme which stabilizes stresses
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Figure 2: The left image shows a multi-material simulation of glass
panes in a aluminum frame. The plastic bending of the frame induces
shearing fracture of the glass, similar to when a bear bounces on top
of one’s car to break the windows. On the right, a quasi-static state
is shown, with the glass panes replaced by rubber sheets. Using
a single global embedding for plasticity would impose the plastic
deformation from the frame on the glass, forcing it into an artificial
plastic shape similar to the quasi-static state shown right.

during remeshing. We also discuss how to coarsen and refine curved
surfaces without loss of shape.

Plasticity Interpolating plasticity tensors during remeshing causes
diffusion and artificial recovery from past plastic deformation. How-
ever, techniques to prevent this plasticity loss, such as plastic em-
bedding [Wicke et al. 2010a; Narain et al. 2013], don’t work well
for combined stretching and bending plasticity. They also may pro-
duce artificial plasticity in connected regions with different plastic
material parameters (Fig. 2). In §5.2, we propose a novel way of
redistributing the plasticity tensors during remeshing, which avoids
both plastic diffusion and artificial plasticity buildup. In contrast to
existing methods, the new method also deals with refining plasticity
on curved surfaces in a principled way.

Fracture model When a crack forms, the stress perpendicular
to crack’s path is relieved. Further deformation then concentrates
stress at the new crack tip, which in turn fails, allowing the crack to
propagate. This stress redistribution happens as the node positions
are updated in a physics or relaxation step. As a result, only one
crack increment can be accurately computed per simulation step.
In §4.1, we introduce an algorithm which allows multiple propa-
gating cracks while obeying physical constraints. Additionally, we
discuss an improved fracture criterion, which unlike the separation
tensor proposed by O’Brien and Hodgins [1999] does not depend
on triangle size and is better suited for adaptive simulation.

Directibility Finally, we explore possibilities for art direction for
adaptive fracture simulation in §6. The ability to direct cracks is an
important tool, as crack paths are very hard to predict from the scene
setup and material parameters alone. We show that our adaptive
fracture algorithm facilitates the use of weakened zones and defect
lines, which can be specified independent of the initial mesh and
then conformingly meshed for fracture boundaries only as needed.

2 Related Work
Dynamics simulation There is a large body of literature on the
simulation of cloth and thin shells in computer graphics. Many
of these methods deal with the simulation of elastic sheets [Grin-
spun et al. 2003; Bridson et al. 2003; Narain et al. 2012]. Volume-
preserving multiplicative plasticity models have been explored for
volumetric meshes [Bargteil et al. 2007; Wojtan and Turk 2008], but
are seldom applied to sheet models. Wicke et al. [2010b] introduced
a plastic embedding to prevent diffusion of plasticity in volumet-
ric materials, which was adapted to bending plasticity in sheets by
Narain et al. [2013]. However, for sheets with both bending and

stretching plasticity their embedding approach encounters problems.
For example, local plastic bending of a fixed sheet will induce artifi-
cial stretching plasticity in the embedding. For the fourth example
in Fig. 1 for example, on average over 50% of the plasticity could
not be embedded and must be stored as a residual, which leads to
instabilities during remeshing.

Adaptive remeshing In recent years, there has been a growing
interest in adaptive remeshing techniques for simulation. In particu-
lar, dynamic remeshing has been used for fluid simulation [Klingner
et al. 2006; Chentanez et al. 2007; Ando et al. 2013; Clausen et al.
2013], viscoelastic bodies [Bargteil et al. 2007; Wojtan and Turk
2008; Wicke et al. 2010b] and thin sheet simulation [Hutchinson
et al. 1996; Simnett et al. 2009; Narain et al. 2012; Busaryev et al.
2013]. For stiff materials, however, these methods exhibit abnormal
stresses due to vertex jittering during remeshing. This issue can be
mitigated by a post-remeshing reprojection step [Narain et al. 2013].
For adaptive breaking, that approach becomes infeasibly expensive,
as it would need to be executed many times per timestep. In addition,
none of the above methods deal with coarsening and refinement of
curved rest shapes.

Fracture Early work on fracture simulation in computer graphics
dates back to the papers by Terzopoulos et al. [1988] and Norton
et al. [1991], which use a simple stretching limit as the breaking
criterion. Many newer fracture methods in computer graphics make
use of the separation tensor [O’Brien and Hodgins 1999], which
provides a per-vertex maximum stress criterion. However, that
criterion is dependent on the size and shape of neighboring elements.
For uniform-resolution meshes, such a dependence is tolerable, but
in the context of adaptive refinement it becomes problematic.

