
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
A Cognitive-Pharmacokinetic Computational Model of the Effect of Toluene onPerformance

Permalink
https://escholarship.org/uc/item/1mh7619k

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 39(0)

Authors
Fisher, Christopher R.
Myers, Christopher
Hassan, Reem
et al.

Publication Date
2017
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1mh7619k
https://escholarship.org/uc/item/1mh7619k#author
https://escholarship.org
http://www.cdlib.org/


A Cognitive-Pharmacokinetic Computational Model of the Effect of Toluene on
Performance

Christopher R. Fisher (christopher.fisher.27.ctr@us.af.mil)

Christopher Myers (christopher.myers.29@us.af.mil)

Reem Hassan (remist3@gmail.com )

Christopher Stevens (christopher.stevens.28@us.af.mil)

C. Eric Hack (charles.hack.ctr@us.af.mil)

Jeffery Gearhart (jeffery.gearhart.ctr@us.af.mil)

Glenn Gunzelmann (glenn.gunzelmann@us.af.mil)
711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, USA

Abstract

We developed a cognitive-pharmacokinetic computational
(CPC) model to understand how pharmacoactive substances,
such as caffeine and toluene, modulate cognition. In this in-
tegrated model, dynamic physiological mechanisms are sim-
ulated to predict concentrations of the solvent toluene in the
brain, which modulates specific cognitive systems in a dose-
response fashion over multiple hours. We used our CPC model
to reanalyze the results from prior research that documented an
increase in reaction time following exposure to toluene in sev-
eral laboratory tasks with no change in accuracy. Our analysis
provides tentative evidence that toluene affects motor execu-
tion, rather than attention or declarative memory.

Keywords: ACT-R; Toluene; Pharmacokinetic; Computa-
tional Models

Introduction
In cognitive science, there has been a growing trend toward
incorporating neurological, physiological, and bodily factors
into theories of cognition to improve our understanding of
cognition. van Rijn et al. (2016) argued that theories of cog-
nition should span multiple levels of abstraction, such as the
computational, algorithmic, and implementational levels pro-
posed by Marr (1982). Integrative models have the advan-
tage of explaining phenomena that are difficult to explain with
models cast at a single level, constraining and informing cog-
nitive models, demonstrating physiological/neural plausibil-
ity of cognitive models, and enabling prediction at multiple
time scales (e.g., milliseconds and hours).

Integrative models take several forms. For instance, em-
bodied cognition encompasses a diverse set of views with a
common emphasis on the central role for perceptual-motor
systems, bodily states, and the environment in cognition (Wil-
son, 2002). Many views of embodied cognition posit a recip-
rocal relationship between cognition and bodily states, or a
tight coupling between perception and action, whereas some
even consider the environment as part of the cognitive sys-
tem (Wilson, 2002). Another integrative approach incorpo-
rates physiological moderators of cognition, such as circadian

rhythm, to explain changes in cognition due to sleep depriva-
tion (Gunzelmann et al., 2009).

The benefits of integrated models have been demonstrated
in several recent studies. For example, Turner et al. (2016)
demonstrated that incorporating neural models into a sequen-
tial sampling model of inter-temporal decision making im-
proved fit and cross-validation compared to the component
models. Integrated models have also been used to understand
how cognitive moderators, such as stress and fatigue, alter
task performance. For example, Gunzelmann et al. (2009,
2012) developed integrated models to understand the detri-
mental effects of sleep deprivation on cognition. In the in-
tegrated models, the physiological dynamics of circadian os-
cillation and sleep homeostasis modulated specific cognitive
mechanisms. One important insight gained from these inte-
grated models was that sleep deprivation affects procedural
memory in simple reaction time (RT) tasks (Gunzelmann et
al., 2009) and declarative memory in arithmetic tasks (Gun-
zelmann et al., 2012). Dancy et al. (2015) used a similar ap-
proach to understand how the physiology of a startle response
affects cognition. Their integrated model revealed that the
startle response increases epinephrine and the behavioral con-
sequences could be explained in terms of fluctuations in the
level of noise in declarative memory.

