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Abstract

Colexification, or the expression of multiple concepts by the
same word, is ubiquitous in language. Colexifications may
appear rule-like, as when an artifact is used for an activity
(repair the shower/take a shower), or similarity-based (child
refers to both “young person” and “descendant”). We inves-
tigate whether these two modes of generalization (rules and
similarity) reflect how people structure new meanings. We
propose computational models based on rules, similarity, and
a hybrid of the two, and correlate model predictions to hu-
man behavior—in a novel task, participants generalized labels
across colexified meanings. We found that a model using sim-
ilarity correlated much better with human behavior than rules,
and that the similarity model was significantly outperformed
by a hybrid model of the two mechanisms. However, the dif-
ference between similarity and hybrid was modest, suggesting
that a framework which combines rules and similarity largely
relies on similarity-based generalization to characterize human
expectations about colexification.
Keywords: colexification; semantics; Bayesian modeling;
polysemy; generalization; natural language processing

Introduction
English speakers can use the name of a species to refer to the
animal’s meat (she fed the fish/she ate fish). But speakers also
face uncertainty: the meat of a cow is instead called steak.
If offered the meat of a zebra at a restaurant, it is unclear
whether an English speaker should apply a label for a similar
concept, referring to it as steak, or follow the animal-for-meat
rule, calling the meat zebra. Though this example is novel, a
plurality of familiar concepts are colexified, sharing a word
label with at least one other concept (Zipf, 1945). Like the
multiple meanings of fish and shower, most colexified words
name related or polysemous meanings (Bréal, 1897; Nav-
igli & Ponzetto, 2012; Durkin & Manning, 1989; Schmitt &
McCarthy, 1997; Rodd, Gaskell, & Marslen-Wilson, 2002),
while a relatively low proportion of colexified meanings are
unrelated or homonymous (Dautriche, 2015); for instance,
flying bats and baseball bats share only a common label.
What underlies the relationships between multiple meanings
in the minds of language users?

Though polysemous meanings are related, they do not gen-
erally lend themselves to a single definition—instead, they
require learners to somehow form a complex category or re-
lationship from input in their language (Wittgenstein, 1953).
A quick examination of cross-linguistic differences confirms
that there are a multitude of cases of polysemy that are not
universal (Fillmore & Langėndoen, 1971; François, 2008;

Rzymski et al., 2020). For example, English’s straight,
French’s droit, and Persian’s rost can all be used to mean
both “rectilinear” and “honest” (e.g., straight talk). This se-
mantic extension from “rectilinear” to “honest” is motivated
by a general metaphorical relationship between speaking di-
rectly and speaking honestly, but not all languages use the
same word to mean both “straight” and “honest” (e.g. Span-
ish), so this is something that English, French, and Persian
speakers must learn. English additionally uses straight to
mean, “undiluted” and “heterosexual”, while neither French
nor Spanish do (François, 2008). This idiosyncrasy across
languages has been used as evidence that individuals must in
fact learn the extensions of their language as a set of con-
ventions, and that new senses in a language may be learned
on the basis of any semantic relationship between concepts
(Murphy, 2004; Lehrer, 1990).

Nonetheless, past research has looked for general rules
or patterns which might be used to predict colexifications.
On these accounts, multiple meanings are learned and repre-
sented when a general rule or pattern is applied to an existing
meaning (Fauconnier, 1994; Nunberg, 1979), and these pat-
terns are predicted to reappear across languages (Copestake
& Briscoe, 1995; Lakoff & Johnson, 2008; Ostler & Atkins,
1991; Pustejovsky, 1998). Cross-linguistic work tested 14
languages for instances of 27 English patterns of polysemy
(such as “animal-for-meat”) (Srinivasan & Rabagliati, 2015).
Multilingual English speakers were presented with with a sin-
gle example of a rule and asked to come up with further ex-
amples in their non-English language. In every language sur-
veyed, there was at least some vocabulary which followed
the English extension rules tested. However, there was also
considerable variation in which particular vocabulary items
the rule could apply to. For example, while English can be
said to have a “material-for-artifact” relationship (e.g. the
material glass, a drinking glass), other languages may ap-
ply this relationship to other materials instead. Another study
found that English speakers’ acceptance of artificial, English-
based colexifications was better predicted by rules than sim-
ilarity (Rabagliati, Marcus, & Pylkkänen, 2010), but did not
test the two mechanisms in tandem. And, as both of these
studies investigated how speakers familiar with English ex-
tensions rated English (or English-like) colexifications, they
could have relied on non-rule structures learned from experi-
ence, it is not clear if these participants would have learned
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naturalistic colexifications via rules.