While the above methods represent fracture directly by splitting
apart elements, others researchers have investigated alternative rep-
resentations. Virtual node methods [Molino et al. 2004; Sifakis et al.
2007] embed cracks in virtual elements to prevent stability issues.
However, embedding also limits the accuracy of the crack propa-
gation computations, which made prescribed crack paths necessary
for many of their examples. XFEM embedding [Kaufmann et al.
2009] on the other hand can accurately resolve dynamics along the
crack path, but imposes limits on the fracture geometry and can be
costly for complicated fracture patterns. Recently, many methods
make use of Voronoi diagrams or prescribed crack paths to generate
crack surfaces [Bao et al. 2007; Su et al. 2009; Müller et al. 2013].
Some materials, like unreinforced concrete, break in ways that are
somewhat reminiscent of Voronoi regions, but for most materials
these Voronoi-based boundaries are unrealistic. Fig. 10 (right) shows
an example of such non-Voronoi shapes seen in real fracture.

To allow the opening of more then one crack per timestep, residual
propagation [O’Brien 2000] can be used to propagate the momentum
of the crack forward. Busaryev et al. [Busaryev et al. 2013] perform
a relaxation step after each crack opening to approximate the change
in the stress distribution. Their approach however does not take the
crack momentum and collision constraints into account.

Many existing methods for dynamic fracture use volumetric rep-
resentations, such as the above tetrahedral methods or so-called
meshless methods (e.g. [Pauly et al. 2005]). There are however
a few existing examples of surface-based methods. Gingold et
al. [2004] present a unified bending and stretching strain model for
fracturing thin shells, which we use as a starting point for our model.
Their static meshing and simplistic fracture criterion can however
lead to unrealistic fracture patterns. Busaryev et al. [2013] use a
layering model and dynamic remeshing to achieve high-resolution
tearing of multi-layered sheets. However, the range of fracture be-
havior that method can realize is limited by the lack of plasticity and
their fracture criterion being independent of bending. Further, they
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lose efficiency by using only isotropic Delaunay meshes that do not
coarsen once excess triangles are no longer required. It would be
interesting to combine their layering algorithm with our method.

Other related methods include Iben et al. [2006] who compute static
fracture patterns for texturing, and Glondu et al. [2012] who use
Bayesian optimization to generate example-based crack patterns.

3 Overview

The dynamics of our model are simulated by solving the elasto-
plastic equations on a triangulated finite element mesh. We build
on the publicly available ARCSim1 code [Narain et al. 2012; Narain
et al. 2013], which implements elasticity using Green strains and
discrete hinges [Bridson et al. 2003; Grinspun et al. 2003], and
resolves collisions using repulsive forces and impact zones [Bridson
et al. 2002; Harmon et al. 2008]. We use this model to compute the
basic sheet dynamics, and modify it so that plasticity and fracture
may be modeled. The simulation loop and underlying elasticity
model is summarized in this section; our additions to the model are
described in §4–§6.

3.1 Simulation Loop

We perform our simulation on a triangulated mesh. Each vertex has
a position in undeformed reference space u and in world space x,
and a velocity v. Each face stores a thickness h, and the plasticity
tensors Fp and Sp which respectively describe stretching and bend-
ing plasticity. The thickness remains constant in elastic simulations,
but can change due to plastic stretching as explained in §4.2.

At each timestep, we compute a conventional physics update as a
first step. That is, the elasto-dynamic equations (§3.2) are integrated
to obtain an updated velocity and position for each vertex, and colli-
sions are handled. Next, we account for plastic yielding by updating
the plasticity tensors as described in §4.2. Based on the updated
configuration, we can now evaluate the fracture criterion, and split
the mesh where the material fails. During each timestep, more than
one crack can open, therefore we perform this evaluation and split-
ting multiple times per timestep. To ensure good resolution during
the fracture process, the mesh is also remeshed locally around the
opened cracks in each substep. This fracture substepping algorithm
is described in §4.1 and summarized in Algorithm 1. After the frac-
ture substepping is complete, a global remeshing step is performed
for the whole mesh. This step coarsens around newly formed cracks
once the local stress is relieved, and regulates triangle size in regions
of the mesh where no fracture is active. Finally, the simulation time
is incremented and the next timestep begins.

3.2 Elasticity Model

Our elasticity model is very similar to the one of Narain et al. [2012;
2013]. However, where they use a two-dimensional parametrization
space, we instead embed the reference shape in three dimensions so
that we can represent arbitrary shapes, such as spheres, which cannot
be flattened into the plane. The deformation gradient F = ∇ux is
thus a 3× 3 matrix. Using the deformation gradient, Green’s strain
for in-plane stretching is given by

G =
1

2
(FT F− I) . (1)

The in-plane stress can be calculated using the material model

σ = ks ((1− ν) G + ν tr(G) I) , (2)

1http://graphics.berkeley.edu/resources/ARCSim

Figure 3: We simulate the tearing of a rubber sheet (left image)
and compare it to a photograph of a real-world tearing experiment
(right image). In both simulation and photograph, undulations on
the fractured edge due to plasticity around the crack tip are visible.

where ks = Y h/(1− ν2) is the stretching stiffness, Y is Young’s
modulus, h the material thickness and ν Poisson’s ratio. These
quantities are computed per triangle.

