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RESEARCH ARTICLE https://doi.org/10.1158/2767-9764.CRC-24-0213 OPEN ACCESS 

A Phase II Trial of the WEE1 Inhibitor 
Adavosertib in SETD2-Altered Advanced Solid 
Tumor Malignancies (NCI 10170) 
Edward Maldonado1, W. Kimryn Rathmell2, Geoffrey I. Shapiro3, Naoko Takebe4, Jordi Rodon5, 
Devalingam Mahalingam6, Nikolaos A. Trikalinos7, Arash R. Kalebasty8, Mamta Parikh9, Scott A. Boerner10, 
Celene Balido1, Gregor Krings1, Timothy F. Burns11, Emily K. Bergsland1, Pamela N. Munster1, Alan Ashworth1, 
Patricia LoRusso10, and Rahul R. Aggarwal1 

�
 ABSTRACT 

We sought to evaluate the efficacy of WEE1 inhibitor adavosertib in patients 
with solid tumor malignancies (cohort A) and clear cell renal cell carcinoma 
(ccRCC; cohort B). NCT03284385 was a parallel cohort, Simon two-stage, 
phase II study of adavosertib (300 mg QDAY by mouth on days 1–5 and 8–12 
of each 21-day cycle) in patients with solid tumor malignancies harboring a 
pathogenic SETD2 mutation. The primary endpoint was the objective response 
rate. Correlative assays evaluated the loss of H3K36me3 by IHC, a downstream 
consequence of SETD2 loss, in archival tumor tissue. Eighteen patients were 
enrolled (9/cohort). The median age was 60 years (range 45–74). The median 
duration of treatment was 1.28 months (range 0–24+). No objective responses 
were observed in either cohort; accrual was halted following stage 1. Minor 
tumor regressions were observed in 4/18 (22%) evaluable patients. Stable 
disease (SD) was the best overall response in 10/18 (56%) patients, including 
three patients with SD > 4 months. One patient with ccRCC remains on 
treatment for >24 months. The most common adverse events of any grade 

were nausea (59%), anemia (41%), diarrhea (41%), and neutropenia (41%). 
Nine patients (50%) experienced a Grade ≥3 adverse event. Of eight evaluable 
archival tissue samples, six (75%) had a loss of H3K36me3 by IHC. Adavo-
sertib failed to exhibit objective responses in SETD2-altered ccRCC and other 
solid tumor malignancies although prolonged SD was observed in a subset of 
patients. Combination approaches may yield greater depth of tumor response. 

Significance: WEE1 inhibition with adavosertib monotherapy demon-
strated limited clinical activity in patients with SETD2-altered solid tu-
mors despite compelling preclinical data indicating a synthetic lethal 
effect, which did not translate into robust tumor regression. Loss of the 
H3K36me3 trimethylation mark caused by SETD2-deficiency was con-
firmed in the majority of evaluable tumors. A subset of patients derived 
clinical benefit as manifested by minor tumor regressions and 
prolonged SD. 

Introduction 
SET domain containing 2 (SETD2) is a common tumor suppressor gene that 
encodes for a histone H3 lysine 36 (H3K36) methyltransferase. Pathogenic 

loss-of-function mutations have been observed across a wide range of solid 
tumor malignancies including clear cell renal cell carcinoma (ccRCC; range 
3%–14%, though has been reported as high as 35% in some studies; refs. 
1–6). SETD2 mutations may not necessarily be biallelic. In ccRCC, the vast 
majority of tumors undergo chromosome 3p deletion in a region known to 
harbor several genes including VHL, SETD2, PBRM1, and BAP1 (4, 6). Al-
though most ccRCC tumors are monoallelic for these 3p genes, a smaller 
portion of ccRCC tumors acquire a second loss of function SETD2 mutation 
in the remaining allele rendering the loss biallelic with complete loss of 
H3K36 methyltransferase. 

