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Systems biology
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Abstract 
Motivation: Graph representation learning is a family of related approaches that learn low-dimensional vector representations of nodes and 
other graph elements called embeddings. Embeddings approximate characteristics of the graph and can be used for a variety of machine- 
learning tasks such as novel edge prediction. For many biomedical applications, partial knowledge exists about positive edges that represent 
relationships between pairs of entities, but little to no knowledge is available about negative edges that represent the explicit lack of a relation
ship between two nodes. For this reason, classification procedures are forced to assume that the vast majority of unlabeled edges are negative. 
Existing approaches to sampling negative edges for training and evaluating classifiers do so by uniformly sampling pairs of nodes.
Results: We show here that this sampling strategy typically leads to sets of positive and negative examples with imbalanced node degree distri
butions. Using representative heterogeneous biomedical knowledge graph and random walk-based graph machine learning, we show that this 
strategy substantially impacts classification performance. If users of graph machine-learning models apply the models to prioritize examples 
that are drawn from approximately the same distribution as the positive examples are, then performance of models as estimated in the valida
tion phase may be artificially inflated. We present a degree-aware node sampling approach that mitigates this effect and is simple 
to implement.
Availability and implementation: Our code and data are publicly available at https://github.com/monarch-initiative/negativeExampleSelection.

Introduction
Many problems in biology and medicine stand to benefit 
from machine learning (ML) approaches (Rajkomar et al. 
2019). Biomedical data are often composed of entities from 
multiple different classes that are interconnected by different 
types of relation. Therefore, biological data are often repre
sented computationally as knowledge graphs (KG), semantic 
networks that encode entities as nodes and relations between 
entities as edges. Typical ML tasks that leverage KGs involve 
node (entity) classification and prediction of novel relations 
between entities (edge prediction) (Nickel et al. 2016, Li et al. 
2022). Graph machine learning methods have been applied 
to numerous biomedical classification tasks including protein 

function prediction, protein–protein interaction prediction 
and in silico drug discovery Muzio et al. (2021). Despite the 
great promise of ML in medicine, to date very few ML algo
rithms have contributed meaningfully to clinical care Deo 
(2015). One reason for this might be that published models 
not infrequently display methodological flaws or underlying 
biases (Zech et al. 2018, Biderman and Scheirer 2020; 
Wynants et al. 2020, Roberts et al. 2021). It is therefore es
sential to understand and ideally to mitigate sources of bias 
and error in ML in order to develop robust and accu
rate algorithms.

It was shown in 2011 that topological imbalances in bio
medical KGs can result in densely-connected entities (i.e. 
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high-degree nodes) being highly ranked no matter the con
text, suggesting that embedding models may be more influ
enced by node degree than by any biological information 
encoded within the relations (Gillis and Pavlidis 2011, 
Bonner et al. 2022). Here, we show that the method by which 
negative edges are sampled for evaluation of results in the 
validation phase can contribute to this node-degree bias. We 
present an approach to mitigating the effect by node-degree 
aware sampling. We demonstrate our approach using two 
heterogeneous KGs.

Definitions
A graph G ¼ ðV; EÞ consists of nodes (a.k.a. vertices) v 2 V
and edges (a.k.a. links or relations) er

u;v 2 E connecting nodes 
u and v via a relationship of type r.

A graph with a single node type and a single edge type is 
called homogeneous. For example, the protein-protein inter
action graph described below is homogeneous because it has 
one type of node (a gene symbol that represents the proteins 
encoded by the gene) and one type of edge (an interaction be
tween a pair of proteins). Graphs with two or more types of 
node, two or more types of edge, or both are called heteroge
neous. For instance, the synthetic lethality graph described 
below is heterogeneous because it contains two types of 
edges, one for protein-protein interactions and another for 
synthetic lethality interactions.

A knowledge graph is a graph that uses nodes to represent 
real-world entities and edges to represent the relations be
tween these entities.

A random walk is defined as an iterative walker’s transition 
from its current node to a randomly selected neighbor starting 
at a given source node, s. In the experiments described here, we 
simulate random walks of a fixed path length l ¼ 128.