Similarly, the discrete bending strain of a triangle [Gingold et al.
2004] can be obtained via the dihedral angle θi at its three edges,

S =
1

2A

3∑
i=1

(θi − θRi ) li ti t
T
i . (3)

Here, A denotes the triangle area, li the edge lengths and ti the unit-
length edge tangents. The dihedral angle is measured with respect
to the rest pose angle θRi .

The potential energy of the simulated sheet is now given as

E =

faces∑
i

Ai
2

Gi : σi +

edges∑
i

kb
l2i

8Ai
(θi − θRi )2 (4)

with the bending stiffness kb = αks h
2/12. The factor α allows

modeling materials with anisotropic stiffness along the out-of-plane
direction (e.g. rolled steel). The equations of motion can be derived
from this potential. To include the effects of plasticity, the dihedral
angle is measured against the sum of rest pose angle θR and plastic
angle θp, and the deformation gradient F is replaced by the purely
elastic deformation gradient Fel. In §4.2 and §5.2 we discuss these
plastic quantities.

4 Fracture and Plasticity

The characteristic appearance of many materials as they crack or
tear occurs due to complex emergent behavior driven by interactions
between the fracture process, elastic deformation, plastic yielding,
and the material’s constitutive model [O’Brien et al. 2002]. As
shown by the example in Fig. 3, even apparently simple fracture
effects may involve subtle, yet significant, plasticity. In the case of
thin sheets, the combination of in-plane properties and out-of-plane
bending properties further enriches the range of behaviors that may
be encountered.

4.1 Fracture model

In order to initiate and propagate cracks, we first need to determine
where the material fails. Fracture occurs due to concentrations of
stress, so at each timestep we evaluate stress at each node of the
mesh to determine if it is high enough to cause material failure. In
accordance with O’Brien and Hodgins [1999], we take the approach
of splitting at vertices, as this allows for natural extension of existing
cracks.

Unfortunately, the naı̈ve approach of simply averaging the stress
around a vertex leads to vertex stresses that may not be maximal
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Figure 4: A splitting plane, shown in red, with normal s separates
the surrounding triangles of a vertex into two segments. The traction
across the potential split can be computed from the surrounding
stress field via a path integral in the continuous case (left), or using
the tangent vectors t in the discrete case (middle). If the splitting
plane is close to an open crack (right), the crack edge is used as the
second hand of the split plane to divide the segments.

at the crack tip. Consequently, materials will not break cleanly but
instead produce spurious cracks and jagged edges. This problem
motivated the use of the separation tensor [O’Brien and Hodgins
1999] as a fracture criterion. However, their separation tensor has the
drawback of being too strongly influenced by element size and shape.
While that dependence is somewhat tolerable for isotropic meshes
with uniformly sized elements, it creates problems in the context
of adaptive meshes. Accordingly, we use a different vertex-centric
fracture criterion that captures the direction of maximum stress relief
independent of element size and shape.

For a given vertex, our approach computes the separation strength
based on the amount of stress that would be relieved by splitting
the vertex. Accordingly, we first need to find the optimal splitting
plane which would maximally relieve the stress around that vertex.
By formulating a computable measure of that relief, we can solve a
small optimization problem to find the appropriate splitting plane.

Our measure of separation evaluates the stress in a small disc cen-
tered at the vertex. Given a potential splitting plane, we can calculate
the traction across the plane using the path integral along the disc
boundary

q1 =

∫
∂Ω1

σ+ · n̂ dS . (5)

where n̂ is the outwards unit normal. In the above equation, we
clamp the negative eigenvalues of the stress tensor σ to zero to
prevent fracture due to compression. As we use a linear FEM
discretization, the stress σ is piecewise constant on sectors defined
by the surrounding triangles (Fig. 4), which gives

q1 = σ+
0 (t0 − s) +

N−1∑
i=0

σ+
i (ti+1 − ti) + σ+

N (−s− tN ) (6)

where ti are the tangent vectors between the triangles and s is the
split plane normal. q2 is computed similarly by integrating over
the segment on the opposite side of the potential split plane. When
propagating existing cracks, we divide the segments using one hand
of the split plane, and the existing crack edge on the other side, to
accurately compute curved crack paths and prevent back-cracking
(Fig. 4).