Other evidence suggests a role for semantic similarity in
colexification (Wittgenstein, 1953). One historical study pre-
dicted meaning change across time in English, finding that
similarity played a strong role in predicting which sense
a word acquired (Ramiro, Srinivasan, Malt, & Xu, 2018).
This work used a nearest-neighbor chaining algorithm over
Word2Vec embeddings to predict the emergence of new, pol-
ysemous meanings for an existing form at later timepoints.
However, this work did not contrast results with a rule-based
account, and predicted historical change for English rather
than directly testing human performance with colexifications.
This is relevant because historical change may face pressures
from many other sources such as environment, geography,
colonialism and other language contact (Thompson, Roberts,
& Lupyan, 2020; Gordon, 2004; Wiseman, 2015; Kirby et
al., 2016), making it difficult to use historical change to draw
conclusions about the role of similarity in the minds of lan-
guage users. Similar work has focused on the importance
of semantic relatedness in colexification across languages
(Xu, Duong, Malt, Jiang, & Srinivasan, 2020; Youn et al.,
2016). These approaches predict attested word extensions
across many languages, finding that more similar concepts
are more likely to share a label. We build on this work by
investigating rule-based polysemy, which was not previously
tested, and exploring novel word learning. Rather than pre-
dicting crosslinguistic variation, we ask a distinct question:
When presented with novel word meanings, to what extent
do learners rely on expectations from productive, rule-based
extensions vs. semantic similarity?

Because language is rife with colexifications between con-
cepts, the present work aims to determine the role of two can-
didate mechanisms in the human mind. We test whether rule-
based generalizations predict how learners expect concepts to
colexify, e.g. a rule would predict that learners would ex-
pect the concepts “foot” and “leg” are likely to colexify be-
cause they follow a part-for-whole pattern. We also inves-
tigate the contrasting proposal: that similarity predicts ex-
pectations about colexification (e.g. the concepts “float” and
“swim” are likely to colexify because their semantic simi-
larity is high). We suggest a third possibility: that humans
simultaneously use both rules and similarity in structuring
word meanings. Past work has used Bayesian modeling to
compare rule and similarity-based learning in the domain of
numerical concepts (Tenenbaum, 2000). The Bayesian mod-
eling approach is well-suited to investigating these questions,
as it offers a mechanism-agnostic approach to formalizing
multiple kinds of hypotheses, such as numerical and seman-
tic similarity, as well as rule or pattern-based structures. In
this vein, we propose and evaluate three Bayesian models of
colexification: one based in rules gathered from extant lit-
erature, one based in similarity as measured through word
embeddings, and a hybrid rule-and-similarity model which
generates predictions from a mixture of the two lone models.
Based on past literature on concept learning, we predict that

the hybrid model will correlate best with human expectations
for colexifications in natural language.

To test this prediction, we asked adult, English-speaking
participants to rate the probability of pairs of concepts be-
ing expressed by the same label in another language. The
concept pairs were selected to be commonly attested colex-
ifications in a database of over 3K languages, but novel to
our English-speaking participants. We then correlated the
human ratings to the three models’ predictions. Critically,
the participants’ and models’ ratings depend on the prior dis-
tribution of both rule-based and similarity-based colexifica-
tions in their experience.Therefore, the task was preceded by
a warm-up phase, in which participants were exposed to a set
of frequent colexifications from outside their language (ran-
domly sampled without replacement from the full set used
in the main task), so that the participants’ prior expectations
could be aligned with the models’ priors.