With a first-order random walk, if the walker is at node n 
at step i, the next random step is chosen based on informa
tion solely from the immediate neighbors of node n. With a 
second-order random walk, the next random step is chosen 
based on information from the previous random walk step 
and the immediate neighbors of node n.

Graph representation learning (GRL) is a form of graph 
machine learning that applies various strategies to convert 
nodes, edges, or graphs into low-dimensional vectors called 
“embeddings” that preserve graph structural information 
and properties (Cai et al. 2018). Graph embeddings can be 
used to address downstream prediction tasks (Xu 2021). In 
this work, we focus on random-walk based GRL methods 
that optimize node embeddings such that nodes have similar 
embeddings if they tend to co-occur on short random walks 
over the graph (Li et al. 2022, Hamilton et al. 2017).

Shallow embedding methods generate a vector representa
tion for every node u that preserves the input graph structure 
information. The methods are called shallow to distinguish 
them from graph neural networks that can generate represen
tations for any graph element by capturing both network 
structure and node attributes and metadata using deep learn
ing techniques (Li et al. 2022). Numerous approaches have 
been developed to generate embeddings that reflect different 
aspects of graph structure (Perozzi et al. 2014, Mikolov et al. 
2013b, Pennington et al. 2014, Tang et al. 2015, Grover and 
Leskovec 2016).

The Matthews correlation coefficient (MCC) is calculated 
based on the counts of true-positive (TP), true-negative (TN), 

false-positive (FP), and false-negative (FN) classifications 
as follows: 

MCC ¼
TP � TN−FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ

p

The MCC generates a high score only if the binary predic
tor was able to correctly predict the majority of positive data 
instances and the majority of negative data instances, with its 
values ranging from –1 for perfect misclassification to þ1 for 
perfect classification. MCC¼0 is the expected value for ran
dom classification (Chicco and Jurman 2020).

Protein–protein associations
The STRING database is a comprehensive relational data
base of protein-protein associations (Szklarczyk et al. 2021). 
STRING (version 11.0) data for Homo sapiens was used cor
responding to 9606.protein.links.v11.5.txt.gz. 
Associations were filtered to retain only those with a score of 
at least 700, and duplicate edges between node pairs 
were removed.

Synthetic lethal interaction data
We first analyzed data available in the supplementary material 
provided with ISLE (Lee et al. 2018) and files available from the 
SynLethDB resource (Guo et al. 2016) by comparing the cura
tion with the original publications. To create the synthetic lethal 
interaction database (SLDB) resource, we manually reviewed 
publications cited in these resources and additional publications. 
The curated SLIs are available at https://github.com/monarch- 
initiative/syntheticLethalityNetwork. The tab-separated file 
(TSV) includes information about each pair of genes, the pertur
bations used for each gene, the assays used to measure synthetic 
lethality, a Cellosaurus id (Bairoch 2018) (if applicable), and the 
PubMed identifier. To add additional information to SLDB, we 
integrated it with the STRING protein-protein interaction net
work by using the nodes (genes) in SLDB to also represent the 
proteins in STRING that the genes themselves encode.

For the experiments described in this work, we imported 
the SLDB resource directly using a utility function of GRAPE 
(Cappelletti et al. 2023). The SLDB graph was integrated 
with the STRING PPA graph. A Python script that imple
ments the analysis is available in the project GitHub reposi
tory (runSli.py).

KG-IDG
The KG-IDG knowledge graph represents data from the NIH 
Common Fund’s Illuminating the Druggable Genome (IDG) 
Consortium. The IDG aims to integrate current knowledge of 
proteins in order to study the function of specific under
studied drug targets in three main druggable protein families: 
G-protein coupled receptors, ion channels and protein kin
ases. KG-IDG is intended to represent relationships between 
drugs, their protein targets, and disease. KG-IDG unifies 
structured data from 14 different sources concerning drugs, 
proteins, and diseases (Caufield et al. 2023b). For experi
ments in which we trained edge prediction models on KG- 
IDG, we used edges between biolink: ChemicalSubstance, 
biolink: ChemicalEntity, biolink: Drug nodes and biolink: 
Protein nodes for training and to test the performance of the 
edge prediction model.
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Shallow graph representation learning
The shallow graph representation learning experiments de
scribed here were performed using the GRAPE library for fast 
and scalable Graph Processing and Embedding, version 0.1.28. 
GRAPE provides a comprehensive library of Graph 
Representation Learning and inference models implemented in 
Rust with a Python interface (Cappelletti et al. 2023). Seven 
node embedding methods were used including four random- 
walk methods and three matrix factorization methods.