For balanced loads, the difference of q1 and q2 of a given vertex
and split plane can be used to predict material failure. To prevent
the fracture criterion from responding to unbalanced loads, which
would produce rigid motion, we instead use the smallest common
component

s = min(q1 · q̂,−q2 · q̂) (7)

as the separation strength. q̂ is the normalized difference of the
traction vectors q1,q2. If s is above the material’s area toughness

Algorithm 1 Fracture substepping

1: Compute separation strength s for all vertices (Eq. 7)
2: Add nodes with s > τ to fracture zone Z
3: Store vertex positions in x′

4:
5: while Z 6= ∅ do
6: Z′ ← Z and n-ring neighbors
7: Locally remesh Z′

8: Compute physics update step in Z′

9: Recompute s for vertices in Z′

10: Rewind vertex positions in Z′ to x′

11: if any s > τ then
12: Break vertex with max. s
13: Z ← all vertices ∈ Z′ with s > τ

τ , the material fails at this vertex, and the neighboring triangles are
split along the split plane. The area toughness is derived from the
volume toughness by multiplying with the face thickness τ = τV ·h.

There is no easy-to-compute analytical solution to finding the split
plane with maximum separation strength. However, because σ and
the products in (6) can be precomputed for all tested separation
planes at a given vertex, we can easily sample this equation (we
use 200 samples in practice). Additionally, we avoid computing
the separation strength in low-stress regions. The magnitude of the
separation strength is upper-bounded by sbnd = 2 maxλi, where λi
is the largest eigenvalue of σ+

i , so we can ignore vertices where sbnd
is below the area toughness.

Bending fracture So far, we have only considered fracture due to
in-plane stress. However, for many materials, such as sheets of glass
or ceramics, the predominant fracture mechanism is bending strain.
We include bending fracture into our model in a similar way as
Gingold et al. [2004]. Bending of a thin sheet introduces additional
in-plane strain. It is maximal at the outer layer, where an additional
deformation of ∆l = 1

2
hκ, with the sheet thickness h and curvature

κ, is induced. In three dimensions, we can express this effect in our
material model by multiplying the deformation gradient F with a
bending factor

FB = F
(

1 +
1

2
αhII?

)
. (8)

The second fundamental form II is calculated using the finite el-
ement derivative of the vertex normals. Negative curvature also
results in additional tensile strain, just on the opposite side of the
sheet. Therefore, we reverse negative eigenvalues in II to obtain an
all-positive tensor II?. As the stress tensor used in (6) is computed
using the Green strain, including the effects of bending in the frac-
ture model now reduces to replacing F with FB in the calculation
of the Green strain (1).

Fracture substepping If the separation strength exceeds the ma-
terial toughness at a vertex, the material fractures at this point, and
its adjacent triangles are split by the separation plane. As we intend
to resolve the crack propagation process with fine geometry, many
triangle splits will occur per simulation step. To accurately predict
new crack openings, the stress relief from the previous crack needs
to be taken into account. On the other hand, we note that the stress
redistribution on these short timescales is strongest around the newly
formed crack tip. We therefore propose a local virtual physics update
around the newly formed crack.

First, all potential crack tips (vertices with s > τ ) and their n-
ring neighborhood are collected into a fracture zone. To relieve
bending stress, we need at least a two-ring neighborhood. We use
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Figure 5: In this example, we tear a sheet with our algorithm
(left) and the separation tensor of O’Brien and Hodgins [1999] with
fracture substepping (middle) and without substepping (right). Our
algorithm produces significantly fewer artifacts in simulations with
varying triangle size.

n = 3 for most of our examples. Next, a local remeshing of this
zone is performed (see §5), to make sure stress redistribution and
crack opening happens at a high resolution. A local virtual physics
update is performed for the vertices in the zone, and the stress and
separation strength is updated based on the updated positions for
all zone nodes. We select the node with the largest s, and open or
propagate a crack at this vertex with the appropriate spliting plane.
Then, the node positions are rewound to their original position, and
the process is repeated until no vertices with s > τ are found.

This process is summarized in Algorithm 1. Note that at the end of
the process, the node positions remain unchanged, only the topology
has changed. The actual node displacement and stress redistribution
will happen within the next full physics step. The substepping only
locally predicts the stress values to compute crack opening. This
restriction is important to correctly handle collisions, and potential
long-range effects not handled by the local prediction.

4.2 Plasticity

To be able to simulate materials such as sheet metal, we need to
represent plasticity of both tensile and bending stress. For in-plane
tensile stresses we use a multiplicative model [Bargteil et al. 2007]
adapted to sheets. In this model, the measured total deformation
gradient F of a triangle is multiplied with a per-triangle plasticity
matrix, yielding the elastic deformation gradient Fel = F·Fp which
is then used in the physics update computation. Fp is initially an
identity matrix, and is updated in each timestep using the flow rule

Fp ← Fp ·V
(

det(Σ)−
1
3 Σ
)γ

VT (9)

where UΣVT is the singular value decomposition of Fel. The
exponent γ = clamp(∆t µ · (σM − σ0), 0 . . . 1) is defined by the
flow rate µ, the von Mises effective stress σM =

√
3||σ− 1

3
tr(σ)I||

and the yield stress σ0. To represent the thinning of plastically
stretched material, the per-triangle thickness is updated in the same
way using h← h det(Σ)−

1
3
γ . This thickness is then used to derive

the area toughness τ from the volume toughness, and similarly the
bending stiffness; thinned parts of the mesh therefore bend and break
more easily.