Building upon these integrative approaches, we present a
general model that we call a cognitive-pharmacokinetic com-
putational (CPC) model to understand how pharmacoactive
substances (PSs) modulate cognition. PSs include toxins
(e.g., toluene), pharmaceuticals, and other chemicals (e.g.,
caffeine) that affect cognition. Although there is a robust lit-
erature showing that PSs impact behavior, there is little com-
putational work investigating which cognitive mechanisms
are affected by PSs. Cognitive models lack a theory detailing
how PSs are metabolized across time, whereas physiological
models lack a theory that can link physiological changes to
behavioral and cognitive consequences.

By integrating these approaches, we can disentangle the
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contributions of multiple cognitive systems to overall task
performance and identify which cognitive system is affected
by PSs. To test our CPC model, we focus on a chemical called
toluene, a colorless and odorless solvent commonly found in
products, such as paint and adhesives, and is present in many
work environments. Several studies have shown that acute
and chronic toluene exposure leads to performance deficits in
terms of RT or accuracy on a wide array of cognitive tasks
(Rahill et al., 1996; Tang et al., 2011). What remains unclear
is which cognitive system is affected by toluene exposure.
For example, RT could increase as a result of a slowdown in
attentional processing, motor execution, or memory retrieval.
We use our CPC model to distinguish between these compet-
ing explanations.

Data and Tasks
We developed a CPC model of the toluene exposure experi-
ment reported in Rahill et al. (1996). In that experiment, six
subjects completed a battery of cognitive tasks, once without
toluene exposure and again with toluene exposure. The ex-
periment was conducted in a chamber where the atmospheric
level of toluene was precisely controlled. A battery of seven
cognitive tasks was administered three times throughout each
8-hour condition: once upon entering the chamber, again at
150 minutes immediately following 15 minutes of exercise
and 15 minutes of biological exposure analysis, and one last
time at 330 minutes. In the toluene condition, the air concen-
tration of toluene was maintained at 100 ppm for the first 6
hours, after which point no further toluene was released into
the chamber. Rahill et al. (1996) found that toluene increased
mean RT for six of the seven tasks without impacting accu-
racy.

We developed CPC models for a subset of the tasks that
offered the greatest chance of differentiating between com-
peting accounts of performance decrements due to toluene
exposure. The tasks were the procedural memory task, the
recognition memory task, and the arithmetic task. Collec-
tively, these tasks form a discriminative test bed for evaluating
competing explanations because each task engages cognitive
mechanisms in the computational model to varying degrees
and thus produce a different pattern of predictions depending
on which mechanism is modulated by toluene. Furthermore,
a viable model must meet the challenge of producing the fol-
lowing pattern of effects with a single mechanism: an effect
of toluene on RT in the procedural and recognition memory
tasks, but not the arithmetic task.

Procedural Memory Task
On each trial of the procedural memory task, the number 1,
2, 3, or 4 was presented on the screen. Participants were
instructed to respond according to the following stimulus-
response mapping: press one button if the number was 1 or
2 and press another button if the number was 3 or 4. The
stimulus disappeared after a maximum of 600 ms. 1

1We interpreted the disappearance of the stimulus as a response
deadline in each task. In the discussion, we note that this assumption

Figure 1: An illustration of the dose-response predictions
of the motor CPC model for the procedural memory task.
Toluene is rescaled in RT units for illustration.

Recognition Memory Task
During the learning phase, participants studied a set of six
letters displayed simultaneously on the screen until they were
confident the letters were committed to memory. Next, on
each trial of the test phase, participants indicated whether or
not a memory probe was in the studied list. The stimulus
disappeared after a maximum of 850 ms.

Arithmetic Task
On each trial, a set of three single digit numbers were pre-
sented on the screen (e.g., 3 + 4 - 5) and participants indicated
with the appropriate button whether the solution was less than
or greater than 5. The stimulus disappeared after a maximum
of 3,500 ms.