Table 1: Examples of hypotheses from English as well as our
task (non-English colexifications).

Hypothesis type Example
Animal-for-meat feed a chicken, eat chicken

(rule) [English]
Metaphor wear a crown, the Crown

(rule) [English]
voice, word

[other languages, task item]
Cause and Effect move quickly, fast

(rule) [other languages, task item]
drop, fall

[other languages, task item]
Part-for-whole walk down Wall Street,

(rule) Wall Street panicked
[English]

hand, arm
[other languages, task item]

Similarity old (aged), old (expired)
[English]

float, swim
[other languages, task item]

learn, study
[other languages, task item]

grandson, nephew
[other languages, task item]

Experiment
Method
Participants Adults (n = 60) were recruited from Ama-
zon’s Mechanical Turk via CloudResearch (Litman, Robin-
son, & Abberbock, 2017) and compensated $1.20 to perform
100 ratings, preceded by the priors warm-up phase which ex-
posed them to 70 other colexifications. 100% of participants
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who completed the task were approved for payment and no
data were excluded.

Stimuli We obtained natural language colexifications from
the Database of Cross-Linguistic Colexifications (CLICS), an
inventory of 2,919 concepts 3,156 languages across 20 dif-
ferent language families (Rzymski et al., 2020). Because
our intent was to test how English speakers structured novel
colexifications, we extracted the 300 most frequently colex-
ified meanings across languages, excluding any which also
occurred in English using the CLICS colexification set for
English. However, the English colexification set did not span
the full list of concepts, so a coder reviewed and removed
an additional 55 colexifications from the top 300 which were
identified as attested in English, leaving 245 pairs of novel
colexified concept pairs. From this set, we randomly selected
70 colexifications to use as exposure items in the warm-up
phase which was run to match the participants’ prior experi-
ence to the model. The remaining 175 were used for the main
task. In order to estimate how participants rated both attested
and non-attested colexifications, an additional 175 pairs were
created by scrambling the 175 attested.

In order to determine which type of hypothesis the colex-
ified pairs corresponded to, two coders were trained to rec-
ognize rule-based extensions based on past literature (Lakoff
& Johnson, 2008; Smith, Jones, Landau, Gershkoff-Stowe, &
Samuelson, 2002) and coded each pair of colexified concepts
used in the experiment. Whenever a pair did not correspond
to one of the 32 rules, it was categorized as a similarity-based
colexification.

Procedure The study consisted of two phases. First, in the
priors exposure phase, participants were shown a randomly-
selected set of 70 colexifications in order to align their expe-
rience in the task with the basis for the models’ priors. Partic-
ipants were shown two concepts from a colexification (such
as “leg” and “foot”) and told that a foreign language uses the
same word to express both concepts. On the next page, they
were prompted with one of the concepts from the colexifi-
cation they were just exposed to (“foot”) and asked to select
the corresponding concept (“leg”) from among two distrac-
tors and could not proceed to the next exposure until they
correctly identified the target concept.

In the main phase of the task, participants were exposed
to a randomly-selected 100 items, 1 per page, and prompted
to rate the item’s probability, e.g. “How likely do you think
it is that a foreign language would use the same word to ex-
press the concept LEG(noun) and the concept FOOT(noun)?”
Participants then selected a value from 0 to 100 on a slider,
and this rating was compared with model predictions for each
item.

Models

We compare three types of Bayesian models. First, we pro-
pose a rule-based model which uses productive patterns of
colexification which have been identified in past research

(see Experiment). Next, we tested a similarity model with
two methods for measuring similarity: cosine similarity be-
tween the two colexified concepts’ word embeddings from
Sentence-BERT, a state-of-the-art transformer model of lan-
guage (Reimers & Gurevych, 2019), and cosine similarity be-
tween the concepts’ Word2Vec embeddings (Mikolov, Chen,
Corrado, & Dean, 2013), which relies on a much simpler al-
gorithm and less training. This was done in order to deter-
mine that the similarity models’ performance was consistent,
independent of the quality of the word embeddings. Finally,
we present a hybrid model which represents a mixture of both
rule and similarity models, again separately testing this model
using both measures of similarity. We used each model to
generate a prediction for the probability that two meanings
would be colexified, and this was compared to human predic-
tions for the same pair of meanings from the Experiment.

