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Abstract

Algebraic Geometry for Computer Vision

by

Joseph David Kileel

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

This thesis uses tools from algebraic geometry to solve problems about three-
dimensional scene reconstruction. 3D reconstruction is a fundamental task in multi-
view geometry, a �eld of computer vision. Given images of a world scene, taken by
cameras in unknown positions, how can we best build a 3D model for the scene? Novel
results are obtained for various challenging minimal problems, which are important
algorithmic routines in Random Sampling Consensus pipelines for reconstruction.
These routines reduce over�tting when outliers are present in image data.

Our approach throughout is to formulate inverse problems as structured systems
of polynomial equations, and then to exploit underlying geometry. We apply numer-
ical algebraic geometry, commutative algebra and tropical geometry, and we derive
new mathematical results in these �elds. We present simulations on image data as
well as an implementation of general-purpose homotopy-continuation software for
implicitization in computational algebraic geometry.

Chapter 1 introduces some relevant computer vision. Chapters 2 and 3 are de-
voted to the recovery of camera positions from images. We resolve an open problem
concerning two calibrated cameras raised by Sameer Agarwal, a vision expert at
Google Research, by using the algebraic theory of Ulrich sheaves. This gives a ro-
bust test for identifying outliers in terms of spectral gaps. Next, we quantify the
algebraic complexity for notorious poorly understood cases for three calibrated cam-
eras. This is achieved by formulating in terms of structured linear sections of an
explicit moduli space and then computing via homotopy-continuation. In Chapter
4, a new framework for modeling image distortion is proposed, based on lifting al-
gebraic varieties in projective space to varieties in other toric varieties. We check
that our formulation leads to faster and more stable solvers than the state of the
art. Lastly, Chapter 5 concludes by studying possible pictures of simple objects, as
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varieties inside products of projective planes. In particular, this dissertation exhibits
that algebro-geometric methods can actually be useful in practical settings.
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Chapter 1

Motivation

As humans, we may take it for granted that three-dimensional structure can be in-
ferred from two-dimensional images. Our visual perception systems do this naturally.
While the neural processes behind this are fantastically complex, it is worth noting
that retinal motion makes the reconstruction possible in the �rst place [55]. To go
from 2D to 3D, our brains use multiple images provided by eye movement.

In computer vision, estimating a 3D scene from multiple 2D images has been
a fundamental task. Nowadays, Structure-from-Motion (SfM) algorithms support
autonomously-driving cars [40] and large-scale photo tourism [2].

Figure 1.1: 3D model with 819,242 points of the Colosseum from 2106 Flickr images.
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Such algorithms have diverse ingredients under the hood: band-pass �lters, non-
linear least squares optimization, sparse linear algebra, text retrieval ideas, dis-
tributed computing, and . . . algebraic geometry! In fact, projective geometry is the
languageused for formulating 3D reconstruction problems, as explained in the next
subsection. The sub�eld of vision that studies connections with projective geometry
is known as multiview geometry. The book [48] by Hartley and Zisserman is the
standard introduction to this �eld.

In addition, SfM repeatedly solves zero-dimensional systems ofpolynomial equa-
tions [64]. Polynomial solvers are subroutines in Random Sampling Consensus
(RANSAC) methods for robust estimation, i.e. regression in the presence of out-
liers. To deliver in real-time, minimal solvers are required to perform accurate,
super-fast calculation (� s or ms scale).

In this dissertation, novel vision results are obtained by means of applying tools
from algebraic geometry that are not traditionally used in multiview geometry or
the design of minimal solvers.

1.1 Setup

According to the pinhole camera model [48, Chapter 6], acamera is simply a surjec-
tive linear projection A : P3 99KP2, whereP3 represents the world andP2 represents
the image plane. Thus,A is represented by a full rank real 3� 4 matrix up to
nonzero scale, also denoted byA. On a�ne charts, note that the map A is fractional
a�ne-linear. The base locus ker(A) 2 P3 is interpreted as thecamera center or
focal point. For a cameraA with center o� the plane at in�nity, RQ factorization
applied to the left 3� 3 submatrix of A induces a unique factorizationA = K [Rjt],
whereK 2 R3� 3 is upper triangular, with entries K 11 > 0; K 22 > 0; K 33 = 1, where
R 2 SO(3) is orthogonal and wheret 2 R3. Following [48, Section 6.2.4],K stores
the internal parameters of A (focal lengths, principal point, skew) while [Rjt] stores
the external parameters(center, orientation). In cases whereK is known, left multi-
plication by K � 1 normalizesA = [ Rjt]. In that case, the 3� 4 matrix A is calibrated;
calibration information is often available from image EXIF tags.

Standard Structure-from-Motion algorithms [85] perform detailedlocal recon-
structions �rst . Afterwards, these are stitched together and re�ned via global opti-
mization. Here, a local reconstruction accepts a small number of overlapping images
(typically, two or three). The aim is to estimate the con�guration in P3 of the two or
three cameras that captured the images, as well as the coordinates of a large collec-
tion of 3D points visible in the images. In particular, the cameras' relative positions
are deduced from the images, and this is an engine through all of SfM.
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Recovery of camera con�gurations starts by matching features across images (for
example, corner points and edges) according to neighborhood intensity patterns; see
[73] details. The image matches impose constraints on the possible relative position
of the cameras, e.g. [46]. At this point, an appropriately chosen loss function could
be de�ned (see [48, Section 4.2] for so-called algebraic or geometric loss functions).
Given the image matches, the camera con�guration with least loss could be sought.
However, in practice, this delivers poor results, because a non-neglible fraction of the
putative image correspondences are wrongly matched. Thus, SfM must cope with
outliers (mismatches) among image data.

To that end, Random Sampling Consensus is a method for parameter estima-
tion in the presence of outliers. Invented in 1981 originally for vision applications
[37], RANSAC randomly samples aminimal amount of data. Minimal means that
the sampleexactly determines only a �nite (positive) number of possible parameter
values. Those parameters are computed, and then treated ascompeting hypotheses.
Each is tested against the rest of the data set. A hypothesis is accepted if it is ap-
proximately consistent with a su�ciently high fraction of the full data set (and more
than any other hypothesis). Otherwise, a new minimal sample is drawn. RANSAC
outputs a parameter estimate unin
uenced by outliers. Remarkably, it can process
data sets with as high as 50% outliers. See Figure 1.2 for an illustration.

Thus, to recover camera con�gurations from image correspondences (contain-
ing some mismatches), SfM employs a RANSAC scheme. See [48, Section 4.7] for
implementation details, including how thresholds are set adaptively. As an up-
shot, computing the �nitely many parameters consistent with a minimal sample
is a vital workhorse in SfM { repeated thousands of times in large-scale reconstruc-
tions. These calculations are calledminimal problems. There is an industry in
computer vision dedicated to building e�cient solvers for minimal problems, e.g.
[17, 38, 57, 64, 65, 94].

Like the matrix camera model above, minimal problems arealgebraic. They are
expressible as systems of multivariate polynomial equations with coe�cients depend-
ing polynomially on image data. Moreover, ageometricformulation is often available.
Frequently, a (�xed) algebraic variety X � Pn may be de�ned whose points are in
bijection with camera con�gurations. HereX is an explicit moduli space, embedded
in convenient coordinates. Image data de�nes (varying) linear subspacesL � Pn .
Then, minimal problems amount to computing the intersectionL \ X . As a noted
example, Nist�er's minimal problem solver [82] for recovering the relative position of
two calibrated cameras from �ve image point pair matches �ts into this framework;
by now, the Gr•obner basis script ishardcodedinto most smartphones [66]

The relation of projective geometry and polynomial equations to 3D reconstruc-
tion is this dissertation's point de d�epart. Mixing classical algebraic geometry with
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Figure 1.2: Fitted line from RANSAC. Outliers do not degrade the estimate.

modern computational tools, we answer concrete questions about computer vision
and derive new math.

1.2 Main contributions

The main contributions of this dissertation are the following:

� We obtain a matrix formula characterizing which six image point pairs are
exactly consistent with two calibrated cameras (Theorem 2.1). This resolves
a question raised in [1] by Sameer Agarwal, a vision expert apart of Google
Research. Numerical experiments indicate the formula is robust to noise (Em-
pirical Fact 2.27), thus it might be used for screening wrongly matched point
pairs. Mathematically, the work is an instantiation of the theory of Ulrich
sheaves, introduced in algebraic geometry by Eisenbud and Schreyer in [34]. A
new determinantal description of the essential variety (Proposition 2.7) a�ords
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a group action making Eisenbud-Schreyer's theory e�ective in this case, by help
from the representation theory of GL(4).

� We quantify the algebraic complexity for the recovery of three calibrated cam-
eras, given various sorts of image correspondences (Theorem 3.6). This helps
clarify decades of partial progress on the three camera case (e.g. see [83] for
nice complementary work). We build on the theory of trifocal tensors [46], and
rely on powerful computational techniques from numerical algebraic geometry
[11].

� We contribute general-purpose homotopy-continuation software for impliciti-
zation in computational algebraic geometry (Section 3.7). This allows for the
computation of invariants of an algebraic variety from a parametrization, when
de�ning equations are inaccessible.

� We develop a new framework for modeling image distortion (Chapter 4), uni-
fying existing models. The theory is based on lifting algebraic varieties in
projective space to other ambient toric varieties, and it is of independent math-
ematical interest. We determine degrees in terms of the Chow polytope as well
as de�ning equations (Theorems 4.8 and 4.16). Tropical geometry [74] o�ers a
perspective on higher-dimensional distortions (Theorem 4.22).

� We verify that our algebro-geometric theory of distortion leads to minimal
solvers in vision that are competitive with, or superior to, the state of the art,
as tested on synthetic data sets (Section 4.5).

� We explore the space of possible pictures of simple objects, such as edges.
The formulation is in terms of combinatorial commutative algebra, and we
�nd equations cutting the space out (Theorem 5.6). This works extends the
in
uential [5] to new settings of practical interest. It could form the basis for
a polynomial/semide�nite optimization [69] triangulation scheme, as in [3].
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Chapter 2

Two Cameras

This chapter studies the recovery of the relative position oftwo calibrated cameras
from image data. In particular, we are interested in theover-determined case. We
characterize which super-minimal samples of image data are exactly consistent with
a camera con�guration. This connects to the classical theory of resultants [43]. To
obtain an explicit result, we need the technology developed in [34]. This is joint work
with Gunnar Fl�ystad and Giorgio Ottaviani [39] and it is to be published in the
Journal of Symbolic Computation.

2.1 Introduction

The essential varietyE is the variety of 3� 3 real matrices with two equal singular
values, and the third one equal to zero (� 1 = � 2, � 3 = 0). It was introduced in
the setting of computer vision; see [48, Section 9.6]. Its elements, the so-called
essential matrices, have the formTR, whereT is real skew-symmetric andR is real
orthogonal. The essential variety is a cone of codimension 3 and degree 10 in the
space of 3� 3-matrices, de�ned by homogeneous cubic equations, that we recall in
(2.2). The complex solutions of these cubic equations de�ne the complexi�cationEC

of the essential variety. This lives in the 8-dimensional complex projective spaceP8
C.

While the real essential variety is smooth, its complexi�cation has a singular locus
that we describe precisely in Section 2.2.

The Chow form of a codimensionc projective variety X � Pn is the equation
Ch(X ) of the divisor in the Grassmannian Gr(Pc� 1; Pn ) given by those linear sub-
spaces of dimensionc � 1 which meetX . It is a basic and classical tool that allows
one to recover much geometric information aboutX ; for its main properties we refer
to [43, Section 4]. In [1, Section 4], the problem of computing the Chow form of the
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essential variety was posed, while the analogous problem for thefundamental variety
was solved, another important variety in computer vision.

The main goal of this chapter is to explicitly �nd the Chow form of the essential
variety. This provides an important tool for the problem of detecting if a set of image
point correspondencesf (x(i ) ; y(i )) 2 R2 � R2 j i = 1; : : : ; mg comes fromm world
points in R3 and two calibrated cameras. It furnishes an exact solution form = 6
and it behaves well given noisy input, as we will see in Section 2.4. Mathematically,
we can consider the system of equations:

(
A gX (i ) � fx(i )

B gX (i ) � gy(i ) :
(2.1)

Here fx(i ) = ( x(i )
1 : x(i )

2 : 1)T 2 P2 and gy(i ) = ( y(i )
1 : y(i )

2 : 1)T 2 P2 are the given image
points. The unknowns are two 3� 4 matrices A; B with rotations in their left
3 � 3 blocks andm = 6 points gX (i ) 2 P3. These represent calibrated cameras and
world points, respectively. A calibrated camera has normalized image coordinates,
as explained in [48, Section 8.5]. Here� denotes equality up to nonzero scale. From
our calculation of Ch(EC), we deduce:

Theorem 2.1. There exists an explicit20� 20 skew-symmetric matrixM (x; y) of
degree� (6; 6) polynomials overZ in the coordinates of(x(i ) ; y(i )) with the following
properties. If (2.1) admits a complex solution thenM (x(i ) ; y(i )) is rank-de�cient.
Conversely, the variety of point correspondences(x(i ) ; y(i )) such thatM (x(i ) ; y(i )) is
rank-de�cient contains a dense open subset for which(2.1) admits a complex solution.

In fact, we will produce two such matrices. Both of them, along with related for-
mulas we derive, are available in ancillary �les accompanying thearXiv version
of this work, and we have posted them athttp://math.berkeley.edu/ ~jkileel/
ChowFormulas.html.

Our construction of the Chow form uses the technique ofUlrich sheavesintro-
duced in [34]. We construct rank 2 Ulrich sheaves on the essential varietyEC. For
an analogous construction of the Chow form ofK 3 surfaces, see [7].

From the point of view of computer vision, this chapter contributes a complete
characterization for an `almost-minimal' problem. Here the motivation is3D recon-
struction. Given multiple images of a world scene, taken by cameras in an unknown
con�guration, we want to estimate the camera con�guration and a 3D model of the
world scene. Algorithms for this are complex, and successful. See [2] for a recon-
struction from 150,000 images.

By contrast, the system (2.1) encodes a tiny reconstruction problem. Suppose we
are given six point correspondences in two calibrated pictures (the right-hand sides
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in (2.1)). We wish to reconstruct both the two cameras and the six world points
(the left-hand sides in (2.1)). If an exact solution exists then it is typically unique,
modulo the natural symmetries. However, an exact solution does not always exist.
In order for this to happen, a giant polynomial of degree 120 in the 24 variables on
the right-hand sides has to vanish. Theorem 2.1 gives an explicit matrix formula for
that polynomial.

As explained in Chapter 1, the link between minimal or almost-minimal recon-
structions and large-scale reconstructions is surprisingly strong. Algorithms for the
latter use the former reconstructions repeatedly as core subroutines. In particular,
solving the system (2.1) givenm = 5 point pairs, instead ofm = 6, is a subroutine in
[2]. This solver is optimized in [82]. It is used to generate hypotheses insideRandom
Sampling Consensus(RANSAC) [37] schemes for robust reconstruction from pairs
of calibrated images. See [48] for more vision background.

The rest of this chapter is organized as follows. In Section 2.2, we prove that
EC is a hyperplane section of the varietyPX s

4;2 of 4 � 4 symmetric matrices of rank
� 2. This implies a determinantal description ofEC; see Proposition 2.7. A side
result of the construction is that EC is the secant variety of its singular locus, which
corresponds to pairs of isotropic vectors inC3.

In Section 2.3, we construct two Ulrich sheaves on the variety of 4� 4 symmetric
matrices of rank � 2. One of the constructions we propose is new, according to
the best of our knowledge. Both sheaves are GL(4)-equivariant, and they admit
\Pieri resolutions" in the sense of [92]. We carefully analyze the resolutions using
representation theory, and in particular show that their middle di�erentials may be
represented by symmetric matrices; see Propositions 2.16 and 2.19.

In Section 2.4, we combine the results of the previous sections and we construct
the Chow form of the essential variety. The construction from [34] starts with our
rank 2 Ulrich sheaves and allows to de�ne two 20� 20 matrices in the Pl•ucker
coordinates of Gr(P2; P8) each of which drops rank exactly when the corresponding
subspaceP2 meets the essential varietyEC. It requires some technical e�ort to put
these matrices in skew-symmetric form, and here our analysis from Section 2.3 pays
o�. We conclude this work with numerical experiments demonstrating the robustness
to noise that our matrix formulas in Theorem 2.1 enjoy.
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2.2 The essential variety is determinantal

Intrinsic description

Let E � R3� 3 be the essential variety, which is de�ned by the following conditions
on the three singular values of a 3� 3 matrix:

E := f M 2 R3� 3 j � 1(M ) = � 2(M ); � 3(M ) = 0 g:

The polynomial equations ofE are (see [35, Section 4]) as follows:

E = f M 2 R3� 3 j det(M ) = 0 ; 2(MM T )M � tr
�
MM T

�
M = 0g: (2.2)

These 10 cubics minimally generate thereal radical ideal [13, p. 85] of the essential
variety E, and that ideal is prime. Indeed, the real radical property follows from our
Proposition 2.2(i) and [75, Theorem 12.6.1]. We denote byEC the projective variety in
P8

C given by the complex solutions of (2.2). The essential varietyEC has codimension
3 and degree 10 (see [77, Theorem 5.16]). In this section, we will prove that it is
isomorphic to a hyperplane section of the varietyPX s

4;2 of complex symmetric 4� 4
matrices of rank� 2. The �rst step towards this is Proposition 2.2 below, and that
relies on the group symmetries ofEC, which we now explain.

ConsiderR3 with the standard inner product Q, and the corresponding action of
SO(3; R) on R3. Complexify R3 and considerC3 with the action of SO(3; C), which
has universal cover SL(2; C). It is technically simpler to work with the action of
SL(2; C). Denoting by U the irreducible 2-dimensional representation of SL(2; C), we
have the equivariant isomorphismC3 �= S2U. Writing Q also for the complexi�cation
of the Euclidean product, the projective spaceP(S2U) divides into two SL(2; C)-
orbits, namely the isotropic quadric with equationQ(u) = 0 and its complement.
Let V be another complex vector space of dimension 2. The essential varietyEC

is embedded into the projective space of 3� 3-matrices P(S2U 
 S2V). Since the
singular value conditions de�ningE are SO(3; R) � SO(3; R)-invariant, it follows that
EC is SL(U) � SL(V)-invariant using [29, Theorem 2.2].

The following is a new geometric description of the essential variety. From the
computer vision application, we start with the set of real pointsE. However, below
we see that the surface Sing(EC) inside EC, which has no real points, `determines' the
algebraic geometry. Part (i) of Proposition 2.2 is proved also in [77, Proposition 5.9].

Proposition 2.2. (i) The singular locus ofEC is the projective surface given by:

Sing(EC) =
�

abT 2 P(C3� 3) j Q(a) = Q(b) = 0
	

:

(ii) The second secant variety ofSing(EC) equalsEC.
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Proof. Denote byS the variety
�

abT 2 P(C3� 3) j Q(a) = Q(b) = 0
	

, and let bS be the
a�ne cone over it. The line secant variety � 2( bS) consists of elements of the form
M = a1bT

1 + a2bT
2 2 C3� 3 such that Q(ai ) = aT

i ai = Q(bi ) = bT
i bi = 0 for i = 1; 2.

We compute that MM T = a1bT
1 b2aT

2 + a2bT
2 b1aT

1 so that tr( MM T ) = 2( bT
1 b2)(aT

1 a2).
Moreover MM T M = a1bT

1 b2aT
2 a1bT

1 + a2bT
2 b1aT

1 a2bT
2 = ( bT

1 b2)(aT
1 a2)M . Hence the

equations (2.2) ofEC are satis�ed by M . This proves that � 2(S) � E C. S is a surface
and � 2(S) has dimension 5 (see [22, Theorem 1.3]). Since� 2(S) and EC are both
of codimension 3 andEC is irreducible, the equality � 2(S) = EC follows. It remains
to prove (i). Denote by [ai ] the line generated byai . Every elementa1bT

1 + a2bT
2

with [a1] 6= [ a2], [b1] 6= [ b2] and Q(ai ) = Q(bi ) = 0 for i = 1; 2 can be taken by
SL(U) � SL(V) to a scalar multiple of any other element of the same form. This is
the open orbit of the action of SL(U) � SL(V) on EC. The remaining orbits are the
following:

1. the surfaceS, with set-theoretic equationsMM T = M T M = 0.

2. T1 nS, whereT1 =
�

abT 2 P(C3� 3) j Q(a) = 0
	

is a threefold, with set-theoretic
equationsM T M = 0.

3. T2 nS, whereT2 =
�

abT 2 P(C3� 3) j Q(b) = 0
	

is a threefold, with set-theoretic
equationsMM T = 0.

4. Tan(S)n(T1[ T2), where thetangential varietyTan(S) is the fourfold union of all
tangent spaces toS, with set-theoretic equations tr(MM T ) = 0 ; MM T M = 0.

It is easy to check they are orbits, in a similar way than in [43, Example 14.4.5].

One can compute explicitly that the Jacobian matrix ofEC at

0

@
1 0 0p
� 1 0 0
0 0 0

1

A 2 T1nS

has rank 3. The following code inMacaulay2([44]) does that computation:

R = QQ[m_(1,1)..m_(3,3)]
M = transpose(genericMatrix(R,3,3))
I = ideal(det(M))+minors(1,2*M*transpose(M)*M - trace(M*transpose(M))*M)
Jac = transpose jacobian I
S = QQ[q]/(1+q^2)
specializedJac = (map(S,R,{1,0,0,q,0,0,0,0,0}))(Jac)
minors(3,specializedJac)

Hence the points inT1 nS are smooth points ofEC. By symmetry, also the points
in T2 nS are smooth. By semicontinuity, the points in Tan(S) n(T1 [ T2) are smooth.
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Since points inS are singular for the secant variety� 2(S), this �nishes the proof of
(i).

Remark 2.3. From Proposition 2.2, the essential variety is isomorphic to the variety
of 2 � 2 � 2 � 2 tensors of rank� 2 invariant under the permutations S2 � S2 �
S4. Hence, by the study of tensor decomposition, the parametric description in
Proposition 2.2 is identi�able, meaning that, from the matrix a1bT

1 + a2bT
2 , all ai , bi

are determined up to scalar multiple. That shows that real essential matrices have
the form aT b+ aT b with a; b2 C3 and Q(a) = Q(b) = 0. This may be written in the
alternative form (u2)T v2 + ( u2)T v2 2 S2(U) 
 S2(V) with u 2 U, v 2 V. This may
help in computing real essential matrices. Note that the four non-open orbits listed
in the proof of Proposition 2.2 are contained in the isotropic quadric tr(MM T ) = 0,
hence they have no real points.

Remark 2.4. The surface Sing(EC) is more familiar with the embedding byO(1; 1),
when it is the smooth quadric surface, doubly ruled by lines. In the embedding by
O(2; 2), the two rulings are given by conics. These observations suggest expressing
EC as a determinantal variety, as we do next in Proposition 2.5. Indeed, note that
the smooth quadric surface embedded byO(2; 2) is isomorphic to a linear section
of the second Veronese embedding ofP3, which is the variety of 4� 4 symmetric
matrices of rank 1.

In the following note that S2(U 
 V) is 10-dimensional and identi�es as the space
of symmetric 4� 4-matrices.

Proposition 2.5. The essential varietyEC is isomorphic to a hyperplane section of
the variety of rank � 2 elements inP(S2(U 
 V)). Concretely, this latter variety
identi�es as the projective variety of4 � 4 symmetric matrices of rank� 2 (see also
Subsection2.3), and the section consists of traceless4 � 4 symmetric matrices of
rank � 2.

Proof. The embedding ofP(U) � P(V) in P(S2(U) 
 S2(V)) is given by (u; v) 7!
u2 
 v2. Recall that Cauchy's formula statesS2(U 
 V) = ( S2(U) 
 S2(V)) ��
^ 2U 
 ^ 2V

�
, where dim(U 
 V) = 4. Hence, P(S2(U) 
 S2(V)) is equivariantly

embedded as a codimension one subspace inP(S2(U 
 V)). The image is the sub-
space of traceless elements (since that is dimension 8 and invariant), and this map
sendsu2 
 v2 7! (u 
 v)2. By Proposition 2.2, we have shown that Sing(EC) embeds
into a hyperplane section of the variety of rank 1 elements inP(S2(U 
 V)). So,
EC = � 2(Sing(EC)) embeds into that hyperplane section of the variety of rank� 2
elements. This last variety has degree 10 by Segre formula [47, Proposition 12 (b)].
Comparing dimensions and degrees, the result follows.
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Remark 2.6. In light of the description in Proposition 2.5, it follows by Example
3.2 and Corollary 6.4 of [28] that the Euclidean distance degree is EDdegree(EC) =
6. This result has been proved also in [30], where the computation of EDdegree
was performed in the more general setting of orthogonally invariant varieties. This
quantity measures the algebraic complexity of �nding the nearest point onE to a
given noisy data point inR3� 3.

Coordinate description

We now make the determinantal description ofEC in Proposition 2.5 explicit in
coordinates. For this, denotea = ( a1; a2; a3)T 2 C3. We haveQ(a) = a2

1 + a2
2 + a2

3.
The SL(2; C)-orbit Q(a) = 0 is parametrized by

�
u2

1 � u2
2; 2u1u2;

p
� 1(u2

1 + u2
2)

� T

where (u1; u2)T 2 C2. Let:

M =

0

@
m11 m12 m13

m21 m22 m23

m31 m32 m33

1

A 2 C3� 3;

and de�ne the 4� 4 traceless symmetric matrixs(M ) (depending linearly onM ):

s(M ) :=
1
2

0

B
B
B
@

m11 � m22 � m33 m13 + m31 m12 + m21 m23 � m32

m13 + m31 � m11 � m22 + m33 m23 + m32 m12 � m21

m12 + m21 m23 + m32 � m11 + m22 � m33 � m13 + m31

m23 � m32 m12 � m21 � m13 + m31 m11 + m22 + m33

1

C
C
C
A

:

(2.3)

This construction furnishes a new view on the essential varietyE, as described in
Proposition 2.7.

Proposition 2.7. The linear map s in (2:3) is a real isometry from the space of
3 � 3 real matrices to the the space of traceless symmetric4 � 4 real matrices. We
have that:

M 2 E () rk(s(M )) � 2:

The complexi�cation of s, denoted again bys, satis�es for any M 2 C3� 3:

M 2 Sing(EC) () rk(s(M )) � 1;

M 2 EC () rk(s(M )) � 2:
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Proof. We construct the correspondence overC at the level of Sing(EC) and then we
extend it by linearity. Choose coordinates (u1; u2) in U and coordinates (v1; v2) in
V. Consider the following parametrization of matricesM 2 Sing(EC):

M =

0

B
B
@

u2
1 � u2

2

2u1u2p
� 1(u2

1 + u2
2)

1

C
C
A �

�
v2

1 � v2
2; 2v1v2;

p
� 1(v2

1 + v2
2)

�
: (2.4)

Consider also the following parametrization of the Euclidean quadric inU 
 V:

k =
�
u2v2 � u1v1; �

p
� 1(u1v1 + u2v2); � (u1v2 + u2v1);

p
� 1(u1v2 � u2v1)

�
:

The variety of rank 1 traceless 4� 4 symmetric matrices is accordingly parametrized
by kT k. Substituting (2.4) into the right-hand side below, a computation veri�es
that:

kT k = s(M ):

This proves the second equivalence in the statement above and explains the de�ni-
tion of s(M ), namely that it is the equivariant embedding from Proposition 2.5 in
coordinates. The third equivalence follows becauseEC = � 2(Sing(EC)), by Proposi-
tion 2.2(ii). For the �rst equivalence, we note that s is de�ned over R and now a
direct computation veri�es that tr

�
s(M )s(M )T

�
= tr

�
MM T

�
for M 2 R3� 3.

Note that the ideal of 3-minors ofs(M ) is indeed generated by the ten cubics in
(2.2).

Remark 2.8. The critical points of the distance function from any data pointM 2
R3� 3 to E can be computed by means of the SVD ofs(M ), as in [28, Example 2.3].

2.3 Ulrich sheaves on the variety of symmetric
4 � 4 matrices of rank � 2

Our goal is to construct the Chow form of the essential variety. By the theory of
[34], this can be done provided one has an Ulrich sheaf on this variety. The notions
of Ulrich sheaf, Chow forms and the construction of [34] will be explained below.

As shown in Section 2.2, the essential varietyEC is a linear section of the projective
variety of symmetric 4� 4 matrices of rank� 2, which we denote asPX s

4;2. If we
construct an Ulrich sheaf onPX s

4;2, then a quotient of this sheaf by a linear form
is an Ulrich sheaf onEC provided that linear form is regular for the Ulrich sheaf on
PX s

4;2. We will achieve this twice, in Section 2.3 and Section 2.3.
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De�nition of Ulrich modules and sheaves

De�nition 2.9. A graded moduleM over a polynomial ringA = C[x0; : : : ; xn ] is an
Ulrich module provided:

1. It is generated in degree0 and has a linear minimal free resolution:

0  � M  A � 0  � A(� 1)� 1  � A(� 2)� 2 d2 � � � �  � A(� c)� c  � 0: (2.5)

2. The length of the resolutionc equals the codimension of the support of the
moduleM .

2'. The Betti numbers are� i =
�

c
i

�
� 0 for i = 0; : : : ; c.

One can use either(1) and (2), or equivalently, (1) and (2)' as the de�nition.

A sheafF on a projective spacePn with support of dimension � 1 is an Ulrich
sheaf provided it is the shea��cation of an Ulrich module. Equivalently, the mod-
ule of twisted global sectionsM =

M

d2 Z

H 0(Pn ; F (d)) is an Ulrich module over the

polynomial ring A.

Fact 2.10. If the support of an Ulrich sheafF is a variety X of degreed, then � 0 is
a multiple of d, say rd. This corresponds toF being a sheaf of rankr on X .

Since there is a one-to-one correspondence between Ulrich modules overA and
Ulrich sheaves onPn , we interchangably speak of both. But in our constructions we
focus on Ulrich modules. A prominent conjecture of [34, p.543] states that on any
variety X in a projective space, there is an Ulrich sheaf whose support isX .

The variety of symmetric 4 � 4 matrices

We �x notation. Let X s
4 be the space of symmetric 4� 4 matrices over the �eld

C. This identi�es as C10. Let x ij = x ji be the coordinate functions onX s
4 where

1 � i � j � 4, so the coordinate ring ofX s
4 is:

A = C[x ij ]1� i � j � 4:

For 0 � r � 4, denote byX s
4;r the a�ne subvariety of X s

4 consisting of matrices
of rank � r . The ideal of X s

4;r is generated by the (r + 1) � (r + 1)-minors of the
generic 4� 4 symmetric matrix (x ij ). This is in fact a prime ideal, by [104, Theorem
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6.3.1]. The rank subvarieties have the following degrees and codimensions by [47,
Proposition 12 (b)]:

variety degree codimension
X s

4;4 1 0
X s

4;3 4 1
X s

4;2 10 3
X s

4;1 8 6
X s

4;0 1 10

Since the varietiesX s
4;r are de�ned by homogeneous ideals, they give rise to projective

varieties PX s
4;r in the projective spaceP9. However, in Section 2.3 and Section 2.3

it will be convenient to work with a�ne varieties, and general (instead of special)
linear group actions.

The group GL(4; C) acts on X s
4. If M 2 GL(4; C) and X 2 X s

4, the action is as
follows:

M �X = M � X � M T :

Since any complex symmetric matrix can be diagonalized by a coordinate change,
there are �ve orbits of the action of GL(4; C) on X s

4, one per rank of the symmetric
matrix. Let:

E = C4

be a four-dimensional complex vector space. The coordinate ring ofX s
4 identi�es as

A �= Sym(S2(E)). The space of symmetric matricesX s
4 may then be identi�ed with

the dual spaceS2(E)� , so again we see that GL(E) = GL(4 ; C) acts on S2(E)� .

Representations and Pieri's rule

We shall recall some basic representation theory of the general linear group GL(W),
where W is a n-dimensional complex vector space. The irreducible representations
of GL(W) are given by Schur modulesS� (W) where � is a generalized partition:
a sequence of integers� 1 � � 2 � � � � � � n . When � = d;0; : : : ; 0, then S� (W)
is the dth symmetric power Sd(W). When � = 1; : : : ; 1; 0; : : : ; 0, with d 1's, then
S� (W) is the exterior wedge^ dW. For all partitions � there are isomorphisms of
GL(W)-representations:

S� (W)� �= S� � n ;:::; � � 1 (W) and S� (W) 
 (^ nW)
 r �= S� + r �1(W)

where1 = 1; 1; : : : ; 1. Here^ nW is the one-dimensional representationC of GL(W)
where a linear map� acts by its determinant.
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Denote by j� j := � 1 + � � � + � n . Assume� n ; � n � 0. The tensor product of
two Schur modulesS� (W) 
 S� (W) splits into irreducibles as a direct sum of Schur
modules: M

�

u(�; � ; � )S� (W)

where the sum is over partitions withj� j = j� j + j� j. The multiplicities u(�; � ; � ) 2
Z � 0 are determined by the Littlewood-Richardson rule [41, Appendix A]. In one
case, that will be important to us below, there is a particularly nice form of this rule.
Given two partitions � 0 and � , we say that� 0=� is ahorizontal strip if � 0

i � � i � � 0
i +1 .

Fact 2.11 (Pieri's rule). As GL(W)-representations, we have the rule:

S� (W) 
 Sd(W) �=
M

j � 0j = j � j + d
� 0=� is a horizontal strip

S� 0(W):

The �rst Ulrich sheaf

We are now ready to describe our �rst Ulrich sheaf on the projective varietyPX s
4;2.