Cognitive-Pharmacokinetic Computational
Model

The CPC model spans two levels of abstraction. At the phys-
iological level, the physiologically-based pharmacokinetic
pharmacodynamic (PBPK-PD) model describes the physio-
logical dynamics that control the distribution and concentra-
tion of toluene. The output of the PBPK-PD model is the con-
centration level of toluene in the brain at a given point in time.
At the cognitive level, the ACT-R cognitive architecture mod-
els the interplay of multiple cognitive systems during task
performance. ACT-R and the PBPK models are integrated
into a single model based on the assumption that toluene af-
fects physiological and neural processes that support cogni-
tion, which in turn, affects performance. Figure 1 illustrates
how mean RT for the motor CPC model tracks changes in
toluene level in a dose-response fashion. We describe the sub-
models and model integration in the following sections.

PBPK-PD Model
We used a PBPK-PD model to quantify the concentration of
toluene in the brain throughout the exposure period (Tardif
et al., 1997). The PBPK-PD model allows us to estimate the

does not change core findings.
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amount of toluene in the brain and formulate dose-response
predictions for task performance. A PBPK-PD model is an
in silico representation of the movement of chemicals in the
arterial blood, flowing to each major organ or lumped tissue
compartment, including the brain.

PBPK-PD models calculate the time-course of PSs in the
vascular and body tissues via ordinary differential equations
to account for absorption, distribution, metabolism, and ex-
cretion processes. The following is an example differential
equation of a metabolizing tissue:

dAl

dt
= (Ql×Ca)−

(
Ql×

Cl

Pl

)
−
(

VMax×CVl

KM+CVl

)
(1)

where subscripts l and a denote liver and arterial, respec-
tively, A = amount of chemical (mg), Q = blood flow (L/hr),
C = mg/L, KM = Michaelis-Menten constant (mg/L), P =
tissue/blood partition coefficient, CV is venous concentra-
tion, and Vmax = maximum rate of parent chemical change
to metabolite (mg/hr).

There are three basic critical components to PBPK-PD
models: 1) species-specific physiological parameters, 2)
chemical-specific parameters, and 3) experiment-specific de-
tails for the studies to be simulated. As per convention, the
physiological and chemical parameter values in our model
were based on prior empirical measurement (Tardif et al.,
1997). Species-specific physiological parameters are the or-
gan weights and blood flow rates for the defined compart-
ments (e.g., organs) in the PBPK-PD model and are derived
from the closest like species when not available. Chemical-
specific parameters that are unique for each chemical are the
tissue solubility (partition coefficient), metabolism of the par-
ent compound, and plasma and tissue binding characteristics.
The specific experimental details pertain to the time of dos-
ing and amount, route of dosing, and whether the subjects are
physically active or quiescent. These details were obtained
from Rahill et al. (1996).

Figure 1 shows the time-course of toluene concentration in
the brain. Toluene increases rapidly from 135 to 150 minutes
while the subject engages in exercise. Toluene concentration
plateaus during rest then declines rapidly after the end of the
360-minute exposure period.

ACT-R
ACT-R is a cognitive architecture that specifies how modular
cognitive systems interact to produce cognition and overt be-
havior (Anderson, 2007). Models developed within ACT-R
posit a common set of processes and mechanisms, which are
instantiated as a computer simulation. Independent modules
operate in parallel and include declarative memory, vision,
attention, and motor modules. Procedural memory coordi-
nates the behavior of the architecture through a set of pro-
duction rules. Production rules follow an ”IF-THEN” struc-
ture that encodes the conditions under which specific actions
are taken. ACT-R provides a structure within which poten-
tial explanations for the effect of toluene on cognition can

be formalized. For example, toluene might disrupt normal
functioning of declarative memory, resulting in a slowdown
in the retrieval of task-relevant information. We developed
CPC models that formalize three explanations: toluene af-
fects (1) declarative memory, (2) attention, or (3) motor exe-
cution. For brevity, we will refer to each of these explanations
as the memory CPC, attention CPC, and motor CPC model,
respectively.