SETD2 has a canonical function as a key methyltransferase responsible for 
trimethylation of histone H3K36 (H3K36me3), a mark which plays a role in 
transcription, splicing, DNA damage repair, and maintenance of genomic 
integrity and stability (7). SETD2 also has methyltransferase activity toward 
alternative targets such as α-tubulin and interacts with several other proteins 
including TP53 (3, 8, 9). Haploinsufficiency for SETD2 causes a subset of the 
genomic instability seen with biallelic loss (10). Clinically in ccRCC, biallelic 
SETD2 alterations have been associated with adverse cancer-specific 
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outcomes such as higher tumor stage, increased likelihood for recurrence or 
metastatic disease, and worse cancer-specific survival (11, 12). There have 
also been reports of worse outcomes for other SETD2-deficient tumors in-
cluding breast (3, 13) The widespread loss of SETD2 in various malignancies 
and association with poor prognosis warrants therapeutic development of 
agents targeting this alteration. 

WEE1 is an inhibitory tyrosine kinase, interacting with CDK1 and CDK2 
at various points in the cell cycle including the S-phase and G2/M-phase 
transition, resulting in S-phase and G2/M-phase transition delays and the 
suppression of early mitotic events and mitotic catastrophe (14). Inhibition 
of WEE1 was previously found to promote unscheduled mitotic entry 
through CDK1 activation, leading to loss of genome integrity (15). Ad-
ditionally, preclinical studies of WEE1 inhibition with adavosertib (also 
known as AZD1775) have demonstrated a synthetic lethal effect in SETD2- 
deficient cancers in cell lines (16). SETD2 deficiency results in reduced 
trimethylation of histone H3K36 (H3K35me3), leading to reduced ex-
pression of ribonucleotide reductase regulatory subunit M2 (RRM2), 
which leads to further reduction in dNTP subunits. Therefore, resulting in 
effects on transcription, splicing, DNA damage repair, and maintenance of 
genomic integrity and stability (16) With the addition of WEE1 inhibition, 
preclinical studies showed the abolishment of DNA replication in SETD2- 
deficient cells through further depletion of dNTP pools (monomeric units 
of DNA) via further reduced expression of RRM2 (16). Adavosertib 
monotherapy demonstrated both synthetic lethal effects and resulted in 
significant tumor regression in SETD2-deficient renal cell carcinoma xe-
nograft models (16). 

Adavosertib (AZD1775) is a potent and selective WEE1 inhibitor that was 
previously evaluated in a phase I trial investigating doses ranging from 200 to 
400 mg once daily (days 1–5 and 8–12 of each 21-day cycle) in 42 patients 
with advanced solid tumors (17). There were two dose-limiting toxicities 
observed at the 400 mg daily dosing level (grade 4 pancytopenia), thereby 
establishing 300 mg once daily (days 1–5 and 8–12 of each 21-day cycle) as 
the RP2D with similar plasma exposures to those from twice-daily dosing, 
with partial responses in 6/42 (14%) of patients (17). Thus, this RP2D was 
also used for this subsequent phase 2 study. 

The purpose of this phase II study (NCT03284385) was to evaluate the efficacy 
and safety of adavosertib monotherapy in patients with SETD2-altered ccRCC 
and other locally advanced or metastatic solid tumor malignancies. 

Materials and Methods 
Study design and participants 
This was a Simon two-stage, phase II, parallel cohort study that evaluated 
adavosertib monotherapy in biologically male and female patients at least age 
18 years and older, with histologically confirmed locally advanced or met-
astatic solid tumor malignancies in two cohorts: (A) Solid tumor malig-
nancies other than ccRCC and (B) ccRCC. Patients were not randomized 
and were not blinded in this phase 2 study. Cohort A (N ¼ 9) included 
patients with solid tumor malignancies other than ccRCC with disease 
progression on at least one prior systemic therapy. Cohort B (N ¼ 9) in-
cluded patients with ccRCC with disease progression on at least one prior 
systemic therapy including prior tyrosine kinase inhibitor or immune 
checkpoint inhibitor. All patients were required to have evidence of a 