We construct it as an Ulrich module supported on the varietyX s
4;2. We use notation

from Section 2.3, soE is 4-dimensional. ConsiderS3(E) 
 S2(E). By Pieri's rule
this decomposes as:

S5(E) � S4;1(E) � S3;2(E):

We therefore get a GL(E)-inclusion S3;2(E) ! S3(E) 
 S2(E) unique up to
nonzero scale. SinceA1 = S2(E) from Section 2.3, this extends uniquely to an
A-module map:

S3(E) 
 A � � S3;2(E) 
 A(� 1):

This map can easily be programmed usingMacaulay2 and the packagePieriMaps
[90]:

R=QQ[a..d]
needsPackage "PieriMaps"
f=pieri({3,2},{2,2},R)
S=QQ[a..d,y_0..y_9]
a2=symmetricPower(2,matrix{{a..d}})
alpha=sum(10,i->contract(a2_(0,i),sub(f,S))*y_i)

We can then compute the resolution of the cokernel of� in Macaulay2. It has the
form:

A20 � � A(� 1)60  � A(� 2)60  A(� 3)20:
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Thus the cokernel of� is an Ulrich module by (1) and (2)' in De�nition 2.9. An impor-
tant point is that the res command inMacaulay2computes di�erential matrices in
unenlightening bases. We completely and intrinsically describe the GL(E)-resolution
below:

Proposition 2.12. The cokernel of� is an Ulrich module M of rank 2 supported
on the variety X s

4;2. The resolution of M is GL(E)-equivariant and it is:

F� : S3(E) 
 A � � S3;2(E) 
 A(� 1)
�

 � S3;3;1(E) 
 A(� 2) (2.6)
�

 � S3;3;3(E) 
 A(� 3)

with ranks 20; 60; 60; 20, and where all di�erential maps are induced by Pieri's rule.
The dual complex of this resolution is also a resolution, and these two resolutions are
isomorphic up to twist. As in [92], we can visualize the resolution by:

0  M  �     0:

Proof. SinceM is the cokernel of a GL(E)-map, it is GL(E)-equivariant. So, the
support of M is a union of orbits. By De�nition 2.9(2), M is supported in codimen-
sion 3. Since the only orbit of codimension 3 isX s

4;2nX s
4;3, the support of M is the

closure of this orbit, which isX s
4;2. It can also easily be checked withMacaulay2, by

restricting � to diagonal matrices of rankr for r = 0; : : : ; 4, that M is supported on
the strata X s

4;r wherer � 2. Also, the statement that the rank ofM equals 2 is now
immediate from Fact 2.10.

Now we prove that the GL(E)-equivariant minimal free resolution ofM is F� as
above. By Pieri's rule there is a GL(E)-map unique up to nonzero scalar:

S3;2(E) 
 S2(E)  � S3;3;1(E)

and a GL(E)-map unique up to nonzero scalar:

S3;3;1(E) 
 S2(E)  � S3;3;3(E):

These are the maps� and � in F� respectively. The composition� � � mapsS3;3;1(E)
to a submodule ofS3(E) 
 S2(S2(E)). By [104, Proposition 2.3.8] the latter double
symmetric power equalsS4(E) � S2;2(E), and so this tensor product decomposes as:

S3(E) 
 S4(E)
M

S3(E) 
 S2;2(E):
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By Pieri's rule, none of these summands containsS3;3;1(E). Hence� � � is zero by
Schur's lemma. The same type of argument shows that� � � is zero. ThusF� is a
complex.

By our Macaulay2computation of Betti numbers before the Proposition, ker(� )
is generated in degree 2 by 60 minimal generators. InF� these must be the image
of S3;3;1(E), since that is 60-dimensional by the hook content formula and it maps
injectively to F1. So F� is exact at F1. Now again by theMacaulay2 computation,
it follows that ker � is generated in degree 3 by 20 generators. These must be the
image of S3;3;3(E) since that is 20-dimensional and maps injectively toF2. So F�

is exact at F2. Finally, the computation implies that � is injective, and F� is the
GL(E)-equivariant minimal free resolution ofM .

For the statement about the dual, recall that sinceF� is a resolution of a Cohen-
Macaulay module, the dual complex, obtained by applying HomA (� ; ! A ) with ! A =
A(� 10), is also a resolution. If we twist this dual resolution with (̂ 4E)
 3 
 A(7),
the terms will be as in the original resolution. Since the nonzero GL(E)-map � is
uniquely determined up to scale, it follows thatF� and its dual are isomorphic up to
twist.

Remark 2.13. The GL(E)-representations in this resolution could also have been
computed using theMacaulay2packageHighestWeights [42].

Remark 2.14. The dual of this resolution is:

S3;3;3(E � ) 
 A  S3;3;1(E � ) 
 A(� 1)  S3;2(E � ) 
 A(� 2)  S3(E � ) 
 A(� 3): (2.7)

A symmetric form q in S2(E � ) corresponds to a point in Spec(A) and a homomor-
phism A ! C. The �ber of this complex over the point q is then an SO(E � ; q)-
complex:

S3;3;3(E � )  S3;3;1(E � )  S3;2(E � )  S3(E � ): (2.8)

When q is a nondegenerate form, this is theLittlewood complexL3;3;3
� as de�ned in

[91, Section 4.2]. (The terms ofL3;3;3 can be computed using the plethysm in Section
4.6 of loc.cit.) This partition � = (3 ; 3; 3) is not admissible since 3 + 3> 4, see [91,
Section 4.1]. The cohomology of (2.8) is then given by [91, Theorem 4.4] and it
vanishes (since herei 4(� ) = 1 ), as it should in agreement with Proposition 2.12.
The dual resolution (2.7) of the Ulrich sheaf can then be thought of as a \universal"
Littlewood complex for the parition � = (3 ; 3; 3). In other cases when Littlewood
complexes are exact, it would be an interesting future research topic to investigate
the sheaf that is resolved by the \universal Littlewood complex".
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To obtain nicer formulas for the Chow form of the essential varietyEC in Section
2.4, we now prove that the middle map� in the resolution (2.6) is symmetric, in
the following appropriate sense. In general, suppose that we are given a linear map
W � �

�! W 
 L � where L is a �nite dimensional vector space. Dualizing, we get a

map W
� T

 � W � 
 L which in turn gives a mapW 
 L � � � W � . By de�nition,
the map � is symmetric if � = � and skew-symmetricif � = � � . If � is symmetric
and � is represented as a matrix with entries inL � with respect to dual bases ofW
and W � , then that matrix is symmetric, and analogously when� is skew-symmetric.
Note that the map � also induces a mapL

�
�! W 
 W.

Fact 2.15. The map � is symmetric if the image of� is in the subspaceS2(W) �
W 
 W and it is skew-symmetric if the image is in the subspace^ 2W � W 
 W.

Proposition 2.16. The middle map� in the resolution (2.6) is symmetric.

Proof. Consider the map� in degree 3. It is:

S3;2(E) 
 S2(E)  � S3;3;1(E) �= S3;2(E)� 
 (^ 4E)
 3

and it induces the map:

S3;2(E) 
 S3;2(E)  � S2(E)� 
 (^ 4E)
 3 �= S3;3;3;1(E):

By the Littlewood-Richardson rule, the right representation above occurs with mul-
tiplicity 1 in the left side. Now one can check thatS3;3;3;1(E) occurs in S2(S3;2(E)).
This follows by Corollary 5.5 in [19] or one can use the packageSchurRings [95] in
Macaulay2:

needsPackage "SchurRings"
S = schurRing(s,4,GroupActing=>"GL")
plethysm(s_2,s_{3,2})

Due to Fact 2.15, we can conclude that the map� is symmetric.

The second Ulrich sheaf

We construct another Ulrich sheaf onPX s
4;2 and analyze it similarly to as above. This

will lead to a second formula for Ch(EC) in Section 2.4. ConsiderS2;2;1(E) 
 S2(E).
By Pieri's rule:

S2;2;1(E) 
 S2(E) �= S4;2;1(E) � S3;2;2(E) � S3;2;1;1(E) � S2;2;2;1(E):
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Thus there is a GL(E)-map, with nonzero degree 1 components unique up to scale:

S2;2;1(E) 
 A � � (S3;2;2(E) � S3;2;1;1(E) � S2;2;2;1(E)) 
 A(� 1):

This map can be programmed inMacaulay2using PieriMaps as follows:

R=QQ[a..d]
needsPackage "PieriMaps"
f1= transpose pieri({3,2,2,0},{1,3},R)
f2=transpose pieri({3,2,1,1},{1,4},R)
f3=transpose pieri({2,2,2,1},{3,4},R)
f = transpose (f1||f2||f3)
S=QQ[a..d,y_0..y_9]
a2=symmetricPower(2,matrix{{a..d}})
alpha=sum(10,i->contract(a2_(0,i),sub(f,S))*y_i)

We can then compute the resolution of coker(� ) in Macaulay2. It has the form:

A20 � � A(� 1)60  � A(� 2)60  � A(� 3)20:

Thus the cokernel of� is an Ulrich module, and moreover we have:

Proposition 2.17. The cokernel of� is an Ulrich module M of rank 2 supported
on the variety X s

4;2. The resolution of M is GL(E)-equivariant and it is:

F� : S2;2;1(E) 
 A � � (S3;2;2(E) � S3;2;1;1(E) � S2;2;2;1(E)) 
 A(� 1)
�

 � (S4;2;2;1(E) � S3;3;2;1(E) � S3;2;2;2(E)) 
 A(� 2) (2.9)
�

 � S4;3;2;2(E) 
 A(� 3)

with ranks 20; 60; 60; 20. The dual complex of this resolution is also a resolution and
these two resolutions are isomorphic up to twist. We can visualize the resolution by:

0  M  �  � �  � �   0:

Proof. The argument concerning the support ofM is exactly as in Proposition 2.12.
Now we prove that the minimal free resolution ofM is of the form above, di�er-

ently than in Proposition 2.12. To start, note that the moduleS4;2;2;1(E) occurs by
Pieri once in each of:

S3;2;2(E) 
 S2(E); S3;2;1;1(E) 
 S2(E); S2;2;2;1(E) 
 S2(E):
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On the other hand, it occurs in:

S2;2;1(E) 
 S2(S2(E)) �= S2;2;1(E) 
 S4(E) � S2;2;1(E) 
 S2;2(E)

only twice, as seen using Pieri's rule and the Littlewood-Richardson rule. Thus
S4;2;2;1(E) occurs at least once in the degree 2 part of ker(� ). Similarly we see that
each ofS3;3;2;1(E) and S3;2;2;2(E) occurs at least once in ker(� ) in degree 2. But
by the Macaulay2 computation before this Proposition, we know that ker(� ) is a
module with 60 generators in degree 2. And the sum of the dimensions of these
three representations is 60. Hence each of them occurs exactly once in ker(� ) in
degree 2, and they generate ker(� ).

Now let C be the 20-dimensional vector space generating ker(� ). Since the reso-
lution of M has length equal to codim(M ), the module M is Cohen-Macaulay and
the dual of its resolution, obtained by applying HomA (� ; ! A ) where ! A

�= A(� 4), is
again a resolution of Ext3A (M; ! A ). Thus the map from C 
 A(� 3) to each of:

S4;2;2;1(E) 
 A(� 2); S3;3;2;1(E) 
 A(� 2); S3;2;2;2(E) 
 A(� 2)

is nonzero. In particularC maps nontrivially to:

S3;2;2;2(E) 
 S2(E) �= S5;2;2;2(E) � S4;3;2;2(E):

Each of the right-hand side representations have dimension 20, so one of them equals
C. However only the last one occurs inS3;3;2;1(E) 
 S2(E), and soC �= S4;3;2;2(E).
We have proven that the GL(E)-equivariant minimal free resolution ofM indeed has
the form F� .

For the statement about the dual, recall that each of the three components of�
in degree 1 are nonzero. Also, as the dual complex is a resolution, here obtained by
applying HomA (� ; ! A ) with ! A = A(� 10), all three degree 1 components of� are
nonzero. If we twist this dual resolution with (̂ 4E)
 4 
 A(7), the terms will be as
in the original resolution. Because each of the three nonzero components of the map
� are uniquely determined up to scale, the resolutionF� and its dual are isomorphic
up to twist.

Remark 2.18. Again the GL(E)-representations in this resolution could have been
computed using theMacaulay2packageHighestWeights .

Proposition 2.19. The middle map� in the resolution (2.9) is symmetric.
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Proof. We �rst show that the three `diagonal' components of� in (2.9) are symmetric:

S3;2;2(E) 
 S2(E)
� 1 � S4;2;2;1(E)

S3;2;1;1(E) 
 S2(E)
� 2 � S3;3;2;1(E)

S2;2;2;1(E) 
 S2(E)
� 3 � S3;2;2;2(E):

Twisting the third component � 3 with ( ^ 4E � )
 2, it identi�es as:

E � 
 S2(E)  � E

and so� 3 is obviously symmetric. Twisting the second map� 2 with ^ 4E � it identi�es
as:

S2;1(E) 
 S2(E)  � S2;2;1(E) = ( S2;1(E)� ) 
 (^ 4E)
 2;

which induces the map:

S2;1(E) 
 S2;1(E)  � S2(E)� 
 (^ 4E)
 2 = S2;2;2(E):

By the Littlewood-Richardson rule, the left tensor product containsS2;2;2(E) with
multiplicity 1. By Corollary 5.5 in [19] or SchurRings in Macaulay2, this is in
S2(S2;1(E)):

needsPackage "SchurRings"
S = schurRing(s,4,GroupActing=>"GL")
plethysm(s_2,s_{2,1})

So by Fact 2.15, the component� 2 is symmetric. The �rst map � 1 may be identi�ed
as:

S3;2;2(E) 
 S2(E)  � (S3;2;2(E)) � 
 (^ 4E)
 4;

which induces the map:

S3;2;2(E) 
 S3;2;2(E)  � S2(E)� 
 (^ 4E)
 4 = S4;4;4;2(E):

Again by Littlewood-Richardson, S4;4;4;2(E) is contained with multiplicity 1 in the
left side. By Corollary 5.5 in [19] or the packageSchurRings in Macaulay2, this is
in S2(S3;2;2(E)):

needsPackage "SchurRings"
S = schurRing(s,4,GroupActing=>"GL")
plethysm(s_2,s_{3,2,2})
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It is now convenient to tensor the resolution (2.9) by (̂ 4E � )
 2, and to let:

T1 = S1;0;0;� 2(E); T2 = S1;0;� 1;� 1(E); T3 = S0;0;0;� 1(E):

We can then write the middle map as:

T1 
 A(� 1)� T2 
 A(� 1)� T3 
 A(� 1)

0

B
@

� 1 � 2 � 2

� 1 � 2 0
� 1 0 � 3

1

C
A

 � T �
1 
 A(� 2)� T �

2 
 A(� 2)� T �
3 
 A(� 2)

(2.10)
Note indeed that the component:

S1;0;� 1;� 1(E) 
 S2(E) = T2 
 S2(E)  � T �
3

�= S1(E)

must be zero, since the left tensor product does not containS1(E) by Pieri's rule.
Similarly the map T3 
 S2(E)  � T �

2 is zero.
We know the maps� 1; � 2 and � 3 are symmetric. Consider:

T2 
 A(� 1)
� 1 � T �

1 
 A(� 2); T1 
 A(� 1)
� 2 � T �

2 
 A(� 2):

Since the resolution (2.9) is isomorphic to its dual, either both� 1 and � 2 are nonzero,
or they are both zero. Suppose both are nonzero. The dual of� 2 is (up to twist)

T2 
 A(� 1)
� T

2 � T �
1 
 A(� 2). But such a GL(E)-map is unique up to scalar, as is

easily seen by Pieri's rule. Thus whatever the case we can say that� 1 = c� � T
2 for

some nonzero scalarc� . Similarly we get � 1 = c� � T
2 . Composing the map (2.10) with

the automorphism on its right given by the block matrix:
0

@
1 0 0
0 c� 0
0 0 c�

1

A ;

we get a middle map:

T1
 A(� 1)� T2
 A(� 1)� T3
 A(� 1)

0

B
@

� 1 � 0
2 � 0

2
� 1 � 0

2 0
� 1 0 � 0

3

1

C
A

 � T �
1 
 A(� 2)� T �

2 
 A(� 2)� T �
3 
 A(� 2)

where the diagonal maps are still symmetric, and� 1 = ( � 0
2)T and � 1 = ( � 0

2)T . So we
get a symmetric map, and the result about� follows.
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This second Ulrich module constructed above in Proposition 2.17 is a particular
instance of a general construction of Ulrich modules on the variety of symmetric
n � n matrices of rank� r ; see [104], Section 6.3 and Exercise 34 in Section 6. We
brie
y recall the general construction. Let W = Cn and G be the Grassmannian
Gr(n � r; W ) of (n � r )-dimensional subspaces ofW. There is a tautological exact
sequence of algebraic vector bundles onG:

0 ! K ! W 
 O G ! Q ! 0;

where r is the rank of Q. Let X = X s
n be the a�ne space of symmetricn � n

matrices, and de�neZ to be the incidence subvariety ofX � G given by:

Z = f ((W
�

�! W); (Cn� r i
,! W)) 2 X � G j � � i = 0g:

The variety Z is the a�ne geometric bundle VG(S2(Q)) of the locally free sheaf
S2(Q) on the GrassmannianG. There is a commutative diagram:

Z ���! X � G
?
?
y

?
?
y

X s
n;r ���! X

in which Z is a desingularization ofX s
n;r . For any locally free sheafE, the Schur

functor S� applies to give a new locally free sheafS� (E). Consider then the locally
free sheaf:

E(n; r ) = S(n� r ) r (Q) 
 Sn� r � 1;n � r � 2;��� ;1;0(K)

on the Grassmannian Gr(n � r; W ). Note that S(n� r ) r (Q) = (det( Q))n� r is a line

bundle andE(n; r ) is a locally free sheaf of rank 2(
n � r

2 ). Let Z
p

�! G be the projection
map. By pullback we get the locally free sheafp� (E(n; r )) on Z . The pushforward
of this locally free sheaf down toX s

n;r is an Ulrich sheaf on this variety. SinceX s
n;r

is a�ne this corresponds to the module of global sectionsH 0(Z; p� E). The Ulrich
module in Proposition 2.17 is that module whenn = 4 and r = 2. For our com-
putational purposes realized in Section 2.4, we worked out the equivariant minimal
free resolution as above. Interestingly, we do not know yet whether the `simpler'
Ulrich sheaf presented in Section 2.3, which is new to our knowledge, generalizes to
a construction for other varieties.
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2.4 The Chow form of the essential variety

Grassmannians and Chow divisors

The Grassmannian variety Gr(c; n + 1) = Gr( Pc� 1; Pn ) parametrizes the linear sub-
spaces of dimensionc � 1 in Pn , i.e the Pc� 1's in Pn . Such a linear subspace may be
given as the rowspace of ac � (n + 1) matrix. The tuple of maximal minors of this
matrix is uniquely determined by the linear subspace up to scale. The number of

such minors is
�

n + 1
c

�
. Hence we get a well-de�ned point in the projective space

P(n +1
c )� 1. This de�nes an embedding of the Grassmannian Gr(c; n + 1) into that

projective space, called the Pl•ucker embedding. Somewhat more algebraically, let
W be a vector space of dimensionn + 1 and let P(W) be the space of lines inW
through the origin. Then a linear subspaceV of dimensionc in W de�nes a line^ cV
in ^ cW, and so it de�nes a point in P(^ cW) = P(n +1

c )� 1. Thus the Grassmannian
Gr(c; W) embeds intoP(^ cW).

If X is a variety of codimensionc in a projective spacePn , then a linear subspace of
dimensionc� 1 will typically not intersect X . The set of points in the Grassmannian
Gr(c; n+ 1) that do have nonempty intersection with X forms a divisor in Gr(c; n+
1), called the Chow divisor. This is seen by counting dimensions in the incidence
diagram:

X  ��� X = f (x; L ) 2 X � Gr(Pc� 1; Pn )
�
� x 2 Lg ���! Gr(Pc� 1; Pn ):

In detail, the �bers of the left projection are isomorphic to Gr(Pc� 2; Pn� 1), so they
have dimension (c � 1)(n � c + 1). We conclude that

dim(X ) = ( c � 1)(n � c + 1) + ( n � c) = c(n + 1 � c) � 1:

Since the right arrow is degree 1 onto its image, that image has dimension dim(X ),
which is 1 less than dim(Gr(c; n + 1)). Next recall that the divisor class group of
Gr(c; n + 1) is isomorphic to Z. Considering the Pl•ucker embedding Gr(c; n + 1) �
P(n +1

c )� 1, any hyperplane in the latter projective space intersects the Grassmannian
in a divisor which generates the divisor class group of Gr(c; n+1). This follows from
an application of [49, Chapter II, Proposition 6.5(c)]. The homogeneous coordinate
ring of this projective spaceP(n +1

c )� 1 = P(^ cW) is Sym(̂ cW � ). Note that here^ cW �

are the linear forms, i.e. the elements of degree 1. IfX has degreed, then its Chow
divisor is cut out by a single form Ch(X ) of degreed unique up to nonzero scale, called
the Chow form, in the coordinate ring of the Grassmannian Sym(̂cW � )=IGr( c;n+1) .
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As the parametersn; c; d increase, Chow forms become unwieldy to even store on
a computer �le. Arguably, the most e�cient (and useful) representations of Chow
forms are as determinants or Pfa�ans of a matrix with entries in ^ cW � . As we
explain next, Ulrich sheaves can give such formulas.

Construction of Chow forms

We now explain how to obtain the Chow form Ch(X ) of a variety X from an Ul-
rich sheaf F whose support isX . The reference for this is [34, p. 552-553]. Let
M = � d2 ZH 0(Pn ; F (d)) be the graded module of twisted global sections over the
polynomial ring A = C[x0; : : : ; xn ]. We write W � for the vector space generated by
the variablesx0; : : : ; xn . Consider the minimal free resolution (2.5) ofM . The map
di may be represented by a matrixD i of size � i � � i +1 , with entries in the linear
spaceW � . Since (2.5) is a complex the product of two successive matricesD i � 1D i

is the zero matrix. Note that when we multiply the entries of these matrices, we are
multiplying elements in the ring A = Sym(W � ) = C[x0; : : : ; xn ].

Now comes the shift of view: LetB = � n
i =0 ^ i W � be the exterior algebra on the

vector spaceW � . We now consider the entries in theD i (which are all degree one
forms in A1 = W � = B1) to be in the ring B instead. We then multiply together all
the matricesD i corresponding to the mapsdi . The multiplications of the entries are
performed in the skew-commutative ringB. We then get a product:

D = D0 � D1 � � � Dc� 1;

wherec is the codimension of the varietyX which supportsF . If F has rankr and
the degree ofX is d, the matrix D is a nonzerord � rd matrix. The entries in the
product D now lie in ^ cW � . Now comes the second shift of view: We consider the
entries of D to be linear forms in the polynomial ring Sym(̂ cW � ). Then we take
the determinant of D, computed in this polynomial ring, and get a form of degree
rd in Sym(^ cW � ). When considered in the coordinate ring of the Grassmannian
Sym(̂ cW � )=IG, then det(D) equals ther th power of the Chow form ofX . For more
information on the fascinating links between the symmetric and exterior algebras,
the reader can start with the Bernstein-Gel'fand-Gel'fand correspondence as treated
in [32].

Skew-symmetry of the matrices computing the Chow form
of PX s

4;2

In Section 2.3 we constructed two di�erent Ulrich modules of rank 2 on the variety
PX s

4;2 of symmetric 4� 4 matrices of rank� 2. That variety has degree 10. The
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matrix D thus in both cases is 20� 20, and its determinant is a square in Sym(̂cW � )
as we now show. In fact, and here our analysis of the equivariant resolutions pays o�,
the matrix D in both cases is skew-symmetric when we use the bases distinguished
by representation theory for the di�erential matrices:

Lemma 2.20. Let A; B; C be matrices of linear forms in the exterior algebra. Their
products behave as follows under transposition:

1. (A � B)T = � B T � AT

2. (A � B � C)T = � CT � B T � AT .

Proof. Part (1) is becauseuv = � vu when u and v are linear forms in the exterior
algebra. Part (2) is becauseuvw = � wvu for linear forms in the exterior algebra.

The resolutions (2.6) and (2.9) of our two Ulrich sheaves, have the form:

F � � G
�

 � G� �
 � F � : (2.11)

Dualizing and twisting we get the resolution:

F
� T

 � G
� T

 � G� � T

 � F � :

Since � = � T , both � and � T map isomorphically onto the same image. We can
therefore replace the map� in (2.11) with � T , and get the GL(E)-equivariant reso-
lution:

F � � G
�

 � G� � T

 � F � :

Let � ; � and � T be the maps in the resolution above, but now considered to live over
the exterior algebra. The Chow form associated to the two Ulrich sheaves is then
the Pfa�an of the matrix:

� � � T :

Proposition 2.21. The Chow formCh(PX s
4;2) constructed from the Ulrich sheaf is,

in each case, the Pfa�an of a 20� 20 skew-symmetric matrix.

Proof. The Chow form squared is the determinant of� � � T and we have:
�
� � � T

� T
= � (� T )T � T � T = � � � � T :
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Explicit matrices computing the Chow form of PX s
4;2

Even though our primary aim is to compute the Chow form of the essential variety,
we get explicit matrix formulas for the Chow form ofPX s

4;2 as a by-product of our
method. We carried out the computation in Proposition 2.21 inMacaulay2for both
Ulrich modules onPX s

4;2. We used the packagePieriMaps to make matricesD1 and
D2 representing� and � with respect to the built-in choice of bases parametrized
by semistandard tableaux. We had to multiplyD2 on the right by a change of basis
matrix to get a matrix representative with respect to dual bases, i.e. symmetric.
For example in the case of the �rst Ulrich module (2.6) this change of basis matrix
computes the perfect pairingS3;2(E) 
 S3;3;1(E) ! (^ 4E)
 3. Let us describe the
transposed inverse matrix that represents the dual pairing. Columns are labeled
by the semistandard Young tableauxS of shape (3; 2), and rows are labeled by the
semistandard Young tableauxT of shape (3; 3; 1). The (S; T)-entry in the matrix is
obtained by �tting together the tableau S and the tableauT rotated by 180� into a

tableau of shape (3; 3; 3; 3), straightening, and then taking the coe�cient of
0 0 0
1 1 1
2 2 2
3 3 3

.

To �nish for each Ulrich module, we took the productD1D2D T
1 over the exterior

algebra.
The two resulting explicit 20� 20 skew-symmetric matrices are available asarXiv

ancillary �les or at this chapter's webpage1. Their Pfa�ans equal the Chow form
of PX s

4;2, which is an element in the homogeneous coordinate of the Gr(3; 10) =
Gr(P2; P9). To get a feel for the `size' of this Chow form, note that this ring is a
quotient of the polynomial ring Sym(̂ 3Sym2(E)) in 120 Pl•ucker variables, denoted
Q[pf 11;12;13g; : : : ; pf 33;34;44g] on our website, by the ideal minimally generated by 2310
Pl•ucker quadrics. We can compute that the degree 10 piece where Ch(PX s

4;2) lives
is a 108,284,013,552-dimensional vector space.

Both 20� 20 matrices a�ord extremely compact formulas for this special element.
Their entries are linear forms inpf 11;12;13g; : : : ; pf 33;34;44g with one- and two-digit rel-
atively prime integer coe�cients. No more than 5 of thep-variables appear in any
entry. In the �rst matrix, 96 o�-diagonal entries equal 0. The matrices give new
expressions for one of the two irreducible factors of a discriminant studied since 1879
by [89] and as recently as 2011 [87], as we see next in Remark 2.22.

Remark 2.22. From the subject of plane curves, it is classical that every ternary
quartic form f 2 C[x; y; z]4 can be written asf = det( xA + yB + zC) for some 4� 4
symmetric matricesA; B; C . Geometrically, this expresses V(f ) inside the net of

1http://math.berkeley.edu/ ~jkileel/ChowFormulas.html
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plane quadricshA; B; C i as the locus of singular quadrics. By Theorem 7.5 of [87],
that plane quartic curve V(f ) is singular if and only if the Vinnikov discriminant:

�( A; B; C ) = M (A; B; C )P(A; B; C )2

evaluates to 0. HereM is a degree (16; 16; 16) polynomial known as the tact invariant
and P is a degree (10; 10; 10) polynomial. The factor P equals the Chow form
Ch(PX s

4;2) after substituting Pl•ucker coordinates for Stiefel coordinates:

pf i 1 j 1 ;i 2 j 2 ;i 3 j 3g = det

0

@
ai 1 j 1 ai 2 j 2 ai 3 j 3

bi 1 j 1 bi 2 j 2 bi 3 j 3

ci 1 j 1 ci 2 j 2 ci 3 j 3

1

A :

Explicit matrices computing the Chow form of EC

We now can put everything together and solve the problem raised by Agarwal, Lee,
Sturmfels and Thomas in [1] of computing the Chow form of the essential variety. In
Proposition 2.7, we constructed a linear embeddings: P8 ,! P9 that restricts to an
embeddingEC ,! PX s

4;2. Both of our Ulrich sheaves supported onPX s
4;2 pull back

to Ulrich sheaves supported onEC, and their minimal free resolutions pull back to
minimal free resolutions:

s� F s� � ��� s� G
s� �

 ��� s� G� s� � t

 ���� s� F � :

Here we veri�ed in Macaulay2 that s� quotients by a linear form that is a nonzero
divisor for the two Ulrich modules. So, to get the Chow form Ch(EC) from Propo-
sitions 2.12 and 2.17, we took matricesD1 and D2 symmetrized from above, and
applied s� . That amounts to substituting x ij = s(M ) ij , wheres(M ) is from Section
2.2. We then multiplied D1D2D T

1 , which is a product of a 20� 60, a 60� 60 and a
60� 20 matrix, over the exterior algebra.

The two resulting explicit 20� 20 skew-symmetric matrices are available at the
chapter's webpage. Their Pfa�ans equal the Chow form ofEC, which is an element
in the homogeneous coordinate of Gr(P2; P8). We denote that ring as the polynomial
ring in 84 (dual) Pl•ucker variables Q[qf 11;12;13g; : : : ; qf 31;32;33g] modulo 1050 Pl•ucker
quadrics. Here Ch(EC) lives in the 9,386,849,472-dimensional subspace of degree 10
elements.

Both matrices are excellent representations of Ch(EC). Their entries are linear
forms in qf 11;12;13g; : : : ; qf 31;32;33g with relatively prime integer coe�cients less than
216 in absolute value. In the �rst matrix, 96 o�-diagonal entries vanish, and no
entries have full support.
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Bringing this back to computer vision, we can now prove our main result stated
in Section 2.1:

Proof of Theorem 2.1. We �rst construct M (x(i ) ; y(i )), and then we prove that it has
the desired properties. For the construction, letZ denote the 6� 9 matrix:

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

y(1)
1 x(1)

1 y(1)
1 x(1)

2 y(1)
1 y(1)

2 x(1)
1 y(1)

2 x(1)
2 y(1)

2 x(1)
1 x(1)

2 1

y(2)
1 x(2)

1 y(2)
1 x(2)

2 y(2)
1 y(2)

2 x(2)
1 y(2)

2 x(2)
2 y(2)

2 x(2)
1 x(2)

2 1

y(3)
1 x(3)

1 y(3)
1 x(3)

2 y(3)
1 y(3)

2 x(3)
1 y(3)

2 x(3)
2 y(3)

2 x(3)
1 x(3)

2 1

y(4)
1 x(4)

1 y(4)
1 x(4)

2 y(4)
1 y(4)

2 x(4)
1 y(4)

2 x(4)
2 y(4)

2 x(4)
1 x(4)

2 1

y(5)
1 x(5)

1 y(5)
1 x(5)

2 y(5)
1 y(5)

2 x(5)
1 y(5)

2 x(5)
2 y(5)

2 x(5)
1 x(5)

2 1

y(6)
1 x(6)

1 y(6)
1 x(6)

2 y(6)
1 y(6)

2 x(6)
1 y(6)

2 x(6)
2 y(6)

2 x(6)
1 x(6)

2 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

where the columns ofZ are labeled by 11; 12; : : : ; 33 respectively. Now setqijk to
be the determinant ofZ with columns i; j; k removed, and substitute into either of
20� 20 skew-symmetric matrices above that compute the Chow form Ch(EC). This
constructsM (x(i ) ; y(i )).

Observe that M (x(i ) ; y(i )) drops rank if and only if the subspace ker(Z ) � P8

intersectsEC. This follows by de�nition of the Chow form, since the Pl•ucker coordi-
nates of ker(Z ) equal the maximal minors ofZ when Z is full-rank [43, p. 94]. Said
di�erently:

M (x(i ) ; y(i )) drops rank () 9 M 2 EC such that 8i = 1; : : : 6

�
y(i )

1 y(i )
2 1

�
M

0

B
@

x(i )
1

x(i )
2

1

1

C
A = 0: (2.12)

Indeed, (2.12) is a linear system forM 2 EC, while Z is the coe�cient matrix of that
system.

In the rest of the proof of Theorem 2.1, we relate solutions of (2:1) to solutions of
(2:12). As goes computer vision parlance, we will move between cameras and world
points to relative poses, and then back. In the �rst direction, givenf (x(i ) ; y(i ))g,
suppose that we have a solutionA; B; gX (1) ; : : : ; gX (6) to (2.1). Note that the group:

G := f g 2 GL(4; C) j (gij )1� i;j � 3 2 SO(3; C) and g41 = g42 = g43 = 0g
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equals the stabilizer of the set of calibrated camera matrices insideC3� 4, with respect
to right multiplication. We now make two simplifying assumptions about our solu-
tion to (2:1).

� Without loss of generality, A = [ id 3� 3 j 0 ]. For otherwise, selectg 2 G so that
Ag = [ id 3� 3 j 0 ], and then Ag; Bg; g� 1 gX (1) ; : : : ; g� 1 gX (6) is also a solution to
(2:1).

� Denoting B = [ R j t ] for R 2 SO(3; C) and t 2 C3, then without loss of
generality, t 6= 0. For otherwise, we may zero out the last coordinate of each
gX (i ) and replaceB by [ R j t0] for any t0 2 C3, and then we still have a solution
to the system (2:1).

Denote [t ]� :=

0

@
0 t3 � t2

� t3 0 t1

t2 � t1 0

1

A . Set M = [ t ]� R. Then M 2 EC and M is a

solution to (2.12), as for eachi = 1; : : : ; 6 we have:

�
y(i )

1 y(i )
2 1

�
M

0

B
@

x(i )
1

x(i )
2

1

1

C
A � (B gX (i ))

T
M (A gX (i ))

= gX (i )
T �

[ R j t ]T [ t ]� R [ id3� 3 j 0 ]
�

gX (i )

= gX (i )
T �

[ R j 0 ]T [ t ]� [R j 0 ]
�

gX (i )

= 0:

Here the second-to-last equality is becausetT [ t ]� = 0, and the last equality is
because the matrix in parentheses is skew-symmetric. We have shown the second
sentence in Theorem 2.1.

Conversely, givenf (x(i ) ; y(i ))g, let us start with a solution M 2 EC to system
(2.12). From this, we will produce a solution to (2.1)provided thatM is su�ciently
nice. More precisely, assume:

1. M may be factored as a skew-symmetric matrix times a rotation matrix, i.e.
M = [ t ]� R wheret 2 C3 and R 2 SO(3; C).

2. For i = 1; : : : ; 6, we have
�

y(i )
1 y(i )

2 1
�

M 6= 0 and M
�

x(i )
1 x(i )

2 1
� T

6= 0.



