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Abstract— A gate output signal transition in DSM designs is

approximated in a ramp function followed by an exponential at-

tenuation tail. We observe that an “effective capacitance” is the

gate output charge during the ramp signal transition time at the

gate output with a unit supply voltage. We propose a tail approx-

imation scheme which matches the “remaining capacitance,” s.t.,

the total gate output charge equals the total load capacitance with

a unit supply voltage. We model a driving point signal transi-

tion in a piece-wise linear-and-exponential (PWLE) function in

accordance with the saturation and the linear behaviors of a driv-

ing transistor. We present tail approximation and interconnect

delay calculation formulas with PWLE functions. Our experi-

mental results from industry design test cases show an average

of 3.8%(8.6%) and maximum of 15.4%(16.7%) accuracy improve-

ment over existing ramp-based driving point signal transition ap-

proximation schemes in interconnect delay (transition time) cal-

culation.

I. INTRODUCTION

Gate level static timing analysis (STA) achieves orders of

magnitude speedups over full waveform time domain simula-

tions (e.g., SPICE). A typical STA implementation calculates

gate delays and output transition times from input transistion

times and output load capacitances, based on a table lookup

approach. Counting the downstream resistive shielding effect

in deep sub-micron (DSM) domain replaces the lumped total

load capacitance with an effective capacitance [2, 12, 15].

Traditional delay calculator fits a signal transition in a ramp

function. Ramps are good fits of signal transitions in tra-

ditional designs, with negligible interconnect resistances and

lumped interconnect capacitances. With a single load capac-

itance and a constant gate output current, the driving point

signal transition is in a ramp. In DSM designs with larger in-

terconnect resistances, faster signal transition times and lower

transistor threshold voltages, gates are more likely to operate

with a linear output resistance, which results in a more signifi-

cant exponential attenuation at the driving point of an intercon-

nect(Figure 3). Effective capacitances could under-estimate

signal transition times and interconnect delays. A tail approx-

imation procedure is proposed to adjust the ramp fit[12].

Ramps are essentially inefficient to capture the exponential

attenuation effect. Signal transitions at the driving point of a

RC network cannot be accurately approximated by any signal

transition which drives a single capacitance (Figure 3). Dif-

ferences in transition time threshold voltage definition among

industry libraries can also result in different transition times

and calculated delays.

A gate output resistance is proposed to follow a ramp ex-

citation to capture the exponential attenuation effect[3, 14].

Such methods suffer accuracy problems, since transistor out-

put resistances vary in magnitudes during signal transitions.

Linearization of a transistor I-V curve would be over-time-

consuming for timing analysis[4].

We propose to model signal transition at a driving gate out-

put as a piece-wise linear-and-exponential (PWLE) function,

in accordance with the saturation and the linear behaviors of

a driving transistor during a signal transition. Parameters of a

PWLE function are extracted such that the total charge are pre-

served. We also present the interconnect delay calculation for-

mulas with PWLE functions. Our experimental results show

an average of 3.8%(8.6%) and maximum of 15.4%(16.7%) ac-

curacy improvement on interconnect delay (transition time) in

industry design test cases.

We review effective capacitance computation and suggest

matching “remaining capacitances” for tail approximation in

Section II. We present a PWLE function which models a gate

output voltage in Section III. We derive formulas for charge-

matching-based tail approximation in Section II, and formulas

for interconnect delay calculation in Section V. We demon-

strate our experimental results in Section VI and conclude in

Section VII.

II. CHARGE MATCHING

An effective capacitance is computed by matching the aver-

age gate output current up to the gate output transition time[2].

We observe that this is equivalent to match the driving transis-



Fig. 1. A transistor output current Id drives a distributed RC interconnect

load which is simplified in a Π model.