Bending plasticity is modeled as in Narain et al. [2013]. Again, the
bending plasticity is encoded as a 3× 3 tensor, with the update rule

Sp ← Sp +
Sel
||Sel||

(||Sel|| − κ0) (10)

for the elastic bending strain Sel from (3) and the yield curvature
κ0.

a)

α β

b)

c) d)

Figure 6: A vertex is added during an edge-split remeshing op-
eration. Its rest shape position is computed by projection onto a
reference mesh shown in blue (a). Its plasticity is computed by mini-
mizing the plastic bending and stretching energy of its surrounding
elements (b). Adaptive remeshing allows to concentrate resolution
around the crack tip (c), and coarsening the mesh immediately after
the crack has formed (d).

5 Remeshing

Adaptive remeshing is central to the efficiency and accuracy of our
method. Through remeshing, we increase mesh resolution around
the crack tip, maintain well-shaped elements as the fracture propa-
gates, and coarsen the mesh in regions where stress is relieved. This
allows complex crack patterns to be realistically produced without
excessive computation elsewhere.

Unfortunately, modifying the discretization of curved shapes or
objects always incurs some amount of discretization error, which
will induce extraneous stresses in the material. In a non-fracturing
system, subsequent timesteps would redistribute these isolated ir-
regularities in the stress field. Artifacts such as popping would only
occur if relatively large imbalances were introduced by remeshing.
However, for a system that includes fracture modeling, artificial
stresses can disturb the process of crack propagation and introduce
spurious initiation sites. For stable results, therefore, it is essential
to minimize artificial stresses caused by remeshing. This section
presents techniques to address this issue.

5.1 Sizing Prediction

Our method uses anisotropic remeshing using a sizing metric [Narain
et al. 2012; Narain et al. 2013] as a basis. This metric determines
the desired length of an edge according to eTMe ≤ 1 with the
sizing tensor M and the edge vector in rest pose e. The sizing
metric encodes the resolution requirements of different aspects of
the dynamic simulation, such as world-space curvature, distance to
obstacles, and buckling. We include two additional criteria in this
metric which are important to fracture simulation.

First, as we allow curved rest poses, we add a rest pose curvature
term Mrc = Srp/∆n

2 to prevent locking into flat modes. Srp
denotes the rest pose bending strain, and ∆n the angular bound
also used for the world-space curvature field. Second, a fracture
sizing Mfrac = (2λ/(τ xmin))2 I is introduced. λ denotes the
largest eigenvalue of σ+ as in §4.1 and xmin the user specified
minimum edge length for the remesher. This term ensures that
the neighborhood of candidate fracture nodes is resolved with the
highest resolution. We use an isotropic term here to provide an even
distribution for stress evaluation. We also find that the refinement
near the crack tip facilitates the collapse of any sliver triangles
created by splitting during fracture propagation.

As the sizing metric is constructed in undeformed reference space,
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a) b) c) d)

Figure 7: A target shape (dotted blue square) is meshed into an
existing geometry (a). First, triangles are split at the corner points
(b). New edges are shown in red. Next, all edges intersecting the
target shape are split (c). Finally, remeshing any removes ill-shaped
triangles (d).

regions which have been strongly stretched due to plasticity will
show as severely deformed triangles in world space. To avoid
these distortions, we measure the sizing tensor relative to the plas-
tically stretched shape of each triangle. The deformation from
the reference shape to the local plastic rest shape is characterized
by Fp. Therefore, we transform the combined sizing field using
M′ = F−Tp MF−1

p and use M′ instead of M in the remeshing
criterion.

5.2 Remeshing Operators

Once the sizing fields are known, the actual remeshing is performed
using edge collapses, edge flips and edge splits. When adding a ver-
tex during split, or moving a vertex during collapse, most algorithms
interpolate coordinates and plasticity values. This interpolation will
lead to spurious strains, especially for stiff materials and curved rest
shapes.

One option is to apply a global optimization step [Narain et al. 2013]
after remeshing, to reposition vertices in a way that minimizes stress.
As reprojection is necessary after each opened crack to prevent
distortions of the crack paths, global optimization is not feasible
for fracture simulations. Instead, we propose a local reprojection
formulation, which can be executed after each remeshing operation
or topology change, and also integrates with plasticity remeshing.
In contrast to the global optimization, it is automatically regularized
by the surrounding fixed geometry and less prone to jittering.