The random-walk methods combine methods for generat
ing random walks with methods for sampling node contexts. 
The two random walk sampling mechanisms are DeepWalk 
(Perozzi et al. 2014), which samples first-order random 
walks, and Walklets (Perozzi et al. 2017), which samples 
first-order random walks and, for a given central node v, at 
each i-th sampling iteration, skips i nodes around the central 
node v. We used these training samples obtained with both 
DeepWalk and Walklets to train two different embedding 
models. The CBOW (Mikolov et al. 2013a) model, trains a 
shallow neural network to predict the central node of a ran
dom walk window given the remainder contextual nodes. 
The second model is SkipGram (Mikolov et al. 2013a), which 
analogously to CBOW trains a shallow neural network to 
predict the contextual nodes given the central node. In all of 
these models, the node embedding matrix is the (trained) 
weight matrix of the first hidden layer.

The matrix factorization methods included Large-scale 
Information Network Embedding (LINE) and High-Order 
Proximity preserved Embedding (HOPE). First and second- 
order LINE (Tang et al. 2015) trains a neural network with 
either one layer (first-order) or two layers (second-order) to 
predict whether a given tuple of nodes defines an existing 
edge. HOPE starts by computing a node-proximity matrix, 
where the proximity between two nodes may be defined in 
different ways, in our case by using the number of common 
neighbors. Then HOPE computes the singular vectors corre
sponding to the k most significant singular values of the 
proximity matrix and uses the left and right product of the 
singular values with the singular vectors as the embeddings of 
the source and destination nodes (Ou et al. 2016).

Each of the seven algorithms was used with GRAPE default 
parameters. Details are provided in Table 1.

Edge prediction
Edge embeddings were formed from the embeddings of the 
corresponding pair of nodes ðu; vÞ by the binary Hadamard 
((� ) operator, defined as the elementwise product of both vec
tors, i.e. 

½f ðuÞ(� f ðvÞ�i ¼ fiðuÞ � fiðvÞ

Edge prediction was performed by a Perceptron model. 
Positive edges for training and evaluation were derived from 
the SLDB KG, and negative edges were obtained as will be 
described in the Results.

Results
Here, we investigate the influence of negative-edge sampling in 
link prediction by graph ML. The relevant algorithms have 
three main stages, each of which uses a different type of negative 
sampling (Fig. 1). As we will explain below, the sampling strat
egy that has been traditionally used in the third stage can artifi
cially inflate the measured classification performance for new 
data that have a distribution similar to that of the positive train
ing set. In this work, we present a degree-aware node sampling 
approach for sampling negative edge examples that mitigates 
this effect. Before we discuss our approach, we will present a 
brief explanation of the three phases.

In the first (embedding) phase, embeddings are generated 
from the input graph. The embedding procedure is a generali
zation of the word embedding procedure of the word2vec al
gorithm (Mikolov et al. 2013b), whereby each random walk 
is like a sentence and the nodes of the graph are like words. 
Much previous work has been invested in understanding the 
effect of negative sampling in the first phase (training the em
bedding model). The computational objective of the skip
gram model is to maximize the mean log-probability of 
context words that occur in a window surrounding the input 
word. For instance, the node2vec algorithm scans over series 
of nodes encountered in random walks and attempts to pre
dict nearby nodes (i.e. inside some context window) on the 
basis of a Skip-gram objective function.

However, the per-node partition function is expensive to 
compute for large networks since it involves every node of the 
graph, and so node2vec approximates it using negative sam
pling, whereby k negative nodes are sampled for each positive 
node according to the unigram distribution U (w) raised to the 
3/4rd power (Mikolov et al. 2013b, Grover and Leskovec 2016, 
Ahrabian et al. 2020; Yang et al. 2020; Wang et al. 2023). A 
number of methods have been developed to improve the selec
tion of negative examples for creating embeddings (Zhang and 
Zweigenbaum 2018, Armandpour et al. 2019) but no single 
method performs best for all datasets (Caselles-Dupr�e et al. 
2018, Yang et al. 2020). The first phase concludes with the gen
eration of edge embeddings from the node embeddings, which 
can be performed with several methods (Grover and 
Leskovec 2016).

