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Concomitant drugs associated 
with increased mortality for MDMA 
users reported in a drug safety 
surveillance database
Isaac V. Cohen1, Tigran Makunts2,3, Ruben Abagyan2* & Kelan Thomas4 

3,4-Methylenedioxymethamphetamine (MDMA) is currently being evaluated by the Food and 
Drug Administration (FDA) for the treatment of post-traumatic stress disorder (PTSD). If MDMA 
is FDA-approved it will be important to understand what medications may pose a risk of drug–
drug interactions. The goal of this study was to evaluate the risks due to MDMA ingestion alone 
or in combination with other common medications and drugs of abuse using the FDA drug safety 
surveillance data. To date, nearly one thousand reports of MDMA use have been reported to the FDA. 
The majority of these reports include covariates such as co-ingested substances and demographic 
parameters. Univariate and multivariate logistic regression was employed to uncover the contributing 
factors to the reported risk of death among MDMA users. Several drug classes (MDMA metabolites or 
analogs, anesthetics, muscle relaxants, amphetamines and stimulants, benzodiazepines, ethanol, 
opioids), four antidepressants (bupropion, sertraline, venlafaxine and citalopram) and olanzapine 
demonstrated increased odds ratios for the reported risk of death. Future drug–drug interaction 
clinical trials should evaluate if any of the other drug–drug interactions described in our results 
actually pose a risk of morbidity or mortality in controlled medical settings.

3,4-Methylenedioxymethamphetamine (MDMA) is currently being evaluated by the Food and Drug Adminis-
tration (FDA) for the treatment of posttraumatic stress disorder (PTSD). During the past two decades, “ecstasy” 
was illegally distributed and is purported to contain MDMA, but because the market is unregulated this “ecstasy” 
may actually contain adulterants or no MDMA at  all1. In 2018, it was estimated that around 20.5 million people 
in the world aged 15–64 years old had used “ecstasy” during the previous  year2. MDMA induces the synaptic 
release of serotonin, norepinephrine and dopamine, which at therapeutic doses of 75–125 mg in clinical trials 
may cause sympathomimetic adverse drug reactions such as heart palpitations, restless legs, bruxism, sweating, 
dry mouth and lack of  appetite3.

Researchers in the UK and Australia have attempted to quantify ecstasy-related death rates during the past 
few decades from databases of coroner reports. In a UK study of ecstasy-related mortality for people aged 
16–59 years old, there were 605 deaths between 1997–20074. Using crime survey data they estimated that the aver-
age UK ecstasy death rate between 2001–2007 was 1.75 per 100,000 users when used as the only drug, but with 
coadministration of other drugs the rate was substantially higher at 10.89 per 100,000  users4. In an Australian 
study of ecstasy-related deaths for people aged 15–64 year old, there were 392 deaths between 2000–2018; dur-
ing 2001–2007 the ecstasy death rate ranged between 0.05 to 0.25 per 100,000  residents5. There were toxicology 
results available for 342 deaths, and researchers also reported that concomitant administration of ecstasy with 
other drugs like psychostimulants (54%), alcohol (43%), opioids (30%), cannabis (25%), and benzodiazepines 
(23%) accounted for a greater proportion of deaths than ecstasy-only deaths (15%)5.

The initial goal of this study was to evaluate MDMA-related deaths from US drug safety surveillance data. Due 
to the paucity of reported cases of sole ingestion of MDMA, the goals of the study were revised and the analysis 
goal was updated with the new aim to determine the reported risks of death when additional drug classes are 

OPEN

1Clinical PharMacology and Therapeutics Postdoctoral Training Program, University of California San Francisco, 
San Francisco, CA, USA. 2Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San 
Diego, La Jolla, CA, USA. 3Oak Ridge Institute of Science and Education, Clinical Pharmacology and Machine 
Learning Fellowship At the Center for Drug Evaluation and Research, United States Food and Drug Administration, 
Silver Spring, MD, USA. 4College of Pharmacy, Touro University California, Vallejo, CA, USA. *email: rabagyan@
health.ucsd.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-85389-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5997  | https://doi.org/10.1038/s41598-021-85389-x

www.nature.com/scientificreports/

coingested with MDMA. Given that current PTSD treatment guidelines recommend antidepressants, we also 
wanted to determine if certain antidepressants are associated with an increased risk of death.