pathogenic SETD2 mutation in archival tumor tissue by a local or central 
Clinical Laboratory Improvement Amendments–approved assay. Molecular 
profiling platforms included the following: Caris Comprehensive Molecular 
Profiling (2/18 patients; ref. 18), FoundationOne CDx (8/18 patients; ref. 19), 
Tempus Xt (4/18 patients; ref. 20), the Massachusetts General Brigham 
Dana–Farber Cancer Institute OncoPanel (3/18 patients; ref. 21), and the 
MD Anderson Solid Tumor Genomic Assay Tumor DNA Panel (1/18 pa-
tients; ref. 22). Additional eligibility criteria included measurable disease by 
RECIST 1.1 criteria, an Eastern Cooperative Oncology Group performance 
status of 0 to 1, and adequate hematologic, renal, and hepatic function. A full 
list of exclusion criteria is provided in Supplementary Protocol S1, which 
provides the study protocol. 

The study was conducted in accordance with the International Conference 
on Harmonisation Guidelines for Good Clinical Practice and the principles 
of the Declaration of Helsinki. All patients provided written informed 
consent. This study (NCT03284385) was conducted at 11 different cancer 
centers in the United States through the National Cancer Institute (NCI) 
Experimental Therapeutics Clinical Trials Network under an NCI-sponsored 
investigational new drug application. 

Study treatments and procedures 
Patients received adavosertib at a starting dose of 300 mg once daily by 
mouth on days 1 to 5 and 8 to 12 of each 21-day cycle. Dose modifications 
were allowed based on established criteria without the need for weight-based 
dosing (see Supplementary Protocol S1). Intra-patient dose re-escalation was 
not permitted. Treatment with adavosertib continued until disease pro-
gression by RECIST 1.1 criteria, unacceptable adverse events, clinical pro-
gression, and general or specific changes in the condition of the patient that 
rendered the patient unacceptable for further treatment as judged by the 
investigator. 

Safety assessments were performed at regular intervals per the protocol. 
These included routine vital signs, physical exams, safety labs (complete 
blood count with differential; complete metabolic panel, LDH), and adverse 
event evaluations on Cycle (C) 1 Day (D) 1, C1D8, C1D15, C2D1, C2D8, and 
subsequently at the beginning of each cycle from C3D1 onward. ECGs were 
obtained at baseline and at the beginning of each cycle from C1D1 onward. 
Radiologic evaluation with tumor measurements was obtained at baseline 
and every 9 weeks ± 1 week. 

For correlative analysis, formalin-fixed, paraffin-embedded tissue was ob-
tained from archival tumor specimens during the screening process for 
enrolled patients when available. IHC was performed on formalin-fixed, 
paraffin-embedded tissue sections in the UCSF Cancer Center Tissue Core 
using a rabbit polyclonal antibody against H3K36me3 (Cell Signaling 
Technology, #9763). All immunostains were scored by a board-certified 
anatomic pathologist (GK). Negative H3K36me3 expression was defined as 
no nuclear staining in the tumor cells. Positive H3K36me3 expression was 
quantitated as a percentage of tumor cell nuclei stained per total tumor cell 
nuclei and scored as weak (1+), moderate (2+), or strong (3+) intensity. 
Background stromal and inflammatory cells were used as internal controls 
(positive nuclear staining). External controls included tumors confirmed to 
harbor inactivating SETD2 mutations (H3K36me3-negative), tumors con-
firmed to lack SETD2 mutations (H3K36me3-positive), and nonneoplastic 
normal liver tissue. 
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TABLE 1 Baseline characteristics, SETD2 mutations, co-occurring mutations, sites of metastases, and prior therapies 

Characteristic Total 

Age, median (range), years 62 (45–74) 
Biological sex, N (%) 

Male 11 (61.1%) 
Female 7 (38.9%) 

Race, N (%) 
White 16 (88.9%) 
American Indian/Alaska Native 1 (5.6%) 
Unknown 1 (5.6%) 