Table 1. Parameters for the learning models used in this project.

Model Epochs Learning rate Walk length Window size Max neighbors

DeepWalk CBOW 30 0.010 128 5 100
DeepWalk SkipGram 30 0.010 128 5 100
Walklets CBOW 30 0.010 128 4 100
Walklets SkipGram 30 0.010 128 4 100
First-order LINE 100 0.050 n/a n/a n/a
Second-order LINE 100 0.050 n/a n/a n/a
HOPE n/a n/a n/a n/a n/a

Each of the models shown here was run using uniform and node-based sampling of negative examples. In addition to the parameters shown in the table, some 
parameters are only relevant to a subset of models: learning rate decay was set to 0.9. Avoid false negatives was set to false for First-order LINE and Second- 
order LINE. The number of negative samples was set to 10 for DeepWalk CBOW, DeepWalk SkipGram, Walklets CBOW, and Walklets SkipGram. 
Iterations were set to 100 for all models except first-order and second-order LINE.
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The method that we present in this work applies only to 
the second and third phases and is independent of this kind 
of negative sampling chosen for the first phase.

In the second (classification) phase, positive and labeled 
edge examples are extracted from the KG for training an 
edge classifier. For example, to classify protein-protein 
associations, positive edges can be obtained from the 
STRING knowledge base, and for the synthetic lethality 
graph, positive synthetic lethality interactions can be curated 
from the literature. In general, only a small proportion of all 
potential edges are labeled positive. For instance, the STRING 
graph has 16 812 nodes, corresponding to ð16 812�

16 811=2Þ potential edges between pairs of nodes, or roughly 
141 million edges. Only 252 953 edges, or 0.18%, are labeled 
positive. To train machine-learning classifiers, it is recom
mended to use numbers of positive and negative examples that 
do not greatly differ. STRING does not include information 
about pairs of proteins that do not undergo interactions. For 
this reason, negative examples are sampled at random from the 
unlabeled set.

Many classification algorithms are suitable for the second 
phase. Figure 1 shows a Random Forest classifier. For the 
experiments shown here, we used a single layer neural net
work (i.e. Perceptron) for edge classification.
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Figure 1. Graph representational learning and link prediction. There are three phases in which negative examples are sampled. In the first, embeddings 
are generated from the input graph using a variety of methods that sample the graph by random walks or related procedures. Edge embeddings are then 
generated from the node embeddings. In the second phase, a classifier (such as a random forest) is created using the positive and negative labels from a 
training set. In the third phase, the resulting classifier is evaluated on the basis of its performance on held-out data. In typical bioinformatics applications, 
we have knowledge about a subset of positive examples, and assume all unlabeled examples are negative. In the current work, we explore two 
strategies (UNS and DANS) for sampling from unlabeled examples to obtain negative examples for evaluation.
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In the third (evaluation) phase, the performance of the clas
sifier is evaluated. Similar to the second phase, a relatively 
balanced number of positive and negative examples are cho
sen for the evaluation.

The current work explores the consequences of two 
strategies for choosing negative examples in the third (evalua
tion) phase.

Input knowledge graph
We examined a heterogeneous graph of protein–protein-asso
ciations (PPAs) derived from the STRING resource 
(Szklarczyk et al. 2021) together with 2445 synthetic lethal 
interactions derived from the literature (SLDB; Methods). 
The classification task in the heterogeneous SLDB graph was 
to predict novel synthetic lethal interactions. The SLDB graph 
displayed a skewed node distribution. For instance, the mean 
degree of the top 20 nodes was 105.9, compared to a mean 
degree in the entire graph of 2.8. About 2081 of the 2445 
edges (85.1%) in the largest component of the SLDB graph 
involved at least one of the top 20 nodes (Fig. 2 and 
Supplementary Figs S1 and S2).