Rest space position We allow the coarsening and refinement of
curved rest shapes without an explicit parameterization, to enable
the adaptive simulation of arbitrary shapes. If new vertices created
by edge-split operations are placed directly on the split edges, the
accumulation of resampling error will cause successive coarsening
and refinement to diffuse and eventually eliminate shape features in
curved regions. Instead, we keep a high-resolution version of the
rest shape mesh, and ensure the rest shape positions of all vertices
always lie on this reference surface.

When splitting an edge, we can reproject its rest space positition u
onto the reference mesh by intersecting it with the ray u + s · n̂,
where n̂ is the averaged face normal of the edge’s adjacent triangles.
Both s > 0 and s < 0 need to be tested to account for concave
regions (Fig. 6a).

Plasticity In each remeshing step, the plasticity tensors need to be
redistributed in a way that avoids loss of plasticity through diffusion.
Previous work [Wicke et al. 2010a; Narain et al. 2013] does so
by representing plastic deformation geometrically through a global
“plastic embedding” that approximates the deformed rest shape. We
instead construct a local plastic embedding in the neighborhood of a
remeshing operation.

Images copyright Tobias Pfaff, Rahul Narain, Juan Miguel de Joya, James F. O’Brien.

Figure 8: The natural crack path in a paper tearing simulation
(a) is guided around the printed ducks using a localized defect
line, shown in red (b). In (c), a weakening path around the ducks’
silhouettes creates tear figures during the tearing. The defect lines
are dynamically meshed in only when needed for breaking (d).

We wish to choose new plasticity tensors which are consistent with
the underlying rest geometry, and minimize change in the plastic
edge length lpi and plastic angles θpi at neighboring edges. These
quantities can be recovered from the plasticity tensors stored on each
triangle,

Sp =
1

2A

3∑
i=1

(θpi − θ
R
i )lpi tit

T
i , Fp =

3∑
i=1

||ei||
li

ei e
T
i

||ei||2
. (11)

For edges and faces adjacent to the edge to be remeshed, we con-
struct a configuration in a local embedding space such that edge
lengths and bending angles are equivalent to the plastic lengths and
angles. This compliant plastic surface is the minimum energy state
of the plastic energy in the neighborhood, given by evaluating (4) but
with plastic angles θp and lengths lp instead of world-space angles
and positions:

Ep =

adj. faces∑
i

Ai
2

Gp
i : σpi +

adj. edges∑
i

kB
l2i

8Ai
(θpi − θ

R
i )2. (12)

Applying the remeshing operation to this embedding gives the new
plastic lengths and edges that locally preserve the shape. On an edge
split, we find an optimal embedding position of the new vertex which
minimizes (12), with all surrounding vertices remaining fixed. This
optimization has only three degrees of freedom and a well-shaped
energy landscape, and quickly converges in a few Gauss-Newton
steps. After the remeshing, the plasticity tensors can be reconstructed
from the embedding using (11).

World-space Position Once the plasticity parameters have been
found, the world space position of the changed vertex needs to be
adjusted. Similar consideration as in the previous paragraph apply;
again, we solve an energy minimization problem to find a world
space position which avoids the generation of artificial stresses. The
energy equation

Es =

adj. faces∑
i

Ai
2

Gi : σi+

adj. edges∑
i

kB
l2i

8Ai
(θi−θpi )2+ma·x (13)

is equivalent to (12), with the difference that we are now optimizing
for world-space positions, and measure relative to plastic rest pose,
in accordance with the physics update.

Minimizing the energy for the world-space position results in a
quasi-static equilibrium state. To prevent the loss of momentum, we
include the the additional term ma · x, with the vertex mass m and
the acceleration a from the last physics step interpolated at the new
vertex. This term tries to preserves the local acceleration in a similar
way to Narain et al.’s [2013] global reprojection. For the world
space, no embedding needs to be constructed—the minimization
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Figure 9: The image on the left shows a polycarbonate cylinder
fractured due to buckling under compression. The right image shows
a high-resolution simulation of a glass window being broken by an
impacting sphere.

can be run on the world space mesh, again with the changed vertex
position as the only degree of freedom.

6 Directible Fracture

Our method is designed to compute fracture dynamics as physically
accurate as possible. However, an animator often may require a
specific fracture behavior, such as cracks running in a particular
direction or avoiding certain regions. Adaptive meshing facilitates
the implementation of artistic direction in our framework.

Anisotropy An easy way to adjust crack paths is anisotropy. To
make cracks in direction a more or less likely, the traction vectors
q in (6) can be multiplied by a weakening matrix I + βaaT with
a parameter β < 0 (reinforcement) or β > 0 (weakening). The
anisotropy tensor can be global, or combined with the defect matrix
below. For example, this type of anisotropy is demonstrated by the
leftmost image in Fig. 1.