Ethnic origin, N (%) 
Non-Hispanic 8 (44.4%) 
Unknown 10 (55.6%) 

Cohort A: Solid tumors other than ccRCC (N = 9) Cohort B: ccRCC (N = 9) Total (N = 18) 

Other solid tumor types, N (%) 
Poorly differentiated carcinoma 2 (22.2%) 
Salivary gland carcinoma 2 (22.2%) 
Rectal adenocarcinoma 1 (11.1%) 
Neuroendocrine carcinoma 1 (11.1%) 
Pancreatic adenocarcinoma 1 (11.1%) 
Lung adenocarcinoma 1 (11.1%) 
Papillary (nonclear cell) kidney cancer 1 (11.1%) 

SETD2 alteration type, N (%) 
Missense 1 (11.1%) 0 (0%) 1 (5.6%) 
Nonsense 3 (33.3%) 4 (44.4%) 7 (38.9%) 
Frameshift 5 (55.5%) 4 (44.4%) 9 (50.0%) 
Splice site 0 (0%) 1 (11.1%) 1 (5.6%) 

Co-occurring genomic alterations, N (%) 
TP53 2 (22.2%) 1 (11.1%) 3 (16.7%) 
CDKN2A/B loss 2 (22.2%) 1 (11.1%) 3 (16.7%) 
KRAS 2 (22.2%) 0 (0%) 2 (11.1%) 
ATM 1 (11.1%) 0 (0%) 1 (5.6%) 
FANCA 1 (11.1%) 0 (0%) 1 (5.6%) 
MYC amplification 0 (0%) 1 (11.1%) 1 (5.6%) 
RB1 0 (0%) 0 (0%) 0 (0%) 
BRCA 1/2a 0 (0%) 0 (0%) 0 (0%) 
CCNE1 amplification 0 (0%) 0 (0%) 0 (0%) 
Myt1 0 (0%) 0 (0%) 0 (0%) 

Loss of H3K36me3 biomarker by IHC 
Yes 3 (33.3%) 3 (33.3%) 6 (33.3%) 
No 2 (22.2%) 0 2 (11.1%) 
Unknown 4 (44.4%) 6 (66.7%) 10 (55.6%) 

Baseline sites of involvement, N (%) 
Lung/pleura (including effusion) 6 (66.7%) 8 (89.9%) 14 (77.8%) 
Lymph nodes (all sites) 5 (55.6%) 6 (66.7%) 11 (61.1%) 
Bones 1 (11.1%) 5 (55.6%) 6 (33.3%) 
Gastrointestinal 6 (66.7%) 3 (33.3%) 9 (50%) 
Hepatobiliary/adrenal 5 (55.6%) 4 (44.4%) 9 (50%) 
Kidney (including nephrectomy bed) 1 (11.1%) 3 (33.3%) 4 (22.2%) 

(Continued on the following page) 
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Outcomes 
The primary endpoint was the investigator-assessed objective response 
rate (ORR) by RECIST 1.1. Patients who received study treatment and at 
least one imaging assessment on study after C1D1 were considered 
evaluable for the primary endpoint. Secondary endpoints include 
progression-free survival (PFS), duration of response, and frequency and 
severity of adverse events. PFS was defined as the duration from the start 
of treatment to the date of progression by RECIST criteria. Safety ana-
lyses were obtained for all patients who received at least one dose of 
adavosertib, by patient summary as graded by the NCI Common Ter-
minology Criteria for Adverse Events Version 5.0. Exploratory analyses 
included evaluation of the loss of trimethylation H3K36me3 mark by 
IHC from archival tumor tissue along with specific types of SETD2 al-
teration and their association with clinical outcomes. 