Rule-only model
Each colexification used in the experiment was coded for
which hypothesis type (rule or similarity) it corresponded to,
and in the case of a rule-type colexification, which particular
rule hypothesis (see Table 1). Model predictions (the prod-
uct of the prior and likelihood for each data point) were then
compared with z-scored human ratings from the Experiment.

Formally, the hypothesis space H = {h1,h2, . . . ,hN}, con-
sisted of N rules, each represented as the set of valid colexifi-
cations under the rule (determined by trained coders; see Ex-
periment). Rules were constructed from from N = 32 exten-
sions believed to be productive and general across languages
in past work (see Table 1 for examples).

The prior probability p(hi) was defined as the proportion
of colexifications that adhered to each rule hi from a priors
dataset. We obtained this using the same subset of 70 items
which were randomly selected for the priors exposure task in
the Experiment, which were coded for which hypothesis best
characterized the relationship between their two concepts
(calculating the relative frequency of each rule and normal-
izing their probability). In the hybrid model, a hierarchical
prior was used for rule hypotheses by calculating the relative
frequency of rule-type hypotheses to similarity hypotheses
in this set. The likelihood function was binary, based on
whether or not the example followed a rule and given by:

P(C|hi) =

{
1 if C is consistent with hi

0 otherwise
(1)

where a colexification C is an unordered pair C = C1,C2 of
meanings.

Given this prior and likelihood, the probability that a colex-
ification would occur under any rule is given by:

p(C|R) =
n

∑
i=1

p(C|hi)p(hi). (2)

In the rule-only model, p(C|R) = 1 (as the hypothesis space
consists of rules only), but it captures the degree that a colex-
ification is supported by rules in the hybrid model.
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Similarity-only model
The similarity-based model consists of a single hypothesis
that expresses the probability that two concepts would be
colexified based on their semantic similarity, and its prior was
therefore set to 1. The likelihood of a colexification under the
similarity rule is given by:

P(C|S) = 1

1+ e−(β0+β1Sim(C1,C2))
. (3)

This likelihood consists of a softmaxed linear model over
similarity between concepts. The Sim function was com-
puted via cosine similarity between the embeddings of C1 and
C2, obtained using Sentence-BERT pretrained embeddings
(Reimers & Gurevych, 2019) in one version of the model and
Word2Vec pretrained embeddings in another (Mikolov et al.,
2013). The final softmaxed linear model was obtained by fit-
ting a logistic regression fit to the full set of colexifications
used in the task via Ordinary Least Squares.

Hybrid rule-and-similarity model
Our main model combines predictions from both similarity
and rule models described above, using a mixture given by:

p(C) = p(C|R)p(R)+P(C|S)p(S) (4)

where p(R) and p(S) were scaled so that p(R) + p(S) = 1
using the distribution from the stimuli presented in the prior
exposure phase (see Experiment), leading to p(R) = 0.57 and
p(S) = 0.43.

Results
We correlated model predictions for each pair of concepts
with z-scored human predictions for that item. Though all
models showed some evidence of predicting human behav-
ior (see Table 2), the hybrid rule-and-similarity model consis-
tently and significantly outperformed the next-best perform-
ing similarity-only model in both versions (z = 3.19, p = 0.001
with S-BERT, z = 2.68, p = 0.01 with Word2Vec). Our pre-
diction, that the hybrid rule-and-similarity model would best
correlate with human judgments, was borne out in the data.
However, panels C and E of figure 1 show quite a few items
which are outside of the hybrid model’s predictions (panels
C and E). For example, the colexification between “dye” and
“paint”, which is attested in many languages, was given quite
high ratings from the participants, but less high predictions
from the similarity model. And, even though the two concepts
follow a productive rule (“same function”), the frequency of
this rule in the prior estimation data set was quite low, mean-
ing that the combinations of low similarity and low rule-based
hierarchical prior generated a much lower prediction from the
model than the probability assigned by participants.