Results
Patient demographics and medication records. 946 unique records of MDMA use were identified 
and isolated from the 13,773,614 records in the FAERS FDA Adverse Event Reporting System (FAERS) database. 
Among these records, the mean age observed was 28 years old (sd 9.7) and the mean weight was 76 kg (sd 43.3). 
The majority of patients with gender listed were male (70.1%).

The majority of records of MDMA use were submitted to the FDA after 2015 (Fig. 1a). However, there was 
one large influx of records mostly coming from outside the United States in 2011. The cause of this large spike in 
reporting remains unknown. Additionally, the percentage of records containing at least one drug from each of 
the most common drug classes in the database is reported in Fig. 1b. The top three most common classes of con-
comitant drugs used in the records were opioids (58%), benzodiazepines (42%), and amphetamines/stimulants 
(35%) (Fig. 1b). It was found that 99.8% (944 out of 946) of the records in the dataset included at least one drug 
ingested in addition to MDMA. It is important to note that in the two records that listed MDMA as the only drug 
ingested, both records did not list death as an outcome. Additionally it should be highlighted that MDMA used by 
itself was very uncommon in FAERS reports, speaking to the rarity of severe adverse reactions when taken alone.

Association of concurrent medications with all-cause mortality: univariate analysis. It was 
found that the records that listed “MDMA Metabolites or Analogs” had the highest proportion of deaths in the 
database of all the drug classes analyzed. It was observed that 37 of the 39 (95%) records of MDMA Metabolite 
or Analog coingestion resulted in death. The frequencies of death among each drug class is illustrated in Fig. 2a. 
Figure 2b summaries the result of the univariate logistic regression modeling for the number of members of 
each drug class as a predictor of mortality. It was found that the number of “MDMA Metabolites or Analogs” 
(Odds Ratio 1.20, 95% CI [1.08–1.34]), anesthetics (3.14 [1.94–5.84]), muscle relaxants (2.62 [1.24–6.21], and 
amphetamines (2.23 [1.82–2.76] were the greatest predictors of mortality (Table  S1 and Fig.  2b). Addition-
ally, it was found that coingestion of lithium, nicotine, antimicrobials, HIV medications, and psychedelics were 
observed to have a decreased reported risk of mortality (Supplementary Table S1 and Fig. 2b). It is important to 
note that 100% of patients receiving lithium survived; due to no instances of death the odds ratio was not able to 
be calculated. Surprisingly, cocaine was observed to decrease mortality in this dataset. A full list of all the drugs 
included in each class is made available in Supplementary Table S2.

Association of concurrent medications with all-cause mortality: multivariate analysis. In 
order to investigate how concurrent medications affect the rate of mortality of MDMA users, a multivariate 
model containing the drug classes previously discussed was built. Stepwise logistic regression was employed 
to eliminate any non-contributory predictors from the final model. The stepwise regression process led to an 
improvement of the AIC from 956.87 to 952.88 after removal of anticholinergics and non-opioid pain medica-
tions as predictors. The final model presented in Fig. 3a uses the number of concomitant drugs in each class as 
a predictor of the death outcome (aOR values and Confidence Intervals Reported in Supplementary Table S3).

Figure 1.  Dates of MDMA reports to FDA FAERS and frequency of reports of concomitant medications. (a) 
Histogram illustrating number of reports sent to FDA FAERS that included MDMA as a medication. Histogram 
bars are binned in 6-month periods. Note that reports prior to 2004 are all counted as occurred in Q1 2004. (b) 
Frequency of occurrence of one or more concomitant drugs from each individual drug class. Number of reports 
shown on the right side of each bar.
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To perform a sensitivity analysis, a duplicate model was retrained using the same database but with each 
drug class coded as a binary (coded as either ingested or not, instead of being coded as the number of drugs in 
each class). The results of this model as presented in Fig. 3b (aOR values and Confidence Intervals Reported in 
Supplementary Table S4). It is noteworthy that even after controlling for ingestion of other drug classes, most of 
the effects observed in the univariate model (Fig. 2b) were preserved.