Defect matrix Another way to influence crack behavior is to lo-
cally modulate the material’s toughness. The physical equivalent are
material defects, which often dominate crack initiation and propaga-
tion in real materials. Modulation of toughness is easy to achieve
in an averaged sense by texturing the material toughness. However,
without a very high mesh resolution this approach will not have the
desired effect, as small features vanish within big triangles, and even
for strong weakening defects, the crack will only roughly follow the
desired pattern.

As our algorithm is designed for stable aggressive remeshing, we
can provide conforming remeshing for these regions when necessary.
We model defect lines or polygons as a vector texture mapped on
the sheet, and refine mesh triangles to conform to these defects
when they are close to fracture. Recalling from §4.1 that a triangle
can fracture only if 2λ > τ , we consider a triangle to be close
to fracture if it satisfies 2λ > δτ , with parameter δ < 1 (we use
δ = 0.1 in our examples). If such a triangle contains an endpoint of
a defect line, we split the triangle such that the endpoint lies on a new
vertex. We perform the same test with lines, which cross defect lines,
and split them at the intersection point. This process is visualized
in Fig. 7. As the figure shows, the splits create many ill-shaped
triangles. Therefore, the newly created lines which correspond to
defect lines are now marked to be preserved by the remesher, and
a global remeshing step is executed to remove all sliver triangles
around the shapes.

If 2λ/τ falls below 1
2
δ, defect lines are remeshed out again to reduce

the triangle count. Using this technique, the defect lines or areas

Figure 10: The shattering of a spherical glass ornament is simu-
lated using our adaptive algorithm (middle), and a statically meshed
version with the same triangle count (left). The fracture pattern of
the adaptive simulation is similar to an actual experiment (right),
while the simulation without remeshing fails to correctly resolve
the fracture dynamics and produces an unrealistic distribution of
shards.

are directly tested when computing separation strength, and will
produce the desired breaking pattern (Fig. 8).

7 Results and Discussion

We implemented and tested the described fracture algorithm in a
variety of scenarios, which will be discussed in this section. A refer-
ence implementation of our method has been incorporated into the
ARCSim software package. Performance numbers for our examples
are summarized in Table 1. The supplemental material for this paper
includes a video with several example animations.

Fracture dynamics To demonstrate the space of fracture patterns
we can achieve using our method, we simulated the impact of a
rigid sphere on several sheets of varied materials with different
mechanical properties. Five of the obtained fracture patterns are
depicted in Fig. 1, and more can be seen in the accompanying video.
The differing behaviors can be attributed to different plasticity and
fracture mechanics. For example, the first example in Fig. 1 is
driven by bending fracture, while stretching fracture dominates in
the second example. The third image shows a purely elastic material,
while the fourth and fifth images are dominated by bending and
stretching plasticity, respectively. We can also model fracture due
to buckling. In Fig. 9 (left), a polycarbonate plastic cylinder is
compressed, and then fractures due to the bending stresses induced
by buckling. To obtain these varied dynamics, a full treatment of
bending and stretching plasticity and fracture, as presented in our
method, is necessary.

In Fig. 10, we simulated a glass ball ornament dropping on the floor.
Our adaptive simulation produces shards with a variety of shapes
and sizes, similar to the ones observed in a real-world experiment.
Many of these shapes are unlike Voronoi regions, and would not
be observed in a Voronoi-based fracturing algorithm. We also com-
pare our adaptive simulation to a statically meshed simulation with
the same average number of triangles. Not only does the statically
meshed simulation yield a smaller number of bigger and more uni-
form shards, the locally coarser resolution in fracture regions also
impacts the fracturing dynamics. While the adaptive simulation
shows wide spreading of the shards due to shock-wave propagation
in the material, these dynamics are not observed in the statically
meshed sphere.

We compared our fracture criterion to the separation tensor of
O’Brien and Hodgins [1999]. While their method works well when
meshes are largely homogeneous in terms of mesh size, it behaves
poorly in our adaptive context. In Fig. 5 we show a tearing sim-
ulation of a thin sheet. If we replace our fracture criterion with
their separation tensor, the small triangles directly at the crack tip
will contribute a smaller force than the surrounding larger triangles.
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Scene # faces dynamics geometry total

Metal and glass Fig. 2 5.72k 28.6 25.8 54.4
Sphere drop Fig. 10 4.52k 23.2 22.5 45.7
Dome Fig. 11 17.12k 34.2 53.5 87.7
Paper tearing Fig. 8 3.01k 16.7 21.8 38.5
Rubber tearing Fig. 3 2.69k 11.3 12.7 24.0
Buckling Fig. 9 3.8k 30.3 44.7 75.0
Material variety Fig. 1 4.22k 20.6 43.7 64.3
(average value)

Table 1: Performance measurements for our examples. Timing
numbers are in seconds per frame (at 25 fps). Dynamics includes
physics update, collision handling and plasticity, while geometry
refers to remeshing and breaking. All simulations were run on a
workstation with an Intel Xeon X5675 CPU.