Two methods for sampling negative examples from 
graphs: UNS and DANS
The evaluation phase requires negative sampling to measure 
the generalization performance of the edge-prediction model.

A common approach for obtaining negative examples sam
ples the source and destination nodes from a uniform distri
bution that randomly chooses an integer between 1 and jVj
corresponding to the nodes of the graph (Fig. 3A). We rea
soned that this sampling strategy, which we term edge sam
pling by uniform node sampling (UNS) will produce negative 
examples whose node degree approximates the degree distri
bution of the entire KG but may differ from the node degree 
distribution of the positive examples in many relevant bio
medical KGs, because typical biomedical KGs are generally 

characterized by a non-uniform node-degree distribution 
(Lima-Mendez and van Helden 2009).

We therefore developed a different sampling mechanism 
that assigns a number of negative edges to each node propor
tional to its node degree. We term this method edge sampling 
by degree-aware node sampling (DANS). In this approach, 
we randomly sample two edges e1 ¼ ðs1;d1Þ; e2 ¼ ðs2;d2Þ

from Uf1; jEjg, and build a new negative edge by connecting 
the source node of e1 and the destination node of e2 (Fig. 3B).

In real-world graphs, there is a minimal likelihood of colli
sions between existent and non-existent edges using either the 
UNS or the DANS sampling strategy that can be trivially 
addressed by repeating the sampling.

To illustrate the effect of the two sampling strategies, we plot 
the distribution of the product of the node degrees of the two 
nodes forming edges chosen by the UNS and DANS. In this con
text, the product of node degrees has been referred to as 
“preferential node attachment (PA)” (Zhou et al. 2009); i.e. if 
the node degree of node u is dðuÞ, then the preferential attach
ment of edge ðu; vÞ is calculated as PA ¼ dðuÞ � dðvÞ. We sam
pled 100 times the number of positive edges in the SLI graph 
(100� 2445) and plotted the distribution of PA for the UNS 
and DANS sampling approaches as well as for the original (pos
itive) edges. It can be seen that the distribution of edges follow a 
strikingly different distribution compared to UNS or DANS, 
whereby the DANS distribution more closely resembles the dis
tribution of the positive edges (Fig. 3C). Indeed, DANS gener
ates negative edges by randomly extracting edges according to a 
uniform distribution. In this way, source and destination nodes 
of the negative edges tend to have degrees similar to that of the 
nodes involved in positive edges, thus resulting in comparable 
PA distributions between positive SLI edges and negative edges 
randomly drawn according to DANS.

To investigate the influence of UNS and DANS sampling 
on a simple classification task, we trained a perceptron (a sin
gle layer neural network) to classify SLI interactions using 
only features derived from node degrees, without taking any 

A B

Figure 2. Topology of the SLDB graph. (A) Degree distribution of the synthetic lethality interaction edges in the SLDB graph. (B) The 20 highest-degree nodes 
with synthetic lethality interactions of the SLDB network. The distribution of node degrees among the 20 most densely connected nodes of the SLI network.
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other graph features into account. For each edge, we formed 
a two-dimension integer vector with the degree of each of the 
nodes that made up the edge. We then compared the results 
of classification whereby we used UNS and DANS both for 
the selection of negative edges to train the perceptron (the 
second phase) with UNS or DANS sampling for the evalua
tion (third) phase. An equal number of positive and negative 
examples was chosen. In each experiment, we performed ten- 
fold cross validation with training size of 0.75.

We present results of classification in terms of the 
Matthews correlation coefficient (MCC), which ranges from 
−1 for perfect misclassification to þ1 for perfect classifica
tion, while MCC¼ 0 is the expected value for a random clas
sifier (Chicco and Jurman 2020). Additional results are 
presented in Supplementary Figs S2–S5 for four other edge 
feature generation methods: Adamic-Adar index, Jaccard co
efficient, Resource Allocation Index, and Preferential 
Attachment (Adamic and Adar 2003, Zhou et al. 2009) 
(Fig. 4).