Fig. 2. Time domain waveform of a transistor output current Id which drives

a distributed RC network (e.g., in a Π model as shown in Figure 1) with a

driving point signal transtion from t = 0 to Tr . Integration of the output

current to infinite time gives the total load capacitance. Integration of the

output current from t = 0 to Tr gives the effective capacitance. The rectangle

area gives the near end capacitance.

tor output charge (i.e., integration of the driving transistor out-

put current) up to the completion of the ramp signal transition

at the driving transistor output; thereafter, the driving transistor

acts as a passive resistor, while the RC network is continually

charged; the total transistor output charge (i.e., integration of

the output current up to the infinite time) equals the total load

capacitance. With a single load capacitance, this gives identi-

cal effective and total load capacitances. Note that the transis-

tor output current with a distributed RC network load increases

exponentially, while it keeps constant with a single load ca-

pacitance and a ramp driving voltage. This may be partially

responsible for delay mismatches in an effective-capacitance-

based gate delay calculation (Figures 1 and 2).

We propose a tail approximation scheme which matches

the “remaining capacitance,” i.e., Ctotal −Ce f f . Our method

(Algorithm 1) is based on a piece-wise linear-and-exponential

(PWLE) driving voltage function as follows.

III. TRANSISTOR OUTPUT VOLTAGE IN A PWLE

FUNCTION

We propose a piece-wise linear-and-exponential function in

modeling gate output voltage as follows (for a rising signal

transition).

Vd(t)

Vdd

=







0 t < 0

t/Tr 0 < t < Tt

1−κeρ(t−Tt) Tt < t,
(1)

where the exponential function of time constant ρ starts at

time Tt and voltage V (Tt) = (1− κ)Vdd . Tt is the time that

the driving transistor switches from saturation to linear behav-

ior with Vds ≤Vgs −Vth. Assuming a fast input transition, e.g.,

Vgs(Tt) =Vdd , we have Vds = Vdd −Vth, or Vd(Tt ) =Vth. Hence,

κ = 1−
Vth

Vdd

Tt =
Vth

Vdd

Tr. (2)

Algorithm 1: Delay Calculation with PWLE functions

Input: distributed interconnect, timing library
Output: gate and interconnect delays

1. Interconnect model order reduction
2. Compute Ce f f , gate delay, and gate output transition Tr

by matching Ce f f =
R Tr

0 Iddt

3. Derive κ and Tt from Vth.
4. Compute RdCe f f by fitting gate output transition

5. Compute Cs =
R Tt

0 Iddt from driving point impedance

6. Compute ρ with Equation 5
7. Calculate interconnect delay with Equation 13

IV. MATCHING REMAINING CAPACITANCE

Output charge of a transistor from t = 0 to Tt is given by

Qs =

Z Tt

0
Iddt

where the transistor output current Id is obtained from the sig-

nal transition and the interconnect impedance at the driving

point.

Output charge of a transistor from Tt to t = ∞ is given by

Qr =

Z ∞

Tt

Iddt =

Z ∞

Tt

Vddt/Rd (3)

where Rd is the transistor output resistance. From the PWLE

function,
Z ∞

Tt

Vddt =

Z ∞

Tt

κeρ(t−Tt )dt = −ρκ

In matching the total driving transistor output charge with

the total load capacitance,

Qtotal = Qs + Qr = CtotalVdd (4)

we have

ρ =
Vdd

κ
R(Ctotal −Cs)

= (
Vdd

κ
Ctotal −Cs

Ce f f

)RdCe f f (5)



where RdCe f f is obtained by fitting an exponential signal tran-

sition with the ramp signal transition at the gate output, e.g., to

the upper and the lower transition threshold voltages.

V. INTERCONNECT DELAY CALCULATION

A distributed R(L)C interconnect can be represented in

the following transfer function by applying model reduction

techniques[5, 6, 9, 11]:

H(s) = ∑
i

ki

s− pi

(6)

in Laplace domain or

H(t) = ∑
i

kie
pit (7)

in time domain, where ki and pi are residues and poles, re-

spectively. A time domain output function Vo(t) is obtained by

applying convolution to an input function Vi(t) and an inter-

connect transfer function H(t):

Vo(t) =

Z t

0
Vi(t − τ)H(τ)dτ. (8)

For a step input function

Vi(t)