CHAPTER 2. TWO CAMERAS 32

For readers of [48, Section 9.2.4], condition 2 means thatf (x(i ) ; y(i ))g avoids the
epipoles of M . Supposing conditions 1 and 2 hold, we setA = [ id 3� 3 j 0 ] and
B = [ R j t ]. Then there exists gX (i ) 2 P3 such that A gX (i ) � fx(i ) and B gX (i ) � fy(i ) .
Indeed (dropping i for convenience), we takeeX =

�
x1 x2 1 �

� T
where � 2 C

satis�es Rex + �t � ey. To �nd such � , we solve
�
Rex t ey

�
3� 3

0

@
1
�

� �

1

A = 0 for

�; � 2 C with � 6= 0. These equations are soluble since:

� 0 = eyT M ex = eyT [ t ]� Rex = det
�
Rex t ey

�
by Laplace expansion along the

third column.

� 0 6= M ex = t � Rex ) columnst and Rex are linearly independent. Likewise,
0 6= eyT M = eyT [ t ]� R ) columnsey and t are linearly independent.

This produces cameras and world pointsA; B; eX (1) ; : : : ; eX (6) satisfying (2.1),
given an essential matrixM satisfying the epipolar constraints (2:12) as well as the
two regularity conditions above. To complete the proof of Theorem 2.1, it is enough
to show that in the variety of point correspondencesf (x(i ) ; y(i ))g where (2:12) is
soluble, there is a dense, open subset of point correspondences where all solutions
M 2 EC satisfy conditions 1 and 2 above.

To this end, consider the diagram below, with projections� 1 and � 2 respectively:

(C2 � C2)6  ��� (C2 � C2)6 � E C ���! E C:

Inside (C2 � C2)6 � E C with coordinates (x; y; M ), we consider three incidence vari-
eties:

I 0 :=
� �

x; y; M
� �

�
� fy(i )

T
M gx(i ) = 0 for each i = 1 ; : : : ; 6

�

I 1 :=
� �

x; y; M
�

2 I 0

�
�
� M does not factor as M = [ t ]� R for any t 2 C3; R 2 SO(3; C)

�

I 2 :=
� �

x; y; M
�

2 I 0

�
�
� M gx(i ) = 0 or fy(i )

T
M = 0 for some i = 1 ; : : : ; 6

�
:

So, � 1(I 0) is the variety of point correspondences where (2.12) is soluble, i.e. the
hypersurfaceV

�
det(M (x(i ) ; y(i )))

�
� (C2 � C2)6, while � 1(I 0) n

�
� 1(I 1) [ � 1(I 2)

�

consists of those point correspondences where (2.12) is soluble and all solutions to
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(2.12) satisfy conditions 1 and 2 above. We will show that� 1(I 1) and � 1(I 2) are
closed subvarieties with dimension< 23.

For I 1, note that � 2(I 1) � E C is a closed subvariety, the complement of the open
orbit from the proof of Proposition 2.2, i.e. the 4-dimensional Tan(S). Also each
�ber of � 2j I 1 is 18-dimensional. It follows thatI 1 is closed and 22-dimensional. So
� 1(I 1) is closed and has dimension� 22.

Next for I 2, note that � 2j I 2 surjects ontoEC and has general �bers that are 17-
dimensional. SoI 2 is closed and 22-dimensional, implying that� 1(I 1) is closed and
has dimension� 22.

At this point, we have shown the converse in Theorem 2.1, and this completes
the proof.

We illustrate the main theorem with two examples. Note that since the �rst
example is a `positive', it is a strong (and reassuring) check of correctness for our
formulas.

Example 2.23. Consider the image data of 6 point correspondencesf ( fx(i ) ; fy(i )) 2
P2 � P2 j i = 1; : : : ; mg given by the corresponding rows of the two matrices:

[ fx(i ) ] =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0 0 1
1 � 1 1

0 �
1
2

1

� 3 0 1

3
2

�
5
2

1

1
1
7

1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

[ fy(i ) ] =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

8
11

16
11

1

7
22

5
22

1

8
29

34
29

1

17
20

� 1 1

1
7

1
7

1

9
4

3
4

1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

In this example, they do come from world pointsgX (i ) 2 P3 and calibrated cameras
A; B :

� gX (i )
�

=

0

B
B
B
B
B
B
@

0 0 2 1
1 � 1 1 1
0 � 2 4 1
3 0 � 1 1
3 � 5 2 1
7 1 7 1

1

C
C
C
C
C
C
A

; A =

0

@
1 0 0 0
0 1 0 0
0 0 1 0

1

A ; B =

0

B
B
B
B
B
B
@

7
9

4
9

4
9

0

�
4
9

�
1
9

8
9

0

4
9

�
8
9

1
9

1

1

C
C
C
C
C
C
A

:
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To detect this, we form the 6� 9 matrix Z from the proof of Theorem 2.1:

Z =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0 0
8
11

0 0
16
11

0 0 1

7
22

�
7
22

7
22

5
22

�
5
22

5
22

1 � 1 1

0 �
4
29

8
29

0 �
17
29

34
29

0 �
1
2

1

�
51
20

0
17
20

3 0 � 1 � 3 0 1

3
14

�
5
14

1
7

3
14

�
5
14

1
7

3
2

�
5
2

1

9
4

9
28

9
4

3
4

3
28

3
4

1
1
7

1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

We substitute the maximal minors of Z into the matrices computing Ch(EC) in
Macaulay2. The determinant command then outputs 0. This computation recovers
the fact that the point correspondences are images of 6 world points under a pair of
calibrated cameras.

Example 2.24. Random data f (x(i ) ; y(i )) 2 R2 � R2 j i = 1; : : : ; 6g is expected to
land outside the Chow divisor ofEC. We made an instance using therandom(QQ)
command inMacaulay2for each coordinate of image point. The coordinates ranged

from
1
8

to 5 in absolute value. We carried out the substitution from Example 2.23,

and got two full-rank skew-symmetric matrices with Pfa�ans � 5:5 � 1025 and �
1:3 � 1022, respectively. These matrices certi�ed that the system (2.1) admits no
solutions for that random input.

The following proposition is based on general properties of Chow forms, collec-
tively known as the U-resultant method to solve zero-dimensional polynomial sys-
tems. In our situation, it gives a connection with the `�ve-point algorithm' for
computing essential matrices. The proposition is computationally ine�cient as-is
for that purpose, but see [80] for a more e�cient algorithm that would exploit our
matrix formulas for Ch(EC). Implementing the algorithms in [80] for our matrices is
one avenue for future work.

Proposition 2.25. Given a generic5-tuple f (x(i ) ; y(i )) 2 R2 � R2 j i = 1; : : : ; 5g, if
we make the substitution from the proof of Theorem2.1, then the Chow formCh(EC)
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specializes to a polynomial inR[x(6)
1 ; x(6)

2 ; y(6)
1 ; y(6)

2 ]. Over C, this specialization com-
pletely splits as:

10Y

i =1

�
y(6)

1 y(6)
2 1

�
M (i )

0

B
@

x(6)
1

x(6)
2

1

1

C
A :

Here M (1) ; : : : ; M (10) 2 EC are the essential matrices determined by the given �ve-
tuple.

Proof. By the proof of Theorem 2.1, any zero of the above product is a zero of the
specialization of Ch(EC). By Hilbert's Nullstellensatz, this implies that the product
divides the specialization. But both polynomials are inhomogeneous of degree 20, so
they are � .

2.5 Numerical experiments with noisy point
correspondences

In this section, we step back from the algebraic derivation above, and evaluate the
output on noisy data. Commonly, a shortcoming in applications of algebra is that
exact formulae cannot handle inexact data. In the present case, correctly matched
point pairs come to the computer vision practitioner with noise, from the optical
process in the camera itself as well as from pixelation. See Chapter 4 for a treatment
of the related issue of image distortion.

Question 2.26. While in Theorem 2.1 the matrix M (x; y) drops rank when there is
an exact solution to(2.1), how can we tell if there is an approximate solution?

Since we have a matrix formula instead of a gigantic fully expanded polynomial
formula, there is a positive answer to Question 2.26. We calculate the Singular Value
Decomposition of the matricesM (x; y) from Theorem 2.1, when a noisy six-tuple
of image point correspondences is plugged in. An approximately rank-de�cient SVD
is expected when there exists an approximate solution to (2:1), as Singular Value
Decomposition is numerically stable [26, Section 5.2]. In a slogan: givenmatrix
formulas, we look atspectral gaps in the presence of noise.

Here is experimental evidence this works. For experiments, we assumed uniform
noise from unif [� 10� r ; 10� r ]; this arises in image processing from pixelation [14,
Section 4.5]. For eachr = 1; 1:5; 2; : : : ; 15, we executed 500 of the following trials:
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Figure 2.1: Both matrices from Theorem 2.1 detect approximately consistent point pairs.

� Pseudo-randomly generate an exact six-tuple of image point correspondences

f (x(i ) ; y(i )) 2 Q2 � Q2 j i = 1; : : : ; 6g

with coordinates of sizeO(1).

� Corrupt each image coordinate in the six-tuple by adding an independent and
identically distributed sample fromunif [� 10� r ; 10� r ].

� Compute the SVD's of both20 � 20 matrices M (x; y), derived from the �rst
and second Ulrich sheaf respectively, with the above noisy image coordinates
plugged in.

These experiments were performed inMacaulay2 using double precision for all

oating-point arithmetic. Since it is a little subtle, we elaborate on our algorithm to
pseudo-randomly generate exact correspondences in the �rst bullet. It breaks into
three steps:

1. Generate calibrated camerasA; B 2 Q3� 4. To do this, we sample twice from
the Haar measure on SO(3; R) and sample twice from the uniform measure on
the radius 2 ball centered at the origin inR3. Then we concatenate nearby
points in SO(3; Q) and Q3 to obtain A and B. To �nd the nearby rotations,
we pullback underR3 �! S3nf N g �! SO(3; R), we take nearby points inQ3,
and then we pushforward.
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2. Generate world pointsX (i ) 2 Q3 (i = 1; : : : ; 6). To do this, we sample six
times from the uniform measure on the radius 6 ball centered at the origin in
R3 (a choice �tting with some real-world data) and then we replace those by
nearby points in Q3.

3. Set fx(i ) � A gX (i ) and gy(i ) � B gX (i ) .

The most striking takeaway of our experiments is stated in the following result
concerning the bottom spectral gaps we observed. Bear in mind that sinceM (x; y)
is skew-symmetric, its singular values occur with multiplicity two, so� 19(M (x; y)) =
� 20(M (x; y)).

Empirical Fact 2.27. In the experiments described above, we observed for both
matrices:

� 18(M (x; y))
� 20(M (x; y))

= O(10r ):

Here M (x; y) has r-noisy image coordinates, and� i denotes thei th largest singular
value.

Figure 2.1 above plots Log10

�
� 18(M (x; y))
� 20(M (x; y))

�
averaged over the 500 trials againstr .

In this chapter, we resolved an open problem raised by Sameer Agarwal, vi-
sion expert at Google Research, by characterizing consistent point pairs across two
calibrated views. Our output is an explicit matrix formula, robust to noisy measure-
ments, which could be used for screening out wrongly matched point pairs inside
RANSAC loops. Our derivation combined the algebraic theory of Ulrich sheaves
with a geometric study based on secant varieties. In particular, we constructed a
new low rank equivariant Ulrich sheaf supported on a determinantal variety.
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Chapter 3

Three Cameras

This chapter is mostly based on my single-authored paper [61] about the recovery of
3 calibrated cameras from image data, to be published in theSIAM Journal on Ap-
plied Algebra and Geometry. The last section presents a general-purpose homotopy-
continuation software for implicitization in computational algebraic geometry, joint
with Justin Chen [21], currently submitted for publication and publicly released.

3.1 Introduction

As described in Chapter 1, 3D reconstruction is a fundamental task in computer
vision, i.e. the recovery of three-dimensional scene geometry from two-dimensional
images. In 1981, Fischler and Bolles proposed a methodology for 3D reconstruction
that is robust to outliers in image data [37]. This is known as Random Sampling
Consensus (RANSAC) and it is a paradigm in vision today [2]. RANSAC consists
of three steps. Sketching the approach again, to compute a piece of the 3D scene:

� Points, lines and other features that are images of the same source are detected
in the photos. These matches are theimage data.

� A minimal sample of image data is randomly selected.Minimal means that
only a positive �nite number of 3D geometries are exactly consistent with the
sample. Those 3D geometries are computed.

� To each computed 3D geometry, the rest of the image data is compared. If one
is approximately consistent with enough of the image data, it is kept. Else, the
second step is repeated with a new sample.
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Computing the �nitely many 3D geometries is called aminimal problem. Typi-
cally, it is done by solving a corresponding zero-dimensional polynomial system, with
coe�cients that are functions of the sampled image data [64]. Since this step is car-
ried out thousands of times in a full reconstruction, it is necessary to design e�cient,
specialized solvers. One of the most usedminimal solvers in vision is Nist�er's [82],
based on Gr•obner bases, to recover the relative position of two calibrated cameras.
In Chapter 2 we considered a closely related problem about two calibrated cameras.

The concern of this chapter is the recovery of the relative position ofthree cal-
ibrated cameras from image data. To our knowledge, no satisfactory solution to
this basic problem exists in the literature. Passing from two views to three views
introduces a zoo of problems. Now feature lines, in addition to feature points, may
be matched across images to recover camera positions. Our main result is the de-
termination of the algebraic degreeof 66 minimal problems for the recovery of three
calibrated cameras; in other words, we �nd the generic number of complex solutions
(see Theorem 3.6). Solution sets for particular random instances are available at:

https://math.berkeley.edu/ ~jkileel/CalibratedMinimalProblems.html .

As a by-product, we can derive minimal solvers for each case. Our techniques
come fromnumerical algebraic geometry[92], and we rely on the homotopy contin-
uation software Bertini [10]. This implies that our results are correct only with
very high probability; in ideal arithmetic, with probability 1. Mathematically, the
main object in this chapter is a particular projective algebraic varietyTcal, which is
a convenient moduli space for the relative position of three calibrated cameras. This
variety is 11-dimensional, degree 4912 inside the projective spaceP26 of 3 � 3 � 3
tensors (see Theorem 3.26). We call it thecalibrated trifocal variety. Theorem 3.28
formulates our minimal problems as slicingTcal by special linear subspaces ofP26.

The rest of this chapter is organized as follows. In Section 3.2, we make our min-
imal problems mathematically precise and we state Theorem 3.6. In Section 3.3, we
examine image correspondences using multiview varieties and then trifocal tensors
[48, Chapter 15]. In Section 3.4, we prove that trifocal tensors and camera con�gura-
tions are equivalent. In Section 3.5, we introduce the calibrated trifocal varietyTcal

and prove several useful facts. Finally, in Section 3.6, we present a computational
proof of the main result Theorem 3.6. In the last Section 3.7, we switch gears and
present ourMacaulay2 software package for implicitization in computational alge-
braic geometry. NumericalImplicitization is based on homotopy continuation,
and my interest in writing general-purpose numerical algebraic geometry code grew
out my approach to the minimal problems in Theorem 3.6.
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3.2 Statement of main result

We begin by giving several de�nitions. Throughout this chapter, we work with the
standard camera model of the projective camera [48, Section 6.2].

De�nition 3.1. A (projective) camerais a full rank 3 � 4 matrix in C3� 4 de�ned
up to multiplication by a nonzero scalar.

Thus, as noted in Section 1.1, a camera corresponds to a linear projectionP3 99K
P2. The center of a cameraA is the point ker(A) 2 P3. A camera isreal if A 2 R3� 4.

De�nition 3.2. A calibrated camerais a 3 � 4 matrix in C3� 4 whose left3 � 3
submatrix is in the special orthogonal groupSO(3; C).

Real calibrated cameras have the interpretation of cameras with known and nor-
malized internal parameters (e.g. focal length) [48, Subsection 6.2.4]. In practical
situations, this information can be available during 3D reconstruction. Note that cal-
ibration of a camera is preserved by right multiplication by elements of the following
subgroup of GL(4; C):

G := f g 2 C4� 4 j (gij )1� i;j � 3 2 SO(3; C); g41 = g42 = g43 = 0 and g44 6= 0g:

Elements in G act on A3 � P3 as composites of rotations, translations and central
dilations. In the calibrated case of 3D reconstruction, one aims to recover camera po-
sitions (and afterwards the 3D scene) up to those motions, since recovery of absolute
positions is not possible from image data alone.

De�nition 3.3. A con�guration of three calibrated cameras is an orbit of the action
of the groupG above on the set:

f (A; B; C ) j A; B; C are calibrated camerasg

via simultaneous right multiplication.

By abuse of notation, we will call (A; B; C ) a calibrated camera con�guration,
instead of always denoting the orbit containing (A; B; C ).

As mentioned in Section 3.1, the image data used in 3D reconstruction typically
are points and lines in the photos that match. This is made precise as follows. Call
elements ofP2 image points, and elements of the dual projective plane (P2)_ image
lines. An element of (P2t (P2)_ )� 3 is apoint/line image correspondence. For example,
an element ofP2 � P2 � (P2)_ is called a point-point-line image correspondence,
denotedPPL .
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De�nition 3.4. A calibrated camera con�guration (A; B; C ) is consistent with a
given point/line image correspondence if there exist a point inP3 and a line in P3

containing it such that are such that(A; B; C ) respectively map these to the given
points and lines inP2.

For example, explicitly, a con�guration (A; B; C ) is consistent with a given point-
point-line image correspondence (x; x0; `00) 2 P2 � P2 � (P2)_ if there exist (X; L ) 2
P3 � Gr(P1; P3) with X 2 L such that AX = x; BX = x0; and CL = `00. In particular,
this implies that X 6= ker( A); ker(B) and ker(C) =2 L. We say that a con�guration
(A; B; C ) is consistent with a set of point/line correspondences if it is consistent with
each correspondence.

Example 3.5. Given the following set of real, random correspondences:1

PPP :

2

4
0:6132
0:8549
0:5979

3

5 ;

2

4
0:4599
0:5713
0:1812

3

5 ;

2

4
0:6863
0:4508
0:1834

3

5 PPL :

2

4
0:6251
0:9248
0:9849

3

5 ;

2

4
0:3232
0:5453
0:6941

3

5 ;

2

4
0:3646
0:1497
0:1364

3

5

PPL :

2

4
0:4970
0:6532
0:8429

3

5 ;

2

4
0:5405
0:8342
0:6734

3

5 ;

2

4
0:2692
0:8861
0:1333

3

5 PPL :

2

4
0:2896
0:6909
0:4914

3

5 ;

2

4
0:6898
0:9855
0:6777

3

5 ;

2

4
0:6519
0:8469
0:6855

3

5

PPL :

2

4
0:8933
0:3375
0:1054

3

5 ;

2

4
0:7062
0:6669
0:7141

3

5 ;

2

4
0:3328
0:8228
0:6781

3

5 :

In the notation of Theorem 3.6, this is a generic instance of the minimal problem
`1 PPP + 4 PPL '. Up to the action of G, there are only a positive �nite number of
three calibrated cameras that are exactly consistent with this image data, namely 160
complex con�gurations. For this instance, it turns out that 18 of those con�gurations
are real. For example, one is:

A =
�

1 0 0 0
0 1 0 0
0 0 1 0

�
; B =

�
� 0:22 0:95 � 0:18 1
0:96 0:24 0:08 1:44

� 0:12 0:15 0:97 0:97

�
; C =

�
0:17 0:94 � 0:28 1:41

� 0:95 0:22 0:18 � 0:13
� 0:24 � 0:23 � 0:94 � 1:16

�
:

In a RANSAC run for 3D reconstruction, the image data above is identi�ed by feature
detection software such asSIFT [73]. Also, only the real con�gurations are compared
for agreement with further image data.

In Example 3.5 above, 160 is thealgebraic degreeof the minimal problem `1PPP +
4 PPL '. This means that for correspondences in a nonempty Zariski open (hence
measure 1) subset of (P2 � P2 � P2) � (P2 � P2 � (P2)_ )� 4, there are 160 consis-
tent complex con�gurations. Given generic real correspondences, the number of real
con�gurations varies, but 160 is an upper bound.

1For ease of presentation, double precision 
oating point numbers are truncated here.
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Theorem 3.6. The rows of the following table display the algebraic degree for66
minimal problems across three calibrated views. Given generic point/line image cor-
respondences in the amount speci�ed by the entries in the �rst �ve columns, then
the number of calibrated camera con�gurations overC that are consistent with those
correspondences equals the entry in the sixth column.

# PPP # PPL # PLP # LLL # PLL #con�gurations

3 1 0 0 0 272
3 0 0 1 0 216
3 0 0 0 2 448
2 2 0 0 1 424
2 1 1 0 1 528
2 1 0 1 1 424
2 1 0 0 3 736
2 0 0 2 1 304
2 0 0 1 3 648
2 0 0 0 5 1072
1 4 0 0 0 160
1 3 1 0 0 520
1 3 0 1 0 360
1 3 0 0 2 520
1 2 2 0 0 672
1 2 1 1 0 552
1 2 1 0 2 912
1 2 0 2 0 408
1 2 0 1 2 704
1 2 0 0 4 1040
1 1 1 2 0 496
1 1 1 1 2 896
1 1 1 0 4 1344
1 1 0 3 0 368
1 1 0 2 2 736
1 1 0 1 4 1184
1 1 0 0 6 1672
1 0 0 4 0 360
1 0 0 3 2 696
1 0 0 2 4 1176
1 0 0 1 6 1680
1 0 0 0 8 2272
0 5 0 0 1 160
0 4 1 0 1 616
0 4 0 1 1 456
0 4 0 0 3 616
0 3 2 0 1 1152
0 3 1 1 1 880
0 3 1 0 3 1280
0 3 0 2 1 672
0 3 0 1 3 1008
0 3 0 0 5 1408
0 2 2 1 1 1168
0 2 2 0 3 1680
0 2 1 2 1 1032
0 2 1 1 3 1520
0 2 1 0 5 2072
0 2 0 3 1 800
0 2 0 2 3 1296
0 2 0 1 5 1848
0 2 0 0 7 2464
0 1 1 3 1 1016
0 1 1 2 3 1552
0 1 1 1 5 2144
0 1 1 0 7 2800
0 1 0 4 1 912
0 1 0 3 3 1456
0 1 0 2 5 2088
0 1 0 1 7 2808
0 1 0 0 9 3592
0 0 0 5 1 920
0 0 0 4 3 1464
0 0 0 3 5 2176
0 0 0 2 7 3024
0 0 0 1 9 3936
0 0 0 0 11 4912
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Remark 3.7. A calibrated camera con�guration (A; B; C ) has 11 degrees of freedom
(Theorem 3.26), and the �rst �ve columns in the table above represent conditions of
codimension 3; 2; 2; 2; 1; respectively (Theorem 3.28).

Remark 3.8. The algebraic degrees in Theorem 3.6 are intrinsic to the underlying
camera geometry. However, our method of proof uses a device from multiview ge-
ometry called trifocal tensors, which breaks symmetry between (A; B; C ). There are
other minimal problems for three calibrated views involving image correspondences
of type LPP , LPL , LLP . These also possess intrinsic algebraic degrees; but they
are not covered by the non-symmetric proof technique used here.

3.3 Correspondences

In this section, we examine point/line image correspondences. In the �rst part,
we usemultiview varieties to describe correspondences. This approach furnishes
exact polynomial systems for the minimal problems in Theorem 3.6. However, each
parametrized system has a di�erent structure (in terms of number and degrees of
equations). This would force a direct analysis for Theorem 3.6 to proceed case-
by-case, and moreover, each system so obtained is computationally unwieldy. In
Subsection 3.3, we recall the construction of thetrifocal tensor [48, Chapter 15]. This
is a point TA;B;C 2 C3� 3� 3 associated to cameras (A; B; C ). It encodes necessary
conditions for (A; B; C ) to be consistent with di�erent types of correspondences.
Tractable relaxations to the minimal problems in Theorem 3.6 are thus obtained,
each with similar structure. We emphasize that everything in Section 3.3 applies
equally to calibrated cameras (A; B; C ) as well as to uncalibrated cameras.

multiview varieties

Let A; B; C 2 C3� 4 be three projective cameras, not necessarily calibrated. Denote
by � : P3 99KP2

A , � : P3 99KP2
B , 
 : P3 99KP2

C the corresponding linear projections.
We make:

De�nition 3.9. Fix projective camerasA; B; C as above. Denote byF `0;1 the inci-
dence variety

�
(X; L ) 2 P3 � Gr(P1; P3)

�
� X 2 L

	
. Then the:

� PLL multiview variety denotedX PLL
A;B;C is the closure of the image of

F `0;1 99KP2
A � (P2

B )_ � (P2
C )_ ; (X; L ) 7!

�
� (X ); � (L); 
 (L)

�
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� LLL multiview variety denotedX LLL
A;B;C is the closure of the image of

Gr(P1; P3) 99K(P2
A )_ � (P2

B )_ � (P2
C )_ ; L 7!

�
� (L); � (L); 
 (L)

�

� PPL multiview variety denotedX PPL
A;B;C is the closure of the image of

F `0;1 99KP2
A � P2

B � (P2
C )_ ; (X; L ) 7!

�
� (X ); � (X ); 
 (L)

�

� PLP multiview variety denotedX PLP
A;B;C is the closure of the image of

F `0;1 99KP2
A � (P2

B )_ � P2
C ; (X; L ) 7!

�
� (X ); � (L); 
 (X )

�

� PPP multiview variety denotedX PPP
A;B;C is the closure of the image of

P3 99KP2
A � P2

B � P2
C ; X 7!

�
� (X ); � (X ); 
 (X )

�
:

Next, we give the dimension and equations for these multiview varieties; the
PPP case has appeared in [5]. In the following, we notatex 2 P2

A , x0 2 P2
B , x002 P2

C
for image points and` 2 (P2

A )_ , `0 2 (P2
B )_ , `002 (P2

C )_ for image lines. Also, we
postpone treatment of thePLL case to Subsection 3.3. In particular, the trilinear
form TA;B;C (x; ` 0; `00) will be de�ned there.

Theorem 3.10. Fix A; B; C . The multiview varieties from De�nition 3.9 are irre-
ducible. If A; B; C have linearly independent centers inP3, then the varieties have
the following dimensions and multi-homogeneous prime ideals.

� dim(X PLL
A;B;C ) = 5 and I (X PLL

A;B;C ) = hTA;B;C (x; ` 0; `00)i � C[x i ; `0
j ; `00

k ]

� dim(X LLL
A;B;C ) = 4 and I (X LLL

A;B;C ) � C[` i ; `0
j ; `00

k ] is generated by the maximal
minors of the matrix

�
AT ` B T `0 CT `00

�
4� 3

� dim(X PPL
A;B;C ) = 4 and I (X PPL

A;B;C ) � C[x i ; x0
j ; `00

k ] is generated by the maximal

minors of the matrix

0

@
A x 0
B 0 x0

`00T C 0 0

1

A

7� 6

� dim(X PLP
A;B;C ) = 4 and I (X PLP

A;B;C ) � C[x i ; `0
j ; x00

k ] is generated by the maximal

minors of the matrix

0

@
A x 0
C 0 x00

`0T B 0 0

1

A

7� 6
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� dim(X PPP
A;B;C ) = 3 and I (X PPP

A;B;C ) � C[x i ; x0
j ; x00

k ] is generated by the maximal

minors of the matrix

0

@
A x 0 0
B 0 x0 0
C 0 0 x00

1

A

9� 7

together withdet
�

A x 0
B 0 x0

�

6� 6

and

det
�

A x 0
C 0 x00

�

6� 6

and det
�

B x 0 0
C 0 x00

�

6� 6

Proof. Irreducibility is clear from De�nition 3.9. For the dimension and prime ideal
statements, we may assume that:

A =

2

4
1 0 0 0
0 1 0 0
0 0 1 0

3

5; B =

2

4
1 0 0 0
0 1 0 0
0 0 0 1

3

5; C =

2

4
1 0 0 0
0 0 1 0
0 0 0 1

3

5 :

This is without loss of generality in light of the following group symmetries. Let
g; g0; g002 SL(3; C) and h 2 SL(4; C). To illustrate, consider the third case above,
and let J PPL

A;B;C � C[x i ; x0
j ; `00

k ] be the ideal generated by the maximal minors mentioned
there. It is straightforward to check that:

I (X PPL
Ah;Bh;Ch ) = I (X PPL

A;B;C ) and J PPL
Ah;Bh;Ch = J PPL

A;B;C :

Also, we can check that:

I (X PPL
gA; g0B; g 00C ) = ( g; g0; ^ 2g00) � I (X PPL

A;B;C )

and J PPL
gA; g0B; g 00C = ( g; g0; (g00T )� 1) � J PPL

A;B;C :

Here the left, linear action of SL(3; C) � SL(3; C) � SL(3; C) on C[x i ; x0
j ; `00

k ] is via
(g; g0; g00) � f (x; x0; `00) = f (g� 1x; g0� 1x0; g00�1`00) for f 2 C[x i ; x0

j ; `00
k ]. Also, ^ 2g00 =

(g00T )� 1 2 C3� 3. So, for the PPL case,I and J transform in the same way when
(A; B; C ) is replaced by (gAh; g0Bh; g00Ch); in the other cases, this holds similarly.
Assuming that A; B; C have linearly independent centers, we may chooseg; g0; g00; h
to harmlessly move the cameras into the position above. Now using the computer
algebra systemMacaulay2 [44], we verify the dimension and prime ideal statements
for this special position.

Remark 3.11. In Theorem 3.10, ifA; B; C do not have linearly independent centers,
then the minors described still vanish on the multiview varieties, by continuity in
(A; B; C ).
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Now, certainly a point/line correspondence that is consistent with (A; B; C ) lies
in the appropriate multiview variety; consistency means that the correspondence is
a point in the set-theoretic image of the appropriate rational map in De�nition 3.9.
Since the multiview varieties are the Zariski closures of those set-theoretic images,
care is needed to make a converse. We require:

De�nition 3.12. Let A; B; C be three projective cameras with distinct centers. The
epipoledenotede1 2 is the point � (ker(B)) 2 P2

A . That is, e1 2 is the image under
A of the center ofB . Epipolese1 3; e2 1; e2 3; e3 1; e3 2 are de�ned similarly.

Lemma 3.13. Let A; B; C be three projective cameras with distinct centers. Let
� 2 (P2 t (P2)_ )� 3. Assume this point/line correspondenceavoids epipoles. For
example, if � = ( x; x0; `00) 2 P2

A � P2
B � (P2

C )_ , avoidance of epipoles means that
x 6= e1 2; e1 3; x0 6= e2 1; e2 3; and `00 63e3 1; e3 2. Then � is consistent with
(A; B; C ) if � is in the suitable multiview variety.

Proof. Assuming that � is in the multiview variety, then � satis�es the equations from
Theorem 3.10. This is equivalent to containment conditions on theback-projections
of � , without any hypothesis on the centers ofA; B; C .

We spell this out for thePPL case, where� = ( x; x0; `00) 2 P2
A � P2

B � (P2
C )_ . Here

the back-projections are the lines� � 1(x); � � 1(x0) � P3 and the plane
 � 1(`00) � P3.
The minors from Theorem 3.10 vanish if and only if there exists (X; L ) 2 F `0;1 such
that X 2 � � 1(x), X 2 � � 1(x0) and L � 
 � 1(`00). To see this, note that the minors
vanish only if:

0

@
A x 0
B 0 x0

`00T C 0 0

1

A

0

@
X
� �
� � 0

1

A = 0 for some nonzero

0

@
X
� �
� � 0

1

A 2 C6;

where X 2 C4; � 2 C and � 0 2 C. Sincex; x0 2 C3 are nonzero, it follows thatX
is nonzero, and so de�nes a pointX 2 P3. From AX = �x , the line � � 1(x) � P3

contains X 2 P3. Similarly AX = � 0x implies X 2 � � 1(x0). Thirdly, `00T CX = 0
says that X lies on the plane
 � 1(`00) � P3. Now taking any line L � P3 with
X 2 L � 
 � 1(`00) produces a satisfactory point (X; L ) 2 F `0;1, and reversing the
argument gives the converse.

Returning to the lemma, since� avoids epipoles, the back-projections of� avoid
the centers ofA; B; C . In the PPL case, this implies that (X; L ) avoids the centers
of A; B; C . Thus (X; L ) witnesses consistency, because� (X ) = x; � (X ) = x0; 
 (L) =
`00. The other cases are �nished similarly.
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The results of this subsection have provided tight equational formulations for a
camera con�guration and a point/line image correspondence to be consistent. This
leads to a parametrized system of polynomial equations for each minimal problem
in Theorem 3.6. For instance, for the minimal problem `1PPP + 4 PPL ', the
unknowns are the entries ofA; B; C , up to the action of the group G. Due to

Theorem 3.10, there are
�

9
7

�
+3+4 �

�
7
6

�
= 67 quartic equations. Their coe�cients

are parametrized cubically and quadratically by the image data in (P2)11 �
�
(P2)_

� 4
.

Since this parameter space is irreducible, to �nd the generic number of solutions
to the system, we may specialize toone random instance, such as in Example 3.5.
Nonetheless, solving a single instance of this system { `as is' { is computationally
intractable, let alone solving systems for the other minimal problems present in
Theorem 3.6.

The way out is to nontrivially replace the above systems with other systems,
which enlarge the solution sets but amount to accessible computations. This key
maneuver is based ontrifocal tensors from multiview geometry. Before doing so, we
justify calling the problems in Theorem 3.6 minimal.

Proposition 3.14. For each problem in Theorem3.6, given generic correspondence
data, there is a �nite number2 of solutions, i.e. calibrated camera con�gurations
(A; B; C ). Moreover, solutions have linearly independent centers.

Proof. For calibrated A; B; C , we may act by G so A =
�
I 3� 3 0

�
, B =

�
R2 t2

�

and C =
�
R3 t3

�
whereR2; R3 2 SO(3; C) and t2; t3 2 C3. Furthermore, t2 and t3

may be jointly scaled. Thus, ifA; B; C have non-identical centers, we get a point in
SO(3; C)� 2 � P5. This point is unique and con�gurations with non-identical centers
are in bijection with SO(3; C)� 2 � P5.

Now consider one of the minimal problems from Theorem 3.6, `w1PPP + w2PPL +
w3PLP + w4LLL + w5PLL '. Notice that the problems in Theorem 3.6, are those for
which the weights (w1; w2; w3; w4; w5) 2 Z � 0 satisfy 3w1 +2w2 +2w3 +2w4 + w5 = 11
and w2 � w3. Image correspondence data is a point in the productDw := ( P2 � P2 �
P2)� w1 � : : : � (P2 � (P2)_ � (P2)_ )� w5 .