Statistical analysis 
The study employed a Simon two-stage design for each cohort. Nine 
patients were accrued in the first stage of the study in each of the two 
cohorts. In either cohort, if one or more confirmed objective responses 
were observed, an additional 21 patients were planned to be accrued 
during stage 2 in that particular patient cohort. If more than four con-
firmed objective responses were observed in total, the null hypothesis 
was rejected. The target total sample size achieved 90% power to detect a 
difference in objective response of 20% [25% vs. 5% historical control 
from prior phase 1 studies (18, 19)] with a one-sided type I error rate of 
5%. The cutoff date for efficacy analysis was November 4, 2023 (one 
patient in Cohort B remained on treatment at that time). All 18 evaluable 
patients who received at least one dose of adavosertib were included in 
the safety population. 

Data availability 
The data generated in this study are not publicly available because of patient 
privacy requirements but are available upon reasonable request from the 
corresponding author. Other data generated in this study are available within 
the article and its supplementary data files. 

Results 
Patient characteristics 
Between May 2019 and October 2021, 18 patients were enrolled in the 
intention-to-treat population. Baseline characteristics are shown in 
Table 1. The median age at study entry was 60 years (range 45–74), Eastern 
Cooperative Oncology Group PS 0 in 8/18 patients (44.4%). In Cohort A 
(other solid tumors), 44.4% received prior immunotherapy, 44.4% received 
prior tyrosine kinase inhibitors, and 77.8% received “other” chemotherapy. 
In Cohort B (ccRCC), 88.9% of patients received prior immunotherapy, 
66.7% received prior tyrosine kinase inhibitors, and 11.1% received “other” 
chemotherapy. In both cohorts, the median number of prior systemic 
therapies was 2. 

Patient disposition is shown in Fig. 1. 

The median follow-up for the study population was 20.87 months. Seventeen 
patients discontinued treatment because of disease progression (n ¼ 10), 
adverse event (n ¼ 4), patient withdrawal (n ¼ 2), or death (n ¼ 1). The 
median duration of treatment was 1.28 months (range 0.04–21+ months; 
Fig. 2). 

Treatment efficacy 
No objective responses were observed in either Cohort A (Other Solid 
Tumor) or Cohort B (ccRCC) per RECIST 1.1, and thus, study accrual 
was halted after stage 1 in both cohorts. Minor tumor regressions of any 
magnitude were observed in 4/18 (22.2%) patients, including one patient 
with nonclear cell (papillary) RCC, and three patients with ccRCC 
(Fig. 3). 

In Cohort A (other solid tumors), the investigator-assessed median PFS was 
1.43 months (Fig. 4). The median duration of treatment was 1.43 months 
(range 0.03–2.63) as shown in Fig. 2. 

In Cohort B (ccRCC), the investigator-assessed median PFS was 3.77 months 
(Fig. 4). The median duration of treatment was 3.76 months (range 0.03– 
20.86) as shown in Fig. 2. SD > 4 months was observed in 3/9 (33.3%) 
patients with ccRCC, including one patient who remains on treatment 
after >20 months at the cutoff date. 

TABLE 1 Baseline characteristics, SETD2 mutations, co-occurring mutations, sites of metastases, and prior therapies (Cont’d) 

Cohort A: Solid tumors other than ccRCC (N = 9) Cohort B: ccRCC (N = 9) Total (N = 18) 

Other (thyroid, pericardium, pelvis, and muscle) 2 (22.2%) 5 (55.6%) 7 (38.9%) 
Prior therapies 

Surgery 8 (88.9%) 8 (88.9%) 16 (88.9%) 
Radiation therapy 5 (55.6%) 4 (44.4%) 9 (50.0%) 
Median lines of systemic therapy (range) 2 (1–7) 2 (1–7) 2 (1–7) 

Prior types of systemic therapy 
Immunotherapy (anti-PD1, PDL1, and CTLA4) 4 (44.4%) 8 (88.9%) 12 (66.7%) 
Tyrosine kinase inhibitor (TKI) 4 (44.4%) 6 (66.7%) 10 (55.6%) 
Other chemotherapy 7 (77.8%) 1 (11.1%) 8 (44.4%) 

aCo-occurring mutations in DNA damage repair genes other than ATM, BRCA1, or BRCA2 (i.e., PALB2, ATR, CDK12, CHEK1, CHEK2, RAD51B, RAD51C, 
and RAD51D) were not identified in the entire study population (0%). 
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The reasons for discontinuation of the study drug were because of pro-
gressive disease (59%), adverse event (23%), patient withdrawal (12%), or 
death unrelated to the study drug (6%). 