The results of this analysis demonstrate that node-degree bias 
operates in at least two phases in graph machine learning: in the 
phase in which the classifier is trained, and also in the phase in 
which the results of classification are evaluated. The classifica
tion models were created identically with the sole exception of 
the method for choosing negative examples, and yet the mea
sured classification performance differs substantially. To our 
knowledge, our analysis is the first to show the effects of differ
ent sampling strategies on the evaluation phase. If the user of 
the model is interested in new examples drawn from the same 
distribution as the known positive examples, then our experi
ments suggest that at least part of the signal obtained by the 
classifier using UNS sampling is spurious.

The influence of negative sampling strategies on 
GRL edge prediction
We then asked if a similar effect pertains to random walk- 
based GRL edge prediction. We applied seven different em
bedding approaches followed by perceptron-based classifica
tion of edges in the SLDB graph (Methods).

We tested the classification performance for the prediction 
of synthetic lethal interaction edges. The measured classifica
tion performance was consistently higher for UNS sampling 
than for DANS sampling. For instance, Walklets SkipGram 

A C

B

Figure 3. Pseudocode for edge sampling strategies. Both strategies sample two nodes and return the edge that connects the two nodes, but the procedure 
used for sampling the nodes differs. (A) Uniform node sampling (UNS). The standard method for sampling samples two nodes uniformly to create a “random” 
edge for negative examples. (B) Degree-aware node sampling (DANS). The method presented here instead samples two edges uniformly to create a random 
edge from the source node of the first edge and the destination node of the second edge. (C) Preferential attachment (PA). The plot shows PA for positive 
examples from the SLI graph and edges sampling using the UNS and DANS approaches. See text for details. A Jupyter notebook that performs this analysis 
and generates panel (C) of this Figure is available on the project GitHub repository.
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RAI

0.00 0.25 0.50 0.75 1.00

DANS (test)

DANS (train)

UNS (test)

UNS (train)

Figure 4. Effects of UNS and DANS sampling on measured classification 
performance using two-dimensional degree-based features. A perceptron 
model was trained to predict novel SLI edges. DANS or UNS sampling 
was used in the evaluation phase. RAI, resource allocation index; Pref. 
Attach, preferential attachment; Jaccard, Jaccard coefficient. The X-axis 
shows the Matthews Correlation Coefficient (MCC).
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First−order LINE
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UNS (test)

UNS (train)

Figure 5. Matthews correlation coefficient for the seven methods applied 
to edge prediction in the heterogeneous SLDBgraph. The bars show 
mean 6 standard deviation. The X-axis shows the MCC.
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displayed an MCC of 0.49 for UNS sampling but only 0.26 
for DANS sampling (Fig. 5; see also Supplementary Table S2 
for AUROC, AUPRC, and F1 score analysis). For each com
parison, the only difference was in the way the negative 
examples were selected.

The difference in the influence of negative sampling strate
gies on the SLDB graph is related to the different node distri
butions or other differences in graph structure. Indeed, the 
SLDB graph shows a degree distribution that is approximately 
scale-free, with few nodes of very high degree and many low- 
degree nodes (Supplementary Figs S1 and S2).

To confirm this result, we repeated this experiment on KG- 
IDG, a KG that integrates data related to drug repurposing 
(Caufield et al. 2023a). As before, we produced node embed
dings using seven different approaches, and trained a 
perceptron-based edge prediction model. We then measured 
the performance of this model in predicting drug to protein 
edges from this graph. As with SLDB, the classification per
formance was higher for UNS compared to DANS. For exam
ple, the MCC of Walklets SkipGram was 0.90 using UNS 
sampling but only 0.17 using DANS sampling (Fig. 6). The 
results from the other five node embeddings strategies were 
similar: in each case, the MCC using DANS sampling was 
lower than when using UNS sampling.

Discussion
Large graphs, including many graphs of interest for biomedical 
research, commonly follow an approximately scale-free power- 
law distribution, meaning that the probability PðkÞ that a node 
in the network interacts with k other vertices decays as a 
power-law, following PðkÞ � k−c. This function indicates a 
high diversity of node degrees, with the lack of a typical degree 
in the graph motivating the characterization of these graphs as 
scale-free (Barabasi and Albert 1999, Albert 2005). Intuitively, 
scale-free networks contain a few hubs that are connected to 
many other nodes and many nodes with one or only a few con
nections. It has been known since 2011 that node degree can 
skew machine-learning predictions in biological graphs (Gillis 
and Pavlidis 2011). In this work, we characterize the specific in
fluence of negative sampling in generating such biases.