Consider the incidence diagram:
SO(3; C)� 2 � P5  � � �! D w

where � := f
�
(A; B; C ); d

�
2

�
SO(3; C) � 2 � P5

�
� D w j (A; B; C ) and d are consistentg

and where the arrows are projections. The left map is surjective and a general �ber
is a product of multiview varieties described by Theorem 3.10. In particular, the

2 This number is shown to be positive in the proof of Theorem 3.6.
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�ber has dimension 3w1 + 4w2 + 4w3 + 4w4 + 5w5. Therefore, by [31, Corollary 13.5],
� has dimension 11 + 3w1 + 4w2 + 4w3 + 4w4 + 5w5, as dim(SO(3; C)� 2 � P5) = 11.
Now, the second arrow is a regular map between varieties of the same dimension,
because 11 + 3w1 + 4w2 + 4w3 + 4w4 + 5w5 = 6( w1 + w2 + w3 + w4 + w5). So, if
it is dominant, then again by [31, Corollary 13.5], a general �ber has dimension 0;
otherwise, a general �ber is empty. However, note that points in a general �ber of
the second map correspond to solutions of a generic instance of the problem indexed
by w from Theorem 3.6. This shows that those problems generically have �nitely
many solutions.

We can see that generically there are no solutions with non-identical but collinear
centers, as follows. LetC � SO(3; C)� 2 � P5 be the closed variety of con�gurations
(A; B; C ) with non-identical but collinear centers. Consider:

C  � � 0 �! D w

where the de�nition of � 0 is the de�nition of � with SO(3 ; C)� 2 � P5 replaced by
C, and where the arrows are projections. Here dim(C) = 10. The left arrow is
surjective, and a general �ber is a product of multiview varieties, with the same
dimension as in the above case. This dimension statement is seen by calculating the
multiview varieties as in the proof of Theorem 3.10, when (A; B; C ) have distinct,
collinear centers. It follows that dim(� 0) = 10 + 3 w1 + 4w2 + 4w3 + 4w4 + 5w5 <
11 + 3w1 + 4w2 + 4w3 + 4w4 + 5w5 = 6( w1 + w2 + w3 + w4 + w5) = dim( Dw) so that
the right arrow is not dominant.

Finally, to see that generically there is no solution (A; B; C ) where the centers
of A; B; C are identical in P3, we may mimic the above argument with another
dimension count. Calibrated con�gurations with identical centers are in bijection
with SO(3; C)� 2, because eachG-orbit has a unique representative of the formA =�
I 3� 3 0

�
, B =

�
R2 0

�
, C =

�
R3 0

�
whereR2; R3 2 SO(3; C). So, analogously to

before, we consider the diagram:
SO(3; C)� 2  � � 00�! D w

where the de�nition of � 00 is the de�nition of � with SO(3 ; C)� 2 � P5 replaced
by SO(3; C)� 2, and where the arrows are projections. Again, the left arrow is
surjective, and a general �ber is a product of multiview varieties. Here, when
A; B; C have identical centers, a calculation as in the proof of Theorem 3.10 ver-
i�es that the dimensions of the multiview varieties drop, as follows: dim(X PLL

A;B;C ) =
3; dim(X LLL

A;B;C ) = 2 ; dim(X PPL
A;B;C ) = 3 ; dim(X PLP

A;B;C ) = 3 ; dim(X PPP
A;B;C ) = 2. So the

dimension of a general �ber of the left arrow is 2w1 + 3w2 + 3w3 + 2w4 + 5w3. So
dim(� 00) = 6 + 2 w1 + 3w2 + 3w3 + 2w4 + 5w3 < 11 + 3w1 + 4w2 + 4w3 + 4w4 + 5w5 =
6(w1 + w2 + w3 + w4 + w5) = dim( Dw), whence the right arrow is not dominant. This
completes the proof.
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Trifocal tensors

In this subsection, we re-derive the trifocal tensorTA;B;C 2 C3� 3� 3 associated to
cameras (A; B; C ), following the projective geometry approach of Hartley [46]. This
explains the notation in thePLL bullet of Theorem 3.10, and justi�es the assertion
made there. The trifocal tensor and its calibrated version are the analogs of the
fundamental matrix and essential matrix from two-view geometry (see Chapter 2).
We will review how TA;B;C encodes point/line correspondences besidesPLL as well.

As in Subsection 3.3, letA; B; C 2 C3� 4 be three projective cameras, not neces-
sarily calibrated, and denote by� : P3 99KP2

A , � : P3 99KP2
B , 
 : P3 99KP2

C the cor-
responding linear projections. Let the point and linesx 2 P2

A ; `0 2 (P2
B )_ ; `002 (P2

C )_

be given as column vectors. The pre-image� � 1(x) is a line in P3, while � � 1(`0) and

 � 1(`00) are planes inP3. We can characterize when these three have non-empty
intersection as follows.

First, note that the plane � � 1(`0) is given by the column vectorB T `0 sinceX 2 P3

satis�es X 2 � � 1(`0) if and only if 0 = `0T BX = ( B T `0)T X . Similarly, the plane

 � 1(`00) is given by CT `00. For the line � � 1(x), note:

� � 1(x) =
\

`2 (P2
A )_

`T x=0

� � 1(`) � � � 1hx;
�
1 1 0

� T
i \ � � 1hx;

�
1 0 1

� T
i :

Here h i denotes span, and auxiliary points
�
1 1 0

� T
;
�
1 0 1

� T
2 P2

A are simply
convenient choices for this calculation. Unless those two points andx are collinear,
the inclusion above is an equality, and the intersectands in the RHS are the planes
given by the column vectorsAT [x]�

�
1 1 0

� T
and AT [x]�

�
1 0 1

� T
. The nota-

tion means [x]� =

2

4
0 � x3 x2

x3 0 � x1

� x2 x1 0

3

5, and [x]� y gives hx; yi for x 6= y 2 P2
A . So,

� � 1(x) \ � � 1(`0) \ 
 � 1(`00) 6= ; only if:

det

0

@AT [x]�

2

4
1
1
0

3

5
�
�
� AT [x]�

2

4
1
0
1

3

5
�
�
� B T `0

�
�
� B T `00

1

A

4� 4

= 0: (3.1)

This determinant is divisible by (x1 � x2 � x3), since that vanishes if and only if
x;

�
1 1 0

� T
;
�
1 0 1

� T
are collinear only if the �rst two columns above are linearly

dependent. Hence, factoring out, we obtain a constraint that is trilinear inx; ` 0; `00,
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i.e., we get for some tensorT 2 C3� 3� 3:
X

1� i;j;k � 3

Tijk x i `0
j `00

k = 0:

The tensor entry Tijk is computed by substituting into (3.1) the basis vectorsx =
ei ; `0 = ej ; `00= ek . Breaking into cases according toi , this yields:

� T1ij = 1
(1 � 0� 0) det

�
a3

�
� � a2

�
� b j

�
� ck

�
= det

�
a2

�
� a3

�
� b j

�
� ck

�

� T2ij = 1
(0 � 1� 0) det

�
� a3

�
�a1 � a3

�
� b j

�
� ck

�
= � det

�
a1

�
� a3

�
� b j

�
� ck

�

� T3ij = 1
(0 � 0� 1) det

�
� a1 + a2

�
�a2

�
� b j

�
� ck

�
= det

�
a1

�
� a2

�
� b j

�
� ck

�

whereai denotes the transpose of the �rst row inA, and so on.
At this point, we have derived formula (17.12) from [48, p. 415]:

De�nition 3.15. Let A; B; C be cameras. Theirtrifocal tensor TA;B;C 2 C3� 3� 3 is
computed as follows. Form the4 � 9 matrix

�
AT

�
�B T

�
�CT

�
. Then for 1 � i; j; k � 3,

the entry (TA;B;C ) ijk is (� 1)i +1 times the determinant of the4 � 4 submatrix gotten
by omitting the i th column from AT , while keepingthe j th and kth columns fromB T

and CT , respectively. IfA; B; C are calibrated, thenTA;B;C is said to be acalibrated
trifocal tensor (�rst introduced by Weng et al. in [103]before [46]).

Remark 3.16. SinceA; B; C 2 C3� 4 are each de�ned only up to multiplication by
a nonzero scalar, the same is true ofTA;B;C 2 C3� 3� 3.

Remark 3.17. By construction, TA;B;C (x; ` 0; `00) :=
X

1� i;j;k � 3

Tijk x i `0
j `00

k = 0 is equiv-

alent to � � 1(x) \ � � 1(`0) \ 
 � 1(`00) 6= ; . In particular, TA;B;C = 0 if and only if the
centers ofA, B , C are all the same. Moreover, thePLL cases in Theorem 3.10 and
Lemma 3.13 postponed above are now immediate.

So far, we have constructed trifocal tensors so that they encode point-line-line
image correspondences. Conveniently, the same tensors encode other point/line cor-
respondences [46], up to extraneous components.

Proposition 3.18. Let A; B; C be projective cameras. Letx 2 P2
A ; x0 2 P2

B ; x002 P2
C

and ` 2 (P2
A )_ ; `0 2 (P2

B )_ ; `00 2 (P2
C )_ . Putting T = TA;B;C , then (A; B; C ) is

consistent with:
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� (x; ` 0; `00) only if T(x; ` 0; `00) = 0 [PLL]

� (`; ` 0; `00) only if [`]� T(� ; `0; `00) = 0 [LLL]

� (x; ` 0; x00) only if [x00]� T(x; ` 0; � ) = 0 [PLP]

� (x; x0; `00) only if [x0]� T(x; � ; `00) = 0 [PPL]

� (x; x0; x00) only if [x00]� T(x; � ; � )[x0]� = 0. [PPP]

In the middle bullets, each contraction ofT with two vectors gives a column vector

in C3. In the last bullet, T(x; � ; � ) =
3X

i =1

x i (Tijk )1� j;k � 3 2 C3� 3.

Proof. This proposition matches Table 15.1 on [48, p. 372]. To be self-contained, we
recall the proof. The �rst bullet is by construction of T.

For the second bullet, assume that (`; ` 0; `00) is consistent with (A; B; C ), i.e. there
exists L 2 Gr(P1; P3) such that � (L) = `; � (L) = `0; 
 (L) = `00. Now let y 2 ` be
a point. So � � 1(x) is a line in the plane� � 1(`) and that plane contains the lineL.
This implies � � 1(x) \ L 6= ; ) � � 1(x) \ � � 1(`0) \ 
 � 1(`00) 6= ; , T(y; `0; `00) = 0. It
follows that for y 2 P2

A , we haveyT ` = 0 ) yT T(� ; `0; `00) = 0. This means that `
and T(� ; `0; `00) are linearly independent, i.e. [̀]� T(� ; `0; `00) = 0.

The third, fourth and �fth bullets are similar. They come from reasoning that
the consistency implies, respectively:

� x002 k00) T(x; ` 0; k00) = 0

� x0 2 k0 ) T(x; k0; `00) = 0

�
�
x0 2 k0 and x002 k00� ) T(x; k0; k00) = 0,

wherek0 2 (P2
B )_ and k002 (P2

C )_ .

Remark 3.19. The constraints in Proposition 3.18 are linear inT. We will exploit
this in Section 3.6. Also, in fact, image correspondences of typesLPL , LLP and
LPP do not give linear constraints onTA;B;C . This is the reason that these types
are not considered in Theorem 3.6. To get linear constraints nonetheless, one could
permute A; B; C before forming the trifocal tensor.
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In this subsection, we have presented a streamlined account of trifocal tensors,
and the point/line image correspondences that they encode. Now, we sketch the rela-
tionship between thetight conditions in Theorem 3.10 and thenecessaryconditions
in Proposition 3.18 for consistency.

Lemma 3.20. Fix projective camerasA; B; C with linearly independent centers.
Then the trilinearities in Proposition 3.18 cut out subschemes of three-factor prod-
ucts of P2 and (P2)_ . In all cases of Proposition3.18, this subscheme is reduced and
contains the corresponding multiview variety as a top-dimensional component.

Proof. Without loss of generality, A; B; C are in the special position from the proof
of Theorem 3.10. Then usingMacaulay2, we form the ideal generated by the trilin-
earities of Proposition 3.18 and saturate with respect to the irrelevant ideal. This
leaves a radical ideal; we compute its primary decomposition.

For example, in the case ofPPP , the trilinearities from Proposition 3.18 generate
a radical ideal inC[x i ; x0

j ; x00
k ] that is the intersection of:

� the 3 irrelevant ideals for each factor ofP2

� 2 linear ideals of codimension 4

� the multiview ideal I (X PPP
A;B;C ).

This discrepancy between the trifocal and multiview conditions forPPP correspon-
dences was studied in [100]. To demonstrate our main result, in Section 3.6 we shall
relax the tight multiview equations in Theorem 3.10 to the merely necessary trilin-
earities in Proposition 3.18. The `top-dimensional' clause in Lemma 3.20, as well as
Theorem 3.22 in Section 3.4 below, indicate that this gives `good' approximations to
the minimal problems in Theorem 3.6.

3.4 Con�gurations

In this section, it is proven that trifocal tensors, in both the uncalibrated and cali-
brated case, are in bijection with camera triples up to the appropriate group action,
i.e. with camera con�gurations. Already, it is very well-known throughout the vi-
sion community that \trifocal tensors encode relative camera positions" (e.g. see
the appendix of [46] or [54] for a proof for general uncalibrated camera triples). We
contribute precise hypotheses under which the correspondence is valid, namely that
the three camera centers are linearly independent. We also verify that the corre-
spondence is one-to-one, instead of �nite-to-one, for calibrated trifocal tensors and
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the subgroup of transformationsG in Theorem 3.22 below. To our knowledge, this
fact is new; subtly, the analog for two calibrated cameras is false [48, Result 9.19].
In terms of Theorem 3.6, Theorem 3.22 enables us to compute consistent calibrated
trifocal tensors in exchange for consistent calibrated camera con�gurations.

Proposition 3.21. Let A; B; C be three projective cameras, with linearly indepen-
dent centers inP3 Let eA; eB; eC be another three projective cameras. ThenTA;B;C =
T eA; eB; eC 2 P(C3� 3� 3) if and only if there existsh 2 SL(4; C) such thatAh = eA; Bh =
eB; Ch = eC 2 P(C3� 4).

Proof. As in the proof of Theorem 3.10, forg; g0; g002 SL(3; C); h 2 SL(4; C):

TgA; g0B; g 00C = ( g;^ 2g0; ^ 2g00) � TA;B;C and TAh; Bh; Ch = TA;B;C : (3.2)

The second equality gives the `if' direction. Conversely, for `only if', for anyg; g0; g002
SL(3; C), h1; h2 2 SL(4; C), we are free to replace (A; B; C ) by (gAh1; g0Bh1; g00Ch1)
and to replace (eA; eB; eC) by (g eAh2; g0eBh2; g00eCh2), and then to exhibit an h as in the
proposition. Hence we may assume that:

A =

2

4
1 0 0 0
0 1 0 0
0 0 1 0

3

5; B =

2

4
1 0 0 0
0 1 0 0
0 0 0 1

3

5; C =

2

4
1 0 0 0
0 0 1 0
0 0 0 1

3

5

eA =

2

4
1 0 0 0
0 1 0 0
0 0 1 0

3

5; eB =

2

4
� � � �
� � � �
0 0 0 1

3

5; eC =

2

4
� � � �
� � � �
� � � �

3

5

where each �̀ ' denotes an indeterminate. Now consider the nine equations:

(TA;B;C ) i 3 k = ( T eA; eB; eC ) i 3 k

where 1� i; k � 3. Under the above assumptions, these are linear and in the nine
unknownseclm for 1 � l; m � 3. Here we have �xed the nonzero scale oneC so that
these are indeed equalities, on the nose. It follows that:

eC =

2

4
1 0 0 �
0 0 1 �
0 0 0 �

3

5 :

At this point, we have reduced to solving 18 equations in 11 unknowns:

(TA;B;C ) i j k = ( T eA; eB; eC ) i j k
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where 1� i; k � 3 and 1 � j � 2. These equations are quadratic monomials and
binomials. The system is simple to solve by hand or withMacaulay2:

eA =

2

4
1 0 0 0
0 1 0 0
0 0 1 0

3

5; eB =

2

4
� 0 0 0
0 � 0 0
0 0 0 1

3

5; eC =

2

4
1 0 0 0
0 0 1 0
0 0 0 � � 1

3

5

for � 2 C� . Taking h = � � 3=4 diag(�; �; �; 1) 2 SL(4; C) givesAh = eA; Bh = eB; Ch =
eC 2 P(C3� 4), as desired. This completes the proof.

With a bit of work, we can promote Proposition 3.21 to the calibrated case. A
little explanation may be helpful here. Only a subgroup of projective transformations
acts on triples of calibrated cameras, namelyG. The content of Theorem 3.22 is that
h can be taken to lie inG instead of just h 2 SL(4; C). See [59] for related issues
regardingcritical con�gurations .

Theorem 3.22. Let A; B; C be three calibrated cameras, with linearly independent
centers in P3. Let eA; eB; eC be another three calibrated cameras. ThenTA;B;C =
T eA; eB; eC 2 P(C3� 3� 3) if and only if there existsh 2 G (where G is de�ned on page2)

such thatAh = eA;Bh = eB; Ch = eC 2 P(C3� 4).

Proof. The `if' direction is from Proposition 3.21. For `only if', here for anyg; g0; g002
SO(3; C), h1; h2 2 G, we are free to replace (A; B; C ) by (gAh1; g0Bh1; g00Ch1) and to
replace (eA; eB; eC) by (g eAh2; g0eBh2; g00eCh2), and then to exhibit an h 2 G as above.
In this way, we may assume that:

A =
�
I 3� 3 0

�
; B =

�
I 3� 3 s1

�
; C =

�
I 3� 3 s2

�

eA =
�
I 3� 3 0

�
; eB =

�
R1 t1

�
; eC =

�
R2 t2

�

where R1; R2 2 SO(3; C) and s1; s2; t1; t2 2 C3. Now from Proposition 3.21, there
exists h0 2 SL(4; C) such that Ah0 = eA; Bh 0 = eB; Ch0 = eC 2 P(C3� 3). From the

�rst equality, it follows that h0 =
�
I 3� 3 0
uT �

�
2 P(C4� 4) for someu 2 C3; � 2 C� . It

su�ces to show that u = 0, so h0 2 G. By way of contradiction, let us assume that
u 6= 0. Substituting into Bh0 = eB gives:

�
I 3� 3 s1

�
�
I 3� 3 0
uT �

�
=

�
I 3� 3 + s1uT �s 1

�
=

�
R1 t1

�
2 P(C3� 4):
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In particular, there is � 1 2 C� so that � 1(I 3� 3+ s1uT ) = R1: In particular, R1 � � 1I 3� 3

is rank at most 1. Equivalently, � 1 is an eigenvalue of the rotationR1 2 SO(3; C) of
geometric multiplicity at least 2. The only possibilities are� 1 = 1 or � 1 = � 1. If
� 1 = 1, then R1 = I and s1uT = 0. From u 6= 0, we get that s1 = 0; but then A = B,
contradicting linear independence of the centers ofA; B; C . So in fact � 1 = � 1.
Now R1 is a 180 degree rotation. FromR1 + I 3� 3 = s1uT 2 C3� 3, it follows that the

axis of rotation is the line throughu, and s1 =
2u

uT u
. The exact same analysis holds

starting from Ch0 = eC. So in particular, s2 =
2u

uT u
. But now B = C, contradicting

linear independence of the centers ofA; B; C . We conclude thatu = 0.

3.5 Varieties

So far in Subsection 3.3 and Section 3.4, we have worked with individual trifocal
tensors, uncalibrated or calibrated. This is possible once a camera con�guration
(A; B; C ) is given. To determine an unknown camera con�guration from image data,
we need to work with the set of all trifocal tensors.

De�nition 3.23. The trifocal variety , denotedT � P(C3� 3� 3), is de�ned to be the
Zariski closure of the image of the following rational map:

P(C3� 4) � P(C3� 4) � P(C3� 4) 99KP(C3� 3� 3); (A; B; C ) 7! TA;B;C

where (TA;B;C ) ijk := ( � 1)i +1 det

2

4
� ai

b j

ck

3

5

4� 4

for 1 � i; j; k � 3:

Here � ai is gotten from A by omitting the i th row, and b j ; ck are the j th ; kth rows
of B; C respectively. So,T is the closure of the set of all trifocal tensors.

De�nition 3.24. The calibrated trifocal variety, denotedTcal � P(C3� 3� 3), is de-
�ned to be the Zariski closure of the image of the following rational map:

(SO(3; C) � C3) � (SO(3; C) � C3) � (SO(3; C) � C3) 99K P(C3� 3� 3);
�

(R1; t1); (R2; t2); (R3; t3)
�

7! T[R1 jt1 ]; [R2 jt2 ]; [R3 jt3 ]

where the formula forT is as in De�nitions 3.15and 3.23. So, Tcal is the closure of
the set of all calibrated trifocal tensors.

In the remainder of this chapter, the calibrated trifocal varietyTcal is the main
actor. It is the higher version of the essential varietyE starring in Chapter 2 above.
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The calibrated trifocal variety has recently been studied independently by Martyu-
shev [75] and Matthews [76]. Both authors obtain implicit quartic equations forTcal.
However, a full set of ideal generators forI (Tcal) � C[Tijk ] is currently not known.
We summarize the state of knowledge on implicit equations forTcal:

Proposition 3.25. The prime ideal of the calibrated trifocal varietyI (Tcal) � C[Tijk ]
contains the ideal of the trifocal varietyI (T ), and I (T ) is minimally generated by
10 cubics, 81 quintics and 1980 sextics. Additionally, I (Tcal) contains 15 linearly
independent quartics that do not lie inI (T ).

The ideal containment follows fromTcal � T , and the statement about minimal
generators ofI (T ) was proven by Aholt and Oeding [4]. For the additional quartics,
see [75, Theorems 8, 11] and [76, Corollary 51].

In the rest of this chapter, using numerical algebraic geometry, we always interact
with the calibrated trifocal variety Tcal directly via (a restriction of) its de�ning
parametrization. Therefore, we do not need the ideal of implicit equationsI (Tcal),
nor do we use the known equations from Proposition 3.25.

At this point, we discuss properties of the rational map in De�nition 3.24. First,
since the source (SO(3; C) � C3)� 3 is irreducible, the closure of the imageTcal is irre-
ducible. Second, the base locus of the map consists of triples of calibrated cameras�
[R1jt1]; [R2jt2]; [R3jt3]

�
all with the same center inP3, by the remarks following Def-

inition 3.15. Third, the two equations in (3.2), the second line of the proof of Propo-
sition 3.21, mean that the rational map in De�nition 3.24 satis�es group symmetries.
Namely, the parametrization ofTcal is equivariant with respect to SO(3; C)� 3, and
each of its �bers carry aG action. In vision, these two group actions are interpreted
as changing image coordinates and changing world coordinates. Here, by the equiv-
ariance, it follows that Tcal is an SO(3; C)� 3-variety. Also, we can use theG action
on �bers to pick out one point per �ber, and thus restrict the map in De�nition 3.24
so that the restriction is generically injective and dominant ontoTcal. Explicitly, we
restrict to the domain where [R1 j t1] =

�
I 3� 3 0

�
; t2 =

�
� � 1

� T
. This restriction

(SO(3; C) � C2) � (SO(3; C) � C3) 99K Tcal is generically injective by Theorem 3.22.
Generic injectivity makes the restricted map particularly amenable to numerical al-
gebraic geometry, wherecomputations regarding a parametrized variety are pulled
back to the source of the parametrization. We now obtain the major theorem of this
section using that technique:

Theorem 3.26. The calibrated trifocal variety Tcal � P(C3� 3� 3) is irreducible, di-
mension11 and degree4912. It equals theSO(3; C)� 3-orbit closure generated by the
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following projective plane, parametrized by
�
� 1 � 2 � 3

� T
2 P2:

T1�� =

2

4
0 � 1 � 2

0 0 0
� 1 0 0

3

5; T2�� =

2

4
0 0 0
0 � 1 � 2

0 � 3 0

3

5; T3�� =

2

4
0 0 0
0 0 0
0 � 1 � 2 + � 3

3

5:

Computational Proof. Dimension 11 follows from the generically injective parametriza-
tion given above. The SO(3; C)� 3 statement follows from (3.2). In more detail, given
a calibrated camera con�guration (A; B; C ) with linearly independent centers, we
may act by G so that the centers ofA; B; C are:

�
0 0 0 1

� T
;

�
0 0 1 1

� T
;

�
0 � � 1

� T
;

respectively. Then we may act by SO(3; C)� 3 so that the left submatrices ofA; B; C
equal I 3� 3. The calibrated trifocal tensorTA;B;C now lands in the statedP2. Hence,
Tcal is that orbit closure due to transformation laws (3.2).

To compute the degree ofTcal, we use the open-source homotopy continuation
softwareBertini . We �x a random linear subspaceL � P(C3� 3� 3) of complementary
dimension to Tcal, i.e. dim(L ) = 15. This is expressed in 
oating-point as the
vanishing of 11 random linear forms̀ m (Tijk ) = 0 (3.3), where m = 1; : : : ; 11. Our
goal is to compute #(Tcal \ L ). As homotopy continuation calculations are sensitive
to the formulation used, we carefully explain our own formulation to calculateTcal \L .
Our formulation starts with the parametrization of Tcal above, and with its two copies
of SO(3; C).

Recall that unit norm quaternions double-cover SO(3; R). Complexifying:

R2 =

0

@
a2 + b2 � c2 � d2 2(bc� ad) 2(bd+ ac)

2(bc+ ad) a2 + c2 � b2 � d2 2(cd� ab)
2(bd� ac) 2(cd+ ab) a2 + d2 � b2 � c2

1

A

wherea; b; c; d2 C and a2 + b2 + c2 + d2 = 1 (3.4). Similarly for R3 with e; f; g; h 2 C
subject to e2 + f 2 + g2 + h2 = 1 (3.5). For our purposes, it is computationally
advantageous to replace (3.4) by a random patch� 1a + � 2b+ � 3c + � 4d = 1 (3.6),
where � i 2 C are random 
oating-point numbers �xed once and for all. Similarly,
we replace (3.5) by a random patch� 1e + � 2f + � 3g + � 4h = 1 (3.7). The patches
(3.6) and (3.7) leave us with injective parameterizations of two subvarieties ofC3� 3,
that we denote by SO(3; C)� ; SO(3; C)� . These two varieties have the same closed
a�ne cone as the closed a�ne cone of SO(3; C). This a�ne cone is:

\SO(3; C) := f R 2 C3� 3 : 9 � 2 C s.t. RRT = RT R = �I 3� 3g

and it is parametrized by a; b; c; d as above, but with no restriction ona; b; c; d.
In the de�nition of the cone \SO(3; C), note � = 0 is possible; it corresponds to
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a2 + b2 + c2 + d2 = 0, or to e2 + f 2 + g2 + h2 = 0. By the �rst remark after De�nition
3.15, we are free to scale camerasB and C so that their left 3 � 3 submatrices satisfy
R2 2 SO(3; C)� and R3 2 SO(3; C)� , and for our formulation here we do so. Finally,
for C5 in the source of the parametrization ofTcal, write t2 =

�
t2;1 t2;2 1

� T
and

t3 =
�
t3;1 t3;2 t3;3

� T
.

At this point, we have replaced the dominant, generically injective map

SO(3; C)� 2 � C5 99KTcal

by the dominant, generically injective parametrization SO(3; C)� � SO(3; C)� �
C5 99KTcal. Also, we have injective, dominant mapsV(� 1a+ � 2b+ � 3c+ � 4d� 1) !
SO(3; C)� and V(� 1e + � 2f + � 3g + � 4h � 1) ! SO(3; C)� . Composing gives the
generically 1-to-1, dominantV(� 1a + � 2b+ � 3c + � 4d � 1) � V(� 1e + � 2f + � 3g +
� 4h � 1) � C5 99KTcal. With exactly this parametrization of Tcal, it will be most
convenient to perform numerical algebraic geometry calculations. Hence, here to
compute deg(Tcal) = #( Tcal \ L ), we consider the square polynomial system:

� in 13 variables: a; b; c; d; e; f; g; h; t2;1; t2;2; t3;1; t3;2; t3;3 2 C;

� with 13 equations: the 11 cubics (3.3) and 2 linear equations (3.6), (3.7).

The solution set equals the preimage ofTcal \ L . This system is expected to have
deg(Tcal) many solutions. We can solve zero-dimensional square systems of this size
(in 
oating-point) using the UseRegeneration:1 setting in Bertini . That employs
the regenerationsolving technique from [53]. For the present system, overall,Bertini
tracks 74,667 paths in 1.5 hours on a standard laptop computer to �nd 4912 solutions.
Numerical path-tracking in Bertini is based on apredictor-corrector approach. Pre-
diction by default is done by the Runge-Kutta 4th order method; correction is by
Newton steps. For more information, see [11, Section 2.2]. Here, this provides strong
numerical evidence for the conclusion that deg(Tcal) = 4912. Up to the numerical
accuracy of Bertini and the reliability of our random number generator used to
chooseL , this computation is correct with probability 1. Practically speaking, 4912
is correct only with very high probability.

As a check for 4912, we apply thetrace test from [50], [71] and [93]. A random
linear form `0 on P(C3� 3� 3) is �xed. For s 2 C, we setL s := V(`1 + s`0; : : : ; `11 + s`0),
so L0 = L . Varying s 2 C, the intersection Tcal \ L s consists of deg(Tcal) many
complexpaths. Let Ts � T cal \ L s be a subset of paths. Then the trace test implies
(for generic`0; ` i ) that Ts = Tcal \ L s if and only if the centroid of Ts computed in a
consistent a�ne chart C26, i.e.
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cen(Ts) :=
1

# Ts

X

ps 2 Ts

ps;

is an a�ne linear function of s. Here, we setT0 to be the 4912 intersection points
found above. Then we calculateT1 with the UserHomotopy:1setting in Bertini ,
where the variables area; : : : t3;3, and the start points are the preimages ofT0. After
this homotopy in parameter space,T1 is obtained by evaluating the endpoints of the
track via TrackType:-4 . Similarly, T� 1 is computed. Then we calculate that the
following quantity in C26:

�
cen(T1) � cen(T0)

�
�

�
cen(T0) � cen(T� 1)

�

is indeed numerically 0. This trace test is a further veri�cation of 4912.

Remark 3.27. In the proof of Theorem 3.26, when we select one point per �ber per
member ofTcal\L , we obtain apseudo-witness setW for Tcal. This is the fundamental
data structure in numerical algebraic geometry for computing with parameterized
varieties (see [52]). Precisely, here it is the quadruple:

� the parameter spaceP � C13, where C13 has coordinatesa; : : : ; t3;3 and P =
V(� 1a + � 2b+ � 3c + � 4d � 1; � 1e+ � 2f + � 3g + � 4h � 1)

� the dominant map � : P 99KTcal in the proof of Theorem 3.26, e.g. �1;1;1 =
� 2bct2;1 � 2adt2;1 + a2t2;2 + b2t2;2 � c2t2;2 � d2t2;2

� the generic complimentary linear spaceL = V(`1; : : : ; `11) � P(C3� 3� 3)

� the �nite set W � P � C13, mapping bijectively to Tcal \ L .

We heavily use this representation ofTcal for the computations in Section 3.6.

Now, we re-visit Proposition 3.18. WhenTA;B;C is unknown but the point/line
correspondence is known, the constraints there amount tospecial linear slices of
T and of the subvariety Tcal. The next theorem may help the reader appreciate
the specialness of these linear sections ofTcal; in general, the intersections are not
irreducible, equidimensional, nor dimensionally transverse.

Theorem 3.28. Fix generic pointsx; x0; x002 P2 and generic lines`; ` 0; `002 (P2)_ .
In the cases of Proposition3.18, we have the following codimensions:

� [PLL] : L = f T 2 P(C3� 3� 3) : T(x; ` 0; `00) = 0 g is a hyperplane andTcal \ L
consists of one irreducible component of codimension1 in Tcal
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� [LLL] : L = f T 2 P(C3� 3� 3) : [`]� T(� ; `0; `00) = 0 g is a codimension 2
subspace andTcal \ L consists of two irreducible components both of codimension
2 in Tcal

� [PLP] : L = f T 2 P(C3� 3� 3) : [x00]� T(x; ` 0; � ) = 0 g is a codimension 2
subspace andTcal \ L consists of two irreducible components both of codimension
2 in Tcal

� [PPL] : L = f T 2 P(C3� 3� 3) : [x0]� T(x; � ; `00) = 0 g is a codimension 2
subspace andTcal \ L consists of two irreducible components both of codimension
2 in Tcal

� [PPP] : L = f T 2 P(C3� 3� 3) : [x00]� T(x; � ; � )[x0]� = 0g is a codimension4
subspace andTcal \ L consists of �ve irreducible components, one of codimension
3 and four of codimension4 in Tcal.

Computational Proof. The statements about the subspaces may shown symbolically.
In the case ofLLL , e.g., work in the ringQ[`0; : : : ; `00

2] with 8 variables, and write the
constraint on T 2 P(C3� 3� 3) as the vanishing of a 3� 27 matrix times a vectorization
of T. Now we check that all of the 3� 3 minors of that long matrix are identically
0, but not so for 2� 2 minors.

For the statements aboutTcal \ L , we o�er a probability 1, numerical argument.
By [92, Theorem A.14.10] and the discussion on page 348 about generic irreducible
decompositions, we can �x random 
oating-point coordinates forx; x0; x00; `; ` 0; `00.
With the parametrization � of Tcal from the proof of Theorem 3.26, theTrackType:1
setting in Bertini is used to compute anumerical irreducible decompositionfor the
preimage of Tcal \ L per each case. That outputs a witness set, i.e. general linear
section, per irreducible component.Bertini 's TrackType:1 is based on regenera-
tion, monodromy and the trace test; see [92, Chapter 15] or [11, Chapter 8] for a
description.

Here, thePPP case is most subtle since the subspaceL � P(C3� 3� 3) is codimen-
sion 4, but the linear sectionTcal \ L � T cal includes a codimension 3 component. The
numerical irreducible decomposition above consists of �ve components of dimensions
8; 7; 7; 7; 7 in a; : : : ; t3;3-parameter space. Thus, it su�ces to verify that the map to
Tcal is generically injective restricted to the union of these components. For that, we
take one general point on each component from the witness sets, and test whether
that point satis�es a2 + b2 + c2 + d2 6� 0 and e2 + f 2 + g2 + h2 6� 0. This indeed
holds for all components. Then, we test using singular value decomposition (see [26,
Theorem 3.2]) whether the point maps to a camera triple with linearly independent
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centers. Linear independence indeed holds for all components. From Theorem 3.22,
the above parametrization is generically injective on this locus. Hence the image
Tcal \ L consists of distinct components with the same dimensions 8; 7; 7; 7; 7. This
�nishes PPP . The other cases are similar.

Mimicking the proof of Proposition 3.14, and using the `top-dimensional' clause
in Lemma 3.20, we can establish the following �niteness result forTcal:

Lemma 3.29. For each problem in Theorem3.6, given generic image correspondence
data, there are only �nitely many tensorsT 2 Tcal that satisfy all of the linear
conditions from Proposition 3.18.