The memory CPC model formalizes the hypothesis that
toluene interferes with memory retrieval. In ACT-R, each fact
stored in declarative memory—called a chunk— is associated
with an activation value corresponding to the frequency and
recency with which it has been used. Higher activation results
in faster and more accurate retrieval. The declarative mem-
ory system in ACT-R offers several potential mechanisms for
toluene modulation. Our criteria for selecting a mechanism
were (1) it must be theoretically grounded and (2) it must
produce a transient effect. We selected the parameter Fd be-
cause it produces a temporary decrease in activation and has
been successful in accounting for the transient effect of fa-
tigue on declarative memory (Gunzelmann et al., 2012). Fd
scales base-level activation as follows:

bi = Fd ·bLL (2)

where Fd = [0,1], bi is base-level activation for chunk i,
bLL represents activation associated with life-long learning
(≈ 2.68; Gunzelmann et al., 2012). According to this expla-
nation, toluene causes an acute decrease in activation, result-
ing in longer RTs and more errors. Decay, by contrast, has
a destructive effect, which cannot be restored without addi-
tional practice.

The attention CPC model formalizes the hypothesis that
the time required to attend to a stimulus is longer, resulting
in a longer observed RT with no direct change in accuracy.
Attentional processing time is controlled by increasing the
attention latency parameter. The motor CPC model formal-
izes the hypothesis that toluene slows down the motor system,
which increases RT without affecting accuracy. Motor execu-
tion is controlled by increasing the motor latency parameter.

Procedural Memory Model Declarative memory was pop-
ulated with four chunks that encoded the response mapping.
On each trial, the model attended to the number presented on
the screen, retrieved a response mapping, and responded with
the key specified in the retrieved chunk.

Recognition Memory Model Declarative memory was
populated with chunks representing each letter in the alpha-
bet. Once the list of six letters was presented, the model lo-
cated a new letter starting on the left. After locating the let-
ter, the model attended to the letter, and rehearsed it so as to
strengthen its activation in memory. Throughout the course
of the learning phase the model studied the list by repeating
this cycle of productions. In Rahill et al. (1996), the learning
phase was terminated by the subject when he or she was con-
fident that the letters were memorized. However, no informa-
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tion regarding the duration of the study phase was reported.
We assumed participants studied the list for 10 seconds before
proceeding to the test phase, which produced high accuracy
found in similar studies (Levinson et al., 2005) with mini-
mal time commitment. When a letter appeared during the test
phase, the model attended to it, attempted to retrieve a chunk
in memory that matched the letter and was in the study list,
and executed a response. The model responded ”yes” by key
press if the retrieved letter matched the letter presented on
the screen. If the letter did not match or no letter could be
retrieved, the model responded ”no” by key press.

Arithmetic Model Declarative memory in the arithmetic
model was populated with chunks representing arithmetic
facts. Once the problem was presented (e.g., 3 + 5 - 2), the
model processed each of the five components starting from
left to right. First, the model located the leftmost stimulus
(e.g., 3). Next, the model attended to the stimulus and then
encoded the stimulus to keep track of the problem state. The
model then repeated the procedure on the next stimulus (e.g.,
+). After encoding the first two numbers and operator, the
model retrieved and then encoded the intermediate solution
(e.g., 8). The model processed the remaining stimuli and re-
trieved the final solution (e.g., 8 - 2 = 6). Lastly, the model
responded whether the solution was less than or greater than 5
via key press. If a math fact could not be retrieved, the model
responded randomly.

Model Integration
The following equations provide a high-level representation
of the model integration:

PBPK(Λ, t) = τ (3)

where Λ is a set of parameters, t is time since the beginning of
the experiment, and τ is the predicted concentration of toluene
in the brain. A high level representation of ACT-R is given by

ACTRm(Θ) = (RT,ACC) (4)

where Θ is a set of parameters, m ∈ {procedual,recognition
memory,arithmetic} indexes the ACT-R models, and the tuple
(RT,ACC) is the predicted mean reaction time and accuracy.