We also found that the similarity-based model correlated
fairly well with human judgments (panels B and D). As in
the hybrid model, there is still a cluster of attested colexi-
fication items which neither the model or humans think are

likely, suggesting that even though similarity offers a gradi-
ent prediction, the similarity likelihood function assigns very
low probability to less similar items.

In the top right-hand corner of panels B and D, predictions
from the similarity-based model shows that there is a rather
large cluster of colexifications with high similarity ratings. In
comparison to the hybrid model (panels C and E), this sug-
gests that the hybrid model may have benefitted from the hy-
perprior scaling down the similarity-only model’s high pre-
dictions, introducing more variation and increasing the corre-
lation with human predictions.

The rule model showed the weakest correlation with hu-
man performance (panel A). One possible reason for this is
that, because each rule represents a categorical relationship,
a model based in rules is ill-suited to capture the variation in
participants’ finer-grained predictions for each item. A sec-
ond explanation we considered was that participants may not
have been exposed to examples of each of the rules during
the priors exposure warm-up, since they were only exposed to
70 colexifications. However, every rule type which appeared
in the main task did appear in the prior estimation data, so
participants would have had experience with colexifications
from each rule. Nonetheless, it is possible that the frequency
of these examples was not high enough in the prior phase to
sufficiently reflect the frequency of that rule type in the main
task.

Table 2: Pearson’s correlations between human and model
predictions

Model type Correlation
Rule-only model 0.45

Similarity-only model
(w/Sentence-BERT embeddings) 0.72

Similarity-only model
(w/Word2Vec embeddings) 0.75

Hybrid rule-and-similarity model
(w/Sentence-BERT embeddings) 0.75

Hybrid rule-and-similarity model
(w/Word2Vec embeddings) 0.79

As described in the Models section, we ran both the hy-
brid and similarity-only models using Word2Vec embeddings
as well as Sentence-BERT. This was done to test the possi-
bility that the similarity model’s results were not dependent
on the state-of-the-art transformer architecture or extensive
training used to create the S-BERT embeddings. However,
we found the same pattern of results with Word2Vec as with
S-BERT (see Table 2). In fact, the correlations between hu-
mans and the hybrid rule-and-similarity model as well as the
similarity-only model were higher for Word2Vec, suggesting
that the superior performance of models which use similarity
are not entirely dependent on the sophistication of the simi-
larity measure. It is, however, not intuitive that embeddings
from a simpler model with less training such as Word2Vec
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Figure 1: A: rule-only model weakly predicts variation in human responses. B: similarity-only model using Sentence-BERT
embeddings performs noticeably better. C: a mixture of rules and similarity using Sentence-BERT embeddings correlates even
better than similarity alone with the same embeddings. D & E show the same similarity-only and hybrid models, instead using
Word2Vec embeddings, which had the same pattern of results (hybrid model > similarity-only).
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should deliver superior results. One possible explanation is
that these pre-trained vectors were used to create embed-
dings for the short concepts described in the CLICS database,
which often did not exceed a single word in length. And while
Sentence-BERT was trained to build representations for en-
tire sentences, Word2Vec was trained to build representations
for words, which are overwhelmingly the semantic unit in our
task, rather than phrases or sentences.

Discussion
The present study investigated mechanisms which underlie
the human ability to share labels across meanings. Specifi-
cally, we formalized a label-generalization task as Bayesian
inference over hypotheses based in semantic similarity, hy-
potheses based in rules, and a mixture of the two. We col-
lected behavioral data from 60 English-speaking participants,
asking them to rate the probability of novel colexifications
based in attested language data. We found that the hybrid
model, which combined predictions from both rule-based and
similarity-based hypotheses, outperformed each lone model.
Additionally, though the hybrid model’s correlation with hu-
man predictions was significantly higher than the similarity-
only model, the similarity-only model’s correlation was al-
most as high. The rule-based model correlated worst with
human judgments.