We have arrived at a relaxation for each minimal problem in Theorem 3.6, as
promised. Namely, for a problem there we can �x a random instance of image data,
and we seek those calibrated trifocal tensors that satisfy the { merely necessary {
linear conditions in 3.18. Geometrically, this is equivalent intersect the special linear
sections ofTcal from Theorem 3.28. In Section 3.6, we will use the pseudo-witness
set representation (P; � ; L ; W) of Tcal from Theorem 3.26 to compute these special
slices ofTcal in Bertini . Conveniently, Bertini outputs a calibrated camera triple
per calibrated trifocal tensor in the intersection; this is because all solving is done
in the parameter spaceP, or in other words, camera space. To solve the original
minimal problem, we then test these con�gurations against the tight conditions of
Theorem 3.10.

3.6 Proof of main result

In this section, we put all the pieces together and we determine the algebraic degrees
of the minimal problems in Theorem 3.6. Mathematically, these degrees represent
interesting enumerative geometry problems; in vision, related work for threeuncal-
ibrated views appeared in [84]. The authors considered correspondencesPPP and
LLL and they determined 3 degrees for projective (uncalibrated) views, using the
larger group actions present in that case. Here, all 66 degrees for calibrated views in
Theorem 3.6 are new.

Now, recall from Proposition 3.14 that solutions (A; B; C ) to the problems in
Theorem 3.6 in particular must have non-identical centers. So, by the second remark
after De�nition 3.15, they associate to nonzero tensorsTA;B;C , and thus to well-
de�ned points in the projective variety Tcal. Conversely, however, there are special
subloci of Tcal that are not physical. Points in these subvarieties (introduced next)
are extraneous to Theorem 3.6, because they correspond to con�gurations with a
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3 � 4 matrix whose left 3� 3 submatrix R is not a rotation, but instead satis�es
RRT = RT R = 0.

De�nition/Proposition 3.30. Recall the parametrization ofTcal by a; : : : ; t3;3 from
Theorem 3.26. Let T 0;1

cal � T cal be the closure of the image of the rational map
restricted to the locusa2 + b2 + c2 + d2 = 0. Let T 1;0

cal � T cal be the closure of
the image of the rational map restricted to the locuse2 + f 2 + g2 + h2 = 0. Let
T 0;0

cal � T cal be the closure of the image of the rational map restricted to the locus
a2 + b2 + c2 + d2 = 0 and e2 + f 2 + g2 + h2 = 0. Then these subvarieties are irreducible
with: dim(T 0;0

cal ) = 9 and deg(T 0;0
cal ) = 1296; dim(T 0;1

cal ) = 10 and deg(T 0;1
cal ) = 2616;

dim(T 1;0
cal ) = 10 and deg(T 1;0

cal ) = 2616.

Computational Proof. The restricted parameter spaces:

P \ V(a2 + b2 + c2 + d2); P \ V(e2 + f 2 + g2 + h2);

P \ V(a2 + b2 + c2 + d2; e2 + f 2 + g2 + h2) � C13;

whereP = V(� 1a+ � 2b+ � 3c+ � 4d � 1; � 1e+ � 2f + � 3g+ � 4h � 1), are irreducible,
therefore their imagesT 0;1

cal ; T 1;0
cal ; T 0;0

cal � P(C3� 3� 3) are irreducible. The dimension
statements are veri�ed by picking a random point in the restricted parameter spaces,
and then by computing the rank of the derivative of the restricted rational map � at
that point. This rank equals the dimension of the image with probability 1, by generic
smoothness overC [46, III.10.5] and the preceding [46, III.10.4]. For the degree
statements, the approach from Theorem 3.26 may be used. ForT 0;1

cal we �x a random
linear subspaceM � P(C3� 3� 3) of complementary dimension, i.e dim(M ) = 16, so
deg(T 0;1

cal ) = #( T 0;1
cal \ M ). We pull back to P \ V(a2 + b2 + c2 + d2) \ � � 1(M ), and use

the UseRegeneration:1 setting in Bertini to solve for this. This run outputs 2616

oating-point tuples in a; : : : ; t3;3 coordinates. Then, we apply the parametrization
� and check that the image of these are 2616 numerically distinct tensors, i.e. the
restriction � jP\ V (a2+ b2+ c2+ d2 ) is generically injective. It follows that deg(T 0;1

cal ) = 2616,
up to numerical accuracy and random choices. To verify this degree further, we apply
the trace test as in Theorem 3.26, and this �nishes the computation for deg(T 0;1

cal ).
SinceT 0;1

cal and T 0;1
cal are linearly isomorphic under the permutationTijk 7! Tikj , this

implies deg(T 1;0
cal ) = 2616. The computation for deg(T 0;0

cal ) is similar.

Now, we come to the proof of Theorem 3.6, at last. The outline was given in the
last paragraph of Section 3.5: for computations, solving the polynomial systems of
multiview equations (see Theorem 3.10) is relaxed to taking a special linear section
of the calibrated trifocal variety Tcal (see Theorem 3.28). Then, to take this slice, we
use the numerical algebraic geometry technique ofcoe�cient-parameter homotopy
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[92, Theorems 7.1.1, A.13.1], i.e. a general linear section is moved in a homotopy to
the special linear section.

Computational Proof of Theorem3.6. Let weights (w1; w2; w3; w4; w5) 2 Z5
� 0 satisfy

3w1 +2w2 +2w3 +2w4 + w5 = 11 and w2 � w3. Now consider the problemẁ1PPP +
w2PPL + w3PLP + w4LLL + w5PLL ' in Theorem 3.6. Fix one general instance
of this problem, by taking image data with random 
oating-point coordinates. Each
point/line image correspondence in this instance de�nes a special linear subspace
of P(C3� 3� 3), as in Theorem 3.28. The intersection of these is one subspaceL special

expressed in 
oating-point; using singular value decomposition, we verify that its
codimension inP(C3� 3� 3) is the expected 4w1 + 2w2 + 2w3 + 2w4 + w5 = 11 + w1. By
Proposition 3.18,L special represents necessary conditions for consistency, so we seek
Tcal \ L special. If w1 > 0, then this intersection is not dimensionally transverse by the
PPP clause of Theorem 3.28. To deal with a square polynomial system, we �x a
general linear spaceL0

special � L special of codimension 11 inP(C3� 3� 3) and now seek
Tcal \ L0

special. This step is known asrandomization [92, Section 13.5] in numerical
algebraic geometry, and it is needed to apply the parameter homotopy result [92,
Theorem 7.1.1].

The linear sectionTcal \ L0
special is found numerically by a degeneration. In the

proof of Theorem 3.26, we computed a pseudo-witness set forTcal. This includes
a general complimentary linear sectionTcal \ L , and the preimage �� 1(Tcal \ L ) of
deg(Tcal) = 4912 points in a; : : : ; t3;3 space. Writing L = V(`1; : : : ; `11) and L0

special =
V(`0

1; : : : ; `0
11) for linear forms` i and `0

i on P(C3� 3� 3), consider the following homotopy
function H : C13 � R ! C13:

H (a; : : : ; t3;3; s) :=

2

6
6
6
6
6
6
6
4

s � `1
�
�( a; : : : ; t3;3)

�
+ (1 � s) � `0

1

�
�( a; : : : ; t3;3)

�

...

s � `11
�
�( a; : : : ; t3;3)

�
+ (1 � s) � `0

11

�
�( a; : : : ; t3;3)

�

� 1a + � 2b+ � 3c + � 4d � 1

� 1e+ � 2f + � 3g + � 4h � 1

3

7
7
7
7
7
7
7
5

:

Heres 2 R is the path variable. As s moves from 1 to 0,H de�nes a family of square
polynomial systems in the 13 variablesa; : : : ; t3;3. The start systemH (a; : : : ; t3;3; 1) =
0 has solution set �� 1(Tcal \ L ) and the target system H (a; : : : ; t3;3; 0) = 0 has
solution set � � 1(Tcal \ L0

special): With the UserHomotopy:1setting in Bertini , we
track the 4912 solution paths from the start to target system. By genericity ofL
in the start system, these solution paths are smooth [92, Theorem 7.1.1(4), Lemma
7.1.2]. The �nite endpoints of this track consist of solutions to the target system. By
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the principle of coe�cient-parameter homotopy [92, Theorem A.13.1], every isolated
point in � � 1(Tcal \ L0

special) is an endpoint, with probability 1. Note that in general,
coe�cient-parameter homotopy { i.e., the tracking of solutions of ageneral instance
of a parametric system of equations to solutions of aspecial instance { may be used
to �nd all isolated solutions to squarepolynomial systems. Here, by Lemma 3.29,
Tcal\ L special is a scheme with �nitely many points. By Bertini's theorem [92, Theorem
13.5.1(1)],Tcal\ L0

special also consists of �nitely many points, using genericity ofL0
special.

On the other hand, by Proposition 3.14, all solutions (A; B; C ) to the instance of
the original minimal problem indexed byw 2 Z5

� 0 have linearly independent centers
in P3. Moreover, a con�guration (A; B; C ) with linearly independent centers is an
isolated point in � � 1(TA;B;C ), thanks to Theorem 3.22. Therefore, it follows that
all solutions to the problem from Theorem 3.6 are among the isolated points in
� � 1(Tcal \ L0

special), and so the endpoints of the above homotopy.
For each minimal problem in Theorem 3.6, after the above homotopy,Bertini re-

turns 4912 �nite endpoints in a; : : : ; t3;3 space. We pick out which of these endpoints
are solutions to the original minimal problem by performing a sequence of checks,
as explained next. First of all, of these endpoints, let us keep only those that lie in
� � 1(Tcal \ L special), as opposed to those that lie just in the squared-up target solution
set � � 1(Tcal \ L0

special). Second, we remove points that satisfya2 + b2 + c2 + d2 � 0 or
e2+ f 2+ g2+ h2 � 0, because they are non-physical (see De�nition/Proposition 3.30).
Third, we verify that, in fact, all remaining points correspond to camera con�gura-
tions (A; B; C ) with linearly independent centers. This means that the equations in
Theorem 3.10 generate the multiview ideals (recall De�nition 3.9). Fourth, we check
which remaining points satisfy those tight multiview equations. To test this robustly
in 
oating-point, note that the equations in Theorem 3.10 are equivalent to rank
drops of the concatenated matrices there, hence we test for those rank drops using
singular value decomposition. If the ratio of two consecutive singular values exceeds
105, then this is taken as an indication that all singular values below are numerically
0, thus the matrix drops rank. Fifth, and conversely, we verify that all remaining
con�gurations (A; B; C ) avoid epipoles (recall De�nition 3.12) for the �xed random
instance of image correspondence data, so the converse Lemma 3.13 applies to prove
consistency. Lastly, we verify that all solutions are numerically distinct. Ultimately,
the output of this procedure is a list of all calibrated camera con�gurations over
C that are solutions to the �xed random instances of the minimal problems, where
these solutions are expressed in 
oating-point anda; : : : ; t3;3 coordinates. The num-
bers of solutions are the algebraic degrees from Theorem 3.6.

As a check for this numerical computation, we repeat the entire calculation for
other random instances of correspondence data. For each minimal problem, we
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obtain the same algebraic degree each time. One instance per problem solved to
high precision is provided on this chapter's webpage.

Example 3.31. We illustrate the proof of Theorem 3.6 by returning to the instance
of `1 PPP + 4 PPL ' in Example 3.5. HereL special � P(C3� 3� 3) formed by inter-
secting subspaces from Theorem 3.28 is codimension 12, henceL0

special ! L special.
Tracking deg(Tcal) many points in the pseudo-witness set �� 1(Tcal \ L ) to the target
� � 1(Tcal\ L0

special), we get 4912 �nite endpoints. Testing membership inL special, we get
2552 points in � � 1(Tcal \ L special). Among these, 888 points satisfya2+ b2+ c2+ d2 � 0,
so they are non-physical (corresponding to 3� 4 matrices with left submatrices that
are not rotations). The remaining 1664 points turn out to correspond to calibrated
camera con�gurations with linearly independent centers. Checking satisfaction of
the equations from Theorem 3.10, we end up with 160 solutions.

Remark 3.32. The proof of Theorem 3.6 is constructive. From the solved ran-
dom instances, one may build solvers for each minimal problem, using coe�cient-
parameter homotopy. Here the start system is the solved instance of the minimal
problem and the target system is another given instance. Such a solver is optimal in
the sense that the number of paths tracked equals the true algebraic degree of the
problem. Implementation is left to future work.

Remark 3.33. All degrees in Theorem 3.6 are divisible by 8. We would like to
understand why. What are theGalois groups[51] for these minimal problems?

Remark 3.34. Practically speaking, given image correspondence data de�ned over
R, only real solutions (A; B; C ) to the minimal problems in Theorem 3.6 are of
interest to RANSAC-style 3D reconstruction algorithms. Does there exist image
data such that all solutions are real? Also, for the image data observed in practice,
what is the distribution of the number of real solutions?

3.7 Numerical implicitization

In this section, we switch gears from calibrated three-view geometry, and describe a
stand-aloneMacaulay2software package [21] co-written with Justin Chen, for wide
use in computational algebra. Our softwareNumericalImplicitization permits
the user-friendly computation of invariants of the image of a polynomial map, such
as dimension, degree and Hilbert function values. Like the computations performed
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already in this chapter, NumericalImplicitization relies on methods from nu-
merical algebraic geometry, e.g. homotopy-continuation and monodromy. My own
interest in writing general-purpose numerical algebraic geometry code grew out of
my project on the calibrated trifocal variety.

Many varieties of interest in algebraic geometry and its applications are usefully
described as images of polynomial maps, i.e. via a parametrization. For vision
examples, see the third sentence of Section 2.1, De�nition 3.23, De�nition 3.24,
Equation 4.10 and Equation 5.5. Implicitization is the process of converting a para-
metric description of a variety into an intrinsic { or implicit { description. Classi-
cally, implicitization refers to the procedure of computing the de�ning equations of
a parametrized variety, and in theory this is accomplished by �nding the kernel of
a ring homomorphism, via Gr•obner bases. In practice however, symbolic Gr•obner
basis computations are often time-consuming, even for medium-scale problems, and
do not scale well with respect to the size of the input.

Despite this, one would often like to know basic information about a parametrized
variety, even when symbolic methods are prohibitively expensive (in terms of com-
putation time). The best examples of such information are discrete invariants such
as the dimension, or degree and Hilbert function values if the variety is projective.
Other examples include Boolean tests, e.g. whether or not a particular point lies on
a parametrized variety. The goal of the presentMacaulay2[44] package is to provide
such information { in other words, tonumerically implicitize a parametrized variety {
by using the methods of numerical algebraic geometry.NumericalImplicitization 3

builds on top of existing numerical algebraic geometry software, e.g.NAG4M2[70],
Bertini [10, 9] andPHCpack[102, 45]. Each of these can be used for path tracking
and point sampling; by default, the native engineNAG4M2is used.

Notation. The following notation will be used throughout the remainder of this
section:

� X � An is a source variety, de�ned by an ideal I = hg1; : : : ; gr i in the polyno-
mial ring C[x1; : : : ; xn ]

� F = f f 1; : : : ; f mg, where f i 2 C[x1; : : : ; xn ], is a list of polynomials specifying
a map An ! Am

� Y is the Zariski closure of the imageF (X ) = F (V(I )) � Am ; the target variety
under consideration

3For up-to-date code and documentation, see https://github.com/Joe-Kileel/
Numerical-Implicitization
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� eY � Pm is the projective closure ofY, with respect to the standard embedding
Am � Pm .

Currently, our codeNumericalImplicitization is implemented for integral (i.e.
reduced and irreducible) varietiesX . Equivalently, the ideal I is prime. Since numer-
ical methods are used, we always work over the complex numbers with 
oating-point
arithmetic. Moreover, eY is internally represented by its a�ne cone. This is because
it is easier for computers to work with points in a�ne space; at the same time, this
su�ces to �nd the invariants of eY.

All the methods in this package rely crucially on the ability to sample general
points on X . To this end, two methods are provided,numericalSourceSample and
numericalImageSample, which allow the user to sample as many general points on
X and Y as desired. numericalSourceSample will compute a witness set ofX ,
unlessX = An , by taking a numerical irreducible decomposition ofX . This time-
consuming step cannot be avoided. Once a witness set is known, points onX can
be sampled in negligible time.numericalImageSampleworks by sampling points in
X via numericalSourceSample, and then applying the mapF .

One way to view the di�erence in computation time between symbolic and nu-
merical methods is that the upfront cost of computing a Gr•obner basis is replaced
with the upfront cost of computing a numerical irreducible decomposition, which
is used to sample general points. However, ifX = An , then sampling is done by
generating random tuples, and is essentially immediate. Thus, in this unrestricted
parametrization case, the upfront cost of numerical methods becomes zero.

The most basic invariant of an algebraic variety is its dimension. To compute the
dimension of the image of a variety numerically, we use the following theorem:

Theorem 3.35. Let F : X ! Y be a dominant morphism of irreducible varieties
over C. Then there is a Zariski open subsetU � X such that for all x 2 U, the
induced map on tangent spacesdFx : TxX ! TF (x)Y is surjective.

Proof. This is an immediate corollary ofgeneric smoothness[46, III.10.5] and the
preceding [49, III.10.4].

In the setting above, since the singular locus SingY is a proper closed subset of
Y, for generaly = F (x) 2 Y we have that dimY = dim TyY = dim dFx (TxX ) =
dim TxX � dim kerdFx . Now TxX is the kernel of the Jacobian matrix ofI evaluated
at x, given by Jac(I )(x) = (( @gi =@xj )(x))1� i � r; 1� j � n , and kerdFx is the kernel of the
Jacobian ofF evaluated atx, intersected with TxX . Explicitly, ker dFx is the kernel
of the (r + m) � n matrix:
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"
Jac(I )(x)

Jac(F )(x)

#

=

2

6
6
6
6
6
6
6
6
6
6
6
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@g1
@x1

(x) : : :
@g1
@xn

(x)

...
. . .

...
@gr
@x1

(x) : : :
@gr
@xn

(x)

@F1
@x1

(x) : : :
@F1
@xn

(x)

...
. . .

...
@Fm
@x1

(x) : : :
@Fm
@xn

(x)

3

7
7
7
7
7
7
7
7
7
7
7
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We compute these kernel dimensions numerically, as explained prior to Chapter 3.38
below, to get dimY.

Example 3.36. Let Y � Sym4(C5) �= A70 be the variety of 5� 5 � 5 � 5 symmetric
tensors of border rank� 14. Equivalently, Y is the a�ne cone over � 14(� 4(P4)), the
14th secant variety of the fourth Veronese embedding ofP4. Naively, one expects
dim(Y) = 14 � 4 + 13 + 1 = 70. In fact, dim( Y) = 69 as veri�ed by the following
code:

Macaulay2, version 1.9.2
i1 : needsPackage "NumericalImplicitization"
i2 : R = CC[s_(1,1)..s_(14,5)];
i3 : F = sum(1..14, i -> flatten entries basis(4, R, Variables =>
toList(s_(i,1)..s_(i,5))));
i4 : time numericalImageDim(F, ideal 0_R)

-- used 0.106554 seconds
o4 = 69

This example is the largest exceptional case from the celebrated work [6]. Note the
timing printed above.

We now turn to the problem of determining the Hilbert function ofeY. Recall that
if eY � Pm is a projective variety, given by a homogeneous idealJ � C[y0; : : : ; ym ],
then the Hilbert function of eY at an argument d 2 N is by de�nition the vector
space dimension of thedth graded part of J , i.e. H eY (d) := dim Jd. This counts the
maximum number of linearly independent degreed hypersurfaces inPm containing
eY.

To compute the Hilbert function of eY numerically, we usemultivariate polynomial
interpolation. For a �xed argument d 2 N, let f p1; : : : ; pN g be a set ofN general
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points on eY. For 1 � i � N , consider ani �
�

m + d
d

�
interpolation matrix A (i ) with

rows indexed by pointsf p1; : : : ; pi g and columns indexed by degreed monomials in
C[y0; : : : ; ym ], whose entries are the values of the monomials at the points. A vector
in the kernel ofA (i ) corresponds to a choice of coe�cients for a homogeneous degree
d polynomial that vanishes onp1; : : : ; pi . If i is large, then one expects such a form
to vanish on the entire variety eY. The following theorem makes this precise:

Theorem 3.37. Let f p1; : : : ; ps+1 g be a set of general points oneY, and let A (i ) be
the interpolation matrix above. Ifdim kerA (s) = dim ker A (s+1) , then dim kerA (s) =
dim Jd.

Proof. Identifying a vector v 2 kerA (i ) with the form in C[y0; : : : ; ym ] of degree
d having v as its coe�cients, it su�ces to show that ker A (s) = Jd. If h 2 Jd,
then h vanishes on all ofeY, in particular on f p1; : : : ; psg, so h 2 kerA (s) . For
the converse kerA (s) � Jd, we consider the universal interpolation matrices over
C[y0;1; y1;1; : : : ; ym;i ]

A (i ) :=

2

6
6
6
6
4

yd
0;1 yd� 1

0;1 y1;1 : : : yd
m;1

yd
0;2 yd� 1

0;2 y1;2 : : : yd
m;2

...
...

. . .
...

yd
0;i yd� 1

0;i y1;i : : : yd
m;i

3

7
7
7
7
5

Setr i := min f j 2 ZZ � 0 j every (j +1) � (j +1) minor of A (i ) lies in the ideal of eY � i �
(Pm )� i g. Then any specialization ofA (i ) to i points in eY is a matrix over C of rank
� r i ; moreover if the points are general, then the specialization has rank exactly
r i , since eY is irreducible. In particular rank(As) = r s and rank(As+1 ) = r s+1 , so
dim kerA (s) = dim ker A (s+1) implies that r s = r s+1 . It follows that specializing
A (s+1) to p1; p2; : : : ; ps; q for any q 2 eY gives a rankr s matrix. Hence, every degree
d form in kerA (s) evaluates to 0 at everyq 2 eY. Since eY is reduced, we deduce that
kerA (s) � Jd.

It follows from Chapter 3.37 that the integers dim kerA (1) ; dim kerA (2) ; : : : de-
crease by exactly 1, until the �rst instance where they fail to decrease, at which
point they stabilize: dim kerA (i ) = dim ker A (s) for i � s. This stable value is the
value of the Hilbert function, dim kerA (s) = H eY (d). In particular, it su�ces to com-

pute dim kerA (N ) for N =
�

m + d
d

�
, i.e. one may assume the interpolation matrix

is square. Although this may seem wasteful (as stabilization may have occurred
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with fewer rows), this is indeed whatnumericalHilbertFunction does, due to the
algorithm used to compute kernel dimension numerically. To be precise, kernel di-
mension is found via a singular value decomposition (SVD) { namely, if a gap (=
ratio of consecutive singular values) greater than the optionSVDGapThreshold(with
default value 200) is observed in the list of all singular values, then this is taken as
an indication that all singular values past the greatest gap are numerically zero. On
example problems, it was observed that taking only one more additional row than
was needed often did not reveal a satisfactory gap in singular values. In addition,
numerical stability is improved via preconditioning on the interpolation matrices {
namely, each row is normalized in the Euclidean norm before computing the SVD.

Example 3.38. Let X be a random canonical curve of genus 4 inP3, so X is
the complete intersection of a random quadric and cubic. LetF : P3 99KP2 be a
projection by 3 random cubics. TheneY is a plane curve of degree 3dim( eY ) � deg(X ) =
3 � 2 � 3 = 18, so the ideal ofeY contains a single form of degree 18. We verify this as
follows:

i5 : R = CC[w_0..w_3];
i6 : I = ideal(random(2,R), random(3,R));
i7 : F = toList(1..3)/(i -> random(3,R));
i8 : T = numericalHilbertFunction(F, I, 18)
Sampling image points ...

-- used 4.76401 seconds
Creating interpolation matrix ...

-- used 0.313925 seconds
Performing normalization preconditioning ...

-- used 0.214475 seconds
Computing numerical kernel ...

-- used 0.135864 seconds
Hilbert function value: 1
o8 = NumericalInterpolationTable

The output is a NumericalInterpolationTable , which is a HashTable storing
the results of the interpolation computation described above. From this, one can
obtain a 
oating-point approximation to a basis ofJd. This is done via the command
extractImageEquations :

i9 : extractImageEquations T
o9 : | -.0000712719y_0^18+(.000317507-.000100639i)y_0^17y_1-(.0000906039-
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---------------------------------------------------------------------
.000616564i)y_0^16y_1^2-(.00197404+.00177936i)y_0^15y_1^3+(.0046344+
---------------------------------------------------------------------
.00196825i)y_0^14y_1^4-(.00475536-.00157142i)y_0^13y_1^5+(.00550602-
---------------------------------------------------------------------
.0100492i)y_0^12y_1^6-(.012252-.0188461i)y_0^11y_1^7+ ... |

An experimental feature to �nd equations overZ may be called with the option
attemptExact => true .

After dimension, degree is the most basic invariant of a projective varietyeY � Pm .
Set k := dim( eY). For a general linear spaceL 2 Gr(Pm� k ; Pm ) of complementary
dimension to eY, the intersection L \ eY is a �nite set of reduced points. The degree
of eY is by de�nition the cardinality of L \ eY, which is independent of the general
linear spaceL. Thus one approach to �nd deg(eY) is to �x a random L0 and compute
the set of pointsL0 \ eY.

NumericalImplicitization takes this tack, but the method used to �ndL0 \ eY
is not the most obvious. First and foremost, we do not know the equations ofeY,
so all solving must be done inX . Secondly, we donot compute F � 1(L0) \ X from
the equations ofX and the equations ofL0 pulled back underF , because that has
degree deg(F ) � deg(eY) { potentially much bigger than deg(eY). Instead, monodromy
is employed to �nd L0 \ eY.

To state the technique, we consider the map:

� := f (L; y ) 2 Gr(Pm� k ; Pm )� eY j y 2 Lg � Gr(Pm� k ; Pm )� eY
� 1����! Gr(Pm� k ; Pm )

where� 1 is projection onto the �rst factor. There is a nonempty Zariski open subset
U � Gr(Pm� k ; Pm ) such that the restriction � � 1

1 (U) ! U is a deg(eY)-to-1 covering
map, namelyU equals the complement of the Hurwitz divisor from [99]. Now �x a
generic basepointL0 2 U. Then the fundamental group� 1(U; L0) acts on the �ber
� � 1

1 (L0) = L0 \ eY. This action is known as monodromy. It is a key fact that the
induced group homomorphism� 1(U; L0) �! Sym(L0 \ eY) �= Symdeg(eY ) is surjective,

by irreducibility of eY. More explicitly:

Theorem 3.39. Let eY ; U; L0 be as above. WriteL0 = V(`0) for `02(C[y0; : : : ; ym ]1)k

a heightk column vector of linear forms. Fix another generic pointL1 = V(`1) 2 U,
where`1 2 (C[y0; : : : ; ym ]1)k . For any 
 0; 
 1 2 C, consider the following loop of linear
subspaces ofPm :
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t 7!

8
><

>:

V
�

(1 � 2t) � `0 + 
 12t � `1

�
if 0 � t �

1
2

V
�

(2 � 2t) � `1 + 
 0(2t � 1) � `0

�
if

1
2

� t � 1:

For a nonempty Zariski open subset of(
 0; 
 1) 2 C2, this loop is contained inU.
Moreover, the classes of these loops in� 1(U; L0) generate the full symmetric group
Sym(L0 \ eY).

Proof. Let L be the pencil of linear subspaces ofPm generated by`0 and `1. Via
monodromy,� 1(L\ U; L0) maps surjectively onto Sym(L0 \ eY), by [93, Corollary 3.5].
Here the topological spaceL\ U is homeomorphic to the Riemann sphereCP1 minus
a �nite set of points, so � 1(L \ U; L0) is isomorphic to a free group on �nitely many
letters. The explicit loops in the theorem statement miss the �nite setLn (L\ U) for
general
 0; 
 1; moreover
 0; 
 1 may be chosen so that the loop above encloses exactly
one point in L n (L \ U). Therefore, the classes of these loops generate� 1(L \ U; L0).
To visualize these loops, the reader may consult the proof of [92, Lemma 7.1.3].

numericalImageDegree works by �rst sampling a general point x 2 X , and
manufacturing a general linear sliceL0 such that F (x) 2 L0 \ eY. Then, L0 is moved
around in a loop of the form described in Theorem 3.39. This loop pulls back to a
homotopy in X , where we use the equations ofX to track x. The endpoint of the
track is a point x0 2 X such that F (x0) 2 L0 \ eY. If F (x) and F (x0) are numerically
distinct, then the loop haslearned a new point in L0 \ eY; otherwisex0 is discarded.
We then repeat this process of tracking points inX over each known point inL0 \ eY,
according to loops in Theorem 3.39. Note that for random
 0; 
 1 2 C, each loop has
a positive probability { bounded away from 0 { of learning new points inL0 \ eY,
up until all of L0 \ eY is known. Thus by carrying out many loops from Theorem
3.39, the probability of �nding all points in L0 \ eY approaches 1. In practice, if
several consecutive loops4 do not learn new points inL0 \ eY, then we suspect that
all of L0 \ eY has been calculated. To verify this, we pass to thetrace test (see
[93, Corollary 2.2], [50,x5] or [71, x1]), which provides a characterization for when
a subset ofL0 \ eY equalsL0 \ eY . If the trace test is failed, then L0 is replaced
by a new randomL0

0 and preimages inX of known points of L0 \ eY are tracked
to those preimages of points ofL0

0 \ eY. Afterwards, monodromy forL0
0 \ eY begins

anew. If the trace test is failedmaxTraceTests(= 10 by default) times in total, then
numericalImageDegree exits with only a lower bound on deg(eY).

4This is speci�ed by the option maxRepetitiveMonodromies (with default value 4).
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Example 3.40. Let eY = � 2(P1 � P1 � P1 � P1 � P1) � P31. We �nd that deg( eY) =
3256, using the commands below:

i10 : R = CC[a_1..a_5, b_1..b_5, t_0, t_1];
i11 : F1 = terms product(apply(toList(1..5), i -> 1 + a_i));
i12 : F2 = terms product(apply(toList(1..5), i -> 1 + b_i));
i13 : F = apply(toList(0..<2^5), i -> t_0*F1#i + t_1*F2#i);
i14 : time numericalImageDegree(F, ideal 0_R, maxRepetitiveMonodromies=>2)
Sampling point in source ...
Tracking monodromy loops ...
Points found: 2
Points found: 4
Points found: 8
Points found: 16
Points found: 32
Points found: 62
Points found: 123
Points found: 239
Points found: 466
Points found: 860
Points found: 1492
Points found: 2314
Points found: 3007
Points found: 3229
Points found: 3256
Points found: 3256
Points found: 3256
Running trace test ...
Degree of image: 3256

-- used 388.989 seconds
o14 = PseudoWitnessSet

In [88, Theorem 4.1], it is proven via representation theory and combinatorics that
the prime idealJ of eY is generated by the 3� 3 minors of all 
attenings of 2� 5 tensors,
so we can con�rm that deg(J ) = 3256. However, the naive attempt to compute the
degree ofeY symbolically by taking the kernel of a ring map { from a polynomial ring
in 32 variables { has no hope of �nishing in any reasonable amount of time.

The output o14 above is aPseudoWitnessSet, which is aMacaulay2 HashTable
that stores the computation ofL0 \ eY. This numerical representation of parameter-
ized varieties was introduced in [52].
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Classically, given a varietyY � Am and a point y 2 Am , we determine whether
or not y 2 Y by �nding set-theoretic equations ofY (which generate the ideal ofY
up to radical), and then testing if y satis�es these equations. If aPseudoWitnessSet
for Y is available, then point membership inY can instead be veri�ed byparam-
eter homotopy. More precisely,isOnImage determines if y lies in the constructible
set F (X ) � Y , as follows. We �x a general a�ne linear subspaceL y � Am of
complementary dimensionm � k passing throughy. Then y 2 F (X ) if and only if
y 2 L y \ F (X ), so it su�ces to compute the setL y \ F (X ). Now, aPseudoWitnessSet
for Y provides a general sectionL \ F (X ), and preimages inX . We moveL to L y as
in [92, Theorem 7.1.6]. This pulls back to a homotopy inX , where we use the equa-
tions of X to track those preimages. ApplyingF to the endpoints of the track gives
all isolated points in L y \ F (X ) by [92, Theorem 7.1.6]. SinceL y was general, the
proof of [31, Corollary 10.5] showsL y \ F (X ) is zero-dimensional, so this procedure
computes the entire setL y \ F (X ).

Example 3.41. Let Y � A18 be de�ned by the resultant of three quadratic equations
in three unknowns, i.e.,Y consists of all (c1; : : : ; c6; d1; : : : ; d6; e1; : : : ; e6) 2 A18 such
that the system

0 = c1x2 + c2xy + c3xz + c4y2 + c5yz + c6z2

0 = d1x2 + d2xy + d3xz + d4y2 + d5yz + d6z2

0 = e1x2 + e2xy + e3xz + e4y2 + e5yz + e6z2

admits a solution (x : y : z) 2 P2. Here Y is a hypersurface, and a matrix formula
for its de�ning equation was derived in [34], using Ulrich sheaf and exterior alge-
bra methods, similarly to own approach in Chapter 2 above. Here, we can rapidly
determine point membership inY numerically as follows.

i15 : R = CC[c_1..c_6, d_1..d_6, e_1..e_6, x, y, z];
i16 : I = ideal(c_1*x^2+c_2*x*y+c_3*x*z+c_4*y^2+c_5*y*z+c_6*z^2,

d_1*x^2+d_2*x*y+d_3*x*z+d_4*y^2+d_5*y*z+d_6*z^2,
e_1*x^2+e_2*x*y+e_3*x*z+e_4*y^2+e_5*y*z+e_6*z^2);

i17 : F = toList(c_1..c_6 | d_1..d_6 | e_1..e_6);
i18 : W = numericalImageDegree(F, I, verboseOutput => false); -- Y has degree 12
i19 : p1 = numericalImageSample(F, I); p2 = point random(CC^1, CC^#F);
i21 : time (isOnImage(W, p1), isOnImage(W, p2))

-- used 0.186637 seconds
o21 = (true, false)
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In this chapter, we determined algebraic degrees for minimal problems in the
recovery of three calibrated cameras. This recovery has resisted e�orts from the
vision community; our results quantify the complexity. Numerical algebraic geometry
furnished a powerful toolkit. Additionally, we relaxed zero-dimensional polynomial
systems to systems with more geometric structure, hence easier to solve. In the last
section, a software package for numerical implicitization was presented.
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Chapter 4

Image Distortion

This chapter develops an algebro-geometric framework for dealing with image dis-
tortion. To that end, we introduce a general construction for lifting varieties in
projective space to other toric varieties. We prove exact formulas for degree and
de�ning equations, and we draw a connection with tropical geometry. These results
unify and extend an existing body of work in computer vision. Our formulations
lead to minimal solvers that competitive with or superior to the state of the art. The
chapter is mostly based on my work [62] joint with Zuzana Kukelova, Tomas Pajdla
and Bernd Sturmfels accepted for journal publication inFoundations of Computa-
tional Mathematics. In addition, the last section led to our subsequent paper [67],
accepted for presentation at the2017 IEEE Conference on Computer Vision and
Pattern Recognition in Honolulu, Hawaii.