A linear link function allows specific ACT-R parameters to
vary as a function of toluene level as follows:

θp = β0p +β1p τ (5)

p∈ P = {Fd ,A,M} ⊂Θ indexes the toluene-modulated ACT-
R parameters, which correspond to fatigue declarative mem-
ory (Fd), attention latency (A), and motor latency (M). The
intercept β0p is the value of parameter θp when the concen-
tration level of toluene in the brain is zero. β1p is the slope
which represents the degree to which θp varies as a function
of τ. β =

{
β0p ,β1p

}
represents the set of link function pa-

rameters. Let Θ̂ = Θ \P be the subset of ACT-R parameters
that are not determined from Equation 5 (e.g., latency factor).

Table 1: The slopes used in the link function of the CPC mod-
els. Slopes were varied over the ranges in brackets with 10
equal interval steps.

CPC Model β1A β1Fd
β1M

Attention [0, .015] 0 0
Memory 0 [-.03, 0] 0
Motor 0 0 [0, .015]
Baseline 0 0 0

The CPC model integrates the ACT-R and PBPK-PD mod-
els through the linear link function and can be represented
as:

CPC(Θ̂,Λ,β, t) = (RT,ACC) (6)

We imposed the following parametric restrictions on the
CPC models in the interest of parsimony. First, as shown in
Table 1, we assumed that toluene affected only one cognitive
system: either the attention, memory, or motor system. For
example, in the attention CPC model, the slope β1A was al-
lowed to vary while the other slopes were fixed to zero. As a
basis for comparison, we also included a baseline CPC model
in which no parameters were modulated by toluene. Second,
we used the same parameterization of the link function across
the three tasks. Specifically, when a slope was estimated, the
estimated value applied across the three tasks. We also fixed
the intercepts to β0A = .085 and β0M = .05, which are default
values that have emerged as good fitting values across a wide
range of studies. Because the intercept β0Fd

does not have a
default value, we fixed this parameter to theoretically justi-
fied values of .72, 1, and .83 for the procedural, recognition
memory, and arithmetic tasks, respectively, to reflect differ-
ences in prior exposure to task-specific stimuli. For example,
subjects had more experience with the alphabet used in the
recognition memory task than the response mapping used in
the procedural memory task.

Third, when possible, we fixed other parameters to default
values. For example, we fixed decay to .5. Mismatch penalty
and activation noise do not have default values, and as such,
were set to 2.8 and .15 for all models under consideration.
Fourth, task-specific parameters were fixed across toluene
conditions, blocks, and the four CPC models. Specifically,
we set the retrieval threshold to .78 in the recognition mem-
ory task to control the speed of negative responses. Finally,
the parameters of the PBPK-PD model were fixed to values
acquired through prior empirical measurement.

Results
Human RTs (black) are displayed in Figures 2-4 for each
task. Each panel represents an exposure condition, and points
within each condition represent mean RT for a given block.
Human RT increased in the toluene condition for the proce-
dural and recognition memory tasks, but remained relatively
constant in the arithmetic task. Although accuracy data were
not reported in Rahill et al. (1996), no effect of toluene on ac-
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Table 2: RMSE of best fitting models. PMT: procedural
memory task, RMT: recognition memory task, AT: arithmetic
task

RMSE

CPC Model β1p PMT RMT AT Aggregate
Attention .0015 10.13 28.04 92.30 56.00
Memory -.003 10.87 30.33 89.24 54.78
Motor .0045 9.59 23.40 90.17 54.07
Baseline 0 12.02 30.83 88.71 54.66

Figure 2: RT predictions for the CPC models plotted against
the human mean RT for the Arithmetic Task. Bars are stan-
dard deviations.

curacy was detected. Based on other studies using the same or
similar tasks, we assume that accuracy was≥ 90% (Levinson
et al., 2005; Vincent et al., 2012).