To represent each concept in the similarity model, we used
word embeddings, which are models trained on large text cor-
pora, and then calculated distance between the colexified con-
cepts in this semantic space. The ability of these corpus-based
semantic representations to capture human predictions might
suggest that at least one of the possible structures underlying
colexifications can be learned. Of course, the sheer amount
of training required in these embeddings far exceeds what in-
dividual learners experience. Critically, however, we tested
our models with two different kinds of word embeddings, and
found that our similarity and hybrid models correlate just as
well when trained on significantly less data with a much sim-
pler algorithm.

A possible explanation for the relatively poor performance
of the rule-only model is that our hypothesized rules could
not adequately characterize the colexifications tested, espe-
cially because the patterns we included were deliberately se-
lected for their novelty to English speakers. However, past re-
search has found that these rules are attested, in some form, in
each of the 14 languages they tested (Srinivasan & Rabagliati,
2015). Secondly, we expanded our rule set by adding 5 even
more broad and inclusive rule types from additional literature,
such as “metaphor”, “cause-and-effect” and “same function”
(Lakoff & Johnson, 2008). Moreover, participants were ex-
posed to at least one instance of each rule type that appeared
in the main task, during the priors exposure phase. Therefore,
we do not think the best explanation for the rule model’s low
performance is that our candidate rules were insufficient.

Our results leave several interesting questions unaddressed.
It is still possible that novel rule hypotheses could instead

be learned from the data, rather than simply gathered from
past literature: future work should examine possible sys-
tematicity in colexifications outside of English using human
coders and/or machine learning techniques. Additionally, the
present work does not include a systematic analysis of er-
rors of the model, which would improve our understanding
of why the rule approach was so unsuccessful. And, while
we focus on modeling people’s expectations about colexifica-
tion, past work has investigated attested colexifications across
languages and history (Xu et al., 2020; Ramiro et al., 2018).
Future work can combine these approaches by exploring how
human learning expectations do (or do not) contribute to the
conventionalization of label extensions. Further, recent work
has shown that learners as young as 2 years old are familiar
with the language-specific polysemous colexifications from
their environment (Floyd, Goldberg, & Lew-Williams, 2020),
and children can rapidly learn and retain networks of meaning
which do not follow a single pattern or rule (Floyd & Gold-
berg, 2020). This ability to flexibly form relationships across
meanings is key, as individuals with a reduced propensity to
generalize across items have been shown to be challenged
by polysemous word learning (Floyd, Jeppsen, & Goldberg,
2020). Therefore, future work should investigate how young
children learn to flexibly generalize using rules and similar-
ity, and how they come to combine generalizations based on
both kinds of mechanisms.

Together, we show the first quantitative modeling evi-
dence that human learners use expectations about colexifi-
cations based both in semantic similarity and in rules (such
as the semantic similarity between “cow” and “bison” and
part-for-whole rule relationship between the concepts “leg”
and “foot”). This is consistent with similar findings from
concept learning, which show that human predictions can
reflect a mixture of both kinds of extensions (Tenenbaum,
2000). We build on earlier work in semantics by testing
more than one simultaneous account, going beyond cases
already known to participants, and generating quantifiably-
testable predictions which we compare with human perfor-
mance. Our results can shed light on previous, seemingly
contrasting findings, which have shown evidence for rules
(Srinivasan & Rabagliati, 2015), evidence for rules over simi-
larity (Rabagliati et al., 2010), and as evidence for similarity-
based chaining over other category structures (Ramiro et al.,
2018). By using a modeling framework that can simultane-
ously represent multiple mechanisms, we show that a combi-
nation predicts human behavior better than either mechanism
alone.
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