This condition effectively flattens out the separation strength and
leads to jagged crack geometry. If fracture substepping, and local
re-projection are disabled, then stress will not be relieved in the
triangles surrounding the main crack path as it forms. This situation
leads to artificial crack junctions and spurious small cracks around
the main crack.

Plasticity Plasticity has a strong impact on breaking behavior.
One interesting effect is that due to the stress singularity around
the crack tip, crack edges are mores strongly subject to stretching
plasticity than the rest of the material. When tearing plastic foil or
rubber sheets, this plasticity commonly manifests as undulating tear
edges. We performed a tearing simulation of a thin rubber sheet, and
compared it to a real-world experiment with similar results (Fig. 3).

In Fig. 2 (left), a multi-material simulation consisting of an alu-
minum box frame and glass panes is depicted. The plastic deforma-
tion of the aluminum frame induces shear strains on the glass, which
breaks due to shear fracture. If we were to interpolate plasticity
tensors, this example would suffer from a loss of plasticity in the
frame. That is, the shape would slowly degrade towards its initial
position. Simple plastic embedding, on the other hand, would try to
represent plasticity as a global plastic rest shape. That approach fails
in the given example, as it induces artificial plasticity in the glass
panes (Fig. 2 right). Similar issues occur for the metal examples in
Fig. 1.

Directibility The specific crack path of a fracturing simulation is
hard to predict. In Fig. 8, we demonstrate how defect lines and
textures can be used to influence crack paths. This example shows
a simulated piece of paper being torn. The fracture path generated
with no included defects has a natural look, but it also splits one
of the printed ducks. To avoid tearing the duck, a small defect
line is introduced to guide the crack around the duck’s head, while
maintaining a natural look. To make the paper behave as if the
ducks were tear-out figures, the outline of each duck is used to
specify defect geometry. As the tear progresses, the defect lines are
dynamically meshed into high-stress regions, allowing the ducks to
tear out cleanly while preserving a low triangle count. Areas away
from the defect lines retain the natural appearance of tearing paper.

In Fig. 11, the fast impact of a sphere on a glass dome is simulated. If
a hexagonal defect line texture is embedded in the dome, we observe
that fracture on the large scale produces hexagonal shapes, while
smaller shards are dominated by unrestricted fracture dynamics.

8 Conclusions

Realistic simulation of fracture is challenging to simulate. It requires
high resolution around the crack tip to resolve the fracture dynam-
ics for realistic crack path formation, and is prone to introducing

Images copyright Tobias Pfaff, Rahul Narain, Juan Miguel de Joya, James F. O’Brien.

Figure 11: A glass dome is hit by a fast-moving sphere. The left
image shows the natural crack paths, while the right image uses a
hexagonal defect line texure to mimic the shattering of a geodesic
dome.

ill-shaped geometry in the splitting process. We have shown that
adaptive remeshing in conjunction with local reprojection can be
used to accurately compute and resolve high-resolution crack paths,
while coarsening passive regions of the mesh. We demonstrated
that this adaptive evaluation together with plasticity and fracture
modeling of both bending and stretching deformation is an effective
combination to simulate a wide range of materials with very differ-
ent fracture behaviors. In addition, we explored ways to leverage
this adaptivity to dynamically remesh defect pattern when needed.

Our use of substepping and relaxation generally allows timesteps
larger than would normally be expected given a material’s crack
speed and the minimum refined edge size. However, even with
these procedures, some materials will still require small timestep
sizes. This limitations arises because the node displacement over
a large timestep will not be tolerable for very stiff (incompliant)
materials with relatively low toughness. Our relaxation and sub-
stepping scheme succeeds in reproducing the behavior of glass-like
brittle materials such as acrylic (Fig. 1 middle, Fig. 11) at reason-
able timesteps. However, the distinct fracture pattern of plate glass
appears because even extremely small deformations result in brittle
fracture. As shown in Fig. 9 (right), we can capture this behav-
ior. Doing so however requires extremely small timesteps of up to
2× 10−6 s, leading to a total simulation time of 20 hours, an order
of magnitude larger than our other examples. It would be interesting
to investigate how to adapt relaxation to allow such simulations at
larger timesteps.

Ductile fracture is a very complex process which is hard to model
accurately. While the maximum stress criterion is often a good
approximation for elastic fracture, and works nicely for many ductile
fracture problems when combined with the thinning described in
§4.2, it would be interesting to combine our algorithm with a failure
model for plastic damage due to microvoid formation. However,
these models are often hard to parametrize and are tailored towards
specific materials and loading scenarios. An investigation of data-
driven methods to capture plastic and fracture behavior, as has been
done for elastic parameters of cloth [Wang et al. 2011], would be an
interesting avenue for future work.
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rendered using the Mitsuba rendering software by Wenzel Jakob.2
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