Namely, opioids, antidepressants, benzodiazepines, amphetamines and stimulants, anesthetics, ethanol, 
MDMA Metabolites or Analogs, and muscle relaxants were all observed to be significant predictors of death. Of 
note, coingestion of some recreational substances including cannabinoids, nicotine, and psychedelics were all 
observed to be predictive of a decreased reported risk of mortality. Additionally, it should be highlighted that 
although antidepressant use was not a significant predictor of death in the univariate analysis, antidepressant use 
significantly increased the reported risk of the outcome of death in both multivariate analyses.

Variable associations of specific antidepressants and antipsychotics with all-cause mortality: 
univariate analysis. Due to the antidepressant class effect on mortality and the potential likelihood of 
co-administration for PTSD treatment, it was decided to further investigate individual antidepressants as con-
tributors to mortality. Only antidepressants with more than 10 reports in the dataset were included. Similar to 
Fig. 2b, each antidepressant was analyzed as a univariate contributor to mortality. Surprisingly, individual anti-
depressants were observed to both increase or decrease the reported risk of mortality (Fig. 4a, Adjusted Odds 
Ratios and Confidence Intervals Reported in Supplementary Table S5). Bupropion was observed to be associated 
with the highest reported risk of death (Odds Ratio [95% CI] 2.82 [1.43–5.96]) among the common antidepres-
sants in the database. Venlafaxine, citalopram, and sertraline were also observed to be associated with increased 
reported risk of death. Conversely, paroxetine, mirtazapine, fluoxetine, and lofepramine were associated with a 
decreased reported risk of death.

Although antipsychotics (and metoclopramide), as a class of dopamine antagonists, were associated with 
a decreased reported risk of death (Figs. 2 and 3), the high variability of additional receptor activity beyond 
dopamine blockade in the class and occasional use for PTSD treatment lead the investigators to look deeper 
into the data on a per drug basis. Similar to antidepressants, it was observed that individual antipsychotics were 
observed to both increase or decrease reported risk of mortality (Fig. 4b, Adjusted Odds Ratios and Confidence 
Intervals Reported in Supplementary Table S6). Notably, in 18 out of 18 records of the dopamine antagonist 
metoclopramide, coingestion resulted in death (due to no cases of survival the odds ratio was not calculable). 
Conversely, 11 out of 11 records of risperidone coingestion did not result in mortality (due to no cases of death 
the odds ratio was not calculable).

Figure 2.  Univariate analysis of impact of concomitant drug use on odds of death in MDMA records. (a) 
Percent of records that included a given drug class that listed death as outcome shown in red. Percent of records 
that included a given drug class that did not list death as an outcome or adverse event shown in blue. Ordered 
from highest odds of death (top) to lowest odds of death (bottom). (b) Univariate unadjusted odds ratios 
for reported risk of death per additional drug added on from each class. X-axis presented here in log scale. 
Significant findings shown here in orange and non-significant findings are denoted in grey. 95% Confidence 
intervals shown as whiskers (note that the Odds Ratio for Lithium is incalculable due to no occurrences of death 
in the study). Odds Ratios greater than one indicate an increased reported risk of death.
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Influence of demographics on all-cause mortality: multivariate analysis. Demographic factors 
were also investigated as possible predictors of mortality among MDMA users. We caution that only a small 
fraction of the records (12.6%) included all three analyzed demographic variables: age, weight, and sex. By way 
of multivariate logistic regression it was found that of the three variables only age was a significant predictor 
of death (aOR 1.1 [95% CI 1.06–1.18], which means a 6–18% increased reported risk of death per year). In 
the analysis there was a non-significant trend (p = 0.06) towards low body weight contributing to an increased 
reported risk of death. It is important to note that the majority of our dataset did not include a full demographic 
description.