4.1 Introduction

This chapter introduces a construction in algebraic geometry that is motivated by
multiview geometry in computer vision. As we have seen in Chapters 2 and 3, in
that �eld, one thinks of a camera as a linear projectionP3 99KP2, and a model is a
projective variety X � Pn that represents the relative positions of two or more such
cameras. The data are correspondences of image points inP2 (or, in the case of three
or more cameras, image lines in (P2)_ ). These correspondences de�ne a linear sub-
spaceL � Pn , and the task is to compute the real points in the intersectionL \ X as
fast and accurately as possible. That kind of formulation already played prominently
in Chapters 2 and 3 above. See [48, Chapter 9] for a textbook introduction.

A model for cameras with image distortion allows for an additional unknown
parameter � . Each coordinate ofX gets multiplied by a polynomial in � whose
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coe�cients also depend on the data. We seek to estimate both� and the point in
X , where the data now specify a subspaceL0 in a larger projective spacePN . The
distortion variety X 0 lives in that PN , it satis�es dim(X 0) = dim( X ) + 1, and the
task is to computeL0 \ X 0 in PN fast and accurately.

We illustrate the idea of distortion varieties for the basic scenario in two-view
geometry.

Example 4.1. The relative position of two uncalibrated cameras is expressed by
a 3� 3-matrix x = ( x ij ) of rank 2, known as thefundamental matrix. Let n = 8
and write F for the hypersurface inP8 de�ned by the 3 � 3-determinant. Seven
(generic) image correspondences in two views determine a lineL in P8, and one
rapidly computes the three points inL \ F .

The 8-point radial distortion problem [64, Section 7.1.3] is modeled as follows in
our setting. We duplicate the coordinates in the last row and last column ofx, and
we set

(x11 : x12 : x13 : y13 : x21 : x22 : x23 : y23 : x31 : y31 : x32 : y32 : x33 : y33 : z33) =�
x11 : x12 : x13 : x13� : x21 : x22 : x23 : x23� : x31 : x31� : x32 : x32� : x33 : x33� : x33� 2

�
:

(4.1)
Here N = 14. The distortion variety F 0 is the closure of the set of matrices (4.1)
where x 2 F and � 2 C. The variety F 0 has dimension 8 and degree 16 inP14,
whereasF has dimension 7 and degree 3 inP8. To estimate both � and the relative
camera positions, we now need eight image correspondences. These data specify a
linear spaceL0 of dimension 6 inP14. The task in the computer vision application is
to rapidly compute the 16 points inL0 \ F 0.

The prime ideal of the distortion variety F 0 is minimally generated by 18 poly-
nomials in the 15 variables. First, there are 15 quadratic binomials, namely the
2 � 2-minors of matrix

�
x13 x23 x31 x32 x33 y33

y13 y23 y31 y32 y33 z33

�
: (4.2)

Note that this matrix has rank 1 under the substitution (4.1). Second, there are
three cubics

x11x22x33 � x11x23x32 � x12x21x33 + x12x23x31 + x13x21x32 � x13x22x31;
x13x22y31 � x12x23y31 � x13x21y32 + x11x23y32 + x12x21y33 � x11x22y33;
x22y13y31 � x12y23y31 � x21y13y32 + x11y23y32 + x12x21z33 � x11x22z33:

(4.3)

These three 3� 3-determinants replicate the equation that de�nes the original model
F . }
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This chapter is organized as follows. Section 4.2 gives the relevant concepts
and de�nitions from computer vision and algebraic geometry. We present camera
models with image distortion, with focus on distortions with respect to a single
parameter� . The resulting distortion varietiesX [u] live in the rational normal scroll
Su, where u = ( u0; u1; : : : ; un ) is a vector of non-negative integers. Thisdistortion
vector indicates that the coordinatex i on Pn is replicatedui times when passing to
PN . In Example 4.1 we haveu = (0 ; 0; 1; 0; 0; 1; 1; 1; 2) and Su is the 9-dimensional
rational normal scroll de�ned by the 2� 2-minors of (4.2).

Our results on one-parameter distortions of arbitrary varieties are stated and
proved in Section 4.3. Theorem 4.8 expresses the degree ofX [u] in terms of the Chow
polytope of X . Theorem 4.16 derives ideal generators forX [u] from a Gr•obner basis
of X . These results explain what we observed in Example 4.1, namely the degree 16
and the equations in (4.2)-(4.3).

Section 4.4 deals with multi-parameter distortions. We �rst derive various camera
models that are useful for applications, and we then present the relevant algebraic
geometry.

Section 4.5 is concerned with a concrete application to solving minimal problems
in computer vision. We focus on the distortion variety f+E+� of degree 23 derived
in Section 4.2.

4.2 One-parameter distortions

This section has three parts. First, we derive the relevant camera models from
computer vision. Second, we introduce the distortion varietiesX [u] of an arbitrary
projective variety X . And, third, we study the distortion varieties for the camera
models from the �rst part.

Multiview geometry with image distortion

A perspective camerain computer vision [48, p. 158] is a linear projectionP3 99KP2.
The 3� 4-matrix that represents this map is written asK �

�
R j t

�
whereR 2 SO(3),

t 2 R3, and K is an upper-triangular 3� 3 matrix known as the calibration matrix.
This transforms a point X 2 P3 from the world Cartesian coordinate system to
the camera Cartesian coordinate system. Here, we usually normalize homogeneous
coordinates onP3 and P2 so that the last coordinate equals 1. With this, points in
R3 map to R2 under the action of the camera.
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The following camera model was introduced in [78, Equation 3] to deal with image
distortions:

�
�
R j t

�
X =

�
h(kA U + bk) (A U + b)
g(kA U + bk)

�
for some � 2 Rnf 0g: (4.4)

The two functions h: R ! R and g: R ! R represent the distortion. The invertible
matrix A 2 R2� 2 and the vectorb2 R2 are used to transform the image pointU 2 R2

into the image Cartesian coordinate system. The perspective camera in the previous
paragraph is obtained by settingh = g = 1 and taking the calibration matrix K to

be the inverse of
�

A b
0 0 1

�
.

Micusik and Pajdla [78] studied applications to �sh eye lenses as well as catadiop-
tric cameras. In this context they found that it often su�ces to �x h = 1 and to take
a quadratic polynomial forg. For the following derivation we chooseg(t) = 1 + �t 2,
where � is an unknown parameter. We also assume that the calibration matrix has
the diagonal form K = diag

�
f; f; 1

�
. If we set � = �=f 2 then the model (4.4)

simpli�es to

�
�
R j t

�
X = K � 1

�
U

1 + � kUk2

�
for some � 2 Rnf 0g: (4.5)

Let us now analyze two-view geometry for the model (4.5). The quantity� =
�=f 2 is our distortion parameter. Throughout the discussion in Section 4.2 there is
only one such parameter. Later, in Section 4.4, there will be two or more di�erent
distortion parameters.

Following [48, Section 9.6] we represent two camera matrices
�
R1 j t1

�
and

�
R2 j t2

�

by their essential matrix E. This 3 � 3-matrix has rank 2 and satis�es theDe-
mazure equations. The equations were �rst derived in [25]; they take the matrix
form 2E E > E � trace(E E > )E = 0. For a pair (U1; U2) of corresponding points in
two images, theepipolar constraint now reads

0 =
�

AU2

1 + � kAU2k2

� >

E
�

AU1

1 + � kAU1k2

�
=

�
U2

1 + � kU2k2

� >

K �> E K � 1
�

U1

1 + � kU1k2

�
: (4.6)

In this way, the essential matrixE expresses a necessary condition for two pointsU1

and U2 in the image planes to be pictures of the same world point. Thefundamental
matrix is obtained from the essential matrix and the calibration matrix:

F =

0

@
f 11 f 12 f 13

f 21 f 22 f 23

f 31 f 32 f 33

1

A = K �> E K � 1: (4.7)
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Using the coordinates ofU1 = [ u1; v1]> and U2 = [ u2; v2]> , the epipolar constraint
(4.6) is

0 = u2u1f 11 + u2v1f 12 + u2f 13 + u2kU1k2�f 13 + v2u1f 21 + v2v1f 22 + v2f 23 + v2kU1k2�f 23 +

u1f 31 + u1kU2k2�f 31 + v1f 32 + v1kU2k2�f 32 + f 33 + ( kU1k2+ kU2k2)�f 33 + kU1k2kU2k2� 2f 33:

This is a sum of 15 terms. The corresponding monomials in the unknowns form the
vector

m> =
�
f 11; f 12; f 13; f 13�; f 21; f 22; f 23; f 23�; f 31; f 31�; f 32; f 32�; f 33; f 33�; f 33� 2

�
: (4.8)

The 15 coe�cients are real numbers given by the data. The coe�cient vectorc is
equal to
�
u2u1; u2v1; u2; u2kU1k2; v2u1; v2v1; v2; v2kU1k2; u1; u1kU2k2; v1; v1kU2k2; 1; kU1k2+ kU2k2; kU1k2kU2k2�>

:

With this notation, the epipolar constraint given by one point correspondence is
simply

c> m = 0: (4.9)

At this stage we have derived the distortion variety in Example 4.1. Identi-
fying f ij with the variables x ij , the vector (4.8) is precisely the same as that in
(4.1). This is the parametrization of the rational normal scrollSu in P14 where
u = (0 ; 0; 1; 0; 0; 1; 1; 1; 2). The set of fundamental matrices is dense in the hypersur-
faceX = f det(F ) = 0 g in P8. Its distortion variety X [u] has dimension 8 and degree
16 in P14. Each point correspondence (U1; U2) determines a vectorc and hence a
hyperplane in P14. The constraint (4.9) means intersectingX [u] with that hyper-
plane. Eight point correspondences determine a 6-dimensional linear space inP14.
Intersecting X [u] with that linear subspace is the same as solving the 8-point radial
distortion problem in [64, Section 7.1.3]. The expected number of complex solutions
is 16.

Scrolls and distortions

This subsection introduces the algebro-geometric objects studied in this chapter.
We �x a non-zero vector u = ( u0; u1; : : : ; un ) 2 Nn+1 of non-negative integers, we
abbreviate juj = u0 + u1 + � � � + un , and we setN = juj + n. The rational normal
scroll Su is a smooth projective variety of dimensionn + 1 and degreejuj in PN . It
has the parametric representation

�
x0 : x0� : x0� 2 : � � � : x0� u0 : x1 : x1� : x1� 2 : � � � : x1� u1 : � � � : xn : xn � : � � � : xn � un

�
:

(4.10)
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The coordinates are monomials, so the scrollSu is also a toric variety [23]. Since
degree(Su) = juj equals codim(Su) + 1 = N � n + 1, it is a variety of minimal degree
[46, Example 1.14].

Restriction to the coordinates (x0 : x1 : � � � : xn ) de�nes a rational mapSu 99KPn .
This is a toric �bration [27]. Its �bers are curves parametrized by� . The base locus
is a coordinate subspacePn � PN . Its points have support on the last coordinate
in each of then + 1 groups. For instance, in Example 4.2 the base locus is theP2

de�ned by ha0; b0; b1; c0; c1; c2i in P8.
The prime ideal of the scrollSu is generated by the 2� 2-minors of a 2� j uj-

matrix of unknowns that is obtained by concatenating Hankel matrices on the blocks
of unknowns; see [33, Lemma 2.1], [86], and Example 4.2 below. For a textbook
reference see [46, Theorem 19.9].

We now consider an arbitrary projective varietyX of dimensiond in Pn . This is
the underlying model in some application, such as computer vision. We de�ne the
distortion variety of level u, denoted X [u], to be the closure of the preimage ofX
under the mapSu 99KPn . The �bers of this map are curves. The distortion variety
X [u] lives in PN . It has dimensiond+ 1. Points on X [u] represent points onX whose
coordinates have been distorted by an unknown parameter� . The parametrization
above is the rule for the distortion. In other words,X [u] is the closure of the image
of the regular mapX � C ! PN given by (4.10).

Each distortion variety represents aminimal problem[64] in polynomial systems
solving. Data points de�ne linear constraints onPN , like (4.9). Our problem is to
solve d + 1 such linear equations onX [u]. The number of complex solutions is the
degree ofX [u]. A simple bound for that degree is stated in Proposition 4.7, and
an exact formulas can be found in Theorem 4.8. Of course, in applications we are
primarily interested in the real solutions.

We already saw one example of a distortion variety in Example 4.1. In the
following example, we discuss some surfaces inPN that arise as distortion varieties
of plane curves.

Example 4.2. Let n = 2 and u = (1 ; 2; 3). The rational normal scroll is a 3-
dimensional smooth toric variety inP8. Its implicit equations are the 2� 2-minors
of the 2� 6-matrix �

a0 b0 b1 c0 c1 c2

a1 b1 b2 c1 c2 c3

�
: (4.11)

This is the \concatenated Hankel matrix" mentioned above. Its pattern generalizes
to all u.

Let X be a general curve of degreed in P2. The distortion variety X [u] is a surface
of degree 5d in P8. Its prime ideal is generated by the 15 minors of (4.11) together
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with d + 1 polynomials of degreed. These are obtained from the ternary form that
de�nes X by the distortion process in Theorem 4.16. For special curvesX , the degree
of X [u] may drop below 5d. For instance, given a lineX = V(�a + �b + �c ) in P2, the
distortion surfaceX [u] has degree 5 if� 6= 0, it has degree 4 if� = 0 but � 6= 0, and
it has degree 3 if� = � = 0. For any curve X , the property deg(X [u]) = 5 � deg(X )
holds after a coordinate change inP2. If X = f pg is a single point inP2 then X [u] is
a curve in P8. It has degree 3 unlessp 2 V(c). }

Back to two-view geometry

In this subsection we describe several variants of Example 4.1. These highlight
the role of distortion varieties in two-view geometry. We �x n = 8, N = 14 and
u = (0 ; 0; 1; 0; 0; 1; 1; 1; 2) as above. The scrollSu is the image of the map (4.1) and
its ideal is generated by the 2� 2-minors of (4.2). Each of the following varieties live
in the space of 3� 3-matricesx = ( x ij ).

Example 4.3 (Essential Matrices). We now write E for the essential variety (see
[25] or Chapter 2). It has dimension 5 and degree 10 inP8. Its points x are the
essential matrices in (4.6). The ideal ofE is generated by ten cubics, namelydet(x)
and the nine entries of the matrix 2xxT x � trace(xxT )x. The distortion variety E [u]

has dimension 6 and degree 52 inP14. Its ideal is generated by 15 quadrics and 18
cubics, derived from the ten Demazure cubics. }

Example 4.4 (Essential Matrices plus Two Equal Focal Lengths). Fix a diagonal
calibration matrix k = diag( f; f; 1), wheref is a new unknown. We de�neG to be
the closure inP8 of the set of 3� 3-matricesx such that kxk 2 E for somef . To
compute the ideal of the varietyG, we use the following lines of code in the computer
algebra systemMacaulay2 [44]:

R=QQ[f,x11,x12,x13,x21,x22,x23,x31,x32,x33,y13,y23,y33,y31,y32,z33,t];
X=matrix {{x11,x12,x13},{x21,x22,x23},{x31,x32,x33}}
K=matrix {{f,0,0},{0,f,0},{0,0,1}};
P=K*X*K;
E=minors(1,2*P*transpose(P)*P-trace(P*transpose(P))*P)+ideal(det(P));
G=eliminate({f},saturate(E,ideal(f)))
codim G, degree G, betti mingens G

The output tells us that the variety G has dimension 6 and degree 15, and thatG
is the complete intersection of two hypersurfaces inP8, namely the cubic det(x) and
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the quintic

x11x3
13x31 + x2

13x21x23x31 + x11x13x2
23x31 + x21x3

23x31 � x11x13x3
31 � x21x23x3

31+
x12x3

13x32 + x2
13x22x23x32 + x12x13x2

23x32 + x22x3
23x32 � x12x13x2

31x32� x2
12x

2
13x33

� x11x13x31x2
32 � x21x23x31x2

32 � x12x13x3
32� x22x23x3

32� x2
11x

2
13x33� x22x23x2

31x32

� 2x11x13x21x23x33 � 2x12x13x22x23x33 � x2
21x

2
23x33 � x2

22x
2
23x33 + x2

11x
2
31x33

+ x2
21x

2
31x33 + 2x11x12x31x32x33 + 2x21x22x31x32x33 + x2

12x
2
32x33 + x2

22x
2
32x33:

(4.12)
The distortion variety G[u] is now computed by the following lines inMacaulay2:

Gu = eliminate({t}, G +
ideal(y13-x13*t,y23-x23*t,y31-x31*t,y32-x32*t,y33-x33*t,z33-x33*t^2))

codim Gu, degree Gu, betti mingens Gu

We learn that G[u] has dimension 7 and degree 68 inP14. Modulo the 15 quadrics
for Su, its ideal is generated by three cubics, like those in (4.3), and �ve quintics,
derived from (4.12). }

Example 4.5 (Essential Matrices plus One Focal Length Unknown). Let G0 denote
the 6-dimensional subvariety ofP8 de�ned by the four maximal minors of the 3� 4-
matrix 0

@
x11 x12 x13 x21x31 + x22x32 + x23x33

x21 x22 x23 � x11x31 � x12x32 � x13x33

x31 x32 x33 0

1

A : (4.13)

This variety has dimension 6 and degree 9 inP8. It is de�ned by one cubic and three
quartics. The variety G0 is similar to G in Example 4.4, but with the identity matrix
as the calibration matrix for one of the two cameras. We can computeG0 by running
the Macaulay2code above but with the lineP = K*X*K replaced with the line P =
X*K. This model was studied in [16].

The distortion variety G0
[u] has dimension 7 and degree 42 inP14. Modulo the 15

quadrics that de�ne Su, the ideal ofG0
[u] is minimally generated by three cubics and

11 quartics. }

Table 4.1 summarizes the four models we discussed in Examples 4.1, 4.3, 4.4 and
4.5. The �rst column points to a reference in computer vision where this model
has been studied. The last column shows the upper bound for deg(X [u]) given in
Proposition 4.7. That bound is not tight in any of our examples. In the second half
of the table we report the same data for the four models when only only one of the
two cameras undergoes radial distortion.
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u =
�
0; 0; 1; 0; 0; 1; 1; 1; 2

�
Ref dim(X ) deg(X ) dim(X [u]) deg(X [u]) Prop 4.7

F in Ex 4.1: � +F+ � [64] 7 3 8 16 18
E in Ex 4.3: � +E+ � [64] 5 10 6 52 60
G in Ex 4.4: � f+E+f � [57] 6 15 7 68 90
G0 in Ex 4.5: � +E+f � 6 9 7 42 54

v =
�
0; 0; 1; 0; 0; 1; 0; 0; 1

�
Ref dim(X ) deg(X ) dim(X [v]) deg(X [v]) Prop 4.7

F in Ex 4.6: F+ � [63] 7 3 8 8 9
E in Ex 4.6: E+ � [63] 5 10 6 26 30

G in Ex 4.6: f+E+f � 6 15 7 37 45
G0 in Ex 4.6: E+f � [63] 6 9 7 19 27

G00in Ex 4.6: f+E+ � 6 9 7 23 27

Table 4.1: Dimensions and degrees of two-view models and their radial distortions.

Example 4.6. We revisit the four two-view models discussed above, but with distor-
tion vector v = (0 ; 0; 1; 0; 0; 1; 0; 0; 1). Now, N = 11 and only one camera is distorted.
The rational normal scroll Sv has codimension 2 and degree 3 inP11. Its parametric
representation is

�
x11 : x12 : x13 : x13� : x21 : x22 : x23 : x23� : x31 : x32 : x33 : x33�

�
:

The distortion varieties F[v], E [v], G[v] and G0
[v] live in P11. Their degrees are shown

in the lower half of Table 4.1. For instance, consider the last two rows. The notation
E+f � means that the right camera has unknown focal length and it is also distorted.

The �fth row refers to another variety G00. This is the image ofG0 under the
linear isomorphism that maps a 3� 3-matrix to its transpose. Sincev is not a
symmetric matrix, unlike u, the variety G00

[v] is actually di�erent from G0
[v]. The

descriptor f+E+ � of G00
[v] expresses that the left camera has unknown focal length

and the right camera is distorted. The varietyG00
[v] has dimension 7 and degree 23

in P11. In addition to the three quadrics x3i y3j � x3j y3i that de�ne Sv, the ideal
generators forG00

[v] are two cubics and �ve quartics. The minimal problem [63, 64]
for this distortion variety is studied in detail in Section 4.5. }

4.3 Equations and degrees

In this section we express the degree and equations ofX [u] in terms of those ofX .
Throughout we assume thatX is an irreducible variety of codimensionc in Pn and
the distortion vector u 2 Nn+1 satis�es u0 � u1 � � � � � un . We begin with a general
upper bound for the degree.
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Proposition 4.7. Supposeun � 1. The degree of the distortion variety satis�es

deg(X [u]) � deg(X ) � (uc + uc+1 + � � � + un ): (4.14)

This holds with equality if the coordinates are chosen so thatX is in general position
in Pn .

The upper bound in Proposition 4.7 is shown for our models in the last column
of Table 4.1. This result will be strengthened in Theorem 4.8 below, where we give
an exact degree formula that works for allX . It is instructive to begin with the two
extreme cases. Ifc = 0 and X = Pn then we recover the fact that the scrollX [u] = Su

has degreeN � n = u0 + � � � + un . If c = n and X is a general point inPn then X [u]

is a rational normal curve of degreeun .
The following proof, and the subsequent development in this section, assumes

familiarity with two tools from computational algebraic geometry: the construction
of initial ideals with respect to weight vectors, as in [97], and theChow form of a
projective variety [24, 39, 43, 60].

Proof of Proposition 4.7. Fix dim( X [u]) = n � c + 1 general linear forms onPN ,
denoted`0; `1; : : : ; `n� c. We write their coe�cients as the rows of the (n � c + 1) �
(N + 1) matrix 2

6
6
6
4

� 0;0 � 0;1 � 0;2 � � � � 0;N

� 1;0 � 1;1 � 1;2 � � � � 1;N
...

...
...

. . .
...

� n� c;0 � n� c;1 � n� c;2 � � � � n� c;N

3

7
7
7
5

: (4.15)

Here � i;j 2 C. The degree ofX [u] equals #
�
X [u] \ V (`0; : : : ; `n� c)

�
. We shall do this

count. Recall that X [u] is the closure of the image of the injective mapX � C ! PN

given in (4.10). The image of this map is dense inX [u]. Its complement is thePn

consisting of all points whose coordinates in each then +1 groups are zero except for
the last one. Since the linear forms̀i are generic, all points ofX [u] \ V (`0; : : : ; `n� c)
lie in this image. By injectivity of the map, deg(X [u]) is the number of pairs (x; � ) 2
X � C which map into X [u] \ V (`0; : : : ; `n� c).

We formulate this condition on (x; � ) as follows. Consider the (n � c+1) � (n+1)
matrix

2

6
6
6
4

� 0;0 + � 0;1� + � � � + � 0;u0 � u0 � � � � � � � 0;u0+ :::+ un � 1+1 + � � � + � 0;N � n � un

� 1;0 + � 1;1� + � � � + � 1;u0 � u0 � � � � � � � 1;u0+ :::+ un � 1+1 + : : : + � 1;N � n � un

...
. . . . . .

...
� n� c;0 + � n� c;1� + � � � + � n� c;u0 � u0 � � � � � � � n� c;u0+ :::+ un � 1+1 + � � � + � n� c;N � n � un

3

7
7
7
5

:

(4.16)
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We want to count pairs (x; � ) 2 Pn � C such that x 2 X and x lies in the kernel of
this matrix. By genericity of ` i , this matrix has rank n � c + 1 for all � 2 C. So for
each� 2 C, the kernel of the matrix (4.16) is a linear subspace of dimensionc� 1 in
Pn .

We conclude that (4.16) de�nes a rational curve in the Grassmannian Gr(Pc� 1; Pn ).
Here the� i;j are �xed generic complex numbers and� is an unknown that parametrizes
the curve. If we take the Grassmannian in its Pl•ucker embedding then the degree of
our curve is uc + uc+1 + � � � + un , which is the largest degree in� of any maximal
minor of (4.16).

At this point we use the Chow form ChX of the variety X . As in Chapter 2,
following [24, 43], this is the de�ning equation of an irreducible hypersurface in the
Grassmannian Gr(Pc� 1; Pn ). Its points are the subspaces that intersectX . The
degree of ChX in Pl•ucker coordinates is deg(X ).

We now consider the intersection of our curve with the hypersurface de�ned by
ChX . Equivalently, we substitute the maximal minors of (4.16) into ChX and we
examine the resulting polynomial in� . Since the matrix entries� i;j in (4.15) are
generic, the curve intersects the hypersurface of the Chow form ChX outside its
singular locus. By B�ezout's Theorem, the number of intersection points is bounded
above by deg(X ) � (uc + uc+1 + � � � + un ).

Each intersection point is non-singular onV(ChX ), and so the corresponding
linear space intersects the varietyX in a unique point x. We conclude that the
number of desired pairs (x; � ) is at most deg(X ) � (uc + uc+1 + � � � + un ). This
establishes the upper bound.

For the second assertion, we apply a general linear change of coordinates toX
in Pn . Consider the lexicographically last Pl•ucker coordinate, denotedpc;c+1 ;:::;n .
The monomial pdeg(X )

c;c+1 ;:::;n appears with non-zero coe�cient in the Chow form ChX .
Substituting the maximal minors of (4.16) into ChX , we obtain a polynomial in �
of degree deg(X ) � (uc + uc+1 + � � � + un ). By the genericity hypothesis on (4.15),
this polynomial has distinct roots in C. These represent distinct points inX [u] \
V (`0; : : : ; `n� c), and we conclude that the upper bound is attained.

We will now re�ne the method in the proof above to derive an exact formula for
the degree ofX [u] that works in all cases. The Chow form ChX is expressed in primal
Pl•ucker coordinatespi 0 ;i 1 ;:::;i n � c on Gr(Pc� 1; Pn ). The weight of such a coordinate is
the vector ei 0 + ei 1 + � � � + ei n � c , and the weight of a monomial is the sum of the
weights of its variables. TheChow polytopeof X is the convex hull of the weights of
all Pl•ucker monomials appearing in ChX ; see [60].
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Theorem 4.8. The degree ofX [u] is the maximum value attained by the linear func-
tional w 7! u � w on the Chow polytope ofX . This positive integer can be computed
by the formula

degree(X [u]) =
nX

j =0

uj � degree
�

in� u(X ) : hx j i 1
�
; (4.17)

where in� u(X ) is the initial monomial ideal of X with respect to a term order that
re�nes � u.

Proof. Let M be a monomial ideal inx0; x1; : : : ; xn whose variety is pure of codimen-
sionc. Each of its irreducible components is a subspace span(ei 0 ; ei 1 ; : : : ; ei n � c ) of Pn .
We write � i 0 ;i 1 ;:::;i n � c for the multiplicity of M along that coordinate subspace. By
[60, Theorem 2.6], the Chow form of (the cycle given by)M is the Pl•ucker monomialY

p
� i 0 ;i 1 ;:::;i n � c
i 0 ;i 1 ;:::;i n � c

, and the Chow polytope ofM is the point
X

� i 0 ;i 1 ;:::;i n � c (ei 0 + ei 1 +
� � � + ei n � c ). The j -th coordinate of that point can be computed fromM without
performing a monomial primary decomposition. Namely, thej -th coordinate of the
Chow point of M is the degree of the saturationM : hx j i 1 . This follows from [60,
Proposition 3.2] and the proof of [60, Theorem 3.3].

We now substitute each maximal minor of the matrix (4.16) for the corresponding
Pl•ucker coordinate pi 0 ;i 1 ;:::;i n � c . This results in a general polynomial of degreeui 0 +
ui 1 + � � � + ui n � c in the one unknown� . When carrying out this substitution in the
Chow form ChX , the highest degree terms do not cancel, and we obtain a polynomial
in � whose degree is the largestu-weight among all Pl•ucker monomials in ChX .
Equivalently, this degree in� is the maximum inner product of the vectoru with
any vertex of the Chow polytope ofX .

One vertex that attains this maximum is the Chow point of the monomial ideal
M = in � u(X ) in the proof of Proposition 4.7. Note that we had chosen one particular
term order to re�ne the partial order given by � u. If we vary that term order then we
obtain all vertices on the face of the Chow polytope supported byu. The saturation
formula for the Chow point of the monomial idealM in the �rst paragraph of the
proof completes our argument.

We are now able to characterize when the upper bound in Proposition 4.7 is
attained. Let c� and c+ be the smallest and largest index respectively such that
uc� = uc = uc+ . We de�ne a setL u of n � c + 1 linear forms as follows. Start with
the n � c+ variablesxc+ +1 , xc+ +2 , : : :, xn and then takec+ � c+1 generic linear forms
in the variables xc� ; xc� +1 ; : : : ; xc+ . In the case whenu has distinct coordinates,
V(L u) is simply the subspace spanned bye0; e1; : : : ; en� c.
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Corollary 4.9. The degree ofX [u] is the right hand side of (4.14) if and only if
V(L u) \ X = ; .

Proof. The quantity deg(X ) � (uc + uc+1 + � � � + un ) is the maximal u-weight among
Pl•ucker monomials of degree equal to deg(X ). The monomials that attain this maxi-
mal u-weight are products of deg(X ) many Pl•ucker coordinates of weightuc + uc+1 +
� � � + un . These are precisely the Pl•ucker coordinatespi 0 ;i 1 :::;i c+ � c ; uc+ +1 ;:::;u n , where
c� � i 0<i 1< � � � <i c+ � c � c+ .

Such monomials are non-zero when evaluated at the subspaceV(L u). All other
monomials, namely those having smalleru-weight, evaluate to zero onV(L u). Hence
the Chow form ChX has terms of degree deg(X ) � (uc + uc+1 + � � � + un ) if and only
if ChX evaluates to a non-zero constant onV(L ) if and only if the intersection of X
with V(L u) is empty.

We present two example to illustrate the exact degree formula in Theorem 4.8.

Example 4.10. SupposeX is a hypersurface inPn , de�ned by a homogeneous
polynomial  (x0; : : : ; xn ) of degreed. Let 	 be the tropicalization of  , with respect
to min-plus algebra, as in [74]. Equivalently, 	 is the support function of the Newton
polytope of f . Then

deg(X [u]) = d � juj � 	( u0; u1; : : : ; un ): (4.18)

For instance, letn = 8; d = 3 and  the determinant of a 3� 3-matrix. HenceX is
the variety of fundamental matrices, as in Example 4.1. The tropicalization of the
3 � 3-determinant is

	 = min
�
u11+ u22+ u33; u11+ u23+ u32; u12+ u21+ u33; u12+ u23+ u31; u13+ u21+ u32; u13+ u22+ u31

�
:

The degree of the distortion varietyX [u] equals 3�
X

uij � 	. This explains the
degree 16 we had observed in Example 4.1 for the radial distortion of the fundamental
matrices. }

Example 4.11. Let X be the variety of essential matrices with the same distortion
vector u. In Example 4.3, we found that deg(X [u]) = 52. The following Macaulay2
code veri�es this:

U = {0,0,1,0,0,1,1,1,2};
R = QQ[x11,x12,x13,x21,x22,x23,x31,x32,x33,Weights=>apply(U,i->10-i)];
P = matrix {{x11,x12,x13},{x21,x22,x23},{x31,x32,x33}}
X = minors(1,2*P*transpose(P)*P-trace(P*transpose(P))*P)+ideal(det(P));
M = ideal leadTerm X;
sum apply( 9, i -> U_i * degree(saturate(M,ideal((gens R)_i))) )
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Here,Mis the monomial ideal in� u(X ), and the last line is our saturation formula in
(4.17). }

We next derive the equations that de�ne the distortion varietyX [u] from those
that de�ne the underlying variety X . Our point of departure is the ideal of the

rational normal scroll Su. It is generated by the
�

N � n
2

�
minors of the concate-

nated Hankel matrix. The following lemma is well-known and easy to verify using
Buchberger's S-pair criterion; see also [86].

Lemma 4.12. The 2 � 2-minors that de�ne the rational normal scroll Su form a
Gr•obner basis with respect to the diagonal monomial order. The initial monomial
ideal is squarefree.

For instance, in Example 4.2, whenn = 2 and u = (1 ; 2; 3), the initial monomial
ideal is

ha0b1; a0b2; a0c1; a0c2; a0c3; b0b2; b0c1; b0c2; b0c3; b1c1; b1c2; b1c3; c0c2; c0c3; c1c3i : (4.19)

A monomial m is standard if it does not lie in this initial ideal. The weight of a
monomial m is the sum of its indices. Equivalently, the weight ofm is the degree in
� of the monomial in N + 1 variables that arises fromm when substituting in the
parametrization of Su.

Lemma 4.13. Consider any monomialx � = x � 0
0 x � 1

1 � � � x � n
n of degreej� j in the coor-

dinates ofPn . For any nonnegative integeri � � � u there exists a unique monomial
m in the coordinates onPN such that m is standard and maps tox � � i under the
parametrization of the scrollSu.

Proof. The polyhedral cone corresponding to the toric varietySu consists of all pairs
(�; i ) 2 Rn+2

� 0 with 0 � i � � � u. Its lattice points correspond to monomialsx � t i

on Su. Since the initial ideal in Lemma 4.12 is square-free, the associated regular
triangulation of the polytope is unimodular, by [97, Corollary 8.9]. Each lattice
point ( �; i ) has a unique representation as anN-linear combination of generators
that span a cone in the triangulation. Equivalently,x � t i has a unique representation
as a standard monomial in theN + 1 coordinates onPN .

We refer to the standard monomialm in Lemma 4.13 as thei th distortion of the
given x � .
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Example 4.14. In Example 4.2 we haven = 2, N = 8, and Su corresponds to
the cone over a triangular prism. The lattice points in that cone are the monomials
x � 0

0 x � 1
1 x � 2

2 t i with 0 � i � � 0 + 2� 1 + 3� 2. Using the ambient coordinates onP8, each
such monomial is written uniquely asa� 00

0 a� 01
1 b� 10

0 b� 11
1 b� 12

2 c� 20
0 c� 21

1 c� 22
2 c� 23

3 that is not
in (4.19) and satis�es � 00 + � 01 = � 0; � 10 + � 11 + � 12 = � 1; � 20 + � 21 + � 22 + � 23 =
� 2; � 01 + � 11 + 2� 12 + � 21 + 2� 22 + 3� 23 = i . For instance, if x � = x3

0x2
1x2

2 then its
various distortions, for 0� i � 13, are the monomials

a3
0b2

0c2
0; a3

0b2
0c0c1; a3

0b2
0c0c2; a3

0b2
0c0c3; a3

0b2
0c1c3; a3

0b2
0c2c3; a3

0b2
0c2

3;
a3

0b0b1c2
3; a3

0b0b2c2
3; a3

0b1b2c2
3; a3

0b2
2c2

3; a2
0a1b2

2c2
3; a0a2

1b2
2c2

3; a3
1b2

2c2
3:

Given any homogeneous polynomialp in the unknowns x0; x1; : : : ; xn , we write
p[i ] for the polynomial on PN that is obtained by replacing each monomial inp by
its i th distortion.