Vdd

=

{

0 t < 0

1 t > 0,
(9)

output signal function is given by

Vo(t)

Vdd

= ∑
i

ki

pi

epit + 1. (10)

For a ramp input function

Vi(t)

Vdd

=







0 t < 0

t/Tr 0 < t < Tr

1 Tr < t

(11)

with transition time Tr, output signal function is given by

Vo(t)

Vdd

=







t
Tr

+ ∑i
1
Tr

ki

p2
i

(epit −1) t < Tr

1 + ∑i
1
Tr

ki

p2
i

(epit − epi(t−Tr)) Tr ≤ t.
(12)

Similarly, for our proposed PWLE voltage function, output

function is given by:

Vo(t)

Vdd

=















t
Tr

+ ∑i
1
Tr

ki

p2
i

(epit −1) t < Tt

1 + ∑i((κ
ki
pi
−

1
Tr

ki

p2
i

)epi(t−Tt )+

1
Tr

ki

p2
i

epit + κk
pi−ρ(eρ(t−Tt )− epi(t−Tt ))) Tt < t.

(13)

Consider a ramp input with an extremely slow transition

time (i.e., t < Tr and ept ≪ 1), where Equation 13 becomes

Vo(t)

Vdd

=
t

Tr

−∑
i

ki

p2
i

1

Tr
. (14)

Fig. 3. An actual driving point signal transition with a “tail” of exponential

attenuation is different with signal transitions derived from effective and total

interconnect capacitances, respectively.

Setting Vo(t) = 0.5 gives the following interconnect delay

td = ∑
i

ki

p2
i

, (15)

which equals the first moment m1 or the Elmore delay[7]:

tElmore
d = m1 =

Z ∞

0
tH(t)dt = ∑

i

ki

p2
i

. (16)

This shows that the 50% RC interconnect delay equals the El-

more delay with an infinitive input transition time.1

VI. EXPERIMENT

We implemented our non-ramp interconnect delay calcula-

tion scheme in C++, and run our experiments on several indus-

try design test cases, which include an interconnect driven by a

8X low threshold (Vth = 0.2V,Vdd = 1.0V ) driver in a 0.13µm

design. The interconnect of 120 resistors and 121 capacitors

with a total of 0.23pF capacitance (with no coupling capaci-

tance) is scaled by a factor k = 1,2,4,8, or 16 to represent long

interconnects, or interconnects in future process technologies.

Table I compares SPICE simulation and STA results on sig-

nal transitions and propagation delays at the near end (or driv-

ing point) and the far end of a load interconnect with four ap-

proximated driving point signal transitions: (1) an effective-

capacitance-derived ramp transition from [12]; (2) effective-

capacitance-derived ramp transition; with tail approximation

adjustment [12]; (3) an effective-capacitance-derived ramp

transition from [2]; and (4) our proposed charge-matching

PWLE-based signal transition. We have the following obser-

vations.

1Another proof is given in [7].



Observation 1 All existing signal transition approximation

schemes could under-estimate interconnect delays and (far

end) transition times.

Observation 2 All existing signal transition approximation

schemes suffer increasing accuracy loss with increasing resis-

tive and capacitive loads.

Observation 3 Interconnect delay is increasingly sensitive to

transition time with a fast input transition (e.g., from a strong

driver2) and a large capacitive load (e.g., of a long intercon-

nect).

Observation 4 Our non-ramp signal transition approxima-

tion scheme achieves an average of 3.8%(8.6%) and maxi-

mum of 15.4%(16.7%) accuracy improvement over existing

approaches in interconnect delay (far end transition time) cal-

culation.3

VII. CONCLUSION

More significant interconnect resistances, faster signal tran-

sition times and lower transistor threshold voltages in DSM

designs deviate signal transitions from ramp functions. Tail

approximation becomes more critical to achieving accurate in-

terconnect delay calculation. We observe that “effective capac-

itance” equals the driving gate output charge during the gate

output ramp transition time, and propose a tail approximation

method which matches with the “remaining capacitance,” such

that the total driving gate output charge equals the total load ca-

pacitance with a unit supply voltage. Our method is based on

a piece-wise linear-and-exponential (PWLE) function which

captures the driving point signal transition in accordance with

the saturation and the linear behaviors of the driving transis-

tor. Our experimental results show an average of 3.8%(8.6%)

and maximum of 15.4%(16.7%) accuracy improvement in in-

terconnect delay (transition time) calculation.