Treatment safety 
Across both cohorts, 3/18 patients (17%) discontinued the study drug because 
of an adverse event. Of these, one patient (6%) had grade 2 nausea and vomiting 
that was possibly related to the study drug. Two patients (11%) discontinued for 
adverse events determined to be unrelated to the study treatment (n ¼ 1 venous 
thromboembolism; n ¼ 1 grade 3 paresthesias). Table 2 outlines the most 
common treatment-emergent adverse events involving ≥25% of patients, which 
included nausea, anemia, diarrhea, and neutropenia. 

Outcomes by genotypic subtype and loss of H3K36me3 
methylation mark 
Of 18 patients accrued, only 8/18 (44.4%) had archival tissue submitted to 
evaluate the loss of H3K36me3 by IHC as an exploratory biomarker correlative 
analysis (five patients from Cohort A; three patients from Cohort B; Supple-
mentary Figs. S2 and S3). The small number of patients where such tissue was 
available further limits any signals or conclusions from this exploratory analysis. 

In cohort A, 3/5 (60%) evaluable patients demonstrated loss of H3K36me3 
by IHC, whereas 2/5 (40%) evaluable patients did not demonstrate this loss. 
In cohort B, 3/3 (100%) evaluable patients demonstrated loss of H3K36me3 
by IHC. Although the sample size was limited, there did not seem to be an 
association between the loss of trimethylation mark with either tumor re-
gression or duration of treatment on study. 

Frameshift, nonsense, missense, and splice site mutations in SETD2 were 
identified in nine (50%), seven (39%), one (6%), and one (6%) of the pa-
tients, respectively. Although the small sample size precluded statistical 
evaluation, there seemed to be a higher probability of clinical benefit with 
respect to the duration of treatment among those patients with frameshift 
mutations in SETD2. 

Discussion 
Prior preclinical studies demonstrated a significant synthetic lethal effect with 
single-agent WEE1 inhibition in SETD2-deficient cancer models including 

ccRCC (16). Although therapeutic development of adavosertib has been in 
combination with other therapies (DNA damage repair targets such as PARP 

inhibitors and cytotoxic chemotherapy), we sought to evaluate single-agent 

activity in SETD2-altered solid tumor malignancies with a particular emphasis 
on ccRCC, given the significant and durable tumor regressions observed in 
preclinical studies, with the potential to have less adverse events and improved 
toxicity profiles compared with its use in combination with other cancer- 
directed therapies. Despite the compelling scientific rationale and preclinical 
data, we did not observe strong evidence of synthetic lethal effect clinically, as 
there were no objective responses observed despite pathogenic mutations in the 
SETD2 gene. There was, intriguingly, a subset of patients who experienced 
clinical benefits with durable stable disease on treatment lasting for more than 4 
months, including one patient with ongoing stable disease for more than 
2 years. 

The limited clinical activity observed with single-agent adavosertib in the 
current study is consistent with the prior results of this agent and other single- 
agent WEE1 inhibitors in genomically unselected patient populations. A phase 
Ib study of adavosertib in 80 patients with ovarian cancer, triple-negative 
breast cancer, or small-cell lung cancer demonstrated ORRs between 0% and 
6.3% (23). Another phase Ib study of adavosertib monotherapy in 62 patients 
with various malignancies noted an ORR of 3.4% (2/58 evaluable patients) with 
only partial responses observed (24). These are lower response rates compared 
with another phase II study of adavosertib monotherapy in 34 evaluable pa-
tients with uterine serous carcinoma (USC) demonstrated an ORR of 29.4%, 
with one complete response and nine partial responses, although this is pos-
sibly because of the increased replicative stress of USC and subsequent in-
creased susceptibility to WEE1 inhibition (25). In another phase II study of 
adavosertib monotherapy in patients with RAS/TP53-mutant metastatic colo-
rectal cancer demonstrated improved PFS but only one patient with a partial 
response was noted. In a previously published abstract, azenosertib (formerly 
known as ZN-c3), another WEE1 inhibitor, was evaluated in a phase I study of 
39 patients with advanced or metastatic solid tumors refractory to standard 
therapy. Of 16 evaluable patients, five had stable disease and two had partial 
responses (ORR ¼ 12.5%), suggesting clinical activity (26). In another previ-
ously published abstract of ZN-c3 in patients with advanced/recurrent USC, the 
phase I study demonstrated an ORR of 12.5%, with partial responses observed 
in 3/12 evaluable patients (27). 