Example 4.15. For the scroll in Example 4.2, the distortions of the sexticp =
a6+ a2b2c2 are

p[0] = a6
0+ a2

0b2
0c2

0; p[1] = a5
0a1+ a0a1b2

0c2
0 ; : : : ; p[5] = a0a5

1+ a2
1b1b2c2

0; p[6] = a6
1+ a2

1b2
2c2

0; : : :

The following result shows how the equations ofX [u] can be read o� from those
of X .

Theorem 4.16. The ideal of the distortion varietyX [u] is generated by the
�

N � n
2

�

quadrics that de�ne Su together with the distortionsp[i ] of the elementsp in the
reduced Gr•obner basis ofX for a term order that re�nes the weights� u. Hence, the
ideal is generated by polynomials whose degree is at most the maximal degree of any
monomial generator ofM = in � u(X ).

Proof. SinceX [u] � S u, the binomial quadrics that de�ne Su lie in the ideal I (X [u]).
Also, if p is a polynomial that vanishes onX then all of its distortions p[i ] are in
I (X [u]) because

p[i ]

�
x0; �x 0; : : : ; � u0 x0; x1; : : : ; � un xn

�
= � i � p(x) = 0 for � 2 C and x 2 X:

Conversely, consider any homogeneous polynomialF in I (X [u]). It must be shown
that F is a polynomial linear combination of the speci�ed quadrics and distortion
polynomials. Without loss of generality, we may assume thatF is standard with
respect to the Gr•obner basis in Lemma 4.12, and that each monomial inF has the
same weighti . This implies

F
�
x0; �x 0; : : : ; � u0 x0; x1; : : : ; � un xn

�
= � i f (x)
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for some homogeneousf 2 C[x0; : : : ; xn ]. SinceF 2 I (X [u]), we havef 2 I (X ). We
write

f = h1p1 + h2p2 + � � � + hkpk ;

wherep1; p2; : : : ; pk are in the reduced Gr•obner basis ofI (X ) with respect to a term
order re�ning � u, and the multipliers satisfy deg� u(f ) � deg� u(hj pj ) = deg� u(hj ) +
deg� u(pj ) for j = 1; 2; : : : ; k. SinceF = f [i ], we have� deg� u(f ) � i . Hence, for each
j there exist nonnegative integersaj and bj such that aj + bj = i and � deg� u(hj ) � aj

and � deg� u(pj ) � bj . The latter inequalities imply that the distortion polynomials
(hj )[aj ] and (pj )[bj ] exist.

Now consider the following polynomial in the coordinates onPN :

eF = ( h1)[a1 ] � (p1)[b1 ] + � � � + ( hk)[ak ] � (pk)[bk ]:

By construction, eF and F both map to � i f under the parameterization of the scroll
Su. Thus, eF � F 2 I (Su). This shows that F is a polynomial linear combination
of generators ofI (Su) and distortions of Gr•obner basis elementsp1; : : : ; pk . This
completes the proof.

We illustrate this result with two examples.

Example 4.17. If X is a hypersurface of degreed � 2 then the idealI (X [u]) is gen-
erated by binomial quadrics and distortion polynomials of degreed. More generally,
if the generators ofI (X ) happen to be a Gr•obner basis for� u then the degree of
the generators ofI (X [u]) does not go up. This happens for all the varieties from
computer vision seen in Section 2. }

In general, however, the maximal degree among the generators ofI (X [u]) can be
much larger than that same degree forI (X ). This happens for complete intersection
curves inP3:

Example 4.18. Let X be the curve inP3 obtained as the intersection of two random
surfaces of degree 4. We �xu = (2 ; 3; 4; 4). The initial ideal M = in � u(X ) has 51
monomial generators. The largest degree is 32. We now consider the distortion
surfaceX [u] in P12. The ideal of I (X [u]) is minimally generated by 133 polynomials.
The largest degree is 32. }

4.4 Multi-parameter distortions

In this section we study multi-parameter distortions of a given projective variety
X � Pn . Now, � = ( � 1; : : : ; � r ) is a vector of r parameters, andu = ( u0; : : : ; un )
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where ui = f ui; 1; ui; 2; : : : ; ui;s i g is an arbitrary �nite subset of Nr . Each point ui;j

represents a monomial in ther parameters, denoted� u i;j . We set juj =
nX

i =0

jui j =

nX

i =0

si and N = juj � 1. The role of the scroll is played by a toric varietyCu of

dimensionn + r in PN that is usually not smooth. Generalizing (4.10), we de�ne the
Cayley variety Cu in PN by the parametrization
�
x0� u0;1 : x0� u0;2 : � � � : x0� u0;s 0 : x1� u1;1 : � � � : x1� u1;s 1 : � � � : xr � ur; 1 : � � � : xr � ur;s r

�
:

(4.20)
The name was chosen becauseCu is the toric variety associated with the Cayley
con�guration of the con�guration u. Its convex hull is the Cayley polytope; see [27,
Section 3] and [74, De�nition 4.6.1].

The distortion variety X [u] is de�ned as the closure of the set of all points (4.20)
in PN wherex 2 X and � 2 (C� )r . HenceX [u] is a subvariety of the Cayley variety
Cu, typically of dimension d + r where d = dim( X ). Note that, even in the single-
parameter setting (r = 1), we have generalized our construction, by permittingui to
not be an initial segment ofN.

Example 4.19. Let r = n = 2, u0 = f (0; 0); (0; 1)g, u1 = f (0; 0); (1; 0)g, u2 =
f (2; 2); (1; 1)g. The Cayley variety Cu is the singular hypersurface inP5 de�ned by
a0b0c0 � a1b1c1. Let X be the conic inP2 given byx2

0 + x2
1 � x2

2. The distortion variety
X [u] is a threefold of degree 10. Its ideal isha0b0c0 � a1b1c1; a2

0c2
0 + b2

0c2
0 � c4

1; a2
0a1b1c0 +

a1b2
0b1c0 � a0b0c3

1; a2
0a2

1b2
1 + a2

1b2
0b2

1 � a2
0b2

0c2
1i . }

Two views with two or four distortion parameters

We now present some motivating examples from computer vision. Multi-dimensional
distortions arise when several cameras have di�erent unknown radial distortions, or
when the distortion function g(t) = 1+ �t 2 in (4.4){(4.5) is replaced by a polynomial
of higher degree.

We return to the setting of Section 4.2, and we introduce two distinct distortion
parameters� 1 and � 2, one for each of the two cameras. The role of the equation
(4.6) is played by

0 =
�

U2

1 + � 2kU2k2

� >
2

4
x11 x12 x13

x21 x22 x23

x31 x32 x33

3

5
�

U1

1 + � 1kU1k2

�
: (4.21)
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Just like in (4.9), this translates into one linear equationc> m = 0, where now m> =

[x11; x12; x13; � 1x13; x21; x22; x23; � 1x23; x31; x31� 2; x32; x32� 2; x33; x33� 2; x33� 1; x33� 1� 2] and c> =
�
u2u1;u2v1;u2;u2kU1k2; v2u1;v2v1;v2; v2kU1k2; u1; u1kU2k2; v1; v1kU2k2; 1; kU1k2; kU2k2; kU1k2kU2k2�

.

Here c is a real vector of data, whereas� = ( � 1; � 2) and x = ( x ij ) comprise 11
unknowns. The vectorm is a monomial parametrization of the form (4.20). The
corresponding con�gurationu is given by u11 = u12 = u21 = u22 = f (0; 0)g; u13 =
u23 = f (0; 0); (1; 0)g; u31 = u32 = f (0; 0); (0; 1)g; u33 = f (0; 0); (1; 0); (0; 1); (1; 1)g.
The Cayley variety Cu lives in P15. It has dimension 10 and degree 10. Its toric ideal
is generated by 11 quadratic binomials.

Let X � P8 be one of the two-view modelsF , E, G, or G0 in Subsection 4.2.
The following table concerns the distortion varietiesX [u] in P15. It is an extension
of Table 4.1.

dim(X ), dim(X [u]) deg(X [u]) Prop 4.7 # ideal gens of
deg(X ) iterated deg 2, 3, 4, 5

F in Ex 4.1: � 1+F+ � 2 7, 3 9 24 36 11, 4, 0, 0
E in Ex 4.3: � 1+E+ � 2 5, 10 7 76 120 11, 20, 0, 0
G in Ex 4.4: � 1f+E+f � 2 6, 15 8 104 180 11, 4, 0, 4
G0 in Ex 4.5: � 1+E+f � 2 6, 9 8 56 108 11, 4, 15, 0

Table 4.2: Dimensions, degrees, mingens of two-view models and their two-parameter
radial distortions.

On eachX [u] we consider linear systems of equationsc> m = 0 that arise from
point correspondences. For a minimal problem, the number of such epipolar con-
straints is dim(X [u]), and the expected number of its complex solutions is deg(X [u])
(though e.g. in three-view geometry, degree drops occur; see Theorem 3.6). The
last column summarizes the number of minimal generators of the ideal ofX [u]. For
instance, the varietyX [u] = E [u] for essential matrices is de�ned by 11 quadrics (from
Cu), 20 cubics, 0 quartics and 0 quintics. If we add 7 general linear equations to these
then we have a system with 76 solutions inP15. The penultimate column of Table
4.2 gives an upper bound on deg(X [u]) that is obtained by applying Proposition 4.7
twice, after decomposingu into two one-parameter distortions.

We next discuss four-parameter distortions for two cameras. These are based
on the following model for epipolar constraints, which is a higher-order version of
equation (4.21):

0 =
�

U2

1 + � 2kU2k2 + � 2kU2k4

� >
2

4
x11 x12 x13

x21 x22 x23

x31 x32 x33

3

5
�

U1

1 + � 1kU1k2 + � 1kU1k4

�
:(4.22)
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As before, the 3� 3-matrix x = ( x ij ) belongs to a two-view camera modelE, F ,
G or G0. We rewrite (4.22) as the inner productc> m = 0 of two vectors, wherec
records the data andm is a parametrization for the distortion variety. We now have
n = 9; r = 4 and juj = 25. The con�gurations in N4 that furnish the degrees for this
four-parameter distortion are

u11 = u12 = u21 = u22 = f 0g;
u13 = u23 = f 0; (1; 0; 0; 0); (0;0;1;0)g; u31 = u32 = f 0; (0; 1; 0; 0); (0; 0; 0; 1)g;

u33 = f 0; (1; 0; 0; 0); (0; 1; 0; 0); (0; 0; 1; 0); (0; 0; 0; 1); (1; 0; 1; 0); (1; 0; 0; 1); (0; 1; 1; 0); (0; 1; 0; 1)g:

Each of the resulting distortion varietiesX [u] lives in P24 and satis�es dim(X [u]) =
dim(X )+4. As before, we may compute the prime ideals for these distortion varieties
by elimination, for instance in Macaulay2. From this, we obtain the information
displayed in Table 4.3.

dim deg quadrics cubics quartics quintics
F in Ex 4.1: � 1� 1+F+ � 2� 2 11 115 51 9
E in Ex 4.3: � 1� 1+E+ � 2� 2 9 354 51 34
G in Ex 4.4: � 1� 1f+E+f � 2� 2 10 245 51 9 42
G0 in Ex 4.5: � 1� 1+E+f � 2� 2 10 475 51 9 9

Table 4.3: Dimension, degrees, number of minimal generators for four-parameter
radial distortions.

In each case, the 51 quadrics are binomials that de�ne the ambient Cayley variety
Cu in P24. The minimal problems are now more challenging than those in Tables
4.1 and 4.2. For instance, to recover the essential matrix along with four distortion
parameters from 9 general point correspondences, we must solve a polynomial system
that has 354 complex solutions.

Iterated distortions and their tropicalization

In what follows we take a few steps towards a geometric theory of multi-parameter
distortions. We begin with the observation that multi-parameter distortions arising
in practice, including those in Subsection 4.4, will often have an inductive structure.
Such a structure allows us to decompose them as successive one-parameter distortions
where the degrees form an initial segment of the non-negative integersN. In that
case the results of Section 4.2 can be applied iteratively. The following proposition
characterizes when this is possible. Forui � Nr and k < r , we write ui jNk � Nk for
the projection of the setui onto the �rst k coordinates.
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Proposition 4.20. Let u = ( u0; : : : ; un ) be a sequence of �nite nonempty subsets
of Nr . The multi-parameter distortion with respect tou in � 1; : : : ; � r is a succession
of one-parameter distortions by initial segments, in� 1, then � 2, and so on, if and
only if each �ber of the mapsui jNk � ui jNk � 1 becomes an initial segment ofN when
projected onto thekth coordinate. This condition holds when eachui is an order ideal
in the posetNr , with coordinate-wise order.

Proof. We show this for r = 2. The general case is similar but notationally more
cumbersome. The two-parameter distortion given by a sequenceu decomposes into
two one-parameter distortions if and only if there exist vectorsv = ( v0; : : : ; vn ) 2
Nn+1 and w = ( w0; : : : ; wn ) 2 Nv0+1 � � � � � Nvn +1 such that ui = f (s; t) : 0 � s � vi

and 0 � t � wis g for i = 0; 1; : : : ; n. This means that both the Cayley variety and
any distortion subvariety decomposes as follows:

Cu = ( Sv)[w] and X [u] = ( X [v])[w]: (4.23)

The segment [0; vi ] in N is the unique �ber of the map ui jN1 � ui jN0 = f 0g. The
�ber of ui jN2 � ui jN1 = [0; vi ] over an integers is the segment [0; wis ] in N. Thus the
stated condition on �bers is equivalent to the existence of the non-negative integers
vi and wis . For the second claim, we note that the setui is an order ideal inN2

precisely whenwi 0 � wi 1 � � � � � wis .

Proposition 4.20 applies to all models seen in Subsection 4.4 since theui are order
ideals.

Example 4.21. Consider the two-parameter radial distortion model for two cameras
derived in (4.21). The vectors in the above proof arev = (0 ; 0; 1; 0; 0; 1; 0; 0; 1) and
w =

�
0; 0; (0; 0); 0; 0; (0; 0); 1; 1; (1; 1)

�
. The decomposition (4.23) holds for all four

modelsX = E; F; G; G0. The penultimate column of Table 4.2 says that the degree
of (X [v])[w] is bounded above by 12� deg(X ). This follows directly from Proposition
4.7 because 12 =jvj � j wj. }

The exact degrees forX [u] shown in Tables 4.2 and 4.3 were found using Gr•obner
bases. This computation starts from the ideal ofX and incorporates the structure
in Proposition 4.20.

Tropical Geometry [74] furnishes tools for studying multi-parameter distortion
varieties. In what follows, we identify any variety X � Pn with its reembedding
into PN , where thei -th coordinate x i has been duplicatedjui j times. Consider the
distortion variety 1[u] of the point 1 = (1 : 1 : � � � : 1) in Pn . This is the toric variety
in PN given by the parametrization
�
� u0;1 : � u0;2 : � � � : � u0;s 0 : � u1;1 : � � � : � u1;s 1 : � � � : � ur; 1 : � � � : � ur;s r

�
for � 2 (C� )r +1 :
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Let ~u denote the (r+1) � (N +1)-matrix whose columns are vectors in the setsui for
i = 0; 1; : : : ; n, augmented by an extra all-one row vector (1; 1; : : : ; 1). This matrix
represents the toric variety1[u]. Recall that the Hadamard product? of two vectors
in Cn+1 is their coordinate-wise product. This operation extends to points inPn and
also to subvarieties.

Theorem 4.22. Fix a projective variety X � Pn and any distortion systemu,
regarded asr � (N + 1) -matrix. The distortion variety is the Hadamard product of
X with a toric variety:

X [u] = X ? 1[u]

Its tropicalization is the Minkowski sum of the tropicalization ofX with a linear
space:

trop(X [u]) = trop( X ) + trop( 1[u]) = trop( X ) + rowspace(~u): (4.24)

Proof. This follows from equation (4.20) and [74, Section 5]. The toric variety1[u]

in PN is represented by the matrix ~u, in the sense of [97], so its tropicalization is the
row space of ~u. Tropicalization takes Hadamard products into Minkowski sums, by
[12, Proposition 5.1] or [74, Proposition 5.5.11].

Theorem 4.22 suggests the following method for computing degrees of multi-
parameter distortion varieties. LetL be the standard tropical linear space of codi-
mensionr + dim( X ) in RN +1 =R1, as in [74, Corollary 3.6.16]. Fix a general point
� in RN +1 =R1. Then deg(X [u]) is the number of points, counted with multiplicity,
in the intersection of the tropical variety (4.24) with the tropical linear space� + L.
In practice, X is �xed and we precompute trop(X ). That fan then gets intersected
with � + L + rowspace(~u) for various con�gurations u.

Corollary 4.23. The degree ofX [u] is a piecewise-linear function in the maximal
minors of ~u.

Proof. The maximal minors of ~u are the Pl•ucker coodinates of the row space of ~u.
An argument as in [20, Section 4] leads to a polyhedral chamber decomposition of
the relevant Grassmannian, according to which pairs of cones in trop(X ) and in
� + L + rowspace(~u) actually intersect. Each such intersection is a point, and its
multiplicity is one of the maximal minors of ~u.

Using the softwareGfan [56], we precomputed the tropical varieties trop(X ) for
our four basic two-view models, namelyX = E; F; G; G0. The results are summarized
in Table 4.4.
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Variety X dim lineality f-vector multiplicities
F in Example 4.1 7 4 (9, 18, 15) 115

E in Example 4.3 5 0 (591, 4506, 12588, 15102, 6498) 26426; 472

G in Example 4.4 6 1 (32, 213, 603, 780, 390) 1336; 254

G0 in Example 4.5 6 1 (100, 746, 2158, 2800, 1380) 1800; 2572; 48

Table 4.4: The tropical varieties inR9=R1 associated with the two-view models.

The lineality space corresponds to a torus action onX . Its dimension is given
in column 2. Modulo this space, trop(X ) is a pointed fan. Column 3 records the
number of i -dimensional cones fori = 1; 2; 3; : : :. Each maximal cone comes with
an integer multiplicity [74, Section 3.4]. These multiplicities are 1, 2 or 4 for our
examples. Column 4 indicates their distribution.

4.5 Application to minimal problems

This section o�ers a case study for oneminimal problem which has not yet been
treated in the computer vision literature. We build and test an e�cient Gr•obner
basis solver for it. Our approach follows [65, 64, 67] and applies in principle to any
zero-dimensional parameterized polynomial system. This illustrates how the theory
in Sections 4.2, 4.3, 4.4 ties in with practice.

We �x the distortion variety f+E+ � in Table 4.1. This is the variety G00
[v] which

lives in P11 and has dimension 7 and degree 23. We represent its de�ning equations
by the matrix

0

@
x11 x12 x21x31 + x22x32 + x23x33 x13 y13

x21 x22 � x11x31 � x12x32 � x13x33 x23 y23

x31 x32 0 x33 y33

1

A : (4.25)

This matrix is derived by augmenting (4.13) with they-column. The prime ideal of
G00

[v] is generated by all 3� 3-minors of (4.25) and the 2� 2-minors in the last two
columns. The real points on this projective variety represent the relative position of
two cameras, one with an unknown focal lengthf , and the other with an unknown
radial distortion parameter � .

Each pair (U1; U2) of image points gives a constraint (4.6) which translates into
a linear equation (4.9) onG00

[v] \ L0 � P11. Here:

m> = [ x11; x12; x13; y13; x21; x22; x23; y23; x31; x32; x33; y33]
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is the vector of unknowns. Using notation above, the coe�cient vector of the equation
c> m = 0 is c> =

�
u2u1; u2v1; u2; u2kU1k2; v2u1; v2v1; v2; v2kU1k2; u1; v1; 1; kU1k2

�
.

Seven pairs determine a linear systemC m = 0 where the coe�cient matrix C
has format 7� 12. For general data, the matrixC has full rank 7. The solution set
is a 5-dimensional linear subspace inR12, or, equivalently, a 4-dimensional subspace
L0 in P11. The intersection G00

[v] \ L0 consists of 23 points. Our aim is to compute
these fast and accurately. This is what is meant by theminimal problemassociated
with the distortion variety G00

[v].

First build elimination template, then solve instances very
fast

We shall employ the method ofautomatic generation of Gr•obner solvers. This has
already been applied with considerable success to a wide range of camera geometry
problems in computer vision; see e.g [65, 64]. We start by computing a suitable basis
f n1; n2; n3; n4; n5g for the null space ofC in R12. We then introduce four unknowns

 1; : : : ; 
 4, and we substitute

m = 
 1n1 + 
 2n2 + 
 3n3 + 
 4n4 + n5: (4.26)

Our rank constraints on (4.25) translate into ten equations in
 1; 
 2; 
 3; 
 4. This
system has 23 solutions inC4. Our aim is to compute these within a few tens or
hundreds of microseconds.

E�cient and stable Gr•obner solvers are often based onStickelberger's Theorem
[98, Theorem 2.6], which expresses the solutions as the joint eigenvalues of its com-
panion matrices. Let I � R[
 ] be the ideal generated by our ten polynomials in

 = ( 
 1; 
 2; 
 3; 
 4). The quotient ring R[
 ]=I is isomorphic toR23. An R-vector space
basisB is given by the standard monomials with respect to any Gr•obner basis ofI .
The multiplication map M i : R[
 ]=I ! R[
 ]=I , f 7! f 
 i is R-linear. Using the basis
B , this becomes a 23� 23-matrix. The matricesM 1; M2; M3; M4 commute pairwise.
These are thecompanion matrices. As an R-algebra,R[M 1; M2; M3; M4] ' R[
 ]=I .
SinceI is radical, there are 23 linearly independent joint eigenvectorsx, satisfying
M i x = � i x. The vectors (� 1; � 2; � 3; � 4) 2 C4 are the zeros ofI .

In practice, it su�ces to construct only one of the companion matricesM i , since
we can recover the zeros ofI from eigenvectorsx of M i . Thus, our primary task
is to compute eitherM 1; M2; M3 or M 4 from seven point correspondences (U1; U2)
in a manner that is both very fast and numerically stable. For this purpose, the
automatic generatorof Gr•obner solvers [65, 64] is used. We now explain this method
and illustrate it for the f+E+ � problem.
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To achieve speed in computation, we exploit that, for generic data, Buchberger's
algorithm always rewrites the input polynomials in the same way. The resulting
Gr•obner trace [101] is always the same. Therefore, we can construct a single trace
for all generic systems by tracing the construction of a Gr•obner basis of a single
\generic" system. This is done only once in ano�-line stage of solver generation. It
produces anelimination template, which is then reused again and again for e�cient
on-line computations on generic data.

The o�-line part of the solver generation is a variant of the Gr•obner trace al-
gorithm in [101]. Based on the F4 algorithm [36] for a particular generic system,
it produces an elimination template for constructing a Gr•obner basis ofhF i . The
input polynomial systemF = f f 1; : : : ; f 10g is written in the form A m = 0, where A
is the matrix of coe�cients and m is the vectors of monomials of the system. Every
Gr•obner basis G of F can be constructed by Gauss-Jordan (G-J) elimination of a
coe�cient matrix Ad derived from F by multiplying each polynomial f i 2 F , by all
monomials up to degree maxf 0; d � di g, wheredi = deg(f i ).

To �nd an appropriate d, our solver generator starts withd = min f di g, sets
md = m, and G-J eliminates the matrixAmin f di g = A. Then, it checks if a Gr•obner
basisG has been generated. If not, it increasesd by one, builds the nextAd and md,
and goes back to the check. This is repeated until a suitabled and a Gr•obner basisG
has been found. Often, we can remove some rows (polynomials) fromAd at this stage
and form a smaller elimination template, denotedA0

d. For this, another heuristic
optimization procedure is employed, aimed at removing unnecessary polynomials
and provide an e�cient template leading from F to the reduced coe�cient matrix
A0

d. For a detailed description see [65] and [64, Section 4.4.3].
In order to guide this process, we �rst precompute the reduced Gr•obner basis ofI ,

e.g. w.r.t. grevlex ordering inMacaulay2 [44], and the associated monomial basisB
of R[
 ]=I . This has to be done in exact arithmetic overQ, which is computationally
very demanding, due to the coe�cient growth [8]. We alleviate this problem by
using modular arithmetic [36] or by computing directly in a �nite �eld modulo a
single \lucky prime number" [101]. For many practical problems [18, 82, 94], small
primes like 30011 or 30013 are su�cient.

The output of this o�-line algorithm is the elimination template for constructing
A0

d, i.e. the list of monomials multiplying each polynomial ofF to produce A0
d and

m0
d. The template is encoded as manipulations of sparse coe�cient matrices. After

removing unnecessary rows and columns, the matrixA0
d has sizes� (s+ jB j) for some

s. The left s � s-block is invertible. Multiplying A0
d by that inverse and extracting

appropriate rows, one obtains thejB j � j B j matrix M 1 that represents the linear map
R[
 ]=I ! R[
 ]=I; f 7! f 
 1 in the basisB .

We applied this o�-line algorithm to the f+E+ � problem, with standard mono-
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mial basis

B = (1 ; 
 1; 
 1
 3; 
 1
 3
 4; 
 1
 4; 
 1
 2
4; 
 2; 
 2
 3; 
 2
 3
 4; 
 2
 4; 
 2
 2

4; 
 2
 3
4; 
 3; 
 2

3; 
 3
3;


 2
3 
 4; 
 3
 4; 
 3
 2

4; 
 3
 3
4; 
 4; 
 2

4; 
 3
4; 
 4

4):

Note that jB j = 23. The matrix (4.25) gives the following ten ideal generators (with
d1= d2= d3=2; d4= d5=3; d6= � � � = d10=4) for the variety G00

[u] encoding the f+E+�
problem:

f 1 = y23x33 � x23y33

f 2 = y13x33 � x13y33

f 3 = y13x23 � x13y23

f 4 = y13x22x31 � x12y23x31 � y13x21x32 + x11y23x32 + x12x21y33 � x11x22y33

f 5 = x13x22x31 � x12x23x31 � x13x21x32 + x11x23x32 + x12x21x33 � x11x22x33

f 6 = x11y13x31x32 + x21y23x31x32 + x12y13x2
32 + x22y23x2

32 � x11x12x31y33 � x21x22x31y33

� x2
12x32y33 + x2

13x32y33 � x2
22x32y33 + x2

23x32y33 � x12x13x33y33 � x22x23x33y33

� � � � � � � � � � � � � � �
f 10 = x11x12x2

31 + x21x22x2
31 � x2

11x31x32 + x2
12x31x32 � x2

21x31x32 + x2
22x31x32

� x11x12x2
32 � x21x22x2

32 + x12x13x31x33 + x22x23x31x33 � x11x13x32x33 � x21x23x32x33

Using (4.26), these are inhomogeneous polynomials in
 1; 
 2; 
 3; 
 4. In the o�-line
algorithm, we multiply f i by all monomials up to degree 5� di in these four variables.
Each of f 1; f 2; f 3 is multiplied by the 35 monomials of degree� 3, each off 4; f 5 is
multiplied by the 15 monomials of degree� 2, and each off 6; : : : ; f 10 is multiplied by
the 5 monomials of degree� 1. The resulting 160 = 10 + 105 + 30 + 25 polynomials
are written as a matrix A5 with 160 rows. Only 103 rows are needed to construct the
matrix M 1. We conclude with an elimination template matrixA0

5 of format 103� 126.
For any data C, the on-line solver performs G-J elimination on that matrix, and it
computes the eigenvectors of a 23� 23 matrix M 1.

To avoid coe�cient growth in the on-line stage, exact computations overQ are
replaced by approximate computations with 
oating point numbers inR. In a naive
implementation, expected cancellations may fail to occur due to rounding errors,
thus leading to incorrect results. This is not a problem in our method because we
follow the precomputed elimination template: we use only matrix entries that were
non-zero in the o�-line stage. Still, replacing the symbolic F4 algorithm with a
numerical computation may lead to very unstable behavior.

It has been observed [15] that di�erent formulations, term orderings, pair selection
strategies, etc., can have a dramatic e�ect on the stability and speed of the �nal
solver. It is hence crucial to validate every solver experimentally, by simulations as
well as on real data.
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Computational results

A complete solution, in the engineering sense, to a minimal problem is a solution
that is: 1) fast and 2) numerically stablefor most of the data that occur in practice.
Moreover, for applications it is important to study the distribution of real solutions
of the minimal solver.

Minimal solvers are often used inside RANSAC style loops [37]. They form
parts of much larger systems, such as structure-from-motion and 3D reconstruc-
tion pipelines or localization systems. Maximizing the e�ciency of these solvers is
an essential task. Inside a RANSAC loop, all real zeros returned by the solver are
seen as possible solutions to the problem. The consistency w.r.t. all measurements
is tested for each of them. Since that test may be computationally expensive, the
study of the distribution of real solutions is important.

In this section we present graphs and statistics that display properties of the
complete solution we o�er for the f+E+� problem. We studied the performance
of our Gr•obner solver on synthetically generated 3D scenes with known ground-
truth parameters. We generated 500,000 di�erent scenes with 3D points randomly
distributed in a cube [� 10; 10]3 and cameras with random feasible poses. Each 3D
point was projected by two cameras. The focal lengthf of the left camera was drawn
uniformly from the interval [0:5; 2:5] and the focal length of the right camera was set
to 1. The orientations and positions of the cameras were selected at random so as
to look at the scene from a random distance, varying from 20 to 40 from the center
of the scene. Next, the image projections in the right camera were corrupted by
random radial distortion, following the one-parameter division model in [38]. The
radial distortion � was drawn uniformly from the interval [� 0:7; 0]. The aim was to
investigate the behavior of the algorithms for large as well as small amounts of radial
distortion.

Computation and its speed. The proposed f+E+� solver performs the following
steps:

1. Fill the 103� 126 elimination template matrixA0
5 with coe�cients derived from

the input measurements.

2. Perform G-J elimination on the matrix A0
5.

3. Extract the desired coe�cients from the eliminated matrix.

4. Create the multiplication matrix from extracted coe�cients.

5. Compute the eigenvectors of the multiplication matrix.

6. Extract 23 complex solutions (
 1; 
 2; 
 3; 
 4) from the eigenvectors.
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7. For each real solution (
 1; 
 2; 
 3; 
 4), recover the monomial vectorm as in (4.26),
the fundamental matrix F , the focal lengthf , and the radial distortion � .

All seven steps were implemented e�ciently. The �nal f+E+ � solver runs in less
than 1ms.

(a) (b)

Figure 4.1: Numerical stability. (a) Log10 of the relative error of the estimated radial
distortion. (b) Log10 of the relative error of the estimated focal length.

Numerical stability. We studied the behavior of our solver on noise-free data.
Figure 4.1(a) shows the experimental frequency of the base 10 logarithm of the
relative error of the radial distortion parameter� estimated using the new f+E+�
solver. These result were obtained by selecting the real roots closest to the ground
truth values. The results suggest that the solver delivers correct solutions and its
numerical stability is suitable for real word applications.

Figure 4.1(b) shows the distribution of Log10 of the relative error of the estimated
focal lengthf . Again these result were obtained by selecting the real roots closest to
the ground truth values. Note that the f+E+ � solver does not directly compute the
focal lengthf . Its output is the monomial vector in m (4.26), from which we extract
� and the fundamental matrix F = ( x ij ). To obtain the unknown focal length from
F , we use the following formula:

Lemma 4.24. Let X = ( x ij )1� i;j � 3 be a generic point in the varietyG00 from Ex-
ample 4.6. Then there are exactly two pairs of essential matrix and focal length
(E; f ) such thatX = diag( f � 1; f � 1; 1)E. If one of them is (E; f ) then the other is
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(diag(� 1; � 1; 1)E; � f ). In particular, f is determined up to sign byX . A formula
to recover f from X is as follows:

f 2 =
x23x2

31 + x23x2
32 � 2x21x31x33 � 2x22x32x33 � x23x2

33

2x11x13x21+2x12x13x22� x2
11x23� x2

12x23+ x2
13x23+ x2

21x23+ x2
22x23+ x3

23
: (4.27)

Proof. Consider the mapE � C� ! P8, (E; f ) 7! diag(f � 1; f � 1; 1)E. Let I �
Q[eij ; f; x ij ] be the ideal of the graph of this map. So,I is generated by the ten
Demazure cubics and the nine entries ofX � diag(f � 1; f � 1; 1)E. We computed the
elimination ideal I \ Q[f; x ij ] in Macaulay2. The polynomial gotten by clearing the
denominator and subtracting the RHS from the LHS in the formula (4.27) lies in
this elimination ideal. This proves the lemma.

(a) (b)

Figure 4.2: Number of real solutions for 
oating point computation with noise-free
image data.

Counting real solutions. In the next experiment we studied the distribution of
the number of real solutions (�; F ) and the number of real solutions for the focal
length f .

Figure 4.2 (a) shows the histogram of the number of real solutions on the distor-
tion variety G00

[v]. All odd integers between 1 and 23 were observed. Most of the time
we got an odd number of real solutions between 7 and 15. The empirical probabilities
are in Table 4.5.

Figure 4.2 (b) shows the histogram of the number of solutions for the focal length
f , computed from the distortion variety G00

[v] using the formula (4.27). Of the 46
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real roots
in G00

[v ] 1 3 5 7 9 11 13 15 17 19 21 23
% 0.003 0.276 2.47 9.50 21.0 28.0 22.8 11.5 3.60 0.681 0.078 0.003

Table 4.5: Percentage of the number of real solutions in the distortion varietyG00
[v].

complex solutions, at most 23 could be real and positive. The largest number of pos-
itive real solutions f observed in in 500,000 runs was 16. The empirical probabilities
from this experiment are in Table 4.6.

real f 0 1 2 3 4 5 6 7 8 9 10 11
% 0.003 0.397 3.16 7.93 14.5 18.8 19.9 15.5 10.5 5.54 2.52 0.894

real f 12 13 14 15 16
% 0.295 0.075 0.023 0.005 0.001

Table 4.6: Percentage of the number of positive real roots for the focal lengthf .