DSM technology requires improved accuracy of delay cal-

culation (e.g., for static timing analysis). Capturing signal tran-

sitions in a waveform other than ramp functions becomes in-

creasingly important to achieving accurate delay calculation in

DSM designs[1, 8]. We exhibit improved STA accuracy by

combining a non-ramp function with the current ramp-based

transistor characterization scheme. Our on-going efforts ad-

dress consideration of crosstalk and supply voltage drop ef-

fects.
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TABLE I

GATE DELAYS, NEAR END TRANSITION TIMES, WIRE DELAYS, AND FAR END TRANSITION TIMES WITH FOUR APPROXIMATED DRIVING POINT SIGNAL

TRANSITIONS - (1) CEFF: AN EFFECTIVE-CAPACITANCE-DERIVED RAMP TRANSITION FROM [12]; (2) CEFF + TAIL: EFFECTIVE-CAPACITANCE-DERIVED

RAMP TRANSITION; WITH TAIL APPROXIMATION ADJUSTMENT [12]; (3) CDEFF: AN EFFECTIVE-CAPACITANCE-DERIVED RAMP TRANSITION FROM [2];

OR (4) PWLE: OUR PROPOSED CHARGE-MATCHING PWLE-BASED SIGNAL TRANSITION - ARE NORMALIZED TO SPICE SIMULATION RESULTS FOR AN

INTERCONNECT OF 0.23pF TOTAL CAPACITANCE WHICH ARE SCALED BY k = 1,2,4,8, OR 16, AND A 8X LOW THRESHOLD DRIVER IN A 0.13µm DESIGN.

Rising Signal Transition Falling Signal Transition

k gate delay near trans wire delay far trans gate delay near trans wire delay far trans

Ceff 1.068 0.829 0.951 0.816 1.069 0.814 0.959 0.771

1 Ceff + TAIL 1.068 0.941 0.953 0.922 1.069 1.025 0.976 0.941

Cdeff 0.995 0.749 0.949 0.740 0.992 0.715 0.946 0.697

PWLE 1.068 1.098 0.994 1.096 1.069 1.196 1.057 1.169

Ceff 1.196 0.697 0.861 0.668 1.148 0.654 0.826 0.717

2 Ceff + TAIL 1.196 0.943 0.884 0.855 1.148 1.247 0.922 0.897

Cdeff 1.001 0.556 0.837 0.574 1.011 0.519 0.806 0.690

PWLE 0.933 1.063 0.962 1.043 1.017 1.497 1.047 1.169

Ceff 1.454 0.490 0.731 0.628 1.153 0.616 0.857 0.832

4 Ceff + TAIL 1.454 1.006 0.821 0.788 1.153 2.455 0.913 0.901

Cdeff 1.087 0.342 0.710 0.602 1.083 0.551 0.856 0.832

PWLE 1.120 1.178 0.931 1.011 1.022 2.959 1.073 1.078

Ceff 1.455 0.380 0.793 0.763 1.150 0.665 0.920 0.916

8 Ceff + TAIL 1.455 1.645 0.842 0.820 1.150 5.270 0.937 0.926

Cdeff 1.307 0.334 0.793 0.763 1.323 0.840 0.920 0.916

PWLE 1.123 1.921 0.983 0.967 1.019 6.380 1.058 0.997

Ceff 1.435 0.432 0.880 0.873 1.134 0.757 0.959 0.958

16 Ceff + TAIL 1.435 3.232 0.892 0.879 1.134 7.893 0.961 0.959

Cdeff 1.897 0.599 0.881 0.873 1.756 1.489 0.959 0.958

PWLE 1.106 4.307 1.002 0.941 1.000 12.963 1.028 0.976