18 Patients
Enrolled 

Clear Cell RCC
Cohort B (N = 9) 

9 Received Study
Drug 

1 Ongoing Treatment 8 Off Treatment8 Off Treatment

0 Adverse Event
1 Death
7 Progressive Disease
0 Patient Withdrawal

4 Adverse Event
0 Death
3 Progressive Disease
2 Patient Withdrawal

Other Solid
Tumors

Cohort A (N = 9)

9 Received Study
Drug 

FIGURE 1 Patient disposition. 
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Overall, the safety and tolerability profile were similar to that reported in 
various phase I/II studies of adavosertib monotherapy. There were similar 
frequencies of fatigue, nausea, vomiting, diarrhea, and anemia when com-
pared with other phase II studies of adavosertib monotherapy in genomically 
unselected and TP53-mutant cancers (25, 28, 29). 

We chose to utilize an intermittent dosing schedule of adavosertib, based on 
the safety profile observed in prior studies, with the goal of limiting treat-
ment breaks that were required to lessen the degree of hematologic toxicity 

with continuous dosing (17). Takebe and colleagues previously showed that 
once-daily adavosertib maximum tolerated dose (MTD) at 300 mg QDAY 
exhibited a dose-proportional pharmacokinetic profile similar to the twice- 
daily MTD (225 mg BID), with plasma concentrations being higher on day 5 
compared with day 1 (17). With an approximately 11-hour half-life for this 
agent, the MTD for once-daily adavosertib yielded comparable plasma ex-
posures to the MTD for the twice-daily regimen (17). From a pharmaco-
dynamic standpoint, an intermittent dosing schedule may potentially limit 
antitumor activity because of partial recovery of WEE1 enzymatic activity 
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after the dosing interval, with a possible target rebound effect during the 
dosing break, which has also been observed in other kinase inhibitors as 
noted by Takebe and colleagues (17). Additional investigation is needed to 
determine any relationship between target recovery and antitumor activity. 

Interestingly, all four patients who had modest tumor regression had pathogenic 
frameshift mutations in SETD2, compared with nonsense, missense, or splice site 
mutations, along with a trend toward longer treatment duration with frameshift 
mutations. In the entire study population, one patient with rectal cancer and one 
patient with ccRCC had a co-mutated TP53 pathogenic alteration, although none 
of them had tumor regression. The functional impact of different classes of 
genomic alterations in the SETD2 gene warrants further investigation. 

This study allowed any patient with a pathogenic SETD2 alteration, without a 
variant allele frequency cutoff; thus, we were unable to verify the presence of 
biallelic loss of SETD2. Although only one patient in our study population had a 
missense mutation, and another one patient with a splice-site mutation, it is 
unclear the impact on the response that a biallelic loss of function of SETD2 
could have made. In patients with ccRCC demonstrating a sequenced alteration 
of SETD2 (i.e., frameshift), it can be presumed that the pathogenic SETD2 loss is 
biallelic due to the ubiquitous 3p loss in this tumor type. Monoallelic loss of 
SETD2 is not sufficient to disrupt H3K36 methylation, which may account for 
the preserved trimethylation mark in 2/8 evaluable archival tissue samples 
confirmed to harbor a SETD2 mutation. Loss of trimethylation mark of 
H3K36me3 was observed in the majority of evaluable tumors but did not seem to 
be associated with clinical outcomes. However, the sample size of evaluable 
tumors was small to fully appreciate any potential signal or derive any conclu-
sions. The lack of available tissue for the exploratory biomarker is a limitation of 