Discussion
Eight drug classes (MDMA metabolites or analogs, anesthetics, muscle relaxants, amphetamines and stimulants, 
benzodiazepines, ethanol, opioids, antidepressants) demonstrated increased, but variable, reported risks of death 
when combined with MDMA. These pharmacodynamic interactions can be related to two broad pharmacologic 
mechanisms: (1) further enhancement of inhibitory neurotransmission or (2) further enhancement of monoam-
ine neurotransmitter synaptic concentrations. Pharmacokinetic drug interactions are also a distinctly possible 
contributor, which would depend on the metabolic profile of each individual drug combination. Medications 
from these drug classes are already known to be dangerous in high doses, so without prospective drug–drug 
interaction clinical studies it is difficult to determine exactly how each co-administration with MDMA may have 
contributed to death. For example in one drug–drug interaction study of healthy volunteers (n = 16), methylphe-
nidate co-administered with MDMA demonstrated a 14 bpm greater increase in heart rate than MDMA alone, 
so it is reasonable to hypothesize that tachycardia may have contributed to an increased MDMA mortality with 
 stimulants6.

Four antidepressants (bupropion, citalopram, sertraline, and venlafaxine) demonstrated greater odds of death 
when combined with MDMA and should be evaluated for potential drug–drug interactions with MDMA, espe-
cially since, with the exception of bupropion, they all are routinely prescribed for PTSD treatment. One potential 
explanation of an elevated risk could be related to pharmacokinetics since MDMA is primarily metabolized by the 
CYP2D6 enzyme, while these four antidepressants are CYP2D6 inhibitors that may increase MDMA exposure. In 
a study of healthy volunteers (n = 16), bupropion co-administered with MDMA increased MDMA maximum con-
centration (Cmax) by 15% and increased area under the curve (AUC 0–24 h) by 30%7. Interestingly, despite this 

Figure 3.  Multivariate analysis of concomitant drug use impact on odds of death in MDMA records. 
Multivariate adjusted odds ratios (aOR) for the reported risk of death shown for records with concomitant use of 
each drug class. X-axis presented here in log scale. Significant findings shown here in orange and non-significant 
findings are denoted in grey. 95% Confidence intervals shown as whiskers (note that the aOR for Lithium is 
incalculable due to no occurrences of death in the study). aORs greater than 1 indicate an increased reported 
risk of death. aORs less than 1 indicate a decreased reported risk of death. (a) The number of concomitant drugs 
in each class as a predictor of death. Note that only drug classes that were selected by stepwise regression are 
shown here. (b) Each drug class as a binary predictor of death. Note that only drug classes that were selected 
previously for panel (a) are shown here in panel (b).
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increased MDMA exposure, bupropion co-administration was actually found to attenuate the MDMA-induced 
increase in heart rate (HR), which at its peak effect was roughly 13 bpm lower than the average change in HR from 
the MDMA-only crossover  arm7. Bupropion co-administration demonstrated no significant difference in blood 
pressure or temperature changes compared to the MDMA-only  arm7. Citalopram co-administration has also 
been shown to attenuate the MDMA-induced increase in heart rate, along with blood pressure changes, which 
were on average lower by 9 bpm for HR, 9 mmHg for SBP, and 5 mmHg for DBP than the MDMA only crossover 
 arm8. These antidepressant co-administration studies did not evaluate the impact of CYP2D6 metabolizer status, 
but another study of CYP2D6 pharmacogenomics demonstrated that poor metabolizers had 19% higher mean 
Cmax and 25% higher mean AUC 0–6 h than extensive metabolizers with only *1 or *2 alleles, which corresponded 
to greater elevations in peak SBP by roughly 10  mmHg9. The decreased reported risk of death associated with the 
two strongest CYP2D6 inhibitor antidepressants, fluoxetine and paroxetine, currently recommended by 2017 
VA/DoD PTSD guidelines to treat PTSD casts doubt on the hypothesis that MDMA co-administration with a 
CYP2D6 inhibitor is responsible for the increased risk of death with these four antidepressants. When fluoxetine 
and paroxetine are co-administered with MDMA, they also decrease subjective psychological effects and cardiac 
vital signs compared to MDMA alone, despite increased MDMA Cmax and AUC  exposure10–12. Therefore the past 
clinical evidence consistently demonstrates that MDMA co-administration with antidepressants will attenuate 
MDMA effects, so increased MDMA exposure via CYP2D6 inhibition does not offer a compelling explanation 