We performed the same experiment with image measurements corrupted by Gaus-
sian noise with the standard deviation set to 2 pixels. The distribution of the real
roots in the distortion variety G00

[v] was very similar to the distribution for noise-free
data. The main di�erence between these result and those for noise-free data was in
the number of real values for the focal lengthf . For a fundamental matrix corrupted
by noise, the formula (4.27) results in no real solutions more often. See Tables 4.7
and 4.8 for the empirical probabilities.

real roots 1 3 5 7 9 11 13 15 17 19 21 23
% 0.021 0.509 3.23 11.2 22.4 27.7 21.1 10.1 3.07 0.566 0.062 0.004

Table 4.7: Percentage of the number of real solutions in the distortion varietyG00
[v]

for image measurements corrupted with Gaussian noise with� = 2 pixels.

real f 0 1 2 3 4 5 6 7 8 9 10 11
% 0.243 1.30 4.92 10.2 16.1 19.0 18.5 13.7 8.79 4.33 1.96 0.689

real f 12 13 14 15 16
% 0.217 0.048 0.015 0.002 0.001

Table 4.8: Percentage of the number of real roots for the focal lengthf with data as
in Table 4.7.

Finally, we performed the same experiments for a special camera motion. It is
known [81, 96] that the focal length cannot be determined by the formula (4.27)
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from the fundamental matrix if the optical axes are parallel to each other, e.g. for
a sideways motion of cameras. Therefore, we generated cameras undergoing \close-
to-sideways motion". To model this scenario, 100 points were again placed in a 3D
cube [� 10; 10]3. Then 500,000 di�erent camera pairs were generated such that both
cameras were �rst pointed in the same direction (optical axes were intersecting at
in�nity) and then translated laterally. Next, a small amount of rotational noise of
0.01 degrees was introduced into the camera poses by right-multiplying the projection
matrices by respective rotation matrices. This multiplication slightly rotated the
optical axes of cameras (as not to intersect at in�nity) as well as simultaneously
displaced the camera centers.

The results for noise-free data are displayed in Tables 4.9 and 4.10. For this
special close-to-sideways motion, the formula (4.27) provides up to 20 real solutions
for the focal length f .

real roots 1 3 5 7 9 11 13 15 17 19 21 23
% 0.007 0.544 5.14 16.83 26.2 24.9 16.2 7.37 2.30 0.475 0.061 0.006

Table 4.9: Real solutions in the distortion varietyG00
[v] for the close-to-sideways mo-

tion scenario.
real f 0 1 2 3 4 5 6 7 8 9 10

% 0.006 0.755 3.08 10.2 12.9 20.9 16.2 16.0 8.73 6.17 2.61
real f 11 12 13 14 15 16 17 18 19 20

% 1.58 0.556 0.253 0.086 0.033 0.011 0.0044 0.0016 0.0012 0.0002

Table 4.10: Real solutions for the focal lengthf in the close-to-sideways motion
scenario.

Example 4.25. In [67], Kukelova, Pajdla, Sturmfels and I apply a similar elim-
ination strategy inspired by distortion varieties to derive new minimal solvers for
problems with solvers already, for purposes of comparison. In particular, see [67,
Section 3.3] for a new solver for the case E+f� from Table 4.1, corresponding to the
distortion variety G0 in P11 with dimension 7 and degree 19. It is shown that our
solver compares favorably to the state of the art (SOTA) solver due to Kuang et al.
[63]. Our solver's elimination template has size 51� 70, while SOTA's elimination
template is 200� 231. The smaller solver is faster and moreover it has competitive
numerical stability properties. See [67, Figure 3] for details.

In this chapter, we presented a mathematical theory for describing distortion in
images. It is based on lifting varieties in projective space to other toric varieties. The
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framework uni�es existing models in vision, and leads to fast minimal solvers for cases
with distortion. Our theorems about degree, de�ning equations and tropicalization
are of independent interest in combinatorial algebraic geometry.
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Chapter 5

Modeling Spaces of Pictures

In this chapter, we model spaces of pictures of simple objects, such as edges. Here
cameras are �xed, a world object varies in position and we are interested in its space
of possible simultaneous pictures. Our understanding could enhance triangulation
algorithms. Our approach is to use combinatorial commutative algebra; in the sim-
plest case, we consider subvarieties of products of the projective plane. This chapter
is based on my publication [58] in theInternational Journal of Algebra and Compu-
tation 26 (2016) joint with Michael Joswig, Bernd Sturmfels and Andr�e Wagner.

5.1 Introduction

The emerging �eld of Algebraic Vision is concerned with interactions between com-
puter vision and algebraic geometry. A central role in this endeavor is played by
projective varieties that arise in multiview geometry [48].

The set-up is as follows: Acamera is a linear map from the three-dimensional
projective spaceP3 to the projective planeP2, both over R. We representn cameras
by matrices A1; A2; : : : ; An 2 R3� 4 of rank 3. The kernel ofA j is the focal point
f j 2 P3. Each image pointuj 2 P2 of cameraA j has a line throughf j as its �ber in
P3. This is the back-projected line.

We assume throughout that the focal points of then cameras are ingeneral
position, i.e. all distinct, no three on a line, and no four on a plane. Let� jk denote
the line in P3 spanned by the focal pointsf j and f k . This is the baselineof the
camera pairA j ; Ak . The image of the focal pointf j in the image planeP2 of the
cameraAk is the epipoleek j . Note that the baseline� jk is the back-projected line
of ek j with respect to A j and also the back-projected line ofej  k with respect to
Ak . See Figure 5.1 for a sketch.
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Figure 5.1: Two-view geometry (cf. Chapter 2).

Fix a point X in P3 which is not on the baseline� jk , and let uj and uk be the
images ofX under A j and Ak . SinceX is not on the baseline, neither image point
is the epipole for the other camera. The two back-projected lines ofuj and uk meet
in a unique point, which isX . This process of reconstructingX from two imagesuj

and uk is calledtriangulation [48, x9.1].
The triangulation procedure amounts to solving the linear equations

B jk

2

4
X

� � j

� � k

3

5 = 0 where B jk =
�

A j uj 0
Ak 0 uk

�
2 R6� 6: (5.1)

For general data we have rank(B jk ) = rank( B jk
1 ) = � � � = rank( B jk

6 ) = 5, where B jk
i

is obtained fromB jk by deleting the i th row. Cramer's Rule can be used to recover
X . Let ^ 5B jk

i 2 R6 be the column vector formed by the signed maximal minors of
B jk

i . Write ê5B jk
i 2 R4 for the �rst four coordinates of ^ 5B jk

i . These are bilinear
functions of uj and uk . They yield

X = ê5B jk
1 = ê5B jk

2 = � � � = ê5B jk
6 : (5.2)

We note that, in most practical applications, the datau1; : : : ; un will be noisy, in
which case triangulation requires techniques from optimization [3].

The multiview variety VA of the camera con�guration A = ( A1; : : : ; An ) was
de�ned in [5] as the closure of the image of the rational map

� A : P3 99K P2 � P2 � � � � � P2;
X 7! (A1X; A 2X; : : : ; A nX ):

(5.3)
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The points (u1, u2, . . . , un) ∈ VA are the consistent views in n cameras. The prime

ideal IA of VA was determined in [5, Corollary 2.7]. It is generated by the

(
n

2

)
bilinear polynomials det(Bjk) plus

(
n

3

)
further trilinear polynomials. See [72] for

the natural generalization of this variety to higher dimensions.
The analysis in [5] was restricted to a single world point X ∈ P3 (cf. De�nition

3.9). In this chapter we study the case of two world points X, Y ∈ P3 that are linked
by a distance constraint. Consider the hypersurface V (Q) in P3 × P3 de�ned by

Q = (X0Y3 − Y0X3)2 + (X1Y3 − Y1X3)2 + (X2Y3 − Y2X3)2 −X2
3Y

2
3 . (5.4)

The a�ne variety VR(Q) ∩ {X3=Y3=1} in R3 × R3 consists of pairs of points whose
Euclidean distance is 1. The rigid multiview map is the rational map

ψA : V (Q) ↪→ P3 × P3 99K (P2)n × (P2)n,
(X, Y ) 7→

(
(A1X, . . . AnX), (A1Y, . . . AnY )

)
.

(5.5)

The rigid multiview variety is the image of this map. This is a 5-dimensional sub-
variety of (P2)2n. Its multihomogeneous prime ideal JA lives in the polynomial ring
R[u, v] = R[ui0, ui1, ui2, vi0, vi1, vi2 : i = 1, . . . , n], where (ui0:ui1:ui2) and (vi0:vi1:vi2)
are coordinates for the ith factor P2 on the left respectively right in (P2)n × (P2)n.
Our aim is to determine the ideal JA. Knowing generators of JA has the potential of
being useful for designing optimization tools as in [3] for triangulation in the presence
of distance constraints.

The choice of world and image coordinates for the camera con�guration A =
(A1, . . . , An) gives our problem the following group symmetries. Let N be an ele-
ment of the Euclidean group of motions SE(3,R), which is generated by rotations
and translations. We may multiply the camera con�guration on the right by N
to obtain AN = (A1N, . . . , AnN). Then JA = JAN since V (Q) is invariant under
SE(3,R). For M1, . . . ,Mn ∈ GL(3,R), we may multiply A on the left to obtain
A′ = (M1A, . . . ,MnA). Then JA′ = (M1 ⊗ . . .⊗Mn)JA.

This chapter is organized as follows. In Section 5.2 we present the explicit com-
putation of the rigid multiview ideal for n = 2, 3, 4. Our main result, to be stated
and proved in Section 5.3, is a system of equations that cuts out the rigid multi-
view variety V (JA) for any n. Section 5.4 is devoted to generalizations. The general
idea is to replace V (Q) by arbitrary subvarieties of (P3)m that represent polynomial
constraints on m ≥ 2 world points. We focus on scenarios that are of interest in
applications to computer vision.

Our results in Propositions 5.1, 5.2, 5.3 and Corollary 5.1 are proved by compu-
tations with Macaulay2 [44]. Following standard practice in computational algebraic
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geometry, we carry out the computation on many samples in a Zariski dense set of
parameters, and then conclude that it holds generically.

5.2 Two, three and four pictures

In this section we o�er a detailed case study of the rigid multiview variety when the
number n of cameras is small. We begin with the case n = 2. The prime ideal JA lives
in the polynomial ring R[u, v] in 12 variables. This is the homogeneous coordinate
ring of (P2)4, so it is naturally Z4-graded. The variables u10, u11, u12 have degree
(1, 0, 0, 0), the variables u20, u21, u22 have degree (0, 1, 0, 0), the variables v10, v11, v12

have degree (0, 0, 1, 0), and the variables v20, v21, v22 have degree (0, 0, 0, 1). Our ideal
JA is Z4-homogeneous.

Throughout this section we shall assume that the camera con�guration A is
generic in the sense of algebraic geometry. This means that A lies in the com-
plement of a certain (unknown) proper algebraic subvariety in the a�ne space of all
n-tuples of 3× 4-matrices. All our results in Section 5.2 were obtained by symbolic
computations with several random choices of A. Such choices of camera matrices are
generic. They will be attained with with probability 1.

Proposition 5.1. For n = 2, the rigid multiview ideal JA is minimally generated
by eleven Z4-homogeneous polynomials in twelve variables, one of degree (1, 1, 0, 0),
one of degree (0, 0, 1, 1), and nine of degree (2, 2, 2, 2).

Let us look at the result in more detail. The �rst two bilinear generators are the
familiar 6× 6-determinants

det

[
A1 u1 0
A2 0 u2

]
and det

[
A1 v1 0
A2 0 v2

]
. (5.6)

These cut out two copies of the multiview threefold VA ⊂ (P2)2, in separate variables,
for X 7→ u = (u1, u2) and Y 7→ v = (v1, v2). If we write the two bilinear forms in
(5.6) as u>1 Fu2 and v>1 Fv2 then F is a real 3 × 3-matrix of rank 2, known as the
fundamental matrix [48, Chapter 9] of the camera pair (A1, A2).

The rigid multiview variety V (JA) is a divisor in VA × VA ⊂ (P2)2 × (P2)2. The
nine octics that cut out this divisor can be understood as follows. We write B and C
for the 6× 6-matrices in (5.6), and Bi and Ci for the matrices obtained by deleting
their ith rows. The kernels of these 5 × 6-matrices are represented, via Cramer’s
Rule, by ∧5Bi and ∧5Ci. We write ∧̃5Bi and ∧̃5Ci for the vectors given by their
�rst four entries. As in (5.2), these represent the two world points X and Y in P3.
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Their coordinates are bilinear forms in (u1, u2) or (v1, v2), where each coe�cient is

a 3 × 3-minor of

[
A1

A2

]
. For instance, writing ajki for the (j, k) entry of Ai, the �rst

coordinate of ∧̃5B1 is
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Recall that the two world points in P3 are linked by a distance constraint (5.4),
expressed as a biquadratic polynomial Q. We set Q(X, Y ) = T (X,X, Y, Y ), where
T (•, •, •, •) is a quadrilinear form. We regard T as a tensor of order 4. It lives in the
subspace Sym2(R4) ⊗ Sym2(R4) ' R100 of (R4)⊗4 ' R256. Here Symk( · ) denotes
the space of symmetric tensors of order k.

We now substitute our Cramer’s Rule formulas for X and Y into the quadrilinear
form T . For any choice of indices 1≤i≤j≤6 and 1≤k≤l≤6,

T
(
∧̃5Bi , ∧̃5Bj , ∧̃5Ck , ∧̃5Cl

)
(5.7)

is a multihomogeneous polynomial in (u1, u2, v1, v2) of degree (2, 2, 2, 2). This poly-
nomial lies in JA but not in the ideal IA(u) + IA(v) of VA×VA, so it can serve as one
of the nine minimal generators described in Proposition 5.1.

The number of distinct polynomials appearing in (5.7) equals

(
7

2

)2

= 441. A

computation veri�es that these polynomials span a real vector space of dimension
126. The image of that vector space modulo the degree (2, 2, 2, 2) component of the
ideal IA(u) + IA(v) has dimension 9.

We record three more features of the rigid multiview with n = 2 cameras. The
�rst is the multidegree [79, Section 8.5], or, equivalently, the cohomology class of
V (JA) in H∗

(
(P2)4,Z

)
= Z[u1, u2, v1, v2]/〈u3

1, u
3
2, v

3
1, v

3
2〉. It equals

2u2
1v1 + 2u1u2v1 + 2u2

2v1 + 2u2
1v2 + 2u1u2v2 + 2u2

2v2

+2u1v
2
1 + 2u1v1v2 + 2u1v

2
2 + 2u2v

2
1 + 2u2v1v2 + 2u2v

2
2.

This is found with the built-in command multidegree in Macaulay2.
The second is the table of the Betti numbers of the minimal free resolution of JA

in the format of Macaulay2 [44]. In that format, the columns correspond to the
syzygy modules, while rows denote the degrees. For n = 2 we obtain
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0 1 2 3 4 5 6 7 8 9 10 11

total: 1 177 1432 5128 10584 13951 12315 7410 3018 801 126 9

0: 1 . . . . . . . . . . .

1: . 6 . . . . . . . . . .

2: . 2 21 6 . . . . . . . .

3: . . 6 36 18 . . . . . . .

4: . . 1 12 42 36 9 . . . . .

5: . 1 . . . . . . . . . .

6: . 24 108 166 120 42 6 . . . . .

7: . 144 1296 4908 10404 13873 12300 7410 3018 801 126 9

Table 5.1: Betti numbers for the rigid multiview ideal with n = 3.

0 1 2 3 4 5

total: 1 11 25 22 8 1

0: 1 . . . . .

1: . 2 . . . .

2: . . 1 . . .

7: . 9 24 22 8 1

The column labeled 1 lists the minimal generators from Proposition 5.1. Since the
codimension of V (JA) is 3, the table shows that JA is not Cohen-Macaulay. The
unique 5th syzygy has degree (3, 3, 3, 3) in the Z4-grading.

The third point is an explicit choice for the nine generators of degree (2, 2, 2, 2)
in Proposition 5.1. Namely, we take i = j ≤ 3 and k = l ≤ 3 in (5.7). The following
corollary is also found by computation:

Corollary 5.1. The rigid multiview ideal JA for n = 2 is generated by IA(u)+IA(v)
together with the nine polynomials Q

(
∧̃5Bi, ∧̃5Ck

)
for 1 ≤ i, k ≤ 3.

We next come to the case of three cameras:

Proposition 5.2. For n = 3, the rigid multiview ideal JA is minimally generated by
177 polynomials in 18 variables. Its Betti table is given in Table 5.1.

Proposition 5.2 is proved by computation. The 177 generators occur in eight
symmetry classes of multidegrees. Their numbers in these classes are

(110000) : 1 (220111) : 3 (220220) : 9 (211211) : 1
(111000) : 1 (211111) : 1 (220211) : 3 (111111) : 1
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For instance, there are nine generators in degree (2, 2, 0, 2, 2, 0), arising from Proposi-
tion 5.1 for the �rst two cameras. Using various pairs among the three cameras when
forming the matrices Bi, Bj, Ck and Cl in (5.7), we can construct the generators of
degree classes (2, 2, 0, 2, 1, 1) and (2, 1, 1, 2, 1, 1).

Table 5.1 shows the Betti table for JA in Macaulay2 format. The �rst two entries
(6 and 2) in the 1-column refer to the eight minimal generators of IA(u) + IA(v).
These are six bilinear forms, representing the three fundamental matrices, and two
trilinear forms, representing the trifocal tensor of the three cameras (cf. Chapter 3,
[4], [48, Chapter 15]). The entry 1 in row 5 of column 1 marks the unique sextic
generator of JA, which has Z6-degree (1, 1, 1, 1, 1, 1).

For the case of four cameras we obtain the following result.

Proposition 5.3. For n = 4, the rigid multiview ideal JA is minimally generated
by 1176 polynomials in 24 variables. All of them are induced from n = 3. Up to
symmetry, the degrees of the generators in the Z8-grading are

(11000000) : 1 (22001110) : 3 (22002200) : 9 (21102110) : 1
(11100000) : 1 (21101110) : 1 (22002110) : 3 (11101110) : 1

We next give a brief explanation of how the rigid multiview ideals JA were com-
puted with Macaulay2 [44]. For the purpose of e�ciency, we introduce projective
coordinates for the image points and a�ne coordinates for the world points. We
work in the corresponding polynomial ring

Q[u, v][X0, X1, X2, Y0, Y1, Y2].

The rigid multiview map ψA is thus restricted to R3 × R3. The prime ideal of its
graph is generated by the following two classes of polynomials:

1. the 2× 2 minors of the 3× 2 matrices[
Ai · (X0, X1, X2, 1)> ui

]
,
[
Ai · (Y0, Y1, Y2, 1)> vi

]
,

2. the dehomogenized distance constraint

Q
(
(X0, X1, X2, 1)>, (Y0, Y1, Y2, 1)>

)
.

From this ideal we eliminate the six world coordinates {X0, X1, X2, Y0, Y1, Y2}.
For a speed up, we exploit the group actions described in Section 5.1. We

replace A = (A1, ..., An) and Q = Q(X, Y ) by A′ = (M1A1N, ...,MnAnN) and
Q′ = Q(N−1X,N−1Y ). Here Mi ∈ GL3(R) and N ∈ GL4(R) are chosen so that A′
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is sparse. The modi�cation to Q is needed since we generally use N /∈ SE(3,R). The
elimination above now computes the ideal (M1⊗. . .⊗Mn)JA, and it terminates much
faster. For example, for n = 4, the computation took two minutes for sparse A′ and
more than one hour for non-sparse A. For n = 5, Macaulay2 ran out of memory after
18 hours of CPU time for non-sparse A. The complete code used in this chapter can
be accessed via http://www3.math.tu-berlin.de/combi/dmg/data/rigidMulti/.

One last question is whether the Gr�obner basis property in [5, Section 2] extends
to the rigid case. This does not seem to be the case in general. Only in Proposition 5.1
can we choose minimal generators that form a Gr�obner basis.

Remark 5.4. Let n = 2. The reduced Gr�obner basis of JA in the reverse lexico-
graphic term order is a minimal generating set. For a generic choice of cameras the
initial ideal equals

in(JA) = 〈u10u20, v10v20, u
2
10u

2
21v

2
10v

2
21, u

2
10u

2
21v

2
11v20v21, u

2
10u

2
21v

2
11v

2
20,

u2
11u

2
20v

2
10v

2
21, u

2
11u20u21v

2
10v

2
21, u

2
11u

2
20v

2
11v20v21,

u2
11u

2
20v

2
11v

2
20, u

2
11u20u21v

2
11v20v21, u

2
11u20u21v

2
11v

2
20 〉.

For special cameras the exact form of the initial ideal may change. However, up to
symmetry the degrees of the generators in the Z4-grading stay the same. In general,
a universal Gr�obner basis for the rigid multiview ideal JA consists of octics of degree
(2, 2, 2, 2) plus the two quadrics (5.6). This was veri�ed using the Gfan [56] package
in Macaulay2. Analogous statements do not hold for n ≥ 3.

5.3 Equations for the rigid multiview variety

The computations presented in Section 2 suggest the following conjecture.

Conjecture 5.5. The rigid multiview ideal JA is minimally generated by
4

9
n6 −

2

3
n5 +

1

36
n4 +

1

2
n3 +

1

36
n2 − 1

3
n polynomials. These polynomials come from two

triples of cameras, and their number per class of degrees is

(110..000..) : 1 · 2
(
n

2

)
(220..111..) : 3 · 2

(
n

2

)(
n

3

)
(220..220..) : 9 ·

(
n

2

)2

(211..211..) : 1 · n2

(
n− 1

2

)2

(111..000..) : 1 · 2
(
n

3

)
(211..111..) : 1·2n

(
n− 1

2

)(
n

3

)
(220..211..) : 3·2n

(
n

2

)(
n− 1

2

)
(111..111..) : 1 ·

(
n

3

)2

http://www3.math.tu-berlin.de/combi/dmg/data/rigidMulti/
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n\degree 2 3 6 7 8 total timing (s)

2 2 9 1 < 1
3 6 2 1 24 144 177 14
4 12 8 16 240 900 1176 130
5 20 20 100 1200 3600 4940 24064

Table 5.2: The known minimal generators of the rigid multiview ideals, listed by
total degree, for up to �ve cameras. There are no minimal generators of degrees 4
or 5. Average timings (in seconds), using the speed up described above, are in the
last column.

At the moment we have a computational proof only up to n = 5. Table 5.2 o�ers
a summary of the corresponding numbers of generators.

Conjecture 5.5 implies that V (JA) is set-theoretically de�ned by the equations
coming from triples of cameras. It turns out that, for the set-theoretic description,
pairs of cameras su�ce. The following is our main result:

Theorem 5.6. Suppose that the n focal points of A are in general position in P3.

The rigid multiview variety V (JA) is cut out as a subset of VA × VA by the 9

(
n

2

)2

octic generators of degree class (220..220..). In other words, equations coming from
any two pairs of cameras suffice set-theoretically.

With notation as in the introduction, the relevant octic polynomials are

T
(
∧̃5B

j1k1

i1
, ∧̃5B

j1k1

i2
, ∧̃5C

j2k2

i3
, ∧̃5C

j2k2

i4

)
,

for all possible choices of indices. Let HA denote the ideal generated by these polyno-
mials in R[u, v], the polynomial ring in 6n variables. As before, we write IA(u)+IA(v)
for the prime ideal that de�nes the 6-dimensional variety VA × VA in (P2)n × (P2)n.

It is generated by 2

(
n

2

)
bilinear forms and 2

(
n

3

)
trilinear forms, corresponding to

fundamental matrices and trifocal tensors. In light of Hilbert’s Nullstellensatz, The-
orem 5.6 states that the radical of HA + IA(u) + IA(v) is equal to JA. To prove this,
we need a lemma.

A point u in the multiview variety VA ⊂ (P2)n is triangulable if there exists a
pair of indices (j, k) such that the matrix Bjk has rank 5. Equivalently, there exists
a pair of cameras for which the unique world point X can be found by triangulation.
Algebraically, this means X = ∧̃5B

jk
i for some i.



CHAPTER 5. MODELING SPACES OF PICTURES 116

Lemma 5.7. All points in VA are triangulable except for the pair of epipoles, denoted
(e1←2, e2←1), in the case where n = 2. Here, the rigid multiview variety V (JA)
contains the threefolds VA(u)× (e1←2, e2←1) and (e1←2, e2←1)× VA(v).

Proof. Let us �rst consider the case of n = 2 cameras. The �rst claim holds because
the back-projected lines of the two camera images u1 and u2 always span a plane in
P3 except when u1 = e1←2 and u2 = e2←1. In that case both back-projected lines
agree with the common baseline β12. Alternatively, we can check algebraically that
the variety de�ned by the 5 × 5-minors of the matrix B consists of the single point
(e1←2, e2←1).

For the second claim, �x a generic point X in P3 and consider the surface

XQ =
{
Y ∈ P3 : Q(X, Y ) = 0

}
. (5.8)

Working over C, the baseline β12 is either tangent to XQ, or it meets that quadric
in exactly two points. Our assumption on the genericity of X implies that no point
in the intersection β12 ∩XQ is a focal point. This gives

(A1X,A2X,A1YX , A2YX) = (A1X,A2X, e1←2, e2←1). (5.9)

The point (A1X,A2X) lies in the multiview variety VA(u). Each generic point in
VA(u) has this form for some X. Hence (5.9) proves the desired inclusion VA(u) ×
(e1←2, e2←1) ⊂ V (JA). The other inclusion (e1←2, e2←1)× VA(v) ⊂ V (JA) follows by
switching the roles of u and v.

If there are more than two cameras then for each world point X, due to general
position of the cameras, there is a pair of cameras such that X avoids the pair’s
baseline. This shows that each point is triangulable if n ≥ 3.

Proof of Theorem 5.6. It follows immediately from the de�nition of the ideals in
question that the following inclusion of varieties holds in (P2)n × (P2)n:

V (JA) ⊆ V
(
IA(u) + IA(v) +HA

)
.

We prove the reverse inclusion. Let (u, v) be a point in the right hand side.
Suppose that u and v are both triangulable. Then u has a unique preimage

X in P3, determined by a single camera pair {Aj1 , Ak1}. Likewise, v has a unique
preimage Y in P3, also determined by a single camera pair {Aj2 , Ak2}. There exist
indices i1, i2 ∈ {1, 2, 3, 4, 5, 6} such that

X = ∧̃5B
j1k1

i1
and Y = ∧̃5C

j2k2

i2
.
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Suppose that (u, v) is not in V (JA). Then Q(X, Y ) 6= 0. This implies

Q(X, Y ) = T (X,X, Y, Y ) = T
(
∧̃5B

j1k1

i1
, ∧̃5B

j1k1

i1
, ∧̃5C

j2k2

i2
, ∧̃5C

j2k2

i2

)
6= 0,

and hence (u, v) 6∈ V (HA). This is a contradiction to our choice of (u, v).
It remains to consider the case where v is not triangulable. By Lemma 5.7, we

have n = 2, as well as v = (e1←2, e2←1) and (u, v) ∈ V (JA). The case where u is not
triangulable is symmetric, and this proves the theorem.

The equations in Theorem 5.6 are fairly robust, in the sense that they work as
well for many special position scenarios. However, when the cameras A1, A2, . . . , An

are generic then the number 9

(
n

2

)2

of octics that cut out the divisor V (JA) inside

VA × VA can be reduced dramatically, namely to 16.

Corollary 5.8. As a subset of the 6-dimensional ambient space VA × VA, the 5-
dimensional rigid multiview variety V (JA) is cut out by 16 polynomials of degree
class (220..220..). One choice of such polynomials is given by

Q
(
∧̃5B

12
i , ∧̃5C

12
k

)
, Q

(
∧̃5B

12
i , ∧̃5C

13
k

)
Q
(
∧̃5B

13
i , ∧̃5C

12
k

)
, Q

(
∧̃5B

13
i , ∧̃5C

13
k

) for all 1 ≤ i, k ≤ 2.

Proof. First we claim that for each triangulable point u at least one of the matrices
B12 or B13 has rank 5, and the same for v with C12 or C13. We prove this by contra-
diction. By symmetry between u and v, we can assume that rk(B12) = rk(B13) = 4.
Then u3 = e3←1, u2 = e2←1, and u1 = e1←2 = e1←3. However, this last equality of the
two epipoles is a contradiction to the hypothesis that the focal points of the cameras
A1, A2, A3 are not collinear.

Next we claim that if B12 has rank 5 then at least one of the submatrices B12
1

or B12
2 has rank 5, and the same for B13, C12 and C13. Note that the bottom 4×6

submatrix of B12 has rank 4, since the �rst four columns are linearly independent,
by genericity of A1 and A2. The claim follows.

5.4 Other constraints, more points, and no labels

In this section we discuss several extensions of our results. A �rst observation is
that there was nothing special about the constraint Q in (5.4). For instance, �x
positive integers d and e, and let Q(X, Y ) be any irreducible polynomial that is
bihomogeneous of degree (d, e). Its variety V (Q) is a hypersurface of degree (d, e) in
P3 × P3. The following analogue to Theorem 5.6 holds, if we de�ne the map ψA as
in (5.5).
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Theorem 5.9. The closure of the image of the map ψA is cut out in VA × VA

by 9

(
n

2

)2

polynomials of degree class (d, d, 0, . . . , e, e, 0, . . .). In other words, the

equations coming from any two pairs of cameras suffice set-theoretically.

Proof. The tensor T that represents Q now lives in Symd(R4) ⊗ Syme(R4). The
polynomial (5.7) vanishes on the image of ψA and has degree (d, d, e, e). The proof
of Theorem 5.6 remains valid. The surface XQ in (5.8) is irreducible of degree e in
P3. These polynomials cut out that image inside VA × VA.

Remark 5.10. In the generic case, we can replace 9

(
n

2

)2

by 16, as in Corollary 5.8.

Another natural generalization is to consider m world points X1, . . . , Xm that are
linked by one or several constraints in (P3)m. Taking images with n cameras, we ob-
tain a variety V (JA) which lives in (P2)mn. For instance, if m = 4 and X1, X2, X3, X4

are constrained to lie on a plane in P3, then Q = det(X1, X2, X3, X4) and V (JA) is
a variety of dimension 11 in (P2)4n. Taking 6×6-matrices B,C,D,E as in (5.1) for
the four points, we then form

det
(
∧̃5Bi, ∧̃5Cj, ∧̃5Dk, ∧̃5El

)
for all 1 ≤ i, j, k, l ≤ 6. (5.10)

For n = 2 we veri�ed with Macaulay2 that the prime ideal JA is generated by 16 of
these determinants, along with the four bilinear forms for VA

4.

Proposition 5.11. The variety V (JA) is cut out in VA
4 by the 16

(
n

2

)4

polynomials

from (5.10). In other words, the equations coming from any two pairs of cameras
suffice set-theoretically.

Proof. Each polynomial (5.10) is in JA. The proof of Theorem 5.6 remains valid.
The planes (Xi, Xj, Xk)

Q intersect the baseline β12 in one point each.

To continue the theme of rigidity, we may impose distance constraints on pairs
of points. Fixing a nonzero distance dij between points i and j gives

Qij = (Xi0Xj3 −Xj0Xi3)2 + (Xi1Xj3 −Xj1Xi3)2 + (Xi2Xj3 −Xj2Xi3)2 − d2
ijX

2
i3X

2
j3.

We are interested in the image of the variety V = V (Qij : 1 ≤ i < j ≤ m) under the
multiview map ψA that takes (P3)m to (P2)mn. For instance, for m = 3, we consider
the variety V = V (Q12, Q13, Q23) in (P3)3, and we seek the equations for its image
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under the multiview map ψA into (P2)3n. Note that V has dimension 6, unless we
are in the collinear case. Algebraically,

(d12 + d13 + d23)(d12 + d13 − d23)(d12 − d13 + d23)(−d12 + d13 + d23) = 0. (5.11)

If this holds then dim(V) = 5. The same argument as in Theorem 5.6 yields:

Corollary 5.12. The rigid multiview variety ψA(V) has dimension six, unless (5.11)
holds, in which case the dimension is five. It has real points if and only if d12, d13, d23

satisfy the triangle inequality. It is cut out in VA
3 by 27

(
n

2

)2

biquadratic equations,

coming from the 9

(
n

2

)2

equations for any two of the three points.

In many computer vision applications, the m world points and their images in P2

will be unlabeled. To study such questions, we propose to work with the unlabeled
rigid multiview variety. This is the image of the rigid multiview variety under the
quotient map

(
(P2)m

)n → (
Symm(P2)

)n
.

Indeed, while labeled con�gurations in the plane are points in (P2)m, unlabeled
con�gurations are points in the Chow variety Symm(P2). This is the variety of ternary
forms that are products of m linear forms (cf. [68, §8.6]). It is embedded in the space

P(m+2
2 )−1 of all ternary forms of degree m.

Example 5.13. Let m = n = 2. The Chow variety Sym2(P2) is the hypersurface in
P5 de�ned by the determinant of a symmetric 3× 3-matrix (aij). The quotient map
(P2)2 → Sym2(P2) ⊂ P5 is given by the formulas

a00 = 2u10v10, a11 = 2u11v11, a22 = 2u12v12,
a01 = u11v10 + u10v11, a02 = u12v10 + u10v12, a12 = u12v11 + u11v12.

Similarly, for the two unlabeled images under the second camera we use

b00 = 2u20v20, b11 = 2u21v21, b22 = 2u22v22,
b01 = u21v20 + u20v21, b02 = u22v20 + u20v22, b12 = u22v21 + u21v22.

The unlabeled rigid multiview variety is the image of V (JA) ⊂ VA × VA under the
quotient map that takes two copies of (P2)2 to two copies of Sym2(P)2 ⊂ P5. This
quotient map is given by (u1, v1) 7→ a, (u2, v2) 7→ b.

We �rst compute the image of VA × VA in P5 × P5, denoted Sym2(VA). Its
ideal has seven minimal generators, three of degree (1, 1), and one each in degrees
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(3, 0), (2, 1), (1, 2), (0, 3). The generators in degrees (3, 0) and (0, 3) are det(aij) and
det(bij). The �ve others depend on the cameras A1, A2.

Now, to get equations for the unlabeled rigid multiview variety, we intersect the
ideal JA with the subring R[a, b] of bisymmetric homogeneous polynomials in R[u, v].
This results in nine new generators which represent the distance constraint. One of
them is a quartic of degree (2, 2) in (a, b). The other eight are quintics, four of degree
(2, 3) and four of degree (3, 2).

Independently of the speci�c constraints considered in this chapter, it is of interest
to characterize the pictures of m unlabeled points using n cameras. This gives rise

to the unlabeled multiview variety Symm(VA) in
(
P(m+2

2 )−1
)n

. It would be desirable
to know the prime ideal of Symm(VA) for any n and m.

In this chapter, we modeled spaces of pictures of simple objects, using subvarieties
of products of the projective plane. We determined de�ning equations that cut these
subvarieties out, and we proposed various scenarios of practical interest. Our results
might be helpful in polynomial optimization schemes for triangulation, following [3].
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