We fit the four CPC models using the parameter ranges dis-
played in Table 1 and selected the best fitting models using a
two-stage procedure. In the first stage, we selected the sub-
set of results for which accuracy was ≥ 90% in all blocks to
ensure that the predictions were in line with previous stud-
ies. In the second stage, we selected the β1p with the lowest
aggregate RMSE for each model. Table 2 summarizes aggre-
gate RMSE, RMSE broken down by task, and the best fitting
β1p for each model. The predictions of the best fitting CPC
models are compared to the human data in Figures 2-4.

Aggregate RMSE was the lowest for the motor CPC model,
suggesting that toluene slows down motor processing. Al-
though the improvement in aggregate RMSE relative to the
baseline model may appear small, it hides modest but impor-
tant improvements in the procedural and recognition memory
tasks. Importantly, the motor CPC model was able to capture
the qualitative pattern of effects found in the human data: an
effect of toluene in the procedural and recognition memory
tasks with no effect in the arithmetic task.

Figure 3: RT predictions for the CPC models plotted against
the human mean RT for the Procedural Memory Task. Bars
are standard deviations.

Figure 4: RT predictions for the CPC models plotted against
the human mean RT for the Recognition Memory Task. Bars
are standard deviations.

It is also informative to discuss patterns found in some
poorly fitting CPC models. For example, when β1A increased
for the attention CPC model, the RT predictions improved to
a similar degree as the motor CPC model in the procedural
and recognition memory tasks. In the arithmetic task, how-
ever, the attention CPC model greatly over-estimated RT due
to the large contribution of attention to the overall RT. This
finding provides further evidence against the attention CPC
model.

Discussion
We developed and tested a set of CPC models to understand
which cognitive systems are affected by toluene and lead to
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the performance decrements reported in the literature. The
CPC model integrated the physiological dynamics of toluene
concentration into the ACT-R cognitive architecture to pro-
duce dose-response predictions over a prolonged period of
toluene exposure. The CPC models formally instantiated
deficits in memory, attentional, and motor processing as com-
peting explanations for detrimental effects of toluene expo-
sure. Our model comparison provided tentative evidence that
performance decrements are driven by a slowdown in motor
execution. Furthermore, we also found evidence against at-
tention as a mechanism: when attention was modulated by
toluene to the same extent as the motor system, it greatly
overestimated RTs in the arithmetic task. Importantly, the
motor CPC model produced the pattern of toluene effects in
the human data: an effect of toluene in the procedural and
recognition memory tasks, and no effect in the arithmetic
task.

Our CPC model adds to the growing literature showing that
integrated models can yield more accurate predictions and
deeper insights compared to non-integrative approaches. The
CPC model has several benefits. First, it enabled us to ac-
count for data at two different time-scales: on the order of
milliseconds as well as hours. Second, the CPC model was
powerful yet highly constrained. With the CPC model, we
were able to account for the effects of toluene exposure in
three tasks using a single mechanism. Moreover, other pa-
rameters were either set to default values or otherwise highly
constrained. Third, the CPC model is quite general, allowing
it to be applied to any PS of interest.

Limitations
Our findings should be interpreted in light of several limita-
tions. First, research on PSs often has small sample sizes and
small exposure manipulations due to restrictions imposed by
institutional review boards to limit risk. As a result, discrimi-
nating among competing explanations is challenging and our
conclusions regarding the motor CPC model remain tentative.
Second, we also could not apply the model at the individual
level or examine nuanced predictions (e.g., false alarms vs.
misses) because only summary data were available. Third,
our PBPK-PD model could not examine the possibility of
region-specific effects of toluene in the brain. A model with
this level of detail would provide tighter integration and more
focused hypotheses about the affected mechanisms. Finally,
we made assumptions about several unreported or ambiguous
methodological details, such as the number of trials, the du-
ration of the study phase in the recognition task, and the use
of response deadlines. Nonetheless, when these assumptions
were changed, the motor CPC still emerged with the strongest
level of support.
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