Figure 4.  Univariate analysis of impact of common antidepressants and antipsychotics on odds of death 
in MDMA records. Univariate unadjusted odds ratios for the reported risk of death shown for records with 
concomitant use of each drug. X-axis presented here in log scale. Significant findings shown here in orange and 
non-significant findings are denoted in grey. 95% Confidence intervals shown as whiskers. Odds Ratios greater 
than 1 indicate an increased reported risk of death. (a) Odds of death shown for antidepressants with greater 
than 10 records in the dataset. (b) Odds of death shown for antipsychotics with greater than 10 records in the 
dataset (note that the odds ratio for metoclopramide is incalculable due to no occurrences of survival in the 
study, conversely the odds ratio for risperidone is incalculable due to no occurrences of death during the study).
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for increased risk of death in our sample. Another class of antidepressants that is known to have its own unique 
cardiotoxicity risk is the tricyclic antidepressants, but there were insufficient cases for analysis. However, the most 
dangerous antidepressant combination, which would be contraindicated with MDMA-assisted therapy due to 
increased serotonin toxicity risk, would be concomitant monoamine oxidase inhibitor antidepressants (MAOI’s).

Another important consideration for these antidepressant drug–drug interactions is that MDMA is also an 
inhibitor of CYP2D6 (resulting in autoinhibition), while all four antidepressants are minor CYP2D6 substrates, 
so these pharmacokinetic interactions could also potentially increase antidepressant exposure and subsequent 
changes in pharmacodynamic effects. In the previously mentioned study of healthy volunteers (n = 16) where 
bupropion was co-administered with MDMA, CYP2D6 inhibition increased bupropion Cmax by 18% and 
AUC 0–24 h by 27%. The consequences of increased bupropion exposure are well documented to have a dose-
related risk of  seizures7. Citalopram and sertraline both have warnings for QT prolongation and arrhythmia risk 
correlated with serum concentration, and venlafaxine has dose-related risk of hypertension. Therefore, these 
individual antidepressant drug–drug interactions may also be evaluated in future clinical trials. Until there is 
evidence from MDMA-assisted therapy drug–drug interaction clinical trials, we can hypothesize that rare and 
serious antidepressant adverse drug reactions such as seizures with bupropion, arrhythmias with citalopram and 
sertraline, or hypertension with venlafaxine may hypothetically contribute to an increased mortality risk when 
co-administered with MDMA in uncontrolled settings.

While some clinicians may prescribe antipsychotics to treat severe refractory cases of PTSD, the 2017 VA/
DoD (Veterans Affairs/Department of Defense) PTSD guidelines suggest against this practice based on weak 
evidence of efficacy and the known adverse effect profile of this  class13. Therefore, it may be prudent to avoid 
olanzapine co-administration with MDMA since it was associated with an increased risk of mortality with 
MDMA. Another dopamine antagonist, metoclopramide, had MDMA-related death as an outcome in 11 out of 
11 reports with no occurrences of survival. A potential explanation for this risk is that metoclopramide has an 
FDA warning for its proarrhythmic effects. Metoclopramide is also a minor CYP2D6 substrate, so the addition 
of a CYP2D6 inhibitor like MDMA with its own cardiac effects could hypothetically increase the risk of sudden 
cardiac death in combination.

Overall, it has been demonstrated that MDMA may interact with common recreational drugs (including 
as MDMA metabolites or analogs, muscle relaxants, amphetamines and stimulants, benzodiazepines, ethanol, 
opioids) and commonly used medications for PTSD pharmacotherapy. Since patients with PTSD may be treated 
with MDMA-assisted therapy in the future it is important to characterize differences in the risk of death based 
on co-ingested substances. Additionally, patients undergoing MDMA-assisted therapy who are also prescribed 
concomitant psychotropics considered higher risk of death from our results should be closely monitored.