Constructing generalizable graph models of biomedical 
domains is challenging because most systems of scientific in
terest have multiple different classes of nodes and relations, 
and in many cases, our knowledge is so incomplete that com
prehensive gold-standard data sets for training ML classifiers 
do not exist. An ML algorithm is said to be biased if its results 
are systematically wrong due to incorrect assumptions of the 
ML process. Biases can inflate the measured prediction perfor
mance of algorithms (Eid et al. 2021). In this work we have 
explored the relationship between sampling of negative exam
ples and measured performance of shallow graph representa
tion learners. Our results demonstrate that if the positive and 
negative samples have a different node degree distribution, 
then strategies for sampling negative examples for the evalua
tion that do not take node degree into account can greatly af
fect the estimate performance of classification algorithms.

While the classification performance of a given ML model 
depends on several crucial factors, including the amount of 
information in the training dataset, the training algorithm 
and its parameter settings, it is important to realize that the 
validity and reliability of the model assessment strongly 
depends on the distribution of the novel data the model is 
meant to classify. We note that the effect we have described 
here is not the same as overfitting. Rather, what we have 
shown is essentially that standard (UNS-based) approaches 
to evaluating classifiers in biomedical KGs risk comparing 
apples and oranges because the distribution of the positive 
examples in model training and evaluation is different. While 
the results that are estimated using UNS seem to be accurate, 
they are derived from an artificially “easy” classification task 
that reflects differences in node degree between positive edges 
(typically high degree) and uniformly chosen edges (typically 
low degree). We argue that in many cases this does not reflect 
the actual biomedical problem, which is to identify novel 
edges of high degree nodes in an existing KG. We have shown 
that the DANS approach provides a more relevant estimation 
of performance of ML classifiers in this situation. For in
stance, if a biologist wants to find new SLI interactions that 
involve one of the genes shown in Fig. 2C, the node degree of 
such candidates will be more similar to the node degree sam
pled by DANS than that from UNS.

Our review of other software packages for RW-GRL 
revealed that the uniform node sampling procedure is used 
during training by the gensim package (�Rehů�rek and Sojka 
2010) that is widely used as to develop algorithms to perform 
embedding such as node2vec (Grover and Leskovec 2016). 
The methods used for sampling negative examples are rarely 
described in detail in the methods of many publications on 
the topic. Our results suggest that users should take this into 
account and report on the approach to negative sampling.

Limitations of our analysis include the restriction to random- 
walk-based GRL. We have not performed exhaustive parame
ter optimization; however, the parameters used in the results 
presented here are typical for the algorithms, and the effects de
scribed in this work do not pertain to the model training phase 
but instead to evaluation. It might be the case that some mod
els, datasets, or parameter combinations obtain similar esti
mates of prediction accuracies when UNS and DANS are used. 
For instance, we observed no substantial difference in UNS and 
DANS inflated results, when the HOPE model is used for pre
diction of SLIs. However, we observe substantial differences for 
the vast majority of models tested. Therefore, we recommend 
that practitioners of random-walk based graph representation 

Figure 6. Matthews correlation coefficient for the methods applied to 
edge prediction in the heterogeneous KG-IDG graph. The bars show 
mean 6 standard deviation. The X-axis shows the MCC.
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learning always investigate performance of their models using 
both UNS and DANS sampling to characterize potential differ
ences. Further work will delve into the exploration of this issue 
for specific models and prediction tasks.

Conclusions
Negative samples should be meaningful for the classification 
task at hand, and inappropriate sampling mechanisms may 
lead to biased evaluation. Negative samples that differ sub
stantially from the positive samples in one or more character
istics can lead to over-optimistic evaluations. Conversely, 
negative samples that are too similar to (or even collide with) 
the positive samples may lead to overly poor evaluations.

We recommend that practitioners of edge prediction in bio
logical networks carefully evaluate the node degree distribu
tion of samples chosen for the negative and positive 
examples. Results of training with the standard uniform node 
selection schema and the node-degree selection approach pre
sented here should be compared.
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