this study. In addition, this study did not obtain ontreatment biopsies for doc-
umentation of the loss of RRM2, which may have been required for synthetic 
lethal effects (compared with what was seen in the preclinical models). Further 
investigation is needed to determine if other genomic or proteomic biomarkers 
could identify a subset of patients who could derive benefit from WEE1 inhi-
bition given as monotherapy. 

With the small size of the study population, we are also not able to fully 
evaluate and explore the impact of concurrent pathogenic alterations with 
SETD2 that may impact the efficacy of adavosertib monotherapy. For ex-
ample, only 3/18 (16.7%%) of patients had each of the following concurrent 
pathogenic mutations: TP53 mutations and CDKN2A/B loss. Two patients 
(11.1%) did have a KRAS mutation. Moreover, 1/18 (5.6%) of patients had 
each of the following concurrent pathogenic mutations: ATM, MYC am-
plification. There were no CCNE1 amplification or MYT1 mutations. Prior 
studies have reported possible increased response to adavosertib in TP53- 
mutant or CCNE1-amplified solid tumor malignancies, and possible resis-
tance to adavosertib via MYT1 overexpression (17, 29–31). Adavosertib in 
combination with carboplatin has demonstrated clinical benefit with an ORR 
of 41% in patients with TP53-mutant, platinum-resistant ovarian cancer 
(29). Thus, additional identifying potential biomarkers to help better select 
patients who may respond to WEE1 inhibition, including the possibility of 
using PTEN as a biomarker for efficient WEE1 cancer therapy (32) 

Lastly, the sample size of this study was small but lacked racial/ethnic di-
versity, further limiting the generalizability of these data. This warrants 
subsequent systems improvement to enhance underrepresented minority 
patient recruitment into clinical trials. 
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TABLE 2 Treatment-emergent adverse events affecting ≥25% of patients 

Adverse event 
Grade 1 - Number 
of patients (%) 

Grade 2 - Number 
of patients (%) 

Grade 3 - Number 
of patients (%) 

Grade 4 - Number 
of patients (%) 

Grade 5 - Number 
of patients (%) 

Total - 
Number of 
patients (%) 

Nausea 3 (18%) 7 (41%) — — — 10 (58.8%) 
Anemia 3 (18%) 3 (18%) 1 (6%) — — 7 (41.2%) 
Diarrhea 4 (24%) 2 (12%) 1 (6%) — — 7 (41.2%) 
Neutropenia — 1 (6%) 3 (18%) 3 (18%) — 7 (41.2%) 
Fatigue 2 (12%) 4 (24%) — — — 6 (35.3%) 
Vomiting 2 (12%) 4 (24%) — — — 6 (35.3%) 
Increased creatinine 3 (18%) 1 (6%) — 1 (6%) — 5 (29.4%) 
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Overall, therapeutic targets for patients with SETD2-mutated cancers are still an 
unmet clinical need warranting further investigation. There are several ongoing 
clinical trials of WEE1 inhibitors in combination with other agents including 
cytotoxic chemotherapy and/or radiation (NCT03028766, NCT03012477, 
NCT06015659, NCT01164995, NCT02194829, NCT02101775, NCT02906059, 
NCT02037230, NCT04460937, NCT05815160, NCT03345784, NCT05765812, 
and NCT02341456). There could be some potential for investigating WEE1 
inhibitors in combination with other DNA damage repair targeting agents (e.g., 
ATR inhibitors and CHK inhibitors). In addition, further investigation of pre-
dictive biomarkers is needed for the selection of patients with SETD2 alterations 
who may derive a response to WEE1 inhibitors alone or in combination with 
other cancer-directed therapies. 
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