Conclusion
Eight drug classes (opioids, antidepressants, benzodiazepines, amphetamines and stimulants, anesthetics, ethanol, 
MDMA metabolites or analogs, and muscle relaxants), four antidepressants (bupropion, citalopram, sertraline, 
and venlafaxine), and two dopamine antagonists (olanzapine and metoclopramide) demonstrated an increased 
reported risk of death based on FDA drug safety surveillance data. However, the limited evidence available from 
small drug–drug interaction clinical trials does not corroborate these results since bupropion and citalopram 
appear to have minimal safety risk and actually attenuate cardiac vital signs when coadministered with MDMA 
in controlled settings. Future drug–drug interaction clinical trials should evaluate if any of the other drug–drug 
interactions described in our results actually pose a risk of morbidity or mortality in controlled medical settings.

Study limitations. The data presented here are not gathered from controlled trials. We caution readers to 
keep in mind the observational nature of this study and to be aware of the possibility of biases in reporting rates. 
Due to the voluntary nature of the FAERS/AERS reports, actual population incidences of the adverse events can-
not be derived. MedWatch reporting may also be biased by newsworthiness and legal variables. The safety sur-
veillance data misses comprehensive medical records and medication history, limiting the scope of the analysis. 
As with any association study, causality may not be derived from association, since the cases were not uniformly 
evaluated for causality by clinical specialists. In addition to missing dosing information for MDMA, the purity 
and dose of recreational MDMA is also not listed in the FAERS database. Recreational MDMA, or “ecstasy”, 
may contain no MDMA at all or may contain unknown amounts of adulterants, including but not limited to 
MDMA metabolites, MDMA analogues, psychedelics, amphetamines, dissociative anesthetics. The effects of 
these adulterants were not able to be directly accounted for in the study. Additionally, there are only two cases of 
MDMA as the only substance ingested in the database, so a baseline risk of death due to MDMA was not able to 
be established. Further, note that the aORs presented here represent only reports submitted to the database and 
are not directly generalizable to a specific clinical population.

Nonetheless, the postmarketing surveillance data analysis of over 900 reports provides substantial evidence 
and can be used to identify safety signals that have not been investigated in early phase studies or that might 
have gone unnoticed in smaller scale studies. Additionally, our study examines drug combinations not likely 
to be seen in prospective clinical studies of MDMA due to inclusion of recreational substances in our dataset.

Generalizability of results. These reports are not from controlled trials, the MDMA doses were unknown, 
and there was no analytical confirmation of MDMA in systemic circulation, so these results may not be fully 
generalizable to MDMA-related-new drug applications entities for FDA approval.
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Methods
FDA adverse event reporting system. The study examined over thirteen million adverse event (AE) 
reports available from the United States Food and Drug Administration Adverse Event Reporting System 
(FAERS) and its predecessor, the Adverse Event Reporting System (AERS). At the time of the study the FAERS/
AERS set contained reports from years 2000–2020, all available online: https ://www.fda.gov/drugs /quest ions-
and-answe rs-fdas-adver se-event -repor ting-syste m-faers /fda-adver se-event -repor ting-syste m-faers -lates t-quart 
erly-data-files .

Data preparation. FAERS/AERS reports are collected through voluntary reporting (and mandatory 
reported for specific reporting entities such as pharmaceutical manufactures) to the FDA through the Med-
Watch  system14 and stored in quarterly format data subsets with their respective parameters (age, sex, drug, 
AE etc.), and common case identifiers. FAERS data format changes periodically, requiring each quarterly set to 
be individually downloaded and  standardized15–19. The final full data set from the FDA contained 13,773,614 
reports. Since the FAERS/AERS data set has reports from all over the world with their respective brand or 
generic names, twelve unique terms were recognized and translated into a single generic name for MDMA.

Cohort selection and data cleaning. 946 reports of MDMA ingestion were identified and used to form 
the study cohort for the analysis. A histogram of the dates of these 946 reports is shown in Fig. 1a. Addition-
ally, a summary of the demographics of the study cohort is presented in the Results section. RStudio (Version 
1.2.5033) and R (Version 3.6.3)20 were employed for data cleaning and logistic regression modeling. FAERS/
AERS data sets include a small fraction of duplicate reports. The set was scanned for these entries with the R 
package “ dplyr ” “ distinct ”  function and were removed as appropriate. During the data cleaning stage, age 
values to be used for the demographic analyses were limited to a range of 0 to 125 years. For the purpose of our 
analysis for sex, only values of “ f ” or “ m ” from FEARS/AERS were analyzed. The R package “ dplyr ” function 
“ mutate ” and “ str_detect ” were employed for counting the number concurrent drugs of each grouping.

Measured outcomes. The primary outcome of interest for modeling was all-cause mortality, due to the 
early observation that death was the most common reported adverse event in the database. The R package “ glm ” 
was employed for logistic regression modeling via the “ binomial ” family function. Death was the outcome 
of interest in logistic regression modeling and was coded as a binary (“1 ” if occurred in the report or “ 0 ” if 
not). Adjusted Odds Ratio (aOR) values and 95% confidence intervals (95%CI) are reported in Supplementary 
Tables S3 and S4. The aOR is defined as an odds ratio that controls for multiple predictor variables in a model 
and allows for quantification of individual contributions of different variables to a single  outcome21, in this case, 
the outcome of death. The aOR is calculated from the regression coefficients (C) estimated by multivariate logistic 
regression by the following equation: aOR = e

C , and is intended to account for biases and associations between 
variables from the sample data.

Univariate modeling of drug classes. The following drug classes were evaluated for their association 
with the death outcome: "Muscle Relaxants", "Lithium", "HIV" (i.e. medications for HIV), "Nicotine", "Antimi-
crobials" (i.e. any antibiotic, antiviral, antifungal, or antiparasitic besides HIV related medications) "MDMA 
Metabolites and Analogs", "Anesthetics", "Anticholinergic", "Ethanol", "AEDs" (i.e. antiepileptic drugs), "Psych-
edelics", "Sedative Hypnotics", "Dissociative Anesthetics", "Antipsychotics", "Non-Opioids for Pain", table "Anti-
depressants", "Cocaine", "Cannabinoids", "Amphetamines and Stimulants", "Benzodiazepines", and "Opioids". 
Each drug class was annotated in the final database as an integer equal to the number of unique members of 
the class the record listed as coingested. For each drug class a univariate model was tested. The results of the 
univariate modeling are reported in Fig. 2b and Supplementary Table S1. A full list of the substance names that 
composed each group of drugs is available in Supplementary Table S2.

Multivariate model refinement. All of the drug classes tested in the univariate model (described above) 
were carried forward for multivariate logistic regression modeling. Bidirectional elimination  selection22 was 
employed for selection of the final predictive model of death. Each drug class was coded as an integer equal to 
the number of unique members of the class the record listed as coingested. The stepwise regression process led to 
an improvement of the Akaike information criterion (AIC) from 956.87 to 952.88 after removal of “anticholiner-
gics” and “non-opioid pain medications” as predictors. The final model results are made available in Fig. 3a and 
Supplementary Table S3. Additionally, as a sensitivity analysis a second model was developed that coded each 
drug class as a binary predictor (i.e. record either contains a member of the drug class or not). The final model 
results are made available in Fig. 3b and Supplementary Table S4.

Univariate modeling of antidepressants and antipsychotics. Antidepressants with more than 10 
records in the dataset were chosen for further analysis. Using the similar methods as the previous univariate 
model, each drug was coded as a binary predictor of death (Fig. 4a, Supplementary Table S5). The same analysis 
was applied to antipsychotics (including dopamine antagonist metoclopramide) with greater than 10 records 
(Fig. 4b, Supplementary Table S6).

https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-latest-quarterly-data-files
https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-latest-quarterly-data-files
https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-latest-quarterly-data-files
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